WO2021161829A1 - Head-up display device, head-up display system, phase difference film, and laminated glass for vehicle - Google Patents

Head-up display device, head-up display system, phase difference film, and laminated glass for vehicle Download PDF

Info

Publication number
WO2021161829A1
WO2021161829A1 PCT/JP2021/003464 JP2021003464W WO2021161829A1 WO 2021161829 A1 WO2021161829 A1 WO 2021161829A1 JP 2021003464 W JP2021003464 W JP 2021003464W WO 2021161829 A1 WO2021161829 A1 WO 2021161829A1
Authority
WO
WIPO (PCT)
Prior art keywords
viewer
axis
projected light
retardation film
glass plate
Prior art date
Application number
PCT/JP2021/003464
Other languages
French (fr)
Japanese (ja)
Inventor
洋貴 中村
健介 泉谷
直也 森
晃史 奥田
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN202180013237.1A priority Critical patent/CN115066645A/en
Priority to JP2022500325A priority patent/JPWO2021161829A1/ja
Publication of WO2021161829A1 publication Critical patent/WO2021161829A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/02Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present disclosure relates to head-up display devices, head-up display systems, retardation films and laminated glass for vehicles.
  • a windshield installed in the front part of the moving body is used as a projection part of the head-up display (hereinafter, may be referred to as HUD) device.
  • the occupant visually recognizes a virtual image based on the reflected image of the projected light in the projection unit.
  • reflection images can be formed on both the indoor main surface and the outdoor main surface.
  • the formation of the reflected image on both the indoor side main surface and the outdoor side main surface in the projection unit is a virtual image that can be visually recognized by the occupant as a double image (the mechanism for generating the double image is Non-Patent Document 1). Please refer to).
  • a method of suppressing the double image in the HUD device there are a wedge HUD method and a polarized HUD method.
  • the projection portion is provided with a wedge angle profile whose thickness gradually fluctuates, so that a virtual image based on a reflection image formed on the indoor main surface and an outdoor main surface when viewed from the occupant
  • the optical path of the projected light is adjusted so as to match the virtual image based on the reflected image formed in (see Non-Patent Document 1 for the mechanism of double image suppression).
  • Patent Document 1 discloses a polarized HUD type HUD device.
  • the occupant visually recognizes a virtual image display based on the reflected image of the projected light of S-polarized light or P-polarized light in the projection unit.
  • S-polarized light refers to projected light whose vibration direction is perpendicular to the incident surface
  • P-polarized light refers to projected light whose vibration direction is parallel to the incident surface.
  • the projection unit includes a first glass plate arranged on the outdoor side, a second glass plate arranged on the indoor side, and a retardation film arranged between the first glass plate and the second glass plate.
  • Each material of the laminated member shall be adjusted so that the refractive index in the visible light region becomes the same. Then, the projected light including the above-mentioned S-polarized light or P-polarized light is incident on the projection unit at Brewster's angle.
  • the incident projected light is composed of S-polarized light
  • a reflected image is formed on the indoor main surface of the second glass plate.
  • the projected light passing through the projection unit is P-polarized by the retardation film.
  • the P-polarized light reaches the outdoor main surface of the first glass plate, it is emitted to the outdoor side without being reflected by the main surface.
  • the occupant visually recognizes a virtual image display based on the reflected image of S-polarized light formed on the main surface of the second glass plate on the indoor side. This case is referred to as S-HUD.
  • the incident projected light is composed of P-polarized light
  • the ratio of the projected light reflected on the indoor main surface of the second glass plate is low.
  • the projected light passing through the projection unit is S-polarized by the retardation film.
  • the S-polarized light reaches the outdoor main surface of the first glass plate, a part of it is reflected by the main surface and the rest is emitted from the outdoor side. Since the projected light forming this reflected image passes through the retardation film of the projection unit again, it changes to P-polarized light.
  • the occupant visually recognizes a virtual image display by P-polarized light based on the reflected image formed on the outdoor main surface of the first glass plate. This case is referred to as P-HUD.
  • HUD devices In recent years, there has been a demand for diversification of information displayed on HUD devices. For example, there is an application of displaying information marking a sign or a pedestrian to assist driving. There is also a request to share image information between the driver's seat and the passenger seat. Information to be shared includes information displayed by the car navigation system and information such as the weather.
  • the HUD device in order to meet the purpose of diversifying the information displayed by the HUD device, it is not enough to display the information only in front of the driver, and it is not enough to display the information only in front of the driver, for example, in an area other than the front of the driver. It may be necessary to display information in an area closer to the outer periphery of the windshield surface than in the front, or in an area between the passenger seat and the driver.
  • Patent Document 2 cites a problem that when a large area display is attempted in the polarized HUD method, it becomes difficult to inject the display light at the Brewster's angle over the entire display area, and the large area display cannot be performed. ing. Then, it is described that the deviation of the Brewster angle due to the increase in area can be solved by changing the wedge angle.
  • Patent Document 2 describes that the thickness of the front laminated glass is reduced from the position where the optical rotation film is inserted toward the lower side, and the change in the thickness is adjusted by the thickness of the optical rotation film to be inserted. Then, according to this method, it is said that the display area can be expanded by displaying the reflected image at the portion where the optical rotation film is inserted and the lower portion thereof.
  • the expansion of the display area by this method is limited to the portion where the optical rotation film is inserted and the lower portion thereof, and is limited to the method of expanding the display area in the vertical direction of the windshield surface. Further, reducing the thickness of the front laminated glass in the lower side direction has a demerit that the labor in the manufacturing process increases.
  • the display area of the image is oblique from either of the two occupants (viewers). It becomes the direction.
  • the head-up display device is designed so as to suppress the generation of a double image with respect to the image displayed in front of each viewer by the polarized HUD method, the viewer is in an oblique direction.
  • both of the two viewers may see the image as a double image.
  • the present disclosure can suppress the generation of a double image when the viewer visually recognizes the image displayed in the region near the outer periphery of the windshield surface or the central region of the windshield surface from an angle. It provides a head-up display device.
  • the head-up display device is mounted on a moving body and recognizes a virtual image based on a reflected image at a projection unit of the projected light to a viewer who is an occupant of the moving body. It is a head-up display device that lets you
  • the X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward
  • the Y-axis is the traveling direction horizontal to the ground and when the moving body moves forward
  • the Z-axis is the direction perpendicular to the ground.
  • the head-up display device is The image unit that irradiates the projected light and A polarizing unit provided between the image unit and the projection unit to transmit light contained in the projection light that vibrates in a specific direction,
  • the projection unit which projects the projected light transmitted through the polarization unit, is provided.
  • the projection unit is a laminated glass arranged in the order of a second glass plate, a retardation film, and a first glass plate from the indoor side, which is the incident side of the projected light, to the outdoor side.
  • the projected light is projected onto at least the area diagonally forward to the viewer.
  • the retardation film has an optical axis inclined by ⁇ r with respect to the X axis on the projection surface, and changes the vibration direction of the projected light incident on the projection surface by the optical axis.
  • the specific direction is a direction parallel to the incident surface.
  • a polarizing unit is provided between an image unit that irradiates the projected light and a projection unit on which the projected light is projected.
  • the polarizing unit transmits light contained in the projected light that vibrates in a specific direction, and the projected light transmitted through the polarizing unit is projected onto the projection unit.
  • the specific direction in which the projected light is transmitted in the polarizing portion is the direction parallel to the incident surface. In this case, it can be used as a P-HUD type head-up display device.
  • This heads-up display device is suitable for use in sunglasses mode with polarized sunglasses.
  • the viewer observes a virtual image based on a reflection image formed on a surface other than the indoor side surface of the second glass plate. It is preferable to do so. In the head-up display device of the present disclosure, it is preferable that the viewer observes a virtual image based on a reflection image formed on the outdoor surface of the first glass plate.
  • the head-up display device is mounted on a moving body, and a virtual image based on the reflected image at the projection unit of the projected light is displayed by a viewer who is an occupant of the moving body. It is a head-up display device that makes people recognize
  • the X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward
  • the Y-axis is the traveling direction horizontal to the ground and when the moving body moves forward
  • the Z-axis is the direction perpendicular to the ground.
  • the head-up display device is The image unit that irradiates the projected light and A polarizing unit provided between the image unit and the projection unit to transmit light contained in the projection light that vibrates in a specific direction,
  • the projection unit which projects the projected light transmitted through the polarization unit, is provided.
  • the projection unit is a laminated glass arranged in the order of a second glass plate, a retardation film, and a first glass plate from the indoor side, which is the incident side of the projected light, to the outdoor side.
  • the projected light is projected onto at least the area diagonally forward to the viewer.
  • the retardation film has an optical axis tilted ⁇ r with respect to the X axis on the projection surface, and the angle formed by the vibration direction ⁇ ⁇ of the projected light incident on the projection surface and the optical axis is d ⁇ .
  • the vibration direction of the incident projected light is rotated by 2d ⁇ .
  • the vibration direction ⁇ ⁇ is characterized in that it is in the direction of 2 ⁇ r ⁇ ⁇ p on the projection surface when the angle of the incident surface with respect to the X axis on the projection surface is ⁇ p.
  • the vibration direction of the projection light incident on the projection plane theta alpha the angle at which the optical axis is inclined retardation film with respect to the X axis
  • the vibration direction ⁇ ⁇ is the direction of 2 ⁇ r ⁇ ⁇ p on the projection surface.
  • the viewer observes a virtual image based on the reflected image formed on the indoor side surface of the second glass plate.
  • the polarizing portion is provided between the video unit and the projection unit. It is preferable that each of the incident surfaces, which is an incident surface provided for each viewer, transmits the projected light vibrating in the specific direction corresponding to each of the incident surfaces. Further, it is preferable that the polarizing portion has a transmission axis in which the vibration direction of the transmitted projected light is the specific direction, and the directions of the transmission axes are different from each other. Further, the projected light is in the central region which is between the front area of each of the plurality of viewers and corresponds to the diagonally forward region of each of the plurality of viewers. It is preferably projected.
  • a polarizing unit is provided for each of a plurality of viewers, and the vibration direction of the projected light transmitted through the polarizing unit is adjusted according to the relationship between the positions of the incident surface and the projection surface provided for each viewer. ..
  • the head-up display device can suppress the generation of a double image from any of the viewers. be able to.
  • the projection position on which the projected light is projected can be changed in the projection unit. It is preferable that the polarizing portion is movable and the vibration direction of the light transmitted through the polarizing portion can be changed in response to the change of the incident surface accompanying the change of the projection position.
  • the incident surface is changed. If the polarizing portion can be moved in response to a change in the incident surface to change the vibration direction of the light transmitted through the polarizing portion, the double image can be suppressed even if the projection position is changed.
  • the head-up display system is mounted on a moving body, and a virtual image based on a reflected image at a projection unit of projected light is visually recognized by a viewer who is an occupant of the moving body. It ’s a do-up display system.
  • the X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward
  • the Y-axis is the traveling direction horizontal to the ground and when the moving body moves forward
  • the Z-axis is the direction perpendicular to the ground.
  • the above head-up display system The image unit that irradiates the projected light and A polarizing unit provided between the image unit and the projection unit to transmit light contained in the projection light that vibrates in a specific direction,
  • the projection unit on which the projected light is projected is provided.
  • the projection unit is a laminated glass arranged in the order of a second glass plate, a retardation film, and a first glass plate from the indoor side, which is the incident side of the projected light, to the outdoor side.
  • the projected light is projected onto at least the area diagonally forward to the viewer.
  • the retardation film has an optical axis inclined by ⁇ r with respect to the X axis on the projection surface, and changes the vibration direction of the projected light incident on the projection surface by the optical axis.
  • the polarizing portion is movable, and the following (A) and (B) can be switched by changing the vibration direction of the light transmitted through the polarizing portion.
  • the vibration direction of the light incident on the second glass plate is set to be a direction parallel to the incident surface.
