WO2021161987A1 - Bisphosphonate-containing carbon particle composite and method for producing same - Google Patents

Bisphosphonate-containing carbon particle composite and method for producing same Download PDF

Info

Publication number
WO2021161987A1
WO2021161987A1 PCT/JP2021/004744 JP2021004744W WO2021161987A1 WO 2021161987 A1 WO2021161987 A1 WO 2021161987A1 JP 2021004744 W JP2021004744 W JP 2021004744W WO 2021161987 A1 WO2021161987 A1 WO 2021161987A1
Authority
WO
WIPO (PCT)
Prior art keywords
cap
oxcnh
carbon
acid
particles
Prior art date
Application number
PCT/JP2021/004744
Other languages
French (fr)
Japanese (ja)
Inventor
湯田坂 雅子
真紀 中村
直人 齋藤
青木 薫
勝也 上田
Original Assignee
国立研究開発法人産業技術総合研究所
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 国立大学法人信州大学 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2022500417A priority Critical patent/JPWO2021161987A1/ja
Publication of WO2021161987A1 publication Critical patent/WO2021161987A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/662Phosphorus acids or esters thereof having P—C bonds, e.g. foscarnet, trichlorfon
    • A61K31/663Compounds having two or more phosphorus acid groups or esters thereof, e.g. clodronic acid, pamidronic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease

Definitions

  • the present invention relates to a bisphosphonate-containing carbon particle complex and a method for producing the same.
  • BPs Bisphosphonates
  • oral administration of BP has a low absorption rate from the intestinal tract (about several percent), and side effects such as esophageal ulcer and esophagitis become a problem.
  • BP blood pressure
  • side effects such as non-traumatic subtrochanteric femoral and atypical fractures of the proximal femoral shaft due to suppression of bone metabolism, and BP-related osteonecrosis.
  • BP-related osteonecrosis For this reason, there are doubts about the safety and effectiveness of BP during long-term use overseas.
  • a drug delivery system for cancer treatment DDS
  • bone repair scaffold is being studied.
  • DDS and Scaffold are currently produced using biodegradable materials, the environment of metastatic bone cancer is poorly ordered, and the drug is slowly released to control bone repair according to the degree of cancer progression. It is difficult to achieve the purpose of doing so.
  • Patent Document 1 describes a method for producing a nanostructure such as a carbon nanotube having a BP structure.
  • An object of the present invention is to provide a BP-containing carbon particle complex in which the action of BP is improved and side effects are suppressed, and a method for producing the same.
  • the present inventors have determined that among non-biodegradable materials, carbon particles having high biocompatibility and capable of carrying various kinds of therapeutic agents and target substances are suitable. Therefore, the present inventors have focused on imparting bone affinity to carbon particles in vivo, and investigated modifying the surface of carbon particles with calcium phosphate (CaP). As a result, it was determined that by combining BP and CaP with carbon particles, a complex having high bone affinity and capable of killing osteoclasts can be obtained.
  • CaP calcium phosphate
  • the present invention has been completed based on these findings, and according to the present invention, a carbon particle composite containing BP, CaP and carbon particles and a method for producing the same are provided.
  • the BP-containing carbon particle complex in the present invention can improve the action of BP and suppress side effects. Therefore, the BP-containing carbon particle complex in the present invention is effective for osteogenesis-promoting treatment of osteoclast-targeted metastatic bone cancer, osteoporosis, osteogenesis imperfecta, osteoarthritis and the like.
  • Photograph of dispersion of BV-CaP-OxCNH and CaP-OxCNH Photograph of dispersion of BV-CaP-OxCNH and CaP-OxCNH.
  • TEM transmission electron microscope
  • STEM scanning transmission electron microscope
  • A Results of toxicity evaluation of mouse macrophage-like cells (RAW264.7 cells) of BV-CaP-OxCNH.
  • B Results of BV RAW264.7 cytotoxicity assessment.
  • A Results of RAW264.7 cytotoxicity evaluation of BV-CaP-OxCNH-2, CaP-OxCNH-2, and OxCNH.
  • B Results of RAW264.7 cytotoxicity evaluation of BV-CaP-OxCNH-5, CaP-OxCNH-5, and OxCNH.
  • An optical micrograph of osteoclasts obtained by differentiating from RAW264.7 cells (a) and RAW264.7 cells, stained with tartrate-resistant acid phosphatase (TRAP). Fluorescence micrograph showing uptake of BV-CaP-OxCNH by osteoclasts. Results of survival rate evaluation of osteoclasts supplemented with OxCNH, CaP-OxCNH, and BV-CaP-OxCNH. SEM images of BV-CaP-OxCNH, ZO-CaP-OxCNH, and PM-CaP-OxCNH.
  • Tibial CT images of osteoporosis model rats 0, 8 and 12 weeks after sample implantation Total bone mineral density of osteoporosis model rats 0, 4, 8 and 12 weeks after sample implantation.
  • the carbon particle complex in the present invention contains BP, CaP and carbon particles.
  • the carbon particles are, but are not limited to, CNH, carbon nanotubes, nanographene, nanodiamond, or carbon fiber, or a combination thereof.
  • the carbon particles have chemical and physical stability, and it is easy to introduce a functional group such as a carboxyl group (-COOH) suitable for chemical modification on the surface of the carbon particles, so that the carbon particles are suitable for imparting multiple functions. ..
  • CNH is preferable as carbon particles used for a carbon particle complex because it has advantages such as size uniformity, dispersion stability in an aqueous solution, high-purity mass production, and no purification required.
  • the CNH has a spherical shape having a diameter of about 100 nm, in which thousands of carbon nanotubes having a diameter of 2 nm to 5 nm are radially gathered.
  • CNH is robust and does not decompose easily. Further, since CNH has a structure with abundant irregularities on the surface, it does not strongly agglomerate and is isolated and dispersed in an aqueous solution.
  • OxCNH which is obtained by oxidizing CNH with hydrogen peroxide, has holes in the tube wall due to the cleavage of carbon-carbon bonds, and also facilitates the entry and exit of molecules into the internal space. More preferable as carbon particles to be used.
  • OxCNH is hydrophilic because a functional group such as a carboxyl group is introduced into the pore edge or the like, and is more preferable as carbon particles used in a carbon particle complex.
  • CaP may be a compound containing at least phosphate ions and calcium ions. Further, CaP may be amorphous. Calcium ions in the CaP supersaturated solution are attracted to the carboxyl group of the carbon particles by electrostatic interaction, and CaP is precipitated from there to form a complex of CaP and carbon particles. Alternatively, the precipitated calcium ions on the surface of the CaP are attracted to the carboxyl group of the carbon particles by electrostatic interaction to form a complex of the CaP and the carbon particles.
  • the BP contained in the carbon particle composite is etidronic acid, ibandronic acid, zoledronic acid, alendronic acid, minodronic acid, risedronic acid, pamidronic acid, incadronic acid, or salts thereof, or a combination thereof.
  • the BP may contain at least a phosphonic acid group, inhibit the activity of osteoclasts, and prevent bone resorption.
  • the phosphonic acid group of BP attracts calcium ions in the CaP supersaturated solution and calcium ions on the surface of the precipitated CaP by electrostatic interaction, so that CaP and BP are compounded and a complex with carbon particles is further formed.
  • the BP is contained in the internal space of the carbon particles or is supported on the carbon particles by being physically adsorbed on the surface of the carbon particles.
  • the BP-containing carbon particle complex in the present invention can kill osteoclasts with a small amount of BP content.
  • the carbon particle complex in the present invention can be produced by preparing a CaP supersaturated solution containing BP and carbon particles and allowing them to stand to co-precipitate the three.
  • the solution used as a raw material for the CaP supersaturated solution is not particularly limited.
  • a pH adjuster or the like may be appropriately contained in addition to the solution containing calcium ions (calcium-containing solution) and the solution containing phosphate ions (phosphate-containing solution).
  • As the raw material of the CaP supersaturated solution for example, various injection preparations and the like may be used in combination.
  • the carbon particle composite of the present invention can be used as it is as a preparation.
  • a CaP supersaturated solution containing BP and carbon particles can be prepared by mixing BP, carbon particles, a calcium-containing liquid and a phosphoric acid-containing liquid. At the time of mixing, a pH adjuster or the like may be added if necessary.
  • the temperature and time for allowing the CaP supersaturated solution containing BP and carbon particles to stand are not particularly limited. It can be appropriately adjusted in consideration of the size and dispersibility of the carbon particle composite to be produced.
  • the carbon particle complex in the present invention contains BP, it can be applied to a preparation targeting osteoclasts.
  • the formulation in the present invention may appropriately contain additives and the like in addition to the BP-containing carbon particle complex.
  • the pharmaceutical product of the present invention may be administered to a patient by intravenous injection, for example, or may be locally administered to a specific site (affected area).
  • the BP-containing carbon particle complex in the present invention can function as a DDS capable of controlling the drug distribution in the body spatially, quantitatively, and temporally.
  • the BP-containing carbon particle complex in the present invention has increased bone affinity by containing CaP, and can kill osteoclasts with a small amount of BP.
  • the locally administered BP-containing carbon particle complex can stay in the affected area for a long time and continue to release BP.
  • the BP-containing carbon particle complex is localized in lysosomes in osteoclasts, CaP is dissolved in the acidic environment, and BP can be efficiently released.
  • the carbon particles generate heat when irradiated with light, photothermia treatment is possible depending on the affected area.
  • CaP is a component of bone matrix
  • bone repair by osteoblasts can be promoted after bone resorption by osteoclasts is suppressed.
  • the carbon particles themselves fulfill the function of Scaffold having excellent bone formation, it is effective for bone formation promoting treatment. Therefore, the BP-containing carbon particle complex in the present invention can be efficiently treated for promoting bone formation due to the synergistic effect of DDS and Scaffold.
  • OxCNH powder is dispersed in ultrapure water to 0.1 mg / mL, 0.2 mg / mL, 0.5 mg / mL, 1 mg / mL, 2 mg / mL, and 5 mg / mL, and sterilized by autoclave. An OxCNH dispersion was obtained.
  • BV solution a Bombiva intravenous injection 1 mg syringe (Chugai Pharmaceutical Co., Ltd.) containing sodium ibandronate hydrate as an active ingredient was used.
  • a calcium-containing solution, a phosphoric acid-containing solution, and a pH adjuster were prepared as raw materials for the CaP supersaturated solution.
  • the calcium-containing solution was prepared by mixing Ringer's solution “Otsuka” (Otsuka Pharmaceutical Co., Ltd.) (49.361 mL) and Ca chloride correction solution 1 mEq / mL (Otsuka Pharmaceutical Co., Ltd.) (0.639 mL).
  • the phosphoric acid-containing solution was prepared by mixing Clinisalz (registered trademark) infusion solution (Kyowa CritiCare Co., Ltd.) (9.469 mL) and dipotassium phosphate Injection 20 mEq kit "Terumo" (Terumo Corporation) (0.531 mL). ..
  • the pH adjuster was prepared by mixing Meylon (registered trademark) intravenous injection 7% (Otsuka Pharmaceutical Co., Ltd.) (5 mL) and water for injection (Fuso Pharmaceutical Indus Co., Ltd.) (20 mL). Sterilized OxCNH aqueous dispersion (0.1 mg / mL, 0.2 mg / mL, 0.5 mg / mL, 1 mg / mL, 2 mg / mL, 5 mg / mL dispersion, 0.250 mL each), BV solution (0.
  • reaction solution 10 mL
  • the reaction solution was allowed to stand in an incubator at 25 ° C. for 30 minutes to coprecipitate BV, CaP, and OxCNH.
  • the obtained sample BV-CaP-OxCNH was collected by centrifugation (6000 rpm, 5 minutes), and washed by repeating the process of dispersing the sample in water for injection and centrifuging.
  • CaP-OxCNH As a control containing no BV, a sample CaP-OxCNH was obtained by performing the same operation as the preparation of BV-CaP-OxCNH except that the reaction solution was prepared using water for injection instead of the BV solution.
  • BV-CaP and CaP As a control containing no CNH, the same operation as the preparation of BV-CaP-OxCNH or the preparation of CaP-OxCNH was performed except that the reaction solution was prepared using water for injection instead of the sterile OxCNH aqueous dispersion, and the BV and A complex of CaP (BV-CaP) and CaP particles (CaP) were obtained.
  • BV-CaP and BV-CaP-OxCNH are shown in FIG.
  • SEM images of CaP and CaP-OxCNH are shown in FIG.
  • BV-CaP, BV-CaP-OxCNH-1, BV-CaP-OxCNH-2, BV-CaP-OxCNH-3, and BV-CaP-OxCNH-4 all have a primary particle size of about 50 nm.
  • CaP-OxCNH / CaP 1.38 to 1.44. It is considered that BV-CaP-OxCNH and BV-CaP supported BV containing phosphorus, so that the phosphorus content was relatively large with respect to calcium and the Ca / P molar ratio was small.
  • the Ca / P molar ratio of CaP in BV-CaP-OxCNH is equivalent to that of CaP-OxCNH
  • the BV content was estimated and found to be 20-30% (0. It was calculated to be 16-0.24 ⁇ mol).
  • the amount ratio of BV to CaP was estimated to be 4-7: 100.
  • BV-CaP-OxCNH BV, CaP and OxCNH form a ternary complex.
  • BV-CaP-OxCNH and BV-CaP all contained less calcium and phosphorus than CaP-OxCNH and CaP. It is considered that this is because in BV-CaP-OxCNH and BV-CaP, the pH of the reaction solution was lowered by the addition of the acidic BV solution to the reaction solution, and the formation of CaP was hindered. It is also possible that the compounding with BV affected the rate of CaP formation. On the other hand, the concentration of OxCNH in the reaction solution did not significantly affect the calcium and phosphorus contents.
  • the amounts of CaP and BV contained in BV-CaP-OxCNH do not differ greatly regardless of the concentration of OxCNH in the reaction solution.
  • the fact that the changes in the amount of CaP and the amount of BV are small even if the amount of OxCNH changes suggests that CaP and BV are bound without being affected by OxCNH. That is, it was presumed that BV was mainly supported on CaP and that BV-CaP had a structure in which a complex was formed with OxCNH.
  • FIG. 5 shows a TEM image of BV-CaP-OxCNH-2 and a STEM-EDX image showing the element distribution of carbon (C), calcium (Ca), oxygen (O), and phosphorus (P).
  • C carbon
  • Ca calcium
  • O oxygen
  • P phosphorus
  • Phagocytic mouse macrophage-like cells (RAW264.7) were seeded on 96-well plates and cultured at 37 ° C. After culturing for 24 hours, the medium is removed, BV-CaP-OxCNH-1, BV-CaP-OxCNH-2, BV-CaP-OxCNH-3, BV-CaP-OxCNH-4, BV-CaP-OxCNH-5, and Medium containing BV-CaP-OxCNH-6 was added.
  • the concentration of each sample in the medium is 0.25 ⁇ g / mL for BV-CaP-OxCNH-1, 0.5 ⁇ g / mL for BV-CaP-OxCNH-2, and 1 for BV-CaP-OxCNH-3. .25 ⁇ g / mL, BV-CaP-OxCNH-4 was 2.5 ⁇ g / mL, BV-CaP-OxCNH-5 was 5.0 ⁇ g / mL, and BV-CaP-OxCNH-6 was 12.5 ⁇ g / mL.
  • the BV concentration in the medium is about 0.5 ⁇ g / mL to 0.75 ⁇ g / mL
  • the Ca concentration derived from CaP is 0.089 mM to 0.11 mM
  • the P concentration is 0.068 mM to 0. It was estimated to be about 081 mM.
  • a normal medium containing no BV-CaP-OxCNH was used as a control. After culturing for 24 hours, the number of surviving cells was determined by measuring the absorbance at 450 nm using the Cell Counting Kit-8 reagent (Dojin Chemical Laboratory). The cell viability was calculated with the absorbance of the control as 100%.
  • 6A shows the results of cytotoxicity evaluation of BV-CaP-OxCNH.
  • BV-CaP-OxCNH-1, BV-CaP-OxCNH-2, BV-CaP-OxCNH-3 are almost the same, BV-CaP-OxCNH-4, BV-CaP-OxCNH-5, BV-CaP-OxCNH- In No. 6, cytotoxicity became more prominent as the OxCNH concentration in the sample increased. The cytotoxicity of BV was evaluated in the same manner as above.
  • FIG. 6B shows the results of RAW264.7 cytotoxicity evaluation of BV. As shown in FIG. 6 (b), BV showed cytotoxicity in a concentration-dependent manner. Since the BV concentration contained in BV-CaP-OxCNH is estimated to be about 0.5 ⁇ g / mL to 0.75 ⁇ g / mL in the medium, the amount of BV-CaP-OxCNH is smaller than that of BV alone.
  • Cytotoxicity was evaluated for BV-CaP-OxCNH-2, CaP-OxCNH-2, and OxCNH by the same method as described above. The concentration of each sample in the medium was diluted so that the OxCNH concentration was 0.17 ⁇ g / mL, 0.5 ⁇ g / mL, and 1.7 ⁇ g / mL. Similarly, cytotoxicity was evaluated for BV-CaP-OxCNH-5, CaP-OxCNH-5, and OxCNH.
  • FIG. 7A shows the results of cytotoxicity evaluation of BV-CaP-OxCNH-2, CaP-OxCNH-2, and OxCNH.
  • FIG. 7 (a) CaP-OxCNH-2 and OxCNH were almost equivalent, and BV-CaP-OxCNH-2 showed stronger cytotoxicity.
  • FIG. 7B shows the results of cytotoxicity evaluation of BV-CaP-OxCNH-5, CaP-OxCNH-5, and OxCNH. As shown in FIG.
  • FIG. 8 shows an optical micrograph of RAW264.7 cells cultured for 24 hours in a medium supplemented with BV-CaP-OxCNH-5, CaP-OxCNH-5, and OxCNH. As shown in the lower part of FIG.
  • OxCNH was presumed to be taken up by intracellular lysosomes. As shown in the middle part of FIG. 8, it was presumed that CaP-OxCNH formed a large mass in the medium and was difficult to be taken up into cells. As shown in the upper part of FIG. 8, it was confirmed that BV-CaP-OxCNH was taken up into the cells, but most of them were apoptotic dead cells and necrosis dead cells. It was suggested that BV-CaP-OxCNH causes apoptotic death and necrosis death of cells by being taken up into cells and releasing BV, and exhibits cytotoxicity efficiently.
  • RAW264.7 cells were differentiated into osteoclasts.
  • RAW264.7 cells were seeded on a 96-well plate, cultured for 1 day, replaced with a medium containing RANKL (100 ng / mL), and cultured for 5 days to induce differentiation into osteoclasts.
  • tartrate-resistant acid phosphatase which is a marker of osteoclasts, was stained and observed with an optical microscope.
  • FIG. 9 shows an optical micrograph of TRAP-stained osteoclasts (b) obtained by differentiating from RAW264.7 cells (a) and RAW264.7 cells.
  • the RAW264.7 cells before differentiation were not stained by TRAP staining, but were stained by the osteoclasts after differentiation. From this result, it was confirmed that the RAW264.7 cells were normally differentiated into osteoclasts.
  • FIG. 10 shows fluorescence micrographs showing the uptake of BV-CaP-OxCNH by osteoclasts after 24 hours (upper part of FIG. 10) and 48 hours later (lower part of FIG. 10).
  • BV-CaP-OxCNH had OxCNH (arrow) incorporated into the lysosomes of osteoclasts. Mononuclear and multinucleated osteoclasts were observed.
  • FIG. 11 shows the viability of osteoclasts supplemented with OxCNH, CaP-OxCNH, and BV-CaP-OxCNH.
  • BV-CaP-OxCNH-1 OxCNH concentration 2.5 ⁇ g / mL
  • BV-CaP-OxCNH-2 OxCNH concentration 5.0 ⁇ g / mL
  • BV-CaP-OxCNH-3 OxCNH concentration 12.5 ⁇ g
  • the cell viability decreased as the OxCNH concentration in the sample increased.
  • OxCNH, CaP-OxCNH-1, CaP-OxCNH-2, and CaP-OxCNH-3 no decrease in cell viability was observed depending on the OxCNH concentration.
  • BP-CaP-OxCNHs were prepared by changing the type of BP and the composition of the CaP supersaturated solution.
  • BP in addition to the BV used in Example 1, zoledronic acid (Zometa, ZO) and pamidronic acid (PM) were used.
  • concentrations of CaP supersaturated solutions were prepared for each of BV, ZO, and PM to prepare a total of 12 types of BP-CaP-OxCNH.
  • the concentration of the OxCNH aqueous dispersion was adjusted to 2 mg / mL, and the mixture was sterilized by an autoclave to obtain a sterilized OxCNH aqueous dispersion.
  • the BV solution the Bombiva intravenous injection 1 mg syringe used in Example 1 was used.
  • the ZO solution Zoledronic acid hydrate containing zoledronic acid hydrate as an active ingredient was used as an intravenous drip infusion of Zometa 4 mg / 5 mL (Novartis Pharma Co., Ltd.).
  • the calcium-containing solution and the phosphoric acid-containing solution which are the raw materials of the CaP hypersaturated solution, were the same as those used in Example 1, the calcium-containing solution was Ringer's solution "Otsuka” and the Ca chloride correction solution 1 mEq / mL, and the phosphoric acid-containing solution was It was prepared by mixing Clinisarz® infusion solution with dipotassium phosphate Injection 20mEq kit "Termo". By changing the mixing amount of each reagent, four kinds of calcium-containing liquids and phosphoric acid-containing liquids in which the concentrations of Ca and P contained were changed were prepared.
  • Example 2 based on the same calcium-containing solution and phosphoric acid-containing solution used in Example 1 and the concentrations of Ca or P contained in those solutions, the concentrations of Ca and P are 78%, respectively. , 67% and 56% of calcium-containing solution and phosphoric acid-containing solution were prepared. Moreover, the same pH adjuster as in Example 1 was used.
  • These supersaturated solutions were designated as CaP supersaturated solutions a, b, c and d.
  • the reaction solution was allowed to stand in an incubator at 25 ° C. for 30 minutes to coprecipitate BP, CaP, and OxCNH.
  • BP-CaP-OxCNH was collected by centrifugation (6000 rpm, 5 minutes), and washed by repeating the process of dispersing the sample in water for injection and centrifuging.
  • Samples prepared using the CaP supersaturated solutions a, b, c, and d were designated as BP-CaPa-OxCNH, BP-CaPb-OxCNH, BP-CaPc-OxCNH, and BP-CaPd-OxCNH, respectively.
  • BP corresponds to any of BV, ZO, and PM.
  • BP-CaP-OxCNH The structure of BP-CaP-OxCNH was confirmed by SEM. Similar to Example 1, the sample was dropped on a silicon substrate, dried, and gold was vapor-deposited for observation. An SEM image of BP-CaP-OxCNH is shown in FIG. In any of the BP-CaP-OxCNH particles, particles having a primary particle diameter of 50 to 100 nm and particles having a primary particle diameter of 100 to 150 nm were observed. Further, the particles having a primary particle diameter of 100 to 150 nm had an uneven structure considered to be caused by CNH.
  • FIG. 15A shows the results of cytotoxicity evaluation of ZO-CaP-OxCNH. Compared with BV-CaP-OxCNH, ZO-CaP-OxCNH showed strong cytotoxicity. ZO alone shown in FIG.
  • FIG. 16A shows the results of cytotoxicity evaluation of PM-CaP-OxCNH.
  • PM-CaP-OxCNH showed stronger cytotoxicity as compared with BV-CaP-OxCNH.
  • PM-CaP-OxCNH showed almost no toxicity under the condition of 1.7 ⁇ g / mL as the OxCNH concentration in the medium.
  • a hole was made in the tibia of an osteoporosis model rat, and a sample such as BV-CaP-OxCNH was embedded therein, and the effect of the sample on bone formation was evaluated.
  • osteoporosis model rat Bilateral ovaries of Wistar rats (female, 10 weeks old) were removed and the wound was sutured. Osteoporosis model rats were prepared by breeding normally for 8 weeks after the operation. For comparison, sham-surgery rats without removing the ovaries were also prepared. Changes in body weight were recorded, and it was confirmed that the osteoporosis model rats gained weight (a prominent phenomenon in the osteoporosis model rats) as compared with the sham-surgery rats.
  • bone mineral density was measured using X-ray CT for experimental animals, and the cancellous bone density of the osteoporosis model rat was reduced by about 20% compared to the sham-operated rat, that is, the condition of osteoporosis. It was confirmed.
  • BV-CaP-OxCNH-2, CaP-OxCNH-2, BV-CaP, and CaP were prepared in the same manner as in Example 1 to obtain a sample.
  • the OxCNH dispersion which is one of the raw materials for sample preparation, was prepared by the same method as in Example 2 (without freeze-drying).
  • the resulting sample was suspended in a small amount of water for injection.
  • the OxCNH concentration in the suspension is estimated to be 0.83 mg / mL, and the BV concentration is estimated to be about 2.1 mg / mL.
  • OxCNH (0.83 mg / mL), BV (1.0 mg / mL as ibandronic acid), and physiological saline (negative control) were also examined for comparison.
  • Boneal reaming and sample implantation Three osteoporosis model rats were prepared for each sample, and each of the left and right tibias was reamed with an 18-gauge syringe needle (operation of making a hole in the bone, bone hole of about 1 mm). Each sample was prepared in an amount of 1 mL so that the total BV dose per rat body weight was 154 ⁇ g / kg and the total OxCNH dose was 61.7 ⁇ g / kg (body weight per rat was about 200 g). Each sample was placed in the bone holes of the left and right tibias of each osteoporosis model rat in an amount of 50 ⁇ L, and the wound was sutured.
  • Osteoporosis model rats were normally bred for 12 weeks after implantation while performing CT imaging and bone mineral density evaluation, which will be described later, over time.
  • a group in which the BV solution was subcutaneously administered was also prepared.
  • Subcutaneous administration of the BV solution was performed once a day for a total of 12 weeks every 4 weeks at different sites in the rat each time so as not to be a local administration (1 week continuous administration 0, 4, I went 3 times after 8 weeks).
  • the BV solution was prepared so that the total BV dose per rat body weight of the BV solution (1.0 mg / mL) was 154 ⁇ g / kg in 12 weeks.
  • the animals were normally bred while performing CT imaging and bone mineral density evaluation, which will be described later, over time.
  • FIG. 17A shows a laparotomy photograph (upper side) and a photograph of the removed uterus (lower side) of a sham-surgery rat (left side) and an osteoporosis model rat (right side).
  • clear uterine atrophy (a prominent phenomenon in the osteoporosis model rat) was observed as compared with the pseudo-surgery rat.
  • the weight of the uterus removed from the pseudo-surgery rat and the osteoporosis model rat was measured.
  • 17B shows the relative value of the uterine weight removed from the osteoporosis model rat (right side) when the uterine weight removed from the pseudo-surgery rat (left side) is 1.
  • the relative value of the uterine weight removed from the osteoporosis model rat was about 0.3 when the uterine weight removed from the sham-operated rat was 1.
  • a clear decrease in uterine weight was observed as compared with the sham-surgery rats.
  • FIG. 18 shows tibial CT images 0, 8 and 12 weeks after sample implantation in each osteoporosis model rat.
  • CT Computed tomography
  • FIG. 19 shows the total bone density of each osteoporosis model rat tibia
  • FIG. 20 shows the cortical bone density of each osteoporosis model rat tibia
  • FIG. 21 shows the cancellous bone density of each osteoporosis model rat tibia.
  • FIG. 19 in rats subcutaneously administered with BV and rats locally administered with BV-CaP-OxCNH-2, BV-CaP, BV, saline, CaP, OxCNH, or CaP-OxCNH-2 was locally administered.
  • FIG. 22 shows the time course of the relative value when the cancellous bone mineral density of each osteoporosis model rat tibia immediately after sample implantation (0 week later) is set to 1 using the data shown in FIG. 21. As shown in FIG. 22
  • BV-CaP-OxCNH-2 showed the same bone mineral density improving effect as subcutaneous administration of BV administered multiple times every month by one local administration (implantation in the affected area). From this, it is inferred that since BV-CaP-OxCNH-2 is a single dose, the load on the patient is small and the bone formation promoting effect is efficiently exhibited.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Provided are: a BP-containing carbon particle composite having improved BP action and suppressed side effects; and a method for producing the same. Provided is a carbon particle composite containing a calcium phosphate, a bisphosphonate, and carbon particles. The carbon particles may be carbon nanohorns, carbon nanotubes, nanographenes, nanodiamonds, and carbon fibers, or a combination thereof. The carbon particles may also be carbon oxide nanohorns.

