WO2021162069A1 - Heat medium heating device and vehicle air conditioning device - Google Patents

Heat medium heating device and vehicle air conditioning device Download PDF

Info

Publication number
WO2021162069A1
WO2021162069A1 PCT/JP2021/005145 JP2021005145W WO2021162069A1 WO 2021162069 A1 WO2021162069 A1 WO 2021162069A1 JP 2021005145 W JP2021005145 W JP 2021005145W WO 2021162069 A1 WO2021162069 A1 WO 2021162069A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
recess
heat medium
electrode
heating device
Prior art date
Application number
PCT/JP2021/005145
Other languages
French (fr)
Japanese (ja)
Inventor
足立 知康
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2021162069A1 publication Critical patent/WO2021162069A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic

Definitions

  • the present disclosure relates to a heat medium heating device and a vehicle air conditioner.
  • a positive characteristic thermistor element is used as a heat generating element as one of the heat medium heating devices for heating a heated medium which is a heat source for heating in a vehicle air conditioner applied to an electric vehicle or a hybrid vehicle.
  • a PTC heater is known (for example, Patent Document 1).
  • the PTC heater has a positive thermistor characteristic, and the resistance value rises as the temperature rises, thereby controlling the current consumption and slowing the temperature rise, and then the current consumption and the temperature of the heat generating part. Reaches the saturation region and stabilizes, and has self-temperature control characteristics.
  • Patent Document 1 describes an electric heating device having a heating element arranged in a recess provided in a housing.
  • the outside of the heating element is formed of ceramic plates, and the PTC heating element is arranged between these ceramic plates.
  • a contact plate made of a conductive material is arranged between these PTC heating elements and a ceramic plate, and an extension portion is integrally formed on these contact plates. Extensions of the contact plates facing each other are arranged on both sides in the diagonal direction. Therefore, the extensions are not only separated from each other by the thickness of the PTC heating element, but also substantially separated from each other by the width of the heating element.
  • contact plates for guiding electricity to the PTC heating element are arranged on both sides of the PTC heating element.
  • the distance between the contact plates arranged on either surface and the recesses becomes relatively short. Therefore, for example, when the concave portion (housing forming the concave portion) is formed of a conductive member, the insulation distance between the contact plate and the concave portion becomes short, so that there is a possibility of electric leakage from the contact plate to the concave portion. there were.
  • the present disclosure has been made in view of such circumstances, and provides a heat medium heating device and a vehicle air conditioner capable of improving insulation and suppressing electric leakage from an electrode portion.
  • the purpose is.
  • the heat medium heating device has a plate-shaped heating element and a recess for accommodating the heating element so that the plate surface and the side wall surface of the heating element face each other.
  • a heat radiating part that radiates heat to a heat medium and a pair of electrode parts fixed to the heating element are provided, and the heating element is unidirectional with reference to a central axis extending along the depth direction of the recess.
  • a pair of electrode portions are fixed to the plate surface of the heating element which is arranged on the side and is close to the central axis.
  • the insulating property can be improved and the electric leakage from the electrode portion can be suppressed.
  • FIG. 5 is a cross-sectional view showing a cross section taken along the line VV of FIG.
  • FIG. 5 is an enlarged cross-sectional view of a main part of FIG.
  • FIG. 5 is a perspective view which shows the heating apparatus provided in the heat medium heating apparatus of FIG.
  • FIG. 5 is a perspective view which shows the heating apparatus provided in the heat medium heating apparatus of FIG.
  • FIG. 5 is a top view which shows the heating apparatus provided in the heat medium heating apparatus of FIG.
  • the vehicle air conditioner 1 is a casing 3 that forms an air flow path 2 for taking in outside air or vehicle interior air, adjusting the temperature, and blowing it out into the vehicle interior. It has.
  • a blower 4 that sucks outside air or vehicle interior air in sequence from the upstream side to the downstream side of the air flow path 2 to boost the pressure and pumps it to the downstream side, and air pumped by the blower 4.
  • a cooler 5 that cools the flow
  • a radiator 6 that flows through the cooler 5 and heats the cooled air flow
  • an air flow rate that flows through the radiator 6 and air that flows by bypassing the radiator 6.
  • An air mix damper 7 for adjusting the ratio with the flow rate and adjusting the temperature of the air flow mixed on the downstream side thereof is installed.
  • the cooler 5 constitutes a refrigerant circuit together with a compressor, a condenser, and an expansion valve (not shown), and cools the air flowing thereby by evaporating the refrigerant adiabatically expanded by the expansion valve.
  • the radiator 6 constitutes a heat medium circulation circuit 11 together with a tank 8, a pump 9, and a heat medium heating device 10, and a heat medium (for example, water) heated by the heat medium heating device 10 is circulated via the pump 9. By doing so, the air circulating there is heated.
  • the longitudinal direction of the heat medium heating device 10 is the X-axis direction
  • the lateral direction of the heat medium heating device 10 is the Y-axis direction
  • the X-axis direction and the direction orthogonal to the Y-axis direction are the Z-axis.
  • the Z-axis direction may be referred to as the vertical direction.
  • the term "longitudinal direction” means the longitudinal direction of the heat medium heating device 10
  • the term “short direction” means the short direction of the heat medium heating device 10.
  • the heat medium heating device 10 is a device for heating a heat medium (for example, water).
  • the heat medium heating device 10 includes a first casing 20 in which various devices such as a control substrate 23 and a heating device 40 are housed, and a second casing 30 provided below the first casing 20 and through which a heat medium flows.
  • the heating device 40 for heating the heat medium is provided.
  • the first casing 20 integrally integrates a control board accommodating portion 21 in which the control substrate 23 is accommodated and a heat radiating portion 22 projecting downward from the bottom surface of the control substrate accommodating portion 21. Be prepared for.
  • the first casing 20 is a die-cast product integrally molded by die-casting using a metal material having high thermal conductivity such as an aluminum alloy.
  • the control board accommodating portion 21 is a box-shaped body with an open upper part, and a space for accommodating the control substrate 23 is formed inside. Further, a high-voltage connector 24 to which a high-voltage power cable (not shown) is connected is provided at one end of the control board accommodating portion 21 in the longitudinal direction (X-axis direction). Further, a low-voltage connector 25 to which a low-voltage power cable (not shown) is connected is provided at the other end of the control board accommodating portion 21 in the longitudinal direction. An opening extending in the longitudinal direction is formed on the bottom surface of the control board accommodating portion 21. The opening communicates with the recess 26 of the heat radiating portion 22, which will be described later.
  • the control board accommodating portion 21 may be closed above by providing a lid (not shown) or the like.
  • the control board 23 is for controlling the energization of the PTC heater (heating element) described later, and is fixedly installed in the control board accommodating portion 21 via a screw or the like.
  • the control board 23 is electrically connected to a high-voltage power cable (not shown) connected to the high-voltage connector 24 and a low-voltage cable (not shown) connected to the low-voltage connector 25. Further, the control board 23 is electrically connected to the PTC heater via an electrode plate 42 (electrode portion) described later.
  • the heat radiating portion 22 projects downward from the substantially central region of the bottom surface of the control board accommodating portion 21 in the lateral direction.
  • the heat radiating portion 22 integrally includes a recess 26 that is recessed downward from the bottom surface of the control board accommodating portion 21, and a plurality of heat radiating fins 27 that project substantially horizontally from the outer peripheral surface.
  • the recess 26 extends in the longitudinal direction of the heat medium heating device 10. As shown in FIG. 4, the recess 26 is provided with three partition walls 28 that divide the space inside the recess 26 in the longitudinal direction. That is, the recess 26 is divided into four by the partition wall 28. In the following description, the term "recess 26" simply means a divided recess 26.
  • the heating device 40 is housed in the space formed inside each recess 26. Note that, in FIG. 4, the control board 23 is omitted for the sake of illustration.
  • the recess 26 includes an inlet opening 26a that communicates with the internal space of the control board accommodating portion 21, and a side wall surface 26b that defines both ends of the space formed inside the recess 26 in the lateral direction. It has a bottom surface 26c that defines the lower end of the space formed inside the recess 26.
  • the first casing 20 is a die-cast product
  • a draft is formed on the side wall surface 26b of the recess 26. That is, the side wall surface 26b is inclined so as to form a predetermined angle with respect to the vertical surface. Specifically, each side wall surface 26b is inclined so that the side wall surfaces 26b come closer to each other from the entrance opening 26a toward the bottom surface 26c.
  • Each heat radiation fin 27 has a plate shape extending in the horizontal direction, and is formed over substantially the entire length direction.
  • the plurality of heat radiation fins 27 are arranged side by side at predetermined intervals in the vertical direction (Z-axis direction).
  • the second casing 30 integrally includes a flow path portion 31 that forms a flow path through which the heat medium flows, and a flange portion 32 that is fixed to the first casing 20. Further, as shown in FIGS. 2 and 3, the second casing 30 integrally integrates an inlet portion 33 for supplying the heat medium to the flow path portion 31 and an outlet portion 34 for discharging the heat medium from the flow path portion 31. Prepared for.
  • the flow path portion 31 extends in the longitudinal direction (X-axis direction). Inside the flow path portion 31, a flow path formed so as to be recessed downward is provided. The flow path extends in the longitudinal direction, and the heat medium flows through the flow path. Further, a heat radiating unit 22 is arranged in the flow path. The heat radiating portion 22 is arranged so as not to come into contact with the flow path portion 31. That is, the heat medium circulates in the space between the flow path portion 31 and the heat radiating portion 22. The heat medium is heated by exchanging heat with the heat radiating unit 22.
  • the flange portion 32 extends in the lateral direction from the upper end of the flow path portion 31.
  • the control board accommodating portion 21 of the second casing 30 is placed on the upper surface of the flange portion 32.
  • the flange portion 32 and the control board accommodating portion 21 are fixed.
  • An inlet portion 33 is provided at one end of the flow path portion 31 in the longitudinal direction (X-axis direction).
  • the inlet portion 33 is a cylindrical member.
  • a heat medium circulates inside the inlet 33.
  • the upper end of the inlet portion 33 is connected to the lower end of the flow path portion 31.
  • the heat medium flows into the flow path through the inlet 33.
  • An outlet portion 34 is provided at the other end of the flow path portion 31 in the longitudinal direction (X-axis direction).
  • the outlet portion 34 is a cylindrical member.
  • a heat medium circulates inside the outlet portion 34.
  • the upper end of the outlet portion 34 is connected to the lower end of the flow path portion 31. The heat medium that has passed through the flow path and has completed heat exchange is discharged to the outside of the heat medium heating device 10 via the outlet portion 34.
  • the heating device 40 is housed in the recess 26 of the heat radiating unit 22.
  • the resin frame 47 of the heating device 40 is omitted.
  • the heating device 40 includes a flat plate-shaped PTC element (heating element) 41, a pair of electrode plates (electrode portions) 42 fixed to the plate surface of the PTC element 41, and a PTC element.
  • the first insulator 43 and the second insulator 44 fixed to the plate surface of 41, the spacer 45 fixed to the first insulator 43, the leaf spring 46 fixed to the spacer 45, and the PTC element 41 are fixed. It is provided with a resin frame 47 and a resin frame 47.
  • the resin frame 47 is omitted for the sake of illustration. Further, in FIG. 12, only the PTC element 41 and the electrode plate 42 constituting the heating device 40 are shown.
  • the PTC element 41 is a member having a substantially quadrangular outer shape and a flat plate shape (see also FIG. 12). That is, the PTC element 41 has a plate surface on one side (hereinafter, referred to as "one surface 41a") and a plate surface on the other side (hereinafter, referred to as "other surface 41b"). Further, the PTC element 41 has a side surface 41c that connects one surface 41a and the other surface 41b.
  • high-voltage power supplied via the control board 23 is applied via the electrode plate 42.
  • the PTC element 41 is controlled on and off via a control board 23 and is configured to generate heat.
  • the pair of electrode plates 42 are fixed to one surface 41a of the PTC element 41. That is, each of the electrode plates 42 constituting the pair of electrode plates 42 is fixed to both ends of the PTC element 41 in the X-axis direction. Further, each electrode plate 42 is fixed to the same plate surface of the PTC element 41 (see also FIG. 12). That is, one of the pair of electrode plates 42 is provided at one end of one surface 41a of the PTC element 41, and the other of the pair of electrode plates 42 is provided at the other end of one surface 41a of the PTC element 41. Has been done.
  • Each electrode plate 42 is a plate-shaped member made of a conductive metal material. As shown in FIG. 12, each electrode plate 42 integrally has a fixing portion 42a fixed to one surface 41a of the PTC element 41 and a connecting portion 42b protruding upward from the fixing portion 42a.
  • the fixing portion 42a is in surface contact with one surface 41a of the PTC element 41.
  • the fixing portion 42a and the PTC element 41 are in surface contact with each other at the end portion of the PTC element 41 in the X-axis direction over substantially the entire area of the PTC element 41 in the Z-axis direction.
  • the fixing portion 42a and the PTC element 41 are fixed with a conductive adhesive at the contact portion.
  • the connecting portion 42b extends upward from the upper end of the fixing portion 42a.
  • the length of the connecting portion 42b in the X-axis direction is longer than the length of the fixing portion 42a in the X-axis direction.
  • the upper end of the connecting portion 42b is located above the inlet opening 26a of the recess 26 of the heat radiating portion 22. Further, the upper end of the connecting portion 42b penetrates the control board 23 located above the recess 26. At this penetration point, the connecting portion 42b and the control board 23 are electrically connected.
  • the first insulator 43 is a plate-shaped member made of a material having an insulating property (for example, aluminum oxide). As shown in FIGS. 9 and 11, the first insulator 43 has an element fixing portion 43a fixed to the PTC element 41 and an electrode fixing portion extending in the X-axis direction from both ends of the fixing portion 42a in the X-axis direction. It has a portion 43b integrally. That is, the element fixing portions 43a are provided in the central region of the first insulator 43 in the X-axis direction, and the electrode fixing portions 43b are provided at both ends of the first insulator 43 in the X-axis direction. The vertical length of the first insulator 43 is longer than the vertical length of the PTC element 41.
  • the element fixing portion 43a is formed so as to project from the electrode fixing portion 43b toward the PTC element 41 side.
  • the element fixing portion 43a is in surface contact with one surface 41a of the PTC element 41. Specifically, it is in contact with the central region of one surface 41a of the PTC element 41. Specifically, of the one surface 41a of the PTC element 41, the pair of electrode plates 42 are in contact with substantially the entire area where they are not fixed.
  • the first insulator 43 and the PTC element 41 are fixed with an adhesive having an insulating property at a contact portion.
  • the electrode fixing portion 43b is in surface contact with the fixing portion 42a of each electrode plate 42. Specifically, it is in surface contact with the surface of the electrode plate 42 that is not fixed to the PTC element 41.
  • the first insulator 43 and the electrode plate 42 are fixed with an adhesive having an insulating property at a contact portion.
  • the electrode fixing portion 43b is formed so as to be recessed from the element fixing portion 43a.
  • the length of the electrode fixing portion 43b in the X-axis direction is longer than the length of the electrode fixing portion 43b in the Y-axis direction.
  • the element fixing portion 43a On the surface of the first insulator 43 on the PTC element 41 side, the element fixing portion 43a is located on the PTC element 41 side by a predetermined distance from the electrode fixing portion 43b. This predetermined distance is substantially the same as or slightly longer than the thickness of the electrode plate 42.
  • the surface of the first insulator 43 opposite to the PTC element 41 side (hereinafter, referred to as “one surface”) is a flat surface over the entire area.
  • the second insulator 44 is made of an insulating material (for example, aluminum oxide) like the first insulator 43.
  • the second insulator 44 is a flat plate-shaped member.
  • the second insulator 44 is in surface contact with substantially the entire other surface 41b of the PTC element 41.
  • the second insulator 44 and the PTC element 41 are fixed with an adhesive having an insulating property at a contact portion.
  • the vertical length of the second insulator 44 is longer than the vertical length of the PTC element 41.
  • the spacer 45 is made of an insulating metal material (for example, an aluminum alloy). As shown in FIG. 10, the spacer 45 is a plate-shaped member formed so that the length in the Y-axis direction becomes shorter from the upper end to the lower end.
  • the spacer 45 has a substantially trapezoidal shape in a cross section cut at a surface intersecting the X-axis direction. As shown in FIG. 10, the spacer 45 is in surface contact with each other over substantially the entire surface of one surface of the first insulator 43.
  • the spacer 45 and the first insulator 43 are fixed with an adhesive having an insulating property at a contact portion.
  • facing surface 45a faces the side wall surface 26b of the recess 26.
  • the facing surface 45a is formed so that the angle formed by the facing surface 45a and the side wall surface 26b is smaller than the angle formed by the one surface 41a of the PTC element 41 and the side wall surface 26b of the recess 26. In other words, the facing surface is closer to parallel than the one surface 41a of the PTC element 41 with reference to the side wall surface 26b of the recess 26.
  • the spacer 45 is arranged so that the facing surface 45a is separated from the side wall surface 26b.
  • the leaf spring 46 is made of a metal material (for example, an aluminum alloy).
  • the leaf spring 46 is fixed to the facing surface of the spacer 45.
  • the leaf spring 46 has a main body portion 46a fixed to the spacer 45 and a plurality of plate-shaped spring portions 46b protruding from the main body portion 46a (six in this embodiment as an example).
  • the main body 46a is a plate-shaped member having a constant thickness, and is in surface contact with the facing surface of the spacer 45.
  • the leaf spring 46 and the spacer 45 are fixed with an adhesive having an insulating property at the contact portion.
  • the tip of the spring portion 46b is in contact with the side wall surface 26b of the recess 26.
  • the leaf spring 46 urges the spacer 45 toward the PTC element 41.
  • the leaf spring 46 urges the PTC element 41 or the like via the spacer 45 toward one direction (see FIG. 5) of the recess 26.
  • the resin frame 47 is made of an insulating resin.
  • the resin frame 47 is a rectangular frame-shaped member.
  • the resin frame 47 has a frame body portion 47a that forms a space inside, and a support portion 47b that extends from the frame body portion 47a in the Y-axis direction.
  • the PTC element 41 is arranged on the inner circumference of the frame body portion 47a. That is, the PTC element 41 is arranged in the space formed inside the frame body portion 47a.
  • the support portion 47b is arranged on the side surface of the first insulator 43, the second insulator 44, and the spacer 45.
