WO2021161957A1 - Energy management device, server, energy management system, energy management method, and energy management program - Google Patents

Energy management device, server, energy management system, energy management method, and energy management program Download PDF

Info

Publication number
WO2021161957A1
WO2021161957A1 PCT/JP2021/004578 JP2021004578W WO2021161957A1 WO 2021161957 A1 WO2021161957 A1 WO 2021161957A1 JP 2021004578 W JP2021004578 W JP 2021004578W WO 2021161957 A1 WO2021161957 A1 WO 2021161957A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
production
index
unit
factor
Prior art date
Application number
PCT/JP2021/004578
Other languages
French (fr)
Japanese (ja)
Inventor
直聡 坂本
裕樹 松本
勇 林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180013153.8A priority Critical patent/CN115053252A/en
Priority to JP2022500397A priority patent/JP7270827B2/en
Publication of WO2021161957A1 publication Critical patent/WO2021161957A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply

Definitions

  • This disclosure relates to an energy management device, a server, an energy management system, an energy management method, and an energy management program for diagnosing factors of energy consumption that did not contribute to production in a diagnosis target including production equipment.
  • Patent Document 1 information on factors of wasteful energy consumption when a characteristic pattern that occurs when wasteful energy consumption occurs appears in graph data showing the relationship between integrated production amount and integrated energy consumption amount.
  • Patent Document 1 contributes to production when there are a plurality of energy consumption factors that did not contribute to production because the energy consumption factor that did not contribute to production is narrowed down to one. It can be difficult to take appropriate measures against energy consumption.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain an energy management device capable of identifying a plurality of factors that have caused energy consumption that does not contribute to production.
  • the energy management device of the present disclosure includes an index value calculation unit, a score calculation unit, and an information provision unit.
  • the index value calculation unit calculates one or more types of index values related to energy consumption in the diagnosis target including the production equipment based on the production-related information which is the information related to the past production.
  • the score calculation unit did not contribute to the production of each of the plurality of factor candidates, which are candidates for energy consumption factors that did not contribute to production, based on one or more types of index values calculated by the index value calculation unit. Calculate a score that indicates the degree of impact on energy consumption.
  • the information providing unit outputs information on two or more factor candidates having the highest score calculated by the score calculation unit among the plurality of factor candidates.
  • a flowchart showing an example of diagnostic processing by the processing unit of the energy management device according to the second embodiment The figure which shows an example of the structure of the energy management system which concerns on Embodiment 3. The figure which shows an example of the structure of the energy management apparatus which concerns on Embodiment 3. The figure which shows an example of the configuration of the server which concerns on Embodiment 3. The figure which shows an example of the neural network which concerns on Embodiment 3.
  • a flowchart showing an example of inference processing by the server according to the third embodiment A flowchart showing an example of processing by the mobile terminal according to the third embodiment.
  • the figure which shows another example of the radar chart displayed on the display part of the mobile terminal which concerns on Embodiment 4. A flowchart showing an example of learning processing by the server according to the fourth embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of a production facility including the energy management device according to the first embodiment.
  • the production facility 1 according to the first embodiment includes a production facility 2, a related facility 3, power sensors 4 and 5, a production volume sensor 6, an environment sensor 7, and a production control device 8. And an energy management device 10.
  • the energy used by the production equipment 2 and the related equipment 3 is electric power, but may be primary energy such as petroleum, coal, gas, hydrogen, etc., and is a combination of electric power and primary energy. There may be.
  • Production equipment 2 executes a production process for producing a plurality of articles.
  • a production line is composed of a plurality of production devices, but the production facility 2 may have a configuration having only one production device.
  • the article produced by the production facility 2 is, for example, an industrial product or a work-in-process product of an industrial product, and may be hereinafter referred to as a production target product.
  • the product to be produced may be a liquid or a gas.
  • Related equipment 3 is equipment used in connection with production equipment 2.
  • the related equipment 3 is equipment such as a lighting device, an air conditioner, a compressor, or a dust collector that is turned on by an operator or the like when the product to be produced is produced by the production equipment 2.
  • the related equipment 3 is also called a utility equipment.
  • the power sensor 4 is attached to a power transmission line that transmits power to the production equipment 2, the production equipment 2, or the like, periodically measures the power consumption of the production equipment 2, and provides information indicating the measured power consumption as an energy management device. Transmission to 10 via a dedicated line (not shown) or a network (not shown).
  • the power sensor 5 is attached to a power transmission line that transmits power to the related equipment 3, the related equipment 3, or the like, periodically measures the power consumption of the related equipment 3, and provides information indicating the measured power consumption as an energy management device. Transmission to 10 via a dedicated line (not shown) or a network (not shown).
  • the power consumption measured by the power sensor 4 is an example of the energy consumption of the production equipment 2.
  • the power consumption measured by the power sensor 5 is an example of the energy consumption of the related equipment 3.
  • the production amount sensor 6 is provided in the production equipment 2, periodically measures the production amount of the production equipment 2, and sends information indicating the measured production amount to the energy management device 10 by a dedicated line (not shown) or a network (not shown). Send via.
  • the production amount sensor 6 counts, for example, the number of passing products to be produced in the production line of the production facility 2, and measures the counted value as the production amount.
  • the production amount measured by the production amount sensor 6 is the production flow rate when the product to be produced is a liquid or a gas. Further, the production amount measured by the production amount sensor 6 may be expressed by weight or length.
  • the environment sensor 7 periodically measures the production environment, which is the environment in the production process of the production equipment 2, and transmits information indicating the measured production environment to the energy management device 10.
  • the production environment measured by the environment sensor 7 is, for example, the temperature, humidity, carbon dioxide concentration, brightness, noise, vibration, or the like in the room where the production equipment 2 is arranged.
  • the information indicating the production environment may be information input to a terminal device (not shown). In this case, the information indicating the production environment is transmitted from the terminal device (not shown) to the energy management device 10 via a dedicated line (not shown) or a network (not shown).
  • the production control device 8 has a storage unit (not shown) that stores production control information.
  • the production control information includes daily information such as the type of the production target product, the person in charge of the production process, the error information of the production equipment 2, the number of lots of the production target product, and the takt time of the production equipment 2.
  • the takt time is, for example, the time obtained by dividing the operating time of the production facility 2 in one day by the daily production amount.
  • the processing unit (not shown) in the production control device 8 reads the production control information stored in the storage unit from the storage unit, and reads the read information to the energy management device 10 via a dedicated line (not shown) or a network (not shown). Send.
  • the production control device 8 can acquire a part of the production control information from the production facility 2 via a dedicated line (not shown) or a network (not shown).
  • the production control device 8 can specify a part of the production control information by the image sensor. Further, the production control device 8 can also store the information input from the input unit (not shown) as a part of the production control information. The input unit can receive the input by the keyboard or the input by the voice recognition and output the received information to the production control device 8.
  • the energy management device 10 collects information from each of the power sensors 4 and 5, the production volume sensor 6, the environment sensor 7, and the production control device 8, and based on the collected information, the production equipment 2 and the related equipment 3 are combined. Diagnose the factors of energy consumption that did not contribute to production in the diagnostic target including.
  • energy consumption that does not contribute to production in the diagnosis target may be described as energy consumption or energy loss that does not contribute to production.
  • the energy consumption that did not contribute to production includes, for example, the energy consumption of warm air required for the operation of the production equipment 2 (energy consumption of the production equipment 2 at the time T1 described later), and is indirectly used for production. In some cases, it can be regarded as contributing, but it also refers to energy consumption that we want to reduce as much as possible, as is the case with energy loss.
  • FIG. 2 is a diagram showing an example of the configuration of the energy management device according to the first embodiment.
  • the energy management device 10 includes a processing unit 11, a production-related information storage unit 12, and a display unit 13.
  • the processing unit 11 includes an information collecting unit 21, an information generating unit 22, an index value calculating unit 23, a score calculating unit 24, and an information providing unit 25.
  • the information collecting unit 21 collects information from each of the power sensors 4 and 5, the production amount sensor 6, the environment sensor 7, and the production management device 8, associates the collected information with the time of collection, and stores the production-related information. Add to 12 production-related information.
  • the time of collection includes, for example, hour, minute, and second information, as well as year, month, and day information.
  • the production-related information is information related to past production, and is information collected by the information collecting unit 21 and stored in the production-related information storage unit 12.
  • the information collected by the information collecting unit 21 may be either information indicated by an analog signal or information indicated by a digital signal.
  • the information collecting unit 21 converts the information collected by AD (Analog to Digital) conversion into a digital signal.
  • AD Analog to Digital
  • the information collecting unit 21 can also perform effective value calculation or filter processing on the collected information, for example.
  • the information generation unit 22 generates factor candidate information including a plurality of factor candidate information that is a candidate for a factor that causes energy loss, based on the production-related information stored in the production-related information storage unit 12.
  • the factor candidate information includes the first factor candidate information and the second factor candidate information.
  • the information generation unit 22 generates the first factor candidate information based on the calendar information held internally and the production-related information stored in the production-related information storage unit 12.
  • FIG. 3 is a diagram showing an example of first factor candidate information generated by the information generation unit of the energy management device according to the first embodiment.
  • the first factor candidate information includes "month”, “day of the week”, “week”, “production start time”, and “production end time” for each "day", and “day”. , “Month”, “day of the week”, “week”, “production start time”, and “production end time” are associated with each other.
  • the “Day” is information indicating the date
  • “month” is information indicating the month
  • “day of the week” is information indicating the day of the week
  • “week” is what "day” is “month”.
  • the “production start time” is information indicating the time when the production of the product to be produced by the production equipment 2 is started.
  • the “production end time” is information indicating the time when the production of the product to be produced by the production equipment 2 is completed. In the example shown in FIG. 3, it is shown that "October 20, 2019” is the fourth Sunday of October, the production start time is 7:00, and the production end time is 17:00.
  • the information generation unit 22 acquires the "month” for each "day” from the information of the month included in the "day”. Further, the information generation unit 22 determines the "day of the week” and the “week” for each "day” based on the calendar information held internally, and the determined “day of the week” and the “week” are the first factors. Include in candidate information. Further, the information generation unit 22 determines the daily "production start time” and “production end time” from the production-related information stored in the production-related information storage unit 12, and determines the "production start time” and "production”. "End time” is included in the first factor candidate information.
  • the information generation unit 22 determines, for example, a time obtained by subtracting the time required to produce one production target product from the time when the power consumption of the production equipment 2 becomes equal to or higher than the preset threshold value Pth as the production start time. do. Further, the information generation unit 22 determines, for example, the time when the production amount of the production equipment 2 becomes less than the preset threshold value Mth as the production end time. When the production start time and the production end time are included in the production-related information, the information generation unit 22 can also specify the "production start time" and the "production end time" from the production-related information.
  • the first factor candidate information may include, for example, information on the production amount on the current day and information on the production amount on the previous day.
  • the information generation unit 22 calculates the total production amount on the current day as the production amount on the current day, and calculates the total production amount on the previous day as the production amount on the previous day.
  • the information on the production volume of the day on "October 20, 2019” is the total production volume on "October 20, 2019”
  • the information on the production volume on the previous day on "October 20, 2019” is.
  • the information generation unit 22 generates the second factor candidate information from the production-related information stored in the production-related information storage unit 12.
  • the second factor candidate information is, for example, a daily representative value for each of the target model, the person in charge, and the occurrence error, assuming that each of the target model, the person in charge, and the occurrence error is expressed numerically. ..
  • the information generation unit 22 targets the mode of each of the target model, the person in charge, and the occurrence error in the daily time-series information included in the production-related information stored in the production-related information storage unit 12. Judge as a representative value of the model, the person in charge, and the error that occurred.
  • the target model indicates the type of the target product
  • the person in charge indicates the person in charge of production in the production equipment 2
  • the occurrence error indicates the type of the error generated in the production equipment 2.
  • FIG. 4 is a diagram showing an example of the second factor candidate information determined by the information generation unit according to the first embodiment.
  • the second factor candidate information shown in FIG. 4 includes "target model”, “person in charge”, and “occurrence error” for each "day”, and includes “target model”, “person in charge”, and “occurrence error”. Are associated with each other.
  • FIG. 4 an example in which the target model is at least "A1" or "A2", the person in charge is at least “B1” or “B2”, and the occurrence error is at least "# 1" or "# 2".
  • the target model is at least "A1” or "A2”
  • the person in charge is at least "B1” or "B2”
  • the occurrence error is at least "# 1" or "# 2”.
  • the second factor candidate information is, for example, information indicating the average value and fluctuation range of each of the temperature, humidity, brightness, noise, and vibration in the room in which the production equipment 2 or the related equipment 3 is operating.
  • the information generation unit 22 averages and fluctuates each of the indoor temperature, humidity, brightness, noise, and vibration based on the environmental information included in the production-related information stored in the production-related information storage unit 12. Calculate the width and so on.
  • the index value calculation unit 23 calculates the value of one or more types of indexes related to energy consumption in the diagnosis target including the production equipment 2 and the related equipment 3 based on the information stored by the production-related information storage unit 12. In the following, the index value calculation unit 23 calculates the values of five types of indexes, but the types of indexes whose values are calculated by the index value calculation unit 23 may be four or less, and six or more. It may be.
  • FIG. 5 is for explaining a first index, a second index, a third index, a fourth index, and a fifth index whose values are calculated by the index value calculation unit according to the first embodiment. It is a figure.
  • the value of the first index calculated by the index value calculation unit 23 is described as the first index value
  • the value of the second index calculated by the index value calculation unit 23 is referred to as the second index value.
  • the value of the third index calculated by the index value calculation unit 23 is described as the third index value.
  • the value of the fourth index calculated by the index value calculation unit 23 is described as the fourth index value
  • the value of the fifth index calculated by the index value calculation unit 23 is described as the fifth index value. do.
  • the first index value is the time T1 from when the production equipment 2 is turned on until the production of the production equipment 2 is started.
  • the index value calculation unit 23 can calculate as the first index value the time obtained by subtracting the time required to produce one production target product in the production equipment 2 from the calculated difference.
  • the first index can be said to be wasted time from the start of the production facility 2 to the start of production, and can be said to be the time during which energy consumption that does not contribute to production occurs.
  • the second index value is the time T2 from the end of production of production equipment 2 to the time when production equipment 2 is turned off.
  • the difference between the time when the production amount of the production equipment 2 becomes less than the preset threshold value Mth and the time when the power consumption amount of the production equipment 2 becomes less than the preset threshold value Pth. Can be calculated as the second index value.
  • Such a second index can be said to be a wasted time from the end of production to the shutdown of the production equipment 2, and can be said to be the time during which energy consumption that does not contribute to production occurs.
  • the third index value is the time T3 indicating the difference between the time T4 when the related equipment 3 is on and the time T5 when the production equipment 2 is on.
  • Such a third index indicates the time when the related equipment 3 is started while the production equipment 2 is stopped, and can be said to represent a wasted time, and can be said to be a time when energy consumption that does not contribute to production occurs.
  • the fourth index value indicates the ratio of the time during which production by production equipment 2 is performed to the time during which production equipment 2 is on.
  • the index value calculation unit 23 determines, for example, the ratio of the time T6 in which the production amount of the production equipment 2 is equal to or greater than the preset threshold value Mth to the time T5 in which the power consumption of the production equipment 2 is equal to or greater than the preset threshold value Pth. be. It can be said that the smaller the fourth index value is, the longer the production is wasted during the time when the production equipment 2 is started. The more time that is wasted, the more energy consumption that does not contribute to production.
  • the fifth index value indicates the amount of power consumption per unit production output.
  • the power consumption per unit production amount is obtained, for example, by dividing the daily power consumption amount by the daily production amount.
  • Output is any unit, such as the number, weight, or length of the product to be produced.
  • the index value calculation unit 23 includes the production amount information included in the production-related information stored in the production-related information storage unit 12 and the production equipment 2 and related equipment included in the production-related information stored in the production-related information storage unit 12.
  • the fifth index value is calculated based on the information of the power consumption of 3.
  • the index value calculation unit 23 calculates the daily total production amount based on the production amount information included in the production-related information. Further, the index value calculation unit 23 determines the power consumption of the production facility 2 and the power consumption of the related facility 3 on a daily basis based on the information of the power consumption of the production facility 2 and the related facility 3 included in the production-related information. And are added to calculate the total power consumption. The index value calculation unit 23 calculates the fifth index value by dividing the total power consumption by the total production amount on a daily basis. It can be said that the larger the fifth index value is, the more wasteful energy consumption that does not contribute to production increases.
  • the index value calculation unit 23 can also calculate an index value of a type other than the above-mentioned index.
  • the index value calculation unit 23 can calculate the total power consumption per day, the total production amount per day, the power consumption during the break time, and the like as index values.
  • the index value calculation unit 23 can also integrate the above-mentioned plurality of types of index values and calculate them as one index value. In this case, the index value calculation unit 23 calculates, for example, a value obtained by weighting and adding each index value according to the importance as one index value.
  • FIG. 6 is a diagram showing an example of a plurality of types of index values calculated by the index value calculation unit according to the first embodiment.
  • the first index value, the second index value, the third index value, the fourth index value, and the fifth index value are calculated on a daily basis.
  • the first index value is "15”
  • the second index value is "14”
  • the third index value is "213”
  • the fourth index value is "213”.
  • the index value of is "31”
  • the fifth index value is "0.37”.
  • the score calculation unit 24 calculates a score indicating the degree of influence of each of the plurality of factor candidates on the energy loss for each index based on the daily index value calculated by the index value calculation unit 23.
  • the score calculation unit 24 generates integrated information in which a plurality of types of index values and a plurality of factor candidates are associated with each other.
  • FIG. 7 is a diagram showing an example of integrated information according to the first embodiment.
  • the integrated information shown in FIG. 7 is information in which the first index value and a plurality of factor candidates are associated with each other, the first index value is set as an objective variable, and the first factor candidate information and the second factor are present. Information on a plurality of factor candidates including candidate information is set as explanatory variables.
  • the score calculation unit 24 generates integrated information similar to the integrated information shown in FIG. 7 for each of the second index value, the third index value, the fourth index value, and the fifth index value. do.
  • the score calculation unit 24 uses data mining using the above-mentioned integrated information to select a plurality of factor candidates for each of the first index, the second index, the third index, the fourth index, and the fifth index. A score indicating the degree of influence on each energy loss is calculated. Factor candidates with higher scores have a greater effect on energy loss.
  • the analysis method used in data mining is, for example, regression analysis, clustering, or frequent pattern extraction.
  • the score calculation unit 24 calculates the score by the regression analysis will be described, but the score calculation unit 24 can also perform data mining using an analysis method other than the multiple regression analysis.
  • the score calculation unit 24 performs preprocessing on the factor candidates and determines the value of each explanatory variable.
  • the score calculation unit 24 performs a type of preprocessing according to the factor candidate.
  • the types of preprocessing performed on the factor candidates include a first preprocessing and a second preprocessing. First, the first preprocessing will be described.
  • the first pre-processing is processing performed on factor candidates that cannot be expressed in quantity.
  • Factor candidates that cannot be expressed in quantity include, for example, “month”, “day of the week”, “week”, “production start time”, “production end time”, “target model”, "person in charge”, or "occurrence error”. Is.
  • the score calculation unit 24 represents the "day of the week” with seven types of explanatory variables when the factor candidate is the "day of the week”. Specifically, the score calculation unit 24 represents the day of the week with seven types of explanatory variables in which "1" is set when it is the corresponding day of the week among the seven types of days from Sunday to Monday. For example, when the "day of the week" is "Sunday", the score calculation unit 24 sets the value of the explanatory variable corresponding to Sunday to "1" among the seven types of explanatory variables, and sets the values of the other explanatory variables to "1". Set to "0".
  • the score calculation unit 24 sets the value of the explanatory variable corresponding to Monday to "1" among the seven types of explanatory variables, and sets the values of the other explanatory variables to "1". Set to "0".
  • the score calculation unit 24 represents the "person in charge” with the same number of types of explanatory variables as the number of persons in charge. For example, when the number of persons in charge is four, the score calculation unit 24 represents the “person in charge” with four types of explanatory variables. Further, the score calculation unit 24 represents the "target model” with the same number of explanatory variables as the type of the target model. For example, when the score calculation unit 24 has five types of target models, the score calculation unit 24 represents the “target model” with five types of explanatory variables. Further, the score calculation unit 24 represents the “occurrence error” with the same number of types of explanatory variables as the type of the occurrence error. For example, when the score calculation unit 24 has 10 types of occurrence errors, the score calculation unit 24 represents “occurrence error” with 10 types of explanatory variables.
  • the second process is a process performed on a factor candidate that can be represented by a quantity, and the factor candidate that can be represented by a quantity by the second process is represented by one explanatory variable.
  • Candidate factors that can be expressed in quantity are, for example, "average temperature”, “temperature fluctuation range”, “humidity average value”, “humidity fluctuation range”, “carbon dioxide average value”, and “carbon dioxide fluctuation”. Width, "average brightness”, and "brightness fluctuation range”.
  • the score calculation unit 24 performs a process of adjusting each explanatory variable so that the average is 0 and the variance is 1, as the second pre-process. Specifically, in the second process, the score calculation unit 24 calculates the average value of the factor candidates for each factor candidate, subtracts the average value of the factor candidates from the value of the factor candidates for each day, and the subtraction result. Is divided by the standard deviation to calculate the value of the explanatory variable.
  • the score calculation unit 24 reverses the positive / negative of the value of the explanatory variable calculated by the above method.
  • the index in which the energy loss decreases as the value increases is the fourth index value.
  • the score calculation unit 24 performs multiple regression analysis for each index using the following equation (1).
  • "n” is the total number of the above-mentioned explanatory variables
  • "y” is an index value
  • "x 1 ", "x 2 “, “x 3 “, ..., "”x n " is the value of the explanatory variable
  • "a 1 ", "a 2 ", “a 3 “, ..., " An " is a coefficient.
  • y a 1 x x 1 + a 2 x x 2 + a 3 x x 3 + ... an n x x n ... (1)
  • the score calculation unit 24 sets the values of a plurality of explanatory variables set in the integrated information for each index on a daily basis as “x 1 ”, “x 2 ”, “x 3 ”, ..., “X n ”. Is substituted into, and the difference between the value of "y” obtained by the equation (1) and the value of the target variable set in the integrated information is calculated. Score calculation unit 24, for example, for each index, so that the average value or the total value of the calculated difference is smallest, "a 1", “a 2", “a 3", ..., "a n ”Optimize.
  • the score calculation unit 24 calculates the absolute value of each coefficient as the score of the factor candidate for each index. For example, if "x 1 " is the explanatory variable corresponding to Sunday, the score for Sunday is "a 1 ". If “x 2 " is an explanatory variable corresponding to Monday, the score on Monday is “a 2 ".
  • the absolute value of the coefficient for the factor candidate that can be expressed in quantity is the score. For example, if "x 3 " is an explanatory variable for the average temperature, the average temperature score is the absolute value of "a 3".
  • the score calculation unit 24 generates integrated information, but it is sufficient if data mining processing can be performed for each index, and it is not necessary to generate integrated information. For example, when the score calculation unit 24 calculates the score of each factor candidate by multiple regression analysis, the score calculation unit 24 sets the index value as the value of the objective variable based on the information obtained from the information generation unit 22 and the index value calculation unit 23.
  • the value of the factor candidate may be the value of the explanatory variable, and is not limited to the above-mentioned example.
  • the information providing unit 25 shown in FIG. 2 outputs information on two or more factor candidates having a higher score calculated by the score calculating unit 24 for each index. For example, the information providing unit 25 arranges a plurality of factor candidates in descending order of the score calculated by the score calculation unit 24 to generate ranking information representing the plurality of factor candidates in the form of a ranking table, and at least among the generated ranking information. Outputs information on the top two factor candidates.
  • the information providing unit 25 causes the display unit 13 to display the ranking information generation unit 41 that generates the above-mentioned ranking information and the loss factor information including at least a part of the ranking information generated by the ranking information generation unit 41. It includes a display processing unit 42.
  • the display processing unit 42 causes the display unit 13 to display information including a preset number of factor candidates in descending order of the score among the ranking information in the form of a ranking table.
  • the display processing unit 42 can display the loss factor information, which is the information in which the factor candidates whose score is equal to or higher than the preset value in the ranking information are expressed in the form of the ranking table, on the display unit 13.
  • the display processing unit 42 can display all of the ranking information on the display unit 13 in the form of a ranking table.
  • the display processing unit 42 can display the loss factor information on the display unit 13 in a format other than the ranking table format.
  • FIG. 8 is a diagram showing an example of loss factor information displayed on the display unit by the information providing unit according to the first embodiment.
  • the loss factor information shown in FIG. 8 includes the types and contents of the five factor candidates with the highest scores as the estimation factors of energy loss for the first index.
  • the day of the week “Monday” has the highest score for the first index, the target model "A”, the week “4th week”, the month “March”, and the production end time "17:00”. It shows that the score is lower in the order of.
  • the energy management device 10 has a high degree of influence on energy loss by calculating a score indicating the degree of influence on energy loss of each of the plurality of factor candidates by using the index related to energy consumption in the diagnosis target. Multiple factors can be identified. Further, the energy management device 10 can present to the user information in the form of a ranking table in which a plurality of factor candidates are arranged in order of the degree of influence on energy loss. Therefore, the user can grasp the items having a high influence on the energy loss, and the diagnosis result of the energy management device 10 can be used for the examination of the improvement activity for the energy loss.
  • the score calculation unit 24 calculates the score of each factor candidate for each index, but for each factor candidate, it is possible to calculate the total score which is the total value of the scores of the plurality of indexes.
  • the ranking information generation unit 41 arranges a plurality of factor candidates in descending order of the total score calculated by the score calculation unit 24, and generates ranking information representing the plurality of factor candidates in the form of a ranking table.
  • the score calculation unit 24 calculates the scores of a plurality of factor candidates for each of the plurality of indicators, but the plurality of indicators are collectively used as an integrated index, and the scores of the plurality of factor candidates are calculated for the integrated index. You can also do it. For example, the score calculation unit 24 multiplies or adds the corresponding coefficients to each of the first index value, the second index value, the third index value, the fourth index value, and the fifth index value. Then, the total value of the multiplication results or the total value of the addition results can be calculated daily as the value of the integrated index. Then, the score calculation unit 24 can calculate the score of each of the plurality of factor candidates for the integrated index by data mining from the value of the integrated index and the value of the plurality of factor candidates.
  • FIG. 9 is a flowchart showing an example of processing by the processing unit of the energy management device according to the first embodiment.
  • the processing unit 11 of the energy management device 10 determines whether or not the information collection timing has come (step S10).
  • step S10 the processing unit 11 determines that the information collection timing has come when the information transmitted from the power sensor 4, the power sensor 5, the production amount sensor 6, the environment sensor 7, or the production control device 8 is received. Further, the processing unit 11 can also determine that the information collection timing has come when the timing arrives at a preset cycle.
  • step S10 the processing unit 11 updates the production-related information (step S11).
  • step S11 the processing unit 11 stores the information transmitted from the power sensor 4, the power sensor 5, the production amount sensor 6, the environment sensor 7, or the production management device 8 in the production-related information storage unit 12. Update production-related information by adding to.
  • the processing unit 11 sets the power sensor 4, the power sensor 5, the production amount sensor 6, the environment sensor 7, and the production control device 8 in step S11. Request information to be sent to.
  • the processing unit 11 receives information transmitted from the power sensor 4, the power sensor 5, the production amount sensor 6, the environment sensor 7, and the production control device 8 as requested.
  • the processing unit 11 updates the production-related information by adding the received information to the production-related information stored in the production-related information storage unit 12.
  • step S11 determines whether or not the diagnosis start timing has been reached (step S12).
  • step S12 the processing unit 11 determines that the diagnosis start timing has come, for example, when the user requests a diagnosis.
  • step S12 determines that the diagnosis start timing has come (step S12: Yes)
  • the processing unit 11 acquires the production-related information from the production-related information storage unit 12 (step S13).
  • the processing unit 11 generates factor candidate information based on the production-related information, calendar information, and the like acquired in step S13 (step S14).
  • the processing unit 11 calculates the daily index value for each index based on the production-related information acquired in step S13 (step S15).
  • the processing unit 11 calculates the score of each factor candidate for each index based on the factor candidate information generated in step S14 and the index value generated in step S15 (step S16). Based on the score of each factor candidate calculated in step S16, the processing unit 11 generates ranking information for each index in which a plurality of factor candidates are arranged in descending order of score (step S17). Then, the processing unit 11 displays at least a part of the ranking information for each index on the display unit 13 (step S18). In step S18, for example, the processing unit 11 displays the information of the top two or more factor candidates among the ranking information for each index on the display unit 13 in the form of a ranking table.
  • the processing unit 11 ends the processing shown in FIG. 9 when the processing in step S18 is completed or when it is determined that the diagnosis start timing has not been reached (step S12: No).
  • FIG. 10 is a diagram showing an example of the hardware configuration of the processing unit of the energy management device according to the first embodiment.
  • the processing unit 11 of the energy management device 10 includes a computer including a processor 101, a memory 102, and an input / output interface 103.
  • the input / output interface 103 includes a communication unit that transmits / receives information to / from the power sensors 4 and 5, the production amount sensor 6, the environment sensor 7, and the production control device 8.
  • the processor 101, the memory 102, and the input / output interface 103 can send and receive data to and from each other by, for example, the bus 104.
  • Each of a part of the information collecting unit 21 of the processing unit 11 and a part of the display processing unit 42 of the processing unit 11 is realized by the input / output interface 103.
  • the processor 101 executes the functions of the information collection unit 21, the information generation unit 22, the index value calculation unit 23, the score calculation unit 24, and the information provision unit 25 by reading and executing the program stored in the memory 102. ..
  • the processor 101 is, for example, an example of a processing circuit, and includes one or more of a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a system LSI (Large Scale Integration).
  • the memory 102 is one or more of RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). include.
  • the memory 102 also includes a recording medium on which a computer-readable program is recorded. Such recording media include one or more of non-volatile or volatile semiconductor memories, magnetic disks, flexible memories, optical disks, compact disks, and DVDs (Digital Versatile Discs).
  • the energy management device 10 may include integrated circuits such as an ASIC (Application Specific Integrated Circuit) and an FPGA (Field Programmable Gate Array).
  • the energy management device 10 includes an index value calculation unit 23, a score calculation unit 24, and an information providing unit 25.
  • the index value calculation unit 23 calculates one or more types of index values related to energy consumption in the diagnosis target including the production facility 2 based on the production-related information which is the information related to the past production.
  • the score calculation unit 24 is a candidate for each of a plurality of factor candidates that are candidates for energy consumption factors that did not contribute to production in the diagnosis target, based on one or more types of index values calculated by the index value calculation unit 23. Calculate a score that indicates the degree of impact on energy consumption that did not contribute to production.
  • the information providing unit 25 outputs information on two or more factor candidates having the highest score calculated by the score calculation unit 24 among the plurality of factor candidates.
  • the energy management device 10 has a high degree of influence on the energy consumption that did not contribute to the production by calculating the score indicating the degree of influence on the energy consumption that did not contribute to the production of each of the plurality of factor candidates. Multiple factors can be identified. Further, the energy management device 10 identifies the factors of energy consumption that did not contribute to production without taking the trouble of manually associating the factors of energy consumption that did not contribute to production with the characteristic pattern in advance. be able to.
  • the diagnosis target includes the related equipment 3 used in connection with the production equipment 2.
  • the production-related information includes information indicating the energy consumption of the production equipment 2, information indicating the energy consumption of the related equipment 3, and information indicating the production amount of the production equipment 2.
  • the index value calculation unit 23 calculates one or more types of index values based on the information indicating the energy consumption of the production equipment 2, the information indicating the energy consumption of the related equipment 3, and the information indicating the production amount of the production equipment 2. ..
  • the energy management device 10 treats the energy consumption of the related equipment 3 as a factor of energy consumption that does not contribute to production, for example, the energy consumption of the entire production facility 1 that does not contribute to production Information useful for improvement activities can be provided to users.
  • the index value calculated by the index value calculation unit 23 is at least one of a first index value, a second index value, a third index value, a fourth index value, and a fifth index value.
  • the first index value indicates the time from when the production equipment 2 is turned on until the production of the production equipment 2 is started.
  • the second index value indicates the time from the end of production by the production equipment 2 until the production equipment 2 is turned off.
  • the third index value indicates the difference between the time when the related equipment 3 is on and the time when the production equipment 2 is on.
  • the fourth index value indicates the ratio of the time during which the production facility 2 is in production to the time during which the production facility 2 is on.
  • the fifth index value indicates the energy consumption of the diagnosis target per unit production amount by the production equipment 2. In this way, the energy management device 10 can provide the user with useful information for energy consumption improvement activities that do not contribute to production from the viewpoint of easy grasping.
  • the energy management device 10 includes an information generation unit 22 that generates information on a plurality of factor candidates based on production-related information.
  • the score calculation unit 24 determines the production of each of the plurality of factor candidates based on the plurality of types of index values calculated by the index value calculation unit 23 and the information of the plurality of factor candidates generated by the information generation unit 22. Calculate a score that indicates the degree of impact on energy consumption that did not contribute. In this way, since the energy management device 10 generates information on a plurality of factor candidates in the production-related information, the load on the user can be significantly reduced as compared with the case where the information on the plurality of factor candidates is manually input. Can be done.
  • a plurality of factor candidates include the day, week, and month of the day when the goods were produced by the production equipment 2, the person in charge of production, the type of goods produced by the production equipment 2, the error that occurred in the production equipment 2, and the error that occurred in the production equipment 2. Includes two or more of the environments of production equipment 2.
  • the energy management device 10 has a plurality of factors having a high influence on energy consumption that did not contribute to production from the viewpoint of time, human, production target, production equipment 2, or environment. Can be identified.
  • the score calculation unit 24 calculates the score of each of the plurality of factor candidates for each of the plurality of types of index values.
  • the information providing unit 25 outputs information on two or more factor candidates having a higher score calculated by the score calculation unit 24 among the plurality of factor candidates for each of the plurality of types of index values.
  • the information providing unit 25 outputs ranking information representing a preset number of factor candidates in the form of a ranking table in order from the factor candidates having the highest score among the plurality of factor candidates.
  • the energy management device 10 can provide the user with information on a plurality of factors having a high influence on energy consumption that did not contribute to production in the form of a ranking table.
  • Embodiment 2 The energy management device according to the second embodiment corrects the score based on the contribution of each of the plurality of factor candidates to the user's improvement activity for the energy consumption that does not contribute to the production. It is different from the management device 10.
  • components having the same functions as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted, and the differences from the energy management device 10 of the first embodiment will be mainly described.
  • FIG. 11 is a diagram showing an example of the configuration of the energy management device according to the second embodiment.
  • the energy management device 10A according to the second embodiment is provided with an input unit 14 and a contribution information storage unit 15, and is provided with a processing unit 11A in place of the processing unit 11. It is different from the energy management device 10 of the first embodiment.
  • the input unit 14 is, for example, an input device such as a keyboard, a mouse, or a touch panel of a mobile terminal.
  • the processing unit 11A includes a contribution estimation unit 26. Further, the processing unit 11A includes an information providing unit 25A instead of the information providing unit 25.
  • the contribution estimation unit 26 estimates the contribution of each of the plurality of factor candidates to the improvement activity by the user for the energy consumption that does not contribute to production, based on the information input by the input unit 14.
  • the contribution estimation unit 26 stores information indicating the contribution of each of the estimated plurality of factor candidates in the contribution information storage unit 15.
  • the information providing unit 25A includes a ranking information generating unit 41A and a display processing unit 42A.
  • the ranking information generation unit 41A is a factor candidate corresponding to a plurality of factor candidates based on the contribution of each of the plurality of factor candidates estimated by the contribution estimation unit 26 and stored in the contribution information storage unit 15. Correct the score.
  • the ranking information generation unit 41A generates ranking information based on the corrected score.
  • the display processing unit 42A causes the display unit 13 to display loss factor information including an input box for inputting a user's evaluation, in addition to the types and contents of a plurality of higher-order estimation factors.
  • FIG. 12 is a diagram showing an example of loss factor information displayed on the display unit by the information providing unit according to the second embodiment.
  • the loss factor information shown in FIG. 12 includes, in addition to the contents of the loss factor information shown in FIG. 8, an input box for inputting a user's evaluation for each of a plurality of factor candidates.
  • the factor information includes a first input box corresponding to "useful” and a second input box corresponding to "useless” for each of the plurality of factor candidates.
  • the user inputs a check mark in the first input box corresponding to the factor candidate considered to be useful, and inputs a check mark in the second input box corresponding to the factor candidate considered to be useless.
  • the check mark is performed by, for example, a mouse click operation or a touch operation on the touch panel.
  • the contribution estimation unit 26 estimates the contribution of each factor candidate to the user's activity for energy consumption that does not contribute to production, based on the input history of each factor candidate in the first input box or the second input box. For example, the contribution estimation unit 26 estimates the contribution of each factor candidate to the user's activity for energy consumption that does not contribute to production by using the following equation (2).
  • "Z" is the degree of contribution to the user's activity for energy consumption that does not contribute to production
  • is a coefficient larger than 1
  • is a coefficient less than 1. ..
  • N is the number of times the user has entered a check mark in the first input box in the past
  • M is the number of times the user has entered a check mark in the second input box in the past. The number of times it was done.
  • Z ⁇ N ⁇ ⁇ M ...
  • the contribution estimation unit 26 can also estimate the user's contribution to each factor candidate by machine learning instead of calculating the contribution by the above equation (2).
  • the method of inputting the evaluation by the user is not limited to the first input box and the second input box, and is, for example, a method of selecting and inputing one of "useful” and “useless” in the selection box. May be good. Further, the evaluation by the user is not limited to two types of “useful” and “not useful”, and may be selected and input from three or more levels of information. In addition, the evaluation by the user may be input by a numerical value indicating the degree of usefulness.
  • the ranking information generation unit 41A acquires information indicating the contribution degree of each of the plurality of factor candidates estimated by the contribution degree estimation unit 26 from the contribution degree information storage unit 15.
  • the ranking information generation unit 41A multiplies each score of the plurality of factor candidates calculated by the score calculation unit 24 by the contribution of the corresponding factor candidate among the contributions of the plurality of factor candidates. Correct the score of each of the factor candidates.