Description

ビスホスホネート含有カーボン粒子複合体及びその製造方法Bisphosphonate-containing carbon particle complex and its production method
 本発明は、ビスホスホネート含有カーボン粒子複合体及びその製造方法に関する。 The present invention relates to a bisphosphonate-containing carbon particle complex and a method for producing the same.
 多くの癌は骨転移の頻度が高く、癌が骨に転移すると破骨細胞による溶骨が進行し、痛みと機能障害が生じる。また、溶骨による高カルシウム血症や、骨からのがん細胞の再放出により、生命予後が短縮する。破骨細胞にアポトーシスを誘発させる治療として、ビスホスホネート(Bisphosphonate:BP)剤が処方されている。しかしながら、BPの経口投与では腸管からの吸収率が低く(数%程度)、食道潰瘍や食道炎などの副作用が問題となる。また、長期間にわたるBPの投与により、骨代謝抑制に起因する非外傷性の大腿骨転子下及び近位大腿骨骨幹部の非定型骨折、BP関連骨壊死などの副作用が問題となる。このため海外では、長期使用の際のBPの安全性と有効性に疑問がもたれている。しかしながら、転移性骨癌に対して効果的な他の治療薬はない。そこで、癌治療用薬物送達システム(Drug Delivery System:DDS)や骨修復Scaffoldによる転移性骨癌の治療が検討されている。このようなDDSやScaffoldは、現在、生体内分解性材料を使って作製されているものの、転移性骨癌の環境は秩序性が乏しく、薬剤を徐放し骨修復を癌進行度に応じて制御するという目的を達成するのは困難である。 Most cancers have a high frequency of bone metastasis, and when the cancer metastasizes to bone, osteoclasts progress to osteoclasts, causing pain and dysfunction. In addition, hypercalcemia due to osteolysis and re-release of cancer cells from bone shorten the prognosis of life. Bisphosphonates (BPs) have been prescribed as treatments that induce apoptosis in osteoclasts. However, oral administration of BP has a low absorption rate from the intestinal tract (about several percent), and side effects such as esophageal ulcer and esophagitis become a problem. In addition, long-term administration of BP causes side effects such as non-traumatic subtrochanteric femoral and atypical fractures of the proximal femoral shaft due to suppression of bone metabolism, and BP-related osteonecrosis. For this reason, there are doubts about the safety and effectiveness of BP during long-term use overseas. However, there are no other effective treatments for metastatic bone cancer. Therefore, treatment of metastatic bone cancer by a drug delivery system for cancer treatment (Drug Delivery System: DDS) and bone repair scaffold is being studied. Although such DDS and Scaffold are currently produced using biodegradable materials, the environment of metastatic bone cancer is poorly ordered, and the drug is slowly released to control bone repair according to the degree of cancer progression. It is difficult to achieve the purpose of doing so.
 一方で、生体分解されにくく、多種多様な化学修飾が可能であるカーボン粒子を用いたDDSの開発が進められている。特許文献1には、BP構造を有するカーボンナノチューブなどのナノ構造体の製造方法が記載されている。 On the other hand, the development of DDS using carbon particles, which are not easily decomposed by biotechnology and can be chemically modified in a wide variety of ways, is underway. Patent Document 1 describes a method for producing a nanostructure such as a carbon nanotube having a BP structure.
国際公開第2013/0054154号International Publication No. 2013/0054154
 本発明は、BPの作用を向上し、副作用を抑制したBP含有カーボン粒子複合体及びその製造方法を提供することを課題とする。 An object of the present invention is to provide a BP-containing carbon particle complex in which the action of BP is improved and side effects are suppressed, and a method for producing the same.
 上記課題を解決するために本発明者らは、非生体分解性材料のなかでも生体親和性の高く、多種類の治療薬や標的物質を担持可能であるカーボン粒子が適していると判断した。そこで本発明者らは、カーボン粒子に生体内で骨親和性を付与することに着目し、カーボン粒子の表面をリン酸カルシウム(CaP)で修飾することを検討した。この結果、カーボン粒子にBPとCaPを複合化させることで、骨親和性が高く、破骨細胞を細胞死させることのできる複合体が得られると判断した。 In order to solve the above problems, the present inventors have determined that among non-biodegradable materials, carbon particles having high biocompatibility and capable of carrying various kinds of therapeutic agents and target substances are suitable. Therefore, the present inventors have focused on imparting bone affinity to carbon particles in vivo, and investigated modifying the surface of carbon particles with calcium phosphate (CaP). As a result, it was determined that by combining BP and CaP with carbon particles, a complex having high bone affinity and capable of killing osteoclasts can be obtained.
 本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、BPとCaPとカーボン粒子を含有するカーボン粒子複合体及びその製造方法が提供される。 The present invention has been completed based on these findings, and according to the present invention, a carbon particle composite containing BP, CaP and carbon particles and a method for producing the same are provided.
 本発明におけるBP含有カーボン粒子複合体は、BPの作用を向上させ、副作用を抑制することができる。このため、本発明におけるBP含有カーボン粒子複合体は、破骨細胞をターゲットとした転移性骨癌、骨粗鬆症、骨形成不全症、変形性骨炎などの骨形成促進治療に有効である。 The BP-containing carbon particle complex in the present invention can improve the action of BP and suppress side effects. Therefore, the BP-containing carbon particle complex in the present invention is effective for osteogenesis-promoting treatment of osteoclast-targeted metastatic bone cancer, osteoporosis, osteogenesis imperfecta, osteoarthritis and the like.
BV-CaP-OxCNH及びCaP-OxCNHの分散液の写真。Photograph of dispersion of BV-CaP-OxCNH and CaP-OxCNH. BV-CaP及びBV-CaP-OxCNHの走査電子顕微鏡(SEM)画像。Scanning electron microscope (SEM) images of BV-CaP and BV-CaP-OxCNH. CaP及びCaP-OxCNHのSEM画像。SEM images of CaP and CaP-OxCNH. BV-CaP-OxCNH、CaP-OxCNH、BV-CaP、CaPのエネルギー分散型X線分光(EDX)スペクトル。Energy dispersive X-ray spectroscopy (EDX) spectra of BV-CaP-OxCNH, CaP-OxCNH, BV-CaP, CaP. BV-CaP-OxCNH―2の透過電子顕微鏡(TEM)画像及び炭素(C)、カルシウム(Ca)、酸素(O)、リン(P)の元素分布を示す走査型透過電子顕微鏡(STEM)-EDX画像。BV-CaP-OxCNH-2 transmission electron microscope (TEM) image and scanning transmission electron microscope (STEM) -EDX showing element distribution of carbon (C), calcium (Ca), oxygen (O), phosphorus (P) image. (a)BV-CaP-OxCNHのマウスマクロファージ様細胞(RAW264.7細胞)毒性評価の結果。(b)BVのRAW264.7細胞毒性評価の結果。(A) Results of toxicity evaluation of mouse macrophage-like cells (RAW264.7 cells) of BV-CaP-OxCNH. (B) Results of BV RAW264.7 cytotoxicity assessment. (a)BV-CaP-OxCNH-2、CaP-OxCNH-2、OxCNHのRAW264.7細胞毒性評価の結果。(b)BV-CaP-OxCNH-5、CaP-OxCNH-5、OxCNHのRAW264.7細胞毒性評価の結果。(A) Results of RAW264.7 cytotoxicity evaluation of BV-CaP-OxCNH-2, CaP-OxCNH-2, and OxCNH. (B) Results of RAW264.7 cytotoxicity evaluation of BV-CaP-OxCNH-5, CaP-OxCNH-5, and OxCNH. BV-CaP-OxCNH-5、CaP-OxCNH-5、OxCNHを添加した培地で24時間培養したRAW264.7細胞の光学顕微鏡写真。Optical micrographs of RAW264.7 cells cultured for 24 hours in a medium supplemented with BV-CaP-OxCNH-5, CaP-OxCNH-5, and OxCNH. RAW264.7細胞(a)とRAW264.7細胞から分化させて得た破骨細胞(b)を酒石酸抵抗性酸性ホスファターゼ(TRAP)染色した光学顕微鏡写真。An optical micrograph of osteoclasts (b) obtained by differentiating from RAW264.7 cells (a) and RAW264.7 cells, stained with tartrate-resistant acid phosphatase (TRAP). 破骨細胞によるBV-CaP-OxCNHの取り込みを示す蛍光顕微鏡写真。Fluorescence micrograph showing uptake of BV-CaP-OxCNH by osteoclasts. OxCNH、CaP-OxCNH、BV-CaP-OxCNHを添加した破骨細胞の生存率評価の結果。Results of survival rate evaluation of osteoclasts supplemented with OxCNH, CaP-OxCNH, and BV-CaP-OxCNH. BV-CaP-OxCNH、ZO-CaP-OxCNH、及びPM-CaP-OxCNHのSEM画像。SEM images of BV-CaP-OxCNH, ZO-CaP-OxCNH, and PM-CaP-OxCNH. BV-CaP-OxCNH、ZO-CaP-OxCNH、及びPM-CaP-OxCNHのEDXスペクトル。EDX spectra of BV-CaP-OxCNH, ZO-CaP-OxCNH, and PM-CaP-OxCNH. BV-CaP-OxCNHのRAW264.7細胞毒性評価の結果。Results of RAW264.7 cytotoxicity assessment of BV-CaP-OxCNH. (a)ZO-CaP-OxCNHのRAW264.7細胞毒性評価の結果。(b)ZOのRAW264.7細胞毒性評価の結果。(A) Results of RAW264.7 cytotoxicity evaluation of ZO-CaP-OxCNH. (B) Results of ZO's RAW264.7 cytotoxicity assessment. (a)PM-CaP-OxCNHのRAW264.7細胞毒性評価の結果。(b)PMのRAW264.7細胞毒性評価の結果。(A) Results of RAW264.7 cytotoxicity evaluation of PM-CaP-OxCNH. (B) Results of PM RAW264.7 cytotoxicity evaluation. 骨粗鬆症モデルラット及び偽手術ラットの子宮の写真(a)と子宮重量の相対値(b)。Photographs (a) of uteri of osteoporosis model rats and sham-surgery rats and relative values of uterine weight (b). 試料埋入から0、8、12週間後の骨粗鬆症モデルラットの脛骨CT像。Tibial CT images of osteoporosis model rats 0, 8 and 12 weeks after sample implantation. 試料埋入から0、4、8、12週間後の骨粗鬆症モデルラットの全骨密度。Total bone mineral density of osteoporosis model rats 0, 4, 8 and 12 weeks after sample implantation. 試料埋入から0、4、8、12週間後の骨粗鬆症モデルラットの皮質骨密度。Cortical bone mineral density of osteoporosis model rats 0, 4, 8 and 12 weeks after sample implantation. 試料埋入から0、4、8、12週間後の骨粗鬆症モデルラットの海綿骨密度。Cancellous bone mineral density of osteoporosis model rats 0, 4, 8 and 12 weeks after sample implantation. 試料埋入から0、4、8、12週間後の骨粗鬆症モデルラットの海綿骨密度比。The cancellous bone mineral density ratio of osteoporosis model rats 0, 4, 8 and 12 weeks after sample implantation.
 以下、本発明におけるBP含有カーボン粒子複合体及びその製造方法について説明するが、本発明は以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。 Hereinafter, the BP-containing carbon particle complex and the method for producing the BP-containing carbon particle complex in the present invention will be described, but the present invention is not construed as being limited to the description of the embodiments and examples shown below.
[カーボン粒子複合体]
 本発明におけるカーボン粒子複合体は、BPとCaPとカーボン粒子を含有する。
 ここでカーボン粒子とは、CNH、カーボンナノチューブ、ナノグラフェン、ナノダイアモンド、若しくはカーボンファイバー、又はこれらの組み合わせであるが、これに限定されない。カーボン粒子は、化学的・物理的安定性を有し、カーボン粒子表面に化学修飾に適したカルボキシル基(-COOH)などの官能基を導入させるのが容易であるため多重機能付与に適している。
 中でも、CNHは、サイズの均一性、水溶液中での分散安定性、高純度大量作製可能、精製不要などの利点を有することから、カーボン粒子複合体に用いるカーボン粒子として好ましい。CNHは、直径2nm~5nmのカーボンナノチューブ状のものが数千個放射状に集合した直径100nm程度の球状の形態を有する。CNHは堅固であり容易には分解しない。また、CNHは、表面が凹凸に富んだ構造を有するため強く凝集することはなく、水溶液中において孤立分散する。過酸化水素を用いてCNHを酸化して得られるOxCNHでは、炭素-炭素結合の開裂によってチューブ壁に孔が開き、さらに内部空間への分子の出入りが容易になることから、カーボン粒子複合体に用いるカーボン粒子としてより好ましい。OxCNHは、孔縁などにカルボキシル基などの官能基が導入されることから親水性であり、カーボン粒子複合体に用いるカーボン粒子としてより好ましい。
[Carbon particle complex]
The carbon particle complex in the present invention contains BP, CaP and carbon particles.
Here, the carbon particles are, but are not limited to, CNH, carbon nanotubes, nanographene, nanodiamond, or carbon fiber, or a combination thereof. The carbon particles have chemical and physical stability, and it is easy to introduce a functional group such as a carboxyl group (-COOH) suitable for chemical modification on the surface of the carbon particles, so that the carbon particles are suitable for imparting multiple functions. ..
Among them, CNH is preferable as carbon particles used for a carbon particle complex because it has advantages such as size uniformity, dispersion stability in an aqueous solution, high-purity mass production, and no purification required. The CNH has a spherical shape having a diameter of about 100 nm, in which thousands of carbon nanotubes having a diameter of 2 nm to 5 nm are radially gathered. CNH is robust and does not decompose easily. Further, since CNH has a structure with abundant irregularities on the surface, it does not strongly agglomerate and is isolated and dispersed in an aqueous solution. OxCNH, which is obtained by oxidizing CNH with hydrogen peroxide, has holes in the tube wall due to the cleavage of carbon-carbon bonds, and also facilitates the entry and exit of molecules into the internal space. More preferable as carbon particles to be used. OxCNH is hydrophilic because a functional group such as a carboxyl group is introduced into the pore edge or the like, and is more preferable as carbon particles used in a carbon particle complex.
 カーボン粒子複合体が含有するCaPの組成及び構造は限定されない。CaPは、少なくともリン酸イオンとカルシウムイオンを含む化合物であればよい。また、CaPは、アモルファス状であってもよい。CaP過飽和溶液中のカルシウムイオンがカーボン粒子のカルボキシル基と静電相互作用で引き合い、そこを起点にCaPが析出することで、CaPとカーボン粒子の複合体が形成される。あるいは、析出したCaP表面のカルシウムイオンがカーボン粒子のカルボキシル基と静電相互作用で引き合うことで、CaPとカーボン粒子の複合体が形成される。 The composition and structure of CaP contained in the carbon particle composite are not limited. CaP may be a compound containing at least phosphate ions and calcium ions. Further, CaP may be amorphous. Calcium ions in the CaP supersaturated solution are attracted to the carboxyl group of the carbon particles by electrostatic interaction, and CaP is precipitated from there to form a complex of CaP and carbon particles. Alternatively, the precipitated calcium ions on the surface of the CaP are attracted to the carboxyl group of the carbon particles by electrostatic interaction to form a complex of the CaP and the carbon particles.
 カーボン粒子複合体が含有するBPは、エチドロン酸、イバンドロン酸、ゾレドロン酸、アレンドロン酸、ミノドロン酸、リセドロン酸、パミドロン酸、インカドロン酸、若しくはこれらの塩、又はこれらの組み合わせであるが、これに限定されない。BPは、少なくともホスホン酸基を含み、破骨細胞の活動を阻害し、骨の吸収を防ぐものであればよい。BPのホスホン酸基が、CaP過飽和溶液中のカルシウムイオンや析出したCaP表面のカルシウムイオンなどと静電相互作用で引き合うことで、CaPとBPが複合化し、さらにカーボン粒子との複合体が形成される。
 さらにBPは、カーボン粒子の内部空間に内包される、又は、カーボン粒子表面に物理吸着することでカーボン粒子に担持される。
The BP contained in the carbon particle composite is etidronic acid, ibandronic acid, zoledronic acid, alendronic acid, minodronic acid, risedronic acid, pamidronic acid, incadronic acid, or salts thereof, or a combination thereof. Not limited. The BP may contain at least a phosphonic acid group, inhibit the activity of osteoclasts, and prevent bone resorption. The phosphonic acid group of BP attracts calcium ions in the CaP supersaturated solution and calcium ions on the surface of the precipitated CaP by electrostatic interaction, so that CaP and BP are compounded and a complex with carbon particles is further formed. NS.
Further, the BP is contained in the internal space of the carbon particles or is supported on the carbon particles by being physically adsorbed on the surface of the carbon particles.
 本発明におけるBP含有カーボン粒子複合体は、少量のBP含有量で破骨細胞を細胞死させることができる。 The BP-containing carbon particle complex in the present invention can kill osteoclasts with a small amount of BP content.
[カーボン粒子複合体の製造方法]
 本発明におけるカーボン粒子複合体は、BPと、カーボン粒子と、を含むCaP過飽和溶液を調製し、静置することによって3者を共沈させることにより製造することができる。
 CaP過飽和溶液の原料として用いられる溶液は特に限定されない。CaP過飽和溶液の原料としては、カルシウムイオンを含む溶液(カルシウム含有液)およびリン酸イオンを含む溶液(リン酸含有液)以外に、適宜、pH調整剤などを含んでもよい。CaP過飽和溶液の原料としては、例えば、各種注射用製剤などを組み合わせて用いてもよい。CaP過飽和溶液の原料として各種注射用製剤などを組み合わせてCaP過飽和溶液を調製する場合、本発明におけるカーボン粒子複合体をそのまま製剤として用いることもできる。