  • the first insulator 43 and the second insulator 44 are fixed to the inner peripheral portion of the frame body portion 47a with an insulating adhesive.
  • the entire circumference of the first insulator 43 and the second insulator 44 is fixed to the frame body portion 47a.
  • the entire circumference of the first insulator 43 and the second insulator 44 may not be fixed to the frame portion 47a.
  • the upper surfaces of the first insulator 43 and the second insulator 44 may not be fixed to the frame portion 47a.
  • the heating device 40 As shown in FIG. 5, in the heating device 40, one surface 41a and the other surface 41b of the PTC element 41 are housed in the recess 26 so as to face the side wall surface 26b of the recess 26. Further, the heating device 40 is arranged in the recess 26 so as to be closer to one direction with respect to the central axis C extending along the depth direction (Z-axis direction) of the recess 26. Specifically, the heating device 40 is arranged so as to be in contact with the side wall surface 26b on the one-way side of the recess 26 and away from the side wall surface 26b on the other direction side of the recess 26 (see FIG. 6). By arranging the heating device 40 in this way, the PTC element 41 is arranged so that the one surface 41a to which the electrode plate 42 is fixed is closer to the central axis than the other surface 41b.
  • the separation distance between the heating device 40 and the recess 26 becomes wider toward the lower side. That is, the distance between the main body portion 46a of the leaf spring 46 and the side wall surface 26b of the recess 26 is larger than the distance (L1 in FIG. 6) of the recess 26 on the inlet opening 26a side (upper side in this embodiment) of the recess 26. The distance (L2 in FIG. 6) on the bottom surface 26c side (lower side in this embodiment) is longer.
  • the plate thickness of the main body portion 46a is constant, so in other words, the distance between the facing surface 45a of the spacer 45 and the side wall surface 26b of the recess 26 is greater than the distance between the inlet opening 26a side of the recess 26 and the bottom surface of the recess 26.
  • the 26c side is longer.
  • a potting agent (filler) 48 is filled between the heating device 40 and the side wall surface 26b of the recess 26. Specifically, the potting agent 48 is filled between the leaf spring 46 and the side wall surface 26b.
  • the potting agent 48 is, for example, a silicone-based resin material having a higher thermal conductivity than air.
  • the silicone-based resin material is an example, and other materials may be used as the potting agent 48.
  • a material that is a low-viscosity liquid at room temperature and becomes an elastic body having a predetermined elasticity by heating is used.
  • a silicone rubber whose curing method is classified as two-component addition can be used.
  • the potting agent 48 may be filled by accommodating the heating device 40 in the recess 26 and then injecting the potting agent 48 between the heating device 40 and the recess 26. Further, the potting agent 48 may be filled by injecting the filler into the recess 26 and then accommodating the heating device 40 in the recess 26.
  • grease may be applied to the surface in contact with the recess 26 (the plate surface of the second insulator 44). By applying grease, the friction between the heating device 40 and the recess 26 is reduced, and the heating device 40 can be easily accommodated in the recess 26. Further, the potting agent 48 is heated after filling to become an elastic body.
  • the main body 46a of the leaf spring 46 of the heating device 40 and the recess 26 are separated from each other. As a result, when the heating device 40 is housed in the recess 26, the load acting on the PTC element 41 from the recess 26 is suppressed. Therefore, damage to the PTC element 41 can be suppressed.
  • a potting agent 48 having a higher thermal conductivity than air is filled between the heating device 40 and the side wall surface 26b of the recess 26.
  • the potting agent 48 is filled between the heating device 40 and the side wall surface 26b of the recess 26. Further, the potting agent 48 is heated after filling to form an elastic body.
  • an elastic body is provided between the heating device 40 and the recess 26. For example, when the heating device 40 and the recess 26 are in contact with each other on substantially the entire surface of non-elastic solids, thermal stress may occur and the heating device 40 may be damaged.
  • an elastic body is provided between the heating device 40 and the recess 26. Therefore, damage to the heating device 40 can be suppressed.
  • the spacer 45 has a facing surface 45a facing the side wall surface 26b, and is formed so that the angle formed by the facing surface 45a and the side wall surface 26b is smaller than the angle formed by the plate surface and the side wall surface 26b.
  • the facing surface 45a of the spacer 45 is closer to parallel than the plate surface of the PTC element 41 with reference to the side wall surface 26b of the recess 26. Therefore, the distance between the facing surface 45a and the side wall surface 26b is made uniform in the depth direction (Z-axis direction) of the recess 26.
  • the thickness (length in the Y-axis direction) of the filler filled between the facing surface 45a and the side wall surface 26b is also made uniform. Therefore, the amount of heat transferred from the PTC element 41 to the heat radiating portion 22 can be made uniform in the depth direction of the recess 26.
  • the heating device 40 is arranged closer to one direction in the recess 26 by the leaf spring 46.
  • the distance between the heating device 40 and the side wall surface 26b of the recess 26 can be increased as compared with the case where the heating device 40 is arranged at the center of the recess 26. Therefore, the potting agent 48 can be easily filled.
  • the PTC element 41, the electrode plate 42, the first insulator 43, the second insulator 44, and the spacer 45 are fixed with an adhesive. Further, the first insulator 43 and the second insulator 44 are fixed to the resin frame 47. As a result, the PTC element 41, the spacer 45, and the resin frame 47 can be easily accommodated in the recess 26 as compared with the case where the PTC element 41, the spacer 45, and the resin frame 47 are not integrated. Further, the PTC element 41 is surrounded by a resin frame 47 formed of an insulating member. As a result, the electrode plate 42 and the heat radiating portion 22 can be insulated by the resin frame 47.
  • the insulating property can be improved and the electric leakage from the electrode plate 42 can be suppressed. Further, the entire circumference of the first insulator 43 and the second insulator 44 is fixed to the resin frame 47 with an insulating adhesive. As a result, it is possible to prevent the potting agent 48 from adhering to the side surface 41c of the PTC element 41, and the potting agent 48 having a low heat resistant temperature can be used.
  • both of the pair of electrode plates 42 are fixed to one surface 41a, which is the plate surface of the PTC element 41 on the side closer to the central axis C.
  • the electrode plate 42 can be provided at a position close to the central axis C of the recess 26.
  • the electrode plate 42 can be provided at a position far from the side wall surface 26b of the recess 26. Therefore, the insulation distance between the electrode plate 42 and the heat radiating portion 22 can be increased as compared with the case where the electrode plate 42 is fixed to the plate surface (other surface 41b) far from the central axis C. Therefore, the insulating property can be improved and the electric leakage from the electrode plate 42 can be suppressed.
  • the central axis C means a line passing through the center of the recess 26 when viewed in the YZ plane.
  • the electrode plate 42 is arranged at one end of one surface 41a of the PTC element 41 and the other end of the PTC element 41. As a result, the distance between the electrode plates 42 can be increased. That is, the insulation distance between the electrode plates 42 can be increased. Thereby, the withstand voltage can be improved.
  • one electrode of the pair of electrode plates 42 is provided on one surface 41a of the PTC element 41, the other electrode plate 42 is provided on the other surface 41b of the PTC element 41, and one electrode plate 42 and the other electrode plate 42 are provided. It is also conceivable to provide and at positions that are both ends when the plate surface is viewed in a plan view. That is, it is conceivable that one electrode plate 42 and the other electrode plate 42 are provided so as to be diagonal to the PTC element 41 with the PTC element 41 interposed therebetween. In this embodiment, the conductor is conducted by a pair of electrode plates 42 provided at both ends of one surface 41a of the PTC element 41.
  • the insulation distance between one electrode plate 42 and the other electrode plate 42 becomes long, so that the withstand voltage can be improved.
  • the electrode plates 42 may not conduct with each other and the PTC element 41 may not generate heat.
  • damage to the PTC element 41 is suppressed, so that both improvement in electric resistance and improvement in reliability of the PTC element 41 can be achieved at the same time.
  • the distance between the facing surface 45a of the spacer 45 and the side wall surface 26b of the recess 26 is longer on the bottom surface 26c side of the recess 26 than on the inlet opening 26a side of the recess 26.
  • the potting agent 48 can be preferably filled. Even when the heating device 40 is housed in the recess 26 and then filled with the potting agent 48, or when the potting agent 48 is injected into the recess 26 and then the heating device 40 is housed in the recess 26. , Air can be suitably discharged from the inlet opening 26a. Therefore, the potting agent 48 can be suitably filled.
  • the first insulator 43 and the second insulator 44 are provided between the electrode plate 42 and the side wall surface 26b of the recess 26.
  • the electrode plate 42 and the heat radiating portion 22 can be insulated by the first insulator 43 and the second insulator 44. Therefore, it is possible to suppress electric leakage from the electrode plate 42.
  • the PTC element 41 and the electrode plate 42 are fixed with an adhesive.
  • electricity can be suitably applied between the electrode and the PTC element 41.
  • the first insulator 43, the electrode plate 42, and the PTC element 41 are fixed with an insulating adhesive.
  • the electrode plate 42 or the PTC element 41 and the insulator can be fixed with an adhesive. Therefore, a short circuit between the electrode plates 42 can be suppressed.
  • the PTC element 41, the electrode plate 42, the first insulator 43, the second insulator 44, and the spacer 45 constituting the heating device 40 are fixed with an adhesive. This makes it possible to eliminate air between the members. Therefore, since the thermal resistance between the members is reduced, heat can be suitably transferred from the PTC element 41 to the heat radiating unit 22.
  • the present disclosure is not limited to the above embodiment, and can be appropriately modified without departing from the gist thereof.
  • a pair of electrode plates 42 are provided on one surface 41a of the PTC element 41
  • the present disclosure is not limited to this.
  • one of the pair of electrode plates 42 is provided on one side surface 41c of the PTC element 41 in the X-axis direction
  • the other of the pair of electrode plates 42 is provided on the other side surface 41c of the PTC element 41 in the X-axis direction. It may be provided.
  • the insulation distance between the electrode plate 42 and the heat radiating portion 22 is longer than in the case where the electrode plate 42 is fixed to the plate surface (other surface 41b) far from the central axis C. Can be done. Therefore, the insulating property can be improved and the electric leakage from the electrode plate 42 can be suppressed.
  • the heating device 40 may be configured by omitting the leaf spring 46.
  • the heating device 40 when the heating device 40 is housed in the recess 26, it is housed so as to be closer to one direction of the recess 26.
  • the insulation distance between the electrode plate 42 and the heat radiating portion 22 is longer than in the case where the electrode plate 42 is fixed to the plate surface (other surface 41b) far from the central axis C. Can be done. Therefore, the insulating property can be improved and the electric leakage from the electrode plate 42 can be suppressed.
  • the electrode plate 42 may be fixed to the plate surface of the PTC element 41 opposite to the plate surface on which the spacer 45 is provided. By doing so, the electrode plate 42 can be kept away from the conductive member. Therefore, the insulating property can be improved and the electric leakage from the electrode plate 42 can be suppressed.
  • the heating device 40 may be arranged so that both sides of the heating device 40 are separated from the side wall surface 26b of the recess 26, and the potting agent 48 may be filled on both sides of the heating device 40.
  • the low voltage cable may be a low voltage connector.
  • the high-voltage connector and the low-voltage connector may be provided at the same end in the longitudinal direction.
  • the electrode plate may have the same length in the Y-axis direction of the fixing portion 42a and the electrode fixing portion 43b.
  • the first insulator 43 may be separated at a step position in the Y-axis direction. That is, the flat plate-shaped spacer-side insulator fixed to the spacer 45 and the flat-plate-shaped PTC element-side insulator fixed to the PTC element 41 are configured as separate bodies, and the center of the plate surface of the spacer-side insulator is formed.
  • the plate surface of the insulator on the PTC element side may be fixed to the portion. At that time, the insulator on the spacer side and the insulator on the PTC element side may be fixed with an insulating adhesive.
  • a leaf spring may be provided between the first insulator 43 and the spacer 45.
  • the leaf spring may be fixed to the first insulator 43 with an adhesive having an insulating property.
  • the tip of the spring portion of the leaf spring is in contact with the spacer 45, and the leaf spring urges the first insulator 43 toward the PTC element 41.
  • the potting agent may be filled between the spacer 45 and the leaf spring.
  • a leaf spring may be provided between the second insulator 44 and the side wall surface 26b of the recess 26.
  • the leaf spring may be fixed to the second insulator 44 with an adhesive having an insulating property.
  • the tip of the spring portion of the leaf spring is in contact with the side wall surface 26b of the recess 26.
  • a spacer may be provided between the leaf spring and the side wall surface 26b, and when the spacer is provided, the tip of the spring portion of the leaf spring is in contact with the spacer.
  • the leaf spring urges the second insulator 44 in the direction of the PTC element 41.
  • the potting agent 48 may be filled between the leaf spring 46 and the side wall surface 26b or the spacer.
  • the heating medium heating device accommodates the heating element so that the plate-shaped heating element (41) and the plate surface (41a) and the side wall surface (26b) of the heating element face each other.
  • the heating element is provided with a heat radiating portion (22) that has a recess (26) to dissipate heat from the heating element to a heating medium, and a pair of electrode portions (42) fixed to the heating element.
  • a pair of the electrode portions are fixed to the plate surface of the heating element which is arranged in one direction with reference to the central axis (C) extending along the depth direction of the recess and is closer to the central axis. Has been done.
  • both of the pair of electrode portions are fixed to the plate surface of the heating element on the side closer to the central axis.
  • the electrode portion can be provided at a position close to the central axis of the recess.
  • the electrode portion can be provided at a position far from the side wall surface of the recess. Therefore, for example, even if the heat radiating portion is a conductive member, the insulation distance between the electrode portion and the heat radiating portion can be lengthened as compared with the case where the electrode portion is fixed to the plate surface on the side far from the central axis. can. Therefore, the insulating property can be improved and the electric leakage from the electrode portion can be suppressed.
  • the central axis means a line passing through the center of the recess when viewed on the YZ plane.
  • one of the pair of the electrode portions is provided at one end of the plate surface of the heating element, and the other of the pair of the electrode portions is provided. , Is provided at the other end of the plate surface of the heating element.
  • the electrode portions are arranged at one end of the plate surface of the heating element and the other end. As a result, the distance between the electrode portions can be increased. That is, the distance between the electrode portions can be increased. Thereby, the withstand voltage can be improved.
  • the heating element (41) and the heating element such that the plate surface (41a) and the side wall surface (26b) of the heating element face each other.
  • a heat radiating portion (22) that has a recess (26) for accommodating the heating element and radiates heat of the heating element to a heating medium, and a pair of electrode portions (42) fixed to the heating element.
  • the body is arranged unidirectionally with reference to a central axis extending along the depth direction of the recess, and one of the pair of electrode portions is provided on one side surface (26c) of the heating element.
  • the other side of the pair of electrode portions is provided on the other side surface (26c) of the heating element.
  • the heating element is arranged in one direction with respect to the central axis. That is, the plate surface of the heating element includes a surface on the side close to the central axis and a surface on the side far from the central axis. Further, in the above configuration, both of the pair of electrode portions are fixed to the side surface of the heating element. As a result, the electrode portion can be provided at a position closer to the central axis of the recess as compared with the case where the electrode portion is fixed to the plate surface on the side far from the central axis. In other words, the electrode portion can be provided at a position far from the side wall surface of the recess.
  • the insulation distance between the electrode portion and the heat radiating portion can be lengthened as compared with the case where the electrode portion is fixed to the plate surface on the side far from the central axis. can. Therefore, the insulating property can be improved and the electric leakage from the electrode portion can be suppressed.
  • the electrode portions are arranged on the side surface of the plate surface of the heating element and the side surface on the other side. As a result, the distance between the electrode portions can be increased. That is, the distance between the electrode portions can be increased. Thereby, the withstand voltage can be improved.
  • the heating element and the electrode portion are fixed with a conductive adhesive.
  • the heating element and the electrode are fixed with an adhesive.
  • electricity can be suitably applied between the electrode and the heating element.
  • the heat medium heating device includes an insulator provided between the electrode portion and the side wall surface and fixed to at least one of the electrode portion or the heating element.
  • the electrode portion or the heating element and the insulator are fixed with an insulating adhesive.
  • an insulator is provided between the electrode portion and the side wall surface.
  • the electrode portion and the heat radiating portion can be insulated by an insulator. Therefore, it is possible to suppress electric leakage from the electrode portion.
  • the electrode portion or the heating element and the insulator are fixed with an insulating adhesive. This makes it possible to suppress electric leakage from the electrode portion.
  • an adhesive is provided between the electrode portion or the heating element and the insulator. This makes it possible to eliminate air between the heating element and the electrodes. Therefore, the thermal resistance between the members is reduced. Therefore, heat can be suitably transferred from the heating element to the heat radiating portion via the insulator.
  • the vehicle air conditioner includes the heat medium heating device (10), the air flow path (2), and the outside air or the vehicle interior air in the air flow path according to any one of the above.
  • a vehicle air conditioner including a blower (4) for circulation, a cooler (5) provided on the downstream side of the blower, and a radiator (6) provided on the downstream side of the cooler.
  • the heat medium heated by the heat medium heating device is configured to be circulatory.
  • Heat medium heating device 11 Heat medium circulation circuit 20: 1st casing 21: Control board accommodating part 22: Heat dissipation part 23: Control board 24: High pressure connector 25: Low pressure connector 26: Recess 26a: Inlet opening 26b: Side wall surface 26c: Bottom surface 27: Heat dissipation fin 28: Partition 30: Second Casing 31: Flow path 32: Flange 33: Inlet 34: Outlet 40: Heating device 41: PTC element (heating element) 41a: One surface 41b: Other surface 41c: Side surface 42: Electrode plate (electrode portion) 42a: Fixing part 42b: Connecting part 43: First insulator 43a: Element fixing part 43b: Electrode fixing part 44: Second insulator 45: Spacer 45a: Facing surface 46: Leaf spring 46a: Main body part 46b: Spring part 47 : Resin frame