  • the retardation film when the angle between the vibration direction theta alpha and the optical axis of the projection light incident on the projection plane and d [theta], thereby 2d ⁇ rotational vibration direction of the projection light incident.
  • the vibration direction of the light transmitted through the second glass plate is the direction of 2 ⁇ r ⁇ ⁇ p on the projection surface when the angle of the incident surface with respect to the X axis on the projection surface is ⁇ p.
  • the polarizing portion is movable, and the vibration direction of the light transmitted through the polarizing portion can be changed. This makes it possible to switch between the S-HUD method and the P-HUD method. This makes it possible to obtain a head-up display system having a plurality of types of double image suppression methods.
  • the projection position on which the projected light is projected can be changed in the projection unit. It is preferable that the polarizing portion is movable and the vibration direction of the projected light transmitted through the polarizing portion can be changed in response to the change of the incident surface accompanying the change of the projection position.
  • the incident surface is changed. If the polarizing portion can be moved in response to a change in the incident surface to change the vibration direction of the projected light transmitted through the polarizing portion, the double image can be suppressed even if the projection position is changed.
  • the head-up display device is A head-up display device mounted on a moving body that allows a viewer who is an occupant of the moving body to visually recognize a virtual image based on a reflected image at a projection unit of projected light.
  • the X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward
  • the Y-axis is the traveling direction horizontal to the ground and when the moving body moves forward
  • the Z-axis is the direction perpendicular to the ground.
  • the head-up display device is The image unit that irradiates the projected light whose vibration direction is the X-axis direction, A projection unit on which the projected light is projected is provided.
  • the projection unit is arranged in the traveling direction when the moving body moves forward, and is arranged on the incident side of the projected light and the emitting side of the projected light. It is composed of a laminated glass provided with a first glass plate, a retardation film arranged between the second glass plate and the first glass plate.
  • the first glass plate includes a first main surface exposed to the outdoor side and a second main surface opposite to the first main surface.
  • the second glass plate includes a fourth main surface exposed to the indoor side and a third main surface opposite to the fourth main surface.
  • the projection unit has a viewer front region that is the front of the viewer and a viewer oblique front region that is a region that is far from the viewer front region along any direction in the X-axis direction. death,
  • the retardation film arranged in the front area of the viewer is a plane parallel to the fourth main surface of the retardation film.
  • the optical axis is 45 ° ⁇ 5 ° with respect to the X axis.
  • the retardation film arranged in the diagonally front region of the viewer has the phase difference on a plane parallel to the fourth main surface.
  • the optical axis of the film is tilted from 45 ° ⁇ 5 ° with respect to the X axis.
  • the imaginary image is based on a reflection image formed on the fourth main surface of the second glass plate.
  • the light emitted from the first main surface of the first glass plate mainly vibrates in the direction parallel to the incident surface. It is characterized by being.
  • the length of the line along the Y axis (distance from the viewpoint to the projection portion) is set to 1000 mm, and the above-mentioned Y axis is set.
  • the range of ⁇ 10 ° along the X-axis direction is defined as the front view area of the viewer.
  • An area far from the front area of the viewer along any direction in the X-axis direction with respect to the front area of the viewer is defined as an oblique front area of the viewer.
  • the head-up display device when viewing a reflected image formed in the front area of the viewer, which is the front of the viewer, the head-up display device is parallel to the fourth main surface.
  • the optical axis of the retardation film is 45 ° ⁇ 5 ° with respect to the X axis.
  • the projected light In the front region of the viewer, the projected light is almost S-polarized.
  • the projected light (S-polarized light) incident on the retardation film is highly efficiently converted to P-polarized light, so that the generation of double images is suppressed.
  • the optical axis of the retardation film is tilted in a direction deviated from 45 ° ⁇ 5 ° with respect to the X axis.
  • the direction of the optical axis of the retardation film is tilted in a direction that deviates from the X-axis by 45 ° ⁇ 5 ° to correspond to the change in the incident surface of the projected light.
  • the efficiency of converting the projected light incident on the retardation film into P-polarized light is increased even in the region diagonally forward to the viewer, so that the generation of double images is suppressed. Since the efficiency of converting the projected light incident on the retardation film into P-polarized light is high in both the front area of the viewer and the diagonally front area of the viewer, the generation of double images is suppressed. As a result, it is possible to provide a head-up display device capable of suppressing the generation of a double image even when the display area of the HUD is expanded in the lateral direction of the windshield surface.
  • the head-up display device is mounted on the moving body, and a virtual image based on the reflected image at the projection unit of the projected light is displayed by a viewer who is an occupant of the moving body. It is a head-up display device that allows you to see
  • the X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward
  • the Y-axis is the traveling direction horizontal to the ground and when the moving body moves forward
  • the Z-axis is the direction perpendicular to the ground.
  • the head-up display device is The image unit that irradiates the projected light whose vibration direction is parallel to the YZ plane, A projection unit on which the projected light is projected is provided.
  • the projection unit is arranged in the traveling direction when the moving body moves forward, and is arranged on the incident side of the projected light and the emitting side of the projected light. It is composed of a laminated glass provided with a first glass plate, a retardation film arranged between the second glass plate and the first glass plate.
  • the first glass plate includes a first main surface exposed to the outdoor side and a second main surface opposite to the first main surface.
  • the second glass plate includes a fourth main surface exposed to the indoor side and a third main surface opposite to the fourth main surface.
  • the projection unit has a viewer front region that is the front of the viewer and a viewer oblique front region that is a region that is far from the viewer front region along any direction in the X-axis direction. death,
  • the retardation film arranged in the front area of the viewer is a plane parallel to the fourth main surface of the retardation film.
  • the optical axis is 45 ° ⁇ 5 ° with respect to the X axis.
  • the retardation film arranged in the diagonally front region of the viewer has the phase difference on a plane parallel to the fourth main surface.
  • the optical axis of the film is tilted from 45 ° ⁇ 5 ° with respect to the X axis.
  • the imaginary image is based on a reflection image formed on the first main surface of the first glass plate.
  • the light reflected by the first main surface of the first glass plate is the projected light that vibrates mainly in the direction perpendicular to the incident surface. It is characterized by being.
  • This heads-up display device can also be used in sunglasses mode, which uses polarized sunglasses.
  • the optical axis of the retardation film is 45 with respect to the X axis in a plane parallel to the fourth main surface. It is ° ⁇ 5 °.
  • the projected light is almost P-polarized.
  • the projected light (P-polarized light) incident on the retardation film is highly efficiently converted to S-polarized light, so that a virtual image display based on the reflected image formed on the first main surface of the first glass plate can be displayed. Become stronger. Therefore, the influence of the projected light reflected on the fourth main surface is relatively weakened, and the generation of the double image is suppressed.
  • the optical axis of the retardation film is tilted in a direction deviated from 45 ° ⁇ 5 ° with respect to the X axis.
  • the virtual image display based on the reflected image formed on the first main surface of the first glass plate becomes stronger even in the area diagonally forward to the viewer. Therefore, the influence of the projected light reflected on the fourth main surface is relatively weakened, and the generation of the double image is suppressed. Since the efficiency of converting the projected light incident on the retardation film into S-polarized light is high in both the front area of the viewer and the diagonally front area of the viewer, the generation of double images is suppressed. As a result, it is possible to provide a head-up display device capable of suppressing the generation of a double image even when the display area of the HUD is expanded in the lateral direction of the windshield surface.
  • the direction in which the optical axis of the retardation film deviates from the X axis by 45 ° ⁇ 5 ° is opposite.
  • the inclination of the retardation film in the direction of the optical axis in the area diagonally forward to the viewer is continuously changed along the X-axis direction. Is preferable. Further, it is preferable that the change in the inclination of the retardation film in the direction of the optical axis in the diagonally forward region of the viewer is discontinuous along the X-axis direction.
  • the retardation film according to the second embodiment of the present disclosure is an integral retardation film having a vertical axis in the vertical direction and a horizontal axis in the horizontal direction. At a plurality of points along the vertical axis, the angle formed by the optical axis of the retardation film and the horizontal axis is constant. Along the horizontal axis direction, the angle formed by the optical axis of the retardation film and the horizontal axis changes with a constant tendency.
  • the angle formed by the optical axis of the retardation film and the horizontal axis continuously changes along the horizontal axis direction. Further, it is preferable that the angle formed by the optical axis of the retardation film and the horizontal axis changes discontinuously along the horizontal axis direction.
  • the laminated glass for a vehicle according to the second embodiment of the present disclosure is a retardation film arranged between the first glass plate, the second glass plate, and the first glass plate and the second glass plate. It is a laminated glass for vehicles equipped with The retardation film is the retardation film according to the second embodiment of the present disclosure.
  • the head-up display system is mounted on a moving body, and a head-up that allows a viewer who is an occupant of the moving body to visually recognize a virtual image based on a reflected image at a projection unit of projected light. It ’s a display system,
  • the X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward
  • the Y-axis is the traveling direction horizontal to the ground and when the moving body moves forward
  • the Z-axis is the direction perpendicular to the ground.
  • the above head-up display system The image unit that irradiates the projected light and A projection unit on which the projected light is projected is provided.
  • the projection unit is arranged in the traveling direction when the moving body moves forward, and is arranged on the incident side of the projected light and the emitting side of the projected light. It is composed of a laminated glass provided with a first glass plate, a retardation film arranged between the second glass plate and the first glass plate.
  • the first glass plate includes a first main surface exposed to the outdoor side and a second main surface opposite to the first main surface.
  • the second glass plate includes a fourth main surface exposed to the indoor side and a third main surface opposite to the fourth main surface.
  • the projection unit has a viewer front region that is the front of the viewer and a viewer oblique front region that is a region that is far from the viewer front region along any direction in the X-axis direction. death,
  • the retardation film arranged in the front area of the viewer is a plane parallel to the fourth main surface of the retardation film.
  • the optical axis is 45 ° ⁇ 5 ° with respect to the X axis.
  • the retardation film arranged in the diagonally front region of the viewer has the phase difference on a plane parallel to the fourth main surface.
  • the optical axis of the film is tilted from 45 ° ⁇ 5 ° with respect to the X axis.
  • the image unit can switch between the first projected light whose vibration direction is the X-axis direction and the second projected light whose vibration direction is parallel to the YZ plane.
  • the light emitted from the first main surface of the first glass plate is mainly in the direction parallel to the incident surface in both the front area of the viewer and the oblique front area of the viewer. It is a vibrating projected light.
  • the second projected light is irradiated from the image unit, and the virtual image is a reflection formed on the first main surface of the first glass plate.
  • the light reflected by the first main surface of the first glass plate vibrates mainly in the direction perpendicular to the incident surface in both the front area of the viewer and the obliquely front area of the viewer. It is characterized in that it is a projected light.
  • the head-up display system has a sunglasses mode in which a virtual image is visually recognized through a polarizing plate such as polarized sunglasses by switching between two types of projected light emitted from an image unit, and a polarizing plate. It is possible to switch and use the normal mode for visually recognizing a virtual image without going through it. Then, when the display area of the HUD is expanded in the lateral direction of the windshield surface, the generation of the double image can be suppressed in any mode.
  • a head-up display device capable of suppressing the generation of a double image when a viewer visually recognizes an image displayed in a region near the outer periphery of the windshield surface or a central region of the windshield surface from an angle. Can be provided.
  • FIG. 1 is a top view of a moving body including a HUD device.
  • FIG. 2 is a view of a laminated glass for a vehicle used in the HUD device as viewed from the fourth main surface side.
  • FIG. 3 is an exploded perspective view schematically showing an example of laminated glass for a vehicle.
  • FIG. 4 is a schematic view showing an outline of a first HUD device according to a first aspect of the first embodiment of the present disclosure and an optical path in the device.
  • FIG. 5 is a schematic view showing an outline of a second HUD device according to a second aspect of the first embodiment of the present disclosure and an optical path in the device.