  • the ranking information generation unit 41A corrects the score of "Monday” from “0.2” to "0.6” by multiplying "0.2” by "3". It can be said that the corrected score quantifies the degree of usefulness for the user's improvement activities for energy consumption that does not contribute to production.
  • the ranking information generation unit 41A arranges a plurality of factor candidates in descending order of the corrected score as described above, and generates ranking information representing the plurality of factor candidates in a ranking format.
  • the display processing unit 42A displays on the display unit 13 the loss factor information including at least a part of the ranking information generated by the ranking information generation unit 41A and the information of the first input box and the second input box described above. Display it.
  • the ranking information generation unit 41A causes the display unit 13 to display the loss factor information shown in FIG.
  • the score calculation unit 24 can also calculate the scores of each of the plurality of factor candidates for the integrated index.
  • the score calculation unit 24 multiplies each score of the plurality of factor candidates with respect to the integrated index by the contribution of the corresponding factor candidate among the contributions of the plurality of factor candidates, so that each of the plurality of factor candidates Correct the score.
  • the ranking information generation unit 41A generates ranking information based on the respective scores of the plurality of factor candidates after correction for the integrated index.
  • the energy management device 10A can identify a plurality of factors having a high degree of influence on energy consumption that do not contribute to production, similarly to the energy management device 10. Further, the energy management device 10A can preferentially provide the user with a factor candidate having a high degree of contribution to the user's improvement activity with respect to energy consumption that does not contribute to production. As a result, the user can grasp the factors that are highly effective for the user's improvement activity for energy consumption that does not contribute to production, and can use it for studying the energy consumption improvement activity that does not contribute to production.
  • FIG. 13 is a flowchart showing an example of processing by the processing unit of the energy management device according to the second embodiment. Since the processes of steps S20 to S22 shown in FIG. 13 are the same as the processes of steps S10 to S12 shown in FIG. 9, the description thereof will be omitted.
  • step S23 the processing unit 11A of the energy management device 10A determines that the diagnosis start timing has come (step S22: Yes).
  • the processing unit 11A performs the diagnosis process (step S23).
  • the process of step S23 is the process of steps S30 to S36 shown in FIG. 14, which will be described in detail later.
  • the processing unit 11A determines whether or not there is a user input when the processing in step S23 is completed or when it is determined that the diagnosis start timing has not been reached (step S22: No) (step S24). In step S24, the processing unit 11A, for example, when a check mark is input to the first input box corresponding to "useful” or the second input box corresponding to "useless” shown in FIG. It is determined that there is an input of.
  • step S24 When the processing unit 11A determines that the user has input (step S24: Yes), the processing unit 11A contributes each factor candidate to the user's improvement activity for energy loss, which is energy consumption that does not contribute to production, based on the user's input history. The degree is calculated (step S25). Then, the processing unit 11A stores the calculated information indicating the contribution degree of each factor candidate in the contribution degree information storage unit 15 (step S26).
  • the processing unit 11A ends the processing shown in FIG. 13 when the processing in step S26 is completed or when it is determined that there is no user input (step S24: No).
  • FIG. 14 is a flowchart showing an example of diagnostic processing by the processing unit of the energy management device according to the second embodiment. Since the processes of steps S30 to S33 shown in FIG. 14 are the same as the processes of steps S13 to S16 shown in FIG. 9, the description thereof will be omitted.
  • the processing unit 11A corrects each of the scores of the plurality of factor candidates based on the contribution of the corresponding factor candidates (step S34). Then, the processing unit 11A generates ranking information for each index based on the corrected score for each index (step S35). In step S35, the processing unit 11A generates ranking information for each index in which a plurality of factor candidates are arranged in descending order of score based on the score of each factor candidate corrected in step S34.
  • step S35 the processing unit 11A generates ranking information in which a plurality of factor candidates are arranged in descending order of the corrected score based on the score of each factor candidate corrected in step S34. Then, the processing unit 11A displays at least a part of the ranking information generated in step S35 on the display unit 13 (step S36), and ends the process shown in FIG.
  • An example of the hardware configuration of the processing unit 11A of the energy management device 10A according to the second embodiment is the same as the hardware configuration of the processing unit 11 of the energy management device 10 shown in FIG.
  • the processor 101 reads and executes the program stored in the memory 102, thereby causing the information collection unit 21, the information generation unit 22, the index value calculation unit 23, the score calculation unit 24, the information provision unit 25A, and the contribution estimation unit. Twenty-six functions can be performed.
  • the energy management device 10A includes a contribution estimation unit 26.
  • the contribution estimation unit 26 estimates the contribution of each of the plurality of factor candidates to the user's improvement activities for energy consumption that does not contribute to production.
  • the information providing unit 25A corrects the score of the corresponding factor candidate among the plurality of factor candidates based on the contribution of each of the plurality of factor candidates estimated by the contribution estimation unit 26, and based on the corrected score. , Generate ranking information.
  • the energy management device 10A can preferentially provide the user with a factor candidate having a high degree of contribution to the user's improvement activity with respect to energy consumption that does not contribute to production. Therefore, the user can grasp the factors that are highly effective for the user's improvement activity for energy consumption that does not contribute to production, and can use it for studying the energy consumption improvement activity that does not contribute to production.
  • Embodiment 3 The energy management system according to the third embodiment is learning to input information of one or more kinds of index values based on the information obtained from the energy management device and output the scores of candidates of energy consumption factors that did not contribute to production. It has a server that generates a model.
  • the components having the same functions as those of the second embodiment will be designated by the same reference numerals and the description thereof will be omitted, and the differences from the second embodiment will be mainly described.
  • FIG. 15 is a diagram showing an example of the configuration of the energy management system according to the third embodiment.
  • the energy management system 200 according to the third embodiment includes energy management devices 10B 1 , 10B 2 , 10B 3 , a server 50, and a mobile terminal 60.
  • the energy management devices 10B 1 , 10B 2 , and 10B 3 have the same configuration as each other. In the following, when each of the energy management devices 10B 1 , 10B 2 , and 10B 3 is shown without distinction, it is described as the energy management device 10B. May be done.
  • each energy management device 10B is connected to a power sensor, a production volume sensor, an environment sensor, a production control device, and the like (not shown), and these power sensors, a production volume sensor, an environment sensor, and the like. Collect information from production control equipment. Each energy management device 10B associates the collected information with the time at the time of collection and adds it to the production-related information.
  • the power sensor, the production amount sensor, the environmental sensor, and the production management device connected to the energy management device 10B are provided in different production facilities 1 for each energy management device 10B.
  • the energy management device 10B Similar to the energy management device 10A, the energy management device 10B generates factor candidate information including a plurality of factor candidate information that is a candidate for a factor that causes energy loss based on production-related information. Further, the energy management device 10B calculates one or more types of index values related to energy consumption in a diagnosis target including production equipment (not shown) and related equipment, similarly to the energy management device 10A. Further, the energy management device 10B, like the energy management device 10A, calculates a score indicating the degree of influence of each of the plurality of factor candidates on the energy loss for each index.
  • the energy management device 10B transmits learning information to the server 50.
  • the learning information includes information on one or more types of index values, information on scores of each factor candidate for each index, and identification information on the energy management device 10B.
  • the score of the factor candidate may be described as the factor score.
  • the score of the factor candidate included in the learning information is a score calculated by the score calculation unit 24, but may be a score corrected by the ranking information generation unit 41A.
  • the server 50 is connected to the energy management device 10B and the mobile terminal 60 via a network (not shown), and transmits / receives information between the energy management device 10B and the mobile terminal 60.
  • the network (not shown) is, for example, a WAN (Wide Area Network) such as the Internet, but may be a network such as a LAN (Local Area Network).
  • the server 50 acquires learning information from the energy management device 10B that stores production-related information in an amount sufficient to calculate the factor score, and based on the acquired learning information, one or more types of indexes. Generate a trained model that inputs value information and outputs multiple factor scores.
  • the server 50 acquires the diagnosis target information including the information of one or more kinds of index values from the energy management device 10B which does not store the production-related information of an amount of information sufficient for calculating the factor score.
  • the energy management device 10B that does not store a sufficient amount of production-related information for calculating the factor score is, for example, a production in which the energy management device 10B newly installed in the production facility 1 or a new facility is installed. It is an energy management device 10B installed in the facility 1.
  • the server 50 calculates a plurality of factor scores based on the diagnosis target information acquired from the energy management device 10B and the trained model information generated by learning based on the learning information, and the calculated factor score is higher.
  • the diagnosis result information including the information of two or more factor candidates is transmitted to the mobile terminal 60 or the energy management device 10B that has transmitted the diagnosis target information.
  • the mobile terminal 60 is, for example, a smartphone, a tablet, a notebook computer, or the like, and displays information on two or more top factor candidates based on the diagnosis result information transmitted from the server 50. Further, the processing unit 11B of the energy management device 10B that has transmitted the diagnosis target information displays the information of the upper two or more factor candidates on the display unit 13 based on the diagnosis result information transmitted from the server 50.
  • the server 50 calculates the factor score for one or more types of indicators based on the information from the energy management device 10B that does not store the production-related information in an amount sufficient to calculate the factor score. Then, the diagnosis result information including the information of the two or more factor candidates whose calculated factor scores are high is provided.
  • the server 50 may not sufficiently collect production-related information about the equipment to be diagnosed, for example, within a few days after the energy management device 10B is introduced. However, it is possible to identify a plurality of factors that have caused energy consumption that does not contribute to production, based on the information of the diagnosed equipment for which the diagnosis has already been completed.
  • the configurations of the energy management device 10B and the server 50 will be specifically described.
  • FIG. 16 is a diagram showing an example of the configuration of the energy management device according to the third embodiment.
  • the energy management device 10B according to the third embodiment includes the processing unit 11B instead of the processing unit 11, and further includes the communication unit 16, and the energy management according to the second embodiment. Different from device 10A.
  • the communication unit 16 transmits / receives information to / from the server 50 via a network (not shown).
  • the processing unit 11B is different from the processing unit 11A according to the second embodiment in that the information providing unit 25B is provided instead of the information providing unit 25A.
  • the information providing unit 25B provides information on one or more types of index values calculated by the index value calculation unit 23, score information for each index of a plurality of factor candidates calculated by the score calculation unit 24, and energy management.
  • the learning information including the identification information of the device 10B is generated.
  • the information providing unit 25B transmits the generated learning information to the server 50 via the communication unit 16.
  • the information providing unit 25B has one or more types of indexes calculated by the index value calculation unit 23.
  • the diagnosis target information including the value information is transmitted to the server 50 via the communication unit 16.
  • the amount of information of the production-related information stored in the production-related information storage unit 12 of the energy management device 10B 3 is not sufficient for calculating the factor score, and the production-related information storage of the energy management devices 10B 1 and 10B 2 is performed. In some cases, the amount of production-related information stored in unit 12 is sufficient to calculate the factor score.
  • FIG. 17 is a diagram showing an example of the configuration of the server according to the third embodiment.
  • the server 50 according to the third embodiment includes a communication unit 51, an information acquisition unit 52, a factor estimation unit 53, and a storage unit 54.
  • the communication unit 51 transmits / receives information to / from the energy management device 10B and the mobile terminal 60 via a network (not shown).
  • the information acquisition unit 52 acquires information such as learning information or diagnosis target information transmitted from the energy management device 10B and received by the communication unit 51.
  • the information acquisition unit 52 stores the information acquired from the energy management device 10B in the storage unit 54, or outputs the information to the factor estimation unit 53.
  • the factor estimation unit 53 learns the factors that caused energy consumption that does not contribute to production in the diagnosed equipment based on the learning information, and performs a learning model.
  • the diagnosed equipment is a production equipment in which sufficient production-related information is accumulated to estimate the factors that caused energy consumption in the energy management device 10B. For example, the diagnosis of the energy management devices 10B 1 and 10B 2 is performed. This is the target equipment.
  • the factor estimation unit 53 causes a plurality of energy consumptions that do not contribute to production in the diagnosis target equipment based on the diagnosis target information and the learned model 57. Estimate the factors. Diagnosed facility, for example, a newly installed equipment production facility 1, which is diagnosed equipment from energy management device 10B 3.
  • the factor estimation unit 53 includes a model generation unit 55 and an inference unit 56.
  • the model generation unit 55 performs learning based on the input information and the label information obtained based on the learning information output from the information acquisition unit 52, and generates a trained model that estimates an appropriate output from the input information.
  • the input information is information on one or more types of index values
  • the label information is information on the score for each index of the plurality of factor candidates.
  • the model generation unit 55 performs learning by supervised learning using, for example, a neural network model.
  • learning information including a set of input information and result information called a label is given to a learning device to learn the characteristics of the learning information, and the result is obtained from the input.
  • a method of inferring is also called a dataset.
  • a neural network is composed of an input layer composed of a plurality of neurons, an intermediate layer composed of a plurality of neurons, and an output layer composed of a plurality of neurons.
  • the intermediate layer may be one layer or two or more layers.
  • the middle layer is also called the hidden layer.
  • FIG. 18 is a diagram showing an example of the neural network according to the third embodiment.
  • the neural network shown in FIG. 18 is a three-layer neural network, and includes input layers X1, X2, X3, intermediate layers Y1, Y2, and output layers Z1, Z2, Z3.
  • the weight W1 When a plurality of input values included in the input information are input to the input layers X1, X2, X3, the weight W1 is multiplied by the plurality of input values, and the plurality of input values multiplied by the weight W1 are the intermediate layers Y1, Y2. Is entered in.
  • the weight W1 includes w11, w12, w13, w14, w15, w16.
  • the weight W2 includes w21, w22, w23, w24, w25, w26.
  • an operation is performed based on a plurality of values obtained by multiplying the operation results of the intermediate layers Y1 and Y2 by the weight W2, and the operation results are output from the output layers Z1, Z2 and Z3.
  • the output result of the neural network depends on the values of the weights W1 and W2.
  • the model generation unit 55 executes the above-mentioned learning using the learning information. Generate the trained model 57.
  • the model generation unit 55 stores the generated learned model 57 in the storage unit 54.
  • the model generation unit 55 generates a trained model 57 that inputs information on one or more types of index values and outputs factor scores of a plurality of factor candidates.
  • the information of one or more kinds of index values includes, for example, information on the sampling period and information on the input index value.
  • the model generation unit 55 performs learning using the sampling period information and the input index value information as input information and the plurality of factor score information as label information.
  • the input index value is, for example, a value obtained by averaging each of the first index value, the second index value, the third index value, the fourth index value, and the fifth index value in the sampling period.
  • the plurality of factor scores indicated by the label information are, for example, energy management for each of the first index value, the second index value, the third index value, the fourth index value, and the fifth index value.
  • a plurality of factor scores calculated by the device 10B are added for each factor candidate.
  • the sampling period information and the input index value information may be generated by the energy management device 10B and included in the learning information, and a model is generated based on the learning information transmitted from the energy management device 10B. It may be generated by part 55.
  • an example of using a neural network is given as an example of the learning method of the model generation unit 55, but the learning method of the model generation unit 55 is not limited to the above-mentioned example, and is, for example, genetic programming or. It may be a learning method such as a support vector machine.
  • the reasoning unit 56 generates the diagnosis target information obtained from the energy management device 10B for diagnosing the energy consumption factor of the new diagnosis target equipment or the information based on the diagnosis target information, and the trained model 57 generated by the model generation unit 55. Enter in.
  • the inference unit 56 learns the sampling period information and the input index value information included in the diagnosis target information. Enter in 57.
  • the inference unit 56 when the diagnosis target information does not include the sampling period information and the input index value, the inference unit 56 includes a first index value, a second index value, and a third index value indicated by the diagnosis target information. A value obtained by averaging each of the fourth index value and the fifth index value in a preset sampling period is calculated as an input index value. The inference unit 56 inputs the calculated input index value information and the sampling period information into the trained model 57.
  • the inference unit 56 determines information on two or more factor candidates having the highest factor scores based on the factor scores output from the trained model 57 among the plurality of factor candidates.
  • the inference unit 56 outputs high-ranking factor information, which is information on two or more factor candidates having high-ranking factor scores.
  • the higher-level factor information output from the inference unit 56 is transmitted by the communication unit 51 to the mobile terminal 60 or the energy management device 10B that has transmitted the diagnosis target information.
  • the input index value may be an integrated index value that is a collection of a plurality of types of index values instead of the average value of each of the plurality of types of index values.
  • the integrated index value may be a value obtained by integrating a weighted value for each of a plurality of types of index values, for example, a value obtained by multiplying each of the plurality of types of index values by a coefficient.
  • the information of the input index value may be the information of one kind of index value.
  • the input information includes the sampling period information, but when the sampling period is a predetermined fixed sampling period, the input information does not have to include the sampling period information. ..
  • the server 50 learns using the learning information output from the energy management devices 10B 1 and 10B 2 that collect sufficient production-related information for diagnosing the energy consumption factor of the production equipment 2. Generates the trained model 57 by. Then, the server 50 uses the trained model 57 to estimate the factors with a high improvement effect among the factors of energy consumption that did not contribute to the production in the equipment to be diagnosed in which the collection of production-related information is not sufficiently collected. do. As a result, the server 50 can provide information that can be useful for examining energy consumption improvement activities even for the equipment to be diagnosed for which the collection of production-related information is not sufficiently collected.
  • FIG. 19 is a flowchart showing an example of processing by the processing unit of the energy management device according to the third embodiment. Since the processing of steps S40, S41, S44 to S48, S50, and S51 shown in FIG. 19 is the same as the processing of steps S10 to S18 shown in FIG. 9, the description thereof will be omitted.
  • the processing unit 11B of the energy management device 10B determines whether or not the diagnosis target information transmission timing has come after the production-related information is updated in step S41 (step S42).
  • the diagnosis target information transmission timing is, for example, a timing that occurs every preset sampling period when the amount of information related to production is less than the amount of information for generating ranking information.
  • step S42 determines that the diagnosis target information transmission timing has come (step S42: Yes)
  • the processing unit 11B generates and transmits the diagnosis target information (step S43).
  • the processing unit 11B includes information on one or more types of index values related to energy consumption in the diagnostic target including the production equipment based on the production-related information stored in the production-related information storage unit 12.
  • the diagnosis target information is generated, and the generated diagnosis target information is transmitted to the server 50 via the communication unit 16.
  • the processing unit 11B performs the processing of step S44 when the processing of step S43 is completed or when it is determined that the diagnosis target information transmission timing has not been reached (step S42: No).
  • step S48 the processing unit 11B calculates the score of each factor candidate for each index, and then the information of one or more types of index values calculated in step S47 and the score of each factor candidate for each index calculated in step S48.
  • the learning information including the information is transmitted to the server 50 via the communication unit 16 (step S49).
  • FIG. 20 is a flowchart showing an example of the learning process by the server according to the third embodiment.
  • the information acquisition unit 52 of the server 50 acquires learning information from the energy management device 10B (step S60).
  • the information acquisition unit 52 acquires learning information from , for example, the energy management device 10B 1 and the energy management device 10B 2.
  • the model generation unit 55 of the factor estimation unit 53 on the server 50 executes a learning process to generate the learned model 57 based on the learning information acquired by the information acquisition unit 52 (step S61).
  • the model generation unit 55 learns acquired by the information acquisition unit 52. Generates sampling period information and input index value information based on the information.
  • the model generation unit 55 uses the information of the sampling period and the information of the input index value as the input information and the information of each factor score as the label information, and performs learning by so-called supervised learning to generate the learned model 57.
  • the model generation unit 55 of the factor estimation unit 53 generates the trained model 57, stores the information of the generated trained model 57 in the storage unit 54 (step S62), and ends the process shown in FIG.
  • FIG. 21 is a flowchart showing an example of inference processing by the server according to the third embodiment.
  • the information acquisition unit 52 of the server 50 acquires the diagnosis target information from the energy management device 10B (step S70).
  • the information acquisition unit 52 acquires the diagnosis target information from , for example, the energy management device 10B 3.
  • the factor estimation unit 53 calculates a plurality of factor scores based on the diagnosis target information acquired by the information acquisition unit 52 and the information of the learned model 57 stored in the storage unit 54 (step S71). .. In the process of step S71, the factor estimation unit 53 inputs the diagnosis target information acquired by the information acquisition unit 52 or the information based on the diagnosis target information into the trained model 57, and the trained model is calculated by the calculation of the trained model 57. A plurality of factor scores output from 57 are acquired.
  • the diagnosis target information or the information based on the diagnosis target information includes sampling period information and input index value information.
  • the factor estimation unit 53 estimates two or more factor candidates having the highest factor scores as factors having a high improvement effect based on the factor scores calculated in step S71 among the plurality of factor candidates (step S72). ..
  • the factor estimation unit 53 transmits the estimated factor information having a high improvement effect to the mobile terminal 60 via the communication unit 51 (step S73), and ends the process of FIG. 21.
  • FIG. 22 is a flowchart showing an example of processing by the mobile terminal according to the third embodiment.
  • the mobile terminal 60 when the identification number of the energy management device 10B 3 of the equipment to be diagnosed is input by the operation of the operation unit (not shown) by the user, the mobile terminal 60 has the identification number of the energy management device 10B 3 .
  • a diagnostic request including the above is transmitted to the server 50 (step S80).
  • the server 50 that has received the diagnosis request executes the inference process shown in FIG. 21 based on the diagnosis target information of the energy management device 10B 3 , and transmits the higher-level factor information obtained by the inference process to the mobile terminal 60.
  • the mobile terminal 60 receives the higher-level factor information transmitted from the server 50 in response to the transmission of the diagnosis request to the server 50 (step S81). Then, the mobile terminal 60 displays the received higher-level factor information on a display unit (not shown) (step S82), and ends the process shown in FIG. 22.
  • the user of the mobile terminal 60 has an improvement effect among a plurality of factor candidates that are candidates for energy consumption factors that did not contribute to production in the equipment to be diagnosed in which the collection of production-related information is not sufficiently collected. It is possible to grasp the information of the factor candidates with high.
  • the factor estimation unit 53 of the server 50 learns learning information based on the index value information of the diagnosed equipment and the factor score information, and makes a diagnosis at the time of estimation after learning.
  • the factor is estimated by inputting the target information or the information based on the diagnosis target information.
  • the diagnosis target information input to the factor estimation unit 53 may be input to the server 50 by the user using the diagnosis result in the same organization, or may be input to the server 50 by the provider of the energy management device 10B through a cloud service or the like. It can also be input to the server 50.
  • An example of the hardware configuration of the processing unit 11B of the energy management device 10B according to the third embodiment is the same as the hardware configuration of the processing unit 11 of the energy management device 10 shown in FIG.
  • the processor 101 can execute the function of the processing unit 11B by reading and executing the program stored in the memory 102.
  • FIG. 23 is a diagram showing an example of the hardware configuration of the server according to the third embodiment.
  • the server 50 includes a computer including a processor 201, a memory 202, and a communication device 203.
  • the storage unit 54 is realized by the memory 202.
  • the communication unit 51 is realized by the communication device 203.
  • the processor 201, the memory 202, and the communication device 203 can send and receive data to and from each other by, for example, the bus 204.
  • the processor 201 executes the functions of the information acquisition unit 52 and the factor estimation unit 53 by reading and executing the program stored in the memory 202.
  • the processor 201 is, for example, an example of a processing circuit, and includes one or more of a CPU, a DSP, and a system LSI.
  • the memory 202 includes one or more of RAM, ROM, flash memory, EPROM, and EEPROM.
  • the memory 202 also includes a recording medium on which a computer-readable program is recorded.
  • Such recording media include one or more of non-volatile or volatile semiconductor memories, magnetic disks, flexible memories, optical discs, compact disks, and DVDs.
  • the server 50 may include integrated circuits such as ASIC and FPGA.
  • the server 50 includes the model generation unit 55.
  • the model generation unit 55 generates a trained model 57 that inputs information on one or more types of index values and outputs a plurality of factor scores based on the learning information.
  • the learning information includes information on one or more types of index values and information on factor scores, which are scores of each of a plurality of factor candidates.
  • the server 50 can generate a trained model 57 that outputs information on a plurality of factor scores from information on one or more types of index values.
  • the server 50 includes an inference unit 56.
  • the inference unit 56 inputs information on one or more types of index values related to energy consumption in the diagnosis target of other energy management devices 10B 3 different from the energy management devices 10B 1 and 10B 2 into the trained model 57, and is a trained model. Based on the information output from 57, the top two or more factor candidates among the plurality of factor candidates are determined. As a result, the server 50 has already completed the diagnosis even when the collection of production-related information regarding the equipment to be diagnosed is not sufficient, for example, within a few days after the energy management device 10B 3 is introduced. It is possible to estimate the improvement factors that can be expected to be effective by referring to the information on the diagnosed equipment.
  • the server 50 includes a communication unit 51 that transmits information of two or more upper factor candidates determined by the inference unit 56 to the energy management device 10B 3 or the mobile terminal 60.
  • the mobile terminal 60 is an example of an external device.
  • the server 50 can provide the user with useful information for energy consumption improvement activities that do not contribute to production.
  • Embodiment 4 The server of the energy management system according to the fourth embodiment generates a radar chart using the degree of variation of a plurality of types of index values, and normalizes one or more types of index values and normalizes one or more types of indexes. It differs from the server 50 according to the third embodiment in that the value information is used in the learning process and the inference process.
  • components having the same functions as those in the third embodiment will be designated by the same reference numerals and description thereof will be omitted, and the differences from the third embodiment will be mainly described.
  • FIG. 24 is a diagram showing an example of the configuration of the energy management system according to the fourth embodiment.
  • the energy management system 200A shown in FIG. 24 is different from the energy management system 200 according to the third embodiment in that the server 50A is provided instead of the server 50.
  • the server 50A determines the degree of variation among a plurality of types of index values based on the learning information of the energy management device 10B in which the collection of production-related information is sufficiently collected, and corresponds to each of the plurality of types of indexes.
  • a radar chart showing information on the top two or more factor candidates and information on the degree of variation in index values is generated.
  • the server 50A can present to the user information such as a radar chart that allows the user to intuitively grasp the degree of mutual influence between the indexes.
  • the server 50A normalizes one or more types of index values indicated by the learning information of the energy management device 10B in which the collection of production-related information is sufficiently collected, and is based on the normalized one or more types of index values. And perform the learning process. Further, the server 50A normalizes each index value indicated by the diagnosis target information of the energy management device 10B for which the collection of production-related information is not sufficiently collected, and is based on the information of one or more types of normalized index values. , Performs inference processing.
  • the server 50A distributes index values having different possible ranges among the plurality of energy management devices 10B even if the features or usage conditions of the equipment to be diagnosed differ among the plurality of energy management devices 10B. Units can be compared on the same scale. Therefore, the server 50A can accurately estimate the improvement factor that can be expected to be effective by referring to the information of the diagnosed equipment for which the diagnosis has already been completed.
  • FIG. 25 is a diagram showing an example of the configuration of the server according to the fourth embodiment.
  • the server 50A according to the fourth embodiment includes a factor estimation unit 53A instead of the factor estimation unit 53, and further includes an index normalization unit 58 and a radar chart generation unit 59. It is different from the server 50 according to the third embodiment. First, the index normalization unit 58 and the radar chart generation unit 59 will be described.
  • the index normalization unit 58 normalizes each index value having a different unit and possible range of values.
  • the index normalization unit 58 for example, normalizes a plurality of types of index values indicated by the information acquired by the information acquisition unit 52 to generate a plurality of types of normalization index values.
  • the index normalization unit 58 normalizes a plurality of types of index values indicated by the learning information acquired by the information acquisition unit 52 to generate a plurality of types of first normalization index values. Further, the index normalization unit 58 normalizes a plurality of types of index values indicated by the diagnosis target information to generate a plurality of types of second normalization index values.
  • the "minimum value” is the minimum index value among the plurality of index values for the same index
  • the "maximum value” is the maximum of the plurality of index values for the same index. It is an index value
  • the "average value” is an average value of a plurality of index values for the same index.
  • the index normalization unit 58 evaluates the degree of variation in the index value in, for example, five stages in order for the radar chart generation unit 59 to generate a radar chart. For example, it is assumed that the degree of variation of the index value calculated by the above formula (3) takes a value from 1 to 100, and the variation of the index value is evaluated by the index normalization unit 58 on a 5-point score.
  • the index normalization unit 58 sets the score of the 5-grade evaluation to "5" and the degree of variation of the index value is "21 to 40". If it is in the range, the score of the 5-grade evaluation is set to "4", and if the degree of variation of the index value is in the range of "41 to 60", the score of the 5-grade evaluation is set to "3". Further, the index normalization unit 58 sets the score of the 5-grade evaluation to "2" if the degree of variation of the index value is in the range of "61 to 80", and the degree of variation of the index value is in the range of "81 to 100". If there is, the score of the 5-grade evaluation is set to "1".
  • the index normalization unit 58 can lower the score for an index with a large degree of variation and increase the score for an index with a small degree of variation.
  • a score indicating variation in index values may be referred to as a variation score.
  • the radar chart generation unit 59 includes a variation score of each index determined by the index normalization unit 58, and a factor score for each index of a plurality of factor candidates included in the learning information acquired by the information acquisition unit 52. Generate a radar chart based on. Such a radar chart can represent the balance between each index.
  • the radar chart generation unit 59 generates a radar chart for each energy management device 10B, but it is also possible to generate one radar chart for a plurality of energy management devices 10B.
  • the radar chart generation unit 59 transmits the generated radar chart information to the mobile terminal 60 or the energy management device 10B that has transmitted the learning information via the communication unit 51.
  • the mobile terminal 60 acquires the radar chart information from the server 50A
  • the mobile terminal 60 displays the radar chart on a display unit (not shown).
  • the processing unit 11B of the energy management device 10B that has transmitted the learning information acquires the radar chart information from the server 50A
  • the display unit 13 displays the radar chart.
  • FIG. 26 is a diagram showing an example of a radar chart displayed on the display unit of the mobile terminal according to the fourth embodiment
  • FIG. 27 is a radar chart displayed on the display unit of the mobile terminal according to the fourth embodiment. It is a figure which shows another example.
  • the radar chart 80 shown in FIG. 26 is, for example, the diagnosis result of the energy management device 10B 1
  • the radar chart 81 shown in FIG. 27 is, for example, the diagnosis result of the energy management device 10B 2.
  • the radar charts 80 and 81 show the degree of variation in the index values for each of the first index, the second index, the third index, the fourth index, and the fifth index, and the top ranks having a high improvement effect on production. Two factors are shown. In these radar charts 80 and 81, the numbers “1, 2, 3, 4, 5" at each vertex indicate the type of index, and the alphabet "a, b, c, d, e, f," of each vertex. “G” indicates the top two factors with high improvement effects. The top two factors with high improvement effects are the top two factors among the multiple factors of energy consumption that do not contribute to production for each index.
  • the first index has a score of "4", the top two factors having a high improvement effect are “a” and “c”, and the second index is. , The score is “2”, the top two factors with high improvement effect are “b” and “c”, and the third index is the score with "5", the top two factors with high improvement effect. Are “a” and "b”.
  • the fourth index has a score of "4", the top two factors having a high improvement effect are “d” and "e”, and the fifth index has a score of "3". The top two factors with high improvement effects are "d” and "f”.
  • the first index has a score of "4", the top two factors having a high improvement effect are “c” and “g”, and the second index is.
  • the score is "5", the top two factors with high improvement effect are “d” and “e”, and the third index is the score with "4", the top two factors with high improvement effect.
  • the fourth index has a score of "4", the top two factors having a high improvement effect are “d” and "f”, and the fifth index has a score of "3”.
  • the top two factors with high improvement effects are "f” and "g”.
  • the user can grasp at a glance the top two factors having a high improvement effect for each index by the radar charts 80 and 81. Further, the user can intuitively and easily grasp the index having a large degree of variation by the radar charts 80 and 81. For example, the user can intuitively and easily grasp that the index having the largest degree of variation is the second index by the radar chart 80, and the index having the largest degree of variation is the fifth index by the radar chart 81. Can be grasped intuitively and easily.
  • the information of the radar charts 80 and 81 can be generated by the server 50A, and the information of the radar charts 80 and 81 is displayed on the mobile terminal 60 or the energy management device 10B. Therefore, the user can intuitively know the index having a large room for improvement, and can effectively utilize it by examining the improvement activity for the energy loss.
  • the index normalization unit 58 can also determine the degree of variation of each index value by an algorithm for determining variation other than the above equation (3).
  • the index normalization unit 58 can determine the degree of variation of each index value by using the usual variance ⁇ or other methods.
  • an evaluation method of the degree of variation of each index value by the index normalization unit 58 an evaluation method that can easily present room for improvement to the user according to the degree of dispersion of the index value collected from each facility is appropriately adopted. ..
  • the factor estimation unit 53A uses one or more types of index values normalized by the index normalization unit 58 in each of the learning process and the inference process, and the factor estimation unit 53A uses one or more types of index values that are not normalized. Different from part 53.
  • the factor estimation unit 53A is different from the factor estimation unit 53 according to the third embodiment in that the model generation unit 55A and the inference unit 56A are provided in place of the model generation unit 55 and the inference unit 56.
  • the model generation unit 55A performs learning using one or more types of first normalization index values in which the input index values are normalized by the index normalization unit 58 instead of the input index values included in the learning information. It differs from the model generation unit 55 in that it performs and generates the trained model 57.
  • the trained model 57 generated by the model generation unit 55A is a model in which input index values based on one or more types of first normalized index values are input and factor scores of a plurality of factor candidates are output. For one or more types of the first normalized index value, for example, each of the first index value, the second index value, the third index value, the fourth index value, and the fifth index value is normalized. It is a value averaged over the sampling period.
  • the input index value may be an integrated index value in which a plurality of types of index values are combined, instead of the average value of each of the plurality of types of index values.
  • the inference unit 56A replaces one or more types of index values included in the diagnosis target information with one or more types of second normalization index values in which the one or more types of index values are normalized by the index normalization unit 58.
  • Information is input to the trained model 57.
  • For one or more types of the second normalized index value for example, each of the first index value, the second index value, the third index value, the fourth index value, and the fifth index value is normalized. It is a value averaged over the sampling period. Similar to the inference unit 56, the inference unit 56A determines information on two or more factor candidates having a higher factor score output from the learned model 57 among the plurality of factor candidates.
  • the server 50A since the server 50A includes the index normalization unit 58 that normalizes one or more types of index values, the characteristics or usage status of the equipment to be diagnosed may differ in the plurality of energy management devices 10B. However, it is possible to compare the distributions or units of index values having different possible ranges among the plurality of energy management devices 10B on the same scale.
  • FIG. 28 is a flowchart showing an example of the learning process by the server according to the fourth embodiment.
  • the processes of steps S90 and S93 of FIG. 28 are the processes of steps S60 and S62 shown in FIG. 20, and the description thereof will be omitted.
  • the index normalization unit 58 of the server 50A normalizes one or more types of index values indicated by the learning information acquired in step S90 after the processing of step S90 is completed. Normalization processing is performed (step S91).
  • the model generation unit 55A learns based on the sampling period and label information included in the learning information acquired by the information acquisition unit 52 and the information of one or more types of index values normalized by the index normalization unit 58.
  • a learning process for generating the completed model 57 is executed (step S92).
  • the model generation unit 55A uses the sampling period information and the normalized one or more kinds of index value information as input information and the information of each factor score as label information, and performs learning by so-called supervised learning. This is done to generate the trained model 57.
  • FIG. 29 is a flowchart showing an example of inference processing by the server according to the fourth embodiment. Since the processing of steps S100, S103, and S104 shown in FIG. 29 is the same as the processing of steps S70, S72, and S73 shown in FIG. 21, the description thereof will be omitted.
  • the index normalization unit 58 of the server 50A performs an index value normalization process for normalizing one or more types of index values indicated by the diagnosis target information acquired by the information acquisition unit 52 (step). S101).
  • the factor estimation unit 53A of the server 50A is stored in the information and storage unit 54 of one or more types of second normalization index values, which are one or more types of index values normalized by the index normalization unit 58.
  • a plurality of factor scores are calculated based on the information of the trained model 57 (step S102).
  • the factor estimation unit 53A inputs the information of the second normalization index value into the trained model 57, and a plurality of factor scores output from the trained model 57 by the calculation of the trained model 57. To get.
  • the processor 201 can execute the functions of the factor estimation unit 53A, the index normalization unit 58, and the radar chart generation unit 59 by reading and executing the program stored in the memory 202.
  • the server 50A includes an index normalization unit 58 and a radar chart generation unit 59.
  • the index normalization unit 58 calculates the degree of variation of a plurality of types of index values indicated by the learning information for each type of index value.
  • the radar chart generation unit 59 generates radar chart information showing the relationship between the degree of variation of each of the plurality of types of index values calculated by the index normalization unit 58 and the top two or more factor candidates.
  • the server 50A includes an index normalization unit 58.
  • the index normalization unit 58 normalizes one or more types of index values.
  • the model generation unit 55A generates the trained model 57 based on the information of the factor score and the information of one or more kinds of index values normalized by the index normalization unit 58.
  • the inference unit 56A inputs information on one or more types of index values normalized by the index normalization unit 58 into the trained model 57, and based on the information output from the trained model 57, a plurality of factor candidates Determine the top two or more factor candidates.
  • the server 50A distributes index values having different possible ranges among the plurality of energy management devices 10B even if the features or usage conditions of the equipment to be diagnosed differ among the plurality of energy management devices 10B. Units can be compared on the same scale.
  • the processing units 11, 11A, and 11B of the energy management devices 10, 10A, and 10B specify the index value and the factor candidate on a daily basis, but specify the index value and the factor candidate on a time zone basis, a weekly basis, a monthly unit, and the like. You can also do it. Further, the processing units 11, 11A and 11B can also calculate the score of each factor candidate using an index of a type other than the above-mentioned index, and each factor uses only a part of the above-mentioned plurality of indexes. Candidate scores can also be calculated. In addition, the processing units 11, 11A, and 11B can calculate the scores of factor candidates other than the above-mentioned factor candidates, and can also calculate only the scores of some of the above-mentioned plurality of factor candidates. ..
  • the energy management devices 10, 10A and 10B may be composed of a plurality of devices arranged at different positions from each other.
  • the energy management devices 10, 10A, and 10B may be configured to include a collecting device and a processing device.
  • the collecting device collects information from the power sensors 4 and 5, the production amount sensor 6, the environment sensor 7, and the production control device 8.
  • the processing device outputs at least a part of the ranking information based on the information collected by the collecting device.
  • the collecting device may be configured by, for example, a PLC (Programmable Logic Controller), a data logger, or the like, and the processing device may be configured by, for example, a cloud server or a mobile terminal.
  • the collecting device and the processing device are connected wirelessly or by wire so as to be able to communicate with each other.
  • the energy management devices 10, 10A and 10B may be configured to have the functions of the servers 50 and 50A.
  • the energy management devices 10B 1 and 10B 2 may include a part or all of the information acquisition unit 52, the factor estimation unit 53, 53A, the index normalization unit 58, and the radar chart generation unit 59. good.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.