Abstract

The purpose of the present invention is to improve insulation quality and prevent electric leakage from an electrode part. A heat medium heating device (10) includes: a plate-shaped PTC element (41); a heat dissipation part (22) that has a recess (26) storing the PTC element (41) such that one surface of the PTC element (41) and a side wall surface (26b) face each other, and that dissipates heat of the PTC element (41) to a heat medium; and a pair of electrodes plates (42) fixed to the PTC element (41). The PTC element (41) is disposed on one direction side with respect to a central axis (C) extending along a depth direction of the recess (26). The pair of electrode plates (42) are fixed to one surface of the PTC element (41) on a side nearer to the central axis (C).

Description

熱媒体加熱装置及び車両用空調装置Heat medium heating device and vehicle air conditioner
 本開示は、熱媒体加熱装置及び車両用空調装置に関するものである。 The present disclosure relates to a heat medium heating device and a vehicle air conditioner.
 電気自動車やハイブリッド車等に適用される車両用空調装置にあって、暖房用の熱源となる被加熱媒体を加熱する熱媒体加熱装置の1つとして、正特性サーミスタ素子(PTC素子)を発熱要素とするPTCヒータを用いたものが知られている(例えば、特許文献1)。
 PTCヒータは、正特性のサーミスタ特性を有しており、温度の上昇と共に抵抗値が上昇し、これによって消費電流が制御されるとともに温度上昇が緩やかになり、その後、消費電流および発熱部の温度が飽和領域に達して安定するものであり、自己温度制御特性を備えている。
A positive characteristic thermistor element (PTC element) is used as a heat generating element as one of the heat medium heating devices for heating a heated medium which is a heat source for heating in a vehicle air conditioner applied to an electric vehicle or a hybrid vehicle. A PTC heater is known (for example, Patent Document 1).
The PTC heater has a positive thermistor characteristic, and the resistance value rises as the temperature rises, thereby controlling the current consumption and slowing the temperature rise, and then the current consumption and the temperature of the heat generating part. Reaches the saturation region and stabilizes, and has self-temperature control characteristics.
 特許文献1には、ハウジングに設けられた凹部内に配置される加熱素子を有する電気加熱装置が記載されている。この加熱素子の外側はセラミック板により形成され、PTC加熱素子がこれらのセラミック板の間に配列されている。また、導電性材料で作られた接触板がこれらのPTC加熱素子とセラミック板の間に配置され、延長部がこれらの接触板の上に一体的に形成される。互いに対向する接触板の延長部は、対角方向の両側に配置されている。したがって、延長部は、PTC加熱素子の厚さにより互いに離間されるだけでなく、さらに実質的に加熱素子の幅だけ互いに離間されている。 Patent Document 1 describes an electric heating device having a heating element arranged in a recess provided in a housing. The outside of the heating element is formed of ceramic plates, and the PTC heating element is arranged between these ceramic plates. Further, a contact plate made of a conductive material is arranged between these PTC heating elements and a ceramic plate, and an extension portion is integrally formed on these contact plates. Extensions of the contact plates facing each other are arranged on both sides in the diagonal direction. Therefore, the extensions are not only separated from each other by the thickness of the PTC heating element, but also substantially separated from each other by the width of the heating element.
特開2008-7106号公報Japanese Unexamined Patent Publication No. 2008-7106
 しかしながら、特許文献1に記載の装置では、PTC加熱素子に電気を導くための接触板が、PTC加熱素子の両面に配置されている。このように、PTC加熱素子の両面に接触板を配置すると、いずれかの面に配置された接触板は、凹部との距離が比較的短くなる。したがって、例えば、凹部(凹部を形成するハウジング)が導電性の部材で形成されている場合には、接触板と凹部との絶縁距離が短くなるため、接触板からの凹部へ漏電する可能性があった。 However, in the apparatus described in Patent Document 1, contact plates for guiding electricity to the PTC heating element are arranged on both sides of the PTC heating element. When the contact plates are arranged on both sides of the PTC heating element in this way, the distance between the contact plates arranged on either surface and the recesses becomes relatively short. Therefore, for example, when the concave portion (housing forming the concave portion) is formed of a conductive member, the insulation distance between the contact plate and the concave portion becomes short, so that there is a possibility of electric leakage from the contact plate to the concave portion. there were.
 本開示は、このような事情に鑑みてなされたものであって、絶縁性を向上させることができ、電極部からの漏電を抑制することができる熱媒体加熱装置及び車両用空調装置を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and provides a heat medium heating device and a vehicle air conditioner capable of improving insulation and suppressing electric leakage from an electrode portion. The purpose is.
 上記課題を解決するために、本開示の熱媒体加熱装置及び車両用空調装置は以下の手段を採用する。
 本開示の一態様に係る熱媒体加熱装置は、板状の発熱体と、前記発熱体の板面と側壁面とが対向するように前記発熱体を収容する凹部を有し、前記発熱体の熱を熱媒体へ放熱する放熱部と、前記発熱体に固定される一対の電極部と、を備え、前記発熱体は、前記凹部の深さ方向に沿って延びる中心軸線を基準として、一方向側に配置され、前記中心軸線に近い側の前記発熱体の板面には、一対の電極部が固定されていている。
In order to solve the above problems, the heat medium heating device and the vehicle air conditioner of the present disclosure employ the following means.
The heat medium heating device according to one aspect of the present disclosure has a plate-shaped heating element and a recess for accommodating the heating element so that the plate surface and the side wall surface of the heating element face each other. A heat radiating part that radiates heat to a heat medium and a pair of electrode parts fixed to the heating element are provided, and the heating element is unidirectional with reference to a central axis extending along the depth direction of the recess. A pair of electrode portions are fixed to the plate surface of the heating element which is arranged on the side and is close to the central axis.
 本開示によれば、絶縁性を向上させることができ、電極部からの漏電を抑制することができる。 According to the present disclosure, the insulating property can be improved and the electric leakage from the electrode portion can be suppressed.
本開示の実施形態に係る車両用空調装置の全体構成図である。It is an overall block diagram of the vehicle air conditioner which concerns on embodiment of this disclosure. 本開示の実施形態に係る熱媒体加熱装置を示す斜視図である。It is a perspective view which shows the heat medium heating apparatus which concerns on embodiment of this disclosure. 図2の熱媒体加熱装置を示す側面図である。It is a side view which shows the heat medium heating apparatus of FIG. 図2の熱媒体加熱装置を示す平面図である。It is a top view which shows the heat medium heating apparatus of FIG. 図2のV-V矢視断面を示す断面図である。FIG. 5 is a cross-sectional view showing a cross section taken along the line VV of FIG. 図5の要部を拡大した断面図である。FIG. 5 is an enlarged cross-sectional view of a main part of FIG. 図2の熱媒体加熱装置に設けられる加熱装置を示す斜視図である。It is a perspective view which shows the heating apparatus provided in the heat medium heating apparatus of FIG. 図2の熱媒体加熱装置に設けられる加熱装置を示す斜視図である。It is a perspective view which shows the heating apparatus provided in the heat medium heating apparatus of FIG. 図2の熱媒体加熱装置に設けられる加熱装置を示す平面図である。It is a top view which shows the heating apparatus provided in the heat medium heating apparatus of FIG. 図2の熱媒体加熱装置に設けられる加熱装置の要部を示す側面図である。It is a side view which shows the main part of the heating apparatus provided in the heat medium heating apparatus of FIG. 図2の熱媒体加熱装置に設けられる加熱装置の要部を示す平面図である。It is a top view which shows the main part of the heating apparatus provided in the heat medium heating apparatus of FIG. 図2の熱媒体加熱装置に設けられる加熱装置の要部を示す斜視図である。It is a perspective view which shows the main part of the heating apparatus provided in the heat medium heating apparatus of FIG.
 以下に、本開示に係る熱媒体加熱装置及び車両用空調装置の一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the heat medium heating device and the vehicle air conditioner according to the present disclosure will be described with reference to the drawings.
 本実施形態に係る車両用空調装置1は、図1に示すように、外気または車室内空気を取り込んで温調し、それを車室内へと吹出すための空気流路2を形成するケーシング3を備えている。 As shown in FIG. 1, the vehicle air conditioner 1 according to the present embodiment is a casing 3 that forms an air flow path 2 for taking in outside air or vehicle interior air, adjusting the temperature, and blowing it out into the vehicle interior. It has.
 ケーシング3の内部には、空気流路2の上流側から下流側にかけて順次、外気または車室内空気を吸い込んで昇圧し、それを下流側へと圧送するブロア4と、ブロア4により圧送される空気流を冷却する冷却器5と、冷却器5を流通して冷却された空気流を加熱する放熱器6と、放熱器6に流通される空気流量と放熱器6をバイパスして流通される空気流量との割合を調整し、その下流側で混合される空気流の温度を調節するエアミックスダンパ7と、が設置されている。 Inside the casing 3, a blower 4 that sucks outside air or vehicle interior air in sequence from the upstream side to the downstream side of the air flow path 2 to boost the pressure and pumps it to the downstream side, and air pumped by the blower 4. A cooler 5 that cools the flow, a radiator 6 that flows through the cooler 5 and heats the cooled air flow, and an air flow rate that flows through the radiator 6 and air that flows by bypassing the radiator 6. An air mix damper 7 for adjusting the ratio with the flow rate and adjusting the temperature of the air flow mixed on the downstream side thereof is installed.
 ケーシング3の下流側には、図示省略の複数の空気吹出し流路と、該空気吹出し流路を選択的に開閉し、任意の空気吹出し流路を介して空調風を車室内へと吹出す複数の吹出しモード切替えダンパとが設けられている。
 冷却器5は、図示省略の圧縮機、凝縮器、膨張弁と共に冷媒回路を構成し、膨張弁で断熱膨張された冷媒を蒸発させることにより、そこを流通する空気を冷却するものである。
 放熱器6は、タンク8、ポンプ9および熱媒体加熱装置10と共に熱媒体循環回路11を構成し、熱媒体加熱装置10により加熱された熱媒体(例えば、水)がポンプ9を介して循環されることにより、そこを流通する空気を加温するものである。
On the downstream side of the casing 3, a plurality of air blowing channels (not shown) and a plurality of air blowing channels that are selectively opened and closed to blow air conditioning air into the vehicle interior via an arbitrary air blowing flow path. A blowout mode switching damper is provided.
The cooler 5 constitutes a refrigerant circuit together with a compressor, a condenser, and an expansion valve (not shown), and cools the air flowing thereby by evaporating the refrigerant adiabatically expanded by the expansion valve.
The radiator 6 constitutes a heat medium circulation circuit 11 together with a tank 8, a pump 9, and a heat medium heating device 10, and a heat medium (for example, water) heated by the heat medium heating device 10 is circulated via the pump 9. By doing so, the air circulating there is heated.
 次に、本実施形態に係る熱媒体加熱装置10について、図2から図12を用いて説明する。なお、以下の説明において、熱媒体加熱装置10の長手方向をX軸方向とし、熱媒体加熱装置10の短手方向をY軸方向とし、X軸方向及びY軸方向と直交する方向をZ軸方向として説明する。なお、本実施形態では、Z軸方向が上下方向とされている例について説明するため、Z軸方向を上下方向という場合もある。また、単に長手方向といった場合には熱媒体加熱装置10の長手方向を意味し、短手方向といった場合には熱媒体加熱装置10の短手方向を意味している。 Next, the heat medium heating device 10 according to the present embodiment will be described with reference to FIGS. 2 to 12. In the following description, the longitudinal direction of the heat medium heating device 10 is the X-axis direction, the lateral direction of the heat medium heating device 10 is the Y-axis direction, and the X-axis direction and the direction orthogonal to the Y-axis direction are the Z-axis. Explained as a direction. In this embodiment, in order to explain an example in which the Z-axis direction is the vertical direction, the Z-axis direction may be referred to as the vertical direction. Further, the term "longitudinal direction" means the longitudinal direction of the heat medium heating device 10, and the term "short direction" means the short direction of the heat medium heating device 10.
 熱媒体加熱装置10は、熱媒体(例えば、水)を加熱するための装置である。熱媒体加熱装置10は、制御基板23や加熱装置40等の各種装置が収容される第1ケーシング20と、第1ケーシング20の下方に設けられて内部に熱媒体が流通する第2ケーシング30と、熱媒体を加熱する加熱装置40と、を備えている。 The heat medium heating device 10 is a device for heating a heat medium (for example, water). The heat medium heating device 10 includes a first casing 20 in which various devices such as a control substrate 23 and a heating device 40 are housed, and a second casing 30 provided below the first casing 20 and through which a heat medium flows. The heating device 40 for heating the heat medium is provided.
 第1ケーシング20は、図2及び図3に示すように、制御基板23が収容される制御基板収容部21と、制御基板収容部21の底面から下方へ突出する放熱部22と、を一体的に備えている。第1ケーシング20は、アルミニウム合金等の熱伝導率が高い金属材料を用いてダイカストにより一体に成形されたダイカスト製品とされている。 As shown in FIGS. 2 and 3, the first casing 20 integrally integrates a control board accommodating portion 21 in which the control substrate 23 is accommodated and a heat radiating portion 22 projecting downward from the bottom surface of the control substrate accommodating portion 21. Be prepared for. The first casing 20 is a die-cast product integrally molded by die-casting using a metal material having high thermal conductivity such as an aluminum alloy.
 制御基板収容部21は、上方が開放状態の箱状体であって、内部に制御基板23が収容される空間が形成されている。また、制御基板収容部21の長手方向(X軸方向)の一端には、高電圧電源ケーブル(図示省略)が接続される高圧コネクタ24が設けられている。また、制御基板収容部21の長手方向の他端には、低電圧電源ケーブル(図示省略)が接続される低圧コネクタ25が設けられている。制御基板収容部21の底面には、長手方向に伸びる開口が形成されている。開口は、後述する放熱部22の凹部26と連通している。なお、制御基板収容部21は、蓋体(図示省略)等を設けて、上方を閉鎖してもよい。 The control board accommodating portion 21 is a box-shaped body with an open upper part, and a space for accommodating the control substrate 23 is formed inside. Further, a high-voltage connector 24 to which a high-voltage power cable (not shown) is connected is provided at one end of the control board accommodating portion 21 in the longitudinal direction (X-axis direction). Further, a low-voltage connector 25 to which a low-voltage power cable (not shown) is connected is provided at the other end of the control board accommodating portion 21 in the longitudinal direction. An opening extending in the longitudinal direction is formed on the bottom surface of the control board accommodating portion 21. The opening communicates with the recess 26 of the heat radiating portion 22, which will be described later. The control board accommodating portion 21 may be closed above by providing a lid (not shown) or the like.
 制御基板23は、後述するPTCヒータ(発熱体)に対する通電を制御するためのもので、制御基板収容部21内にビス等を介して固定設置されている。制御基板23は、高圧コネクタ24に接続される高電圧電源ケーブル(図示省略)及び低圧コネクタ25に接続される低電圧ケーブル(図示省略)と電気的に接続されている。また、制御基板23は、後述する電極板42(電極部)を介してPTCヒータと電気的に接続されている。 The control board 23 is for controlling the energization of the PTC heater (heating element) described later, and is fixedly installed in the control board accommodating portion 21 via a screw or the like. The control board 23 is electrically connected to a high-voltage power cable (not shown) connected to the high-voltage connector 24 and a low-voltage cable (not shown) connected to the low-voltage connector 25. Further, the control board 23 is electrically connected to the PTC heater via an electrode plate 42 (electrode portion) described later.
 放熱部22は、図5に示すように、制御基板収容部21の底面の短手方向の略中央領域から下方に突出している。放熱部22は、制御基板収容部21の底面から下方へ凹む凹部26と、外周面から略水平に突出する複数の放熱フィン27と、を一体的に有している。 As shown in FIG. 5, the heat radiating portion 22 projects downward from the substantially central region of the bottom surface of the control board accommodating portion 21 in the lateral direction. The heat radiating portion 22 integrally includes a recess 26 that is recessed downward from the bottom surface of the control board accommodating portion 21, and a plurality of heat radiating fins 27 that project substantially horizontally from the outer peripheral surface.
 凹部26は、熱媒体加熱装置10の長手方向に延在している。凹部26には、図4に示すように、凹部26の内部の空間を長手方向に分割する3つの隔壁28が設けられている。すなわち、隔壁28によって、凹部26は4つに分割されている。以下の説明では、単に「凹部26」といった場合には、分割された凹部26を意味する。各凹部26の内部に形成された空間には、加熱装置40が収容されている。なお、図4では、図示の関係上、制御基板23を省略して図示している。 The recess 26 extends in the longitudinal direction of the heat medium heating device 10. As shown in FIG. 4, the recess 26 is provided with three partition walls 28 that divide the space inside the recess 26 in the longitudinal direction. That is, the recess 26 is divided into four by the partition wall 28. In the following description, the term "recess 26" simply means a divided recess 26. The heating device 40 is housed in the space formed inside each recess 26. Note that, in FIG. 4, the control board 23 is omitted for the sake of illustration.
 凹部26は、図5に示すように、制御基板収容部21の内部空間と連通する入口開口26aと、凹部26の内部に形成される空間の短手方向の両端部を規定する側壁面26bと、凹部26の内部に形成される空間の下端を規定する底面26cとを有している。 As shown in FIG. 5, the recess 26 includes an inlet opening 26a that communicates with the internal space of the control board accommodating portion 21, and a side wall surface 26b that defines both ends of the space formed inside the recess 26 in the lateral direction. It has a bottom surface 26c that defines the lower end of the space formed inside the recess 26.
 第1ケーシング20は、ダイカスト製品なので、凹部26の側壁面26bには抜き勾配が形成されている。すなわち、側壁面26bは、鉛直面に対して所定の角度を為すように傾斜している。詳細には、各側壁面26bは、入口開口26aから底面26cに向かうにしたがって、側壁面26b同士が近付くように傾斜している。 Since the first casing 20 is a die-cast product, a draft is formed on the side wall surface 26b of the recess 26. That is, the side wall surface 26b is inclined so as to form a predetermined angle with respect to the vertical surface. Specifically, each side wall surface 26b is inclined so that the side wall surfaces 26b come closer to each other from the entrance opening 26a toward the bottom surface 26c.
 各放熱フィン27は、水平方向に延在する板状であって、長手方向の略全域に亘って形成されている。複数の放熱フィン27は、上下方向(Z軸方向)に所定の間隔で並んで配置されている。 Each heat radiation fin 27 has a plate shape extending in the horizontal direction, and is formed over substantially the entire length direction. The plurality of heat radiation fins 27 are arranged side by side at predetermined intervals in the vertical direction (Z-axis direction).