 BPと、カーボン粒子と、を含むCaP過飽和溶液は、BP、カーボン粒子、カルシウム含有液およびリン酸含有液を混合することで調製することができる。混合時に、必要に応じてpH調整剤などを加えてもよい。
 BPと、カーボン粒子と、を含むCaP過飽和溶液を静置する際の温度及び時間は特に限定されない。製造するカーボン粒子複合体の大きさ及び分散性を考慮して適宜調整することができる。
[Manufacturing method of carbon particle complex]
The carbon particle complex in the present invention can be produced by preparing a CaP supersaturated solution containing BP and carbon particles and allowing them to stand to co-precipitate the three.
The solution used as a raw material for the CaP supersaturated solution is not particularly limited. As the raw material of the CaP supersaturated solution, a pH adjuster or the like may be appropriately contained in addition to the solution containing calcium ions (calcium-containing solution) and the solution containing phosphate ions (phosphate-containing solution). As the raw material of the CaP supersaturated solution, for example, various injection preparations and the like may be used in combination. When a CaP supersaturated solution is prepared by combining various injection preparations as a raw material of the CaP supersaturated solution, the carbon particle composite of the present invention can be used as it is as a preparation.
A CaP supersaturated solution containing BP and carbon particles can be prepared by mixing BP, carbon particles, a calcium-containing liquid and a phosphoric acid-containing liquid. At the time of mixing, a pH adjuster or the like may be added if necessary.
The temperature and time for allowing the CaP supersaturated solution containing BP and carbon particles to stand are not particularly limited. It can be appropriately adjusted in consideration of the size and dispersibility of the carbon particle composite to be produced.
[製剤]
 本発明におけるカーボン粒子複合体はBPを含有することから、破骨細胞をターゲットとした製剤に適用することができる。本発明における製剤は、BP含有カーボン粒子複合体以外に、適宜、添加剤などを含むことができる。本発明における製剤は、例えば、静脈内注射により患者に投与してもよいし、特定の部位(患部)に局所投与してもよい。
[pharmaceutical formulation]
Since the carbon particle complex in the present invention contains BP, it can be applied to a preparation targeting osteoclasts. The formulation in the present invention may appropriately contain additives and the like in addition to the BP-containing carbon particle complex. The pharmaceutical product of the present invention may be administered to a patient by intravenous injection, for example, or may be locally administered to a specific site (affected area).
 本発明におけるBP含有カーボン粒子複合体は、体内の薬物分布を空間的・量的・時間的に制御することができるDDSとして機能し得る。本発明におけるBP含有カーボン粒子複合体は、CaPを含有することで骨親和性が高まり、少量のBPで破骨細胞を細胞死させることができる。さらに、体内で拡散しにくいカーボン粒子を用いたことで、局所投与したBP含有カーボン粒子複合体は長時間患部にとどまり、BPを放出し続けることが可能となる。また、BP含有カーボン粒子複合体は破骨細胞内のリソソームに局在することから、その酸性環境下でCaPが溶解し、効率よくBPを放出することができる。さらに、カーボン粒子は光照射により発熱するため、患部によっては光温熱治療も可能となる。
 一方、CaPは骨基質の成分であるため、破骨細胞による骨吸収が抑制された後に、骨芽細胞による骨修復を促進することができる。また、カーボン粒子そのものが骨形成の優れたScaffoldの機能を果たすため、骨形成促進治療に有効である。
 したがって、本発明におけるBP含有カーボン粒子複合体は、DDSおよびScaffoldとしての相乗効果により、効率よく骨形成促進治療することができる。
The BP-containing carbon particle complex in the present invention can function as a DDS capable of controlling the drug distribution in the body spatially, quantitatively, and temporally. The BP-containing carbon particle complex in the present invention has increased bone affinity by containing CaP, and can kill osteoclasts with a small amount of BP. Furthermore, by using carbon particles that are difficult to diffuse in the body, the locally administered BP-containing carbon particle complex can stay in the affected area for a long time and continue to release BP. In addition, since the BP-containing carbon particle complex is localized in lysosomes in osteoclasts, CaP is dissolved in the acidic environment, and BP can be efficiently released. Furthermore, since the carbon particles generate heat when irradiated with light, photothermia treatment is possible depending on the affected area.
On the other hand, since CaP is a component of bone matrix, bone repair by osteoblasts can be promoted after bone resorption by osteoclasts is suppressed. In addition, since the carbon particles themselves fulfill the function of Scaffold having excellent bone formation, it is effective for bone formation promoting treatment.
Therefore, the BP-containing carbon particle complex in the present invention can be efficiently treated for promoting bone formation due to the synergistic effect of DDS and Scaffold.
 以下に、本発明におけるカーボン粒子複合体及びその製造方法についての実施例を示して、より詳細に説明する。本実施例においては、カーボン粒子の一例としてOxCNH、BPの一例としてイバンドロン酸(ボンビバ、BV)を用いて、OxCNHにCaPとBVを複合化させたBV-CaP-OxCNHを作製し、骨形成促進治療への適用を検討した。 Hereinafter, examples of the carbon particle complex and the method for producing the same in the present invention will be shown and described in more detail. In this example, using OxCNH as an example of carbon particles and ibandronic acid (Bombiva, BV) as an example of BP, BV-CaP-OxCNH in which CaP and BV are compounded with OxCNH is produced to promote bone formation. The application to treatment was examined.
[OxCNHの作製]
 アルゴンガス雰囲気(大気圧)下、炭酸ガスレーザー照射によりグラファイトを分解・気化することにより、CNHを作製した(文献 J. Phys. Chem. C 2008, 112, 1330-1334)。50mLバイアルビンに作製したCNH(20mg)と30%過酸化水素水(20mL)を加え、超音波処理を5分間行い、CNHを過酸化水素水に分散させた。このCNH過酸化水素水分散液にキセノンランプ光を照射しつつ、70℃で2時間加熱した。CNH過酸化水素水分散液を室温で冷却した後、濾過水洗を5回程度繰り返し、過酸化水素を除去した。得られたOxCNH水分散液を凍結乾燥してOxCNH粉末を得た。
[Preparation of OxCNH]
CNH was prepared by decomposing and vaporizing graphite by carbon dioxide laser irradiation in an argon gas atmosphere (atmospheric pressure) (Reference J. Phys. Chem. C 2008, 112, 1330-1334). The prepared CNH (20 mg) and 30% hydrogen peroxide solution (20 mL) were added to a 50 mL vial, and sonication was performed for 5 minutes to disperse the CNH in the hydrogen peroxide solution. The CNH hydrogen peroxide solution dispersion was heated at 70 ° C. for 2 hours while irradiating with xenon lamp light. After cooling the CNH hydrogen peroxide solution dispersion at room temperature, filtration water washing was repeated about 5 times to remove hydrogen peroxide. The obtained OxCNH aqueous dispersion was freeze-dried to obtain OxCNH powder.
[BV-CaP-OxCNHの作製]
 OxCNH粉末を0.1mg/mL、0.2mg/mL、0.5mg/mL、1mg/mL、2mg/mL、及び5mg/mLになるように超純水に分散し、オートクレーブにより滅菌して滅菌OxCNH分散液を得た。
 BV溶液として、イバンドロン酸ナトリウム水和物を有効成分として含有するボンビバ静注1mgシリンジ(中外製薬株式会社)を使用した。
 CaP過飽和溶液の原料として、カルシウム含有液、リン酸含有液、pH調整剤を調製した。カルシウム含有液は、リンゲル液「オーツカ」(大塚製薬株式会社)(49.361mL)と塩化Ca補正液1mEq/mL(大塚製薬株式会社)(0.639mL)を混合して調製した。リン酸含有液は、クリニザルツ(登録商標)輸液(共和クリティケア株式会社)(9.469mL)とリン酸2カリウム注20mEqキット「テルモ」(テルモ株式会社)(0.531mL)を混合して調製した。pH調整剤はメイロン(登録商標)静注7%(大塚製薬株式会社)(5mL)と注射用水(扶桑薬品工業株式会社)(20mL)を混合して調製した。
 滅菌OxCNH水分散液(0.1mg/mL、0.2mg/mL、0.5mg/mL、1mg/mL、2mg/mL、5mg/mLの分散液を各0.250mL)、BV溶液(0.250mL)、カルシウム含有液(7.674mL)、リン酸含有液(0.917mL)、及びpH調整剤(0.909mL)を混合し、反応液(10mL)を調製した。反応液は、25℃のインキュベーターで30分間静置して、BV、CaP、OxCNHの三者を共沈させた。得られた試料BV-CaP-OxCNHは、遠心操作(6000rpm、5分)により回収し、注射用水に試料を分散して遠心することを繰り返すことによって洗浄した。0.1mg/mL、0.2mg/mL、0.5mg/mL、1mg/mL、2mg/mL、及び5mg/mLの滅菌OxCNH水分散液を用いて作製した試料のそれぞれを、BV-CaP-OxCNH-1、BV-CaP-OxCNH-2、BV-CaP-OxCNH-3、BV-CaP-OxCNH-4、BV-CaP-OxCNH-5、及びBV-CaP-OxCNH-6とした。
[Preparation of BV-CaP-OxCNH]
OxCNH powder is dispersed in ultrapure water to 0.1 mg / mL, 0.2 mg / mL, 0.5 mg / mL, 1 mg / mL, 2 mg / mL, and 5 mg / mL, and sterilized by autoclave. An OxCNH dispersion was obtained.
As the BV solution, a Bombiva intravenous injection 1 mg syringe (Chugai Pharmaceutical Co., Ltd.) containing sodium ibandronate hydrate as an active ingredient was used.
A calcium-containing solution, a phosphoric acid-containing solution, and a pH adjuster were prepared as raw materials for the CaP supersaturated solution. The calcium-containing solution was prepared by mixing Ringer's solution "Otsuka" (Otsuka Pharmaceutical Co., Ltd.) (49.361 mL) and Ca chloride correction solution 1 mEq / mL (Otsuka Pharmaceutical Co., Ltd.) (0.639 mL). The phosphoric acid-containing solution was prepared by mixing Clinisalz (registered trademark) infusion solution (Kyowa CritiCare Co., Ltd.) (9.469 mL) and dipotassium phosphate Injection 20 mEq kit "Terumo" (Terumo Corporation) (0.531 mL). .. The pH adjuster was prepared by mixing Meylon (registered trademark) intravenous injection 7% (Otsuka Pharmaceutical Co., Ltd.) (5 mL) and water for injection (Fuso Pharmaceutical Indus Co., Ltd.) (20 mL).
Sterilized OxCNH aqueous dispersion (0.1 mg / mL, 0.2 mg / mL, 0.5 mg / mL, 1 mg / mL, 2 mg / mL, 5 mg / mL dispersion, 0.250 mL each), BV solution (0. 250 mL), a calcium-containing solution (7.674 mL), a phosphoric acid-containing solution (0.917 mL), and a pH adjuster (0.909 mL) were mixed to prepare a reaction solution (10 mL). The reaction solution was allowed to stand in an incubator at 25 ° C. for 30 minutes to coprecipitate BV, CaP, and OxCNH. The obtained sample BV-CaP-OxCNH was collected by centrifugation (6000 rpm, 5 minutes), and washed by repeating the process of dispersing the sample in water for injection and centrifuging. BV-CaP- It was designated as OxCNH-1, BV-CaP-OxCNH-2, BV-CaP-OxCNH-3, BV-CaP-OxCNH-4, BV-CaP-OxCNH-5, and BV-CaP-OxCNH-6.
[CaP-OxCNHの作製]
 BVを含まないコントロールとして、BV溶液の代わりに注射用水を用いて反応液を調製したこと以外BV-CaP-OxCNHの作製と同様の操作を行い、試料CaP-OxCNHを得た。0.1mg/mL、0.2mg/mL、0.5mg/mL、1mg/mL、2mg/mL、及び5mg/mLの滅菌OxCNH水分散液を用いて作製した試料のそれぞれを、CaP-OxCNH-1、CaP-OxCNH-2、CaP-OxCNH-3、CaP-OxCNH-4、CaP-OxCNH-5、及びCaP-OxCNH-6とした。
[Preparation of CaP-OxCNH]
As a control containing no BV, a sample CaP-OxCNH was obtained by performing the same operation as the preparation of BV-CaP-OxCNH except that the reaction solution was prepared using water for injection instead of the BV solution. CaP-OxCNH- 1. CaP-OxCNH-2, CaP-OxCNH-3, CaP-OxCNH-4, CaP-OxCNH-5, and CaP-OxCNH-6.
[BV-CaP及びCaPの作製]
 CNHを含まないコントロールとして、滅菌OxCNH水分散液の代わりに注射用水を用いて反応液を調製したこと以外BV-CaP-OxCNHの作製又はCaP-OxCNHの作製と同様の操作を行って、BVとCaPの複合体(BV-CaP)及びCaP粒子(CaP)を得た。
[Preparation of BV-CaP and CaP]
As a control containing no CNH, the same operation as the preparation of BV-CaP-OxCNH or the preparation of CaP-OxCNH was performed except that the reaction solution was prepared using water for injection instead of the sterile OxCNH aqueous dispersion, and the BV and A complex of CaP (BV-CaP) and CaP particles (CaP) were obtained.
[分散性の観察]
 BV-CaP-OxCNH-1、CaP-OxCNH-1、BV-CaP-OxCNH-2、CaP-OxCNH-2、BV-CaP-OxCNH-3、CaP-OxCNH-3を注射用水に分散させた後の写真を図1に示す。CaP-OxCNHでは、粒子の沈降が早く、固液分離が観察された。一方で、BV-CaP-OxCNHでは粒子の沈降が観察されず、良好な粒子分散性が示唆された。
[Observation of dispersibility]
After dispersing BV-CaP-OxCNH-1, CaP-OxCNH-1, BV-CaP-OxCNH-2, CaP-OxCNH-2, BV-CaP-OxCNH-3, and CaP-OxCNH-3 in water for injection. The photograph is shown in FIG. In CaP-OxCNH, the particles settled quickly and solid-liquid separation was observed. On the other hand, in BV-CaP-OxCNH, no precipitation of particles was observed, suggesting good particle dispersibility.
[走査型電子顕微鏡による観察]
 作製した試料の構造を走査電子顕微鏡(SEM)により確認した。SEM観察においては、試料をシリコン基板上に滴下し、乾燥させ、金を蒸着して観察した。BV-CaP及びBV-CaP-OxCNHのSEM画像を図2に示す。CaP及びCaP-OxCNHのSEM像を図3に示す。
 図2に示すように、BV-CaP、BV-CaP-OxCNH-1、BV-CaP-OxCNH-2、BV-CaP-OxCNH-3、BV-CaP-OxCNH-4ではいずれも一次粒子径50nm程度のナノ粒子が観察されたのに対し、BV-CaP-OxCNH-5、BV-CaP-OxCNH-6ではそれに加えて一次粒子径100nm~150nmの粒子が観察された。さらにBV-CaP-OxCNH-6ではひび割れた形状の粒子が目立った。図3に示すように、CaP及びCaP-OxCNHはいずれも一次粒子径100nm~150nm程度のナノ粒子であった。さらにCaP-OxCNH-4、CaP-OxCNH-5、CaP-OxCNH-6では、反応液中のOxCNH濃度の上昇に伴い、ひび割れた形状の粒子が増加した。
[Observation with scanning electron microscope]
The structure of the prepared sample was confirmed by a scanning electron microscope (SEM). In the SEM observation, the sample was dropped on a silicon substrate, dried, and gold was vapor-deposited for observation. The SEM images of BV-CaP and BV-CaP-OxCNH are shown in FIG. The SEM images of CaP and CaP-OxCNH are shown in FIG.
As shown in FIG. 2, BV-CaP, BV-CaP-OxCNH-1, BV-CaP-OxCNH-2, BV-CaP-OxCNH-3, and BV-CaP-OxCNH-4 all have a primary particle size of about 50 nm. In contrast to the nanoparticles of BV-CaP-OxCNH-5 and BV-CaP-OxCNH-6, particles having a primary particle size of 100 nm to 150 nm were also observed. Furthermore, in BV-CaP-OxCNH-6, cracked particles were conspicuous. As shown in FIG. 3, both CaP and CaP-OxCNH were nanoparticles having a primary particle diameter of about 100 nm to 150 nm. Further, in CaP-OxCNH-4, CaP-OxCNH-5, and CaP-OxCNH-6, the number of cracked particles increased as the OxCNH concentration in the reaction solution increased.
[エネルギー分散型X線分光法による測定]
 SEM観察に用いた試料について、エネルギー分散型X線分光法(EDX)を用いて元素分析を行った。元素分析の結果を図4に示す。図4に示すように、いずれの粒子からも、炭素、酸素、リン、カルシウムのピークが検出されたことから、CaPとOxCNHが複合体を形成したことが示唆された。また、BV-CaP-OxCNH-5、BV-CaP-OxCNH-6、CaP-OxCNH-5、及びCaP-OxCNH-6ではカルシウム、リンのピークに対して炭素のピークの顕著な増大が確認された。これは、反応液中のOxCNH濃度の上昇に伴い、生成した粒子中のCaPに対するOxCNHの割合が大きくなったためと考えられた。
[Measurement by energy dispersive X-ray spectroscopy]
Elemental analysis was performed on the sample used for SEM observation using energy dispersive X-ray spectroscopy (EDX). The result of elemental analysis is shown in FIG. As shown in FIG. 4, carbon, oxygen, phosphorus, and calcium peaks were detected in all the particles, suggesting that CaP and OxCNH formed a complex. In addition, in BV-CaP-OxCNH-5, BV-CaP-OxCNH-6, CaP-OxCNH-5, and CaP-OxCNH-6, a remarkable increase in carbon peaks was confirmed with respect to calcium and phosphorus peaks. .. It is considered that this is because the ratio of OxCNH to CaP in the produced particles increased as the OxCNH concentration in the reaction solution increased.
[高周波誘導結合プラズマ発光分光法による測定]
 得られた試料について、高周波誘導結合プラズマ発光分光法(ICP)を用いて元素分析を行った。試料を酸で溶解させた溶液を調製し、測定を行った。10mLの反応液から得られた試料中のカルシウム含有量、リン含有量、及びリン含有量に対するカルシウム含有量のモル比(Ca/P)を表1に示す。
Figure JPOXMLDOC01-appb-T000001