Abstract

An energy management device (10) is provided with an index value calculating unit (23), a score calculating unit (24), and an information providing unit (25). The index value calculating unit (23) calculates one or more types of index value relating to energy consumption by a diagnosis target, including a production facility, on the basis of production related information, which is information relating to historical production. On the basis of the one or more types of index value calculated by the index value calculating unit (23), the score calculating unit (24) calculates a score indicating a degree of influence on energy consumption that did not contribute to production, for each of a plurality of factor candidates, which are candidates of energy consumption factors that did not contribute to production. The information providing unit (25) outputs information relating to the factor candidates having at least the two highest scores calculated by the score calculating unit (24), among the plurality of factor candidates.

Description

エネルギー管理装置、サーバ、エネルギー管理システム、エネルギー管理方法、およびエネルギー管理プログラムEnergy management equipment, servers, energy management systems, energy management methods, and energy management programs
 本開示は、生産設備を含む診断対象において生産に寄与しなかったエネルギー消費の要因を診断するエネルギー管理装置、サーバ、エネルギー管理システム、エネルギー管理方法、およびエネルギー管理プログラムに関する。 This disclosure relates to an energy management device, a server, an energy management system, an energy management method, and an energy management program for diagnosing factors of energy consumption that did not contribute to production in a diagnosis target including production equipment.
 従来、生産設備における生産に寄与しなかったエネルギー消費の要因を特定し、特定した要因の情報をユーザに提示する技術が知られている。例えば、特許文献1には、積算生産量と積算エネルギー消費量との関係を示すグラフデータにおいて無駄なエネルギー消費が生じた時に発生する特徴パターンが出現した場合に、無駄なエネルギー消費の要因の情報を含むメッセージを出力する技術が開示されている。 Conventionally, there is known a technique of identifying factors of energy consumption that did not contribute to production in production equipment and presenting information on the identified factors to the user. For example, in Patent Document 1, information on factors of wasteful energy consumption when a characteristic pattern that occurs when wasteful energy consumption occurs appears in graph data showing the relationship between integrated production amount and integrated energy consumption amount. A technique for outputting a message including the above is disclosed.
特開2016-18242号公報Japanese Unexamined Patent Publication No. 2016-18242
 しかしながら、上記特許文献1に記載の技術は、生産に寄与しなかったエネルギー消費の要因が1つに絞られることから、生産に寄与しなかったエネルギー消費の要因が複数ある場合において、生産に寄与しないエネルギー消費に対する対策を適切に行うことが難しい場合がある。 However, the technique described in Patent Document 1 contributes to production when there are a plurality of energy consumption factors that did not contribute to production because the energy consumption factor that did not contribute to production is narrowed down to one. It can be difficult to take appropriate measures against energy consumption.
 本開示は、上記に鑑みてなされたものであって、生産に寄与しないエネルギー消費を生じさせた複数の要因を特定することができるエネルギー管理装置を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain an energy management device capable of identifying a plurality of factors that have caused energy consumption that does not contribute to production.
 上述した課題を解決し、目的を達成するために、本開示のエネルギー管理装置は、指標値算出部と、スコア算出部と、情報提供部と、を備える。指標値算出部は、過去の生産に関する情報である生産関連情報に基づいて、生産設備を含む診断対象でのエネルギー消費に関する1種類以上の指標値を算出する。スコア算出部は、指標値算出部によって算出された1種類以上の指標値に基づいて、生産に寄与しなかったエネルギー消費の要因の候補である複数の要因候補の各々の生産に寄与しなかったエネルギー消費に対する影響度を示すスコアを算出する。情報提供部は、複数の要因候補のうちスコア算出部によって算出されたスコアが上位の2つ以上の要因候補の情報を出力する。 In order to solve the above-mentioned problems and achieve the object, the energy management device of the present disclosure includes an index value calculation unit, a score calculation unit, and an information provision unit. The index value calculation unit calculates one or more types of index values related to energy consumption in the diagnosis target including the production equipment based on the production-related information which is the information related to the past production. The score calculation unit did not contribute to the production of each of the plurality of factor candidates, which are candidates for energy consumption factors that did not contribute to production, based on one or more types of index values calculated by the index value calculation unit. Calculate a score that indicates the degree of impact on energy consumption. The information providing unit outputs information on two or more factor candidates having the highest score calculated by the score calculation unit among the plurality of factor candidates.
 本開示によれば、生産に寄与しないエネルギー消費を生じさせた複数の要因を特定することができる、という効果を奏する。 According to the present disclosure, it is possible to identify a plurality of factors that have caused energy consumption that does not contribute to production.
実施の形態1にかかるエネルギー管理装置を含む生産施設の構成の一例を示す図The figure which shows an example of the structure of the production facility including the energy management apparatus which concerns on Embodiment 1. 実施の形態1にかかるエネルギー管理装置の構成の一例を示す図The figure which shows an example of the structure of the energy management apparatus which concerns on Embodiment 1. 実施の形態1にかかるエネルギー管理装置の情報生成部によって生成される第1の要因候補情報の一例を示す図The figure which shows an example of the 1st factor candidate information generated by the information generation part of the energy management apparatus which concerns on Embodiment 1. 実施の形態1にかかる情報生成部によって判定される第2の要因候補情報の一例を示す図The figure which shows an example of the 2nd factor candidate information determined by the information generation part which concerns on Embodiment 1. 実施の形態1にかかる指標値算出部によって値が算出される第1の指標、第2の指標、第3の指標、第4の指標、および第5の指標を説明するための図The figure for demonstrating the 1st index, the 2nd index, the 3rd index, the 4th index, and the 5th index which the value is calculated by the index value calculation part which concerns on Embodiment 1. 実施の形態1にかかる指標値算出部によって算出される複数種類の指標値の一例を示す図The figure which shows an example of a plurality of kinds of index values calculated by the index value calculation unit which concerns on Embodiment 1. 実施の形態1にかかる統合情報の一例を示す図The figure which shows an example of the integrated information which concerns on Embodiment 1. 実施の形態1にかかる情報提供部によって表示部に表示されるロス要因情報の一例を示す図The figure which shows an example of the loss factor information displayed on the display part by the information providing part which concerns on Embodiment 1. 実施の形態1にかかるエネルギー管理装置の処理部による処理の一例を示すフローチャートA flowchart showing an example of processing by the processing unit of the energy management device according to the first embodiment. 実施の形態1にかかるエネルギー管理装置の処理部のハードウェア構成の一例を示す図The figure which shows an example of the hardware composition of the processing part of the energy management apparatus which concerns on Embodiment 1. 実施の形態2にかかるエネルギー管理装置の構成の一例を示す図The figure which shows an example of the structure of the energy management apparatus which concerns on Embodiment 2. 実施の形態2にかかる情報提供部によって表示部に表示されるロス要因情報の一例を示す図The figure which shows an example of the loss factor information displayed on the display part by the information providing part which concerns on Embodiment 2. 実施の形態2にかかるエネルギー管理装置の処理部による処理の一例を示すフローチャートA flowchart showing an example of processing by the processing unit of the energy management device according to the second embodiment. 実施の形態2にかかるエネルギー管理装置の処理部による診断処理の一例を示すフローチャートA flowchart showing an example of diagnostic processing by the processing unit of the energy management device according to the second embodiment. 実施の形態3にかかるエネルギー管理システムの構成の一例を示す図The figure which shows an example of the structure of the energy management system which concerns on Embodiment 3. 実施の形態3にかかるエネルギー管理装置の構成の一例を示す図The figure which shows an example of the structure of the energy management apparatus which concerns on Embodiment 3. 実施の形態3にかかるサーバの構成の一例を示す図The figure which shows an example of the configuration of the server which concerns on Embodiment 3. 実施の形態3にかかるニューラルネットワークの一例を示す図The figure which shows an example of the neural network which concerns on Embodiment 3. 実施の形態3にかかるエネルギー管理装置の処理部による処理の一例を示すフローチャートA flowchart showing an example of processing by the processing unit of the energy management device according to the third embodiment. 実施の形態3にかかるサーバによる学習処理の一例を示すフローチャートA flowchart showing an example of learning processing by the server according to the third embodiment. 実施の形態3にかかるサーバによる推論処理の一例を示すフローチャートA flowchart showing an example of inference processing by the server according to the third embodiment. 実施の形態3にかかるモバイル端末による処理の一例を示すフローチャートA flowchart showing an example of processing by the mobile terminal according to the third embodiment. 実施の形態3にかかるサーバのハードウェア構成の一例を示す図The figure which shows an example of the hardware configuration of the server which concerns on Embodiment 3. 実施の形態4にかかるエネルギー管理システムの構成の一例を示す図The figure which shows an example of the structure of the energy management system which concerns on Embodiment 4. 実施の形態4にかかるサーバの構成の一例を示す図The figure which shows an example of the configuration of the server which concerns on Embodiment 4. 実施の形態4にかかるモバイル端末の表示部に表示されるレーダチャートの一例を示す図The figure which shows an example of the radar chart displayed on the display part of the mobile terminal which concerns on Embodiment 4. 実施の形態4にかかるモバイル端末の表示部に表示されるレーダチャートの他の例を示す図The figure which shows another example of the radar chart displayed on the display part of the mobile terminal which concerns on Embodiment 4. 実施の形態4にかかるサーバによる学習処理の一例を示すフローチャートA flowchart showing an example of learning processing by the server according to the fourth embodiment. 実施の形態4にかかるサーバによる推論処理の一例を示すフローチャートA flowchart showing an example of inference processing by the server according to the fourth embodiment.
 以下に、実施の形態にかかるエネルギー管理装置、サーバ、エネルギー管理システム、エネルギー管理方法、およびエネルギー管理プログラムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの開示が限定されるものではない。 The energy management device, server, energy management system, energy management method, and energy management program according to the embodiment will be described in detail below based on the drawings. It should be noted that this embodiment does not limit this disclosure.
実施の形態1.
 図1は、実施の形態1にかかるエネルギー管理装置を含む生産施設の構成の一例を示す図である。図1に示すように、実施の形態1にかかる生産施設1は、生産設備2と、関連設備3と、電力センサ4,5と、生産量センサ6と、環境センサ7と、生産管理装置8と、エネルギー管理装置10とを備える。なお、以下においては、生産設備2および関連設備3によって使用されるエネルギーは、電力であるが、石油、石炭、ガス、水素などの一次エネルギーなどであってもよく、電力と一次エネルギーの組み合わせであってもよい。
Embodiment 1.
FIG. 1 is a diagram showing an example of the configuration of a production facility including the energy management device according to the first embodiment. As shown in FIG. 1, the production facility 1 according to the first embodiment includes a production facility 2, a related facility 3, power sensors 4 and 5, a production volume sensor 6, an environment sensor 7, and a production control device 8. And an energy management device 10. In the following, the energy used by the production equipment 2 and the related equipment 3 is electric power, but may be primary energy such as petroleum, coal, gas, hydrogen, etc., and is a combination of electric power and primary energy. There may be.
 生産設備2は、複数の物品を生産する生産工程を実行する。生産設備2では、例えば、複数の生産装置によって生産ラインが構成されるが、生産設備2は1つの生産装置のみを有する構成であってもよい。生産設備2によって生産される物品は、例えば、工業製品または工業製品の仕掛品であり、以下、生産対象品と記載する場合がある。なお、生産対象品は、液体または気体であってもよい。 Production equipment 2 executes a production process for producing a plurality of articles. In the production facility 2, for example, a production line is composed of a plurality of production devices, but the production facility 2 may have a configuration having only one production device. The article produced by the production facility 2 is, for example, an industrial product or a work-in-process product of an industrial product, and may be hereinafter referred to as a production target product. The product to be produced may be a liquid or a gas.
 関連設備3は、生産設備2に関連して用いられる設備である。例えば、関連設備3は、生産設備2での生産対象品の生産時に作業者などによってオンにされる照明装置、エアーコンディショナー、コンプレッサ、または集塵機などの設備である。関連設備3は、ユーティリティ設備とも呼ばれる。 Related equipment 3 is equipment used in connection with production equipment 2. For example, the related equipment 3 is equipment such as a lighting device, an air conditioner, a compressor, or a dust collector that is turned on by an operator or the like when the product to be produced is produced by the production equipment 2. The related equipment 3 is also called a utility equipment.
 電力センサ4は、生産設備2への送電を行う送電線または生産設備2などに取り付けられ、生産設備2の消費電力量を定期的に測定し、測定した消費電力量を示す情報をエネルギー管理装置10へ不図示の専用線または不図示のネットワークを介して送信する。 The power sensor 4 is attached to a power transmission line that transmits power to the production equipment 2, the production equipment 2, or the like, periodically measures the power consumption of the production equipment 2, and provides information indicating the measured power consumption as an energy management device. Transmission to 10 via a dedicated line (not shown) or a network (not shown).
 電力センサ5は、関連設備3への送電を行う送電線または関連設備3などに取り付けられ、関連設備3の消費電力量を定期的に測定し、測定した消費電力量を示す情報をエネルギー管理装置10へ不図示の専用線または不図示のネットワークを介して送信する。電力センサ4で測定される消費電力量は、生産設備2の消費エネルギーの一例である。電力センサ5で測定される消費電力量は、関連設備3の消費エネルギーの一例である。 The power sensor 5 is attached to a power transmission line that transmits power to the related equipment 3, the related equipment 3, or the like, periodically measures the power consumption of the related equipment 3, and provides information indicating the measured power consumption as an energy management device. Transmission to 10 via a dedicated line (not shown) or a network (not shown). The power consumption measured by the power sensor 4 is an example of the energy consumption of the production equipment 2. The power consumption measured by the power sensor 5 is an example of the energy consumption of the related equipment 3.
 生産量センサ6は、生産設備2に設けられ、生産設備2の生産量を定期的に測定し、測定した生産量を示す情報をエネルギー管理装置10へ不図示の専用線または不図示のネットワークを介して送信する。生産量センサ6は、例えば、生産設備2の生産ラインにおける生産対象品の通過数をカウントし、カウントした値を生産量として測定する。なお、生産量センサ6によって測定される生産量は、生産対象品が液体または気体である場合、生産流量である。また、生産量センサ6によって測定される生産量は、重さまたは長さで表されてもよい。 The production amount sensor 6 is provided in the production equipment 2, periodically measures the production amount of the production equipment 2, and sends information indicating the measured production amount to the energy management device 10 by a dedicated line (not shown) or a network (not shown). Send via. The production amount sensor 6 counts, for example, the number of passing products to be produced in the production line of the production facility 2, and measures the counted value as the production amount. The production amount measured by the production amount sensor 6 is the production flow rate when the product to be produced is a liquid or a gas. Further, the production amount measured by the production amount sensor 6 may be expressed by weight or length.
 環境センサ7は、生産設備2の生産工程における環境である生産環境を定期的に測定し、測定した生産環境を示す情報をエネルギー管理装置10へ送信する。環境センサ7によって測定される生産環境は、例えば、生産設備2が配置された室内の温度、湿度、二酸化炭素濃度、明るさ、騒音、または振動などである。なお、生産環境を示す情報は、不図示の端末装置へ入力された情報であってもよい。この場合、生産環境を示す情報は、不図示の端末装置から不図示の専用線または不図示のネットワークを介してエネルギー管理装置10へ送信される。 The environment sensor 7 periodically measures the production environment, which is the environment in the production process of the production equipment 2, and transmits information indicating the measured production environment to the energy management device 10. The production environment measured by the environment sensor 7 is, for example, the temperature, humidity, carbon dioxide concentration, brightness, noise, vibration, or the like in the room where the production equipment 2 is arranged. The information indicating the production environment may be information input to a terminal device (not shown). In this case, the information indicating the production environment is transmitted from the terminal device (not shown) to the energy management device 10 via a dedicated line (not shown) or a network (not shown).
 生産管理装置8は、生産管理情報を記憶する不図示の記憶部を有する。生産管理情報は、生産対象品の種類、生産工程の担当者、生産設備2のエラー情報、生産対象品のロット数、および生産設備2のタクトタイムなどの情報を日毎に含む。タクトタイムは、例えば、1日における生産設備2の稼働時間を1日の生産量で除算して得られる時間である。 The production control device 8 has a storage unit (not shown) that stores production control information. The production control information includes daily information such as the type of the production target product, the person in charge of the production process, the error information of the production equipment 2, the number of lots of the production target product, and the takt time of the production equipment 2. The takt time is, for example, the time obtained by dividing the operating time of the production facility 2 in one day by the daily production amount.
 生産管理装置8における不図示の処理部は、記憶部に記憶している生産管理情報を記憶部から読み出し、読み出した情報をエネルギー管理装置10へ不図示の専用線または不図示のネットワークを介して送信する。生産管理装置8は、生産設備2から不図示の専用線または不図示のネットワークを介して生産管理情報の一部の情報を取得することができる。 The processing unit (not shown) in the production control device 8 reads the production control information stored in the storage unit from the storage unit, and reads the read information to the energy management device 10 via a dedicated line (not shown) or a network (not shown). Send. The production control device 8 can acquire a part of the production control information from the production facility 2 via a dedicated line (not shown) or a network (not shown).
 また、生産管理装置8は、画像センサによって生産管理情報の一部の情報を特定することができる。また、生産管理装置8は、不図示の入力部からの入力される情報を生産管理情報の一部の情報として記憶することもできる。入力部は、キーボードによる入力、または音声認識による入力を受け付け、受け付けた情報を生産管理装置8へ出力することができる。 Further, the production control device 8 can specify a part of the production control information by the image sensor. Further, the production control device 8 can also store the information input from the input unit (not shown) as a part of the production control information. The input unit can receive the input by the keyboard or the input by the voice recognition and output the received information to the production control device 8.
 エネルギー管理装置10は、電力センサ4,5、生産量センサ6、環境センサ7、および生産管理装置8の各々から情報を収集し、収集した情報に基づいて、生産設備2と関連設備3とを含む診断対象において生産に寄与しなかったエネルギー消費の要因を診断する。以下においては、診断対象での生産に寄与しないエネルギー消費を、生産に寄与しないエネルギー消費またはエネルギーロスと記載する場合がある。なお、生産に寄与しなかったエネルギー消費とは、例えば生産設備2の稼働に必要な暖気のエネルギー消費(後述する時間T1での生産設備2のエネルギー消費)なども含まれ、間接的に生産に寄与していると捉えることができる場合もあるが、エネルギーロスともあるように可能な限り削減したいエネルギー消費を指す。 The energy management device 10 collects information from each of the power sensors 4 and 5, the production volume sensor 6, the environment sensor 7, and the production control device 8, and based on the collected information, the production equipment 2 and the related equipment 3 are combined. Diagnose the factors of energy consumption that did not contribute to production in the diagnostic target including. In the following, energy consumption that does not contribute to production in the diagnosis target may be described as energy consumption or energy loss that does not contribute to production. The energy consumption that did not contribute to production includes, for example, the energy consumption of warm air required for the operation of the production equipment 2 (energy consumption of the production equipment 2 at the time T1 described later), and is indirectly used for production. In some cases, it can be regarded as contributing, but it also refers to energy consumption that we want to reduce as much as possible, as is the case with energy loss.
 図2は、実施の形態1にかかるエネルギー管理装置の構成の一例を示す図である。図2に示すように、エネルギー管理装置10は、処理部11と、生産関連情報記憶部12と、表示部13とを備える。処理部11は、情報収集部21と、情報生成部22と、指標値算出部23と、スコア算出部24と、情報提供部25とを備える。 FIG. 2 is a diagram showing an example of the configuration of the energy management device according to the first embodiment. As shown in FIG. 2, the energy management device 10 includes a processing unit 11, a production-related information storage unit 12, and a display unit 13. The processing unit 11 includes an information collecting unit 21, an information generating unit 22, an index value calculating unit 23, a score calculating unit 24, and an information providing unit 25.
 情報収集部21は、電力センサ4,5、生産量センサ6、環境センサ7、および生産管理装置8の各々から情報を収集し、収集した情報に収集時の時刻を関連付けて生産関連情報記憶部12の生産関連情報に追加する。収集時の時刻は、例えば、時、分、および秒の情報に加え、年、月、日の情報を含む。生産関連情報は、過去の生産に関する情報であり、情報収集部21によって収集されて生産関連情報記憶部12に記憶される情報である。 The information collecting unit 21 collects information from each of the power sensors 4 and 5, the production amount sensor 6, the environment sensor 7, and the production management device 8, associates the collected information with the time of collection, and stores the production-related information. Add to 12 production-related information. The time of collection includes, for example, hour, minute, and second information, as well as year, month, and day information. The production-related information is information related to past production, and is information collected by the information collecting unit 21 and stored in the production-related information storage unit 12.
 情報収集部21によって収集される情報は、アナログ信号で示される情報およびデジタル信号で示される情報のいずれの情報であってもよい。情報収集部21は、収集した情報がアナログ信号である場合、AD(Analog to Digital)変換によって収集した情報をデジタル信号へ変換する。なお、情報収集部21は、例えば、収集した情報に対して実効値演算またはフィルタ処理などを実施することもできる。 The information collected by the information collecting unit 21 may be either information indicated by an analog signal or information indicated by a digital signal. When the collected information is an analog signal, the information collecting unit 21 converts the information collected by AD (Analog to Digital) conversion into a digital signal. The information collecting unit 21 can also perform effective value calculation or filter processing on the collected information, for example.
 情報生成部22は、生産関連情報記憶部12に記憶された生産関連情報に基づいて、エネルギーロスを発生させる要因の候補である要因候補の情報を複数含む要因候補情報を生成する。要因候補情報は、第1の要因候補情報および第2の要因候補情報を含む。 The information generation unit 22 generates factor candidate information including a plurality of factor candidate information that is a candidate for a factor that causes energy loss, based on the production-related information stored in the production-related information storage unit 12. The factor candidate information includes the first factor candidate information and the second factor candidate information.
 情報生成部22は、内部に保持するカレンダー情報と、生産関連情報記憶部12に記憶された生産関連情報とに基づいて、第1の要因候補情報を生成する。図3は、実施の形態1にかかるエネルギー管理装置の情報生成部によって生成される第1の要因候補情報の一例を示す図である。 The information generation unit 22 generates the first factor candidate information based on the calendar information held internally and the production-related information stored in the production-related information storage unit 12. FIG. 3 is a diagram showing an example of first factor candidate information generated by the information generation unit of the energy management device according to the first embodiment.
 図3に示すように、第1の要因候補情報は、「月」、「曜日」、「週」、「生産開始時刻」、および「生産終了時刻」を「日」毎に含み、「日」、「月」、「曜日」、「週」、「生産開始時刻」、および「生産終了時刻」は互いに関連付けられる。 As shown in FIG. 3, the first factor candidate information includes "month", "day of the week", "week", "production start time", and "production end time" for each "day", and "day". , "Month", "day of the week", "week", "production start time", and "production end time" are associated with each other.
 「日」は、年月日を示す情報であり、「月」は月を示す情報であり、「曜日」は曜日を示す情報であり、「週」は、「日」が「月」の何週目であるかを示す情報である。「生産開始時刻」は、生産設備2による生産対象品の生産が開始された時刻を示す情報である。「生産終了時刻」は、生産設備2による生産対象品の生産が終了した時刻を示す情報である。図3に示す例では、「2019年10月20日」は、10月の第4週の日曜日であり、生産開始時刻が7時であり、生産終了時刻が17時であることが示される。 "Day" is information indicating the date, "month" is information indicating the month, "day of the week" is information indicating the day of the week, and "week" is what "day" is "month". Information indicating whether it is the week. The "production start time" is information indicating the time when the production of the product to be produced by the production equipment 2 is started. The "production end time" is information indicating the time when the production of the product to be produced by the production equipment 2 is completed. In the example shown in FIG. 3, it is shown that "October 20, 2019" is the fourth Sunday of October, the production start time is 7:00, and the production end time is 17:00.
 情報生成部22は、「日」毎の「月」を「日」に含まれる月の情報から取得する。また、情報生成部22は、内部に保持しているカレンダー情報に基づいて、「日」毎の「曜日」および「週」を判定し、判定した「曜日」および「週」を第1の要因候補情報に含める。また、情報生成部22は、生産関連情報記憶部12に記憶された生産関連情報から、日毎の「生産開始時刻」および「生産終了時刻」を判定し、判定した「生産開始時刻」および「生産終了時刻」を第1の要因候補情報に含める。 The information generation unit 22 acquires the "month" for each "day" from the information of the month included in the "day". Further, the information generation unit 22 determines the "day of the week" and the "week" for each "day" based on the calendar information held internally, and the determined "day of the week" and the "week" are the first factors. Include in candidate information. Further, the information generation unit 22 determines the daily "production start time" and "production end time" from the production-related information stored in the production-related information storage unit 12, and determines the "production start time" and "production". "End time" is included in the first factor candidate information.
 情報生成部22は、例えば、生産設備2の消費電力量が予め設定された閾値Pth以上になった時刻から1つの生産対象品を生産するのに要する時間を減算した時刻を生産開始時刻として判定する。また、情報生成部22は、例えば、生産設備2の生産量が予め設定された閾値Mth未満になった時刻を生産終了時刻として判定する。なお、情報生成部22は、生産開始時刻および生産終了時刻が生産関連情報に含まれる場合、生産関連情報から「生産開始時刻」および「生産終了時刻」を特定することもできる。 The information generation unit 22 determines, for example, a time obtained by subtracting the time required to produce one production target product from the time when the power consumption of the production equipment 2 becomes equal to or higher than the preset threshold value Pth as the production start time. do. Further, the information generation unit 22 determines, for example, the time when the production amount of the production equipment 2 becomes less than the preset threshold value Mth as the production end time. When the production start time and the production end time are included in the production-related information, the information generation unit 22 can also specify the "production start time" and the "production end time" from the production-related information.
 また、第1の要因候補情報には、例えば、当日の生産量の情報と、前日の生産量の情報とが含まれていてもよい。この場合、情報生成部22は、当日における総生産量を当日の生産量として算出し、前日における総生産量を前日の生産量として算出する。例えば、「2019年10月20日」における当日の生産量の情報は、「2019年10月20日」における総生産量であり、「2019年10月20日」における前日の生産量の情報は、「2019年10月19日」における総生産量である。 Further, the first factor candidate information may include, for example, information on the production amount on the current day and information on the production amount on the previous day. In this case, the information generation unit 22 calculates the total production amount on the current day as the production amount on the current day, and calculates the total production amount on the previous day as the production amount on the previous day. For example, the information on the production volume of the day on "October 20, 2019" is the total production volume on "October 20, 2019", and the information on the production volume on the previous day on "October 20, 2019" is. , The total production volume as of "October 19, 2019".
 また、情報生成部22は、生産関連情報記憶部12に記憶された生産関連情報から第2の要因候補情報を生成する。第2の要因候補情報は、例えば、対象機種、担当者、および発生エラーの各々を数値で表したと仮定した場合、対象機種、担当者、および発生エラーの各々についての日毎の代表値である。例えば、情報生成部22は、生産関連情報記憶部12に記憶された生産関連情報に含まれる1日の時系列情報の中の対象機種、担当者、および発生エラーの各々の最頻値を対象機種、担当者、および発生エラーの代表値として判定する。なお、対象機種は、対象生産品の種別を示し、担当者は、生産設備2での生産を担当する人を示し、発生エラーは、生産設備2で発生したエラーの種別を示す。 Further, the information generation unit 22 generates the second factor candidate information from the production-related information stored in the production-related information storage unit 12. The second factor candidate information is, for example, a daily representative value for each of the target model, the person in charge, and the occurrence error, assuming that each of the target model, the person in charge, and the occurrence error is expressed numerically. .. For example, the information generation unit 22 targets the mode of each of the target model, the person in charge, and the occurrence error in the daily time-series information included in the production-related information stored in the production-related information storage unit 12. Judge as a representative value of the model, the person in charge, and the error that occurred. The target model indicates the type of the target product, the person in charge indicates the person in charge of production in the production equipment 2, and the occurrence error indicates the type of the error generated in the production equipment 2.
 図4は、実施の形態1にかかる情報生成部によって判定される第2の要因候補情報の一例を示す図である。図4に示す第2の要因候補情報は、「対象機種」、「担当者」、および「発生エラー」を「日」毎に含み、「対象機種」、「担当者」、および「発生エラー」は互いに関連付けられる。 FIG. 4 is a diagram showing an example of the second factor candidate information determined by the information generation unit according to the first embodiment. The second factor candidate information shown in FIG. 4 includes "target model", "person in charge", and "occurrence error" for each "day", and includes "target model", "person in charge", and "occurrence error". Are associated with each other.
 図4では、対象機種が少なくとも「A1」または「A2」であり、担当者が少なくとも「B1」または「B2」であり、発生エラーが少なくとも「♯1」または「♯2」である場合の例が示される。図4に示す例では、2019年10月20日において、対象機種として「A1」が主に生産され、担当者「B2」が主に生産を担当し、最も多い発生エラーが「♯2」であることが示されている。 In FIG. 4, an example in which the target model is at least "A1" or "A2", the person in charge is at least "B1" or "B2", and the occurrence error is at least "# 1" or "# 2". Is shown. In the example shown in FIG. 4, on October 20, 2019, "A1" was mainly produced as the target model, the person in charge "B2" was mainly in charge of production, and the most common error was "# 2". It is shown that there is.
 また、第2の要因候補情報は、例えば、生産設備2または関連設備3が稼働している状態の室内の温度、湿度、明るさ、騒音、および振動の各々の平均値および変動幅を示す情報を含む。例えば、情報生成部22は、生産関連情報記憶部12に記憶された生産関連情報に含まれる環境情報に基づいて、室内の温度、湿度、明るさ、騒音、および振動の各々の平均値および変動幅などを算出する。 The second factor candidate information is, for example, information indicating the average value and fluctuation range of each of the temperature, humidity, brightness, noise, and vibration in the room in which the production equipment 2 or the related equipment 3 is operating. including. For example, the information generation unit 22 averages and fluctuates each of the indoor temperature, humidity, brightness, noise, and vibration based on the environmental information included in the production-related information stored in the production-related information storage unit 12. Calculate the width and so on.
 指標値算出部23は、生産関連情報記憶部12によって記憶された情報に基づいて、生産設備2と関連設備3とを含む診断対象でのエネルギー消費に関する1種類以上の指標の値を算出する。以下においては、指標値算出部23は、5種類の指標の値を算出するが、指標値算出部23によって値が算出される指標の種類は、4つ以下であってもよく、6つ以上であってもよい。 The index value calculation unit 23 calculates the value of one or more types of indexes related to energy consumption in the diagnosis target including the production equipment 2 and the related equipment 3 based on the information stored by the production-related information storage unit 12. In the following, the index value calculation unit 23 calculates the values of five types of indexes, but the types of indexes whose values are calculated by the index value calculation unit 23 may be four or less, and six or more. It may be.
 指標値算出部23は、生産関連情報記憶部12に記憶された生産関連情報に基づいて、第1の指標、第2の指標、第3の指標、第4の指標、および第5の指標の各々の値を算出する。図5は、実施の形態1にかかる指標値算出部によって値が算出される第1の指標、第2の指標、第3の指標、第4の指標、および第5の指標を説明するための図である。以下において、指標値算出部23によって算出される第1の指標の値を第1の指標値と記載し、指標値算出部23によって算出される第2の指標の値を第2の指標値と記載し、指標値算出部23によって算出される第3の指標の値を第3の指標値と記載する。また、指標値算出部23によって算出される第4の指標の値を第4の指標値と記載し、指標値算出部23によって算出される第5の指標の値を第5の指標値と記載する。 The index value calculation unit 23 of the first index, the second index, the third index, the fourth index, and the fifth index based on the production-related information stored in the production-related information storage unit 12. Calculate each value. FIG. 5 is for explaining a first index, a second index, a third index, a fourth index, and a fifth index whose values are calculated by the index value calculation unit according to the first embodiment. It is a figure. In the following, the value of the first index calculated by the index value calculation unit 23 is described as the first index value, and the value of the second index calculated by the index value calculation unit 23 is referred to as the second index value. The value of the third index calculated by the index value calculation unit 23 is described as the third index value. Further, the value of the fourth index calculated by the index value calculation unit 23 is described as the fourth index value, and the value of the fifth index calculated by the index value calculation unit 23 is described as the fifth index value. do.
 第1の指標値は、生産設備2がオンになってから生産設備2の生産が開始されるまでの時間T1である。指標値算出部23は、例えば、生産設備2の消費電力量が予め設定された閾値Pth以上になった時刻と生産設備2の生産量が予め設定された閾値Mth以上になった時刻との差を算出する。指標値算出部23は、算出した差から生産設備2で1つの生産対象品を生産するのに要する時間を減算した時間を第1の指標値として算出することができる。かかる第1の指標は、生産設備2が起動されてから生産が開始するまで無駄な時間といえ、生産に寄与しないエネルギー消費が生じる時間といえる。 The first index value is the time T1 from when the production equipment 2 is turned on until the production of the production equipment 2 is started. In the index value calculation unit 23, for example, the difference between the time when the power consumption of the production equipment 2 becomes equal to or higher than the preset threshold Pth and the time when the production amount of the production equipment 2 becomes equal to or higher than the preset threshold Mth. Is calculated. The index value calculation unit 23 can calculate as the first index value the time obtained by subtracting the time required to produce one production target product in the production equipment 2 from the calculated difference. The first index can be said to be wasted time from the start of the production facility 2 to the start of production, and can be said to be the time during which energy consumption that does not contribute to production occurs.
 第2の指標値は、生産設備2の生産が終了してから生産設備2がオフになるまでの時間T2である。指標値算出部23は、例えば、生産設備2の生産量が予め設定された閾値Mth未満になった時刻と生産設備2の消費電力量が予め設定された閾値Pth未満になった時刻との差を第2の指標値として算出することができる。かかる第2の指標は、生産が終了してから生産設備2が停止されるまでの無駄な時間といえ、生産に寄与しないエネルギー消費が生じる時間といえる。 The second index value is the time T2 from the end of production of production equipment 2 to the time when production equipment 2 is turned off. In the index value calculation unit 23, for example, the difference between the time when the production amount of the production equipment 2 becomes less than the preset threshold value Mth and the time when the power consumption amount of the production equipment 2 becomes less than the preset threshold value Pth. Can be calculated as the second index value. Such a second index can be said to be a wasted time from the end of production to the shutdown of the production equipment 2, and can be said to be the time during which energy consumption that does not contribute to production occurs.
 第3の指標値は、関連設備3がオンである時間T4と生産設備2がオンである時間T5との差を示す時間T3である。かかる第3の指標は、生産設備2が停止しているのに関連設備3が起動している時間を示し、無駄な時間を表すといえ、生産に寄与しないエネルギー消費が生じる時間といえる。 The third index value is the time T3 indicating the difference between the time T4 when the related equipment 3 is on and the time T5 when the production equipment 2 is on. Such a third index indicates the time when the related equipment 3 is started while the production equipment 2 is stopped, and can be said to represent a wasted time, and can be said to be a time when energy consumption that does not contribute to production occurs.
 第4の指標値は、生産設備2がオンである時間のうち生産設備2による生産が行われている時間の割合を示す。指標値算出部23は、例えば、生産設備2の消費電力量が予め設定された閾値Pth以上である時間T5に対する生産設備2の生産量が予め設定された閾値Mth以上である時間T6の比である。かかる第4の指標値が小さいほど、生産設備2が起動されている時間のうち生産が無駄に停止した時間が多くなるといえる。無駄に停止した時間が多くなるほど、生産に寄与しないエネルギー消費が増える。 The fourth index value indicates the ratio of the time during which production by production equipment 2 is performed to the time during which production equipment 2 is on. The index value calculation unit 23 determines, for example, the ratio of the time T6 in which the production amount of the production equipment 2 is equal to or greater than the preset threshold value Mth to the time T5 in which the power consumption of the production equipment 2 is equal to or greater than the preset threshold value Pth. be. It can be said that the smaller the fourth index value is, the longer the production is wasted during the time when the production equipment 2 is started. The more time that is wasted, the more energy consumption that does not contribute to production.
 第5の指標値は、単位生産高あたりの消費電力量を示す。単位生産高あたりの消費電力量は、例えば、1日における消費電力量を1日における生産高で割ることで得られる。生産高は、生産対象品の数、重さ、または長さなどの任意の単位である。 The fifth index value indicates the amount of power consumption per unit production output. The power consumption per unit production amount is obtained, for example, by dividing the daily power consumption amount by the daily production amount. Output is any unit, such as the number, weight, or length of the product to be produced.
 指標値算出部23は、生産関連情報記憶部12に記憶された生産関連情報に含まれる生産量の情報と生産関連情報記憶部12に記憶された生産関連情報に含まれる生産設備2および関連設備3の消費電力量の情報とに基づいて、第5の指標値を算出する。 The index value calculation unit 23 includes the production amount information included in the production-related information stored in the production-related information storage unit 12 and the production equipment 2 and related equipment included in the production-related information stored in the production-related information storage unit 12. The fifth index value is calculated based on the information of the power consumption of 3.
 具体的には、指標値算出部23は、生産関連情報に含まれる生産量の情報に基づいて、日毎の総生産量を算出する。また、指標値算出部23は、生産関連情報に含まれる生産設備2および関連設備3の消費電力量の情報に基づいて、日毎に、生産設備2の消費電力量と関連設備3の消費電力量とを加算した総消費電力量を算出する。指標値算出部23は、日毎に、総消費電力量を総生産量で除算することによって、第5の指標値を算出する。かかる第5の指標値が大きくなるほど生産に寄与しない無駄なエネルギー消費が増えるといえる。 Specifically, the index value calculation unit 23 calculates the daily total production amount based on the production amount information included in the production-related information. Further, the index value calculation unit 23 determines the power consumption of the production facility 2 and the power consumption of the related facility 3 on a daily basis based on the information of the power consumption of the production facility 2 and the related facility 3 included in the production-related information. And are added to calculate the total power consumption. The index value calculation unit 23 calculates the fifth index value by dividing the total power consumption by the total production amount on a daily basis. It can be said that the larger the fifth index value is, the more wasteful energy consumption that does not contribute to production increases.
 なお、指標値算出部23は、上述した指標以外の種類の指標値を算出することもできる。例えば、指標値算出部23は、1日あたりの総消費電力量、1日あたりの総生産量、または休憩時間の消費電力量などを指標値として算出することができる。また、指標値算出部23は、上述した複数種類の指標値を統合して一つの指標値として算出することもできる。この場合、指標値算出部23は、例えば、重要度に応じて各指標値に重み付けして加算した値を一つの指標値として算出する。 The index value calculation unit 23 can also calculate an index value of a type other than the above-mentioned index. For example, the index value calculation unit 23 can calculate the total power consumption per day, the total production amount per day, the power consumption during the break time, and the like as index values. Further, the index value calculation unit 23 can also integrate the above-mentioned plurality of types of index values and calculate them as one index value. In this case, the index value calculation unit 23 calculates, for example, a value obtained by weighting and adding each index value according to the importance as one index value.
 図6は、実施の形態1にかかる指標値算出部によって算出される複数種類の指標値の一例を示す図である。図6に示す例では、第1の指標値、第2の指標値、第3の指標値、第4の指標値、および第5の指標値が日毎に算出されている。例えば、「2019年10月20日」では、第1の指標値は「15」であり、第2の指標値は「14」であり、第3の指標値は「213」であり、第4の指標値は「31」であり、第5の指標値は「0.37」である。 FIG. 6 is a diagram showing an example of a plurality of types of index values calculated by the index value calculation unit according to the first embodiment. In the example shown in FIG. 6, the first index value, the second index value, the third index value, the fourth index value, and the fifth index value are calculated on a daily basis. For example, in "October 20, 2019", the first index value is "15", the second index value is "14", the third index value is "213", and the fourth index value is "213". The index value of is "31", and the fifth index value is "0.37".
 スコア算出部24は、指標値算出部23によって算出された日毎の指標値に基づいて、複数の要因候補の各々のエネルギーロスに対する影響度を示すスコアを指標毎に算出する。かかるスコア算出部24は、複数種類の指標値と複数の要因候補とを関連付けた統合情報を生成する。図7は、実施の形態1にかかる統合情報の一例を示す図である。図7に示す統合情報は、第1の指標値と複数の要因候補とが関連付けられた情報であり、第1の指標値が目的変数として設定され、第1の要因候補情報と第2の要因候補情報とを含む複数の要因候補の情報が説明変数として設定されている。 The score calculation unit 24 calculates a score indicating the degree of influence of each of the plurality of factor candidates on the energy loss for each index based on the daily index value calculated by the index value calculation unit 23. The score calculation unit 24 generates integrated information in which a plurality of types of index values and a plurality of factor candidates are associated with each other. FIG. 7 is a diagram showing an example of integrated information according to the first embodiment. The integrated information shown in FIG. 7 is information in which the first index value and a plurality of factor candidates are associated with each other, the first index value is set as an objective variable, and the first factor candidate information and the second factor are present. Information on a plurality of factor candidates including candidate information is set as explanatory variables.
 図7では図示されていないが、統合情報には、室内の温度、湿度、明るさ、騒音、および振動の各々の平均値および変動幅などの要因候補の情報も説明変数として設定される。また、スコア算出部24は、第2の指標値、第3の指標値、第4の指標値、および第5の指標値の各々についても、図7に示す統合情報と同様の統合情報を生成する。 Although not shown in FIG. 7, information on factor candidates such as the average value and fluctuation range of each of indoor temperature, humidity, brightness, noise, and vibration is also set as explanatory variables in the integrated information. Further, the score calculation unit 24 generates integrated information similar to the integrated information shown in FIG. 7 for each of the second index value, the third index value, the fourth index value, and the fifth index value. do.