 第2ケーシング30は、図5に示すように、熱媒体が流通する流路を形成する流路部31と、第1ケーシング20と固定されるフランジ部32と、を一体的に備えている。また、第2ケーシング30は、図2及び図3に示すように、流路部31へ熱媒体を供給する入口部33と、流路部31から熱媒体を排出する出口部34と、を一体的に備えている。 As shown in FIG. 5, the second casing 30 integrally includes a flow path portion 31 that forms a flow path through which the heat medium flows, and a flange portion 32 that is fixed to the first casing 20. Further, as shown in FIGS. 2 and 3, the second casing 30 integrally integrates an inlet portion 33 for supplying the heat medium to the flow path portion 31 and an outlet portion 34 for discharging the heat medium from the flow path portion 31. Prepared for.
 流路部31は、長手方向(X軸方向)に延在している。流路部31の内部には、下方に凹むように形成された流路が設けられている。流路は、長手方向に延在していて、流路を熱媒体が流通する。また、流路には、放熱部22が配置されている。放熱部22は、流路部31と接触しないように、配置されている。すなわち、熱媒体は、流路部31と放熱部22との間の空間を流通する。熱媒体は、放熱部22と熱交換することで、加熱される。 The flow path portion 31 extends in the longitudinal direction (X-axis direction). Inside the flow path portion 31, a flow path formed so as to be recessed downward is provided. The flow path extends in the longitudinal direction, and the heat medium flows through the flow path. Further, a heat radiating unit 22 is arranged in the flow path. The heat radiating portion 22 is arranged so as not to come into contact with the flow path portion 31. That is, the heat medium circulates in the space between the flow path portion 31 and the heat radiating portion 22. The heat medium is heated by exchanging heat with the heat radiating unit 22.
 フランジ部32は、流路部31の上端から短手方向に延在している。フランジ部32の上面に第2ケーシング30の制御基板収容部21が載置される。フランジ部32と制御基板収容部21とは、固定されている。 The flange portion 32 extends in the lateral direction from the upper end of the flow path portion 31. The control board accommodating portion 21 of the second casing 30 is placed on the upper surface of the flange portion 32. The flange portion 32 and the control board accommodating portion 21 are fixed.
 流路部31の長手方向(X軸方向)の一端には、入口部33が設けられている。入口部33は、円筒状の部材である。入口部33の内部には、熱媒体が流通する。入口部33は、上端が流路部31の下端に接続されている。熱媒体は、入口部33を介して流路に流入する。
 流路部31の長手方向(X軸方向)の他端には、出口部34が設けられている。出口部34は、円筒状の部材である。出口部34の内部には、熱媒体が流通する。出口部34は、上端が流路部31の下端に接続されている。流路を流通して熱交換を終えた熱媒体は、出口部34を介して熱媒体加熱装置10の外部へ排出される。
An inlet portion 33 is provided at one end of the flow path portion 31 in the longitudinal direction (X-axis direction). The inlet portion 33 is a cylindrical member. A heat medium circulates inside the inlet 33. The upper end of the inlet portion 33 is connected to the lower end of the flow path portion 31. The heat medium flows into the flow path through the inlet 33.
An outlet portion 34 is provided at the other end of the flow path portion 31 in the longitudinal direction (X-axis direction). The outlet portion 34 is a cylindrical member. A heat medium circulates inside the outlet portion 34. The upper end of the outlet portion 34 is connected to the lower end of the flow path portion 31. The heat medium that has passed through the flow path and has completed heat exchange is discharged to the outside of the heat medium heating device 10 via the outlet portion 34.
 加熱装置40は、図5に示すように、放熱部22の凹部26に収容されている。なお、図5では、図示の関係上、加熱装置40の樹脂枠47を省略して図示している。 As shown in FIG. 5, the heating device 40 is housed in the recess 26 of the heat radiating unit 22. In FIG. 5, for the sake of illustration, the resin frame 47 of the heating device 40 is omitted.
 加熱装置40は、図7から図12に示すように、平板状のPTC素子(発熱体)41と、PTC素子41の板面に固定される一対の電極板(電極部)42と、PTC素子41の板面に固定される第1絶縁体43及び第2絶縁体44と、第1絶縁体43に固定されるスペーサ45と、スペーサ45に固定される板バネ46と、PTC素子41を固定する樹脂枠47と、を備えている。なお、図10及び図11では、図示の関係上、樹脂枠47を省略して図示している。また、図12では、加熱装置40を構成するPTC素子41及び電極板42のみを図示している。 As shown in FIGS. 7 to 12, the heating device 40 includes a flat plate-shaped PTC element (heating element) 41, a pair of electrode plates (electrode portions) 42 fixed to the plate surface of the PTC element 41, and a PTC element. The first insulator 43 and the second insulator 44 fixed to the plate surface of 41, the spacer 45 fixed to the first insulator 43, the leaf spring 46 fixed to the spacer 45, and the PTC element 41 are fixed. It is provided with a resin frame 47 and a resin frame 47. In addition, in FIG. 10 and FIG. 11, the resin frame 47 is omitted for the sake of illustration. Further, in FIG. 12, only the PTC element 41 and the electrode plate 42 constituting the heating device 40 are shown.
 PTC素子41は、外形が略四角形状であって、平板状の部材である(図12も参照)。すなわち、PTC素子41は、一側の板面(以下、「一面41a」と称する)と他側の板面(以下、「他面41b」と称する)とを有している。また、PTC素子41は、一面41aと他面41bとを接続する側面41cを有している。
 PTC素子41は、制御基板23を介して供給される高電圧の電力が電極板42を経て印加されるようになっている。PTC素子41は、制御基板23を介してオンオフ制御され、発熱するように構成されている。
The PTC element 41 is a member having a substantially quadrangular outer shape and a flat plate shape (see also FIG. 12). That is, the PTC element 41 has a plate surface on one side (hereinafter, referred to as "one surface 41a") and a plate surface on the other side (hereinafter, referred to as "other surface 41b"). Further, the PTC element 41 has a side surface 41c that connects one surface 41a and the other surface 41b.
In the PTC element 41, high-voltage power supplied via the control board 23 is applied via the electrode plate 42. The PTC element 41 is controlled on and off via a control board 23 and is configured to generate heat.
 一対の電極板42は、PTC素子41の一面41aに固定されている。すなわち、一対の電極板42を構成するいずれの電極板42も、PTC素子41のX軸方向の両端に1つずつ固定されている。また、各電極板42は、PTC素子41の同じ板面に固定されている(図12も参照)。すなわち、一対の電極板42の一方は、PTC素子41の一面41aの一側の端部に設けられ、一対の電極板42の他方は、PTC素子41の一面41aの他側の端部に設けられている。 The pair of electrode plates 42 are fixed to one surface 41a of the PTC element 41. That is, each of the electrode plates 42 constituting the pair of electrode plates 42 is fixed to both ends of the PTC element 41 in the X-axis direction. Further, each electrode plate 42 is fixed to the same plate surface of the PTC element 41 (see also FIG. 12). That is, one of the pair of electrode plates 42 is provided at one end of one surface 41a of the PTC element 41, and the other of the pair of electrode plates 42 is provided at the other end of one surface 41a of the PTC element 41. Has been done.
 各電極板42は、導電性の金属材料で形成された板状の部材である。各電極板42は、図12に示すように、PTC素子41の一面41aに固定される固定部42aと、固定部42aから上方へ突出する接続部42bと、を一体的に有している。 Each electrode plate 42 is a plate-shaped member made of a conductive metal material. As shown in FIG. 12, each electrode plate 42 integrally has a fixing portion 42a fixed to one surface 41a of the PTC element 41 and a connecting portion 42b protruding upward from the fixing portion 42a.
 固定部42aは、PTC素子41の一面41aと面接触している。固定部42aとPTC素子41とは、PTC素子41のX軸方向の端部において、PTC素子41のZ軸方向の略全域に亘って面接触している。固定部42aとPTC素子41とは、接触部分において導電性の接着剤で固定されている。
 接続部42bは、固定部42aの上端から上方に延在している。接続部42bのX軸方向の長さは、固定部42aのX軸方向の長さよりも長くなっている。接続部42bの上端は、図5に示すように、放熱部22の凹部26の入口開口26aよりも上方に位置している。また、接続部42bの上端は、凹部26の上方に位置している制御基板23を貫通している。この貫通箇所において、接続部42bと制御基板23とは電気的に接続されている。
The fixing portion 42a is in surface contact with one surface 41a of the PTC element 41. The fixing portion 42a and the PTC element 41 are in surface contact with each other at the end portion of the PTC element 41 in the X-axis direction over substantially the entire area of the PTC element 41 in the Z-axis direction. The fixing portion 42a and the PTC element 41 are fixed with a conductive adhesive at the contact portion.
The connecting portion 42b extends upward from the upper end of the fixing portion 42a. The length of the connecting portion 42b in the X-axis direction is longer than the length of the fixing portion 42a in the X-axis direction. As shown in FIG. 5, the upper end of the connecting portion 42b is located above the inlet opening 26a of the recess 26 of the heat radiating portion 22. Further, the upper end of the connecting portion 42b penetrates the control board 23 located above the recess 26. At this penetration point, the connecting portion 42b and the control board 23 are electrically connected.
 第1絶縁体43は、絶縁性を有する材料(例えば、酸化アルミニウム)で形成された板状の部材である。第1絶縁体43は、図9及び図11に示すように、PTC素子41と固定される素子固定部43aと、固定部42aのX軸方向の両端部からX軸方向に延在する電極固定部43bと、を一体的に有している。すなわち、素子固定部43aは、第1絶縁体43のX軸方向の中央領域に設けられ、電極固定部43bは、第1絶縁体43のX軸方向の両端部に設けられている。第1絶縁体43の上下方向の長さは、PTC素子41の上下方向の長さよりも長い。 The first insulator 43 is a plate-shaped member made of a material having an insulating property (for example, aluminum oxide). As shown in FIGS. 9 and 11, the first insulator 43 has an element fixing portion 43a fixed to the PTC element 41 and an electrode fixing portion extending in the X-axis direction from both ends of the fixing portion 42a in the X-axis direction. It has a portion 43b integrally. That is, the element fixing portions 43a are provided in the central region of the first insulator 43 in the X-axis direction, and the electrode fixing portions 43b are provided at both ends of the first insulator 43 in the X-axis direction. The vertical length of the first insulator 43 is longer than the vertical length of the PTC element 41.
 素子固定部43aは、電極固定部43bからPTC素子41側へ突出するように形成されている。素子固定部43aは、PTC素子41の一面41aと面接触している。詳細には、PTC素子41の一面41aの中央領域と接触している。具体的には、PTC素子41の一面41aのうち、一対の電極板42が固定されていない領域の略全域と接触している。第1絶縁体43とPTC素子41とは、接触部分において絶縁性を有する接着剤で固定されている。 The element fixing portion 43a is formed so as to project from the electrode fixing portion 43b toward the PTC element 41 side. The element fixing portion 43a is in surface contact with one surface 41a of the PTC element 41. Specifically, it is in contact with the central region of one surface 41a of the PTC element 41. Specifically, of the one surface 41a of the PTC element 41, the pair of electrode plates 42 are in contact with substantially the entire area where they are not fixed. The first insulator 43 and the PTC element 41 are fixed with an adhesive having an insulating property at a contact portion.
 電極固定部43bは、各電極板42の固定部42aと面接触している。詳細には、電極板42の板面のうち、PTC素子41と固定されていない側の面と面接触している。第1絶縁体43と電極板42とは、接触部分において絶縁性を有する接着剤で固定されている。電極固定部43bは、素子固定部43aから凹むように形成されている。電極固定部43bのX軸方向の長さは、電極固定部43bのY軸方向の長さよりも長い。 The electrode fixing portion 43b is in surface contact with the fixing portion 42a of each electrode plate 42. Specifically, it is in surface contact with the surface of the electrode plate 42 that is not fixed to the PTC element 41. The first insulator 43 and the electrode plate 42 are fixed with an adhesive having an insulating property at a contact portion. The electrode fixing portion 43b is formed so as to be recessed from the element fixing portion 43a. The length of the electrode fixing portion 43b in the X-axis direction is longer than the length of the electrode fixing portion 43b in the Y-axis direction.
 第1絶縁体43のPTC素子41側の面は、素子固定部43aが電極固定部43bよりも所定距離だけPTC素子41側に位置している。この所定距離は、電極板42の厚さと略同一、または、わずかに長い距離となっている。第1絶縁体43のPTC素子41側と反対側の面(以下、「一面」と称する)は、全域において平面とされている。 On the surface of the first insulator 43 on the PTC element 41 side, the element fixing portion 43a is located on the PTC element 41 side by a predetermined distance from the electrode fixing portion 43b. This predetermined distance is substantially the same as or slightly longer than the thickness of the electrode plate 42. The surface of the first insulator 43 opposite to the PTC element 41 side (hereinafter, referred to as “one surface”) is a flat surface over the entire area.
 第2絶縁体44は、第1絶縁体43と同様に、絶縁性を有する材料(例えば、酸化アルミニウム)で形成されている。第2絶縁体44は、平板状の部材である。第2絶縁体44は、PTC素子41の他面41bの略全域と面接触している。第2絶縁体44とPTC素子41とは、接触部分において絶縁性を有する接着剤で固定されている。第2絶縁体44の上下方向の長さは、PTC素子41の上下方向の長さよりも長い。 The second insulator 44 is made of an insulating material (for example, aluminum oxide) like the first insulator 43. The second insulator 44 is a flat plate-shaped member. The second insulator 44 is in surface contact with substantially the entire other surface 41b of the PTC element 41. The second insulator 44 and the PTC element 41 are fixed with an adhesive having an insulating property at a contact portion. The vertical length of the second insulator 44 is longer than the vertical length of the PTC element 41.
 スペーサ45は、絶縁性を有する金属材料(例えば、アルミニウム合金)で形成されている。スペーサ45は、図10に示すように、上端から下端に向かうにしたがって、Y軸方向の長さが短くなるように形成された板状の部材である。スペーサ45は、X軸方向と交差する面で切断した断面において、略台形状をしている。スペーサ45は、図10に示すように、第1絶縁体43の一面の略全域において面接触している。スペーサ45と第1絶縁体43とは、接触部分において絶縁性を有する接着剤で固定されている。 The spacer 45 is made of an insulating metal material (for example, an aluminum alloy). As shown in FIG. 10, the spacer 45 is a plate-shaped member formed so that the length in the Y-axis direction becomes shorter from the upper end to the lower end. The spacer 45 has a substantially trapezoidal shape in a cross section cut at a surface intersecting the X-axis direction. As shown in FIG. 10, the spacer 45 is in surface contact with each other over substantially the entire surface of one surface of the first insulator 43. The spacer 45 and the first insulator 43 are fixed with an adhesive having an insulating property at a contact portion.
 また、スペーサ45は、第1絶縁体43に固定される面とは反対側の面(以下、「対向面45a」と称する)が鉛直面に対して傾斜している。対向面45aは、凹部26の側壁面26bと対向している。対向面45aは、PTC素子41の一面41aと凹部26の側壁面26bとが為す角度よりも、対向面45aと側壁面26bとが為す角度の方が小さくなるように形成されている。換言すれば、凹部26の側壁面26bを基準として、対向面の方がPTC素子41の一面41aよりも平行に近い。
 また、スペーサ45は、図5及び図6に示すように、対向面45aが側壁面26bから離間するように配置されている。
Further, the surface of the spacer 45 opposite to the surface fixed to the first insulator 43 (hereinafter, referred to as “opposing surface 45a”) is inclined with respect to the vertical surface. The facing surface 45a faces the side wall surface 26b of the recess 26. The facing surface 45a is formed so that the angle formed by the facing surface 45a and the side wall surface 26b is smaller than the angle formed by the one surface 41a of the PTC element 41 and the side wall surface 26b of the recess 26. In other words, the facing surface is closer to parallel than the one surface 41a of the PTC element 41 with reference to the side wall surface 26b of the recess 26.
Further, as shown in FIGS. 5 and 6, the spacer 45 is arranged so that the facing surface 45a is separated from the side wall surface 26b.
 板バネ46は、金属材料(例えば、アルミニウム合金)で形成されている。板バネ46は、スペーサ45の対向面に固定されている。板バネ46は、スペーサ45に固定される本体部46aと、本体部46aから突出する複数(本実施形態では、一例として6つ)の板状のバネ部46bを有している。本体部46aは、厚さが一定の板状の部材であって、スペーサ45の対向面と面接触している。板バネ46とスペーサ45とは、接触部分において絶縁性を有する接着剤で固定されている。バネ部46bは、図5及び図6に示すように、先端が凹部26の側壁面26bに接触している。これにより、板バネ46は、スペーサ45をPTC素子41方向へ付勢している。換言すれば、板バネ46は、スペーサ45を介してPTC素子41等を凹部26の一方向側(図5参照)へ付勢している。 The leaf spring 46 is made of a metal material (for example, an aluminum alloy). The leaf spring 46 is fixed to the facing surface of the spacer 45. The leaf spring 46 has a main body portion 46a fixed to the spacer 45 and a plurality of plate-shaped spring portions 46b protruding from the main body portion 46a (six in this embodiment as an example). The main body 46a is a plate-shaped member having a constant thickness, and is in surface contact with the facing surface of the spacer 45. The leaf spring 46 and the spacer 45 are fixed with an adhesive having an insulating property at the contact portion. As shown in FIGS. 5 and 6, the tip of the spring portion 46b is in contact with the side wall surface 26b of the recess 26. As a result, the leaf spring 46 urges the spacer 45 toward the PTC element 41. In other words, the leaf spring 46 urges the PTC element 41 or the like via the spacer 45 toward one direction (see FIG. 5) of the recess 26.
 樹脂枠47は、絶縁性を有する樹脂で形成されている。また、樹脂枠47は、矩形枠状の部材である。樹脂枠47は、内部に空間を形成する枠体部47aと、枠体部47aからY軸方向に延在する支持部47bと、を有している。枠体部47aは、内周にPTC素子41が配置されている。すなわち、PTC素子41は、枠体部47aの内部に形成された空間に配置されている。支持部47bは、第1絶縁体43、第2絶縁体44及びスペーサ45の側面に配置されている。枠体部47aの内周部には、第1絶縁体43及び第2絶縁体44が絶縁性の接着剤で固定されている。第1絶縁体43及び第2絶縁体44の全周が枠体部47aに固定されている。なお、第1絶縁体43及び第2絶縁体44の全周が枠体部47aに固定されていなくてもよい。例えば、第1絶縁体43及び第2絶縁体44の上面が枠体部47aに固定されていなくてもよい。 The resin frame 47 is made of an insulating resin. The resin frame 47 is a rectangular frame-shaped member. The resin frame 47 has a frame body portion 47a that forms a space inside, and a support portion 47b that extends from the frame body portion 47a in the Y-axis direction. The PTC element 41 is arranged on the inner circumference of the frame body portion 47a. That is, the PTC element 41 is arranged in the space formed inside the frame body portion 47a. The support portion 47b is arranged on the side surface of the first insulator 43, the second insulator 44, and the spacer 45. The first insulator 43 and the second insulator 44 are fixed to the inner peripheral portion of the frame body portion 47a with an insulating adhesive. The entire circumference of the first insulator 43 and the second insulator 44 is fixed to the frame body portion 47a. The entire circumference of the first insulator 43 and the second insulator 44 may not be fixed to the frame portion 47a. For example, the upper surfaces of the first insulator 43 and the second insulator 44 may not be fixed to the frame portion 47a.