 表1の結果より、BV-CaP-OxCNHおよびBV-CaPではいずれもCaP-OxCNHおよびCaPよりCa/Pモル比が小さかった(BV-CaP-OxCNH/BV-CaP:1.29~1.36、CaP-OxCNH/CaP:1.38~1.44)。BV-CaP-OxCNHおよびBV-CaPではリンを含むBVが担持されたために、カルシウムに対してリンの含有量が相対的に大きくなり、Ca/Pモル比が小さくなったと考えられる。ここで、BV-CaP-OxCNH中のCaPのCa/Pモル比がCaP-OxCNHと同等と仮定し、BVの含有量を推定したところ、反応液に混合した量の20-30%(0.16-0.24μmol)であると算出された。また、BVとCaPの量比は4-7:100と推定された。以上より、BV-CaP-OxCNHでは、BV、CaP及びOxCNHが三元複合体を形成していることが確認された。
 また、BV-CaP-OxCNHおよびBV-CaPではいずれもCaP-OxCNHおよびCaPに比べて、カルシウム、リン含有量が少なかった。これは、BV-CaP-OxCNHおよびBV-CaPでは、酸性のBV溶液が反応液中に加わることで反応液のpHが低下し、CaPの形成が妨げられたためと考えられる。また、BVとの複合化がCaP形成速度に影響を及ぼした可能性もある。一方で、反応液中のOxCNHの濃度は、カルシウム、リン含有量に大きな影響を与えなかった。従って、BV-CaP-OxCNHに含まれるCaP及びBV量は、反応液中のOxCNHの濃度に関わらず大きな差はないと考えられる。OxCNHの量が変化してもCaP量、BV量の変化が少ないということは、OxCNHに影響されずにCaPとBVが結合していることを示唆している。すなわち、BVは主にCaPに担持され、BV-CaPがOxCNHと複合体を形成した構造を取っていると推察された。
[Measurement by high frequency inductively coupled plasma emission spectroscopy]
The obtained sample was subjected to elemental analysis using radio frequency inductively coupled plasma atomic emission spectroscopy (ICP). A solution in which the sample was dissolved in acid was prepared and measured. Table 1 shows the calcium content, the phosphorus content, and the molar ratio (Ca / P) of the calcium content to the phosphorus content in the sample obtained from the 10 mL reaction solution.
Figure JPOXMLDOC01-appb-T000001