  • FIG. 6 is a schematic diagram for explaining the vibration direction of the light transmitted through the polarizing portion in the second HUD device.
  • FIG. 7 is a diagram schematically showing an example of the relationship between the positions of the viewer and the projection unit and the position of the transmission axis of the polarizing unit in the first HUD device.
  • FIG. 8 is a diagram schematically showing an example of the relationship between the positions of the viewer and the projection unit and the position of the transmission axis of the polarizing unit in the second HUD device.
  • FIG. 9 is a diagram schematically showing an example of the relationship between the positions of the viewer and the projection unit and the position of the transmission axis of the polarizing unit when there are a plurality of viewers in the first HUD device.
  • FIG. 10 is a diagram schematically showing an example of the relationship between the positions of the viewer and the projection unit and the position of the transmission axis of the polarizing unit when there are a plurality of viewers in the second HUD device.
  • FIG. 11 is a layout diagram schematically showing the first HUD apparatus used in Examples and Comparative Examples.
  • FIG. 12 is a diagram schematically showing the experimental system in Example 1.
  • FIG. 13 is a diagram schematically showing the experimental system in Comparative Example 1.
  • FIG. 14 is a photograph showing a virtual image visually recognized in Example 1 and Comparative Example 1.
  • FIG. 15 is a diagram schematically showing the experimental system in Example 2.
  • FIG. 16 is a diagram schematically showing the experimental system in Comparative Example 2.
  • FIG. 17 is a photograph showing a virtual image visually recognized in Example 2 and Comparative Example 2.
  • FIG. 18 is a drawing schematically showing an example of a retardation film according to the second embodiment of the present disclosure.
  • FIG. 19 is a drawing schematically showing an example of another retardation film according to the second embodiment of the present disclosure.
  • FIG. 20 is an exploded perspective view schematically showing an example of a laminated glass for a vehicle according to a second embodiment of the present disclosure.
  • FIG. 21 is a schematic view showing an outline of a third HUD device according to the first aspect of the second embodiment of the present disclosure and an optical path in the device.
  • FIG. 22 is a diagram schematically showing the positions of the viewer front region and the viewer diagonally forward region in a right-hand drive vehicle.
  • FIG. 23 is a diagram schematically showing the positions of the viewer front region and the viewer diagonally forward region in the left-hand drive vehicle.
  • FIG. 24 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique front region when the driver of the right-hand drive vehicle is a viewer.
  • FIG. 25 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique front region when the driver of the left-hand drive vehicle is a viewer.
  • FIG. 26 is a diagram schematically showing the positions of the viewer front region and the viewer oblique front region when there are two viewers, the driver and the passenger seat occupant.
  • FIG. 27 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique front region when there are two viewers, the driver and the passenger seat occupant.
  • FIG. 24 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique front region when the driver of the right-hand drive vehicle is a viewer.
  • FIG. 25 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique
  • FIG. 28 is a diagram schematically showing a mode in which the projection portion is extended to the side glass.
  • FIG. 29 is a schematic diagram showing an outline of a fourth HUD device according to a second aspect of the second embodiment of the present disclosure and an optical path in the device.
  • FIG. 30 is a layout diagram schematically showing the third HUD device used in Examples and Comparative Examples.
  • FIG. 31 is a diagram schematically showing the experimental system in Example 3.
  • FIG. 32 is a diagram schematically showing the experimental system in Comparative Example 3.
  • FIG. 33 is a photograph showing a virtual image visually recognized in Example 3 and Comparative Example 3.
  • FIG. 34 is a diagram schematically showing the experimental system in Example 4.
  • FIG. 35 is a diagram schematically showing the experimental system in Comparative Example 4.
  • FIG. 36 is a photograph showing a virtual image visually recognized in Example 4 and Comparative Example 4.
  • HUD device head-up display device
  • HUD system head-up display system
  • the HUD device is a HUD device (P-HUD type HUD device) in which a viewer observes a virtual image based on a reflected image formed on a surface other than the indoor side surface of the second glass plate.
  • HUD devices S-HUD type HUD devices
  • the first HUD device and the second HUD respectively.
  • the HUD system according to the first embodiment of the present disclosure can be used as both a first HUD device and a second HUD device by switching the vibration direction of the light transmitted through the polarizing portion in one system. It is a system that enables it.
  • the length of the line along the Y axis (distance from the viewpoint to the projection portion) is set to 1000 mm as described above.
  • the range of ⁇ 3 ° along the X-axis direction is defined as the front area of the viewer.
  • the range is expanded along the Z-axis direction, it is also defined as the front area of the viewer.
  • An area far from the front area of the viewer along any direction in the X-axis direction with respect to the front area of the viewer is defined as an oblique front area of the viewer.
  • a region that is far from the viewer front region along the X-axis direction and the Z-axis direction is also defined as a viewer diagonally forward region.
  • the surface along the retardation film and the surface on which the projected light is incident on the retardation film is referred to as a projection plane.
  • the projection surface is a surface including the main surface of the retardation film.
  • FIG. 1 is a top view of a moving body including a HUD device
  • FIG. 2 is a view of a laminated glass for a vehicle used for the HUD device as viewed from the indoor side surface (fourth main surface) side of the second glass plate. ..
  • FIG. 1 shows the vehicle 20 as a moving body, and the X-axis is shown in the horizontal direction and the Y-axis is shown in the vertical direction.
  • the Z axis is in the direction perpendicular to the paper surface.
  • the Y-axis is the traveling direction when the vehicle 20 which is horizontal to the ground and is a moving body moves forward.
  • the X-axis is a direction that is horizontal to the ground and orthogonal to the traveling direction (Y-axis) when the moving vehicle 20 moves forward.
  • the Z axis is perpendicular to the ground. Further, the direction of the first glass plate when the first glass plate side is viewed from the second glass plate side is defined as "forward".
  • Examples of the moving body include vehicles (passenger cars, trucks, buses, trains, etc.), trains, ships, airplanes, and the like. Among these, a vehicle is preferable.
  • FIG. 2 shows a laminated glass 10 for a vehicle.
  • the laminated glass 10 for a vehicle When the laminated glass 10 for a vehicle is installed in a vehicle, its glass surface is not parallel to the XZ plane, and is often arranged at an angle from the XZ plane.
  • FIG. 3 is an exploded perspective view schematically showing an example of laminated glass for a vehicle.
  • the first glass plate includes a first main surface exposed to the outdoor side and a second main surface opposite to the first main surface. Further, the second glass plate includes a fourth main surface exposed to the indoor side and a third main surface opposite to the fourth main surface.
  • the above-mentioned "exposed" means that a film, a film, or the like for imparting various functions such as anti-fog property and scratch resistance is placed on each main surface within a range that does not impair the function of the laminated glass for vehicles. You may have it.
  • FIG. 3 shows a laminated glass 10 for a vehicle.
  • FIG. 1 shows a laminated glass 10 for a vehicle.
  • FIG. 3 shows a view in which the second glass plate 12 is arranged on the front side of the drawing, and the surface visible on the front side is the fourth main surface 124.
  • the surface opposite to the fourth main surface 124 is the third main surface 123.
  • the first glass plate 11 is arranged on the back side of the drawing, and the surface visible on the front side is the second main surface 112.
  • the surface opposite to the second main surface 112 is the first main surface 111.
  • a retardation film 100 is arranged between the first glass plate 11 and the second glass plate 12. Since the fourth main surface 124 is a surface exposed to the indoor side, it is a surface that the viewer can directly see when the laminated glass for the vehicle is arranged on the vehicle. That is, FIG. 3 shows the positional relationship in which the viewer directly sees from the inside of the vehicle.
  • the first glass plate and the second glass plate are joined via an interlayer film to form an integral structure.
  • the interlayer film combines the first glass plate and the second glass plate by heating at a temperature at which the polymer constituting the interlayer film softens.
  • polymers polyvinyl butyral (PVB) and ethylene acetate are used.
  • the interlayer film may be composed of a plurality of resin layers.
  • a flat glass plate processed into a curved shape can be preferably used.
  • a glass having a known glass composition such as aluminosilicate glass, borosilicate glass, and non-alkali glass can be used. can.
  • the thickness of each of the first glass plate and the second glass plate may be, for example, 0.4 mm to 3 mm.
  • the distance between the first glass plate and the second glass plate may be 0.01 mm to 2.5 mm.
  • the retardation film 100 has an optical axis inclined by ⁇ r with respect to the X axis on the projection surface, and the optical axis changes the vibration direction of the projected light incident on the projection surface.
  • the optical axis of the retardation film means the axis in the direction in which the refractive index of the retardation film is the largest.
  • the retardation film may include a layer or a film having no base material.
  • a layer having an optical axis in the projection portion may be formed by coating, laminating, adhering, adhering, crimping, transferring, or the like.
  • the retardation film is arranged between the first glass plate and the second glass plate.
  • the retardation film may be arranged inside the interlayer film, may be arranged at a position in contact with the first glass plate, or may be arranged at a position in contact with the second glass plate. Further, as shown in FIG. 3, the surface of the retardation film may be arranged so as to face the second main surface and the third main surface. Further, the retardation film may be arranged on the entire surface or partially, and the total area of the surfaces of the retardation film facing the second main surface or the third main surface is the second main surface or It is preferably equal to or less than the area of the third main surface.
  • a plurality of retardation films may be used as needed, and different types of retardation films or films other than the retardation films may be used in combination.
  • a retardation element obtained by uniaxially or biaxially stretching a plastic film such as polycarbonate, polyarylate, polyether sulfone, cycloolefin polymer, triacetyl cellulose, polyethylene terephthalate (PET), or polyethylene naphthalate (PEN).
  • a retardation element in which the liquid crystal polymer is oriented in a specific direction and the orientation state is fixed can be used.
  • the former phase difference element obtained by stretching a plastic film uniaxially or biaxially for example, a polymer resin is dissolved in a solvent and then applied on a smooth surface such as a stainless steel belt or polyethylene terephthalate (PET) to evaporate the solvent.
  • the film is formed by a solvent casting method in which the film is wound after being wound, or a melt extrusion method in which a polymer resin is placed in an extruder to be heated and melted, extruded from a slit (T die), cooled, and then the film is wound.
  • a stretching machine is generally used for stretching, and a retardation film stretched vertically, horizontally, diagonally, or the like can be obtained.
  • a liquid crystal polymer is coated on a transparent substrate such as a transparent plastic film such as polyethylene terephthalate (PET) or triacetyl cellulose (TAC) which has been oriented, and heat-treated and cooled to align the liquid crystal.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • liquid crystal polymer examples are not particularly limited as long as they are compounds exhibiting liquid crystal properties such as nematic liquid crystal, twisted nematic liquid crystal, discotic liquid crystal, and cholesteric liquid crystal when oriented in a specific direction.
  • liquid crystal properties such as nematic liquid crystal, twisted nematic liquid crystal, discotic liquid crystal, and cholesteric liquid crystal when oriented in a specific direction.
  • those that are twisted and nematically oriented in the liquid crystal state and are in the glass state below the liquid crystal transition point can be used, and can be used as a main chain type liquid crystal polymer such as optically active polyester, polyamide, polycarbonate, polyesterimide, or optically active poly.
  • side-chain liquid crystal polymers such as acrylate, polymethacrylate, polycarbonate, and polysiloxane.
  • FIG. 4 is a schematic diagram showing an outline of a first HUD device according to a first aspect of the first embodiment of the present disclosure and an optical path in the device.
  • the optical path of the projected light is shown by a solid line.
  • the projection unit is the vehicle laminated glass 10 shown in FIG.
  • the projected light 60 is emitted from the image unit 31.
  • the plane including the light emitting point 32 of the image unit 31, the reflection point 33 on which the projected light 60 is reflected on the first main surface 111, and the viewpoint 34 of the viewer 35 is the incident surface.