 加熱装置40は、図5に示すように、凹部26において、PTC素子41の一面41a及び他面41bが、凹部26の側壁面26bと対向するように収容されている。
 また、加熱装置40は、凹部26において、凹部26の深さ方向(Z軸方向)に沿って延びる中心軸線Cを基準として、一方向側に寄るように配置されている。具体的には、加熱装置40は、凹部26の一方向側の側壁面26bと接触するとともに、凹部26の他方向側の側壁面26bと離間するように配置されている(図6参照)。このように加熱装置40を配置することで、PTC素子41は、電極板42が固定される一面41aの方が、他面41bよりも中心軸線に近い位置となるように配置されている。
As shown in FIG. 5, in the heating device 40, one surface 41a and the other surface 41b of the PTC element 41 are housed in the recess 26 so as to face the side wall surface 26b of the recess 26.
Further, the heating device 40 is arranged in the recess 26 so as to be closer to one direction with respect to the central axis C extending along the depth direction (Z-axis direction) of the recess 26. Specifically, the heating device 40 is arranged so as to be in contact with the side wall surface 26b on the one-way side of the recess 26 and away from the side wall surface 26b on the other direction side of the recess 26 (see FIG. 6). By arranging the heating device 40 in this way, the PTC element 41 is arranged so that the one surface 41a to which the electrode plate 42 is fixed is closer to the central axis than the other surface 41b.
 また、図6に示すように、加熱装置40と凹部26との離間距離は、下方に向かうほど広くなっている。すなわち、板バネ46の本体部46aと凹部26の側壁面26bとの距離が、凹部26の入口開口26a側(本実施形態では上方側)の距離(図6のL1)よりも、凹部26の底面26c側(本実施形態では下方側)の距離(図6のL2)の方が長くなっている。本実施形態では本体部46aの板厚は一定なので、換言すれば、スペーサ45の対向面45aと凹部26の側壁面26bとの距離は、凹部26の入口開口26a側よりも、凹部26の底面26c側の方が長くなっている。 Further, as shown in FIG. 6, the separation distance between the heating device 40 and the recess 26 becomes wider toward the lower side. That is, the distance between the main body portion 46a of the leaf spring 46 and the side wall surface 26b of the recess 26 is larger than the distance (L1 in FIG. 6) of the recess 26 on the inlet opening 26a side (upper side in this embodiment) of the recess 26. The distance (L2 in FIG. 6) on the bottom surface 26c side (lower side in this embodiment) is longer. In the present embodiment, the plate thickness of the main body portion 46a is constant, so in other words, the distance between the facing surface 45a of the spacer 45 and the side wall surface 26b of the recess 26 is greater than the distance between the inlet opening 26a side of the recess 26 and the bottom surface of the recess 26. The 26c side is longer.
 加熱装置40と凹部26の側壁面26bとの間には、ポッティング剤(充填材)48が充填されている。詳細には、板バネ46と側壁面26bとの間には、ポッティング剤48が充填されている。
 ポッティング剤48は、例えば、空気よりも熱伝導率が高いシリコーン系の樹脂材である。なお、シリコーン系の樹脂材は一例であり、ポッティング剤48として他のものを用いてもよい。
 また、ポッティング剤48には、常温の状態では低粘度の液状であって、加熱することで所定の弾性を有する弾性体となる材料が用いられる。例えば、本実施形態のポッティング剤48として、硬化方式が二液付加に分類されるシリコーンゴムを利用することができる。
A potting agent (filler) 48 is filled between the heating device 40 and the side wall surface 26b of the recess 26. Specifically, the potting agent 48 is filled between the leaf spring 46 and the side wall surface 26b.
The potting agent 48 is, for example, a silicone-based resin material having a higher thermal conductivity than air. The silicone-based resin material is an example, and other materials may be used as the potting agent 48.
Further, as the potting agent 48, a material that is a low-viscosity liquid at room temperature and becomes an elastic body having a predetermined elasticity by heating is used. For example, as the potting agent 48 of the present embodiment, a silicone rubber whose curing method is classified as two-component addition can be used.
 ポッティング剤48は、加熱装置40を凹部26に収容してから加熱装置40と凹部26との間にポッティング剤48を注入することで充填されてもよい。また、凹部26に充填剤を注入してから加熱装置40を凹部26に収容することでポッティング剤48を充填されてもよい。なお、加熱装置40を凹部26へ収容する際に、凹部26と接触する面(第2絶縁体44の板面)にグリースを塗布してもよい。グリースを塗布することで、加熱装置40と凹部26との摩擦が低減され、凹部26へ加熱装置40を収容し易くすることができる。また、ポッティング剤48は、充填後に加熱され弾性体とされる。 The potting agent 48 may be filled by accommodating the heating device 40 in the recess 26 and then injecting the potting agent 48 between the heating device 40 and the recess 26. Further, the potting agent 48 may be filled by injecting the filler into the recess 26 and then accommodating the heating device 40 in the recess 26. When the heating device 40 is housed in the recess 26, grease may be applied to the surface in contact with the recess 26 (the plate surface of the second insulator 44). By applying grease, the friction between the heating device 40 and the recess 26 is reduced, and the heating device 40 can be easily accommodated in the recess 26. Further, the potting agent 48 is heated after filling to become an elastic body.
 本実施形態によれば、以下の作用効果を奏する。
 本実施形態では、加熱装置40の板バネ46の本体部46aと凹部26とが離間している。これにより、加熱装置40を凹部26内に収容する際に、凹部26からPTC素子41に作用する荷重が抑制される。したがって、PTC素子41の損傷を抑制することができる。
According to this embodiment, the following effects are exhibited.
In the present embodiment, the main body 46a of the leaf spring 46 of the heating device 40 and the recess 26 are separated from each other. As a result, when the heating device 40 is housed in the recess 26, the load acting on the PTC element 41 from the recess 26 is suppressed. Therefore, damage to the PTC element 41 can be suppressed.
 また、加熱装置40と凹部26の側壁面26bとの間に、空気よりも熱伝導率が高いポッティング剤48が充填されている。これにより、加熱装置40と凹部26との間に空気が存在する場合と比較して、PTC素子41から放熱部22へ効率的に熱を伝達することができる。したがって、熱媒体加熱装置10の放熱性を向上させ、性能を向上させることができる。 Further, a potting agent 48 having a higher thermal conductivity than air is filled between the heating device 40 and the side wall surface 26b of the recess 26. As a result, heat can be efficiently transferred from the PTC element 41 to the heat radiating unit 22 as compared with the case where air exists between the heating device 40 and the recess 26. Therefore, the heat dissipation property of the heat medium heating device 10 can be improved and the performance can be improved.
 また、本実施形態では、加熱装置40と凹部26の側壁面26bとの間に、ポッティング剤48が充填されている。また、ポッティング剤48は、充填後に加熱され弾性体とされている。これにより、熱媒体加熱装置10を使用する際には、加熱装置40と凹部26との間に、弾性体が設けられている。例えば、加熱装置40と凹部26とが弾性を有さない固体同士で略全面で接触している場合には、熱応力が生じて加熱装置40が損傷する可能性がある。本実施形態では、上述のように、加熱装置40と凹部26との間に弾性体が設けられている。したがって、加熱装置40の損傷を抑制することができる。 Further, in the present embodiment, the potting agent 48 is filled between the heating device 40 and the side wall surface 26b of the recess 26. Further, the potting agent 48 is heated after filling to form an elastic body. As a result, when using the heat medium heating device 10, an elastic body is provided between the heating device 40 and the recess 26. For example, when the heating device 40 and the recess 26 are in contact with each other on substantially the entire surface of non-elastic solids, thermal stress may occur and the heating device 40 may be damaged. In the present embodiment, as described above, an elastic body is provided between the heating device 40 and the recess 26. Therefore, damage to the heating device 40 can be suppressed.
 また、スペーサ45は、側壁面26bと対向する対向面45aを有し、板面と側壁面26bとが為す角度よりも対向面45aと側壁面26bとが為す角度が小さくなるように形成されている。換言すれば、凹部26の側壁面26bを基準として、スペーサ45の対向面45aの方がPTC素子41の板面よりも平行に近い。よって、凹部26の深さ方向(Z軸方向)において、対向面45aと側壁面26bとの距離が均一化される。これにより、対向面45aと側壁面26bとの間に充填される充填剤の厚さ(Y軸方向の長さ)も均一化される。したがって、PTC素子41から放熱部22への熱の伝達量を、凹部26の深さ方向において均一化することができる。 Further, the spacer 45 has a facing surface 45a facing the side wall surface 26b, and is formed so that the angle formed by the facing surface 45a and the side wall surface 26b is smaller than the angle formed by the plate surface and the side wall surface 26b. There is. In other words, the facing surface 45a of the spacer 45 is closer to parallel than the plate surface of the PTC element 41 with reference to the side wall surface 26b of the recess 26. Therefore, the distance between the facing surface 45a and the side wall surface 26b is made uniform in the depth direction (Z-axis direction) of the recess 26. As a result, the thickness (length in the Y-axis direction) of the filler filled between the facing surface 45a and the side wall surface 26b is also made uniform. Therefore, the amount of heat transferred from the PTC element 41 to the heat radiating portion 22 can be made uniform in the depth direction of the recess 26.
 本実施形態では、板バネ46によって加熱装置40が凹部26内の一方向側に寄せて配置されている。これにより、加熱装置40を凹部26の中心に配置する場合と比較して、加熱装置40と凹部26の側壁面26bとが離間する距離を長くすることができる。よって、ポッティング剤48を充填し易くすることができる。 In the present embodiment, the heating device 40 is arranged closer to one direction in the recess 26 by the leaf spring 46. As a result, the distance between the heating device 40 and the side wall surface 26b of the recess 26 can be increased as compared with the case where the heating device 40 is arranged at the center of the recess 26. Therefore, the potting agent 48 can be easily filled.
 本実施形態では、PTC素子41、電極板42、第1絶縁体43、第2絶縁体44及びスペーサ45が接着剤で固定されている。また、樹脂枠47に第1絶縁体43及び第2絶縁体44が固定されている。これにより、PTC素子41とスペーサ45と樹脂枠47が一体化されていない場合と比較して、容易にPTC素子41、スペーサ45及び樹脂枠47を凹部26に収容することができる。
 また、PTC素子41が絶縁部材で形成される樹脂枠47によって囲われている。これにより、電極板42と放熱部22とを樹脂枠47によって絶縁することができる。よって、絶縁性を向上させることができ、電極板42からの漏電を抑制することができる。
 また、樹脂枠47に対して、第1絶縁体43及び第2絶縁体44の全周を絶縁性接着剤で固定されている。これにより、ポッティング剤48をPTC素子41の側面41cに付着することを抑制することができ、耐熱温度の低いポッティング剤48を使用することができる。
In the present embodiment, the PTC element 41, the electrode plate 42, the first insulator 43, the second insulator 44, and the spacer 45 are fixed with an adhesive. Further, the first insulator 43 and the second insulator 44 are fixed to the resin frame 47. As a result, the PTC element 41, the spacer 45, and the resin frame 47 can be easily accommodated in the recess 26 as compared with the case where the PTC element 41, the spacer 45, and the resin frame 47 are not integrated.
Further, the PTC element 41 is surrounded by a resin frame 47 formed of an insulating member. As a result, the electrode plate 42 and the heat radiating portion 22 can be insulated by the resin frame 47. Therefore, the insulating property can be improved and the electric leakage from the electrode plate 42 can be suppressed.
Further, the entire circumference of the first insulator 43 and the second insulator 44 is fixed to the resin frame 47 with an insulating adhesive. As a result, it is possible to prevent the potting agent 48 from adhering to the side surface 41c of the PTC element 41, and the potting agent 48 having a low heat resistant temperature can be used.
 本実施形態では、PTC素子41の板面のうち、中心軸線Cに近い側の板面である一面41aに、一対の電極板42の両方が固定されていている。これにより、電極板42を凹部26の中心軸線Cに近い位置に設けることができる。換言すれば、電極板42を凹部26の側壁面26bから遠い位置に設けることができる。したがって、電極板42を中心軸線Cから遠い側の板面(他面41b)に固定する場合と比較して、電極板42と放熱部22との絶縁距離を長くすることができる。よって、絶縁性を向上させることができ、電極板42からの漏電を抑制することができる。
 なお、中心軸線Cとは、YZ平面で見た際に、凹部26の中心を通る線を意味している。
In the present embodiment, both of the pair of electrode plates 42 are fixed to one surface 41a, which is the plate surface of the PTC element 41 on the side closer to the central axis C. As a result, the electrode plate 42 can be provided at a position close to the central axis C of the recess 26. In other words, the electrode plate 42 can be provided at a position far from the side wall surface 26b of the recess 26. Therefore, the insulation distance between the electrode plate 42 and the heat radiating portion 22 can be increased as compared with the case where the electrode plate 42 is fixed to the plate surface (other surface 41b) far from the central axis C. Therefore, the insulating property can be improved and the electric leakage from the electrode plate 42 can be suppressed.
The central axis C means a line passing through the center of the recess 26 when viewed in the YZ plane.
 また、本実施形態では、電極板42は、PTC素子41の一面41aの一側の端部と他側の端部とに配置されている。これにより、電極板42同士が離間する距離を長くすることができる。すなわち、電極板42同士の絶縁距離を長くすることができる。これにより、耐電圧を向上させることができる。 Further, in the present embodiment, the electrode plate 42 is arranged at one end of one surface 41a of the PTC element 41 and the other end of the PTC element 41. As a result, the distance between the electrode plates 42 can be increased. That is, the insulation distance between the electrode plates 42 can be increased. Thereby, the withstand voltage can be improved.
 例えば、一対の電極板42のうちの一方の電極をPTC素子41の一面41aに設け、他方の電極板42をPTC素子41の他面41bに設け、一方の電極板42と他方の電極板42とを、板面を平面視した際に両端となる位置に設けることも考えられる。すなわち、一方の電極板42と他方の電極板42とがPTC素子41を挟んでPTC素子41の対角となるように設けることが考えられる。
 本実施形態では、PTC素子41の一面41aの両端に設けた一対の電極板42によって導電している。これにより、上述したように、一方の電極板42と他方の電極板42との絶縁距離が長くなるため、耐電圧を向上させることができる。一方で、PTC素子41が損傷すると、電極板42同士が導電しなくなりPTC素子41が発熱しなくなってしまう可能性があった。しかしながら、本実施形態では、上述のように、PTC素子41の損傷が抑制されるので、耐電性の向上と、PTC素子41の信頼性の向上を両立することができる。
For example, one electrode of the pair of electrode plates 42 is provided on one surface 41a of the PTC element 41, the other electrode plate 42 is provided on the other surface 41b of the PTC element 41, and one electrode plate 42 and the other electrode plate 42 are provided. It is also conceivable to provide and at positions that are both ends when the plate surface is viewed in a plan view. That is, it is conceivable that one electrode plate 42 and the other electrode plate 42 are provided so as to be diagonal to the PTC element 41 with the PTC element 41 interposed therebetween.
In this embodiment, the conductor is conducted by a pair of electrode plates 42 provided at both ends of one surface 41a of the PTC element 41. As a result, as described above, the insulation distance between one electrode plate 42 and the other electrode plate 42 becomes long, so that the withstand voltage can be improved. On the other hand, if the PTC element 41 is damaged, the electrode plates 42 may not conduct with each other and the PTC element 41 may not generate heat. However, in the present embodiment, as described above, damage to the PTC element 41 is suppressed, so that both improvement in electric resistance and improvement in reliability of the PTC element 41 can be achieved at the same time.
 本実施形態では、スペーサ45の対向面45aと凹部26の側壁面26bとの距離は、凹部26の入口開口26a側よりも、凹部26の底面26c側の方が長い。これにより、ポッティング剤48を充填する際に、空気が入口開口26aから抜け易い。したがって、好適にポッティング剤48を充填することができる。
 なお、加熱装置40を凹部26に収容してからポッティング剤48を充填する場合であっても、凹部26にポッティング剤48を注入してから加熱装置40を凹部26に収容する場合であっても、入口開口26aから空気を好適に排出することができる。よって、好適にポッティング剤48を充填することができる。
In the present embodiment, the distance between the facing surface 45a of the spacer 45 and the side wall surface 26b of the recess 26 is longer on the bottom surface 26c side of the recess 26 than on the inlet opening 26a side of the recess 26. As a result, when the potting agent 48 is filled, air can easily escape from the inlet opening 26a. Therefore, the potting agent 48 can be preferably filled.
Even when the heating device 40 is housed in the recess 26 and then filled with the potting agent 48, or when the potting agent 48 is injected into the recess 26 and then the heating device 40 is housed in the recess 26. , Air can be suitably discharged from the inlet opening 26a. Therefore, the potting agent 48 can be suitably filled.
 本実施形態では、電極板42と凹部26の側壁面26bとの間に第1絶縁体43及び第2絶縁体44が設けられている。これにより、電極板42と放熱部22とを第1絶縁体43及び第2絶縁体44によって絶縁することができる。したがって、電極板42からの漏電を抑制することができる。 In the present embodiment, the first insulator 43 and the second insulator 44 are provided between the electrode plate 42 and the side wall surface 26b of the recess 26. As a result, the electrode plate 42 and the heat radiating portion 22 can be insulated by the first insulator 43 and the second insulator 44. Therefore, it is possible to suppress electric leakage from the electrode plate 42.
 本実施形態では、PTC素子41と電極板42とが接着剤で固定されている。これにより、電極とPTC素子41との間で好適に通電させることができる。 In this embodiment, the PTC element 41 and the electrode plate 42 are fixed with an adhesive. As a result, electricity can be suitably applied between the electrode and the PTC element 41.
 また、本実施形態では、第1絶縁体43と、電極板42及びPTC素子41とは、絶縁性の接着剤で固定されている。これにより、電極板42またはPTC素子41と絶縁体とを接着剤により固定することができる。したがって、電極板42間の短絡を抑制することができる。 Further, in the present embodiment, the first insulator 43, the electrode plate 42, and the PTC element 41 are fixed with an insulating adhesive. As a result, the electrode plate 42 or the PTC element 41 and the insulator can be fixed with an adhesive. Therefore, a short circuit between the electrode plates 42 can be suppressed.
 また、本実施形態では、加熱装置40を構成するPTC素子41、電極板42、第1絶縁体43、第2絶縁体44及びスペーサ45が接着剤で固定されている。これにより、各部材の間の空気を排除することができる。したがって、各部材間での熱抵抗が低減されるので、PTC素子41から放熱部22へ好適に熱を伝えることができる。 Further, in the present embodiment, the PTC element 41, the electrode plate 42, the first insulator 43, the second insulator 44, and the spacer 45 constituting the heating device 40 are fixed with an adhesive. This makes it possible to eliminate air between the members. Therefore, since the thermal resistance between the members is reduced, heat can be suitably transferred from the PTC element 41 to the heat radiating unit 22.
 なお、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
 例えば、上記実施形態では、一対の電極板42をPTC素子41の一面41aに設ける例について説明したが、本開示はこれに限定されない。例えば、一対の電極板42の一方を、PTC素子41のX軸方向の一側の側面41cに設け、一対の電極板42の他方を、PTC素子41のX軸方向の他側の側面41cに設けてもよい。