From the results in Table 1, the Ca / P molar ratio of BV-CaP-OxCNH and BV-CaP was smaller than that of CaP-OxCNH and CaP (BV-CaP-OxCNH / BV-CaP: 1.29 to 1.36). , CaP-OxCNH / CaP: 1.38 to 1.44). It is considered that BV-CaP-OxCNH and BV-CaP supported BV containing phosphorus, so that the phosphorus content was relatively large with respect to calcium and the Ca / P molar ratio was small. Here, assuming that the Ca / P molar ratio of CaP in BV-CaP-OxCNH is equivalent to that of CaP-OxCNH, the BV content was estimated and found to be 20-30% (0. It was calculated to be 16-0.24 μmol). The amount ratio of BV to CaP was estimated to be 4-7: 100. From the above, it was confirmed that in BV-CaP-OxCNH, BV, CaP and OxCNH form a ternary complex.
In addition, BV-CaP-OxCNH and BV-CaP all contained less calcium and phosphorus than CaP-OxCNH and CaP. It is considered that this is because in BV-CaP-OxCNH and BV-CaP, the pH of the reaction solution was lowered by the addition of the acidic BV solution to the reaction solution, and the formation of CaP was hindered. It is also possible that the compounding with BV affected the rate of CaP formation. On the other hand, the concentration of OxCNH in the reaction solution did not significantly affect the calcium and phosphorus contents. Therefore, it is considered that the amounts of CaP and BV contained in BV-CaP-OxCNH do not differ greatly regardless of the concentration of OxCNH in the reaction solution. The fact that the changes in the amount of CaP and the amount of BV are small even if the amount of OxCNH changes suggests that CaP and BV are bound without being affected by OxCNH. That is, it was presumed that BV was mainly supported on CaP and that BV-CaP had a structure in which a complex was formed with OxCNH.
[透過電子顕微鏡及び走査型透過電子顕微鏡による観察]
 作製した試料の構造を透過電子顕微鏡(TEM)及び走査型透過電子顕微鏡(STEM)-EDXを用いて観察した。試料はグリッド上に滴下し、乾燥させて観察に用いた。図5に、BV-CaP-OxCNH-2のTEM画像及び炭素(C)、カルシウム(Ca)、酸素(O)、リン(P)の元素分布を示すSTEM-EDX画像を示す。図5に示すように、BV-CaP-OxCNH-2のTEM像では、チューブが放射状に集合した球状のOxCNHの周囲にBV-CaPと思われる物質が付着している様子が観察された。元素分布では、OxCNHに由来する炭素の分布の周囲に、BV-CaPに由来するカルシウム、酸素、リンが分布していた。これらの結果から、OxCNHの周囲にBV-CaPが付着して複合体を形成していることが確認できた。
[Observation with transmission electron microscope and scanning transmission electron microscope]
The structure of the prepared sample was observed using a transmission electron microscope (TEM) and a scanning transmission electron microscope (STEM) -EDX. The sample was dropped onto the grid, dried and used for observation. FIG. 5 shows a TEM image of BV-CaP-OxCNH-2 and a STEM-EDX image showing the element distribution of carbon (C), calcium (Ca), oxygen (O), and phosphorus (P). As shown in FIG. 5, in the TEM image of BV-CaP-OxCNH-2, it was observed that a substance thought to be BV-CaP was attached around the spherical OxCNH in which the tubes were radially assembled. In the element distribution, calcium, oxygen, and phosphorus derived from BV-CaP were distributed around the distribution of carbon derived from OxCNH. From these results, it was confirmed that BV-CaP adhered around OxCNH to form a complex.
[細胞毒性評価]
 作製した試料の細胞毒性を評価した。貪食性のマウスマクロファージ様細胞(RAW264.7)を96ウェルプレートに播種し、37℃で培養した。24時間培養後、培地を取り除き、BV-CaP-OxCNH-1、BV-CaP-OxCNH-2、BV-CaP-OxCNH-3、BV-CaP-OxCNH-4、BV-CaP-OxCNH-5、及びBV-CaP-OxCNH-6を含む培地を加えた。培地中のそれぞれの試料濃度は、OxCNH濃度として、BV-CaP-OxCNH-1は0.25μg/mL、BV-CaP-OxCNH-2は0.5μg/mL、BV-CaP-OxCNH-3は1.25μg/mL、BV-CaP-OxCNH-4は2.5μg/mL、BV-CaP-OxCNH-5は5.0μg/mL、及びBV-CaP-OxCNH-6は12.5μg/mLであった(ICPの結果より、培地中のBV濃度は0.5μg/mL~0.75μg/mL程度であり、CaP由来のCa濃度は0.089mM~0.11mM、P濃度は0.068mM~0.081mM程度であると推定された)。なお、コントロールでは、BV-CaP-OxCNHを含まない通常の培地を用いた。24時間培養後、Cell Counting Kit-8試薬(同仁化学研究所)により生存細胞数を450nmの吸光度測定から求めた。コントロールの吸光度を100%として、細胞生存率を算出した。
 図6(a)は、BV-CaP-OxCNHの細胞毒性評価の結果を示す。BV-CaP-OxCNH-1、BV-CaP-OxCNH-2、BV-CaP-OxCNH-3はほぼ同等で、BV-CaP-OxCNH-4、BV-CaP-OxCNH-5、BV-CaP-OxCNH-6は試料中のOxCNH濃度が高くなるにつれて細胞毒性が顕著に現れた。
 BVの細胞毒性を上記と同様の方法で評価した。培地中に添加したBV濃度は、5μg/mL、10μg/mL、25μg/mL、50μg/mL、100μg/mLとした(コントロールは0μg/mL)。図6(b)に、BVのRAW264.7細胞毒性評価の結果を示す。図6(b)に示すように、BVは濃度依存的に細胞毒性を示した。BV-CaP-OxCNH中に含まれるBV濃度は培地中の濃度として0.5μg/mL~0.75μg/mL程度と推定されることから、BV単独と比較して、BV-CaP-OxCNHでは少量のBVしか含まれていないにも関わらず極めて効率的に細胞毒性を示したと言える。
 上記と同様の方法により、BV-CaP-OxCNH-2、CaP-OxCNH-2、及びOxCNHについて細胞毒性を評価した。培地中のそれぞれの試料濃度は、OxCNH濃度として0.17μg/mL、0.5μg/mL、1.7μg/mLとなるように希釈した。同様に、BV-CaP-OxCNH-5、CaP-OxCNH-5、及びOxCNHについても細胞毒性を評価した。培地中のそれぞれの試料濃度は、OxCNH濃度として1.7μg/mL、5.0μg/mL、16.7μg/mLとなるように希釈した。
 図7(a)は、BV-CaP-OxCNH-2、CaP-OxCNH-2、及びOxCNHの細胞毒性評価の結果を示す。図7(a)に示すように、CaP-OxCNH-2及びOxCNHはほぼ同等で、BV-CaP-OxCNH-2はより強い細胞毒性を示した。図7(b)は、BV-CaP-OxCNH-5、CaP-OxCNH-5、及びOxCNHの細胞毒性評価の結果を示す。図7(b)に示すように、OxCNH、CaP-OxCNH-5、BV-CaP-OxCNH-5の順により強い細胞毒性を示した。これらの結果から、BV-CaP-OxCNHでは、CaP-OxCNHにBVが担持されていることで、より強い細胞毒性を示していると言える。
 BV-CaP-OxCNH-5、CaP-OxCNH-5及びOxCNHを添加して培養した細胞を、光学顕微鏡を用いて観察した。図8はBV-CaP-OxCNH-5、CaP-OxCNH-5、OxCNHを添加した培地で24時間培養したRAW264.7細胞の光学顕微鏡写真を示す。図8下段に示すように、OxCNHは細胞内のリソソームに取り込まれていると推定された。図8中段に示すように、CaP-OxCNHは、培地内で大きな塊を形成し、細胞内に取り込まれにくくなっていると推定された。図8上段に示すように、BV-CaP-OxCNHは、細胞内に取り込まれていることが確認できたが、その多くはアポトーシス死細胞及びネクローシス死細胞であった。BV-CaP-OxCNHは、細胞内に取り込まれてBVを放出することで、細胞のアポトーシス死及びネクローシス死を引き起こし、効率的に細胞毒性を示すことが示唆された。
[Cytotoxicity assessment]
The cytotoxicity of the prepared sample was evaluated. Phagocytic mouse macrophage-like cells (RAW264.7) were seeded on 96-well plates and cultured at 37 ° C. After culturing for 24 hours, the medium is removed, BV-CaP-OxCNH-1, BV-CaP-OxCNH-2, BV-CaP-OxCNH-3, BV-CaP-OxCNH-4, BV-CaP-OxCNH-5, and Medium containing BV-CaP-OxCNH-6 was added. The concentration of each sample in the medium is 0.25 μg / mL for BV-CaP-OxCNH-1, 0.5 μg / mL for BV-CaP-OxCNH-2, and 1 for BV-CaP-OxCNH-3. .25 μg / mL, BV-CaP-OxCNH-4 was 2.5 μg / mL, BV-CaP-OxCNH-5 was 5.0 μg / mL, and BV-CaP-OxCNH-6 was 12.5 μg / mL. (From the results of ICP, the BV concentration in the medium is about 0.5 μg / mL to 0.75 μg / mL, the Ca concentration derived from CaP is 0.089 mM to 0.11 mM, and the P concentration is 0.068 mM to 0. It was estimated to be about 081 mM). As a control, a normal medium containing no BV-CaP-OxCNH was used. After culturing for 24 hours, the number of surviving cells was determined by measuring the absorbance at 450 nm using the Cell Counting Kit-8 reagent (Dojin Chemical Laboratory). The cell viability was calculated with the absorbance of the control as 100%.
FIG. 6A shows the results of cytotoxicity evaluation of BV-CaP-OxCNH. BV-CaP-OxCNH-1, BV-CaP-OxCNH-2, BV-CaP-OxCNH-3 are almost the same, BV-CaP-OxCNH-4, BV-CaP-OxCNH-5, BV-CaP-OxCNH- In No. 6, cytotoxicity became more prominent as the OxCNH concentration in the sample increased.
The cytotoxicity of BV was evaluated in the same manner as above. The BV concentration added to the medium was 5 μg / mL, 10 μg / mL, 25 μg / mL, 50 μg / mL, and 100 μg / mL (control was 0 μg / mL). FIG. 6B shows the results of RAW264.7 cytotoxicity evaluation of BV. As shown in FIG. 6 (b), BV showed cytotoxicity in a concentration-dependent manner. Since the BV concentration contained in BV-CaP-OxCNH is estimated to be about 0.5 μg / mL to 0.75 μg / mL in the medium, the amount of BV-CaP-OxCNH is smaller than that of BV alone. It can be said that it showed cytotoxicity extremely efficiently even though it contained only BV.
Cytotoxicity was evaluated for BV-CaP-OxCNH-2, CaP-OxCNH-2, and OxCNH by the same method as described above. The concentration of each sample in the medium was diluted so that the OxCNH concentration was 0.17 μg / mL, 0.5 μg / mL, and 1.7 μg / mL. Similarly, cytotoxicity was evaluated for BV-CaP-OxCNH-5, CaP-OxCNH-5, and OxCNH. The respective sample concentrations in the medium were diluted to be 1.7 μg / mL, 5.0 μg / mL, and 16.7 μg / mL as OxCNH concentrations.
FIG. 7A shows the results of cytotoxicity evaluation of BV-CaP-OxCNH-2, CaP-OxCNH-2, and OxCNH. As shown in FIG. 7 (a), CaP-OxCNH-2 and OxCNH were almost equivalent, and BV-CaP-OxCNH-2 showed stronger cytotoxicity. FIG. 7B shows the results of cytotoxicity evaluation of BV-CaP-OxCNH-5, CaP-OxCNH-5, and OxCNH. As shown in FIG. 7 (b), OxCNH, CaP-OxCNH-5, and BV-CaP-OxCNH-5 showed stronger cytotoxicity in this order. From these results, it can be said that BV-CaP-OxCNH exhibits stronger cytotoxicity because BV is supported on CaP-OxCNH.
Cells cultured with the addition of BV-CaP-OxCNH-5, CaP-OxCNH-5 and OxCNH were observed using an optical microscope. FIG. 8 shows an optical micrograph of RAW264.7 cells cultured for 24 hours in a medium supplemented with BV-CaP-OxCNH-5, CaP-OxCNH-5, and OxCNH. As shown in the lower part of FIG. 8, OxCNH was presumed to be taken up by intracellular lysosomes. As shown in the middle part of FIG. 8, it was presumed that CaP-OxCNH formed a large mass in the medium and was difficult to be taken up into cells. As shown in the upper part of FIG. 8, it was confirmed that BV-CaP-OxCNH was taken up into the cells, but most of them were apoptotic dead cells and necrosis dead cells. It was suggested that BV-CaP-OxCNH causes apoptotic death and necrosis death of cells by being taken up into cells and releasing BV, and exhibits cytotoxicity efficiently.
[RAW264.7細胞から破骨細胞への分化]
 破骨細胞を用いて細胞毒性を評価するため、RAW264.7細胞から破骨細胞に分化させた。RAW264.7細胞を96 well plateに播種し、1日培養後、RANKL(100ng/mL)を加えた培地に入れ替え、5日間培養することによって破骨細胞に分化誘導した。分化を確認するため、破骨細胞のマーカーである酒石酸抵抗性酸性ホスファターゼ(Tartrateresistant acid phosphatase、TRAP)を染色し、光学顕微鏡で観察した。図9に、RAW264.7細胞(a)とRAW264.7細胞から分化させて得た破骨細胞(b)をTRAP染色した光学顕微鏡写真を示す。図9に示すように、分化前のRAW264.7細胞はTRAP染色により染まらず、分化後の破骨細胞では染色されていた。この結果から、RAW264.7細胞から正常に破骨細胞に分化したことが確認できた。
[Differentiation of RAW264.7 cells into osteoclasts]
In order to evaluate cytotoxicity using osteoclasts, RAW264.7 cells were differentiated into osteoclasts. RAW264.7 cells were seeded on a 96-well plate, cultured for 1 day, replaced with a medium containing RANKL (100 ng / mL), and cultured for 5 days to induce differentiation into osteoclasts. In order to confirm the differentiation, tartrate-resistant acid phosphatase (TRAP), which is a marker of osteoclasts, was stained and observed with an optical microscope. FIG. 9 shows an optical micrograph of TRAP-stained osteoclasts (b) obtained by differentiating from RAW264.7 cells (a) and RAW264.7 cells. As shown in FIG. 9, the RAW264.7 cells before differentiation were not stained by TRAP staining, but were stained by the osteoclasts after differentiation. From this result, it was confirmed that the RAW264.7 cells were normally differentiated into osteoclasts.
[破骨細胞を用いた細胞毒性評価]
 得られた破骨細胞培養液の培地を取り除き、BV-CaP-OxCNH-1、BV-CaP-OxCNH-2、BV-CaP-OxCNH-3を含む培地を加えた。培地中のそれぞれの試料濃度は、OxCNH濃度としてBV-CaP-OxCNH-1は2.5μg/mL、BV-CaP-OxCNH-2は5.0μg/mL、BV-CaP-OxCNH-3は12.5μg/mLであった。なお、コントロールでは、BV-CaP-OxCNHを含まない通常の培地を用いた。24時間及び48時間培養後、BV-CaP-OxCNHの取り込みを確認するため、破骨細胞の核をHoechst 33342で、リソソームをLysosome painter orangeで染色し、蛍光顕微鏡で観察した。図10に、24時間後(図10上段)及び48時間後(図10下段)の破骨細胞によるBV-CaP-OxCNHの取り込みを示す蛍光顕微鏡写真を示す。図10に示すように、BV-CaP-OxCNHは破骨細胞のリソソームに内にOxCNH(矢印)が取り込まれていた。なお、破骨細胞には単核のものと多核のものが観察された。
 これらの破骨細胞の生存率への影響をalamarBlue法により調べた。図11に、OxCNH、CaP-OxCNH、BV-CaP-OxCNHを添加した破骨細胞の生存率を示す。BV-CaP-OxCNH-1(OxCNH濃度として2.5μg/mL)、BV-CaP-OxCNH-2(OxCNH濃度として5.0μg/mL)、BV-CaP-OxCNH-3(OxCNH濃度として12.5μg/mL)では、試料中のOxCNH濃度が高くなるにつれて細胞生存率が減少した。一方で、OxCNH、CaP-OxCNH-1、CaP-OxCNH-2、CaP-OxCNH-3では、OxCNH濃度に依存的な細胞生存率の低下は見られなかった。
[Cytotoxicity evaluation using osteoclasts]
The medium of the obtained osteoclast culture solution was removed, and a medium containing BV-CaP-OxCNH-1, BV-CaP-OxCNH-2, and BV-CaP-OxCNH-3 was added. The concentration of each sample in the medium was 2.5 μg / mL for BV-CaP-OxCNH-1, 5.0 μg / mL for BV-CaP-OxCNH-2, and 12. for BV-CaP-OxCNH-3. It was 5 μg / mL. As a control, a normal medium containing no BV-CaP-OxCNH was used. After culturing for 24 hours and 48 hours, osteoclast nuclei were stained with Hoechst 33342 and lysosomes were stained with Lysosome painter orange to confirm the uptake of BV-CaP-OxCNH and observed under a fluorescence microscope. FIG. 10 shows fluorescence micrographs showing the uptake of BV-CaP-OxCNH by osteoclasts after 24 hours (upper part of FIG. 10) and 48 hours later (lower part of FIG. 10). As shown in FIG. 10, BV-CaP-OxCNH had OxCNH (arrow) incorporated into the lysosomes of osteoclasts. Mononuclear and multinucleated osteoclasts were observed.
The effect of these osteoclasts on the viability was investigated by the alamarBlue method. FIG. 11 shows the viability of osteoclasts supplemented with OxCNH, CaP-OxCNH, and BV-CaP-OxCNH. BV-CaP-OxCNH-1 (OxCNH concentration 2.5 μg / mL), BV-CaP-OxCNH-2 (OxCNH concentration 5.0 μg / mL), BV-CaP-OxCNH-3 (OxCNH concentration 12.5 μg) At / mL), the cell viability decreased as the OxCNH concentration in the sample increased. On the other hand, in OxCNH, CaP-OxCNH-1, CaP-OxCNH-2, and CaP-OxCNH-3, no decrease in cell viability was observed depending on the OxCNH concentration.
 本実施例では、BPの種類ならびにCaP過飽和溶液の組成を変化させて、種々のBP-CaP-OxCNHを作製した。BPとしては、実施例1で用いたBVのほか、ゾレドロン酸(ゾメタ、ZO)ならびにパミドロン酸(PM)を用いた。BV、ZO、PMそれぞれに対して4つの濃度のCaP過飽和溶液を調製し、計12種類のBP-CaP-OxCNHを作製した。 In this example, various BP-CaP-OxCNHs were prepared by changing the type of BP and the composition of the CaP supersaturated solution. As the BP, in addition to the BV used in Example 1, zoledronic acid (Zometa, ZO) and pamidronic acid (PM) were used. Four concentrations of CaP supersaturated solutions were prepared for each of BV, ZO, and PM to prepare a total of 12 types of BP-CaP-OxCNH.
[BP-CaP-OxCNHの作製]
 実施例1と同様の方法で、CNHを過酸化水素により酸化し、水洗して、OxCNH水分散液を得た。得られたOxCNH水分散液は、凍結乾燥せずにそのまま使用した。OxCNH水分散液の濃度は、紫外可視分光光度計で700nmの吸光度を測定し、事前に濃度の判明しているCNH水分散液を用いて作成した検量線(CNH濃度-吸光度プロット)を使って算出した。OxCNH水分散液は、2mg/mLになるように濃度調製し、オートクレーブにより滅菌して滅菌OxCNH水分散液を得た。
 BV溶液として、実施例1で用いたボンビバ静注1mgシリンジを使用した。ZO溶液として、ゾレドロン酸水和物を有効成分として含有するゾメタ点滴静注4mg/5mL(ノバルティスファーマ株式会社)を使用した。PM溶液として、パミドロン酸二ナトリウム水和物を有効成分として含有するパミドロン酸二Na点滴静注用15mg「サワイ」(沢井製薬株式会社)を使用した。これらのBV、ZO、PM溶液は、注射用水を用いて2.94mMとなるように調製した。
 CaP過飽和溶液の原料となるカルシウム含有液とリン酸含有液は、実施例1で用いたのと同様、カルシウム含有液はリンゲル液「オーツカ」と塩化Ca補正液1mEq/mLを、リン酸含有液はクリニザルツ(登録商標)輸液とリン酸2カリウム注20mEqキット「テルモ」を混合して調製した。それぞれの試薬の混合量を変化させることで、含有するCaおよびPの濃度を変化させた4種類のカルシウム含有液およびリン酸含有液を調製した。具体的には、実施例1で用いたのと同じカルシウム含有液とリン酸含有液、および、それらの溶液中に含まれるCaまたはPの濃度を元として、Ca、Pの濃度がそれぞれ78%、67%、56%となるようなカルシウム含有液とリン酸含有液を調製した。また、pH調整剤は実施例1と同じものを用いた。
 滅菌OxCNH水分散液(2mg/mL、0.250mL)、BV、ZO、又はPM溶液(2.94mM、0.250mL)、カルシウム含有液(7.674mL)、リン酸含有液(0.917mL)、及びpH調整剤(0.909mL)を混合し、CaP過飽和溶液(反応液、10mL)を調製した。それぞれのCaP過飽和溶液中のCa、Pの濃度は、実施例1で用いたのと同じカルシウム含有液とリン酸含有液を使用した場合が、Ca:6.60mM、P:3.30mM、また、78%、67%、56%となるように調製したカルシウム含有液とリン酸含有液を使用した場合が、Ca:5.14mM、P:2.56mM(78%)、Ca:4.40mM、P:2.20mM(67%)、Ca:3.68mM、P:1.83mM(56%)であった。これらの過飽和溶液をCaP過飽和溶液a、b、c、dとした。
 反応液は、調製後すぐ、25℃のインキュベーターで30分間静置し、BP、CaP、OxCNHの三者を共沈させた。得られた試料BP-CaP-OxCNHは、遠心操作(6000rpm、5分)により回収し、注射用水に試料を分散して遠心することを繰り返すことによって洗浄した。CaP過飽和溶液a、b、c、dを用いて作製した試料を、それぞれ、BP-CaPa-OxCNH、BP-CaPb-OxCNH、BP-CaPc-OxCNH、BP-CaPd-OxCNHとした。ここで、BPはBV、ZO、PMのいずれかに該当する。
[Preparation of BP-CaP-OxCNH]
CNH was oxidized with hydrogen peroxide and washed with water in the same manner as in Example 1 to obtain an OxCNH aqueous dispersion. The obtained OxCNH aqueous dispersion was used as it was without freeze-drying. For the concentration of the OxCNH aqueous dispersion, measure the absorbance at 700 nm with an ultraviolet-visible spectrophotometer and use a calibration curve (CNH concentration-absorbance plot) prepared using a CNH aqueous dispersion whose concentration is known in advance. Calculated. The concentration of the OxCNH aqueous dispersion was adjusted to 2 mg / mL, and the mixture was sterilized by an autoclave to obtain a sterilized OxCNH aqueous dispersion.
As the BV solution, the Bombiva intravenous injection 1 mg syringe used in Example 1 was used. As the ZO solution, Zoledronic acid hydrate containing zoledronic acid hydrate as an active ingredient was used as an intravenous drip infusion of Zometa 4 mg / 5 mL (Novartis Pharma Co., Ltd.). As the PM solution, 15 mg "Sawai" (Sawai Pharmaceutical Co., Ltd.) for intravenous drip infusion of disodium pamidronate containing disodium pamidronate hydrate as an active ingredient was used. These BV, ZO, and PM solutions were prepared to a concentration of 2.94 mM using water for injection.
The calcium-containing solution and the phosphoric acid-containing solution, which are the raw materials of the CaP hypersaturated solution, were the same as those used in Example 1, the calcium-containing solution was Ringer's solution "Otsuka" and the Ca chloride correction solution 1 mEq / mL, and the phosphoric acid-containing solution was It was prepared by mixing Clinisarz® infusion solution with dipotassium phosphate Injection 20mEq kit "Termo". By changing the mixing amount of each reagent, four kinds of calcium-containing liquids and phosphoric acid-containing liquids in which the concentrations of Ca and P contained were changed were prepared. Specifically, based on the same calcium-containing solution and phosphoric acid-containing solution used in Example 1 and the concentrations of Ca or P contained in those solutions, the concentrations of Ca and P are 78%, respectively. , 67% and 56% of calcium-containing solution and phosphoric acid-containing solution were prepared. Moreover, the same pH adjuster as in Example 1 was used.
Sterilized OxCNH aqueous dispersion (2 mg / mL, 0.250 mL), BV, ZO, or PM solution (2.94 mM, 0.250 mL), calcium-containing solution (7.674 mL), phosphoric acid-containing solution (0.917 mL) , And a pH adjuster (0.909 mL) were mixed to prepare a CaP supersaturated solution (reaction solution, 10 mL). The concentrations of Ca and P in each CaP hypersaturated solution were Ca: 6.60 mM, P: 3.30 mM, and when the same calcium-containing solution and phosphoric acid-containing solution used in Example 1 were used. Ca: 5.14 mM, P: 2.56 mM (78%), Ca: 4.40 mM when the calcium-containing solution and the phosphoric acid-containing solution prepared to be 78%, 67%, and 56% were used. , P: 2.20 mM (67%), Ca: 3.68 mM, P: 1.83 mM (56%). These supersaturated solutions were designated as CaP supersaturated solutions a, b, c and d.
Immediately after preparation, the reaction solution was allowed to stand in an incubator at 25 ° C. for 30 minutes to coprecipitate BP, CaP, and OxCNH. The obtained sample BP-CaP-OxCNH was collected by centrifugation (6000 rpm, 5 minutes), and washed by repeating the process of dispersing the sample in water for injection and centrifuging. Samples prepared using the CaP supersaturated solutions a, b, c, and d were designated as BP-CaPa-OxCNH, BP-CaPb-OxCNH, BP-CaPc-OxCNH, and BP-CaPd-OxCNH, respectively. Here, BP corresponds to any of BV, ZO, and PM.
[CaP-OxCNHの作製]
 BPを含まないコントロールとして、BV、ZO、又はPM溶液の代わりに注射用水を用いて同様の操作を行い、試料CaP-OxCNHを得た。CaP過飽和溶液a、b、c、dを用いて作製した試料を、それぞれ、CaPa-OxCNH、CaPb-OxCNH、CaPc-OxCNH、CaPd-OxCNHとした。
[Preparation of CaP-OxCNH]
As a control containing no BP, the same operation was carried out using water for injection instead of the BV, ZO, or PM solution to obtain a sample CaP-OxCNH. Samples prepared using the CaP supersaturated solutions a, b, c, and d were designated as CaPa-OxCNH, CaPb-OxCNH, CaPc-OxCNH, and CaPd-OxCNH, respectively.
[SEMによる観察]
 BP-CaP-OxCNHの構造をSEMにより確認した。実施例1と同様、試料はシリコン基板上に滴下し、乾燥させ、金を蒸着して観察した。BP-CaP-OxCNHのSEM画像を図12に示す。
 いずれのBP-CaP-OxCNHでも、一次粒子径50~100nmの粒子と、一次粒子径100~150nmの粒子とが観察された。さらに一次粒子径100~150nmの粒子は、CNHに起因すると考えられる凹凸構造を有していた。
[Observation by SEM]
The structure of BP-CaP-OxCNH was confirmed by SEM. Similar to Example 1, the sample was dropped on a silicon substrate, dried, and gold was vapor-deposited for observation. An SEM image of BP-CaP-OxCNH is shown in FIG.
In any of the BP-CaP-OxCNH particles, particles having a primary particle diameter of 50 to 100 nm and particles having a primary particle diameter of 100 to 150 nm were observed. Further, the particles having a primary particle diameter of 100 to 150 nm had an uneven structure considered to be caused by CNH.
[EDXによる測定]
 BP-CaP-OxCNHをシリコン基板上に滴下し、乾燥させ、EDXを用いて元素分析を行った。元素分析の結果を図13に示す。いずれの粒子からも、炭素、酸素、リン、カルシウムのピークが検出されたことから、CaPとOxCNHが複合体を形成したことが示唆された。また、CaP過飽和溶液中のCa、P濃度が低下するにつれて(CaP過飽和溶液aからd)、炭素のピークに対してカルシウム、リンのピークが顕著に減少した。これは、CaP過飽和溶液中のCa、P濃度の低下に伴い、生成した粒子中のOxCNHに対するCaPの割合が小さくなったためと考えられた。
[Measurement by EDX]
BP-CaP-OxCNH was dropped onto a silicon substrate, dried, and elemental analysis was performed using EDX. The result of elemental analysis is shown in FIG. The peaks of carbon, oxygen, phosphorus, and calcium were detected in all the particles, suggesting that CaP and OxCNH formed a complex. Further, as the Ca and P concentrations in the CaP supersaturated solution decreased (CaP supersaturated solutions a to d), the peaks of calcium and phosphorus decreased remarkably with respect to the peak of carbon. It is considered that this is because the ratio of CaP to OxCNH in the produced particles decreased as the concentrations of Ca and P in the CaP supersaturated solution decreased.
[ICPによる測定]
 BP-CaP-OxCNHおよびCaP-OxCNHについて、ICPを用いて元素分析を行った。試料を酸で溶解させた溶液を調製し、測定を行った。10mLの反応液から得られた試料中のカルシウム含有量、リン含有量、及びリン含有量に対するカルシウム含有量のモル比(Ca/P)を表2に示す
Figure JPOXMLDOC01-appb-T000002