  • the projected light 60 emitted from the image unit 31 does not need to be limited in the vibration direction, but if the light is P-polarized light whose vibration direction is parallel to the incident surface, the amount of light passing through the polarized light unit 81 is large. Therefore, it is preferable because the amount of light reaching the first main surface can be increased.
  • the image unit 31 is arranged on the dashboard or the like of the vehicle. The position of irradiating the projected light 60 can be moved by changing the direction of irradiating the projected light 60 from the image unit 31 or moving the position of the image unit 31.
  • a polarizing unit 81 is provided between the image unit 31 and the projection unit (laminated glass 10 for a vehicle).
  • the polarizing unit 81 is a member having a transmission axis in which the vibration direction of the transmitted projected light 60 is a specific direction, and for example, a known polarizing plate or the like can be used. It is desirable that the above-mentioned polarizing plate has an absorption axis that absorbs light vibrating in the direction perpendicular to the above-mentioned specific direction.
  • the polarizing unit 81 may be arranged at a position where it can pass through the polarizing unit 81 before the projected light 60 reaches the projection unit.
  • the polarizing unit 81 is arranged in the dashboard in the same manner as the video unit 31 described above, and is arranged adjacent to the light source so that the light from the light source quickly passes through the polarizing unit 81. Is preferable.
  • the polarizing unit 81 transmits light vibrating in a direction parallel to the incident surface. That is, the projected light 61 after passing through the polarizing unit 81 becomes P-polarized light.
  • the projected light 61 after passing through the polarizing unit 81 is P-polarized, it can also be used in sunglasses mode in which a virtual image is observed through polarized sunglasses. Further, although polarized sunglasses 36 are used in FIG. 4, a virtual image can be observed with the naked eye as a matter of course.
  • the projected light 60 emitted from the image unit 31 passes through the polarizing unit 81 and is irradiated on the fourth main surface 124 as the projected light 61 of P-polarized light.
  • the angle at this time is preferably Brewster's angle. In general, P-polarized light incident at Brewster's angle does not cause reflection, so that it is possible to suppress reflection on the fourth main surface 124, which causes a double image.
  • the image unit can be moved in the X-axis direction and the Y-axis direction so that the angle at which the projected light 61 is applied to the fourth main surface 124 is the Brewster's angle.
  • the vibration direction changes.
  • the retardation film 100 is a 1/2 wavelength film (half wavelength film) or a 1/4 wavelength film. Etc. can be used.
  • the vibration direction of light after passing through the retardation film 100 varies depending on the type of retardation film and the direction of the optical axis.
  • the projection surface When the angle formed by the vibration direction of the incident projected light and the optical axis of the retardation film is d ⁇ , the vibration direction of the projected light is rotated by 2 d ⁇ .
  • the vibration direction of the projected light is rotated by 2 d ⁇ .
  • the projected light reaches the first main surface 111, it is reflected to form a reflected image.
  • S-polarized light is reflected as reflected light, and other light that is not reflected passes through the first main surface 111 and is emitted to the outdoor side.
  • the reflected image formed on the first main surface 111 passes through the retardation film 100 again and becomes P-polarized light.
  • the viewer 35 visually recognizes the virtual image 621 on the extension of the optical path 62 based on the reflected image on the first main surface 111. Since the virtual image 621 is composed of P-polarized light, the viewer 35 can visually recognize the virtual image 621 even through the polarized sunglasses 36. In this case, the viewer observes a virtual image based on the reflected image formed on the outdoor side surface (that is, the first main surface) of the first glass plate.
  • reflection image formed on the indoor side surface of the second glass plate also includes the "reflection image formed on the outdoor side surface of the first glass plate”.
  • the polarizing unit 81 is movable and the vibration direction of the light transmitted through the polarizing unit 81 can be changed.
  • the polarizing unit 81 is movable, when the incident surface changes, the polarizing unit 81 moves so that the specific direction can be aligned with the direction parallel to the incident surface.
  • aligning the specific direction with the direction parallel to the incident surface it can be suitably used as a P-HUD type HUD device.
  • FIG. 5 is a schematic view showing an outline of a second HUD device according to a second aspect of the first embodiment of the present disclosure and an optical path in the device.
  • the optical path of the projected light is shown by a solid line.
  • the projection unit is the vehicle laminated glass 10 shown in FIG.
  • a polarizing unit 82 is provided between the image unit 31 and the projection unit (laminated glass 10 for a vehicle).
  • the polarizing unit 82 is a member having a transmission axis that transmits light contained in the projected light that vibrates in a specific direction, and for example, a known polarizing plate or the like can be used.
  • the polarizing unit 82 may be arranged at a position where it can pass through the polarizing unit 82 before the projected light 40 reaches the projection unit.
  • the polarizing unit 82 is arranged in the dashboard in the same manner as the video unit 31 described above, and is arranged adjacent to the light source so that the light from the light source quickly passes through the polarizing unit 82. Is preferable.
  • the polarizing unit 82 transmits light contained in the projected light 40 that vibrates in a specific direction.
  • the projected light 40 is emitted from the image unit 31.
  • the projected light 41 after the projected light 40 has passed through the polarizing portion 82 is irradiated on the fourth main surface 124, and a reflected image is formed on the fourth main surface 124.
  • the viewer 35 observes the virtual image 421 on the extension of the optical path 42 based on the reflected image formed on the fourth main surface 124.
  • the plane including the light emitting point 32 of the image unit 31, the reflection point 33 on which the projected light 41 is reflected on the fourth main surface 124, and the viewpoint 34 of the viewer 35 is the incident surface.
  • the direction of vibration of the projected light 40 emitted from the image unit 31 is not particularly limited, but for the purpose of increasing the amount of light that vibrates in a specific direction transmitted through the polarizing unit 82, the polarizing unit 82 It is desirable to include light that oscillates in a direction parallel to the transmission axis.
  • the projected light that vibrates in a specific direction is a transmitted light that passes through the second glass plate and a reflected light that is reflected on the indoor side surface of the second glass plate.
  • the vibration direction of the projected light that vibrates in a specific direction that has passed through the polarizing portion is the vibration direction ⁇ ⁇ described below after passing through the second glass plate.
  • the image unit 31 is preferably arranged on the dashboard of the vehicle.
  • the position of irradiating the projected light 40 can be moved by changing the direction of irradiating the projected light 40 from the image unit 31 or moving the position of the image unit 31.
  • the vibration direction of the projected light 41 traveling in the projection portion has a phase difference. It changes by passing through the film 100.
  • the retardation film 100 has an optical axis tilted ⁇ r with respect to the X axis on the projection surface, and the vibration direction ⁇ ⁇ of the projected light 41 that passes through the second glass plate 12 and is incident on the projection surface is projected.
  • the vibration direction of the projected light is described above by passing through the retardation film 100. In this way, it rotates by 2d ⁇ and becomes a direction parallel to the incident surface, that is, a vibration direction similar to that of P-polarized light.
  • the change in the vibration direction of the projected light 41 will be described below with reference to the drawings.
  • FIG. 6 is a schematic diagram for explaining the vibration direction of the light incident on the retardation film 100 in the second HUD device. Further, FIG. 6 shows a case where the viewer looks forward (direction in which the first main surface side is viewed from the fourth main surface side).
  • the X axis is shown as 0 °.
  • the angle of the optical axis of the retardation film with respect to the X axis is ⁇ r .
  • ⁇ r is shown at 45 °.
  • the vibration direction of P-polarized light is a direction parallel to the incident surface
  • the vibration direction of S-polarized light is a direction perpendicular to the incident surface.
  • d ⁇ be the angle formed by the vibration direction of the projected light 41 and the optical axis of the retardation film.
  • the vibration direction of the projected light is rotated by 2 d ⁇ . That is, the vibration direction of the projected light 41 rotates 2d ⁇ clockwise or counterclockwise in the drawing. By this rotation, the vibration direction of the projected light 41 is made parallel to the incident surface.
  • the projected light 41 passes through the retardation film and changes to P-polarized light.
  • ⁇ ⁇ is obtained as follows.
  • the vibration direction rotates counterclockwise in FIG. 6, and when ⁇ , it rotates clockwise.
  • the vibration direction of the light after passing through the retardation film becomes parallel to the incident surface.
  • the projected light that has passed through the retardation film 100 and becomes P-polarized is emitted to the outdoor side as P-polarized light without being reflected by the first main surface 111.
  • the reflection of the projected light that was not reflected by the fourth main surface 124 on the first main surface 111 the generation of the double image is suppressed.
  • the polarizing unit 82 is movable and the vibration direction of the light transmitted through the polarizing unit 82 can be changed.
  • the polarizing unit 82 is movable, when the incident surface changes, the polarizing unit 82 moves, so that the vibration direction of the light transmitted through the polarizing unit 82 can be changed, and the projected light incident on the projection surface can be changed.
  • the HUD device of the present disclosure is not limited to the examples given below.
  • the viewer is seated in the position of the driver of a right-hand drive vehicle.
  • the front of the viewer is the front area of the viewer, and the area farther than the front area of the viewer along any direction in the X-axis direction is defined as the diagonally front region of the viewer.
  • FIG. 7 is a diagram schematically showing an example of the relationship between the positions of the viewer and the projection unit and the orientation of the transmission axis of the polarizing unit in the first HUD device.
  • the viewer 35 is seated at the position of the driver of the right-hand drive vehicle.
  • FIG. 7 shows the orientation of the transmission axis of the image 621L projected on the left side of the viewer 35 in the diagonally forward region of the viewer and the polarizing portion 81L used when viewing the image 621L. Further, it shows the orientation of the transmission axis of the image 621R projected onto the area diagonally forward of the viewer on the right side of the viewer and the polarizing portion 81R used when viewing the image 621R.
  • the direction of the transmission axis of the polarizing portion in FIG. 7 is the direction along the Z axis in the front region of the viewer, and this case is shown as a dotted line in the polarizing portion 81L and the polarizing portion 81R as a reference line.
  • the transmission axis of the polarizing unit 81L and the polarizing unit 81R is a solid line shown in the polarizing unit 81L and the polarizing unit 81R. In the case of FIG.
  • the transmission axis is rotated counterclockwise on a plane along the XX plane.
  • the transmission axis is rotated clockwise.
  • the angle at which the transmission axis is rotated may be adjusted to an angle that minimizes the double image. Further, it is preferable to adjust the transmission axis so that the direction is parallel to the incident surface. Since the transmission axis is on the Z axis in FIG. 7, the direction along the Z axis direction is used as a reference. However, when the transmission axis is on the X axis as shown in FIG. 8, the direction along the X axis is used. Use as a reference.
  • FIG. 8 is a diagram schematically showing an example of the relationship between the positions of the viewer and the projection unit and the orientation of the transmission axis of the polarizing unit in the second HUD device.
  • the viewer 35 is seated at the position of the driver of the right-hand drive vehicle.
  • FIG. 8 shows the orientation of the transmission axis of the image 421L projected on the left side of the viewer 35 in the diagonally forward region of the viewer and the polarizing portion 82L used when viewing the image 421L.
  • the orientation of the transmission axis of the image 421R projected on the right side of the viewer and the obliquely forward region of the viewer and the polarizing portion 82R used when viewing the image 421R is shown.
  • the direction of the transmission axis of the polarizing portion is adjusted.
  • the direction of the transmission axis of the polarizing section in FIG. 8 is the direction along the X axis in the front region of the viewer, and this case is shown as a dotted line in the polarizing section 82L and the polarizing section 82R with this case as a reference line.
  • the transmission axes of the polarizing section 82L and the polarizing section 82R are solid lines shown in the polarizing section 82L and the polarizing section 82R. In the case of FIG.
  • the transmission axis is rotated clockwise on a plane along the XX plane.
  • the transmission axis is rotated counterclockwise. The angle at which the transmission axis is rotated may be adjusted to an angle that minimizes the double image.