 スコア算出部24は、上述した統合情報を用いたデータマイニングによって第1の指標、第2の指標、第3の指標、第4の指標、および第5の指標の各々について、複数の要因候補の各々のエネルギーロスに対する影響度を示すスコアを算出する。スコアが高い要因候補ほどエネルギーロスに対する影響が大きい。 The score calculation unit 24 uses data mining using the above-mentioned integrated information to select a plurality of factor candidates for each of the first index, the second index, the third index, the fourth index, and the fifth index. A score indicating the degree of influence on each energy loss is calculated. Factor candidates with higher scores have a greater effect on energy loss.
 データマイニングで用いられる解析方法は、例えば、回帰分析、クラスタリング、または頻出パターン抽出などである。以下においては、スコア算出部24が回帰分析によってスコアを算出する例を説明するが、スコア算出部24は、重回帰分析以外の解析方法を用いたデータマイニングを行うこともできる。 The analysis method used in data mining is, for example, regression analysis, clustering, or frequent pattern extraction. In the following, an example in which the score calculation unit 24 calculates the score by the regression analysis will be described, but the score calculation unit 24 can also perform data mining using an analysis method other than the multiple regression analysis.
 スコア算出部24は、要因候補に対して前処理を行って各説明変数の値を決定する。スコア算出部24は、要因候補に応じた種類の前処理を行う。要因候補に対して行われる前処理の種類には、第1の前処理と第2の前処理とがある。まず、第1の前処理について説明する。 The score calculation unit 24 performs preprocessing on the factor candidates and determines the value of each explanatory variable. The score calculation unit 24 performs a type of preprocessing according to the factor candidate. The types of preprocessing performed on the factor candidates include a first preprocessing and a second preprocessing. First, the first preprocessing will be described.
 第1の前処理は、量で表せない要因候補に対して行われる処理である。量で表せない要因候補は、例えば、「月」、「曜日」、「週」、「生産開始時刻」、「生産終了時刻」、「対象機種」、「担当者」、または「発生エラー」などである。 The first pre-processing is processing performed on factor candidates that cannot be expressed in quantity. Factor candidates that cannot be expressed in quantity include, for example, "month", "day of the week", "week", "production start time", "production end time", "target model", "person in charge", or "occurrence error". Is.
 スコア算出部24は、要因候補が「曜日」である場合、7種類の説明変数で「曜日」を表す。具体的には、スコア算出部24は、日曜日から月曜日までの7種類の曜日のうち対応する曜日である場合に「1」が設定される7種類の説明変数で曜日を表す。スコア算出部24は、例えば、「曜日」が「日曜日」である場合、7種類の説明変数のうち、日曜日に対応する説明変数の値を「1」にし、それ以外の説明変数の値を「0」にする。また、スコア算出部24は、「曜日」が「月曜日」である場合、7種類の説明変数のうち、月曜日に対応する説明変数の値を「1」にし、それ以外の説明変数の値を「0」にする。 The score calculation unit 24 represents the "day of the week" with seven types of explanatory variables when the factor candidate is the "day of the week". Specifically, the score calculation unit 24 represents the day of the week with seven types of explanatory variables in which "1" is set when it is the corresponding day of the week among the seven types of days from Sunday to Monday. For example, when the "day of the week" is "Sunday", the score calculation unit 24 sets the value of the explanatory variable corresponding to Sunday to "1" among the seven types of explanatory variables, and sets the values of the other explanatory variables to "1". Set to "0". When the "day of the week" is "Monday", the score calculation unit 24 sets the value of the explanatory variable corresponding to Monday to "1" among the seven types of explanatory variables, and sets the values of the other explanatory variables to "1". Set to "0".
 また、スコア算出部24は、担当者の数と同数の種類の説明変数で「担当者」を表す。例えば、スコア算出部24は、担当者の数が4人である場合、4種類の説明変数で「担当者」を表す。また、スコア算出部24は、対象機種の種類と同数の種類の説明変数で「対象機種」を表す。例えば、スコア算出部24は、対象機種の種類が5種類である場合、5種類の説明変数で「対象機種」を表す。また、スコア算出部24は、発生エラーの種類と同数の種類の説明変数で「発生エラー」を表す。例えば、スコア算出部24は、発生エラーの種類が10種類である場合、10種類の説明変数で「発生エラー」を表す。 In addition, the score calculation unit 24 represents the "person in charge" with the same number of types of explanatory variables as the number of persons in charge. For example, when the number of persons in charge is four, the score calculation unit 24 represents the “person in charge” with four types of explanatory variables. Further, the score calculation unit 24 represents the "target model" with the same number of explanatory variables as the type of the target model. For example, when the score calculation unit 24 has five types of target models, the score calculation unit 24 represents the “target model” with five types of explanatory variables. Further, the score calculation unit 24 represents the “occurrence error” with the same number of types of explanatory variables as the type of the occurrence error. For example, when the score calculation unit 24 has 10 types of occurrence errors, the score calculation unit 24 represents “occurrence error” with 10 types of explanatory variables.
 次に、第2の処理について説明する。第2の処理は、量で表せる要因候補に対して行われる処理であり、第2の処理によって量で表せる要因候補が1つの説明変数で表される。量で表せる要因候補は、例えば、「温度の平均値」、「温度の変動幅」、「湿度の平均値」、「湿度の変動幅」、「二酸化炭素の平均値」、「二酸化炭素の変動幅」、「明るさの平均値」、および「明るさの変動幅」などである。 Next, the second process will be described. The second process is a process performed on a factor candidate that can be represented by a quantity, and the factor candidate that can be represented by a quantity by the second process is represented by one explanatory variable. Candidate factors that can be expressed in quantity are, for example, "average temperature", "temperature fluctuation range", "humidity average value", "humidity fluctuation range", "carbon dioxide average value", and "carbon dioxide fluctuation". Width, "average brightness", and "brightness fluctuation range".
 スコア算出部24は、各説明変数において平均が0で且つ分散が1になるように調整する処理を第2の前処理として行う。具体的には、第2の処理において、スコア算出部24は、各要因候補について、要因候補の平均値を算出し、日毎の要因候補の値から要因候補の平均値を減算し、かかる減算結果を標準偏差で除算することによって、説明変数の値を算出する。スコア算出部24は、エネルギーロスが大きくなるほど値が小さくなる指標に対する要因候補のスコアを算出する場合、上述した方法で算出した説明変数の値の正負を反転させる。値が大きくなるほどエネルギーロスが小さくなる指標は、第4の指標値である。 The score calculation unit 24 performs a process of adjusting each explanatory variable so that the average is 0 and the variance is 1, as the second pre-process. Specifically, in the second process, the score calculation unit 24 calculates the average value of the factor candidates for each factor candidate, subtracts the average value of the factor candidates from the value of the factor candidates for each day, and the subtraction result. Is divided by the standard deviation to calculate the value of the explanatory variable. When calculating the score of the factor candidate for the index whose value becomes smaller as the energy loss becomes larger, the score calculation unit 24 reverses the positive / negative of the value of the explanatory variable calculated by the above method. The index in which the energy loss decreases as the value increases is the fourth index value.
 スコア算出部24は、各指標について下記式(1)を用いて重回帰分析を行う。下記式(1)において、「n」は、上述した説明変数の総数であり、「y」は指標値であり、「x」,「x」,「x」,・・・,「x」は説明変数の値であり、「a」,「a」,「a」,・・・,「a」は係数である。
y=a×x+a×x+a×x+・・・a×x   ・・・(1)
The score calculation unit 24 performs multiple regression analysis for each index using the following equation (1). In the following equation (1), "n" is the total number of the above-mentioned explanatory variables, "y" is an index value, and "x 1 ", "x 2 ", "x 3 ", ..., ""x n " is the value of the explanatory variable, and "a 1 ", "a 2 ", "a 3 ", ..., " An " is a coefficient.
y = a 1 x x 1 + a 2 x x 2 + a 3 x x 3 + ... an n x x n ... (1)
 スコア算出部24は、各指標について、日毎に、統合情報で設定されている複数の説明変数の値を「x」,「x」,「x」,・・・,「x」に代入し、式(1)で得られる「y」の値と統合情報で設定されている目標変数の値との差を算出する。スコア算出部24は、例えば、各指標について、算出した差の平均値または合計値が最も小さくなるように、「a」,「a」,「a」,・・・,「a」の最適化を行う。 The score calculation unit 24 sets the values of a plurality of explanatory variables set in the integrated information for each index on a daily basis as “x 1 ”, “x 2 ”, “x 3 ”, ..., “X n ”. Is substituted into, and the difference between the value of "y" obtained by the equation (1) and the value of the target variable set in the integrated information is calculated. Score calculation unit 24, for example, for each index, so that the average value or the total value of the calculated difference is smallest, "a 1", "a 2", "a 3", ..., "a n ”Optimize.
 スコア算出部24は、各指標について、各係数の絶対値を要因候補のスコアとして算出する。例えば、「x」が日曜日に対応する説明変数である場合、日曜日のスコアは、「a」である。また、「x」が月曜日に対応する説明変数である場合、月曜日のスコアは、「a」である。量で表せる要因候補に対する係数はその絶対値がスコアとなる。例えば、「x」が温度の平均値に対する説明変数であった場合、温度の平均値のスコアは「a」の絶対値である。 The score calculation unit 24 calculates the absolute value of each coefficient as the score of the factor candidate for each index. For example, if "x 1 " is the explanatory variable corresponding to Sunday, the score for Sunday is "a 1 ". If "x 2 " is an explanatory variable corresponding to Monday, the score on Monday is "a 2 ". The absolute value of the coefficient for the factor candidate that can be expressed in quantity is the score. For example, if "x 3 " is an explanatory variable for the average temperature, the average temperature score is the absolute value of "a 3".
 上述した例では、スコア算出部24は、統合情報を生成するが、指標毎に、データマイニング処理を行うことができればよく、統合情報を生成しなくてもよい。例えば、スコア算出部24は、重回帰分析によって各要因候補のスコアを算出する場合、情報生成部22と指標値算出部23とから得られる情報に基づいて、指標値を目的変数の値とし各要因候補の値を説明変数の値とすればよく、上述した例に限定されない。 In the above example, the score calculation unit 24 generates integrated information, but it is sufficient if data mining processing can be performed for each index, and it is not necessary to generate integrated information. For example, when the score calculation unit 24 calculates the score of each factor candidate by multiple regression analysis, the score calculation unit 24 sets the index value as the value of the objective variable based on the information obtained from the information generation unit 22 and the index value calculation unit 23. The value of the factor candidate may be the value of the explanatory variable, and is not limited to the above-mentioned example.
 図2に示す情報提供部25は、各指標について、スコア算出部24によって算出されたスコアが上位の2つ以上の要因候補の情報を出力する。例えば、情報提供部25は、スコア算出部24によって算出されたスコアが大きい順に複数の要因候補を並べて複数の要因候補をランキング表の形式で表すランキング情報を生成し、生成したランキング情報のうち少なくとも上位の2つの要因候補の情報を出力する。情報提供部25は、上述したランキング情報を生成するランキング情報生成部41と、ランキング情報生成部41によって生成されたランキング情報のうち少なくとも一部の情報を含むロス要因情報を表示部13に表示させる表示処理部42とを備える。 The information providing unit 25 shown in FIG. 2 outputs information on two or more factor candidates having a higher score calculated by the score calculating unit 24 for each index. For example, the information providing unit 25 arranges a plurality of factor candidates in descending order of the score calculated by the score calculation unit 24 to generate ranking information representing the plurality of factor candidates in the form of a ranking table, and at least among the generated ranking information. Outputs information on the top two factor candidates. The information providing unit 25 causes the display unit 13 to display the ranking information generation unit 41 that generates the above-mentioned ranking information and the loss factor information including at least a part of the ranking information generated by the ranking information generation unit 41. It includes a display processing unit 42.
 表示処理部42は、例えば、ランキング情報のうちスコアが大きい順に予め設定された数の要因候補を含む情報をランキング表の形式で表示部13に表示させる。また、表示処理部42は、ランキング情報のうちスコアが予め設定された値以上である要因候補をランキング表の形式で表した情報であるロス要因情報を表示部13に表示させることもできる。また、表示処理部42は、ランキング情報のすべてをランキング表の形式で表示部13に表示させることもできる。なお、表示処理部42は、ランキング表の形式以外の形式でロス要因情報を表示部13に表示させることができる。 For example, the display processing unit 42 causes the display unit 13 to display information including a preset number of factor candidates in descending order of the score among the ranking information in the form of a ranking table. In addition, the display processing unit 42 can display the loss factor information, which is the information in which the factor candidates whose score is equal to or higher than the preset value in the ranking information are expressed in the form of the ranking table, on the display unit 13. In addition, the display processing unit 42 can display all of the ranking information on the display unit 13 in the form of a ranking table. The display processing unit 42 can display the loss factor information on the display unit 13 in a format other than the ranking table format.
 図8は、実施の形態1にかかる情報提供部によって表示部に表示されるロス要因情報の一例を示す図である。図8に示すロス要因情報には、第1の指標について、スコアが上位5つの要因候補の種別および内容がエネルギーロスの推定要因として含まれている。 FIG. 8 is a diagram showing an example of loss factor information displayed on the display unit by the information providing unit according to the first embodiment. The loss factor information shown in FIG. 8 includes the types and contents of the five factor candidates with the highest scores as the estimation factors of energy loss for the first index.
 図8に示す例では、第1の指標に関し、曜日「月曜日」が最もスコアが高く、対象機種「A」、週「4週目」、月「3月」、および生産終了時刻「17時」の順にスコアが低くなっていることを示している。 In the example shown in FIG. 8, the day of the week "Monday" has the highest score for the first index, the target model "A", the week "4th week", the month "March", and the production end time "17:00". It shows that the score is lower in the order of.
 このように、エネルギー管理装置10は、診断対象でのエネルギー消費に関する指標を用いて、複数の要因候補の各々のエネルギーロスに対する影響度を示すスコアを算出することによって、エネルギーロスに対する影響度が高い複数の要因を特定することができる。また、エネルギー管理装置10は、エネルギーロスに対する影響度順に複数の要因候補を並べたランキング表の形式の情報をユーザに提示することができる。そのため、ユーザは、エネルギーロスに対する影響度が高い項目を把握することができ、エネルギー管理装置10の診断結果をエネルギーロスに対する改善活動の検討に役立てることができる。 As described above, the energy management device 10 has a high degree of influence on energy loss by calculating a score indicating the degree of influence on energy loss of each of the plurality of factor candidates by using the index related to energy consumption in the diagnosis target. Multiple factors can be identified. Further, the energy management device 10 can present to the user information in the form of a ranking table in which a plurality of factor candidates are arranged in order of the degree of influence on energy loss. Therefore, the user can grasp the items having a high influence on the energy loss, and the diagnosis result of the energy management device 10 can be used for the examination of the improvement activity for the energy loss.
 上述した例では、スコア算出部24は、指標毎に、各要因候補のスコアを算出するが、各要因候補について、複数の指標におけるスコアを合計した値である合計スコアを算出することができる。この場合、ランキング情報生成部41は、スコア算出部24によって算出された合計スコアが大きい順に複数の要因候補を並べて複数の要因候補をランキング表の形式で表すランキング情報を生成する。 In the above example, the score calculation unit 24 calculates the score of each factor candidate for each index, but for each factor candidate, it is possible to calculate the total score which is the total value of the scores of the plurality of indexes. In this case, the ranking information generation unit 41 arranges a plurality of factor candidates in descending order of the total score calculated by the score calculation unit 24, and generates ranking information representing the plurality of factor candidates in the form of a ranking table.
 上述した例では、スコア算出部24は、複数の指標の各々について複数の要因候補のスコアを算出するが、複数の指標をまとめて統合指標とし、かかる統合指標について複数の要因候補のスコアを算出することもできる。例えば、スコア算出部24は、第1の指標値、第2の指標値、第3の指標値、第4の指標値、および第5の指標値の各々に対して対応する係数を乗算または加算し、かかる乗算結果の合計値または加算結果の合計値を統合指標の値として日毎に算出することができる。そして、スコア算出部24は、統合指標の値と複数の要因候補の値とからデータマイニングによって、統合指標について複数の要因候補の各々のスコアを算出することができる。 In the above example, the score calculation unit 24 calculates the scores of a plurality of factor candidates for each of the plurality of indicators, but the plurality of indicators are collectively used as an integrated index, and the scores of the plurality of factor candidates are calculated for the integrated index. You can also do it. For example, the score calculation unit 24 multiplies or adds the corresponding coefficients to each of the first index value, the second index value, the third index value, the fourth index value, and the fifth index value. Then, the total value of the multiplication results or the total value of the addition results can be calculated daily as the value of the integrated index. Then, the score calculation unit 24 can calculate the score of each of the plurality of factor candidates for the integrated index by data mining from the value of the integrated index and the value of the plurality of factor candidates.
 つづいて、フローチャートを用いてエネルギー管理装置10の処理部11による処理を説明する。図9は、実施の形態1にかかるエネルギー管理装置の処理部による処理の一例を示すフローチャートである。 Next, the processing by the processing unit 11 of the energy management device 10 will be described using a flowchart. FIG. 9 is a flowchart showing an example of processing by the processing unit of the energy management device according to the first embodiment.
 図9に示すように、エネルギー管理装置10の処理部11は、情報収集タイミングになったか否かを判定する(ステップS10)。ステップS10において、処理部11は、電力センサ4、電力センサ5、生産量センサ6、環境センサ7、または生産管理装置8から送信された情報を受信した場合に情報収集タイミングになったと判定する。また、処理部11は、予め設定された周期で到来するタイミングになった場合に情報収集タイミングになったと判定することもできる。 As shown in FIG. 9, the processing unit 11 of the energy management device 10 determines whether or not the information collection timing has come (step S10). In step S10, the processing unit 11 determines that the information collection timing has come when the information transmitted from the power sensor 4, the power sensor 5, the production amount sensor 6, the environment sensor 7, or the production control device 8 is received. Further, the processing unit 11 can also determine that the information collection timing has come when the timing arrives at a preset cycle.
 処理部11は、情報収集タイミングになったと判定した場合(ステップS10:Yes)、生産関連情報を更新する(ステップS11)。ステップS11において、処理部11は、電力センサ4、電力センサ5、生産量センサ6、環境センサ7、または生産管理装置8から送信された情報を生産関連情報記憶部12に記憶された生産関連情報に追加することによって、生産関連情報を更新する。 When the processing unit 11 determines that the information collection timing has come (step S10: Yes), the processing unit 11 updates the production-related information (step S11). In step S11, the processing unit 11 stores the information transmitted from the power sensor 4, the power sensor 5, the production amount sensor 6, the environment sensor 7, or the production management device 8 in the production-related information storage unit 12. Update production-related information by adding to.
 また、処理部11は、情報収集タイミングが予め設定された周期で到来するタイミングである場合、ステップS11において、電力センサ4、電力センサ5、生産量センサ6、環境センサ7、および生産管理装置8へ情報の送信を要求する。この場合、処理部11は、要求に応じて電力センサ4、電力センサ5、生産量センサ6、環境センサ7、および生産管理装置8から送信される情報を受信する。処理部11は、受信した情報を生産関連情報記憶部12に記憶された生産関連情報に追加することによって、生産関連情報を更新する。 Further, when the information collection timing arrives at a preset cycle, the processing unit 11 sets the power sensor 4, the power sensor 5, the production amount sensor 6, the environment sensor 7, and the production control device 8 in step S11. Request information to be sent to. In this case, the processing unit 11 receives information transmitted from the power sensor 4, the power sensor 5, the production amount sensor 6, the environment sensor 7, and the production control device 8 as requested. The processing unit 11 updates the production-related information by adding the received information to the production-related information stored in the production-related information storage unit 12.
 処理部11は、ステップS11の処理が終了した場合、または情報収集タイミングになっていないと判定した場合(ステップS10:No)、診断開始タイミングになったか否かを判定する(ステップS12)。ステップS12において、処理部11は、例えば、ユーザから診断要求があった場合に、診断開始タイミングになったと判定する。 When the processing of step S11 is completed or when it is determined that the information collection timing has not been reached (step S10: No), the processing unit 11 determines whether or not the diagnosis start timing has been reached (step S12). In step S12, the processing unit 11 determines that the diagnosis start timing has come, for example, when the user requests a diagnosis.
 処理部11は、診断開始タイミングになったと判定した場合(ステップS12:Yes)、生産関連情報記憶部12から生産関連情報を取得する(ステップS13)。そして、処理部11は、ステップS13で取得された生産関連情報およびカレンダー情報などに基づいて、要因候補情報を生成する(ステップS14)。また、処理部11は、ステップS13で取得された生産関連情報に基づいて、日毎の指標値を指標毎に算出する(ステップS15)。 When the processing unit 11 determines that the diagnosis start timing has come (step S12: Yes), the processing unit 11 acquires the production-related information from the production-related information storage unit 12 (step S13). Then, the processing unit 11 generates factor candidate information based on the production-related information, calendar information, and the like acquired in step S13 (step S14). Further, the processing unit 11 calculates the daily index value for each index based on the production-related information acquired in step S13 (step S15).
 次に、処理部11は、ステップS14で生成された要因候補情報とステップS15で生成された指標値とに基づいて、指標毎に各要因候補のスコアを算出する(ステップS16)。処理部11は、ステップS16で算出された各要因候補のスコアに基づいて、複数の要因候補をスコアが大きい順に並べたランキング情報を指標毎に生成する(ステップS17)。そして、処理部11は、指標毎のランキング情報のうち少なくとも一部を表示部13に表示する(ステップS18)。ステップS18において、処理部11は、例えば、指標毎のランキング情報のうち上位の2つ以上の要因候補の情報を表示部13にランキング表の形式で表示する。 Next, the processing unit 11 calculates the score of each factor candidate for each index based on the factor candidate information generated in step S14 and the index value generated in step S15 (step S16). Based on the score of each factor candidate calculated in step S16, the processing unit 11 generates ranking information for each index in which a plurality of factor candidates are arranged in descending order of score (step S17). Then, the processing unit 11 displays at least a part of the ranking information for each index on the display unit 13 (step S18). In step S18, for example, the processing unit 11 displays the information of the top two or more factor candidates among the ranking information for each index on the display unit 13 in the form of a ranking table.
 処理部11は、ステップS18の処理が終了した場合、または診断開始タイミングになっていないと判定した場合(ステップS12:No)、図9に示す処理を終了する。 The processing unit 11 ends the processing shown in FIG. 9 when the processing in step S18 is completed or when it is determined that the diagnosis start timing has not been reached (step S12: No).
 図10は、実施の形態1にかかるエネルギー管理装置の処理部のハードウェア構成の一例を示す図である。図10に示すように、エネルギー管理装置10の処理部11は、プロセッサ101と、メモリ102と、入出力インタフェイス103とを備えるコンピュータを含む。入出力インタフェイス103は、電力センサ4,5、生産量センサ6、環境センサ7、および生産管理装置8との間の情報の送受信を行う通信部を含む。 FIG. 10 is a diagram showing an example of the hardware configuration of the processing unit of the energy management device according to the first embodiment. As shown in FIG. 10, the processing unit 11 of the energy management device 10 includes a computer including a processor 101, a memory 102, and an input / output interface 103. The input / output interface 103 includes a communication unit that transmits / receives information to / from the power sensors 4 and 5, the production amount sensor 6, the environment sensor 7, and the production control device 8.
 プロセッサ101、メモリ102、および入出力インタフェイス103は、例えば、バス104によって互いにデータの送受信が可能である。処理部11の情報収集部21の一部および処理部11の表示処理部42の一部の各々は、入出力インタフェイス103によって実現される。プロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、情報収集部21、情報生成部22、指標値算出部23、スコア算出部24、および情報提供部25の機能を実行する。プロセッサ101は、例えば、処理回路の一例であり、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、およびシステムLSI(Large Scale Integration)のうち一つ以上を含む。 The processor 101, the memory 102, and the input / output interface 103 can send and receive data to and from each other by, for example, the bus 104. Each of a part of the information collecting unit 21 of the processing unit 11 and a part of the display processing unit 42 of the processing unit 11 is realized by the input / output interface 103. The processor 101 executes the functions of the information collection unit 21, the information generation unit 22, the index value calculation unit 23, the score calculation unit 24, and the information provision unit 25 by reading and executing the program stored in the memory 102. .. The processor 101 is, for example, an example of a processing circuit, and includes one or more of a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a system LSI (Large Scale Integration).
 メモリ102は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、およびEEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)のうち一つ以上を含む。また、メモリ102は、コンピュータが読み取り可能なプログラムが記録された記録媒体を含む。かかる記録媒体は、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルメモリ、光ディスク、コンパクトディスク、およびDVD(Digital Versatile Disc)のうち一つ以上を含む。なお、エネルギー管理装置10は、ASIC(Application Specific Integrated Circuit)およびFPGA(Field Programmable Gate Array)などの集積回路を含んでいてもよい。 The memory 102 is one or more of RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). include. The memory 102 also includes a recording medium on which a computer-readable program is recorded. Such recording media include one or more of non-volatile or volatile semiconductor memories, magnetic disks, flexible memories, optical disks, compact disks, and DVDs (Digital Versatile Discs). The energy management device 10 may include integrated circuits such as an ASIC (Application Specific Integrated Circuit) and an FPGA (Field Programmable Gate Array).
 以上のように、実施の形態1にかかるエネルギー管理装置10は、指標値算出部23と、スコア算出部24と、情報提供部25とを備える。指標値算出部23は、過去の生産に関する情報である生産関連情報に基づいて、生産設備2を含む診断対象でのエネルギー消費に関する1種類以上の指標値を算出する。スコア算出部24は、指標値算出部23によって算出された1種類以上の指標値に基づいて、診断対象での生産に寄与しなかったエネルギー消費の要因の候補である複数の要因候補の各々の生産に寄与しなかったエネルギー消費に対する影響度を示すスコアを算出する。情報提供部25は、複数の要因候補のうちスコア算出部24によって算出されたスコアが上位の2つ以上の要因候補の情報を出力する。このように、エネルギー管理装置10は、複数の要因候補の各々の生産に寄与しなかったエネルギー消費に対する影響度を示すスコアを算出することによって、生産に寄与しなかったエネルギー消費に対する影響度が高い複数の要因を特定することができる。また、エネルギー管理装置10は、例えば、生産に寄与しなかったエネルギー消費の要因を特徴パターンに事前に人手で対応付けるなどの手間をかけることなく、生産に寄与しなかったエネルギー消費の要因を特定することができる。 As described above, the energy management device 10 according to the first embodiment includes an index value calculation unit 23, a score calculation unit 24, and an information providing unit 25. The index value calculation unit 23 calculates one or more types of index values related to energy consumption in the diagnosis target including the production facility 2 based on the production-related information which is the information related to the past production. The score calculation unit 24 is a candidate for each of a plurality of factor candidates that are candidates for energy consumption factors that did not contribute to production in the diagnosis target, based on one or more types of index values calculated by the index value calculation unit 23. Calculate a score that indicates the degree of impact on energy consumption that did not contribute to production. The information providing unit 25 outputs information on two or more factor candidates having the highest score calculated by the score calculation unit 24 among the plurality of factor candidates. As described above, the energy management device 10 has a high degree of influence on the energy consumption that did not contribute to the production by calculating the score indicating the degree of influence on the energy consumption that did not contribute to the production of each of the plurality of factor candidates. Multiple factors can be identified. Further, the energy management device 10 identifies the factors of energy consumption that did not contribute to production without taking the trouble of manually associating the factors of energy consumption that did not contribute to production with the characteristic pattern in advance. be able to.
 また、診断対象には、生産設備2に関連して用いられる関連設備3が含まれる。生産関連情報には、生産設備2の消費エネルギーを示す情報、関連設備3の消費エネルギーを示す情報、および生産設備2の生産量を示す情報が含まれる。指標値算出部23は、生産設備2の消費エネルギーを示す情報、関連設備3の消費エネルギーを示す情報、および生産設備2の生産量を示す情報に基づいて、1種類以上の指標値を算出する。このように、エネルギー管理装置10は、関連設備3の消費エネルギーも生産に寄与しなかったエネルギー消費の要因として扱うことから、例えば、生産施設1全体のエネルギー消費のうち生産に寄与しないエネルギー消費に対する改善活動に有益な情報をユーザへ提供することができる。 Further, the diagnosis target includes the related equipment 3 used in connection with the production equipment 2. The production-related information includes information indicating the energy consumption of the production equipment 2, information indicating the energy consumption of the related equipment 3, and information indicating the production amount of the production equipment 2. The index value calculation unit 23 calculates one or more types of index values based on the information indicating the energy consumption of the production equipment 2, the information indicating the energy consumption of the related equipment 3, and the information indicating the production amount of the production equipment 2. .. As described above, since the energy management device 10 treats the energy consumption of the related equipment 3 as a factor of energy consumption that does not contribute to production, for example, the energy consumption of the entire production facility 1 that does not contribute to production Information useful for improvement activities can be provided to users.
 また、指標値算出部23によって算出される指標値は、第1の指標値、第2の指標値、第3の指標値、第4の指標値、および第5の指標値のうち少なくとも1つを含む。第1の指標値は、生産設備2がオンになってから生産設備2の生産が開始されるまでの時間を示す。第2の指標値は、生産設備2による生産が終了してから生産設備2がオフになるまでの時間を示す。第3の指標値は、関連設備3がオンである時間と生産設備2がオンである時間との差を示す。第4の指標値は、生産設備2がオンである時間のうち生産設備2による生産が行われている時間の割合を示す。第5の指標値は、生産設備2による単位生産高あたりの診断対象のエネルギー消費量を示す。このように、エネルギー管理装置10は、把握が容易な観点から生産に寄与しないエネルギー消費の改善活動に対して有益な情報をユーザへ提供することができる。 Further, the index value calculated by the index value calculation unit 23 is at least one of a first index value, a second index value, a third index value, a fourth index value, and a fifth index value. including. The first index value indicates the time from when the production equipment 2 is turned on until the production of the production equipment 2 is started. The second index value indicates the time from the end of production by the production equipment 2 until the production equipment 2 is turned off. The third index value indicates the difference between the time when the related equipment 3 is on and the time when the production equipment 2 is on. The fourth index value indicates the ratio of the time during which the production facility 2 is in production to the time during which the production facility 2 is on. The fifth index value indicates the energy consumption of the diagnosis target per unit production amount by the production equipment 2. In this way, the energy management device 10 can provide the user with useful information for energy consumption improvement activities that do not contribute to production from the viewpoint of easy grasping.
 また、エネルギー管理装置10は、生産関連情報に基づいて、複数の要因候補の情報を生成する情報生成部22を備える。スコア算出部24は、指標値算出部23によって算出された複数種類の指標値と、情報生成部22によって生成された複数の要因候補の情報とに基づいて、複数の要因候補の各々の生産に寄与しなかったエネルギー消費に対する影響度を示すスコアを算出する。このように、エネルギー管理装置10は、生産関連情報に複数の要因候補の情報を生成することから、複数の要因候補の情報を人手で入力する場合に比べ、ユーザの負荷を大幅に軽減することができる。 Further, the energy management device 10 includes an information generation unit 22 that generates information on a plurality of factor candidates based on production-related information. The score calculation unit 24 determines the production of each of the plurality of factor candidates based on the plurality of types of index values calculated by the index value calculation unit 23 and the information of the plurality of factor candidates generated by the information generation unit 22. Calculate a score that indicates the degree of impact on energy consumption that did not contribute. In this way, since the energy management device 10 generates information on a plurality of factor candidates in the production-related information, the load on the user can be significantly reduced as compared with the case where the information on the plurality of factor candidates is manually input. Can be done.
 また、複数の要因候補は、生産設備2によって物品を生産した日の曜日、週、および月、生産の担当者、生産設備2によって生成される物品の種類、生産設備2で発生したエラー、および生産設備2の環境のうち2つ以上を含む。これにより、エネルギー管理装置10は、時間的観点、人的観点、生産対象の観点、生産設備2の観点、または環境的観点から生産に寄与しなかったエネルギー消費に対する影響度が高い複数の要因を特定することができる。 In addition, a plurality of factor candidates include the day, week, and month of the day when the goods were produced by the production equipment 2, the person in charge of production, the type of goods produced by the production equipment 2, the error that occurred in the production equipment 2, and the error that occurred in the production equipment 2. Includes two or more of the environments of production equipment 2. As a result, the energy management device 10 has a plurality of factors having a high influence on energy consumption that did not contribute to production from the viewpoint of time, human, production target, production equipment 2, or environment. Can be identified.
 また、スコア算出部24は、複数の要因候補の各々のスコアを複数種類の指標値の各々に対して算出する。情報提供部25は、複数種類の指標値の各々について、複数の要因候補のうちスコア算出部24によって算出されたスコアが上位の2つ以上の要因候補の情報を出力する。このように、エネルギー管理装置10は、複数の指標を用いることから、複数の観点の各々に対して生産に寄与しないエネルギー消費の改善活動に対して有益な情報をユーザへ提供することができる。 Further, the score calculation unit 24 calculates the score of each of the plurality of factor candidates for each of the plurality of types of index values. The information providing unit 25 outputs information on two or more factor candidates having a higher score calculated by the score calculation unit 24 among the plurality of factor candidates for each of the plurality of types of index values. As described above, since the energy management device 10 uses a plurality of indexes, it is possible to provide the user with useful information for energy consumption improvement activities that do not contribute to production from each of the plurality of viewpoints.
 また、情報提供部25は、複数の要因候補のうちスコアが大きな要因候補から順に予め設定された数の要因候補をランキング表の形式で表すランキング情報を出力する。これにより、エネルギー管理装置10は、生産に寄与しなかったエネルギー消費に対する影響度が高い複数の要因の情報をランキング表の形式でユーザに提供することができる。 Further, the information providing unit 25 outputs ranking information representing a preset number of factor candidates in the form of a ranking table in order from the factor candidates having the highest score among the plurality of factor candidates. As a result, the energy management device 10 can provide the user with information on a plurality of factors having a high influence on energy consumption that did not contribute to production in the form of a ranking table.
実施の形態2.
 実施の形態2にかかるエネルギー管理装置は、生産に寄与しないエネルギー消費に対するユーザの改善活動への複数の要因候補の各々の貢献度に基づいてスコアを補正する点で、実施の形態1にかかるエネルギー管理装置10と異なる。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1のエネルギー管理装置10と異なる点を中心に説明する。
Embodiment 2.
The energy management device according to the second embodiment corrects the score based on the contribution of each of the plurality of factor candidates to the user's improvement activity for the energy consumption that does not contribute to the production. It is different from the management device 10. In the following, components having the same functions as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted, and the differences from the energy management device 10 of the first embodiment will be mainly described.
 図11は、実施の形態2にかかるエネルギー管理装置の構成の一例を示す図である。図11に示すように、実施の形態2にかかるエネルギー管理装置10Aは、入力部14と貢献度情報記憶部15とを備え、かつ処理部11に代えて処理部11Aを備える点で、実施の形態1のエネルギー管理装置10と異なる。入力部14は、例えば、キーボード、マウス、または携帯端末のタッチパネルなどの入力装置である。 FIG. 11 is a diagram showing an example of the configuration of the energy management device according to the second embodiment. As shown in FIG. 11, the energy management device 10A according to the second embodiment is provided with an input unit 14 and a contribution information storage unit 15, and is provided with a processing unit 11A in place of the processing unit 11. It is different from the energy management device 10 of the first embodiment. The input unit 14 is, for example, an input device such as a keyboard, a mouse, or a touch panel of a mobile terminal.
 処理部11Aは、貢献度推定部26を備える。また、処理部11Aは、情報提供部25に代えて情報提供部25Aを備える。貢献度推定部26は、入力部14によって入力された情報に基づいて、生産に寄与しないエネルギー消費に対するユーザによる改善活動に対する複数の要因候補の各々の貢献度を推定する。貢献度推定部26は、推定した複数の要因候補の各々の貢献度を示す情報を貢献度情報記憶部15に記憶させる。 The processing unit 11A includes a contribution estimation unit 26. Further, the processing unit 11A includes an information providing unit 25A instead of the information providing unit 25. The contribution estimation unit 26 estimates the contribution of each of the plurality of factor candidates to the improvement activity by the user for the energy consumption that does not contribute to production, based on the information input by the input unit 14. The contribution estimation unit 26 stores information indicating the contribution of each of the estimated plurality of factor candidates in the contribution information storage unit 15.
 情報提供部25Aは、ランキング情報生成部41Aと、表示処理部42Aとを備える。ランキング情報生成部41Aは、貢献度推定部26によって推定されて貢献度情報記憶部15に記憶される複数の要因候補の各々の貢献度に基づいて、複数の要因候補のうち対応する要因候補のスコアを補正する。ランキング情報生成部41Aは、補正したスコアに基づいて、ランキング情報を生成する。 The information providing unit 25A includes a ranking information generating unit 41A and a display processing unit 42A. The ranking information generation unit 41A is a factor candidate corresponding to a plurality of factor candidates based on the contribution of each of the plurality of factor candidates estimated by the contribution estimation unit 26 and stored in the contribution information storage unit 15. Correct the score. The ranking information generation unit 41A generates ranking information based on the corrected score.
 表示処理部42Aは、上位の複数の推定要因の種別および内容に加え、ユーザの評価を入力するための入力ボックスを含むロス要因情報を表示部13に表示させる。図12は、実施の形態2にかかる情報提供部によって表示部に表示されるロス要因情報の一例を示す図である。 The display processing unit 42A causes the display unit 13 to display loss factor information including an input box for inputting a user's evaluation, in addition to the types and contents of a plurality of higher-order estimation factors. FIG. 12 is a diagram showing an example of loss factor information displayed on the display unit by the information providing unit according to the second embodiment.
 図12に示すロス要因情報では、図8に示すロス要因情報の内容に加えて、複数の要因候補の各々に対するユーザの評価を入力するための入力ボックスが含まれる。具体的には、要因情報には、複数の要因候補の各々に対して、「役に立った」に対応する第1入力ボックスと、「役に立たなかった」に対応する第2入力ボックスとが含まれる。ユーザは、役に立ったと考えた要因候補に対応する第1入力ボックスにチェックマークを入力し、役に立たなかったと考えた要因候補に対応する第2入力ボックスにチェックマークを入力する。チェックマークは、例えば、マウスのクリック操作またはタッチパネルへのタッチ操作などによって行われる。 The loss factor information shown in FIG. 12 includes, in addition to the contents of the loss factor information shown in FIG. 8, an input box for inputting a user's evaluation for each of a plurality of factor candidates. Specifically, the factor information includes a first input box corresponding to "useful" and a second input box corresponding to "useless" for each of the plurality of factor candidates. The user inputs a check mark in the first input box corresponding to the factor candidate considered to be useful, and inputs a check mark in the second input box corresponding to the factor candidate considered to be useless. The check mark is performed by, for example, a mouse click operation or a touch operation on the touch panel.
 貢献度推定部26は、各要因候補に対する第1入力ボックスまたは第2入力ボックスへの入力履歴に基づいて、生産に寄与しないエネルギー消費に対するユーザの活動への各要因候補の貢献度を推定する。例えば、貢献度推定部26は、下記式(2)を用いることによって、生産に寄与しないエネルギー消費に対するユーザの活動への各要因候補の貢献度を推定する。下記式(2)において、「Z」は、生産に寄与しないエネルギー消費に対するユーザの活動への貢献度であり、「α」は1より大きな係数であり、「β」は1未満の係数である。また、下記式(2)において、「N」は、ユーザが過去に第1入力ボックスにチェックマークを入力した回数であり、「M」は、ユーザが過去に第2入力ボックスにチェックマークを入力した回数である。
 Z=α×β   ・・・(2)
The contribution estimation unit 26 estimates the contribution of each factor candidate to the user's activity for energy consumption that does not contribute to production, based on the input history of each factor candidate in the first input box or the second input box. For example, the contribution estimation unit 26 estimates the contribution of each factor candidate to the user's activity for energy consumption that does not contribute to production by using the following equation (2). In the following formula (2), "Z" is the degree of contribution to the user's activity for energy consumption that does not contribute to production, "α" is a coefficient larger than 1, and "β" is a coefficient less than 1. .. Further, in the following formula (2), "N" is the number of times the user has entered a check mark in the first input box in the past, and "M" is the number of times the user has entered a check mark in the second input box in the past. The number of times it was done.
Z = α N × β M ... (2)
 貢献度Zが大きいほど、生産に寄与しないエネルギー消費に対するユーザの改善活動に役に立つ度合いが高いことを意味する。なお、貢献度推定部26は、上記式(2)による貢献度の算出に代えて、機械学習によって、各要因候補に対するユーザの貢献度を推定することもできる。 The larger the contribution Z, the higher the degree of usefulness for the user's improvement activities for energy consumption that does not contribute to production. The contribution estimation unit 26 can also estimate the user's contribution to each factor candidate by machine learning instead of calculating the contribution by the above equation (2).
 ユーザによる評価の入力方法は、第1入力ボックスおよび第2入力ボックスに限らず、例えば、選択ボックスで「役に立った」および「役に立たなかった」のうち1つを選択して入力する方法であってもよい。また、ユーザによる評価は、「役に立った」と「役に立たなかった」の2種類に限定されず、3段階以上の情報から選択されて入力されてもよい。また、ユーザによる評価は、役に立った度合いを示す数値で入力されてもよい。 The method of inputting the evaluation by the user is not limited to the first input box and the second input box, and is, for example, a method of selecting and inputing one of "useful" and "useless" in the selection box. May be good. Further, the evaluation by the user is not limited to two types of "useful" and "not useful", and may be selected and input from three or more levels of information. In addition, the evaluation by the user may be input by a numerical value indicating the degree of usefulness.
 ランキング情報生成部41Aは、貢献度推定部26によって推定された複数の要因候補の各々の貢献度を示す情報を貢献度情報記憶部15から取得する。ランキング情報生成部41Aは、スコア算出部24によって算出された複数の要因候補の各々のスコアに対して、複数の要因候補の貢献度のうち対応する要因候補の貢献度を乗算することによって、複数の要因候補の各々のスコアを補正する。 The ranking information generation unit 41A acquires information indicating the contribution degree of each of the plurality of factor candidates estimated by the contribution degree estimation unit 26 from the contribution degree information storage unit 15. The ranking information generation unit 41A multiplies each score of the plurality of factor candidates calculated by the score calculation unit 24 by the contribution of the corresponding factor candidate among the contributions of the plurality of factor candidates. Correct the score of each of the factor candidates.
 例えば、要因候補が「月曜日」であり、「月曜日」のスコアが「0.2」であり、「月曜日」の貢献度が「3」であるとする。この場合、ランキング情報生成部41Aは、「0.2」に「3」を乗算することで、「月曜日」のスコアを「0.2」から「0.6」へ補正する。補正後のスコアは、生産に寄与しないエネルギー消費に対するユーザの改善活動に役に立つ度合いを数値化したものともいえる。 For example, assume that the factor candidate is "Monday", the score of "Monday" is "0.2", and the contribution of "Monday" is "3". In this case, the ranking information generation unit 41A corrects the score of "Monday" from "0.2" to "0.6" by multiplying "0.2" by "3". It can be said that the corrected score quantifies the degree of usefulness for the user's improvement activities for energy consumption that does not contribute to production.