 表2の結果より、BP-CaP-OxCNHでは、BV、ZO、PMのいずれを使用した場合も、CaP-OxCNHよりCa/Pモル比が小さかった。BP-CaP-OxCNHでは、リンを含むBPが担持されたために、カルシウムに対してリンの含有量が相対的に大きくなり、Ca/Pモル比が小さくなったと考えられる。
 次に、BP-CaP-OxCNH中のBPの含有量を推定する。ここで、同じCa、P濃度を有するCaP過飽和溶液を用いて作製したBP-CaP-OxCNH中のCaPに由来するCaとPに対するCa/Pモル比は、CaP-OxCNH中のCa/Pモル比に等しいと仮定する。この過程をもとにBP-CaP-OxCNH中のBPの含有量を推定したところ、どのCaP過飽和溶液を用いた場合でも、反応液に混合した量(0.735μmol)の30-50%程度(0.22-0.37μmol)であると算出された。以上より、BP-CaP-OxCNHでは、BP、CaP及びOxCNHが三元複合体を形成していることが確認された。
 また、CaP過飽和溶液中のCa、P濃度が低下するにつれて(aからd)、カルシウム、リンの含有量が大幅に減少した。この結果はEDXの結果(図13)とも相関しており、CaP過飽和溶液中のCa、P濃度の低下に伴い、CaPの生成量が少なくなり、粒子中のCaP含有量が低下したためと考えられた。
[Measurement by ICP]
Elemental analysis of BP-CaP-OxCNH and CaP-OxCNH was performed using ICP. A solution in which the sample was dissolved in acid was prepared and measured. Table 2 shows the calcium content, the phosphorus content, and the molar ratio (Ca / P) of the calcium content to the phosphorus content in the sample obtained from the 10 mL reaction solution.
Figure JPOXMLDOC01-appb-T000002