  • FIGS. 7 and 8 show an example when the optical axis of the retardation film is 45 °
  • the direction in which the transmission axis is rotated may be opposite to the above-described direction depending on the angle of the optical axis.
  • the above-mentioned HUD device is particularly suitable for projecting an image on the windshield of an automobile, but of course, the image may be projected on the side glass of the automobile or the like.
  • a retardation film is placed on the side glass, and the Y-axis is horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward, and the moving body moves horizontally and horizontally to the ground.
  • the direction of travel of time may be set as the X-axis, and the other areas may be irradiated with projected light in the same manner as in the case of the windshield.
  • the HUD device is any of the above, when there are a plurality of viewers and the image displayed in the central region of the windshield surface is visually recognized by the plurality of viewers from an angle. It can be a head-up display device that can suppress the generation of double images even from the viewpoint of the viewer. The suppression of the occurrence of double images when the viewer is two people, a driver sitting in the position of the driver of the right-hand drive vehicle and a passenger seated in the passenger seat, will be described below.
  • the front of each of the driver and the passenger is the front area of the viewer in front of each viewer, and the area farther than the front area of the viewer is diagonally forward of the viewer along any direction in the X-axis direction.
  • a region that is far from the viewer front region along the X-axis direction and the Z-axis direction is also defined as a viewer diagonally forward region.
  • the projected light is projected between the front area of each of the driver and the passenger, and is projected onto the central area, which is an area corresponding to the diagonally forward area of each of the driver and the passenger.
  • FIG. 9 is a diagram schematically showing an example of the relationship between the positions of the viewers and the projection unit and the orientation of the transmission axis of the polarizing unit when there are a plurality of viewers in the first HUD device.
  • the driver 35D and the passenger 35P who are the viewers, visually recognize the image 621C projected on the central region.
  • one image 621C is displayed in FIG. 9, a plurality of images 621C may be displayed.
  • an image unit (not shown) is provided for each of the driver 35D and the passenger 35P, and each image unit projects projected light (front) so that the image 621C overlaps in the central region. Irradiate the glass surface).
  • a plurality of image units are arranged on the dashboard of the vehicle according to a plurality of viewers.
  • a polarizing unit 81D and a polarizing unit 81P are provided for each of the driver 35D and the passenger 35P.
  • the polarizing unit 81D and the polarizing unit 81P are provided between the image unit and the projection unit corresponding to the driver 35D and the passenger 35P, respectively.
  • the polarizing section 81D and the polarizing section 81P are arranged in the dashboard in the same manner as the video section, and are arranged adjacent to the light source so that the light from the light source quickly passes through the polarizing section 81D or the polarizing section 81P. It is preferable to be done.
  • the polarizing unit 81D has a transmission axis that transmits the projected light that vibrates in the direction parallel to the incident surface of the driver 35D, and the polarizing unit 81P transmits the projected light that vibrates in the direction parallel to the incident surface of the passenger 35P. It has a transmission axis.
  • the direction of the transmission axis of the polarizing section 81D and the direction of the transmission axis of the polarizing section 81P are different. Specifically, the direction of the transmission axis of the polarizing portion 81D in FIG. 9 is the direction along the YY plane in the front region of the viewer, and in the direction rotated counterclockwise with this case as the reference line. be.
  • the direction of the transmission axis of the polarizing portion 81P is the direction along the YY plane in the front region of the viewer, and is the direction rotated clockwise with this case as the reference line.
  • the orientation of the transmission axis of the polarizing section 81D and the orientation of the transmission axis of the polarizing section 81P are adjusted according to the relationship between the positions of the incident surface and the projection surface provided for each viewer. By doing so, when the image displayed in the central region of the windshield surface is visually recognized by a plurality of viewers (driver and passenger) from an angle, the double image can be seen from any of the viewers. It can be a head-up display device that can suppress the occurrence.
  • FIG. 10 is a diagram schematically showing an example of the relationship between the positions of the viewers and the projection unit and the orientation of the transmission axis of the polarizing unit when there are a plurality of viewers in the second HUD device.
  • the driver 35D and the passenger 35P who are the viewers, visually recognize the image 421C projected on the central region.
  • An incident surface is provided for each of the driver 35D and the passenger 35P. Further, a polarizing unit 82D and a polarizing unit 82P are provided for each of the driver 35D and the passenger 35P.
  • the polarizing unit 82D transmits through the polarizing unit 82D when the angle of the optical axis of the retardation film is ⁇ r and the angle of the incident surface for the driver 35D with respect to the X axis on the projection surface is ⁇ p .
  • the direction of the transmission axis of the polarizing unit 82D is different from the direction of the transmission axis of the polarizing unit 82P. Specifically, the direction of the transmission axis of the polarizing portion 82D in FIG.
  • the direction of the transmission axis of the polarizing unit 82P is the direction along the XY plane in the front region of the viewer, and is the direction of rotation counterclockwise with this case as the reference line.
  • the direction of the transmission axis of the polarizing unit 82D and the direction of the transmission axis of the polarizing unit 82P are adjusted according to the relationship between the positions of the incident surface and the projection surface provided for each viewer.
  • the double image can be seen from any of the viewers. It can be a head-up display device that can suppress the occurrence.
  • the HUD system is a system capable of switching the vibration direction of the light transmitted through the polarizing portion in one system. Then, by changing the vibration direction of the light transmitted through the polarizing portion, the system can be used as both the first HUD device and the second HUD device. Specifically, the following (A) and (B) can be switched. (A) The vibration direction of the light incident on the second glass plate is set to be a direction parallel to the incident surface.
  • the projection position on which the projected light is projected may be changed in the projection unit.
  • the polarizing portion has a transmission axis that transmits light oscillating in a specific direction parallel to the incident surface.
  • the incident surface is changed. If the position of the polarizing portion remains the same when the incident surface is changed, the vibration direction of the light transmitted through the polarizing portion deviates from the direction parallel to the incident surface. Therefore, the proportion of light that is not P-polarized light increases after passing through the polarized light portion, and a double image is likely to occur.
  • the polarizing portion is moved according to the projection position to change the vibration direction of the projected light transmitted through the polarizing portion, and the light vibrates in a direction parallel to the changed incident surface. Allow light to pass through. As a result, even if the projection position is changed, the double image can be suppressed.
  • the polarizing unit and the transmission axis are moved according to the change in the projection position and the change in the incident surface.
  • the angle of the changed incident surface with respect to the X axis on the changed projection surface is ⁇ p
  • the direction of 2 ⁇ r ⁇ ⁇ p on the changed projection surface is made to transmit light such that is ⁇ r).
  • FIG. 11 is a layout diagram schematically showing the first HUD apparatus used in Examples and Comparative Examples.
  • FIG. 12 is a diagram schematically showing the experimental system in Example 1
  • FIG. 13 is a diagram schematically showing the experimental system in Comparative Example 1.
  • a first HUD device as shown in FIG. 11 was prepared.
  • the first HUD device 1 has a 150 mm ⁇ 150 mm square projection unit for the P-HUD system.
  • the optical axis of the retardation film in the first HUD device 1 was set to 45 °.
  • the image unit 31 is placed horizontally, and the vehicle laminated glass 10 is arranged with respect to the image unit 31 in a positional relationship of 57 ° forming a Brewster angle.
  • a polarizing plate as a polarizing unit 81 on the image unit 31, the polarizing unit 81 is arranged between the image unit 31 and the laminated glass 10 for a vehicle.
  • the image unit 31 irradiates the projected light vertically upward, and the viewer 35 observes a virtual image on the extension of the optical path based on the reflected image on the first main surface 111.
  • the viewpoint of the viewer and the height of the laminated glass for the vehicle are the same.
  • a tablet is used as the image unit 31, and a green grid image is displayed from the tablet.
  • a polarizing plate is placed on the tablet and placed directly under the laminated glass for vehicles.
  • a black background plate 37 is arranged on the other side of the laminated glass 10 for the vehicle in the direction in which the viewer 35 visually recognizes the moving body.
  • the front of the viewer 35 was set as the point of position 0 in the X-axis direction as the observation point, and the -200 mm point and the -400 mm point were provided on the left side.
  • the left side in the X-axis direction is the "-" direction
  • the right side is the "+” direction.
  • the transmission axis of the polarizing portion 81 is set to 0 ° with the Y-axis direction as a reference line in the front area of the viewer (the point at the position 0 in the X-axis direction).
  • the position of the polarizing portion is shown as the position on the XY plane, and the position of the laminated glass for the vehicle is shown as the position on the XY plane.
  • the transmission axis of the polarizing portion 81 was rotated counterclockwise at the -200 mm point and the -400 mm point, which are diagonally forward regions of the viewer.
  • the rotation angles were + 10 ° and + 25 °, respectively.
  • the rotation angle is + in the counterclockwise direction and-in the clockwise direction.
  • FIG. 14 is a photograph showing a virtual image visually recognized in Example 1 and Comparative Example 1. Comparing the two at the same distance from the viewer, it was confirmed that in Example 1, the occurrence of double images was suppressed at the -200 mm point and the -400 mm point, which correspond to the diagonally forward region of the viewer. On the other hand, in Comparative Example 1, double images extending in the horizontal and vertical directions were observed at these points.
  • FIG. 15 is a diagram schematically showing the experimental system in Example 2
  • FIG. 16 is a diagram schematically showing the experimental system in Comparative Example 2.
  • the front of the viewer 35 was set as the point of position 0 in the X-axis direction as the observation point, and the -200 mm point and the -400 mm point were provided on the left side.
  • the left side in the X-axis direction is the "-" direction
  • the right side is the "+” direction.
  • the transmission axis of the polarizing unit 82 is set to 0 ° with the X-axis direction as the reference line in the front area of the viewer (the point at the position 0 in the X-axis direction).
  • the transmission axis of the polarizing portion 82 was rotated clockwise at the ⁇ 200 mm point and the ⁇ 400 mm point, which are the areas diagonally forward to the viewer.
  • the rotation angles were -15 ° and -20 °, respectively.
  • the rotation angle is + in the counterclockwise direction and-in the clockwise direction.
  • the position of the viewer 35 was fixed, the position of the projection portion of a 150 mm ⁇ 150 mm square was shifted by -200 mm in the X-axis direction, and the image portion was further shifted by -200 mm in the X-axis direction.
  • the transmission axis of the polarizing unit 82 was set to 0 ° with the X-axis direction as the reference line at all observation points.
  • FIG. 17 is a photograph showing a virtual image visually recognized in Example 2 and Comparative Example 2. Comparing the two at the same distance from the viewer, it was confirmed that in Example 2, the occurrence of double images was suppressed at the -200 mm point and the -400 mm point, which correspond to the diagonally forward region of the viewer. On the other hand, in Comparative Example 2, double images extending in the horizontal and vertical directions were observed at these points.
  • HUD device head-up display device
  • retardation film laminated glass for vehicles
  • HUD system head-up display system
  • the HUD device includes a HUD device including an image unit that irradiates a projected light whose vibration direction is the X direction, and a projected light whose vibration direction is parallel to the YZ plane.
  • a HUD device provided with an image unit to be irradiated, and each is also referred to as a third HUD device and a fourth HUD device.
  • the HUD system according to the second embodiment of the present disclosure can be used as both a third HUD device and a fourth HUD device by switching the type of projected light emitted in one system. It is a system that has been used.
  • the retardation film according to the second embodiment of the present disclosure is a retardation film that can be used for the laminated glass for vehicles, the HUD device, and the HUD system according to the second embodiment of the present disclosure.
  • the vehicle laminated glass according to the second embodiment of the present disclosure is a vehicle laminated glass that can be used for the HUD device and the HUD system according to the second embodiment of the present disclosure.
  • the retardation film according to the second embodiment of the present disclosure will be described, and then the laminated glass for vehicles according to the second embodiment of the present disclosure will be described. Subsequently, the HUD device according to the second embodiment of the present disclosure will be described, and finally, the HUD system according to the second embodiment of the present disclosure will be described.