 このように構成した場合でも、電極板42を中心軸線Cから遠い側の板面(他面41b)に固定する場合と比較して、電極板42と放熱部22との絶縁距離を長くすることができる。よって、絶縁性を向上させることができ、電極板42からの漏電を抑制することができる。
The present disclosure is not limited to the above embodiment, and can be appropriately modified without departing from the gist thereof.
For example, in the above embodiment, an example in which a pair of electrode plates 42 are provided on one surface 41a of the PTC element 41 has been described, but the present disclosure is not limited to this. For example, one of the pair of electrode plates 42 is provided on one side surface 41c of the PTC element 41 in the X-axis direction, and the other of the pair of electrode plates 42 is provided on the other side surface 41c of the PTC element 41 in the X-axis direction. It may be provided.
Even in this configuration, the insulation distance between the electrode plate 42 and the heat radiating portion 22 is longer than in the case where the electrode plate 42 is fixed to the plate surface (other surface 41b) far from the central axis C. Can be done. Therefore, the insulating property can be improved and the electric leakage from the electrode plate 42 can be suppressed.
 また、加熱装置40は、板バネ46を省略して構成してもよい。その場合には、凹部26に加熱装置40を収容する際に、凹部26の一方向側に寄るように収容する。このように構成した場合でも、電極板42を中心軸線Cから遠い側の板面(他面41b)に固定する場合と比較して、電極板42と放熱部22との絶縁距離を長くすることができる。よって、絶縁性を向上させることができ、電極板42からの漏電を抑制することができる。 Further, the heating device 40 may be configured by omitting the leaf spring 46. In that case, when the heating device 40 is housed in the recess 26, it is housed so as to be closer to one direction of the recess 26. Even in this configuration, the insulation distance between the electrode plate 42 and the heat radiating portion 22 is longer than in the case where the electrode plate 42 is fixed to the plate surface (other surface 41b) far from the central axis C. Can be done. Therefore, the insulating property can be improved and the electric leakage from the electrode plate 42 can be suppressed.
 また、例えば、スペーサ45が導電性を有する場合には、電極板42をPTC素子41の板面のうち、スペーサ45が設けられる板面とは反対側の板面に固定してもよい。このようにすることで、導電性を有する部材から電極板42を遠ざけることができる。したがって、絶縁性を向上させることができ、電極板42からの漏電を抑制することができる。 Further, for example, when the spacer 45 has conductivity, the electrode plate 42 may be fixed to the plate surface of the PTC element 41 opposite to the plate surface on which the spacer 45 is provided. By doing so, the electrode plate 42 can be kept away from the conductive member. Therefore, the insulating property can be improved and the electric leakage from the electrode plate 42 can be suppressed.
 また、例えば、加熱装置40の両側が凹部26の側壁面26bから離間するように加熱装置40を配置し、ポッティング剤48を加熱装置40の両側に充填してもよい。 Further, for example, the heating device 40 may be arranged so that both sides of the heating device 40 are separated from the side wall surface 26b of the recess 26, and the potting agent 48 may be filled on both sides of the heating device 40.
 また、低電圧ケーブルは低圧コネクタでもよい。
 また、高圧コネクタと低圧コネクタは長手方向の同一端に設けられてもよい。
 また、電極板は固定部42aと電極固定部43bのY軸方向の長さが等しくてもよい。
Further, the low voltage cable may be a low voltage connector.
Further, the high-voltage connector and the low-voltage connector may be provided at the same end in the longitudinal direction.
Further, the electrode plate may have the same length in the Y-axis direction of the fixing portion 42a and the electrode fixing portion 43b.
 また、第1絶縁体43はY軸方向の段差位置にて別体としてもよい。すなわち、スペーサ45に固定される平板状のスペーサ側絶縁体と、PTC素子41に固定される平板状のPTC素子側絶縁体と、を別体として構成し、スペーサ側絶縁体の板面の中央部にPTC素子側絶縁体の板面を固定してもよい。その際、スペーサ側絶縁体とPTC素子側の絶縁体とは、絶縁性接着剤にて固定されてもよい。 Further, the first insulator 43 may be separated at a step position in the Y-axis direction. That is, the flat plate-shaped spacer-side insulator fixed to the spacer 45 and the flat-plate-shaped PTC element-side insulator fixed to the PTC element 41 are configured as separate bodies, and the center of the plate surface of the spacer-side insulator is formed. The plate surface of the insulator on the PTC element side may be fixed to the portion. At that time, the insulator on the spacer side and the insulator on the PTC element side may be fixed with an insulating adhesive.
 また、上記実施形態で説明した板バネ46の代わりに、第1絶縁体43とスペーサ45との間に板バネを設けてもよい。この場合には、板バネは、第1絶縁体43に絶縁性を有する接着剤で固定されてもよい。また、この場合には、板バネのバネ部の先端がスペーサ45に接触していて、板バネが、第1絶縁体43をPTC素子41方向に付勢している。また、この場合には、ポッティング剤が、スペーサ45と板バネとの間に充填されてもよい。 Further, instead of the leaf spring 46 described in the above embodiment, a leaf spring may be provided between the first insulator 43 and the spacer 45. In this case, the leaf spring may be fixed to the first insulator 43 with an adhesive having an insulating property. Further, in this case, the tip of the spring portion of the leaf spring is in contact with the spacer 45, and the leaf spring urges the first insulator 43 toward the PTC element 41. Further, in this case, the potting agent may be filled between the spacer 45 and the leaf spring.
 また、第2絶縁体44と凹部26の側壁面26bとの間に板バネを設けてもよい。この場合には、板バネは、第2絶縁体44に絶縁性を有する接着剤で固定されてもよい。また、この場合には、板バネのバネ部は、先端が凹部26の側壁面26bに接触している。なお、板バネと側壁面26bとの間にスペーサを設けてもよく、スペーサを設けた場合には、板バネのバネ部の先端は、スペーサに接触している。これにより、板バネは、第2絶縁体44をPTC素子41方向に付勢している。また、この場合には、ポッティング剤48が、板バネ46と側壁面26bもしくはスペーサとの間に充填されてもよい。 Further, a leaf spring may be provided between the second insulator 44 and the side wall surface 26b of the recess 26. In this case, the leaf spring may be fixed to the second insulator 44 with an adhesive having an insulating property. Further, in this case, the tip of the spring portion of the leaf spring is in contact with the side wall surface 26b of the recess 26. A spacer may be provided between the leaf spring and the side wall surface 26b, and when the spacer is provided, the tip of the spring portion of the leaf spring is in contact with the spacer. As a result, the leaf spring urges the second insulator 44 in the direction of the PTC element 41. Further, in this case, the potting agent 48 may be filled between the leaf spring 46 and the side wall surface 26b or the spacer.
 以上説明した各実施形態に記載の熱媒体加熱装置及び車両用空調装置は例えば以下のように把握される。 The heat medium heating device and the vehicle air conditioner described in each of the above-described embodiments are grasped as follows, for example.
 本開示の一実施形態に係る熱媒体加熱装置は、板状の発熱体(41)と、前記発熱体の板面(41a)と側壁面(26b)とが対向するように前記発熱体を収容する凹部(26)を有し、前記発熱体の熱を熱媒体へ放熱する放熱部(22)と、前記発熱体に固定される一対の電極部(42)と、を備え、前記発熱体は、前記凹部の深さ方向に沿って延びる中心軸線(C)を基準として、一方向側に配置され、前記中心軸線に近い側の前記発熱体の板面には、一対の前記電極部が固定されていている。 The heating medium heating device according to the embodiment of the present disclosure accommodates the heating element so that the plate-shaped heating element (41) and the plate surface (41a) and the side wall surface (26b) of the heating element face each other. The heating element is provided with a heat radiating portion (22) that has a recess (26) to dissipate heat from the heating element to a heating medium, and a pair of electrode portions (42) fixed to the heating element. A pair of the electrode portions are fixed to the plate surface of the heating element which is arranged in one direction with reference to the central axis (C) extending along the depth direction of the recess and is closer to the central axis. Has been done.
 上記構成では、発熱体の板面のうち中心軸線に近い側の板面に、一対の電極部の両方が固定されている。これにより、電極部を凹部の中心軸線に近い位置に設けることができる。換言すれば、電極部を凹部の側壁面から遠い位置に設けることができる。したがって、例えば、放熱部が導電性の部材であっても、電極部を中心軸線から遠い側の板面に固定する場合と比較して、電極部と放熱部との絶縁距離を長くすることができる。よって、絶縁性を向上させることができ、電極部からの漏電を抑制することができる。
 なお、中心軸線とは、YZ平面で見た際に、凹部の中心を通る線を意味している。
In the above configuration, both of the pair of electrode portions are fixed to the plate surface of the heating element on the side closer to the central axis. As a result, the electrode portion can be provided at a position close to the central axis of the recess. In other words, the electrode portion can be provided at a position far from the side wall surface of the recess. Therefore, for example, even if the heat radiating portion is a conductive member, the insulation distance between the electrode portion and the heat radiating portion can be lengthened as compared with the case where the electrode portion is fixed to the plate surface on the side far from the central axis. can. Therefore, the insulating property can be improved and the electric leakage from the electrode portion can be suppressed.
The central axis means a line passing through the center of the recess when viewed on the YZ plane.
 また、本開示の一実施形態に係る熱媒体加熱装置は、一対の前記電極部の一方は、前記発熱体の前記板面の一側の端部に設けられ、一対の前記電極部の他方は、前記発熱体の前記板面の他側の端部に設けられている。 Further, in the heat medium heating device according to the embodiment of the present disclosure, one of the pair of the electrode portions is provided at one end of the plate surface of the heating element, and the other of the pair of the electrode portions is provided. , Is provided at the other end of the plate surface of the heating element.
 上記構成では、電極部は、発熱体の板面の一側の端部と他側の端部とに配置されている。これにより、電極部同士の距離を長くすることができる。すなわち、電極部同士の距離を長くすることができる。これにより、耐電圧を向上させることができる。 In the above configuration, the electrode portions are arranged at one end of the plate surface of the heating element and the other end. As a result, the distance between the electrode portions can be increased. That is, the distance between the electrode portions can be increased. Thereby, the withstand voltage can be improved.
 また、本開示の一実施形態に係る熱媒体加熱装置は、板状の発熱体(41)と、前記発熱体の板面(41a)と側壁面(26b)とが対向するように前記発熱体を収容する凹部(26)を有し、前記発熱体の熱を熱媒体へ放熱する放熱部(22)と、前記発熱体に固定される一対の電極部(42)と、を備え、前記発熱体は、前記凹部の深さ方向に沿って延びる中心軸線を基準として、一方向側に配置され、一対の前記電極部の一方は、前記発熱体の一側の側面(26c)に設けられ、一対の前記電極部の他方は、前記発熱体の他側の側面(26c)に設けられている。 Further, in the heating medium heating device according to the embodiment of the present disclosure, the heating element (41) and the heating element such that the plate surface (41a) and the side wall surface (26b) of the heating element face each other. A heat radiating portion (22) that has a recess (26) for accommodating the heating element and radiates heat of the heating element to a heating medium, and a pair of electrode portions (42) fixed to the heating element. The body is arranged unidirectionally with reference to a central axis extending along the depth direction of the recess, and one of the pair of electrode portions is provided on one side surface (26c) of the heating element. The other side of the pair of electrode portions is provided on the other side surface (26c) of the heating element.
 上記構成では、発熱体が中心軸線を基準として一方向側に配置されている。すなわち、発熱体の板面には、中心軸線に近い側の面と中心軸線から遠い側の面とが存在する。また、上記構成では、発熱体の側面に、一対の電極部の両方が固定されている。これにより、電極部を中心軸線から遠い側の板面に固定する場合と比較して、電極部を凹部の中心軸線に近い位置に設けることができる。換言すれば、電極部を凹部の側壁面から遠い位置に設けることができる。したがって、例えば、放熱部が導電性の部材であっても、電極部を中心軸線から遠い側の板面に固定する場合と比較して、電極部と放熱部との絶縁距離を長くすることができる。よって、絶縁性を向上させることができ、電極部からの漏電を抑制することができる。
 また、上記構成では、電極部は、発熱体の板面の側面と他側の側面とに配置されている。これにより、電極部同士の距離を長くすることができる。すなわち、電極部同士の距離を長くすることができる。これにより、耐電圧を向上させることができる。
In the above configuration, the heating element is arranged in one direction with respect to the central axis. That is, the plate surface of the heating element includes a surface on the side close to the central axis and a surface on the side far from the central axis. Further, in the above configuration, both of the pair of electrode portions are fixed to the side surface of the heating element. As a result, the electrode portion can be provided at a position closer to the central axis of the recess as compared with the case where the electrode portion is fixed to the plate surface on the side far from the central axis. In other words, the electrode portion can be provided at a position far from the side wall surface of the recess. Therefore, for example, even if the heat radiating portion is a conductive member, the insulation distance between the electrode portion and the heat radiating portion can be lengthened as compared with the case where the electrode portion is fixed to the plate surface on the side far from the central axis. can. Therefore, the insulating property can be improved and the electric leakage from the electrode portion can be suppressed.
Further, in the above configuration, the electrode portions are arranged on the side surface of the plate surface of the heating element and the side surface on the other side. As a result, the distance between the electrode portions can be increased. That is, the distance between the electrode portions can be increased. Thereby, the withstand voltage can be improved.
 また、本開示の一実施形態に係る熱媒体加熱装置は、前記発熱体と前記電極部とは、導電性の接着剤で固定されている。 Further, in the heat medium heating device according to the embodiment of the present disclosure, the heating element and the electrode portion are fixed with a conductive adhesive.
 上記構成では、発熱体と電極とが接着剤で固定されている。これにより、電極と発熱体との間で好適に通電させることができる。 In the above configuration, the heating element and the electrode are fixed with an adhesive. As a result, electricity can be suitably applied between the electrode and the heating element.
 また、本開示の一実施形態に係る熱媒体加熱装置は、前記電極部と前記側壁面との間に設けられ、前記電極部または前記発熱体の少なくとも1つに固定される絶縁体を備え、前記電極部または前記発熱体と前記絶縁体とは、絶縁性の接着剤で固定されている。 Further, the heat medium heating device according to the embodiment of the present disclosure includes an insulator provided between the electrode portion and the side wall surface and fixed to at least one of the electrode portion or the heating element. The electrode portion or the heating element and the insulator are fixed with an insulating adhesive.
 上記構成では、電極部と側壁面との間に絶縁体が設けられている。これにより、例えば、放熱部が導電性の部材であっても、電極部と放熱部とを絶縁体によって絶縁することができる。したがって、電極部からの漏電を抑制することができる。
 また、電極部または発熱体と絶縁体とは、絶縁性の接着剤で固定されている。これにより、電極部からの漏電を抑制することができる。
 また、電極部または発熱体と絶縁体との間に接着剤が設けられている。これにより、発熱体と電極との間の空気を排除することができる。したがって、各部材間での熱抵抗が低減される。したがって、発熱体から絶縁体を介して放熱部へ好適に熱を伝えることができる。
In the above configuration, an insulator is provided between the electrode portion and the side wall surface. Thereby, for example, even if the heat radiating portion is a conductive member, the electrode portion and the heat radiating portion can be insulated by an insulator. Therefore, it is possible to suppress electric leakage from the electrode portion.
Further, the electrode portion or the heating element and the insulator are fixed with an insulating adhesive. This makes it possible to suppress electric leakage from the electrode portion.
Further, an adhesive is provided between the electrode portion or the heating element and the insulator. This makes it possible to eliminate air between the heating element and the electrodes. Therefore, the thermal resistance between the members is reduced. Therefore, heat can be suitably transferred from the heating element to the heat radiating portion via the insulator.
 また、本開示の一実施形態に係る車両用空調装置は、上記いずれかに記載の熱媒体加熱装置(10)と、空気流路(2)と、該空気流路に外気または車室内空気を循環させるブロア(4)と、該ブロアの下流側に設けられている冷却器(5)と、該冷却器の下流側に設けられている放熱器(6)と、を備えた車両用空調装置において、前記放熱器には、前記熱媒体加熱装置により加熱された熱媒体が循環可能に構成されている。 Further, the vehicle air conditioner according to the embodiment of the present disclosure includes the heat medium heating device (10), the air flow path (2), and the outside air or the vehicle interior air in the air flow path according to any one of the above. A vehicle air conditioner including a blower (4) for circulation, a cooler (5) provided on the downstream side of the blower, and a radiator (6) provided on the downstream side of the cooler. In the radiator, the heat medium heated by the heat medium heating device is configured to be circulatory.
1   :車両用空調装置
2   :空気流路
3   :ケーシング
4   :ブロア
5   :冷却器
6   :放熱器
7   :エアミックスダンパ
8   :タンク
9   :ポンプ
10  :熱媒体加熱装置
11  :熱媒体循環回路
20  :第1ケーシング
21  :制御基板収容部
22  :放熱部
23  :制御基板
24  :高圧コネクタ
25  :低圧コネクタ
26  :凹部
26a :入口開口
26b :側壁面
26c :底面
27  :放熱フィン
28  :隔壁
30  :第2ケーシング
31  :流路部
32  :フランジ部
33  :入口部
34  :出口部
40  :加熱装置
41  :PTC素子(発熱体)
41a :一面
41b :他面
41c :側面
42  :電極板(電極部)
42a :固定部
42b :接続部
43  :第1絶縁体
43a :素子固定部
43b :電極固定部
44  :第2絶縁体
45  :スペーサ
45a :対向面
46  :板バネ
46a :本体部
46b :バネ部
47  :樹脂枠
47a :枠体部
47b :支持部
48  :ポッティング剤
C   :中心軸線
1: Vehicle air conditioner 2: Air flow path 3: Casing 4: Blower 5: Cooler 6: Heater 7: Air mix damper 8: Tank 9: Pump 10: Heat medium heating device 11: Heat medium circulation circuit 20: 1st casing 21: Control board accommodating part 22: Heat dissipation part 23: Control board 24: High pressure connector 25: Low pressure connector 26: Recess 26a: Inlet opening 26b: Side wall surface 26c: Bottom surface 27: Heat dissipation fin 28: Partition 30: Second Casing 31: Flow path 32: Flange 33: Inlet 34: Outlet 40: Heating device 41: PTC element (heating element)
41a: One surface 41b: Other surface 41c: Side surface 42: Electrode plate (electrode portion)
42a: Fixing part 42b: Connecting part 43: First insulator 43a: Element fixing part 43b: Electrode fixing part 44: Second insulator 45: Spacer 45a: Facing surface 46: Leaf spring 46a: Main body part 46b: Spring part 47 : Resin frame 47a: Frame body 47b: Support 48: Potting agent C: Central axis