From the results in Table 2, the Ca / P molar ratio of BP-CaP-OxCNH was smaller than that of CaP-OxCNH when any of BV, ZO, and PM was used. In BP-CaP-OxCNH, since BP containing phosphorus was supported, it is considered that the phosphorus content was relatively large with respect to calcium and the Ca / P molar ratio was small.
Next, the content of BP in BP-CaP-OxCNH is estimated. Here, the Ca / P molar ratio to Ca and P derived from CaP in BP-CaP-OxCNH prepared using a CaP supersaturated solution having the same Ca and P concentrations is the Ca / P molar ratio in CaP-OxCNH. Is assumed to be equal to. When the content of BP in BP-CaP-OxCNH was estimated based on this process, no matter which CaP supersaturated solution was used, about 30-50% of the amount (0.735 μmol) mixed with the reaction solution (0.735 μmol). It was calculated to be 0.22-0.37 μmol). From the above, it was confirmed that in BP-CaP-OxCNH, BP, CaP and OxCNH form a ternary complex.
Further, as the Ca and P concentrations in the CaP supersaturated solution decreased (a to d), the calcium and phosphorus contents decreased significantly. This result also correlates with the result of EDX (FIG. 13), and it is considered that as the Ca and P concentrations in the CaP supersaturated solution decrease, the amount of CaP produced decreases and the CaP content in the particles decreases. rice field.
[細胞毒性評価]
 実施例1と同様の方法により、BP-CaP-OxCNHのRAW264.7に対する細胞毒性を評価した。培地中のそれぞれの試料濃度は、OxCNH濃度として1.7μg/mL、5.0μg/mL、16.7μg/mLとなるように希釈した。また、ZO単独とPM単独の細胞毒性も評価した。
 図14にBV-CaP-OxCNHの細胞毒性評価の結果を示す。BV-CaP-OxCNHは、粒子中のCaP含有量に関わらず、同様の細胞毒性を示した。培地中のOxCNH濃度として16.7μg/mLの条件では、培地中のBV濃度は2.3-3.9μg/mL程度と推定されることから、図6(b)に示したBV単独と比較して、BV-CaP-OxCNHでは少量のBVしか含まれていないにも関わらず、効率的に細胞毒性を示したと言える。
 図15(a)にZO-CaP-OxCNHの細胞毒性評価の結果を示す。BV-CaP-OxCNHと比較して、ZO-CaP-OxCNHは強い細胞毒性を示した。図15(b)に示したZO単独では、比較的低濃度(2.5μg/mL)でも細胞毒性を示しており、同濃度ではほとんど細胞毒性を示さないBV単独とは異なる挙動を示している。この、ZO単独とBV単独の細胞毒性の違いが、複合体の細胞毒性にも影響を及ぼしていると考えられる。なお、図15(a)において、培地中のOxCNH濃度として16.7μg/mLの条件では、培地中のZO濃度は2.0-3.4μg/mL程度と推定されることから、図15(b)に示したZO単独と比較して、ZO-CaP-OxCNHでは少量のZOしか含まれていないにも関わらず、効率的に細胞毒性を示したと言える。粒子中のCaP含有量による細胞毒性の違いは、多少は見られたものの、その違いは顕著ではなかった。
 図16(a)にPM-CaP-OxCNHの細胞毒性評価の結果を示す。培地中のOxCNH濃度として5.0μg/mL、16.7μg/mLの条件では、BV-CaP-OxCNHと比較して、PM-CaP-OxCNHは強い細胞毒性を示した。一方で、培地中のOxCNH濃度として1.7μg/mLの条件では、PM-CaP-OxCNHはほとんど毒性を示さなかった。図16(b)に示したPM単独では、10μg/mLと25μg/mLの間でPMの細胞毒性に大きな違いがあり、培地中のOxCNH濃度として1.7μg/mLと5.0μg/mLの間でPM-CaP-OxCNHの細胞毒性に大きな違いが見られる現象と傾向が一致している。なお、図16(a)において、培地中のOxCNH濃度として16.7μg/mLの条件では、培地中PM濃度は2.0-3.4μg/mL程度と推定されることから、図16(b)に示したPM単独と比較して、PM-CaP-OxCNHでは少量のPMしか含まれていないにも関わらず、効率的に細胞毒性を示したと言える。培地中のOxCNH濃度として5μg/mLの条件では、粒子中のCaP含有量が高いほど強い細胞毒性が見られた。 
[Cytotoxicity assessment]
The cytotoxicity of BP-CaP-OxCNH to RAW264.7 was evaluated by the same method as in Example 1. The respective sample concentrations in the medium were diluted to be 1.7 μg / mL, 5.0 μg / mL, and 16.7 μg / mL as OxCNH concentrations. The cytotoxicity of ZO alone and PM alone was also evaluated.
FIG. 14 shows the results of cytotoxicity evaluation of BV-CaP-OxCNH. BV-CaP-OxCNH showed similar cytotoxicity regardless of the CaP content in the particles. Under the condition that the OxCNH concentration in the medium is 16.7 μg / mL, the BV concentration in the medium is estimated to be about 2.3-3.9 μg / mL, which is compared with the BV alone shown in FIG. 6 (b). Therefore, it can be said that BV-CaP-OxCNH efficiently showed cytotoxicity even though it contained only a small amount of BV.
FIG. 15A shows the results of cytotoxicity evaluation of ZO-CaP-OxCNH. Compared with BV-CaP-OxCNH, ZO-CaP-OxCNH showed strong cytotoxicity. ZO alone shown in FIG. 15B shows cytotoxicity even at a relatively low concentration (2.5 μg / mL), and behaves differently from BV alone, which shows almost no cytotoxicity at the same concentration. .. It is considered that this difference in cytotoxicity between ZO alone and BV alone also affects the cytotoxicity of the complex. In FIG. 15A, under the condition that the OxCNH concentration in the medium is 16.7 μg / mL, the ZO concentration in the medium is estimated to be about 2.0-3.4 μg / mL. It can be said that ZO-CaP-OxCNH efficiently showed cytotoxicity even though it contained only a small amount of ZO as compared with ZO alone shown in b). Although there was some difference in cytotoxicity depending on the CaP content in the particles, the difference was not remarkable.
FIG. 16A shows the results of cytotoxicity evaluation of PM-CaP-OxCNH. Under the conditions of OxCNH concentration in the medium of 5.0 μg / mL and 16.7 μg / mL, PM-CaP-OxCNH showed stronger cytotoxicity as compared with BV-CaP-OxCNH. On the other hand, PM-CaP-OxCNH showed almost no toxicity under the condition of 1.7 μg / mL as the OxCNH concentration in the medium. With PM alone shown in FIG. 16 (b), there is a large difference in the cytotoxicity of PM between 10 μg / mL and 25 μg / mL, and the OxCNH concentrations in the medium are 1.7 μg / mL and 5.0 μg / mL. The tendency is consistent with the phenomenon in which there is a large difference in the cytotoxicity of PM-CaP-OxCNH. In FIG. 16A, under the condition that the OxCNH concentration in the medium is 16.7 μg / mL, the PM concentration in the medium is estimated to be about 2.0-3.4 μg / mL. ), It can be said that PM-CaP-OxCNH efficiently showed cytotoxicity even though it contained only a small amount of PM. Under the condition that the OxCNH concentration in the medium was 5 μg / mL, the higher the CaP content in the particles, the stronger the cytotoxicity was observed.
 本実施例では、骨粗鬆症モデルラットの脛骨に穴をあけ、そこにBV-CaP-OxCNH等の試料を埋入し、試料の骨形成に対する影響を評価した。 In this example, a hole was made in the tibia of an osteoporosis model rat, and a sample such as BV-CaP-OxCNH was embedded therein, and the effect of the sample on bone formation was evaluated.
[骨粗鬆症モデルラットの作製]
 Wistarラット(メス、10週齢)の両側卵巣を摘出し、傷口を縫合した。術後8週間、通常飼育し、骨粗鬆症モデルラットを作製した。なお、比較対象として、卵巣を摘出しない偽手術ラットも作製した。体重の変化を記録し、骨粗鬆症モデルラットでは偽手術ラットと比較して、体重が増加(骨粗鬆症モデルラットにおける著名な現象)していることを確認した。また、実験動物用X線CTを用いて骨密度計測を行い、骨粗鬆症モデルラットでは偽手術ラットと比較して海綿骨密度が約20%低下していること、すなわち骨粗鬆症の病態となっていることを確認した。
[Preparation of osteoporosis model rat]
Bilateral ovaries of Wistar rats (female, 10 weeks old) were removed and the wound was sutured. Osteoporosis model rats were prepared by breeding normally for 8 weeks after the operation. For comparison, sham-surgery rats without removing the ovaries were also prepared. Changes in body weight were recorded, and it was confirmed that the osteoporosis model rats gained weight (a prominent phenomenon in the osteoporosis model rats) as compared with the sham-surgery rats. In addition, bone mineral density was measured using X-ray CT for experimental animals, and the cancellous bone density of the osteoporosis model rat was reduced by about 20% compared to the sham-operated rat, that is, the condition of osteoporosis. It was confirmed.
[埋入用試料の作製]
 BV-CaP-OxCNH-2、CaP-OxCNH-2、BV-CaP、CaPを実施例1と同様の方法で作製し、試料を得た。ただし、試料作製における原料の一つとなるOxCNH分散液については、実施例2と同様の方法(凍結乾燥なし)で作製した。得られた試料は少量の注射用水に懸濁させた。懸濁液中のOxCNH濃度は0.83mg/mL、BV濃度は2.1mg/mL程度と推定される。これらの試料以外に、OxCNH(0.83mg/mL)、BV(イバンドロン酸として1.0mg/mL)、生理食塩水(ネガティブコントロール)も比較対象として検討した。
[Preparation of sample for embedding]
BV-CaP-OxCNH-2, CaP-OxCNH-2, BV-CaP, and CaP were prepared in the same manner as in Example 1 to obtain a sample. However, the OxCNH dispersion, which is one of the raw materials for sample preparation, was prepared by the same method as in Example 2 (without freeze-drying). The resulting sample was suspended in a small amount of water for injection. The OxCNH concentration in the suspension is estimated to be 0.83 mg / mL, and the BV concentration is estimated to be about 2.1 mg / mL. In addition to these samples, OxCNH (0.83 mg / mL), BV (1.0 mg / mL as ibandronic acid), and physiological saline (negative control) were also examined for comparison.
[脛骨のリーミングと試料の埋入]
 各試料に対して3匹の骨粗鬆症モデルラットを準備し、それぞれの左右脛骨を18ゲージシリンジ針でリーミング(骨に穴を開ける操作、骨孔1mm程度)した。各試料は、ラット1匹の体重あたりのBV総投与量が154μg/kg、OxCNH総投与量が61.7μg/kg(ラット1匹あたりの体重は約200g)となるようにそれぞれ1mL調製した。各試料は、それぞれの骨粗鬆症モデルラット左右脛骨の骨孔に50μLずつ埋入し、傷口を縫合した。骨粗鬆症モデルラットは、試料を埋入後12週間、後述するCT撮影および骨密度評価を経時的に行いながら通常飼育した。
 また、ポジティブコントロールとして、BV溶液を皮下投与した群も作製した。BV溶液の皮下投与は、局所投与とならないように毎回、ラットの異なる箇所に、1日1回を1週間連続して4週間毎に計12週間行った(1週間連続投与を0、4、8週後の3回行った)。BV溶液は、BV溶液(1.0mg/mL)をラット1匹の体重あたりのBV総投与量が12週間で計154μg/kgになるように調製した。皮下投与開始から12週間、後述するCT撮影および骨密度評価を経時的に行いながら通常飼育した。
[Tibial reaming and sample implantation]
Three osteoporosis model rats were prepared for each sample, and each of the left and right tibias was reamed with an 18-gauge syringe needle (operation of making a hole in the bone, bone hole of about 1 mm). Each sample was prepared in an amount of 1 mL so that the total BV dose per rat body weight was 154 μg / kg and the total OxCNH dose was 61.7 μg / kg (body weight per rat was about 200 g). Each sample was placed in the bone holes of the left and right tibias of each osteoporosis model rat in an amount of 50 μL, and the wound was sutured. Osteoporosis model rats were normally bred for 12 weeks after implantation while performing CT imaging and bone mineral density evaluation, which will be described later, over time.
In addition, as a positive control, a group in which the BV solution was subcutaneously administered was also prepared. Subcutaneous administration of the BV solution was performed once a day for a total of 12 weeks every 4 weeks at different sites in the rat each time so as not to be a local administration (1 week continuous administration 0, 4, I went 3 times after 8 weeks). The BV solution was prepared so that the total BV dose per rat body weight of the BV solution (1.0 mg / mL) was 154 μg / kg in 12 weeks. For 12 weeks from the start of subcutaneous administration, the animals were normally bred while performing CT imaging and bone mineral density evaluation, which will be described later, over time.
[子宮の観察と重量測定]
 12週間経過後、偽手術ラットおよび骨粗鬆症モデルラットは安楽死させ、それぞれの子宮を観察・摘出した。図17(a)に偽手術ラット(左側)および骨粗鬆症モデルラット(右側)の、開腹写真(上側)と摘出した子宮の写真(下側)を示す。骨粗鬆症モデルラットでは、偽手術ラットと比較して明らかな子宮萎縮(骨粗鬆症モデルラットにおける著名な現象)が観察された。次に、偽手術ラットおよび骨粗鬆症モデルラットから摘出した子宮の重量を測定した。図17(b)に偽手術ラット(左側)から摘出した子宮重量を1としたときの骨粗鬆症モデルラット(右側)から摘出した子宮重量の相対値を示す。偽手術ラットから摘出した子宮重量を1としたときの骨粗鬆症モデルラットから摘出した子宮重量の相対値は約0.3であった。骨粗鬆症モデルラットでは、偽手術ラットと比較して明らかな子宮重量の低下(骨粗鬆症モデルラットにおける著名な現象)が観察された。
[Uterus observation and weight measurement]
After 12 weeks, sham-operated rats and osteoporosis model rats were euthanized, and their uteri were observed and removed. FIG. 17A shows a laparotomy photograph (upper side) and a photograph of the removed uterus (lower side) of a sham-surgery rat (left side) and an osteoporosis model rat (right side). In the osteoporosis model rat, clear uterine atrophy (a prominent phenomenon in the osteoporosis model rat) was observed as compared with the pseudo-surgery rat. Next, the weight of the uterus removed from the pseudo-surgery rat and the osteoporosis model rat was measured. FIG. 17B shows the relative value of the uterine weight removed from the osteoporosis model rat (right side) when the uterine weight removed from the pseudo-surgery rat (left side) is 1. The relative value of the uterine weight removed from the osteoporosis model rat was about 0.3 when the uterine weight removed from the sham-operated rat was 1. In the osteoporosis model rats, a clear decrease in uterine weight (a prominent phenomenon in the osteoporosis model rats) was observed as compared with the sham-surgery rats.
[CT撮影]
 試料埋入から0、4、8、12週間後に各骨粗鬆症モデルラットの脛骨のCT(Computed Tomography)撮影を行った。図18に各骨粗鬆症モデルラットの試料埋入から0、8、12週間後の脛骨CT像を示す。図18に示すように、BVを皮下投与(ポジティブコントロール)したラットまたはBV-CaP-OxCNH-2、BV-CaP、BVを局所投与(脛骨に埋入)したラットでは、生理食塩水、CaP、OxCNH、またはCaP-OxCNH-2を局所投与したラットと比較して皮質骨の内側に骨基質の良好な再生が認められた。
[CT photography]
Computed tomography (CT) imaging of the tibia of each osteoporosis model rat was performed 0, 4, 8 and 12 weeks after sample implantation. FIG. 18 shows tibial CT images 0, 8 and 12 weeks after sample implantation in each osteoporosis model rat. As shown in FIG. 18, in rats to which BV was subcutaneously administered (positive control) or BV-CaP-OxCNH-2, BV-CaP, BV was locally administered (implanted in the tibia), saline, CaP, Good regeneration of the bone matrix was observed inside the cortical bone as compared with rats topically administered OxCNH or CaP-OxCNH-2.
[骨密度評価]
 試料埋入から0、4、8、12週間後に、実験動物用X線CTを用いて各骨粗鬆症モデルラット脛骨の骨密度計測を行った。図19に各骨粗鬆症モデルラット脛骨の全骨密度を、図20に各骨粗鬆症モデルラット脛骨の皮質骨密度を、図21に各骨粗鬆症モデルラット脛骨の海綿骨密度を示す。
 図19に示すように、BVを皮下投与したラットおよびBV-CaP-OxCNH-2、BV-CaP、BVを局所投与したラットでは、生理食塩水、CaP、OxCNH、またはCaP-OxCNH-2を局所投与したラットと比較して全骨密度の向上が見られた。図20に示すように、各骨粗鬆症モデルラット脛骨の皮質骨密度では、埋入した試料による大きな差は見られなかった。図21に示すように、各骨粗鬆症モデルラット脛骨の海綿骨密度では、全骨密度と同じ傾向が見られた。したがって、海綿骨密度が改善することで、全骨密度が改善したと考えられる。
 図22に、図21に示すデータを用いて試料埋入直後(0週後)の各骨粗鬆症モデルラット脛骨の海綿骨密度を1としたときの相対値の経時変化を示す。図22に示すように、BV-CaP-OxCNH-2を局所投与したラットでは、BVを皮下投与し続けたラットと同様に12週まで海綿骨密度が向上し続けた。一方で、BV-CaPおよびBVを局所投与したラットでは、BVを皮下投与したラットおよびBV-CaP-OxCNH-2を局所投与したラットと比較して8週以降の海綿骨密度に大きな向上は見られなかった。なお、各骨粗鬆症モデルラット脛骨の全骨密度でも、海綿骨密度と同じ傾向が見られた。また、生理食塩水、CaP、OxCNH、またはCaP-OxCNH-2を局所投与したラットでは、12週まで海綿骨密度が減少し続けた。BV-CaP-OxCNH-2は一度の局所投与(患部への埋入)で、1ヵ月毎に複数回投与するBVの皮下投与と同等の骨密度向上効果を示した。このことから、BV-CaP-OxCNH-2は単回投与であることから患者への負荷が少なく、効率的に骨形成促進効果を示すことが推察される。
 