 ランキング情報生成部41Aは、上述のように補正したスコアが大きい順に複数の要因候補を並べて複数の要因候補をランキング形式で表すランキング情報を生成する。表示処理部42Aは、ランキング情報生成部41Aによって生成されたランキング情報のうち少なくとも一部の情報と、上述した第1入力ボックスおよび第2入力ボックスの情報とを含むロス要因情報を表示部13に表示させる。例えば、ランキング情報生成部41Aは、図12に示すロス要因情報を表示部13に表示させる。 The ranking information generation unit 41A arranges a plurality of factor candidates in descending order of the corrected score as described above, and generates ranking information representing the plurality of factor candidates in a ranking format. The display processing unit 42A displays on the display unit 13 the loss factor information including at least a part of the ranking information generated by the ranking information generation unit 41A and the information of the first input box and the second input box described above. Display it. For example, the ranking information generation unit 41A causes the display unit 13 to display the loss factor information shown in FIG.
 なお、スコア算出部24は、上述したように、統合指標について複数の要因候補の各々のスコアを算出することもできる。この場合、スコア算出部24は、統合指標について複数の要因候補の各々のスコアを複数の要因候補の貢献度のうち対応する要因候補の貢献度を乗算することによって、複数の要因候補の各々のスコアを補正する。ランキング情報生成部41Aは、統合指標についての補正後の複数の要因候補の各々のスコアに基づいてランキング情報を生成する。 As described above, the score calculation unit 24 can also calculate the scores of each of the plurality of factor candidates for the integrated index. In this case, the score calculation unit 24 multiplies each score of the plurality of factor candidates with respect to the integrated index by the contribution of the corresponding factor candidate among the contributions of the plurality of factor candidates, so that each of the plurality of factor candidates Correct the score. The ranking information generation unit 41A generates ranking information based on the respective scores of the plurality of factor candidates after correction for the integrated index.
 このように、エネルギー管理装置10Aは、エネルギー管理装置10と同様に、生産に寄与しないエネルギー消費に対する影響度が高い複数の要因を特定することができる。さらに、エネルギー管理装置10Aは、例えば、生産に寄与しないエネルギー消費に対するユーザの改善活動への貢献度が高い要因候補を優先してユーザに提供することができる。これにより、ユーザは、生産に寄与しないエネルギー消費に対するユーザの改善活動に対して効果の高い要因を把握し、生産に寄与しないエネルギー消費の改善活動の検討に役立てることができる。 As described above, the energy management device 10A can identify a plurality of factors having a high degree of influence on energy consumption that do not contribute to production, similarly to the energy management device 10. Further, the energy management device 10A can preferentially provide the user with a factor candidate having a high degree of contribution to the user's improvement activity with respect to energy consumption that does not contribute to production. As a result, the user can grasp the factors that are highly effective for the user's improvement activity for energy consumption that does not contribute to production, and can use it for studying the energy consumption improvement activity that does not contribute to production.
 つづいて、フローチャートを用いてエネルギー管理装置10Aの処理部11Aによる処理を説明する。図13は、実施の形態2にかかるエネルギー管理装置の処理部による処理の一例を示すフローチャートである。図13に示すステップS20~S22の処理は、図9に示すステップS10~S12の処理と同じであるため、説明を省略する。 Next, the processing by the processing unit 11A of the energy management device 10A will be described using a flowchart. FIG. 13 is a flowchart showing an example of processing by the processing unit of the energy management device according to the second embodiment. Since the processes of steps S20 to S22 shown in FIG. 13 are the same as the processes of steps S10 to S12 shown in FIG. 9, the description thereof will be omitted.
 図13に示すように、エネルギー管理装置10Aの処理部11Aは、診断開始タイミングになったと判定した場合(ステップS22:Yes)、診断処理を行う(ステップS23)。ステップS23の処理は、図14に示すステップS30~S36の処理であり、後で詳述する。 As shown in FIG. 13, when the processing unit 11A of the energy management device 10A determines that the diagnosis start timing has come (step S22: Yes), the processing unit 11A performs the diagnosis process (step S23). The process of step S23 is the process of steps S30 to S36 shown in FIG. 14, which will be described in detail later.
 処理部11Aは、ステップS23の処理が終了した場合、または診断開始タイミングになっていないと判定した場合(ステップS22:No)、ユーザの入力があるか否かを判定する(ステップS24)。ステップS24において、処理部11Aは、例えば、図12に示す「役に立った」に対応する第1入力ボックスまたは「役に立たなかった」に対応する第2入力ボックスへチェックマークが入力された場合に、ユーザの入力があると判定する。 The processing unit 11A determines whether or not there is a user input when the processing in step S23 is completed or when it is determined that the diagnosis start timing has not been reached (step S22: No) (step S24). In step S24, the processing unit 11A, for example, when a check mark is input to the first input box corresponding to "useful" or the second input box corresponding to "useless" shown in FIG. It is determined that there is an input of.
 処理部11Aは、ユーザの入力があったと判定した場合(ステップS24:Yes)、ユーザの入力履歴に基づいて、生産に寄与しないエネルギー消費であるエネルギーロスに対するユーザの改善活動に対する各要因候補の貢献度を算出する(ステップS25)。そして、処理部11Aは、算出した各要因候補の貢献度を示す情報を貢献度情報記憶部15に記憶させる(ステップS26)。 When the processing unit 11A determines that the user has input (step S24: Yes), the processing unit 11A contributes each factor candidate to the user's improvement activity for energy loss, which is energy consumption that does not contribute to production, based on the user's input history. The degree is calculated (step S25). Then, the processing unit 11A stores the calculated information indicating the contribution degree of each factor candidate in the contribution degree information storage unit 15 (step S26).
 処理部11Aは、ステップS26の処理が終了した場合、またはユーザの入力がないと判定した場合(ステップS24:No)、図13に示す処理を終了する。 The processing unit 11A ends the processing shown in FIG. 13 when the processing in step S26 is completed or when it is determined that there is no user input (step S24: No).
 図14は、実施の形態2にかかるエネルギー管理装置の処理部による診断処理の一例を示すフローチャートである。図14に示すステップS30~S33の処理は、図9に示すステップS13~S16の処理と同じであるため、説明を省略する。 FIG. 14 is a flowchart showing an example of diagnostic processing by the processing unit of the energy management device according to the second embodiment. Since the processes of steps S30 to S33 shown in FIG. 14 are the same as the processes of steps S13 to S16 shown in FIG. 9, the description thereof will be omitted.
 処理部11Aは、ステップS30~S33の処理が終了した場合、複数の要因候補のスコアの各々を、対応する要因候補の貢献度に基づいて補正する(ステップS34)。そして、処理部11Aは、指標毎に補正後のスコアでランキング情報を指標毎に生成する(ステップS35)。ステップS35において、処理部11Aは、ステップS34で補正された各要因候補のスコアに基づいて、複数の要因候補をスコアが大きい順に並べたランキング情報を指標毎に生成する。 When the processing of steps S30 to S33 is completed, the processing unit 11A corrects each of the scores of the plurality of factor candidates based on the contribution of the corresponding factor candidates (step S34). Then, the processing unit 11A generates ranking information for each index based on the corrected score for each index (step S35). In step S35, the processing unit 11A generates ranking information for each index in which a plurality of factor candidates are arranged in descending order of score based on the score of each factor candidate corrected in step S34.
 ステップS35において、処理部11Aは、ステップS34で補正された各要因候補のスコアに基づいて、複数の要因候補を補正後のスコアが大きい順に並べたランキング情報を生成する。そして、処理部11Aは、ステップS35で生成したランキング情報のうち少なくとも一部を表示部13に表示し(ステップS36)、図14に示す処理を終了する。 In step S35, the processing unit 11A generates ranking information in which a plurality of factor candidates are arranged in descending order of the corrected score based on the score of each factor candidate corrected in step S34. Then, the processing unit 11A displays at least a part of the ranking information generated in step S35 on the display unit 13 (step S36), and ends the process shown in FIG.
 実施の形態2にかかるエネルギー管理装置10Aの処理部11Aのハードウェア構成の一例は、図10に示すエネルギー管理装置10の処理部11のハードウェア構成と同じである。プロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、情報収集部21、情報生成部22、指標値算出部23、スコア算出部24、情報提供部25A、および貢献度推定部26の機能を実行することができる。 An example of the hardware configuration of the processing unit 11A of the energy management device 10A according to the second embodiment is the same as the hardware configuration of the processing unit 11 of the energy management device 10 shown in FIG. The processor 101 reads and executes the program stored in the memory 102, thereby causing the information collection unit 21, the information generation unit 22, the index value calculation unit 23, the score calculation unit 24, the information provision unit 25A, and the contribution estimation unit. Twenty-six functions can be performed.
 以上のように、実施の形態2にかかるエネルギー管理装置10Aは、貢献度推定部26を備える。貢献度推定部26は、生産に寄与しないエネルギー消費に対するユーザの改善活動への複数の要因候補の各々の貢献度を推定する。情報提供部25Aは、貢献度推定部26によって推定された複数の要因候補の各々の貢献度に基づいて、複数の要因候補のうち対応する要因候補のスコアを補正し、補正したスコアに基づいて、ランキング情報を生成する。これにより、エネルギー管理装置10Aは、例えば、生産に寄与しないエネルギー消費に対するユーザの改善活動への貢献度が高い要因候補を優先してユーザに提供することができる。そのため、ユーザは、生産に寄与しないエネルギー消費に対するユーザの改善活動に対して効果の高い要因を把握し、生産に寄与しないエネルギー消費の改善活動の検討に役立てることができる。 As described above, the energy management device 10A according to the second embodiment includes a contribution estimation unit 26. The contribution estimation unit 26 estimates the contribution of each of the plurality of factor candidates to the user's improvement activities for energy consumption that does not contribute to production. The information providing unit 25A corrects the score of the corresponding factor candidate among the plurality of factor candidates based on the contribution of each of the plurality of factor candidates estimated by the contribution estimation unit 26, and based on the corrected score. , Generate ranking information. Thereby, for example, the energy management device 10A can preferentially provide the user with a factor candidate having a high degree of contribution to the user's improvement activity with respect to energy consumption that does not contribute to production. Therefore, the user can grasp the factors that are highly effective for the user's improvement activity for energy consumption that does not contribute to production, and can use it for studying the energy consumption improvement activity that does not contribute to production.
実施の形態3.
 実施の形態3にかかるエネルギー管理システムは、エネルギー管理装置から得られる情報に基づいて1種類以上の指標値の情報を入力とし生産に寄与しなかったエネルギー消費の要因の候補のスコアを出力する学習モデルを生成するサーバを備える。以下においては、実施の形態2と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態2と異なる点を中心に説明する。
Embodiment 3.
The energy management system according to the third embodiment is learning to input information of one or more kinds of index values based on the information obtained from the energy management device and output the scores of candidates of energy consumption factors that did not contribute to production. It has a server that generates a model. In the following, the components having the same functions as those of the second embodiment will be designated by the same reference numerals and the description thereof will be omitted, and the differences from the second embodiment will be mainly described.
 図15は、実施の形態3にかかるエネルギー管理システムの構成の一例を示す図である。図15に示すように、実施の形態3にかかるエネルギー管理システム200は、エネルギー管理装置10B,10B,10Bと、サーバ50と、モバイル端末60とを備える。エネルギー管理装置10B,10B,10Bは互いに同じ構成であり、以下において、エネルギー管理装置10B,10B,10Bの各々を個別に区別せずに示す場合、エネルギー管理装置10Bと記載する場合がある。 FIG. 15 is a diagram showing an example of the configuration of the energy management system according to the third embodiment. As shown in FIG. 15, the energy management system 200 according to the third embodiment includes energy management devices 10B 1 , 10B 2 , 10B 3 , a server 50, and a mobile terminal 60. The energy management devices 10B 1 , 10B 2 , and 10B 3 have the same configuration as each other. In the following, when each of the energy management devices 10B 1 , 10B 2 , and 10B 3 is shown without distinction, it is described as the energy management device 10B. May be done.
 各エネルギー管理装置10Bは、エネルギー管理装置10Aと同様に、不図示の電力センサ、生産量センサ、環境センサ、および生産管理装置などに接続され、これらの電力センサ、生産量センサ、環境センサ、および生産管理装置などから情報を収集する。各エネルギー管理装置10Bは、収集した情報に収集時の時刻を関連付けて生産関連情報に追加する。エネルギー管理装置10Bに接続される電力センサ、生産量センサ、環境センサ、および生産管理装置は、エネルギー管理装置10B毎に異なる生産施設1に設けられる。 Like the energy management device 10A, each energy management device 10B is connected to a power sensor, a production volume sensor, an environment sensor, a production control device, and the like (not shown), and these power sensors, a production volume sensor, an environment sensor, and the like. Collect information from production control equipment. Each energy management device 10B associates the collected information with the time at the time of collection and adds it to the production-related information. The power sensor, the production amount sensor, the environmental sensor, and the production management device connected to the energy management device 10B are provided in different production facilities 1 for each energy management device 10B.
 エネルギー管理装置10Bは、エネルギー管理装置10Aと同様に、生産関連情報に基づいて、エネルギーロスを発生させる要因の候補である要因候補の情報を複数含む要因候補情報を生成する。また、エネルギー管理装置10Bは、エネルギー管理装置10Aと同様に、不図示の生産設備と関連設備とを含む診断対象でのエネルギー消費に関する1種類以上の指標値を算出する。また、エネルギー管理装置10Bは、エネルギー管理装置10Aと同様に、複数の要因候補の各々のエネルギーロスに対する影響度を示すスコアを指標毎に算出する。 Similar to the energy management device 10A, the energy management device 10B generates factor candidate information including a plurality of factor candidate information that is a candidate for a factor that causes energy loss based on production-related information. Further, the energy management device 10B calculates one or more types of index values related to energy consumption in a diagnosis target including production equipment (not shown) and related equipment, similarly to the energy management device 10A. Further, the energy management device 10B, like the energy management device 10A, calculates a score indicating the degree of influence of each of the plurality of factor candidates on the energy loss for each index.
 エネルギー管理装置10Bは、学習用情報をサーバ50へ送信する。学習用情報は、1種類以上の指標値の情報と、指標毎の各要因候補のスコアの情報と、エネルギー管理装置10Bの識別情報とを含む。以下において、要因候補のスコアを要因スコアと記載する場合がある。なお、学習用情報に含まれる要因候補のスコアは、スコア算出部24によって算出されたスコアであるが、ランキング情報生成部41Aによって補正されたスコアであってもよい。 The energy management device 10B transmits learning information to the server 50. The learning information includes information on one or more types of index values, information on scores of each factor candidate for each index, and identification information on the energy management device 10B. In the following, the score of the factor candidate may be described as the factor score. The score of the factor candidate included in the learning information is a score calculated by the score calculation unit 24, but may be a score corrected by the ranking information generation unit 41A.
 サーバ50は、エネルギー管理装置10Bおよびモバイル端末60と不図示のネットワークを介して接続されており、エネルギー管理装置10Bおよびモバイル端末60との間で情報の送受信を行う。不図示のネットワークは、例えば、インターネットなどのWAN(Wide Area Network)であるが、LAN(Local Area Network)などのネットワークであってもよい。 The server 50 is connected to the energy management device 10B and the mobile terminal 60 via a network (not shown), and transmits / receives information between the energy management device 10B and the mobile terminal 60. The network (not shown) is, for example, a WAN (Wide Area Network) such as the Internet, but may be a network such as a LAN (Local Area Network).
 サーバ50は、要因スコアを算出するのに十分な情報量の生産関連情報を記憶しているエネルギー管理装置10Bから学習用情報を取得し、取得した学習用情報に基づいて、1種類以上の指標値の情報を入力とし複数の要因スコアを出力とする学習済みモデルを生成する。 The server 50 acquires learning information from the energy management device 10B that stores production-related information in an amount sufficient to calculate the factor score, and based on the acquired learning information, one or more types of indexes. Generate a trained model that inputs value information and outputs multiple factor scores.
 そして、サーバ50は、要因スコアを算出するのに十分な情報量の生産関連情報を記憶していないエネルギー管理装置10Bから1種類以上の指標値の情報を含む診断対象情報を取得する。要因スコアを算出するのに十分な情報量の生産関連情報を記憶していないエネルギー管理装置10Bは、例えば、生産施設1に新たに設置されたエネルギー管理装置10Bまたは新たな設備が設置された生産施設1に設置されているエネルギー管理装置10Bである。 Then, the server 50 acquires the diagnosis target information including the information of one or more kinds of index values from the energy management device 10B which does not store the production-related information of an amount of information sufficient for calculating the factor score. The energy management device 10B that does not store a sufficient amount of production-related information for calculating the factor score is, for example, a production in which the energy management device 10B newly installed in the production facility 1 or a new facility is installed. It is an energy management device 10B installed in the facility 1.
 サーバ50は、エネルギー管理装置10Bから取得した診断対象情報と、学習用情報に基づく学習によって生成した学習済みモデルの情報とに基づいて、複数の要因スコアを算出し、算出した要因スコアが上位の2以上の要因候補の情報を含む診断結果情報をモバイル端末60または診断対象情報を送信したエネルギー管理装置10Bへ送信する。 The server 50 calculates a plurality of factor scores based on the diagnosis target information acquired from the energy management device 10B and the trained model information generated by learning based on the learning information, and the calculated factor score is higher. The diagnosis result information including the information of two or more factor candidates is transmitted to the mobile terminal 60 or the energy management device 10B that has transmitted the diagnosis target information.
 モバイル端末60は、例えば、スマートフォン、タブレット、またはノートパソコンなどであり、サーバ50から送信された診断結果情報に基づいて、上位の2以上の要因候補の情報を表示する。また、診断対象情報を送信したエネルギー管理装置10Bの処理部11Bは、サーバ50から送信された診断結果情報に基づいて、上位の2以上の要因候補の情報を表示部13に表示する。 The mobile terminal 60 is, for example, a smartphone, a tablet, a notebook computer, or the like, and displays information on two or more top factor candidates based on the diagnosis result information transmitted from the server 50. Further, the processing unit 11B of the energy management device 10B that has transmitted the diagnosis target information displays the information of the upper two or more factor candidates on the display unit 13 based on the diagnosis result information transmitted from the server 50.
 このように、サーバ50は、要因スコアを算出するのに十分な情報量の生産関連情報を記憶していないエネルギー管理装置10Bからの情報に基づいて、1種類以上の指標についての要因スコアを算出し、算出した要因スコアが上位の2以上の要因候補の情報を含む診断結果情報を提供する。 In this way, the server 50 calculates the factor score for one or more types of indicators based on the information from the energy management device 10B that does not store the production-related information in an amount sufficient to calculate the factor score. Then, the diagnosis result information including the information of the two or more factor candidates whose calculated factor scores are high is provided.
 そのため、サーバ50は、例えば、エネルギー管理装置10Bが導入されてから数日以内である場合などのように、診断対象の設備である診断対象設備に関する生産関連情報の収集が十分でない場合であっても、既に診断が完了している診断済み設備の情報に基づいて、生産に寄与しないエネルギー消費を生じさせた複数の要因を特定することができる。以下、エネルギー管理装置10Bおよびサーバ50の構成について具体的に説明する。 Therefore, the server 50 may not sufficiently collect production-related information about the equipment to be diagnosed, for example, within a few days after the energy management device 10B is introduced. However, it is possible to identify a plurality of factors that have caused energy consumption that does not contribute to production, based on the information of the diagnosed equipment for which the diagnosis has already been completed. Hereinafter, the configurations of the energy management device 10B and the server 50 will be specifically described.
 図16は、実施の形態3にかかるエネルギー管理装置の構成の一例を示す図である。図16に示すように、実施の形態3にかかるエネルギー管理装置10Bは、処理部11に代えて処理部11Bを備える点、および通信部16をさらに備える点で、実施の形態2に係るエネルギー管理装置10Aと異なる。通信部16は、不図示のネットワークを介してサーバ50との間で情報の送受信を行う。 FIG. 16 is a diagram showing an example of the configuration of the energy management device according to the third embodiment. As shown in FIG. 16, the energy management device 10B according to the third embodiment includes the processing unit 11B instead of the processing unit 11, and further includes the communication unit 16, and the energy management according to the second embodiment. Different from device 10A. The communication unit 16 transmits / receives information to / from the server 50 via a network (not shown).
 処理部11Bは、情報提供部25Aに代えて、情報提供部25Bを備える点で、実施の形態2にかかる処理部11Aと異なる。情報提供部25Bは、指標値算出部23によって算出された1種類以上の指標値の情報と、スコア算出部24によって算出された複数の要因候補の各々の指標毎のスコアの情報と、エネルギー管理装置10Bの識別情報とを含む学習用情報を生成する。情報提供部25Bは、生成した学習用情報をサーバ50へ通信部16を介して送信する。 The processing unit 11B is different from the processing unit 11A according to the second embodiment in that the information providing unit 25B is provided instead of the information providing unit 25A. The information providing unit 25B provides information on one or more types of index values calculated by the index value calculation unit 23, score information for each index of a plurality of factor candidates calculated by the score calculation unit 24, and energy management. The learning information including the identification information of the device 10B is generated. The information providing unit 25B transmits the generated learning information to the server 50 via the communication unit 16.
 また、情報提供部25Bは、生産関連情報記憶部12に記憶された生産関連情報の情報量が要因スコアを算出するには十分でない場合、指標値算出部23によって算出された1種類以上の指標値の情報を含む診断対象情報をサーバ50へ通信部16を介して送信する。以下において、エネルギー管理装置10Bの生産関連情報記憶部12に記憶された生産関連情報の情報量が要因スコアを算出するには十分でないとし、エネルギー管理装置10B,10Bの生産関連情報記憶部12に記憶された生産関連情報の情報量が要因スコアを算出するのに十分であるとする場合がある。 Further, when the amount of information of the production-related information stored in the production-related information storage unit 12 is not sufficient for calculating the factor score, the information providing unit 25B has one or more types of indexes calculated by the index value calculation unit 23. The diagnosis target information including the value information is transmitted to the server 50 via the communication unit 16. In the following, it is assumed that the amount of information of the production-related information stored in the production-related information storage unit 12 of the energy management device 10B 3 is not sufficient for calculating the factor score, and the production-related information storage of the energy management devices 10B 1 and 10B 2 is performed. In some cases, the amount of production-related information stored in unit 12 is sufficient to calculate the factor score.
 図17は、実施の形態3にかかるサーバの構成の一例を示す図である。図17に示すように、実施の形態3にかかるサーバ50は、通信部51と、情報取得部52と、要因推定部53と、記憶部54とを備える。通信部51は、不図示のネットワークを介してエネルギー管理装置10Bおよびモバイル端末60との間で情報の送受信を行う。 FIG. 17 is a diagram showing an example of the configuration of the server according to the third embodiment. As shown in FIG. 17, the server 50 according to the third embodiment includes a communication unit 51, an information acquisition unit 52, a factor estimation unit 53, and a storage unit 54. The communication unit 51 transmits / receives information to / from the energy management device 10B and the mobile terminal 60 via a network (not shown).
 情報取得部52は、エネルギー管理装置10Bから送信され通信部51で受信された学習用情報または診断対象情報などの情報を取得する。情報取得部52は、エネルギー管理装置10Bから取得した情報を記憶部54に記憶させたり、要因推定部53へ出力したりする。 The information acquisition unit 52 acquires information such as learning information or diagnosis target information transmitted from the energy management device 10B and received by the communication unit 51. The information acquisition unit 52 stores the information acquired from the energy management device 10B in the storage unit 54, or outputs the information to the factor estimation unit 53.
 要因推定部53は、情報取得部52によって学習用情報が取得された場合、かかる学習用情報に基づいて、診断済み設備において生産に寄与しないエネルギー消費を生じさせた要因の学習を行い、学習モデルを生成する。なお、診断済み設備は、エネルギー管理装置10Bにおいてエネルギー消費を生じさせた要因を推定するのに十分な生産関連情報が蓄積された生産設備であり、例えば、エネルギー管理装置10B,10Bの診断対象設備である。 When the learning information is acquired by the information acquisition unit 52, the factor estimation unit 53 learns the factors that caused energy consumption that does not contribute to production in the diagnosed equipment based on the learning information, and performs a learning model. To generate. The diagnosed equipment is a production equipment in which sufficient production-related information is accumulated to estimate the factors that caused energy consumption in the energy management device 10B. For example, the diagnosis of the energy management devices 10B 1 and 10B 2 is performed. This is the target equipment.
 また、要因推定部53は、情報取得部52によって診断対象情報が取得された場合、診断対象情報と学習済みモデル57とに基づいて、診断対象設備において生産に寄与しないエネルギー消費を生じさせる複数の要因の推定を行う。診断対象設備は、例えば、生産施設1に新たに設置された設備であり、エネルギー管理装置10Bによる診断対象の設備である。 Further, when the diagnosis target information is acquired by the information acquisition unit 52, the factor estimation unit 53 causes a plurality of energy consumptions that do not contribute to production in the diagnosis target equipment based on the diagnosis target information and the learned model 57. Estimate the factors. Diagnosed facility, for example, a newly installed equipment production facility 1, which is diagnosed equipment from energy management device 10B 3.
 要因推定部53は、モデル生成部55と、推論部56とを備える。モデル生成部55は、情報取得部52から出力される学習用情報に基づいて得られる入力情報およびラベル情報に基づいて学習を行い、入力情報から適切な出力を推定する学習済みモデルを生成する。入力情報は、1種類以上の指標値の情報であり、ラベル情報は、複数の要因候補の各々の指標毎のスコアの情報である。 The factor estimation unit 53 includes a model generation unit 55 and an inference unit 56. The model generation unit 55 performs learning based on the input information and the label information obtained based on the learning information output from the information acquisition unit 52, and generates a trained model that estimates an appropriate output from the input information. The input information is information on one or more types of index values, and the label information is information on the score for each index of the plurality of factor candidates.
 モデル生成部55は、例えば、ニューラルネットワークモデルを用いた、教師有り学習により学習を行う。ここで、教師あり学習とは、入力の情報とラベルと呼ばれる結果の情報との組を含む学習用情報を学習装置に与えることで、かかる学習用情報にある特徴を学習し、入力から結果を推論する手法をいう。入力の情報とラベルの情報の組はデータセットとも呼ばれる。 The model generation unit 55 performs learning by supervised learning using, for example, a neural network model. Here, in supervised learning, learning information including a set of input information and result information called a label is given to a learning device to learn the characteristics of the learning information, and the result is obtained from the input. A method of inferring. The set of input information and label information is also called a dataset.
 ニューラルネットワークは、複数のニューロンからなる入力層、複数のニューロンからなる中間層、および複数のニューロンからなる出力層で構成される。中間層は、1層であっても2層以上であってもよい。中間層は、隠れ層とも呼ばれる。 A neural network is composed of an input layer composed of a plurality of neurons, an intermediate layer composed of a plurality of neurons, and an output layer composed of a plurality of neurons. The intermediate layer may be one layer or two or more layers. The middle layer is also called the hidden layer.
 図18は、実施の形態3にかかるニューラルネットワークの一例を示す図である。図18に示すニューラルネットワークは、3層のニューラルネットワークであり、入力層X1,X2,X3と、中間層Y1,Y2と、出力層Z1,Z2,Z3とを含む。 FIG. 18 is a diagram showing an example of the neural network according to the third embodiment. The neural network shown in FIG. 18 is a three-layer neural network, and includes input layers X1, X2, X3, intermediate layers Y1, Y2, and output layers Z1, Z2, Z3.
 入力情報に含まれる複数の入力値が入力層X1,X2,X3に入力されると、複数の入力値に重みW1が乗算され、重みW1が乗算された複数の入力値が中間層Y1,Y2へ入力される。重みW1は、w11,w12,w13,w14,w15,w16を含む。 When a plurality of input values included in the input information are input to the input layers X1, X2, X3, the weight W1 is multiplied by the plurality of input values, and the plurality of input values multiplied by the weight W1 are the intermediate layers Y1, Y2. Is entered in. The weight W1 includes w11, w12, w13, w14, w15, w16.
 中間層Y1,Y2では、重みW1が乗算された複数の入力値に基づく演算が行われ、中間層Y1,Y2の演算結果に重みW2が乗算されて出力層Z1,Z2,Z3へ入力される。重みW2は、w21,w22,w23,w24,w25,w26を含む。 In the intermediate layers Y1 and Y2, an operation based on a plurality of input values multiplied by the weight W1 is performed, and the calculation result of the intermediate layers Y1 and Y2 is multiplied by the weight W2 and input to the output layers Z1, Z2 and Z3. .. The weight W2 includes w21, w22, w23, w24, w25, w26.
 出力層Z1,Z2,Z3では、中間層Y1,Y2の演算結果に重みW2が乗算された複数の値に基づく演算が行われ、かかる演算結果が出力層Z1,Z2,Z3から出力される。ニューラルネットワークの出力結果は、重みW1とW2の値によって変わる。 In the output layers Z1, Z2 and Z3, an operation is performed based on a plurality of values obtained by multiplying the operation results of the intermediate layers Y1 and Y2 by the weight W2, and the operation results are output from the output layers Z1, Z2 and Z3. The output result of the neural network depends on the values of the weights W1 and W2.
 図17に戻って、サーバ50の構成についての説明を続ける。モデル生成部55は、例えば、予め設定された情報量以上の情報量を有する学習用情報が情報取得部52によって取得された場合に、かかる学習用情報を用いて上述した学習を実行することで学習済みモデル57を生成する。モデル生成部55は、生成した学習済みモデル57を記憶部54に記憶させる。 Returning to FIG. 17, the explanation of the configuration of the server 50 will be continued. For example, when the learning information having an amount of information equal to or larger than the preset amount of information is acquired by the information acquisition unit 52, the model generation unit 55 executes the above-mentioned learning using the learning information. Generate the trained model 57. The model generation unit 55 stores the generated learned model 57 in the storage unit 54.
 モデル生成部55は、1種類以上の指標値の情報を入力とし複数の要因候補の要因スコアを出力とする学習済みモデル57を生成する。1種類以上の指標値の情報は、例えば、サンプリング期間の情報および入力指標値の情報を含む。この場合、モデル生成部55は、サンプリング期間の情報および入力指標値の情報を入力情報とし、複数の要因スコアの情報をラベル情報として、学習を行う。 The model generation unit 55 generates a trained model 57 that inputs information on one or more types of index values and outputs factor scores of a plurality of factor candidates. The information of one or more kinds of index values includes, for example, information on the sampling period and information on the input index value. In this case, the model generation unit 55 performs learning using the sampling period information and the input index value information as input information and the plurality of factor score information as label information.
 入力指標値は、例えば、サンプリング期間で第1の指標値、第2の指標値、第3の指標値、第4の指標値、および第5の指標値の各々を平均化した値である。ラベル情報で示される複数の要因スコアは、例えば、第1の指標値、第2の指標値、第3の指標値、第4の指標値、および第5の指標値の各々に対してエネルギー管理装置10Bで算出された複数の要因スコアを要因候補毎に加算したものである。 The input index value is, for example, a value obtained by averaging each of the first index value, the second index value, the third index value, the fourth index value, and the fifth index value in the sampling period. The plurality of factor scores indicated by the label information are, for example, energy management for each of the first index value, the second index value, the third index value, the fourth index value, and the fifth index value. A plurality of factor scores calculated by the device 10B are added for each factor candidate.
 なお、サンプリング期間の情報および入力指標値の情報は、エネルギー管理装置10Bで生成されて学習用情報に含まれていてもよく、エネルギー管理装置10Bから送信される学習用情報に基づいて、モデル生成部55によって生成されてもよい。 The sampling period information and the input index value information may be generated by the energy management device 10B and included in the learning information, and a model is generated based on the learning information transmitted from the energy management device 10B. It may be generated by part 55.
 上述した例では、モデル生成部55の学習手法の一例としてニューラルネットワークを利用する例を挙げたが、モデル生成部55の学習手法は、上述した例に限定されず、例えば、遺伝的プログラミング、またはサポートベクターマシンなどの学習手法であってもよい。 In the above-mentioned example, an example of using a neural network is given as an example of the learning method of the model generation unit 55, but the learning method of the model generation unit 55 is not limited to the above-mentioned example, and is, for example, genetic programming or. It may be a learning method such as a support vector machine.
 推論部56は、新たな診断対象設備のエネルギー消費の要因を診断するためのエネルギー管理装置10Bから得られる診断対象情報または診断対象情報に基づく情報をモデル生成部55によって生成された学習済みモデル57へ入力する。 The reasoning unit 56 generates the diagnosis target information obtained from the energy management device 10B for diagnosing the energy consumption factor of the new diagnosis target equipment or the information based on the diagnosis target information, and the trained model 57 generated by the model generation unit 55. Enter in.
 例えば、推論部56は、診断対象情報にサンプリング期間の情報と入力指標値の情報とが含まれている場合、診断対象情報に含まれるサンプリング期間の情報と入力指標値の情報とを学習済みモデル57に入力する。 For example, when the diagnosis target information includes the sampling period information and the input index value information, the inference unit 56 learns the sampling period information and the input index value information included in the diagnosis target information. Enter in 57.
 また、推論部56は、診断対象情報にサンプリング期間の情報と入力指標値が含まれていない場合、診断対象情報で示される第1の指標値、第2の指標値、第3の指標値、第4の指標値、および第5の指標値の各々を予め設定されたサンプリング期間で平均化した値を入力指標値として算出する。推論部56は、算出した入力指標値の情報とサンプリング期間の情報とを学習済みモデル57に入力する。 Further, when the diagnosis target information does not include the sampling period information and the input index value, the inference unit 56 includes a first index value, a second index value, and a third index value indicated by the diagnosis target information. A value obtained by averaging each of the fourth index value and the fifth index value in a preset sampling period is calculated as an input index value. The inference unit 56 inputs the calculated input index value information and the sampling period information into the trained model 57.
 推論部56は、複数の要因候補のうち学習済みモデル57から出力される要因スコアに基づいて、要因スコアが上位の2以上の要因候補の情報を判定する。推論部56は、要因スコアが上位の2以上の要因候補の情報である上位要因情報を出力する。推論部56から出力された上位要因情報は、モバイル端末60または診断対象情報を送信したエネルギー管理装置10Bへ通信部51によって送信される。 The inference unit 56 determines information on two or more factor candidates having the highest factor scores based on the factor scores output from the trained model 57 among the plurality of factor candidates. The inference unit 56 outputs high-ranking factor information, which is information on two or more factor candidates having high-ranking factor scores. The higher-level factor information output from the inference unit 56 is transmitted by the communication unit 51 to the mobile terminal 60 or the energy management device 10B that has transmitted the diagnosis target information.
 なお、入力指標値は、複数種類の指標値の各々の平均値に代えて、複数種類の指標値をまとめた統合指標値であってもよい。例えば、統合指標値は、複数種類の指標値の各々に重み付けした値を統合した値、例えば、複数種類の指標値の各々に係数を乗算した結果を合算した値であってもよい。また、入力指標値の情報は、1種類の指標値の情報であってもよい。 Note that the input index value may be an integrated index value that is a collection of a plurality of types of index values instead of the average value of each of the plurality of types of index values. For example, the integrated index value may be a value obtained by integrating a weighted value for each of a plurality of types of index values, for example, a value obtained by multiplying each of the plurality of types of index values by a coefficient. Further, the information of the input index value may be the information of one kind of index value.
 また、上述した例では、入力情報にサンプリング期間の情報が含まれるが、サンプリング期間が予め定められた固定のサンプリング期間である場合、入力情報にはサンプリング期間の情報が含まれていなくてもよい。 Further, in the above-mentioned example, the input information includes the sampling period information, but when the sampling period is a predetermined fixed sampling period, the input information does not have to include the sampling period information. ..
 このように、サーバ50は、生産設備2のエネルギー消費の要因を診断するのに十分な生産関連情報を収集しているエネルギー管理装置10B,10Bから出力される学習用情報を用いた学習により学習済みモデル57を生成する。そして、サーバ50は、かかる学習済みモデル57を用いて、生産関連情報の収集が十分に収集されていない診断対象設備において生産に寄与しなかったエネルギー消費の要因のうち改善効果の高い要因を推定する。これにより、サーバ50は、生産関連情報の収集が十分に収集されていない診断対象設備についても、エネルギー消費の改善活動の検討に役立てることができる情報を提供することができる。 In this way, the server 50 learns using the learning information output from the energy management devices 10B 1 and 10B 2 that collect sufficient production-related information for diagnosing the energy consumption factor of the production equipment 2. Generates the trained model 57 by. Then, the server 50 uses the trained model 57 to estimate the factors with a high improvement effect among the factors of energy consumption that did not contribute to the production in the equipment to be diagnosed in which the collection of production-related information is not sufficiently collected. do. As a result, the server 50 can provide information that can be useful for examining energy consumption improvement activities even for the equipment to be diagnosed for which the collection of production-related information is not sufficiently collected.
 つづいて、フローチャートを用いてエネルギー管理装置10Bの処理部11Bによる処理を説明する。図19は、実施の形態3にかかるエネルギー管理装置の処理部による処理の一例を示すフローチャートである。なお、図19に示すステップS40,S41,S44~S48,S50,S51の処理は、図9に示すステップS10~S18の処理と同じであるため、説明を省略する。 Next, the processing by the processing unit 11B of the energy management device 10B will be described using a flowchart. FIG. 19 is a flowchart showing an example of processing by the processing unit of the energy management device according to the third embodiment. Since the processing of steps S40, S41, S44 to S48, S50, and S51 shown in FIG. 19 is the same as the processing of steps S10 to S18 shown in FIG. 9, the description thereof will be omitted.
 図19に示すように、エネルギー管理装置10Bの処理部11Bは、ステップS41において生産関連情報の更新が行われた後、診断対象情報送信タイミングになったか否かを判定する(ステップS42)。診断対象情報送信タイミングは、例えば、生産関連情報の情報量がランキング情報を生成するための情報量未満である場合において予め設定されたサンプリング期間毎に発生するタイミングである。 As shown in FIG. 19, the processing unit 11B of the energy management device 10B determines whether or not the diagnosis target information transmission timing has come after the production-related information is updated in step S41 (step S42). The diagnosis target information transmission timing is, for example, a timing that occurs every preset sampling period when the amount of information related to production is less than the amount of information for generating ranking information.
 処理部11Bは、診断対象情報送信タイミングになったと判定した場合(ステップS42:Yes)、診断対象情報の生成および送信を行う(ステップS43)。ステップS43の処理において、処理部11Bは、生産関連情報記憶部12に記憶されている生産関連情報に基づいて、生産設備を含む診断対象でのエネルギー消費に関する1種類以上の指標値の情報を含む診断対象情報を生成し、生成した診断対象情報をサーバ50へ通信部16を介して送信する。 When the processing unit 11B determines that the diagnosis target information transmission timing has come (step S42: Yes), the processing unit 11B generates and transmits the diagnosis target information (step S43). In the process of step S43, the processing unit 11B includes information on one or more types of index values related to energy consumption in the diagnostic target including the production equipment based on the production-related information stored in the production-related information storage unit 12. The diagnosis target information is generated, and the generated diagnosis target information is transmitted to the server 50 via the communication unit 16.
 処理部11Bは、ステップS43の処理が終了した場合、または診断対象情報送信タイミングになっていないと判定した場合(ステップS42:No)、ステップS44の処理を行う。 The processing unit 11B performs the processing of step S44 when the processing of step S43 is completed or when it is determined that the diagnosis target information transmission timing has not been reached (step S42: No).
 処理部11Bは、ステップS48において、指標毎に各要因候補のスコアを算出した後、ステップS47で算出した1種類以上の指標値の情報とステップS48で算出した指標毎の各要因候補のスコアの情報とを含む学習用情報をサーバ50へ通信部16を介して送信する(ステップS49)。 In step S48, the processing unit 11B calculates the score of each factor candidate for each index, and then the information of one or more types of index values calculated in step S47 and the score of each factor candidate for each index calculated in step S48. The learning information including the information is transmitted to the server 50 via the communication unit 16 (step S49).
 つづいて、フローチャートを用いてサーバ50による学習処理および推論処理を説明する。図20は、実施の形態3にかかるサーバによる学習処理の一例を示すフローチャートである。図20に示すように、サーバ50の情報取得部52は、エネルギー管理装置10Bから学習用情報を取得する(ステップS60)。ステップS60において、情報取得部52は、例えば、エネルギー管理装置10Bおよびエネルギー管理装置10Bから学習用情報を取得する。 Subsequently, the learning process and the inference process by the server 50 will be described using a flowchart. FIG. 20 is a flowchart showing an example of the learning process by the server according to the third embodiment. As shown in FIG. 20, the information acquisition unit 52 of the server 50 acquires learning information from the energy management device 10B (step S60). In step S60, the information acquisition unit 52 acquires learning information from , for example, the energy management device 10B 1 and the energy management device 10B 2.
 次に、サーバ50における要因推定部53のモデル生成部55は、情報取得部52によって取得された学習用情報に基づいて、学習済みモデル57を生成する学習処理を実行する(ステップS61)。ステップS61の処理において、モデル生成部55は、情報取得部52によって取得された学習用情報にサンプリング期間の情報および入力指標値の情報が含まれていない場合、情報取得部52によって取得された学習用情報に基づいて、サンプリング期間の情報および入力指標値の情報を生成する。モデル生成部55は、サンプリング期間の情報および入力指標値の情報を入力情報とし各要因スコアの情報をラベル情報として、いわゆる教師あり学習により学習を行い、学習済みモデル57を生成する。 Next, the model generation unit 55 of the factor estimation unit 53 on the server 50 executes a learning process to generate the learned model 57 based on the learning information acquired by the information acquisition unit 52 (step S61). In the process of step S61, when the learning information acquired by the information acquisition unit 52 does not include the sampling period information and the input index value information, the model generation unit 55 learns acquired by the information acquisition unit 52. Generates sampling period information and input index value information based on the information. The model generation unit 55 uses the information of the sampling period and the information of the input index value as the input information and the information of each factor score as the label information, and performs learning by so-called supervised learning to generate the learned model 57.
 要因推定部53のモデル生成部55は、学習済みモデル57を生成した後、生成した学習済みモデル57の情報を記憶部54に記憶させ(ステップS62)、図20に示す処理を終了する。 The model generation unit 55 of the factor estimation unit 53 generates the trained model 57, stores the information of the generated trained model 57 in the storage unit 54 (step S62), and ends the process shown in FIG.
 図21は、実施の形態3にかかるサーバによる推論処理の一例を示すフローチャートである。図21に示すように、サーバ50の情報取得部52は、エネルギー管理装置10Bから診断対象情報を取得する(ステップS70)。ステップS70において、情報取得部52は、例えば、エネルギー管理装置10Bから診断対象情報を取得する。 FIG. 21 is a flowchart showing an example of inference processing by the server according to the third embodiment. As shown in FIG. 21, the information acquisition unit 52 of the server 50 acquires the diagnosis target information from the energy management device 10B (step S70). In step S70, the information acquisition unit 52 acquires the diagnosis target information from , for example, the energy management device 10B 3.