  • the retardation film according to the second embodiment of the present disclosure is an integral retardation film having a vertical axis in the vertical direction and a horizontal axis in the horizontal direction, and is positioned at a plurality of points along the vertical axis.
  • the angle formed by the optical axis and the horizontal axis of the retardation film is constant, and the angle formed by the optical axis and the horizontal axis of the retardation film changes with a constant tendency along the horizontal axis direction.
  • the optical axis of the retardation film means the axis in the direction in which the refractive index of the retardation film is the largest.
  • the retardation film in the second embodiment of the present disclosure is a 1/2 wavelength film (half wavelength film).
  • FIG. 18 is a drawing schematically showing an example of a retardation film according to the second embodiment of the present disclosure.
  • FIG. 18 schematically shows the optical axis of the retardation film at each point of the retardation film 201.
  • the directions of the "horizontal axis" and the “vertical axis” are shown.
  • the angle formed with the optical axis and the horizontal axis of the retardation film is 45 °.
  • the angle formed by the optical axis and the horizontal axis of the retardation film is defined as the smaller angle of the angles formed at the intersections of the two straight lines.
  • the angle formed by the optical axis and the horizontal axis of the retardation film is 0 °.
  • the angle formed by the optical axis and the horizontal axis of the retardation film is constant and is 45 °.
  • FIG. 18 shows a retardation film in a form in which the angle formed by the optical axis and the horizontal axis of the retardation film continuously changes along the horizontal axis direction.
  • the angle formed with the optical axis and the horizontal axis of the retardation film, 35 ° in N 1 point, 40 ° in the O 1 point, 45 ° at P 1 point, Q 1 50 ° is the point, in R 1 point has a 55 °, along the horizontal axis, it can be seen that the angle between the optical axis and the horizontal axis of the retardation film is changed at a constant tendency.
  • the angle between the optical axis and the horizontal axis of the retardation film varies continuously, between, for example, O 1 point and P 1 point, position at each point from left to right in FIG. 18
  • the angle formed by the optical axis and the horizontal axis of the retardation film continuously changes from 40 ° to 45 °.
  • FIG. 19 is a drawing schematically showing an example of another retardation film according to the second embodiment of the present disclosure.
  • FIG. 19 shows a retardation film in a form in which the angle formed by the optical axis and the horizontal axis of the retardation film changes discontinuously along the horizontal axis direction.
  • the retardation film 202 illustrated in FIG. 19, located on the right side along n 1 region is a region located on the left side from p 1 region along the horizontal axis, from o 1 region and the p 1 region in the horizontal axis direction
  • the q 1 region and the r 1 region, which are regions, are shown.
  • the boundaries of each region are shown by dotted lines in FIG.
  • the angles formed by the optical axis and the horizontal axis of the retardation film in each region are all the same.
  • the angles formed by the optical axis and the horizontal axis of the retardation film are 35 ° in the n 1 region, 40 ° in the o 1 region, 45 ° in the p 1 region, and q 1 50 ° in the region, the r 1 region has a 55 °, along the horizontal axis, it can be seen that the angle between the optical axis and the horizontal axis of the retardation film is changed at a constant tendency. Further, since the angle formed by the optical axis and the horizontal axis of the retardation film is the same in each region, it can be seen that the angle formed by the optical axis and the horizontal axis of the retardation film changes discontinuously.
  • a retardation film according to the second embodiment of the present disclosure is a retardation film in which the angle formed by the optical axis and the horizontal axis of the retardation film changes with a constant tendency along the horizontal axis direction. Further, when the angle formed by the optical axis and the horizontal axis of the retardation film changes discontinuously, the width at which the angle changes between adjacent regions is not limited to 5 °. Further, the width at which the angle changes between adjacent regions does not have to be constant.
  • a retardation element obtained by uniaxially or biaxially stretching a plastic film such as polycarbonate, polyarylate, polyether sulfone, cycloolefin polymer, triacetyl cellulose, polyethylene terephthalate (PET), or polyethylene naphthalate (PEN).
  • a retardation element in which the liquid crystal polymer is oriented in a specific direction and the orientation state is fixed can be used.
  • the former phase difference element obtained by stretching a plastic film uniaxially or biaxially for example, a polymer resin is dissolved in a solvent and then applied on a smooth surface such as a stainless steel belt or polyethylene terephthalate (PET) to evaporate the solvent.
  • the film is formed by a solvent casting method in which the film is wound after being wound, or a melt extrusion method in which a polymer resin is placed in an extruder to be heated and melted, extruded from a slit (T die), cooled, and then the film is wound.
  • a stretching machine is generally used for stretching, and a retardation film stretched vertically, horizontally, diagonally, or the like can be obtained.
  • a liquid crystal polymer is coated on a transparent substrate such as a transparent plastic film such as polyethylene terephthalate (PET) or triacetyl cellulose (TAC) which has been oriented, and heat-treated and cooled to align the liquid crystal.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • liquid crystal polymer examples are not particularly limited as long as they are compounds exhibiting liquid crystal properties such as nematic liquid crystal, twisted nematic liquid crystal, discotic liquid crystal, and cholesteric liquid crystal when oriented in a specific direction.
  • those that are twisted and nematically oriented in the liquid crystal state and are in the glass state below the liquid crystal transition point can be used, and can be used as a main chain type liquid crystal polymer such as optically active polyester, polyamide, polycarbonate, polyesterimide, or optically active poly.
  • side-chain liquid crystal polymers such as acrylate, polymethacrylate, polycarbonate, and polysiloxane.
  • a polymer composition obtained by adding another small molecule or high molecular weight optically active compound to these non-optically active main chain type or side chain type polymers can be exemplified.
  • Examples of the alignment treatment method include a method of rubbing the surface of a plastic film to be a transparent substrate, or a method of forming an organic thin film (alignment film) such as polyimide on a glass plate or a plastic film and rubbing the alignment film. Alternatively, a method of photoalignment treatment or the like can be mentioned.
  • As the rubbing treatment a method of rubbing the surface of a plastic film or an alignment film with a rubbing cloth such as nylon or rayon can be applied.
  • As a method for applying the liquid crystal polymer generally known methods such as spin coating, die coating, spray coating, calendar coating, and gravure coating can be used.
  • a plurality of retardation films are laminated by tilting the retardation films so that the optical axes of the retardation films are different for each region.
  • it may be produced by laminating.
  • the retardation film 201 shown in FIG. 18 and the retardation film 202 shown in FIG. 19 are the laminated glass for vehicles according to the second embodiment of the present disclosure, the HUD device according to the second embodiment of the present disclosure, and the present disclosure. It can be used to obtain the HUD system according to the second embodiment. That is, by using the retardation film according to the second embodiment of the present disclosure, it is possible to provide a HUD device having a wide display area in the lateral direction of the windshield surface.
  • the laminated glass for a vehicle according to the second embodiment of the present disclosure includes a first glass plate, a second glass plate, and a retardation film arranged between the first glass plate and the second glass plate. It is a laminated glass for a vehicle, and the retardation film is a retardation film according to the second embodiment of the present disclosure.
  • FIG. 20 is an exploded perspective view schematically showing an example of a laminated glass for a vehicle according to a second embodiment of the present disclosure.
  • the first glass plate includes a first main surface exposed to the outdoor side and a second main surface opposite to the first main surface.
  • the second glass plate includes a fourth main surface exposed to the indoor side and a third main surface opposite to the fourth main surface.
  • FIG. 20 shows a laminated glass 210 for a vehicle.
  • FIG. 20 shows a view in which the second glass plate 12 is arranged on the front side of the drawing, and the surface visible on the front side is the fourth main surface 124.
  • the surface opposite to the fourth main surface 124 is the third main surface 123.
  • the first glass plate 11 is arranged on the back side of the drawing, and the surface visible on the front side is the second main surface 112.
  • the surface opposite to the second main surface 112 is the first main surface 111.
  • the retardation film 201 described with reference to FIG. 18 is arranged between the first glass plate 11 and the second glass plate 12. Since the fourth main surface 124 is a surface exposed to the indoor side, it is a surface that the viewer can directly see when the laminated glass for the vehicle is arranged on the vehicle. That is, FIG. 20 shows the positional relationship in which the viewer directly sees from the inside of the vehicle.
  • the vehicle laminated glass 210 is a vehicle laminated glass for a right-hand drive vehicle, and the viewer who visually recognizes the HUD image is the driver.
  • the position of the retardation film 201 is determined so that the point where the angle formed by the optical axis and the horizontal axis of the retardation film is 45 ° is in front of the viewer who is the driver in the right-hand drive vehicle. Further, the angle formed by the optical axis and the horizontal axis on the left side of the viewer is smaller than 45 °, and the angle formed by the optical axis and the horizontal axis on the right side of the viewer is larger than 45 °.
  • FIG. 20 shows a case where the optical axis is rising to the right in front of the viewer and the angle formed by the optical axis and the horizontal axis is 45 °, but the optical axis is on the left in front of the viewer.
  • the angle between the optical axis and the horizontal axis may be 45 °.
  • the angle between the optical axis and the horizontal axis is larger than 45 ° on the left side of the viewer, and the angle between the optical axis and the horizontal axis is on the right side of the viewer. It is smaller than 45 °.
  • the angle formed by the optical axis and the horizontal axis when the optical axis is rising to the left the angle is obtuse if the same angle is taken as when the optical axis is rising to the right. It shall refer to the value of the acute angle that is the complementary angle of.
  • the first glass plate and the second glass plate are joined via an interlayer film to form an integral structure.
  • the interlayer film combines the first glass plate and the second glass plate by heating at a temperature at which the polymer constituting the interlayer film softens.
  • polymers polyvinyl butyral (PVB) and ethylene acetate are used.
  • the interlayer film may be composed of a plurality of resin layers.
  • the retardation film is arranged between the first glass plate and the second glass plate.
  • the retardation film may be arranged inside the interlayer film, may be arranged at a position in contact with the first glass plate, or may be arranged at a position in contact with the second glass plate.
  • a flat glass plate processed into a curved shape can be preferably used.
  • a glass having a known glass composition such as aluminosilicate glass, borosilicate glass, and non-alkali glass can be used. can.
  • the thickness of each of the first glass plate and the second glass plate may be, for example, 0.4 mm to 3 mm.
  • the distance between the first glass plate and the second glass plate may be 0.05 mm to 1 mm.
  • FIG. 20 shows the laminated glass for vehicles on which the retardation film 201 described in FIG. 18 is arranged, but the laminated glass for vehicles using the retardation film 202 described in FIG. 19 as the retardation film is also present. It is a laminated glass for a vehicle according to the second embodiment of the disclosure.
  • the laminated glass for vehicles according to the second embodiment of the present disclosure can be used to obtain the HUD device according to the second embodiment of the present disclosure and the HUD system according to the second embodiment of the present disclosure. That is, by using the laminated glass for vehicles according to the second embodiment of the present disclosure, it is possible to provide a HUD device having a wide display area in the lateral direction of the windshield surface.
  • the area where the HUD image is displayed may be enlarged by using the above-mentioned laminated glass for vehicles for the side glass.
  • the projection portion on which the projected light at this time is projected is preferably in front of the side of the viewer.
  • HUD device Head-up display device
  • a third HUD device There are two types of HUD devices according to the second embodiment of the present disclosure, a third HUD device and a fourth HUD device.
  • the definitions of the X-axis, Y-axis, and Z-axis, the definition of the moving body, and the example of the moving body, which are common to both HUD devices, are the same as those of the HUD device and the moving body according to the first embodiment of the present disclosure. Is.
  • the laminated glass for vehicles used in the HUD device As the laminated glass for vehicles used in the HUD device, the laminated glass for vehicles according to the second embodiment of the present disclosure can be used.
  • the third HUD device is a device for observing a reflected image formed on the fourth main surface of the second glass plate as a virtual image, and is an S-HUD type HUD device.