 
[Bone density evaluation]
Bone mineral density of each osteoporosis model rat tibia was measured using X-ray CT for experimental animals 0, 4, 8 and 12 weeks after sample implantation. FIG. 19 shows the total bone density of each osteoporosis model rat tibia, FIG. 20 shows the cortical bone density of each osteoporosis model rat tibia, and FIG. 21 shows the cancellous bone density of each osteoporosis model rat tibia.
As shown in FIG. 19, in rats subcutaneously administered with BV and rats locally administered with BV-CaP-OxCNH-2, BV-CaP, BV, saline, CaP, OxCNH, or CaP-OxCNH-2 was locally administered. An improvement in total bone mineral density was observed compared to the treated rats. As shown in FIG. 20, the cortical bone mineral density of each osteoporosis model rat tibia did not show a large difference depending on the implanted sample. As shown in FIG. 21, the cancellous bone mineral density of each osteoporosis model rat tibia showed the same tendency as the total bone mineral density. Therefore, it is considered that the total bone density was improved by improving the cancellous bone density.
FIG. 22 shows the time course of the relative value when the cancellous bone mineral density of each osteoporosis model rat tibia immediately after sample implantation (0 week later) is set to 1 using the data shown in FIG. 21. As shown in FIG. 22, in the rats topically administered BV-CaP-OxCNH-2, the cancellous bone mineral density continued to improve until 12 weeks, similar to the rats in which BV was continuously administered subcutaneously. On the other hand, in rats to which BV-CaP and BV were locally administered, there was a significant improvement in cancellous bone mineral density after 8 weeks as compared with rats to which BV was subcutaneously administered and rats to which BV-CaP-OxCNH-2 was locally administered. I couldn't. The total bone mineral density of each osteoporosis model rat tibia showed the same tendency as the cancellous bone mineral density. In addition, in rats topically administered with saline, CaP, OxCNH, or CaP-OxCNH-2, cancellous bone mineral density continued to decrease until 12 weeks. BV-CaP-OxCNH-2 showed the same bone mineral density improving effect as subcutaneous administration of BV administered multiple times every month by one local administration (implantation in the affected area). From this, it is inferred that since BV-CaP-OxCNH-2 is a single dose, the load on the patient is small and the bone formation promoting effect is efficiently exhibited.

Claims (12)

  1.  リン酸カルシウムとビスホスホネートとカーボン粒子を含有するカーボン粒子複合体。 A carbon particle complex containing calcium phosphate, bisphosphonates and carbon particles.
  2.  前記カーボン粒子は、カーボンナノホーン、カーボンナノチューブ、ナノグラフェン、ナノダイアモンド、若しくはカーボンファイバー、又はこれらの組み合わせである請求項1に記載のカーボン粒子複合体。 The carbon particle composite according to claim 1, wherein the carbon particles are carbon nanohorns, carbon nanotubes, nanographenes, nanodiamonds, or carbon fibers, or a combination thereof.
  3.  前記カーボン粒子は、酸化カーボンナノホーンである請求項1に記載のカーボン粒子複合体。 The carbon particle composite according to claim 1, wherein the carbon particles are carbon oxide nanohorns.
  4.  前記ビスホスホネートは、エチドロン酸、イバンドロン酸、ゾレドロン酸、アレンドロン酸、ミノドロン酸、リセドロン酸、パミドロン酸、インカドロン酸、若しくはこれらの塩、又はこれらの組み合わせである請求項1に記載のカーボン粒子複合体。 The carbon particle composite according to claim 1, wherein the bisphosphonate is etidronic acid, ibandronic acid, zoledronic acid, alendronic acid, minodronic acid, risedronic acid, pamidronic acid, incadronic acid, or a salt thereof, or a combination thereof. ..
  5.  請求項1に記載のカーボン粒子複合体を含有する破骨細胞をターゲットとした製剤。 A preparation targeting osteoclasts containing the carbon particle complex according to claim 1.
  6.  ビスホスホネートと、カーボン粒子と、を含むリン酸カルシウム過飽和溶液を調製し、
     前記ビスホスホネートと、前記カーボン粒子と、リン酸カルシウムと、を共沈させるカーボン粒子複合体の製造方法。
    A supersaturated solution of calcium phosphate containing bisphosphonates and carbon particles was prepared.
    A method for producing a carbon particle complex in which the bisphosphonate, the carbon particles, and calcium phosphate are coprecipitated.
  7.  前記カーボン粒子は、カーボンナノホーン、カーボンナノチューブ、ナノグラフェン、ナノダイアモンド、若しくはカーボンファイバー、又はこれらの組み合わせである請求項6に記載のカーボン粒子複合体の製造方法。 The method for producing a carbon particle composite according to claim 6, wherein the carbon particles are carbon nanohorns, carbon nanotubes, nanographenes, nanodiamonds, or carbon fibers, or a combination thereof.
  8.  前記カーボン粒子は、酸化カーボンナノホーンである請求項6に記載のカーボン粒子複合体の製造方法。 The method for producing a carbon particle complex according to claim 6, wherein the carbon particles are carbon oxide nanohorns.
  9.  前記ビスホスホネートは、エチドロン酸、イバンドロン酸、ゾレドロン酸、アレンドロン酸、ミノドロン酸、リセドロン酸、パミドロン酸、インカドロン酸、若しくはこれらの塩、又はこれらの組み合わせである請求項6に記載のカーボン粒子複合体の製造方法。 The carbon particle composite according to claim 6, wherein the bisphosphonate is etidronic acid, ibandronic acid, zoledronic acid, alendronic acid, minodronic acid, risedronic acid, pamidronic acid, incadronic acid, or a salt thereof, or a combination thereof. Manufacturing method.
  10.  前記カーボン粒子は、官能基としてカルボキシル基を有し、
     前記リン酸カルシウム過飽和溶液中のカルシウムイオン、あるいは、前記リン酸カルシウム表面のカルシウムイオンが、前記カルボキシル基と静電相互作用で引き合い、前記リン酸カルシウムが前記カーボン粒子と複合化する請求項6に記載のカーボン粒子複合体の製造方法。
    The carbon particles have a carboxyl group as a functional group and have a carboxyl group.
    The carbon particle composite according to claim 6, wherein calcium ions in the calcium phosphate supersaturated solution or calcium ions on the surface of the calcium phosphate are attracted to the carboxyl group by electrostatic interaction, and the calcium phosphate is complexed with the carbon particles. Manufacturing method.
  11.  前記ビスホスホネートはホスホン酸基を有し、前記ホスホン酸基が前記カルシウムイオンと静電相互作用で引き合い、前記ビスホスホネートが前記リン酸カルシウムとともに前記カーボン粒子と複合化する請求項10に記載のカーボン粒子複合体の製造方法。 The carbon particle composite according to claim 10, wherein the bisphosphonate has a phosphonate group, the phosphonate group attracts the calcium ion by electrostatic interaction, and the bisphosphonate is complexed with the carbon particles together with the calcium phosphate. Production method.
  12.  前記ビスホスホネートは、前記カーボン粒子の内部空間に内包される、又は、前記カーボン粒子の壁に物理吸着することにより担持される請求項6に記載のカーボン粒子複合体の製造方法。
     
    The method for producing a carbon particle composite according to claim 6, wherein the bisphosphonate is encapsulated in the internal space of the carbon particles or is supported by physically adsorbing on the wall of the carbon particles.
PCT/JP2021/004744 2020-02-12 2021-02-09 Bisphosphonate-containing carbon particle composite and method for producing same WO2021161987A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022500417A JPWO2021161987A1 (en) 2020-02-12 2021-02-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-021816 2020-02-12
JP2020021816 2020-02-12

Publications (1)

Publication Number Publication Date
WO2021161987A1 true WO2021161987A1 (en) 2021-08-19

Family

ID=77292723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004744 WO2021161987A1 (en) 2020-02-12 2021-02-09 Bisphosphonate-containing carbon particle composite and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2021161987A1 (en)
WO (1) WO2021161987A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180104380A1 (en) * 2015-03-25 2018-04-19 Wichita State University Carbon particulates and composites thereof for musculoskeletal and soft tissue regeneration
CN111012948A (en) * 2019-12-16 2020-04-17 四川大学 Bone repair and tumor inhibition material with photothermal conversion performance and functional coating and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180104380A1 (en) * 2015-03-25 2018-04-19 Wichita State University Carbon particulates and composites thereof for musculoskeletal and soft tissue regeneration
CN111012948A (en) * 2019-12-16 2020-04-17 四川大学 Bone repair and tumor inhibition material with photothermal conversion performance and functional coating and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DLAMINI N. L., MUKAYA H. E., VAN ZYL R. L., JANSEN VAN VUUREN N. C., MBIANDA X. Y.: "Carbon nanospheres conjugated bisphosphonates: synthesis, characterization and in vitro antimalarial activity", ARTIFICIAL CELLS, NANOMEDICINE AND BIOTECHNOLOGY, TAYLOR & FRANCIS INC., US, vol. 46, no. sup3, 12 November 2018 (2018-11-12), US, pages S287 - S296, XP055849071, ISSN: 2169-1401, DOI: 10.1080/21691401.2018.1491481 *
FERNANDES RENATA SALGADO, LEMOS JANAINA ALCÂNTARA, BRANCO DE BARROS ANDRÉ LUÍS, GERALDO VIVIANY, ELETO DA SILVA EDELMA, ALISARAIE : "Carboxylated versus bisphosphonate SWCNT: Functionalization effects on the biocompatibility and in vivo behaviors in tumor-bearing mice", JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, ED. DE SANTÉ, FR, vol. 50, 1 April 2019 (2019-04-01), FR, pages 266 - 277, XP055849072, ISSN: 1773-2247, DOI: 10.1016/j.jddst.2019.01.036 *
NAKAMURA MAKI, UEDA KATSUYA, YAMAMOTO YUMIKO, AOKI KAORU, ZHANG MINFANG, SAITO NAOTO, YUDASAKA MASAKO: "Ibandronate-Loaded Carbon Nanohorns Fabricated Using Calcium Phosphates as Mediators and Their Effects on Macrophages and Osteoclasts", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 13, no. 3, 27 January 2021 (2021-01-27), US, pages 3701 - 3712, XP055849073, ISSN: 1944-8244, DOI: 10.1021/acsami.0c20923 *

Also Published As

Publication number Publication date
JPWO2021161987A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
Khajuria et al. Accelerated bone regeneration by nitrogen-doped carbon dots functionalized with hydroxyapatite nanoparticles
Calasans-Maia et al. Cytocompatibility and biocompatibility of nanostructured carbonated hydroxyapatite spheres for bone repair
Tovani et al. Strontium calcium phosphate nanotubes as bioinspired building blocks for bone regeneration
Padmanabhan et al. Advanced lithium substituted hydroxyapatite nanoparticles for antimicrobial and hemolytic studies
Irfan et al. Overview of hydroxyapatite; composition, structure, synthesis methods and its biomedical uses
Furko et al. Preparation and morphological investigation on bioactive ion-modified carbonated hydroxyapatite-biopolymer composite ceramics as coatings for orthopaedic implants
PL227876B1 (en) Suspension of graphene oxide nanoparticle flakes in water, its application and method for obtaining it
ES2929118T3 (en) Magnesium phosphate hydrogels
Khalid et al. Basics of hydroxyapatite—structure, synthesis, properties, and clinical applications
Drouet et al. Biomimetic apatite-based functional nanoparticles as promising newcomers in nanomedicine: overview of 10 years of initiatory research
Higino et al. Drug-delivery nanoparticles for bone-tissue and dental applications
Yang et al. Eu 3+/Tb 3+-doped whitlockite nanocrystals: Controllable synthesis, cell imaging, and the degradation process in the bone reconstruction
Prasad et al. Surfactant-assisted synthesis of hydroxyapatite particles: A comprehensive review
WO2021161987A1 (en) Bisphosphonate-containing carbon particle composite and method for producing same
Motameni et al. Graphene oxide reinforced doped dicalcium phosphate bone cements for bone tissue regenerations
Eldrehmy et al. Hydroxyapatite-based bio-ceramic of ternary nanocomposites containing cuprous oxide/graphene oxide for biomedical applications
Kalbarczyk et al. Potential biomedical application of calcium phosphates obtained using eggshells as a biosource of calcium at different initial pH values
Xu et al. FePSe3‐Nanosheets‐Integrated Cryogenic‐3D‐Printed Multifunctional Calcium Phosphate Scaffolds for Synergistic Therapy of Osteosarcoma
Zhou et al. Intraosseous injection of calcium phosphate polymer-induced liquid precursor increases bone density and improves early implant osseointegration in ovariectomized rats
JP5338016B2 (en) Biologically active substance-containing octacalcium crystal, method for producing the same, and pharmaceutical composition containing the same
El Askary et al. Improvement of medical applicability of hydroxyapatite/graphene oxide nanocomposites via additional yttrium oxide nanoparticles
Song et al. Synthesis of Ce/Gd@ HA/PLGA scaffolds contributing to bone repair and MRI enhancement
Das et al. A focus on biomaterials based on calcium phosphate nanoparticles: an indispensable tool for emerging biomedical applications
KR20180118000A (en) Fluorescence carbon dots comprising bisphosphonate derivative and manufacturing method thereof
Komlev et al. Bioactivity and effect of bone formation for octacalcium phosphate ceramics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500417

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753638

Country of ref document: EP

Kind code of ref document: A1