 次に、要因推定部53は、情報取得部52によって取得された診断対象情報と記憶部54に記憶された学習済みモデル57の情報とに基づいて、複数の要因スコアを算出する(ステップS71)。ステップS71の処理において、要因推定部53は、情報取得部52によって取得された診断対象情報または診断対象情報に基づく情報を学習済みモデル57へ入力し、学習済みモデル57の演算によって、学習済みモデル57から出力される複数の要因スコアを取得する。診断対象情報または診断対象情報に基づく情報は、サンプリング期間の情報および入力指標値の情報を含む。 Next, the factor estimation unit 53 calculates a plurality of factor scores based on the diagnosis target information acquired by the information acquisition unit 52 and the information of the learned model 57 stored in the storage unit 54 (step S71). .. In the process of step S71, the factor estimation unit 53 inputs the diagnosis target information acquired by the information acquisition unit 52 or the information based on the diagnosis target information into the trained model 57, and the trained model is calculated by the calculation of the trained model 57. A plurality of factor scores output from 57 are acquired. The diagnosis target information or the information based on the diagnosis target information includes sampling period information and input index value information.
 次に、要因推定部53は、複数の要因候補のうちステップS71で算出された要因スコアに基づいて、要因スコアが上位の2以上の要因候補を改善効果が高い要因として推定する(ステップS72)。要因推定部53は、推定した改善効果が高い要因の情報をモバイル端末60へ通信部51を介して送信し(ステップS73)、図21の処理を終了する。 Next, the factor estimation unit 53 estimates two or more factor candidates having the highest factor scores as factors having a high improvement effect based on the factor scores calculated in step S71 among the plurality of factor candidates (step S72). .. The factor estimation unit 53 transmits the estimated factor information having a high improvement effect to the mobile terminal 60 via the communication unit 51 (step S73), and ends the process of FIG. 21.
 図22は、実施の形態3にかかるモバイル端末による処理の一例を示すフローチャートである。図22に示すように、モバイル端末60は、ユーザによる不図示の操作部への操作によって、診断対象設備のエネルギー管理装置10Bの識別番号が入力された場合、エネルギー管理装置10Bの識別番号を含む診断リクエストをサーバ50へ送信する(ステップS80)。診断リクエストを受信したサーバ50は、エネルギー管理装置10Bの診断対象情報に基づいて図21に示す推論処理を実行し、かかる推論処理で得られた上位要因情報をモバイル端末60へ送信する。 FIG. 22 is a flowchart showing an example of processing by the mobile terminal according to the third embodiment. As shown in FIG. 22, when the identification number of the energy management device 10B 3 of the equipment to be diagnosed is input by the operation of the operation unit (not shown) by the user, the mobile terminal 60 has the identification number of the energy management device 10B 3 . A diagnostic request including the above is transmitted to the server 50 (step S80). The server 50 that has received the diagnosis request executes the inference process shown in FIG. 21 based on the diagnosis target information of the energy management device 10B 3 , and transmits the higher-level factor information obtained by the inference process to the mobile terminal 60.
 モバイル端末60は、診断リクエストのサーバ50への送信に応じてサーバ50から送信される上位要因情報を受信する(ステップS81)。そして、モバイル端末60は、受信した上位要因情報を不図示の表示部に表示し(ステップS82)、図22に示す処理を終了する。 The mobile terminal 60 receives the higher-level factor information transmitted from the server 50 in response to the transmission of the diagnosis request to the server 50 (step S81). Then, the mobile terminal 60 displays the received higher-level factor information on a display unit (not shown) (step S82), and ends the process shown in FIG. 22.
 これにより、モバイル端末60のユーザは、生産関連情報の収集が十分に収集されていない診断対象設備において、生産に寄与しなかったエネルギー消費の要因の候補である複数の要因候補のうち、改善効果が高い要因候補の情報を把握することができる。 As a result, the user of the mobile terminal 60 has an improvement effect among a plurality of factor candidates that are candidates for energy consumption factors that did not contribute to production in the equipment to be diagnosed in which the collection of production-related information is not sufficiently collected. It is possible to grasp the information of the factor candidates with high.
 このように、実施の形態3にかかるサーバ50の要因推定部53は、診断済み設備の指標値の情報と要因スコアの情報とに基づく学習用情報を学習し、学習後の推定時は、診断対象情報または診断対象情報に基づく情報を入力として要因を推定する。なお、要因推定部53に入力される診断対象情報は、ユーザが同一組織内の診断結果を利用し、サーバ50へ入力される場合もあれば、エネルギー管理装置10Bの提供者がクラウドサービスなどを通じてサーバ50へ入力することもできる。 In this way, the factor estimation unit 53 of the server 50 according to the third embodiment learns learning information based on the index value information of the diagnosed equipment and the factor score information, and makes a diagnosis at the time of estimation after learning. The factor is estimated by inputting the target information or the information based on the diagnosis target information. The diagnosis target information input to the factor estimation unit 53 may be input to the server 50 by the user using the diagnosis result in the same organization, or may be input to the server 50 by the provider of the energy management device 10B through a cloud service or the like. It can also be input to the server 50.
 実施の形態3にかかるエネルギー管理装置10Bの処理部11Bのハードウェア構成の一例は、図10に示すエネルギー管理装置10の処理部11のハードウェア構成と同じである。プロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、処理部11Bの機能を実行することができる。 An example of the hardware configuration of the processing unit 11B of the energy management device 10B according to the third embodiment is the same as the hardware configuration of the processing unit 11 of the energy management device 10 shown in FIG. The processor 101 can execute the function of the processing unit 11B by reading and executing the program stored in the memory 102.
 図23は、実施の形態3にかかるサーバのハードウェア構成の一例を示す図である。図23に示すように、サーバ50は、プロセッサ201と、メモリ202と、通信装置203とを備えるコンピュータを含む。記憶部54は、メモリ202で実現される。通信部51は、通信装置203で実現される。プロセッサ201、メモリ202、および通信装置203は、例えば、バス204によって互いにデータの送受信が可能である。プロセッサ201は、メモリ202に記憶されたプログラムを読み出して実行することによって、情報取得部52および要因推定部53の機能を実行する。プロセッサ201は、例えば、処理回路の一例であり、CPU、DSP、およびシステムLSIのうち一つ以上を含む。 FIG. 23 is a diagram showing an example of the hardware configuration of the server according to the third embodiment. As shown in FIG. 23, the server 50 includes a computer including a processor 201, a memory 202, and a communication device 203. The storage unit 54 is realized by the memory 202. The communication unit 51 is realized by the communication device 203. The processor 201, the memory 202, and the communication device 203 can send and receive data to and from each other by, for example, the bus 204. The processor 201 executes the functions of the information acquisition unit 52 and the factor estimation unit 53 by reading and executing the program stored in the memory 202. The processor 201 is, for example, an example of a processing circuit, and includes one or more of a CPU, a DSP, and a system LSI.
 メモリ202は、RAM、ROM、フラッシュメモリ、EPROM、およびEEPROMのうち一つ以上を含む。また、メモリ202は、コンピュータが読み取り可能なプログラムが記録された記録媒体を含む。かかる記録媒体は、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルメモリ、光ディスク、コンパクトディスク、およびDVDのうち一つ以上を含む。なお、サーバ50は、ASICおよびFPGAなどの集積回路を含んでいてもよい。 The memory 202 includes one or more of RAM, ROM, flash memory, EPROM, and EEPROM. The memory 202 also includes a recording medium on which a computer-readable program is recorded. Such recording media include one or more of non-volatile or volatile semiconductor memories, magnetic disks, flexible memories, optical discs, compact disks, and DVDs. The server 50 may include integrated circuits such as ASIC and FPGA.
 以上のように、実施の形態3にかかるサーバ50は、モデル生成部55を備える。モデル生成部55は、学習用情報に基づいて、1種類以上の指標値の情報を入力とし複数の要因スコアを出力とする学習済みモデル57を生成する。学習用情報は、1種類以上の指標値の情報と複数の要因候補の各々のスコアである要因スコアの情報とを含む。これにより、サーバ50は、1種類以上の指標値の情報から複数の要因スコアの情報を出力する学習済みモデル57を生成することができる。 As described above, the server 50 according to the third embodiment includes the model generation unit 55. The model generation unit 55 generates a trained model 57 that inputs information on one or more types of index values and outputs a plurality of factor scores based on the learning information. The learning information includes information on one or more types of index values and information on factor scores, which are scores of each of a plurality of factor candidates. As a result, the server 50 can generate a trained model 57 that outputs information on a plurality of factor scores from information on one or more types of index values.
 また、サーバ50は、推論部56を備える。推論部56は、エネルギー管理装置10B,10Bとは異なる他のエネルギー管理装置10Bの診断対象でのエネルギー消費に関する1種類以上の指標値の情報を学習済みモデル57へ入力し学習済みモデル57から出力される情報に基づいて、複数の要因候補のうち上位の2つ以上の要因候補を判定する。これにより、サーバ50は、診断対象設備に関する生産関連情報の収集が十分でない期間、例えば、エネルギー管理装置10Bが導入されてから数日以内の場合であっても、既に診断が完了している診断済み設備の情報を参考により効果が期待できる改善要因を推定することができる。 Further, the server 50 includes an inference unit 56. The inference unit 56 inputs information on one or more types of index values related to energy consumption in the diagnosis target of other energy management devices 10B 3 different from the energy management devices 10B 1 and 10B 2 into the trained model 57, and is a trained model. Based on the information output from 57, the top two or more factor candidates among the plurality of factor candidates are determined. As a result, the server 50 has already completed the diagnosis even when the collection of production-related information regarding the equipment to be diagnosed is not sufficient, for example, within a few days after the energy management device 10B 3 is introduced. It is possible to estimate the improvement factors that can be expected to be effective by referring to the information on the diagnosed equipment.
 また、サーバ50は、推論部56によって判定された上位の2つ以上の要因候補の情報をエネルギー管理装置10Bまたはモバイル端末60へ送信する通信部51を備える。モバイル端末60は、外部装置の一例である。これにより、サーバ50は、生産に寄与しないエネルギー消費の改善活動に対して有益な情報をユーザへ提供することができる。 Further, the server 50 includes a communication unit 51 that transmits information of two or more upper factor candidates determined by the inference unit 56 to the energy management device 10B 3 or the mobile terminal 60. The mobile terminal 60 is an example of an external device. As a result, the server 50 can provide the user with useful information for energy consumption improvement activities that do not contribute to production.
実施の形態4.
 実施の形態4にかかるエネルギー管理システムのサーバは、複数種類の指標値のばらつき度合いを用いたレーダチャートを生成する点、および1種類以上の指標値を正規化し、正規化した1種類以上の指標値の情報を学習処理および推論処理で用いる点などで、実施の形態3にかかるサーバ50と異なる。以下においては、実施の形態3と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態3と異なる点を中心に説明する。
Embodiment 4.
The server of the energy management system according to the fourth embodiment generates a radar chart using the degree of variation of a plurality of types of index values, and normalizes one or more types of index values and normalizes one or more types of indexes. It differs from the server 50 according to the third embodiment in that the value information is used in the learning process and the inference process. In the following, components having the same functions as those in the third embodiment will be designated by the same reference numerals and description thereof will be omitted, and the differences from the third embodiment will be mainly described.
 図24は、実施の形態4にかかるエネルギー管理システムの構成の一例を示す図である。図24に示すエネルギー管理システム200Aは、サーバ50に代えて、サーバ50Aを備える点で、実施の形態3にかかるエネルギー管理システム200と異なる。 FIG. 24 is a diagram showing an example of the configuration of the energy management system according to the fourth embodiment. The energy management system 200A shown in FIG. 24 is different from the energy management system 200 according to the third embodiment in that the server 50A is provided instead of the server 50.
 サーバ50Aは、生産関連情報の収集が十分に収集されているエネルギー管理装置10Bの学習用情報に基づいて、複数種類の指標値にばらつき度合いを判定し、複数種類の指標の各々に対応して上位の2以上の要因候補の情報と指標値のばらつき度合いの情報とを示すレーダチャートを生成する。これにより、サーバ50Aは、レーダチャートのように各指標間の相互的な影響度合いを直感的に把握できるような情報をユーザに提示することができる。 The server 50A determines the degree of variation among a plurality of types of index values based on the learning information of the energy management device 10B in which the collection of production-related information is sufficiently collected, and corresponds to each of the plurality of types of indexes. A radar chart showing information on the top two or more factor candidates and information on the degree of variation in index values is generated. As a result, the server 50A can present to the user information such as a radar chart that allows the user to intuitively grasp the degree of mutual influence between the indexes.
 また、サーバ50Aは、生産関連情報の収集が十分に収集されているエネルギー管理装置10Bの学習用情報で示される1種類以上の指標値を正規化し、正規化した1種類以上の指標値に基づいて、学習処理を行う。また、サーバ50Aは、生産関連情報の収集が十分に収集されていないエネルギー管理装置10Bの診断対象情報で示される各指標値を正規化し、正規化した1種類以上の指標値の情報に基づいて、推論処理を行う。 Further, the server 50A normalizes one or more types of index values indicated by the learning information of the energy management device 10B in which the collection of production-related information is sufficiently collected, and is based on the normalized one or more types of index values. And perform the learning process. Further, the server 50A normalizes each index value indicated by the diagnosis target information of the energy management device 10B for which the collection of production-related information is not sufficiently collected, and is based on the information of one or more types of normalized index values. , Performs inference processing.
 これにより、サーバ50Aは、複数のエネルギー管理装置10Bにおいて診断対象設備の特徴または使用状況などが異なる場合であっても、複数のエネルギー管理装置10B間で、取り得る範囲が異なる指標値の分布または単位を同じスケールで比較可能することができる。そのため、サーバ50Aは、既に診断が完了している診断済み設備の情報を参考により効果が期待できる改善要因を精度よく推定することができる。 As a result, the server 50A distributes index values having different possible ranges among the plurality of energy management devices 10B even if the features or usage conditions of the equipment to be diagnosed differ among the plurality of energy management devices 10B. Units can be compared on the same scale. Therefore, the server 50A can accurately estimate the improvement factor that can be expected to be effective by referring to the information of the diagnosed equipment for which the diagnosis has already been completed.
 図25は、実施の形態4にかかるサーバの構成の一例を示す図である。図25に示すように、実施の形態4にかかるサーバ50Aは、要因推定部53に代えて要因推定部53Aを備える点、および指標正規化部58およびレーダチャート生成部59をさらに備える点で、実施の形態3にかかるサーバ50と異なる。まず、指標正規化部58およびレーダチャート生成部59について説明する。 FIG. 25 is a diagram showing an example of the configuration of the server according to the fourth embodiment. As shown in FIG. 25, the server 50A according to the fourth embodiment includes a factor estimation unit 53A instead of the factor estimation unit 53, and further includes an index normalization unit 58 and a radar chart generation unit 59. It is different from the server 50 according to the third embodiment. First, the index normalization unit 58 and the radar chart generation unit 59 will be described.
 指標正規化部58は、単位および値の取り得る範囲が異なる各指標値の正規化を行う。指標正規化部58は、例えば、情報取得部52によって取得された情報で示される複数種類の指標値を正規化して、複数種類の正規化指標値を生成する。 The index normalization unit 58 normalizes each index value having a different unit and possible range of values. The index normalization unit 58, for example, normalizes a plurality of types of index values indicated by the information acquired by the information acquisition unit 52 to generate a plurality of types of normalization index values.
 例えば、指標正規化部58は、情報取得部52によって取得された学習用情報で示される複数種類の指標値を正規化して複数種類の第1の正規化指標値を生成する。また、指標正規化部58は、診断対象情報で示される複数種類の指標値を正規化して複数種類の第2の正規化指標値を生成する。 For example, the index normalization unit 58 normalizes a plurality of types of index values indicated by the learning information acquired by the information acquisition unit 52 to generate a plurality of types of first normalization index values. Further, the index normalization unit 58 normalizes a plurality of types of index values indicated by the diagnosis target information to generate a plurality of types of second normalization index values.
 また、指標正規化部58は、指標値の正規化処理において、指標値のばらつき度合いを算出する。例えば、指標正規化部58は、下記式(3)に示す判定アルゴリズムによって、情報取得部52によって取得された情報に含まれる指標値のばらつき度合いを指標毎に算出する。例えば、指標正規化部58は、第1の指標、第2の指標、第3の指標、第4の指標、および第5の指標の各々について指標値のばらつき度合いを算出する。
 指標値のばらつき度合い={最大値-最小値}/平均値   ・・・(3)
In addition, the index normalization unit 58 calculates the degree of variation of the index value in the index value normalization process. For example, the index normalization unit 58 calculates the degree of variation of the index value included in the information acquired by the information acquisition unit 52 for each index by the determination algorithm shown in the following equation (3). For example, the index normalization unit 58 calculates the degree of variation in the index values for each of the first index, the second index, the third index, the fourth index, and the fifth index.
Degree of variation of index value = {maximum value-minimum value} / average value ... (3)
 上記式(3)において、「最小値」は、同一指標についての複数の指標値のうちの最小の指標値であり、「最大値」は、同一指標についての複数の指標値のうちの最大の指標値であり、「平均値」は、同一指標についての複数の指標値の平均値である。 In the above formula (3), the "minimum value" is the minimum index value among the plurality of index values for the same index, and the "maximum value" is the maximum of the plurality of index values for the same index. It is an index value, and the "average value" is an average value of a plurality of index values for the same index.
 指標正規化部58は、レーダチャート生成部59によるレーダチャートの生成のために、指標値のばらつき度合いを例えば5段階で評価する。例えば、上記式(3)によって算出された指標値のばらつき度合いが、1~100までの値をとり、指標正規化部58によって指標値のばらつきが5段階スコアで評価されるとする。 The index normalization unit 58 evaluates the degree of variation in the index value in, for example, five stages in order for the radar chart generation unit 59 to generate a radar chart. For example, it is assumed that the degree of variation of the index value calculated by the above formula (3) takes a value from 1 to 100, and the variation of the index value is evaluated by the index normalization unit 58 on a 5-point score.
 この場合、指標正規化部58は、指標値のばらつき度合いが「1~20」の範囲であれば、5段階評価のスコアを「5」とし、指標値のばらつき度合いが「21~40」の範囲であれば5段階評価のスコアを「4」とし、指標値のばらつき度合いが「41~60」の範囲であれば5段階評価のスコアを「3」とする。また、指標正規化部58は、指標値のばらつき度合いが「61~80」の範囲であれば5段階評価のスコアを「2」とし、指標値のばらつき度合いが「81~100」の範囲であれば5段階評価のスコアを「1」とする。 In this case, if the degree of variation of the index value is in the range of "1 to 20", the index normalization unit 58 sets the score of the 5-grade evaluation to "5" and the degree of variation of the index value is "21 to 40". If it is in the range, the score of the 5-grade evaluation is set to "4", and if the degree of variation of the index value is in the range of "41 to 60", the score of the 5-grade evaluation is set to "3". Further, the index normalization unit 58 sets the score of the 5-grade evaluation to "2" if the degree of variation of the index value is in the range of "61 to 80", and the degree of variation of the index value is in the range of "81 to 100". If there is, the score of the 5-grade evaluation is set to "1".
 このように、指標正規化部58は、ばらつき度合いが大きい指標はスコアを低く、ばらつき度合いが小さい指標はスコアを高くすることができる。以下において、指標値のばらつきを示すスコアをばらつきスコアと記載する場合がある。 In this way, the index normalization unit 58 can lower the score for an index with a large degree of variation and increase the score for an index with a small degree of variation. In the following, a score indicating variation in index values may be referred to as a variation score.
 レーダチャート生成部59は、指標正規化部58によって判定された各指標のばらつきスコアと、情報取得部52によって取得された学習用情報に含まれる複数の要因候補の各々の指標毎の要因スコアとに基づいて、レーダチャートを生成する。かかるレーダチャートによって、各指標間のバランスを表すことができる。 The radar chart generation unit 59 includes a variation score of each index determined by the index normalization unit 58, and a factor score for each index of a plurality of factor candidates included in the learning information acquired by the information acquisition unit 52. Generate a radar chart based on. Such a radar chart can represent the balance between each index.
 レーダチャート生成部59は、エネルギー管理装置10B毎のレーダチャートを生成するが、複数のエネルギー管理装置10Bに対して1つのレーダチャートを生成することもできる。 The radar chart generation unit 59 generates a radar chart for each energy management device 10B, but it is also possible to generate one radar chart for a plurality of energy management devices 10B.
 レーダチャート生成部59は、生成したレーダチャートの情報をモバイル端末60または学習用情報を送信したエネルギー管理装置10Bへ通信部51を介して送信する。モバイル端末60は、サーバ50Aからレーダチャートの情報を取得した場合、不図示の表示部にレーダチャートを表示する。また、学習用情報を送信したエネルギー管理装置10Bの処理部11Bは、サーバ50Aからレーダチャートの情報を取得した場合、表示部13にレーダチャートを表示させる。 The radar chart generation unit 59 transmits the generated radar chart information to the mobile terminal 60 or the energy management device 10B that has transmitted the learning information via the communication unit 51. When the mobile terminal 60 acquires the radar chart information from the server 50A, the mobile terminal 60 displays the radar chart on a display unit (not shown). Further, when the processing unit 11B of the energy management device 10B that has transmitted the learning information acquires the radar chart information from the server 50A, the display unit 13 displays the radar chart.
 図26は、実施の形態4にかかるモバイル端末の表示部に表示されるレーダチャートの一例を示す図であり、図27は、実施の形態4にかかるモバイル端末の表示部に表示されるレーダチャートの他の例を示す図である。図26に示すレーダチャート80は、例えば、エネルギー管理装置10Bの診断結果であり、図27に示すレーダチャート81は、例えば、エネルギー管理装置10Bの診断結果である。 FIG. 26 is a diagram showing an example of a radar chart displayed on the display unit of the mobile terminal according to the fourth embodiment, and FIG. 27 is a radar chart displayed on the display unit of the mobile terminal according to the fourth embodiment. It is a figure which shows another example. The radar chart 80 shown in FIG. 26 is, for example, the diagnosis result of the energy management device 10B 1 , and the radar chart 81 shown in FIG. 27 is, for example, the diagnosis result of the energy management device 10B 2.
 レーダチャート80,81は、第1の指標、第2の指標、第3の指標、第4の指標、および第5の指標の各々についての指標値のばらつき度合いと、生産に改善効果の高い上位の2つの要因とを示す。これらレーダチャート80,81において、各頂点の数字の「1,2,3,4,5」は、指標の種類を示し、各頂点のアルファベットの「a,b,c,d,e,f,g」は、改善効果の高い上位2つの要因を示す。改善効果の高い上位2つの要因は、各指標について生産に寄与しないエネルギー消費の複数の要因のうち上位2つの要因である。 The radar charts 80 and 81 show the degree of variation in the index values for each of the first index, the second index, the third index, the fourth index, and the fifth index, and the top ranks having a high improvement effect on production. Two factors are shown. In these radar charts 80 and 81, the numbers "1, 2, 3, 4, 5" at each vertex indicate the type of index, and the alphabet "a, b, c, d, e, f," of each vertex. “G” indicates the top two factors with high improvement effects. The top two factors with high improvement effects are the top two factors among the multiple factors of energy consumption that do not contribute to production for each index.
 図26に示すように、レーダチャート80では、第1の指標は、スコアが「4」であり、改善効果の高い上位2つの要因が「a」と「c」であり、第2の指標は、スコアが「2」であり、改善効果の高い上位2つの要因が「b」と「c」であり、第3の指標は、スコアが「5」であり、改善効果の高い上位2つの要因が「a」と「b」である。また、レーダチャート81では、第4の指標は、スコアが「4」であり、改善効果の高い上位2つの要因が「d」と「e」であり、第5の指標は、スコアが「3」であり、改善効果の高い上位2つの要因が「d」と「f」である。 As shown in FIG. 26, in the radar chart 80, the first index has a score of "4", the top two factors having a high improvement effect are "a" and "c", and the second index is. , The score is "2", the top two factors with high improvement effect are "b" and "c", and the third index is the score with "5", the top two factors with high improvement effect. Are "a" and "b". Further, in the radar chart 81, the fourth index has a score of "4", the top two factors having a high improvement effect are "d" and "e", and the fifth index has a score of "3". The top two factors with high improvement effects are "d" and "f".
 図27に示すように、レーダチャート81では、第1の指標は、スコアが「4」であり、改善効果の高い上位2つの要因が「c」と「g」であり、第2の指標は、スコアが「5」であり、改善効果の高い上位2つの要因が「d」と「e」であり、第3の指標は、スコアが「4」であり、改善効果の高い上位2つの要因が「a」と「c」である。また、レーダチャート80では、第4の指標は、スコアが「4」であり、改善効果の高い上位2つの要因が「d」と「f」であり、第5の指標は、スコアが「3」であり、改善効果の高い上位2つの要因が「f」と「g」である。 As shown in FIG. 27, in the radar chart 81, the first index has a score of "4", the top two factors having a high improvement effect are "c" and "g", and the second index is. , The score is "5", the top two factors with high improvement effect are "d" and "e", and the third index is the score with "4", the top two factors with high improvement effect. Are "a" and "c". Further, in the radar chart 80, the fourth index has a score of "4", the top two factors having a high improvement effect are "d" and "f", and the fifth index has a score of "3". , And the top two factors with high improvement effects are "f" and "g".
 したがって、ユーザは、レーダチャート80,81によって、各指標に対する改善効果の高い上位2つの要因を一見して把握することができる。また、ユーザは、レーダチャート80,81によって、ばらつき度合いが大きい指標を直感的かつ容易に把握することができる。例えば、ユーザは、レーダチャート80によってばらつき度合いが最も大きい指標が第2の指標であることを直感的かつ容易に把握でき、レーダチャート81によってばらつき度合いが最も大きい指標が第5の指標であることを直感的かつ容易に把握できる。 Therefore, the user can grasp at a glance the top two factors having a high improvement effect for each index by the radar charts 80 and 81. Further, the user can intuitively and easily grasp the index having a large degree of variation by the radar charts 80 and 81. For example, the user can intuitively and easily grasp that the index having the largest degree of variation is the second index by the radar chart 80, and the index having the largest degree of variation is the fifth index by the radar chart 81. Can be grasped intuitively and easily.
 このように、エネルギー管理システム200Aでは、サーバ50Aによってレーダチャート80,81の情報を生成することができ、かかるレーダチャート80,81の情報がモバイル端末60またはエネルギー管理装置10Bに表示される。そのため、ユーザは、直感的に改善余地が大きい指標を知ることができ、エネルギーロスに対する改善活動の検討により効果的に役立てることができる。 As described above, in the energy management system 200A, the information of the radar charts 80 and 81 can be generated by the server 50A, and the information of the radar charts 80 and 81 is displayed on the mobile terminal 60 or the energy management device 10B. Therefore, the user can intuitively know the index having a large room for improvement, and can effectively utilize it by examining the improvement activity for the energy loss.
 ここで、指標値のばらつき度合いが大きい場合に改善の余地があることについて説明する。第1の指標値である「生産設備2がオンになってから生産設備2の生産が開始されるまでの時間T1」の場合、作業手順などが一定であれば、時間T1のばらつき度合いが少ないが、作業手順などのばらつきが大きい場合、時間T1のばらつき度合いが大きくなり、曜日または担当者などのなんらかの要因が関係しており、改善の余地があると推測される。 Here, it will be explained that there is room for improvement when the degree of variation in the index value is large. In the case of the first index value "time T1 from when the production equipment 2 is turned on until the production of the production equipment 2 is started", if the work procedure and the like are constant, the degree of variation in the time T1 is small. However, when there is a large variation in the work procedure or the like, the degree of variation in the time T1 becomes large, and it is presumed that there is room for improvement because some factor such as the day of the week or the person in charge is involved.
 そして、時間T1のばらつきが大きいほど、作業手順などのばらつきが大きいと推測され、改善の余地が大きくなると予測される。このことは、第1の指標値に限定されず、第2の指標値、第3の指標値、第4の指標値、および第5の指標値などでも同様である。 Then, it is estimated that the greater the variation in time T1, the greater the variation in work procedures, etc., and the greater the room for improvement. This is not limited to the first index value, and the same applies to the second index value, the third index value, the fourth index value, the fifth index value, and the like.
 なお、指標正規化部58は、上記式(3)以外のばらつき判定のアルゴリズムによって、各指標値のばらつき度合いを判定することもできる。例えば、指標正規化部58は、通常の分散σまたはその他の方法を用いて各指標値のばらつき度合いを判定することができる。指標正規化部58による各指標値のばらつき度合いの評価方法として、各設備から収集された指標値の分散度合いに応じて、改善余地のユーザへの提示が容易に行える評価方法が適宜採用される。 Note that the index normalization unit 58 can also determine the degree of variation of each index value by an algorithm for determining variation other than the above equation (3). For example, the index normalization unit 58 can determine the degree of variation of each index value by using the usual variance σ or other methods. As an evaluation method of the degree of variation of each index value by the index normalization unit 58, an evaluation method that can easily present room for improvement to the user according to the degree of dispersion of the index value collected from each facility is appropriately adopted. ..
 要因推定部53Aは、学習処理および推論処理の各々において指標正規化部58によって正規化された1種類以上の指標値を用いる点で、正規化されていない1種類以上の指標値を用いる要因推定部53と異なる。要因推定部53Aは、モデル生成部55および推論部56に代えて、モデル生成部55Aおよび推論部56Aを備える点で、実施の形態3にかかる要因推定部53と異なる。 The factor estimation unit 53A uses one or more types of index values normalized by the index normalization unit 58 in each of the learning process and the inference process, and the factor estimation unit 53A uses one or more types of index values that are not normalized. Different from part 53. The factor estimation unit 53A is different from the factor estimation unit 53 according to the third embodiment in that the model generation unit 55A and the inference unit 56A are provided in place of the model generation unit 55 and the inference unit 56.
 モデル生成部55Aは、学習用情報に含まれる入力指標値に代えて、かかる入力指標値が指標正規化部58によって正規化された1種類以上の第1の正規化指標値を用いた学習を行って学習済みモデル57を生成する点で、モデル生成部55と異なる。 The model generation unit 55A performs learning using one or more types of first normalization index values in which the input index values are normalized by the index normalization unit 58 instead of the input index values included in the learning information. It differs from the model generation unit 55 in that it performs and generates the trained model 57.
 モデル生成部55Aによって生成される学習済みモデル57は、1種類以上の第1の正規化指標値に基づく入力指標値を入力とし複数の要因候補の要因スコアを出力とするモデルである。1種類以上の第1の正規化指標値は、例えば、第1の指標値、第2の指標値、第3の指標値、第4の指標値、および第5の指標値の各々が正規化されサンプリング期間で平均化された値である。なお、入力指標値は、複数種類の指標値の各々の平均値に代えて、複数種類の指標値をまとめた統合指標値であってもよい。 The trained model 57 generated by the model generation unit 55A is a model in which input index values based on one or more types of first normalized index values are input and factor scores of a plurality of factor candidates are output. For one or more types of the first normalized index value, for example, each of the first index value, the second index value, the third index value, the fourth index value, and the fifth index value is normalized. It is a value averaged over the sampling period. The input index value may be an integrated index value in which a plurality of types of index values are combined, instead of the average value of each of the plurality of types of index values.
 推論部56Aは、診断対象情報に含まれる1種類以上の指標値に代えて、かかる1種類以上の指標値が指標正規化部58によって正規化された1種類以上の第2の正規化指標値の情報を学習済みモデル57へ入力する。1種類以上の第2の正規化指標値は、例えば、第1の指標値、第2の指標値、第3の指標値、第4の指標値、および第5の指標値の各々が正規化されサンプリング期間で平均化された値である。推論部56Aは、推論部56と同様に、複数の要因候補のうち学習済みモデル57から出力される要因スコアが上位の2以上の要因候補の情報を判定する。 The inference unit 56A replaces one or more types of index values included in the diagnosis target information with one or more types of second normalization index values in which the one or more types of index values are normalized by the index normalization unit 58. Information is input to the trained model 57. For one or more types of the second normalized index value, for example, each of the first index value, the second index value, the third index value, the fourth index value, and the fifth index value is normalized. It is a value averaged over the sampling period. Similar to the inference unit 56, the inference unit 56A determines information on two or more factor candidates having a higher factor score output from the learned model 57 among the plurality of factor candidates.
 このように、サーバ50Aは、1種類以上の指標値を正規化する指標正規化部58を備えているため、複数のエネルギー管理装置10Bにおいて診断対象設備の特徴または使用状況などが異なる場合であっても、複数のエネルギー管理装置10B間で、取り得る範囲が異なる指標値の分布または単位を同じスケールで比較可能することができる。 As described above, since the server 50A includes the index normalization unit 58 that normalizes one or more types of index values, the characteristics or usage status of the equipment to be diagnosed may differ in the plurality of energy management devices 10B. However, it is possible to compare the distributions or units of index values having different possible ranges among the plurality of energy management devices 10B on the same scale.
 つづいて、フローチャートを用いてサーバ50Aによる処理を説明する。図28は、実施の形態4にかかるサーバによる学習処理の一例を示すフローチャートである。図28のステップS90,S93の処理は、図20に示すステップS60,S62の処理であり,説明を省略する。 Next, the processing by the server 50A will be described using a flowchart. FIG. 28 is a flowchart showing an example of the learning process by the server according to the fourth embodiment. The processes of steps S90 and S93 of FIG. 28 are the processes of steps S60 and S62 shown in FIG. 20, and the description thereof will be omitted.
 図28に示すように、サーバ50Aの指標正規化部58は、ステップS90の処理が終了した後、ステップS90で取得された学習用情報で示される1種類以上の指標値を正規化する指標値正規化処理を行う(ステップS91)。モデル生成部55Aは、情報取得部52によって取得された学習用情報に含まれるサンプリング期間およびラベル情報と指標正規化部58によって正規化された1種類以上の指標値の情報とに基づいて、学習済みモデル57を生成する学習処理を実行する(ステップS92)。 As shown in FIG. 28, the index normalization unit 58 of the server 50A normalizes one or more types of index values indicated by the learning information acquired in step S90 after the processing of step S90 is completed. Normalization processing is performed (step S91). The model generation unit 55A learns based on the sampling period and label information included in the learning information acquired by the information acquisition unit 52 and the information of one or more types of index values normalized by the index normalization unit 58. A learning process for generating the completed model 57 is executed (step S92).
 ステップS92の処理において、モデル生成部55Aは、サンプリング期間の情報および正規化された1種類以上の指標値の情報を入力情報とし各要因スコアの情報をラベル情報として、いわゆる教師あり学習により学習を行い、学習済みモデル57を生成する。 In the process of step S92, the model generation unit 55A uses the sampling period information and the normalized one or more kinds of index value information as input information and the information of each factor score as label information, and performs learning by so-called supervised learning. This is done to generate the trained model 57.
 図29は、実施の形態4にかかるサーバによる推論処理の一例を示すフローチャートである。図29に示すステップS100,S103,S104の処理は、図21に示すステップS70,S72,S73の処理と同じであるため、説明を省略する。 FIG. 29 is a flowchart showing an example of inference processing by the server according to the fourth embodiment. Since the processing of steps S100, S103, and S104 shown in FIG. 29 is the same as the processing of steps S70, S72, and S73 shown in FIG. 21, the description thereof will be omitted.
 図29に示すように、サーバ50Aの指標正規化部58は、情報取得部52によって取得された診断対象情報で示される1種類以上の指標値を正規化する指標値正規化処理を行う(ステップS101)。 As shown in FIG. 29, the index normalization unit 58 of the server 50A performs an index value normalization process for normalizing one or more types of index values indicated by the diagnosis target information acquired by the information acquisition unit 52 (step). S101).
 次に、サーバ50Aの要因推定部53Aは、指標正規化部58によって正規化された1種類以上の指標値である1種類以上の第2の正規化指標値の情報と記憶部54に記憶された学習済みモデル57の情報とに基づいて、複数の要因スコアを算出する(ステップS102)。ステップS102の処理において、要因推定部53Aは、第2の正規化指標値の情報を学習済みモデル57へ入力し、学習済みモデル57の演算によって、学習済みモデル57から出力される複数の要因スコアを取得する。 Next, the factor estimation unit 53A of the server 50A is stored in the information and storage unit 54 of one or more types of second normalization index values, which are one or more types of index values normalized by the index normalization unit 58. A plurality of factor scores are calculated based on the information of the trained model 57 (step S102). In the process of step S102, the factor estimation unit 53A inputs the information of the second normalization index value into the trained model 57, and a plurality of factor scores output from the trained model 57 by the calculation of the trained model 57. To get.
 実施の形態4にかかるサーバ50Aのハードウェア構成の一例は、図23に示すサーバ50のハードウェア構成と同じである。プロセッサ201は、メモリ202に記憶されたプログラムを読み出して実行することによって、要因推定部53A、指標正規化部58、およびレーダチャート生成部59の機能を実行することができる。 An example of the hardware configuration of the server 50A according to the fourth embodiment is the same as the hardware configuration of the server 50 shown in FIG. 23. The processor 201 can execute the functions of the factor estimation unit 53A, the index normalization unit 58, and the radar chart generation unit 59 by reading and executing the program stored in the memory 202.
 以上のように、実施の形態4にかかるサーバ50Aは、指標正規化部58と、レーダチャート生成部59とを備える。指標正規化部58は、学習用情報で示される複数種類の指標値のばらつき度合いを指標値の種類毎に算出する。レーダチャート生成部59は、指標正規化部58によって算出された複数種類の指標値の各々のばらつき度合いと上位の2つ以上の要因候補との関係を示すレーダチャートの情報を生成する。これにより、サーバ50Aは、各指標間の相互的な影響度合いを直感的に把握できるような情報をユーザに提示することができる。 As described above, the server 50A according to the fourth embodiment includes an index normalization unit 58 and a radar chart generation unit 59. The index normalization unit 58 calculates the degree of variation of a plurality of types of index values indicated by the learning information for each type of index value. The radar chart generation unit 59 generates radar chart information showing the relationship between the degree of variation of each of the plurality of types of index values calculated by the index normalization unit 58 and the top two or more factor candidates. As a result, the server 50A can present information to the user so that the degree of mutual influence between the indexes can be intuitively grasped.
 また、サーバ50Aは、指標正規化部58を備える。指標正規化部58は、1種類以上の指標値を正規化する。モデル生成部55Aは、要因スコアの情報と指標正規化部58によって正規化された1種類以上の指標値の情報とに基づいて、学習済みモデル57を生成する。推論部56Aは、指標正規化部58によって正規化された1種類以上の指標値の情報を学習済みモデル57へ入力し、学習済みモデル57から出力される情報に基づいて、複数の要因候補のうち上位の2つ以上の要因候補を判定する。これにより、サーバ50Aは、複数のエネルギー管理装置10Bにおいて診断対象設備の特徴または使用状況などが異なる場合であっても、複数のエネルギー管理装置10B間で、取り得る範囲が異なる指標値の分布または単位を同じスケールで比較可能することができる。 Further, the server 50A includes an index normalization unit 58. The index normalization unit 58 normalizes one or more types of index values. The model generation unit 55A generates the trained model 57 based on the information of the factor score and the information of one or more kinds of index values normalized by the index normalization unit 58. The inference unit 56A inputs information on one or more types of index values normalized by the index normalization unit 58 into the trained model 57, and based on the information output from the trained model 57, a plurality of factor candidates Determine the top two or more factor candidates. As a result, the server 50A distributes index values having different possible ranges among the plurality of energy management devices 10B even if the features or usage conditions of the equipment to be diagnosed differ among the plurality of energy management devices 10B. Units can be compared on the same scale.
 エネルギー管理装置10,10A,10Bの処理部11,11A,11Bは、日単位で指標値および要因候補を特定するが、時間帯単位、週単位、または月単位などで指標値および要因候補を特定することもできる。また、処理部11,11A,11Bは、上述した指標以外の種類の指標を用いて各要因候補のスコアを算出することもでき、上述した複数の指標の一部の指標のみを用いて各要因候補のスコアを算出することもできる。また、処理部11,11A,11Bは、上述した要因候補以外の要因候補のスコアを算出することもでき、上述した複数の要因候補のうち一部の要因候補のスコアのみを算出することもできる。 The processing units 11, 11A, and 11B of the energy management devices 10, 10A, and 10B specify the index value and the factor candidate on a daily basis, but specify the index value and the factor candidate on a time zone basis, a weekly basis, a monthly unit, and the like. You can also do it. Further, the processing units 11, 11A and 11B can also calculate the score of each factor candidate using an index of a type other than the above-mentioned index, and each factor uses only a part of the above-mentioned plurality of indexes. Candidate scores can also be calculated. In addition, the processing units 11, 11A, and 11B can calculate the scores of factor candidates other than the above-mentioned factor candidates, and can also calculate only the scores of some of the above-mentioned plurality of factor candidates. ..
 また、エネルギー管理装置10,10A,10Bは、互いに異なる位置に配置される複数の装置から構成されてもよい。例えば、エネルギー管理装置10,10A,10Bは、収集装置と、処理装置とを含む構成であってもよい。収集装置は、電力センサ4,5、生産量センサ6、環境センサ7、および生産管理装置8から情報を収集する。処理装置は、収集装置で収集された情報に基づいてランキング情報のうち少なくとも一部を出力する。この場合、収集装置は、例えば、PLC(Programmable Logic Controller)、またはデータロガーなどによって構成されてもよく、処理装置は、例えば、クラウドサーバまたは携帯端末によって構成されてもよい。収集装置と処理装置とは無線または有線によって通信可能に接続される。 Further, the energy management devices 10, 10A and 10B may be composed of a plurality of devices arranged at different positions from each other. For example, the energy management devices 10, 10A, and 10B may be configured to include a collecting device and a processing device. The collecting device collects information from the power sensors 4 and 5, the production amount sensor 6, the environment sensor 7, and the production control device 8. The processing device outputs at least a part of the ranking information based on the information collected by the collecting device. In this case, the collecting device may be configured by, for example, a PLC (Programmable Logic Controller), a data logger, or the like, and the processing device may be configured by, for example, a cloud server or a mobile terminal. The collecting device and the processing device are connected wirelessly or by wire so as to be able to communicate with each other.
 また、エネルギー管理装置10,10A,10Bは、サーバ50,50Aの機能を有する構成であってもよい。例えば、エネルギー管理装置10B,10Bは、情報取得部52、要因推定部53,53A、指標正規化部58、およびレーダチャート生成部59のうちの一部または全部を含む構成であってもよい。 Further, the energy management devices 10, 10A and 10B may be configured to have the functions of the servers 50 and 50A. For example, the energy management devices 10B 1 and 10B 2 may include a part or all of the information acquisition unit 52, the factor estimation unit 53, 53A, the index normalization unit 58, and the radar chart generation unit 59. good.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
 1 生産施設、2 生産設備、3 関連設備、4,5 電力センサ、6 生産量センサ、7 環境センサ、8 生産管理装置、10,10A,10B,10B,10B,10B エネルギー管理装置、11,11A,11B 処理部、12 生産関連情報記憶部、13 表示部、14 入力部、15 貢献度情報記憶部、16,51 通信部、21 情報収集部、22 情報生成部、23 指標値算出部、24 スコア算出部、25,25A,25B 情報提供部、26 貢献度推定部、41,41A ランキング情報生成部、42,42A 表示処理部、50,50A サーバ、52 情報取得部、53,53A 要因推定部、54 記憶部、55,55A モデル生成部、56,56A 推論部、57 学習済みモデル、58 指標正規化部、59 レーダチャート生成部、60 モバイル端末、80,81 レーダチャート、200,200A エネルギー管理システム。 1 Production facility, 2 Production equipment, 3 Related equipment, 4, 5 Power sensor, 6 Production volume sensor, 7 Environmental sensor, 8 Production control device, 10, 10A, 10B, 10B 1 , 10B 2 , 10B 3 Energy management device, 11, 11A, 11B Processing unit, 12 Production-related information storage unit, 13 Display unit, 14 Input unit, 15 Contribution information storage unit, 16,51 Communication unit, 21 Information collection unit, 22 Information generation unit, 23 Index value calculation Unit, 24 score calculation unit, 25, 25A, 25B information provision unit, 26 contribution estimation unit, 41, 41A ranking information generation unit, 42, 42A display processing unit, 50, 50A server, 52 information acquisition unit, 53, 53A Factor estimation unit, 54 storage unit, 55,55A model generation unit, 56,56A inference unit, 57 trained model, 58 index normalization unit, 59 radar chart generation unit, 60 mobile terminals, 80,81 radar chart, 200, 200A energy management system.