Claims (6)

  1.  板状の発熱体と、
     前記発熱体の板面と側壁面とが対向するように前記発熱体を収容する凹部を有し、前記発熱体の熱を熱媒体へ放熱する放熱部と、
     前記発熱体に固定される一対の電極部と、を備え、
     前記発熱体は、前記凹部の深さ方向に沿って延びる中心軸線を基準として、一方向側に配置され、
     前記中心軸線に近い側の前記発熱体の板面には、一対の前記電極部が固定されている熱媒体加熱装置。
    A plate-shaped heating element and
    A heat radiating portion that has a recess for accommodating the heating element so that the plate surface and the side wall surface of the heating element face each other and dissipates heat of the heating element to a heat medium.
    A pair of electrode portions fixed to the heating element are provided.
    The heating element is arranged in one direction with respect to the central axis extending along the depth direction of the recess.
    A heat medium heating device in which a pair of electrode portions are fixed to a plate surface of the heating element on the side close to the central axis.
  2.  一対の前記電極部の一方は、前記発熱体の前記板面の一側の端部に設けられ、
     一対の前記電極部の他方は、前記発熱体の前記板面の他側の端部に設けられている請求項1に記載の熱媒体加熱装置。
    One of the pair of electrode portions is provided at one end of the plate surface of the heating element.
    The heat medium heating device according to claim 1, wherein the other of the pair of electrode portions is provided at the other end of the plate surface of the heating element.
  3.  板状の発熱体と、
     前記発熱体の板面と側壁面とが対向するように前記発熱体を収容する凹部を有し、前記発熱体の熱を熱媒体へ放熱する放熱部と、
     前記発熱体に固定される一対の電極部と、を備え、
     前記発熱体は、前記凹部の深さ方向に沿って延びる中心軸線を基準として、一方向側に配置され、
     一対の前記電極部の一方は、前記発熱体の一側の側面に設けられ、
     一対の前記電極部の他方は、前記発熱体の他側の側面に設けられている熱媒体加熱装置。
    A plate-shaped heating element and
    A heat radiating portion that has a recess for accommodating the heating element so that the plate surface and the side wall surface of the heating element face each other and dissipates heat of the heating element to a heat medium.
    A pair of electrode portions fixed to the heating element are provided.
    The heating element is arranged in one direction with respect to the central axis extending along the depth direction of the recess.
    One of the pair of electrode portions is provided on one side surface of the heating element.
    The other side of the pair of electrode portions is a heat medium heating device provided on the other side surface of the heating element.
  4.  前記発熱体と前記電極部とは、導電性の接着剤で固定されている請求項1から請求項3のいずれかに記載の熱媒体加熱装置。 The heat medium heating device according to any one of claims 1 to 3, wherein the heating element and the electrode portion are fixed with a conductive adhesive.
  5.  前記電極部と前記側壁面との間に設けられ、前記電極部または前記発熱体の少なくとも1つに固定される絶縁体を備え、
     前記電極部または前記発熱体と前記絶縁体とは、絶縁性の接着剤で固定されている請求項1から請求項4のいずれかに記載の熱媒体加熱装置。
    An insulator provided between the electrode portion and the side wall surface and fixed to at least one of the electrode portion or the heating element is provided.
    The heat medium heating device according to any one of claims 1 to 4, wherein the electrode portion or the heating element and the insulator are fixed with an insulating adhesive.
  6.  請求項1から請求項5のいずれかに記載の熱媒体加熱装置と、
     空気流路と、
     該空気流路に外気または車室内空気を循環させるブロアと、
     該ブロアの下流側に設けられている冷却器と、
     該冷却器の下流側に設けられている放熱器と、を備えた車両用空調装置において、
     前記放熱器には、前記熱媒体加熱装置により加熱された熱媒体が循環可能に構成されている車両用空調装置。
    The heat medium heating device according to any one of claims 1 to 5.
    With the air flow path
    A blower that circulates outside air or vehicle interior air through the air flow path,
    A cooler provided on the downstream side of the blower and
    In a vehicle air conditioner provided with a radiator provided on the downstream side of the cooler.
    A vehicle air conditioner in which a heat medium heated by the heat medium heating device can be circulated in the radiator.
PCT/JP2021/005145 2020-02-13 2021-02-12 Heat medium heating device and vehicle air conditioning device WO2021162069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-022282 2020-02-13
JP2020022282A JP2021128850A (en) 2020-02-13 2020-02-13 Heat medium heating device and vehicle air conditioner