  • FIG. 21 is a schematic view showing an outline of a third HUD device according to the first aspect of the second embodiment of the present disclosure and an optical path in the device.
  • a visual figure is set as a driver, and a schematic view of a cross section in a visible person front area, which is the front of the visual person, is shown.
  • the direction perpendicular to the paper surface is the X-axis.
  • the optical path of the projected light is shown by a solid line.
  • the projection unit is a laminated glass 210 for a vehicle
  • the laminated glass 210 for a vehicle is on the first glass plate 11 arranged on the outdoor side of the vehicle, which is a moving body, and on the indoor side of the vehicle.
  • It includes a second glass plate 12 to be arranged.
  • the first glass plate 11 includes a first main surface 111 exposed to the outdoor side and a second main surface 112 on the opposite side of the first main surface 111.
  • the second glass plate 12 includes a fourth main surface 124 exposed to the indoor side and a third main surface 123 on the opposite side of the fourth main surface 124.
  • a retardation film 201 is arranged between the first glass plate 11 and the second glass plate 12.
  • the projected light 240 is irradiated from the image unit 31 to the fourth main surface 124, and a reflected image is formed on the fourth main surface 124.
  • the viewer 35 observes the virtual image 412 on the extension of the optical path 241 based on the reflected image formed on the fourth main surface 124.
  • the image unit 31 irradiates the projected light 240 whose vibration direction is the X-axis direction.
  • the plane including the light emitting point 32 of the image unit 31, the reflection point 33 on which the projected light 240 is reflected on the fourth main surface 124, and the viewpoint 34 of the viewer 35 is the incident surface.
  • the paper surface corresponds to substantially the same surface as the incident surface.
  • Light whose vibration direction is perpendicular to the incident surface is S-polarized light.
  • the incident surface is perpendicular to the X-axis
  • the projected light becomes S-polarized.
  • the projected light is S-polarized light
  • the projected light transmitted through the fourth main surface 124 and traveling in the projection portion is converted to P-polarized light by passing through the retardation film 201, and is converted to P-polarized light on the first main surface 111.
  • the projected light is emitted to the outdoor side as P-polarized light without any reflection. If the reflection on the first main surface 111 can be suppressed in this way, the generation of the double image is suppressed.
  • the retardation film arranged in the front area of the viewer has the optical axis of the retardation film on the X-axis in a plane parallel to the fourth main surface. On the other hand, it is 45 ° ⁇ 5 °. If the optical axis of the retardation film 201 through which S-polarized light having a vibration direction along the X-axis is transmitted is 45 ° ⁇ 5 ° with respect to the X-axis, the ratio of S-polarized light being converted to P-polarized light is large. .. In the front area of the viewer, the incident surface is perpendicular to the X-axis and the projected light is S-polarized. Therefore, the optical axis of the corresponding retardation film is set to 45 ° ⁇ 5 ° with respect to the X-axis. The generation of heavy images can be suppressed.
  • the optical axis of the retardation film is left at 45 ° ⁇ 5 ° with respect to the X-axis with respect to such mixed light, the proportion of P-polarized light in the projected light after passing through the retardation film is small. As a result, the proportion of S-polarized light becomes high. Therefore, when the viewer sees the reflected image formed in the diagonally forward region of the viewer, the optical axis of the retardation film is 45 ° ⁇ with respect to the X axis for the retardation film arranged in the obliquely front region of the viewer. By shifting from 5 °, the proportion of the component that becomes P-polarized light after the mixed light of S-polarized light and P-polarized light passes through the retardation film is increased, and the generation of double image is suppressed.
  • the projected light is incident on the retardation film so that the vibration direction of the projected light is converted to a direction parallel to the incident surface.
  • Light whose vibration direction is parallel to the incident surface is P-polarized light. If the projected light after passing through the retardation film is P-polarized, the projected light is emitted to the outdoor side as P-polarized light without being reflected on the first main surface. Therefore, the generation of the double image is suppressed in both the front area of the viewer and the diagonally front area of the viewer, and the generation of the double image is suppressed even when the display area of the HUD is enlarged in the lateral direction of the windshield surface. It becomes a possible HUD device.
  • FIG. 22 is a diagram schematically showing the positions of the viewer front region and the viewer diagonally forward region when the driver of the right-hand drive vehicle is a viewer.
  • FIG. 22 shows only the laminated glass 210 for vehicles constituting the HUD device, and schematically shows the direction of the optical axis of the retardation film constituting the laminated glass 210 for vehicles.
  • the right side of the drawing of the laminated glass 210 for a vehicle corresponds to the front of the viewer 35, so the viewer front area 250 is provided in this portion.
  • the optical axis of the retardation film is 45 ° ⁇ 5 ° with respect to the X axis.
  • the region distant from the viewer front region 250 along the right direction in the X-axis direction is the right peripheral region 251.
  • the region distant from the viewer front region 250 along the left direction in the X-axis direction is the left peripheral region 252.
  • the optical axis of the retardation film is shifted in a direction larger than 50 ° with respect to the X axis.
  • the optical axis of the retardation film is shifted in a direction smaller than 40 ° with respect to the X axis.
  • FIG. 23 is a diagram schematically showing the positions of the viewer front region and the viewer diagonally forward region in the left-hand drive vehicle.
  • the left side of the drawing of the laminated glass 210 for a vehicle corresponds to the front of the viewer 35, so the viewer front area 250 is provided in this portion.
  • the optical axis of the retardation film is 45 ° ⁇ 5 ° with respect to the X axis.
  • the region farther from the viewer front region 250 along the right direction in the X-axis direction is the right peripheral region 251, and the viewer front region along the left direction in the X-axis direction.
  • the region farther from 250 is the left peripheral region 252.
  • the optical axis of the retardation film is shifted in a direction larger than 50 ° with respect to the X axis.
  • the optical axis of the retardation film is shifted in a direction smaller than 40 ° with respect to the X axis. That is, in the right peripheral region and the left peripheral region, the directions in which the optical axis of the retardation film deviates from the X axis by 45 ° ⁇ 5 ° are opposite. The same applies when the occupant in the passenger seat of a right-hand drive vehicle is a visible person.
  • FIG. 24 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique front region when the driver of the right-hand drive vehicle is a viewer.
  • the direction of the optical axis of the retardation film is different from that shown in FIG.
  • the optical axis rises to the right in front of the viewer and the angle formed by the optical axis and the horizontal axis is 45 °, but in the aspect shown in FIG. 24, the optical axis is in front of the viewer. Is rising to the left, and the angle between the optical axis and the horizontal axis is 45 °.
  • the optical axis of the retardation film is shifted in a direction smaller than 40 ° with respect to the X axis.
  • the optical axis of the retardation film is shifted in a direction larger than 50 ° with respect to the X axis. That is, in the right peripheral region and the left peripheral region, the directions in which the optical axis of the retardation film deviates from the X axis by 45 ° ⁇ 5 ° are opposite. The same applies when the occupant in the passenger seat of the left-hand drive vehicle is a visible person.
  • FIG. 25 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique front region when the driver of the left-hand drive vehicle is a viewer.
  • the direction of the optical axis of the retardation film is different from that shown in FIG. 23.
  • the optical axis rises to the right in front of the viewer and the angle formed by the optical axis and the horizontal axis is 45 °, but in the aspect shown in FIG. 25, the optical axis is in front of the viewer. Is rising to the left, and the angle between the optical axis and the horizontal axis is 45 °.
  • the optical axis of the retardation film is shifted in a direction smaller than 40 ° with respect to the X axis.
  • the optical axis of the retardation film is shifted in a direction larger than 50 ° with respect to the X axis. That is, in the right peripheral region and the left peripheral region, the directions in which the optical axis of the retardation film deviates from the X axis by 45 ° ⁇ 5 ° are opposite. The same applies when the occupant in the passenger seat of a right-hand drive vehicle is a visible person.
  • FIG. 26 is a diagram schematically showing the positions of the viewer front region and the viewer oblique front region when there are two viewers, the driver and the passenger seat occupant.
  • the driver and the passenger seat occupant are made to visually recognize different images.
  • the angle formed by the optical axis and the X-axis of the retardation film is optimized for each viewer in the front area of the viewer and the diagonally front region of the viewer.
  • a viewer front area 250 is provided for the viewer 35 as a driver shown on the right side of FIG. 26, and is provided along the right direction in the X-axis direction.
  • a right peripheral area 251 is provided in an area far from the viewer front area 250.
  • a viewer front area 250' is provided for the viewer 35'as a passenger seat occupant shown on the left side of FIG. 26, and is far from the viewer front area 250' along the left direction in the X-axis direction.
  • a left peripheral area 252' is provided in the area. Note that FIG. 26 assumes a right-hand drive vehicle in which the driver's seat is on the right side and the passenger seat is on the left side, but the same applies to a left-hand drive vehicle in which the driver's seat is on the left side and the passenger seat is on the right side.
  • the left peripheral area with respect to the visual view 35 as a driver and the right peripheral area with respect to the visual figure 35'as a passenger seat occupant are not provided, but the projection unit with respect to the visual view 35 as a driver is not provided.
  • These areas may be provided depending on the arrangement of the projection unit with respect to the viewer 35'who is a passenger in the passenger seat.
  • a plurality of retardation films as shown in FIG. 20 may be used in combination so that the projected light can be visually recognized by each viewer.
  • FIG. 27 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique front region when there are two viewers, the driver and the passenger seat occupant.
  • the direction of the optical axis of the retardation film is different from that shown in FIG.
  • the optical axis rises to the right in front of the viewer and the angle formed by the optical axis and the horizontal axis is 45 °, but in the aspect shown in FIG. 27, the optical axis is in front of the viewer. Is rising to the left, and the angle between the optical axis and the horizontal axis is 45 °.
  • the optical axis of the retardation film is shifted in a direction smaller than 40 ° with respect to the X axis.
  • the optical axis of the retardation film is deviated in a direction larger than 50 ° with respect to the X axis.
  • FIG. 28 is a diagram schematically showing a mode in which the projection portion is extended to the side glass.
  • FIG. 28 shows a side glass 270 arranged on the right side of the vehicle laminated glass 210.
  • the viewer can visually recognize the projected light projected on the side glass 270 on the right side.
  • the region on which the projected light is projected on the side glass 270 is defined as the right extended region 271.
  • the generation of double images can be suppressed by the same idea even in the extended area in which the diagonally forward area of the viewer is extended to the side glass.
  • the fourth HUD device is a device for observing a reflected image formed on the first main surface of the first glass plate as a virtual image, and is a P-HUD type HUD device.
  • FIG. 29 is a schematic diagram showing an outline of a fourth HUD device according to a second aspect of the second embodiment of the present disclosure and an optical path in the device.
  • a visual figure is set as a driver, and a schematic view of a cross section in a visible person front area, which is the front of the visual person, is shown.
  • the paper surface is a surface parallel to the YZ plane.
  • the optical path of the projected light is shown by a solid line.
  • the projection unit is a laminated glass 210 for a vehicle
  • the laminated glass 210 for a vehicle is on the first glass plate 11 arranged on the outdoor side of the vehicle, which is a moving body, and on the indoor side of the vehicle.
  • It includes a second glass plate 12 to be arranged.
  • the first glass plate 11 includes a first main surface 111 exposed to the outdoor side and a second main surface 112 on the opposite side of the first main surface 111.
  • the second glass plate 12 includes a fourth main surface 124 exposed to the indoor side and a third main surface 123 on the opposite side of the fourth main surface 124.
  • a retardation film 201 is arranged between the first glass plate 11 and the second glass plate 12.
  • the image unit 31 irradiates the projected light 260 whose vibration direction is parallel to the YZ plane.
  • the plane including the light emitting point 32 of the image unit 31, the reflection point 33 on which the projected light 260 is reflected by the first main surface 111, and the viewpoint 34 of the viewer 35 is the incident surface.