Claims (16)

  1.  過去の生産に関する情報である生産関連情報に基づいて、生産設備を含む診断対象でのエネルギー消費に関する1種類以上の指標値を算出する指標値算出部と、
     前記指標値算出部によって算出された前記1種類以上の指標値に基づいて、生産に寄与しなかったエネルギー消費の要因の候補である複数の要因候補の各々の前記生産に寄与しなかったエネルギー消費に対する影響度を示すスコアを算出するスコア算出部と、
     前記複数の要因候補のうち前記スコア算出部によって算出された前記スコアが上位の2つ以上の要因候補の情報を出力する情報提供部と、を備える
     ことを特徴とするエネルギー管理装置。
    An index value calculation unit that calculates one or more types of index values related to energy consumption in a diagnostic target including production equipment based on production-related information that is information related to past production.
    Based on the one or more kinds of index values calculated by the index value calculation unit, the energy consumption of each of the plurality of factor candidates that are candidates for the energy consumption factors that did not contribute to the production did not contribute to the production. A score calculation unit that calculates a score that indicates the degree of influence on
    An energy management device including an information providing unit that outputs information of two or more factor candidates having a higher score calculated by the score calculation unit among the plurality of factor candidates.
  2.  前記診断対象には、
     前記生産設備に関連して用いられる関連設備が含まれ、
     前記生産関連情報には、
     前記生産設備の消費エネルギーを示す情報、前記関連設備の消費エネルギーを示す情報、および前記生産設備の生産量を示す情報が含まれ、
     前記指標値算出部は、
     前記生産設備の消費エネルギーを示す情報、前記関連設備の消費エネルギーを示す情報、および前記生産設備の生産量を示す情報に基づいて、前記1種類以上の指標値を算出する
     ことを特徴とする請求項1に記載のエネルギー管理装置。
    The diagnosis target is
    Includes related equipment used in connection with the production equipment
    The production-related information includes
    Information indicating the energy consumption of the production equipment, information indicating the energy consumption of the related equipment, and information indicating the production amount of the production equipment are included.
    The index value calculation unit
    A claim characterized in that one or more kinds of index values are calculated based on the information indicating the energy consumption of the production equipment, the information indicating the energy consumption of the related equipment, and the information indicating the production amount of the production equipment. Item 1. The energy management device according to item 1.
  3.  前記1種類以上の指標値は、
     前記生産設備がオンになってから前記生産設備の生産が開始されるまでの時間を示す第1の指標値、前記生産設備による生産が終了してから前記生産設備がオフになるまでの時間を示す第2の指標値、前記関連設備がオンである時間と前記生産設備がオンである時間との差を示す第3の指標値、前記生産設備がオンである時間のうち前記生産設備による生産が行われている時間の割合を示す第4の指標値、および前記生産設備による単位生産高あたりの前記診断対象のエネルギー消費量を示す第5の指標値のうち少なくとも1つを含む
     ことを特徴とする請求項2に記載のエネルギー管理装置。
    The index value of one or more types is
    The first index value indicating the time from when the production facility is turned on to when the production of the production facility is started, and the time from the end of production by the production facility to when the production facility is turned off. The second index value shown, the third index value indicating the difference between the time when the related equipment is on and the time when the production equipment is on, and the production by the production equipment during the time when the production equipment is on. It is characterized by including at least one of a fourth index value indicating the ratio of time during which the production is performed and a fifth index value indicating the energy consumption of the diagnosis target per unit production amount by the production facility. The energy management device according to claim 2.
  4.  前記生産関連情報に基づいて、前記複数の要因候補の情報を生成する情報生成部を備え、
     前記スコア算出部は、
     前記指標値算出部によって算出された前記1種類以上の指標値と、前記情報生成部によって生成された前記複数の要因候補の情報とに基づいて、前記スコアを算出する
     ことを特徴とする請求項1から3のいずれか1つに記載のエネルギー管理装置。
    An information generation unit that generates information on the plurality of factor candidates based on the production-related information is provided.
    The score calculation unit
    A claim characterized in that the score is calculated based on the one or more types of index values calculated by the index value calculation unit and the information of the plurality of factor candidates generated by the information generation unit. The energy management device according to any one of 1 to 3.
  5.  前記複数の要因候補は、
     前記生産設備によって物品を生産した日の曜日、週、および月、前記生産の担当者、前記生産設備によって生成される物品の種類、前記生産設備で発生したエラー、および前記生産設備の環境のうち2つ以上を含む
     ことを特徴とする請求項1から4のいずれか1つに記載のエネルギー管理装置。
    The plurality of factor candidates are
    Of the day, week, and month of the day, week, and month when the goods were produced by the production equipment, the person in charge of the production, the type of goods produced by the production equipment, the error occurred in the production equipment, and the environment of the production equipment. The energy management device according to any one of claims 1 to 4, wherein the energy management device includes two or more.
  6.  前記1種類以上の指標値は、複数種類の指標値であり、
     前記スコア算出部は、
     前記複数の要因候補の各々のスコアを前記複数種類の指標値の各々に対して算出し、
     前記情報提供部は、
     前記複数種類の指標値の各々について、前記複数の要因候補のうち前記スコアが上位の2つ以上の要因候補の情報を出力する
     ことを特徴とする請求項1から5のいずれか1つに記載のエネルギー管理装置。
    The one or more types of index values are a plurality of types of index values.
    The score calculation unit
    The scores of each of the plurality of factor candidates are calculated for each of the plurality of types of index values, and the scores are calculated.
    The information providing department
    The present invention according to any one of claims 1 to 5, wherein for each of the plurality of types of index values, information on two or more factor candidates having the highest score among the plurality of factor candidates is output. Energy management device.
  7.  前記生産に寄与しないエネルギー消費に対するユーザの改善活動への前記複数の要因候補の各々の貢献度を推定する貢献度推定部を備え、
     前記情報提供部は、
     前記貢献度推定部によって推定された前記複数の要因候補の各々の前記貢献度に基づいて、前記複数の要因候補のうち対応する要因候補のスコアを補正し、補正した前記スコアが上位の2つ以上の要因候補の情報を生成する
     ことを特徴とする請求項1から6のいずれか1つに記載のエネルギー管理装置。
    It is provided with a contribution estimation unit that estimates the contribution of each of the plurality of factor candidates to the user's improvement activities for energy consumption that does not contribute to production.
    The information providing department
    Based on the contribution of each of the plurality of factor candidates estimated by the contribution estimation unit, the scores of the corresponding factor candidates among the plurality of factor candidates are corrected, and the corrected scores are the top two. The energy management device according to any one of claims 1 to 6, wherein the information of the above factor candidates is generated.
  8.  前記情報提供部は、
     前記複数の要因候補のうちスコアが大きな要因候補から順に予め設定された数の要因候補をランキング表の形式で表すランキング情報を前記2つ以上の要因候補の情報として出力する
     ことを特徴とする請求項1から7のいずれか1つに記載のエネルギー管理装置。
    The information providing department
    A claim characterized in that ranking information representing a preset number of factor candidates having a higher score among the plurality of factor candidates in the form of a ranking table is output as information of the two or more factor candidates. Item 4. The energy management device according to any one of Items 1 to 7.
  9.  請求項1から8のいずれか1つに記載のエネルギー管理装置から出力された前記1種類以上の指標値の情報と前記複数の要因候補の各々の前記スコアである要因スコアの情報とを含む学習用情報に基づいて、前記1種類以上の指標値の情報を入力とし複数の前記要因スコアを出力とする学習済みモデルを生成するモデル生成部を備える
     ことを特徴とするサーバ。
    Learning including the information of the one or more kinds of index values output from the energy management device according to any one of claims 1 to 8 and the information of the factor score which is the score of each of the plurality of factor candidates. A server including a model generation unit that generates a trained model that inputs information on one or more types of index values and outputs a plurality of factor scores based on the information.
  10.  前記エネルギー管理装置とは異なる他のエネルギー管理装置の診断対象でのエネルギー消費に関する1種類以上の指標値の情報を前記学習済みモデルへ入力し前記学習済みモデルから出力される情報に基づいて、前記複数の要因候補のうち上位の2つ以上の要因候補を判定する推論部と、を備える
     ことを特徴とする請求項9に記載のサーバ。
    The information of one or more kinds of index values regarding the energy consumption in the diagnosis target of another energy management device different from the energy management device is input to the trained model, and based on the information output from the trained model, the said The server according to claim 9, further comprising an inference unit that determines two or more higher-order factor candidates among a plurality of factor candidates.
  11.  複数種類の前記指標値のばらつき度合いを指標値の種類毎に算出する指標正規化部と、
     前記指標正規化部によって算出された複数種類の前記指標値の各々のばらつき度合いと前記上位の2つ以上の要因候補との関係を示すレーダチャートの情報を生成するレーダチャート生成部を備える
     ことを特徴とする請求項10に記載のサーバ。
    An index normalization unit that calculates the degree of variation of a plurality of types of the index values for each type of the index value,
    It is provided with a radar chart generation unit that generates radar chart information indicating the relationship between the degree of variation of each of the plurality of types of the index values calculated by the index normalization unit and the upper two or more factor candidates. The server according to claim 10.
  12.  前記1種類以上の指標値を正規化する指標正規化部を備え、
     前記モデル生成部は、
     前記要因スコアの情報と前記指標正規化部によって正規化された1種類以上の指標値の情報とに基づいて、前記学習済みモデルを生成し、
     前記推論部は、
     前記指標正規化部によって正規化された1種類以上の指標値の情報を前記学習済みモデルへ入力し前記学習済みモデルから出力される情報に基づいて、前記複数の要因候補のうち上位の2つ以上の要因候補を判定する
     ことを特徴とする請求項10に記載のサーバ。
    It is equipped with an index normalization unit that normalizes one or more of the above index values.
    The model generator
    The trained model is generated based on the information of the factor score and the information of one or more kinds of index values normalized by the index normalization unit.
    The inference unit
    Information on one or more types of index values normalized by the index normalization unit is input to the trained model, and based on the information output from the trained model, the top two of the plurality of factor candidates. The server according to claim 10, wherein the above factor candidates are determined.
  13.  前記推論部によって判定された前記上位の2つ以上の要因候補の情報を前記他のエネルギー管理装置または外部装置へ送信する通信部を備える
     ことを特徴とする請求項10から12のいずれか1つに記載のサーバ。
    Any one of claims 10 to 12, comprising a communication unit that transmits information of the upper two or more factor candidates determined by the inference unit to the other energy management device or the external device. The server described in.
  14.  過去の生産に関する情報である生産関連情報に基づいて、生産設備を含む診断対象でのエネルギー消費に関する1種類以上の指標値を算出する指標値算出部と、
     前記指標値算出部によって算出された前記1種類以上の指標値に基づいて、生産に寄与しなかったエネルギー消費の要因の候補である複数の要因候補の各々の前記生産に寄与しなかったエネルギー消費に対する影響度を示すスコアを算出するスコア算出部と、
     前記1種類以上の指標値の情報と前記複数の要因候補の各々の前記スコアである要因スコアの情報とを含む学習用情報に基づいて、前記1種類以上の指標値の情報を入力とし複数の前記要因スコアを出力とする学習済みモデルを生成するモデル生成部と、を備える
     ことを特徴とするエネルギー管理システム。
    An index value calculation unit that calculates one or more types of index values related to energy consumption in a diagnostic target including production equipment based on production-related information that is information related to past production.
    Based on the one or more kinds of index values calculated by the index value calculation unit, the energy consumption of each of the plurality of factor candidates that are candidates for the energy consumption factors that did not contribute to the production did not contribute to the production. A score calculation unit that calculates a score that indicates the degree of influence on
    Based on the learning information including the information of the one or more types of index values and the information of the factor score which is the score of each of the plurality of factor candidates, the information of the one or more types of index values is input as a plurality of information. An energy management system including a model generation unit that generates a trained model that outputs the factor score.
  15.  コンピュータが実行するエネルギー管理方法であって、
     過去の生産に関する情報である生産関連情報に基づいて、生産設備を含む診断対象でのエネルギー消費に関する1種類以上の指標値を算出する指標値算出ステップと、
     前記指標値算出ステップによって算出された前記1種類以上の指標値に基づいて、生産に寄与しなかったエネルギー消費の要因の候補である複数の要因候補の各々の前記生産に寄与しなかったエネルギー消費に対する影響度を示すスコアを算出するスコア算出ステップと、
     前記複数の要因候補のうち前記スコア算出ステップによって算出された前記スコアが上位の2つ以上の要因候補の情報を出力する出力処理ステップと、を含む
     ことを特徴とするエネルギー管理方法。
    It ’s an energy management method that a computer uses.
    An index value calculation step that calculates one or more types of index values related to energy consumption in a diagnostic target including production equipment based on production-related information that is information related to past production.
    Based on the one or more kinds of index values calculated by the index value calculation step, the energy consumption of each of the plurality of factor candidates that are candidates for the energy consumption factors that did not contribute to the production did not contribute to the production. A score calculation step that calculates a score that indicates the degree of influence on
    An energy management method comprising: an output processing step for outputting information of two or more factor candidates having a higher score calculated by the score calculation step among the plurality of factor candidates.
  16.  過去の生産に関する情報である生産関連情報に基づいて、生産設備を含む診断対象でのエネルギー消費に関する1種類以上の指標値を算出する指標値算出ステップと、
     前記指標値算出ステップによって算出された前記1種類以上の指標値に基づいて、生産に寄与しなかったエネルギー消費の要因の候補である複数の要因候補の各々の前記生産に寄与しなかったエネルギー消費に対する影響度を示すスコアを算出するスコア算出ステップと、
     前記複数の要因候補のうち前記スコア算出ステップによって算出された前記スコアが上位の2つ以上の要因候補の情報を出力する出力処理ステップと、をコンピュータに実行させる
     ことを特徴とするエネルギー管理プログラム。
    An index value calculation step that calculates one or more types of index values related to energy consumption in a diagnostic target including production equipment based on production-related information that is information related to past production.
    Based on the one or more kinds of index values calculated by the index value calculation step, the energy consumption of each of the plurality of factor candidates that are candidates for the energy consumption factors that did not contribute to the production did not contribute to the production. A score calculation step that calculates a score that indicates the degree of influence on
    An energy management program comprising causing a computer to execute an output processing step for outputting information of two or more factor candidates having a higher score calculated by the score calculation step among the plurality of factor candidates.
PCT/JP2021/004578 2020-02-10 2021-02-08 Energy management device, server, energy management system, energy management method, and energy management program WO2021161957A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180013153.8A CN115053252A (en) 2020-02-10 2021-02-08 Energy management device, server, energy management system, energy management method, and energy management program
JP2022500397A JP7270827B2 (en) 2020-02-10 2021-02-08 Energy management device, server, energy management system, energy management method, and energy management program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/005194 2020-02-10
PCT/JP2020/005194 WO2021161399A1 (en) 2020-02-10 2020-02-10 Energy management device, energy management method, and energy management program