Publications (1)

Publication Number Publication Date
WO2021162069A1 true WO2021162069A1 (en) 2021-08-19

Family

ID=77292831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005145 WO2021162069A1 (en) 2020-02-13 2021-02-12 Heat medium heating device and vehicle air conditioning device

Country Status (2)

Country Link
JP (1) JP2021128850A (en)
WO (1) WO2021162069A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545987U (en) * 1991-11-15 1993-06-18 株式会社小糸製作所 Sheet heating element
JP2008109137A (en) * 2006-10-25 2008-05-08 Catem Gmbh & Co Kg Heat-generating element for electric heating device and method for manufacture of the same
JP2009196385A (en) * 2008-02-19 2009-09-03 Denso Corp Electric heater
JP2018131148A (en) * 2017-02-17 2018-08-23 三菱重工オートモーティブサーマルシステムズ株式会社 Heat medium heating device and air conditioner for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545987U (en) * 1991-11-15 1993-06-18 株式会社小糸製作所 Sheet heating element
JP2008109137A (en) * 2006-10-25 2008-05-08 Catem Gmbh & Co Kg Heat-generating element for electric heating device and method for manufacture of the same
JP2009196385A (en) * 2008-02-19 2009-09-03 Denso Corp Electric heater
JP2018131148A (en) * 2017-02-17 2018-08-23 三菱重工オートモーティブサーマルシステムズ株式会社 Heat medium heating device and air conditioner for vehicle

Also Published As

Publication number Publication date
JP2021128850A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP4981386B2 (en) Heat medium heating device and vehicle air conditioner using the same
JP5535742B2 (en) Heat medium heating device and vehicle air conditioner using the same
US9470438B2 (en) Thermoelectric temperature control unit
WO2013157357A1 (en) Heating medium heating apparatus, and vehicle air conditioner provided with same
JP5535740B2 (en) Heat medium heating device and vehicle air conditioner using the same
US9377244B2 (en) Heat medium heating device and vehicle air conditioner including the same
JP2005001447A (en) Electric heater, heat exchanger for heating and vehicular air conditioner
US9186956B2 (en) Heat medium heating unit and vehicle air conditioning apparatus provided with the same
US9631836B2 (en) Device for electrically heating fluid for a motor vehicle, and related heating and/or air-conditioning apparatus
KR20140031158A (en) Battery temperature regulation system and battery temperature regulation unit
US20200039324A1 (en) Heat medium heating device, and vehicular air conditioning device
WO2012077266A1 (en) Heat medium heating device
CN110861466B (en) Heating device
JP6675937B2 (en) Heat medium heating device and vehicle air conditioner using the same
JP2011016489A (en) Device for heating heat medium and air conditioner for vehicle using the same
JP2014129090A (en) Heat medium heating device and vehicle air conditioner using the same
JP2012196985A (en) Heater for heat medium and air conditioner for vehicle with the same
JP2016520019A (en) Grating and corresponding heater unit for uniform air flow
JP2012017031A (en) Heat medium-heating device and air conditioner for vehicle using the same
JP6803259B2 (en) Heat medium heating device and vehicle air conditioner
WO2021162069A1 (en) Heat medium heating device and vehicle air conditioning device
WO2021162095A1 (en) Heat medium heating device and vehicle air conditioning device
JP2013220707A (en) Heat medium heating device, and vehicle air conditioner equipped with the same
JP2011079344A (en) Heat medium heating device and air conditioner for vehicle
JP2013177028A (en) Heating medium heating system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753565

Country of ref document: EP

Kind code of ref document: A1