Publications (1)

Publication Number Publication Date
WO2021161957A1 true WO2021161957A1 (en) 2021-08-19

Family

ID=77291424

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/005194 WO2021161399A1 (en) 2020-02-10 2020-02-10 Energy management device, energy management method, and energy management program
PCT/JP2021/004578 WO2021161957A1 (en) 2020-02-10 2021-02-08 Energy management device, server, energy management system, energy management method, and energy management program

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005194 WO2021161399A1 (en) 2020-02-10 2020-02-10 Energy management device, energy management method, and energy management program

Country Status (4)

Country Link
JP (1) JP7270827B2 (en)
CN (1) CN115053252A (en)
TW (1) TWI762104B (en)
WO (2) WO2021161399A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067113A (en) * 2008-09-12 2010-03-25 Yokogawa Electric Corp Production energy monitoring control system
JP2012190385A (en) * 2011-03-14 2012-10-04 Yokogawa Electric Corp Totaling and analysis support device, and computer program
JP2013222256A (en) * 2012-04-13 2013-10-28 Mitsubishi Electric Corp Energy usage visualization device and method
JP2016018242A (en) * 2014-07-04 2016-02-01 オムロン株式会社 Production process analysis system
JP2016066288A (en) * 2014-09-25 2016-04-28 横河電機株式会社 Energy management system, display control apparatus, display method, and program
WO2017002242A1 (en) * 2015-07-01 2017-01-05 三菱電機株式会社 Electricity plan assistance system, electricity plan assistance device, electricity plan assistance method, and electricity plan assistance program
JP2018206291A (en) * 2017-06-09 2018-12-27 アズビル株式会社 Energy saving effect calculating device and method
JP2019082449A (en) * 2017-10-31 2019-05-30 株式会社東芝 Partial discharge diagnostic device
JP2019211919A (en) * 2018-06-01 2019-12-12 西日本電信電話株式会社 Monitoring device, monitoring method, and computer program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109543750A (en) * 2018-11-22 2019-03-29 广东省智能制造研究所 A kind of power consumption user energy efficiency evaluating method
CN110134094B (en) * 2019-06-07 2021-01-26 广州远正智能科技股份有限公司 Industrial enterprise energy consumption monitoring and management system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067113A (en) * 2008-09-12 2010-03-25 Yokogawa Electric Corp Production energy monitoring control system
JP2012190385A (en) * 2011-03-14 2012-10-04 Yokogawa Electric Corp Totaling and analysis support device, and computer program
JP2013222256A (en) * 2012-04-13 2013-10-28 Mitsubishi Electric Corp Energy usage visualization device and method
JP2016018242A (en) * 2014-07-04 2016-02-01 オムロン株式会社 Production process analysis system
JP2016066288A (en) * 2014-09-25 2016-04-28 横河電機株式会社 Energy management system, display control apparatus, display method, and program
WO2017002242A1 (en) * 2015-07-01 2017-01-05 三菱電機株式会社 Electricity plan assistance system, electricity plan assistance device, electricity plan assistance method, and electricity plan assistance program
JP2018206291A (en) * 2017-06-09 2018-12-27 アズビル株式会社 Energy saving effect calculating device and method
JP2019082449A (en) * 2017-10-31 2019-05-30 株式会社東芝 Partial discharge diagnostic device
JP2019211919A (en) * 2018-06-01 2019-12-12 西日本電信電話株式会社 Monitoring device, monitoring method, and computer program

Also Published As

Publication number Publication date
JP7270827B2 (en) 2023-05-10
TW202131267A (en) 2021-08-16
JPWO2021161957A1 (en) 2021-08-19
CN115053252A (en) 2022-09-13
TWI762104B (en) 2022-04-21
WO2021161399A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
Borges et al. Evaluating combined load forecasting in large power systems and smart grids
Lee et al. Grey system theory and fuzzy time series forecasting for the growth of green electronic materials
US20190114574A1 (en) Machine-learning model trained on employee workflow and scheduling data to recognize patterns associated with employee risk factors
Azadeh et al. An integrated simulation-based fuzzy regression-time series algorithm for electricity consumption estimation with non-stationary data
Wang et al. Transient analysis and real-time control of geometric serial lines with residence time constraints
US11923075B2 (en) System and method associated with determining physician attribution related to in-patient care using prediction-based analysis
WO2019131140A1 (en) Demand forecasting device, demand forecasting method, and program
Asadzadeh et al. A neuro-fuzzy-regression algorithm for improved prediction of manufacturing lead time with machine breakdowns
JP2020160528A (en) Deterioration estimation device, learning device, deterioration estimation method, learning method, deterioration estimation program, and learning program
JP5251217B2 (en) Sales number prediction system, operation method of sales number prediction system, and sales number prediction program
Sobhani et al. Integrating ergonomics aspects into operations management performance optimization models: A modeling framework
JP5416811B2 (en) Prediction device, prediction method, and computer program
WO2021161957A1 (en) Energy management device, server, energy management system, energy management method, and energy management program
JPH10124478A (en) Device for constructing segment generation type predicted model and method therefor
Fletcher et al. An investigation of production workers’ performance variations and the potential impact of attitudes
Sinitskaya et al. Examining the influence of solar panel installers on design innovation and market penetration
Carnero Fuzzy multicriteria model for selection of vibration technology
Rossit et al. knowledge representation in Industry 4.0 scheduling problems
Hilliard et al. A strategy-based ecological (?) display for time-series structural change diagnosis
JP2022068690A (en) Decision-making supporting device
Abbasi et al. Supply Chain Redesign: Strategic Decision Framework for Competitive Advantage
Nwadinobi et al. Improved Markov stable state simulation for maintenance planning
WO2023175871A1 (en) Generation apparatus, generation method, and generation program
WO2021240664A1 (en) Model training program, model training method, and information processing device
JP6670406B1 (en) Learning device and prediction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754238

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500397

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21754238

Country of ref document: EP

Kind code of ref document: A1