  • the paper surface corresponds to substantially the same surface as the incident surface.
  • Light whose vibration direction is parallel to the incident surface is P-polarized light.
  • the projected light 260 When the projected light 260 is P-polarized, it can also be used in sunglasses mode, in which a virtual image is observed through polarized sunglasses.
  • the projected light 260 is emitted from the image unit 31 to the fourth main surface 124, and the projected light traveling in the projection unit is converted into S-polarized light by the retardation film 201 to form a reflected image on the first main surface 111.
  • a part of the S-polarized light that was not reflected passes through the first main surface 111 and is emitted to the outdoor side as the S-polarized light.
  • the reflected image formed on the first main surface 111 passes through the retardation film 201 again and is converted into P-polarized light.
  • the viewer 35 visually recognizes the virtual image 612 on the extension of the optical path 261 based on the reflected image on the first main surface 111. Since the virtual image 612 is composed of P-polarized light, the viewer 35 can visually recognize the virtual image even through the polarized sunglasses 36.
  • a reflected image is not formed on the fourth main surface 124, or a reflected image is formed a little.
  • the intensity of the reflected image formed on the fourth main surface 124 is relatively stronger than that on the first main surface 111, the reflected image formed on the fourth main surface 124 is regarded as a double image. Observed.
  • the retardation film arranged in the front area of the viewer has the optical axis of the retardation film on the X-axis in a plane parallel to the fourth main surface. On the other hand, it is 45 ° ⁇ 5 °. In the front region of the viewer, the projected light is almost P-polarized. If the optical axis of the retardation film 201 through which P-polarized light is transmitted in the front region of the viewer is 45 ° ⁇ 5 ° with respect to the X-axis, the ratio of P-polarized light converted to S-polarized light is large.
  • the virtual image display based on the reflected image formed on the first main surface of the first glass plate becomes stronger. Therefore, the influence of the reflected image formed on the fourth main surface is relatively weakened, and the generation of the double image is suppressed.
  • the viewer sees a reflected image formed in a region diagonally forward to the viewer, which is a region far from the front region of the viewer, along any direction in the X-axis direction.
  • the incident surface is different from when the viewer looks at the area in front of the viewer. Since the vibration direction of the projected light remains parallel to the YZ plane, the vibration direction of the projected light with respect to the incident surface (direction parallel to the YZ plane) deviates from the parallel direction, and the projected light is S-polarized and P-polarized.
  • the ratio of the S polarization component increases as the distance from the front region of the viewer increases.
  • the optical axis of the retardation film is left at 45 ° ⁇ 5 ° with respect to the X-axis with respect to such mixed light, the proportion of S-polarized light in the projected light after passing through the retardation film is small. As a result, the proportion of P-polarized light becomes high. Therefore, when the viewer sees the reflected image formed in the diagonally forward region of the viewer, the optical axis of the retardation film is 45 ° ⁇ with respect to the X axis for the retardation film arranged in the obliquely front region of the viewer.
  • the proportion of the component that becomes S-polarized light after the mixed light of S-polarized light and P-polarized light passes through the retardation film is increased, and it is based on the reflection image formed on the first main surface of the first glass plate.
  • Strengthen the virtual image display By strengthening the virtual image display based on the reflected image formed on the first main surface, the influence of the projected light reflected on the fourth main surface is relatively weakened, and the generation of the double image is suppressed.
  • the projected light is incident on the retardation film so that the vibration direction of the projected light is changed to the direction perpendicular to the incident surface.
  • Light whose vibration direction is perpendicular to the incident surface is S-polarized light.
  • the reflection of the first main surface becomes strong, so that the virtual image display based on the reflected image formed on the first main surface of one glass plate becomes strong. Therefore, the generation of the double image is suppressed in both the front area of the viewer and the diagonally front area of the viewer, and the generation of the double image is suppressed even when the display area of the HUD is enlarged in the lateral direction of the windshield surface. It becomes a possible HUD device.
  • the positions of the viewer front region and the viewer oblique front region can be determined in the same manner as in the third HUD device.
  • Examples of the positions of the viewer front region and the viewer diagonally forward region in each of the right-hand drive vehicle and the left-hand drive vehicle can be as described with reference to FIGS. 22 and 23.
  • Examples of the direction of the optical axis of the retardation film rises to the left can be as described with reference to FIGS. 24 and 25.
  • an example in which there are two viewers can be as described with reference to FIGS. 26 and 27.
  • an example in which the projection unit is extended to the side glass can be as described with reference to FIG. 28.
  • the inclination of the retardation film in the direction of the optical axis in the diagonally forward region of the viewer is continuously changed along the X-axis direction.
  • the change in the inclination of the retardation film in the direction of the optical axis in the diagonally forward region of the viewer is along the X-axis direction.
  • the retardation film shown in FIG. 19 may be used.
  • the HUD system is a system that can be used as both a third HUD device and a fourth HUD device by switching the type of projected light emitted in one system.
  • the image unit can switch between the first projected light whose vibration direction is the X-axis direction and the second projected light whose vibration direction is parallel to the YZ plane.
  • the first projected light it becomes S-HUD and can be used as a third HUD device.
  • the second projected light it becomes P-HUD and can be used as a fourth HUD device.
  • the configuration other than the image unit in the HUD system can be the same as that of the third HUD device and the fourth HUD device. The switching between the first projected light and the second projected light in the image unit will be described below.
  • the image unit may be a device capable of projecting the first projected light whose vibration direction is the X-axis direction, and projects the second projected light whose vibration direction is parallel to the YZ plane. It may be a device capable of Further, the device may have two types of projection mechanisms and can switch the type of projected light. Further, it is a device capable of converting the projected light into the first projected light or the second projected light by first irradiating the light of a certain polarization and arranging the polarization control unit in the optical path of the light. You may.
  • Types of projected light before conversion include those that randomly contain all kinds of polarized light (unpolarized light), circularly polarized light and elliptically polarized light, mixed light of P-polarized light and S-polarized light, P-polarized light, and linearly polarized light that is not S-polarized light. Can be mentioned.
  • a projector capable of irradiating the projected light is preferably used. Examples of such a projector include a DMD projection system projector, a laser scanning MEMS projection system projector, a reflective liquid crystal projector, and the like.
  • a half-wave plate (vibration direction of the first projected light) is used as a polarization control unit in the optical path of the projected light.
  • the first projected light can be converted into the second projected light.
  • the first projected light is used as the projected light as it is, it may not pass through the polarization control unit, and when it is used as the second projected light, it may pass through the polarization control unit.
  • the image unit first has a mechanism for irradiating the second projected light whose vibration direction is parallel to the YZ plane, the same configuration is used to convert the second projected light into the first projected light. Therefore, it is possible to switch between the second projected light and the first projected light by controlling the passage / non-passage of the polarization control unit.
  • the reflected image formed on the first main surface of the first glass plate is observed as a virtual image, but if the intensity of the projected light is the same as that of the third HUD device, the third HUD device
  • the virtual image display is weaker than the reflected image formed on the fourth main surface of the second glass plate. Therefore, it is preferable that the irradiation intensity when projecting the second projected light is higher than the irradiation intensity when projecting the first projected light. This can be done by switching the irradiation intensity of the projected light emitted from the image unit between the case of the first projected light and the case of the second projected light. Further, when the first projected light is projected, the irradiation intensity may be lowered by transmitting the ND filter or the like.
  • FIG. 30 is a layout diagram schematically showing the third HUD device used in Examples and Comparative Examples.
  • FIG. 31 is a diagram schematically showing the experimental system in Example 3
  • FIG. 32 is a diagram schematically showing the experimental system in Comparative Example 3.
  • a third HUD device as shown in FIG. 30 was prepared.
  • the third HUD device 3 has a 200 mm ⁇ 200 mm square projection unit for the S-HUD system.
  • the image unit 31 is placed horizontally, and the vehicle laminated glass 210 is arranged with respect to the image unit 31 in a positional relationship of 56 ° that forms a Brewster angle.
  • the image unit 31 irradiates the projected light vibrating in the X-axis direction vertically upward, and the viewer 35 observes the virtual image displayed on the fourth main surface 124.
  • the viewpoint of the viewer and the height of the laminated glass for the vehicle are the same.
  • a tablet is used as the image unit 31, and a white grid image is displayed from the tablet.
  • the tablet is placed directly under the laminated glass for vehicles.
  • a black background plate 37 is arranged on the other side of the laminated glass 210 for the vehicle in the direction in which the viewer 35 can visually recognize the moving body.
  • the front of the viewer was set as the point of position 0 in the X-axis direction as the observation point, and the + 200 mm point and the + 400 mm point were provided on the right side.
  • the projection unit is arranged so that the optical axis of the retardation film is 45 ° with respect to the X axis in the front area of the viewer (the point at the position 0 in the X-axis direction). Further, the projection unit was arranged so that the optical axes of the retardation film were 55 ° and 65 ° with respect to the X axis, respectively, at the + 200 mm point and the + 400 mm point, which are the areas diagonally forward to the viewer.
  • the above experiment was carried out by shifting the positions of the 200 mm ⁇ 200 mm square projection portions by 200 mm, and arranging the projection portions so that the optical axis of the retardation film was tilted by further tilting the projection portion.
  • the projection unit was arranged so that the optical axis of the retardation film was 45 ° with respect to the X axis at all observation points.
  • FIG. 33 is a photograph showing a virtual image visually recognized in Example 3 and Comparative Example 3. Comparing the two at the same distance from the viewer, it was confirmed that in Example 3, the generation of the double image was suppressed at the +200 mm point and the +400 mm point, which correspond to the diagonally forward region of the viewer. On the other hand, in Comparative Example 3, a double image extending in the lateral direction was observed at these points.
  • FIG. 34 is a diagram schematically showing the experimental system in Example 4
  • FIG. 35 is a diagram schematically showing the experimental system in Comparative Example 4.
  • the experimental method is the same as in Example 3.
  • the front of the viewer is the point 0 in the X-axis direction as the observation point, and the -100 mm point, the -200 mm point, the -300 mm point, the -400 mm point, and the -500 mm point are on the left side. Provided.
  • FIG. 34 the front of the viewer is the point 0 in the X-axis direction as the observation point, and the -100 mm point, the -200 mm point, the -300 mm point, the -400 mm point, and the -500 mm point are on the left side.
  • FIG. 34 the front of the viewer is the point 0 in the X-axis direction as the observation point, and the -100 mm point, the -200 mm point, the -300 mm point, the -
  • the optical axis of the retardation film is set to 45 ° with respect to the X axis in the viewer front region (position 0 in the X-axis direction), and the viewer diagonally forward region.
  • the optical axes of the retardation film are 40 °, 35 °, 30 °, 25 °, and 20 ° with respect to the X axis, respectively. I did.
  • the optical axis of the retardation film was set to 45 ° with respect to the X axis at all observation points.
  • FIG. 36 is a photograph showing a virtual image visually recognized in Example 4 and Comparative Example 4.
  • the generation of double images is suppressed at the -100 mm point, -200 mm point, -300 mm point, -400 mm point, and -500 mm, which correspond to the diagonally forward region of the viewer in the fourth embodiment. I was able to confirm that.
  • Comparative Example 4 a double image extending in the lateral direction was observed especially at the -300 mm point, the -400 mm point, and the -500 mm point.
  • a HUD device capable of suppressing the generation of a double image when a viewer visually recognizes an image displayed in a region near the outer periphery of the windshield surface of a vehicle such as an automobile or in the central region of the windshield surface from an angle. can do.
  • First HUD device 2 Second HUD device 3
  • Third HUD device 4 Fourth HUD device 10, 210 Laminated glass for vehicles 11 First glass plate 12 Second glass plate 20 Vehicle 31 Image unit 32 Light emitting point 33 Reflection point 34 Viewpoint 35 Viewer 35D Driver (viewer) 35P passenger (visual person) 36

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Instrument Panels (AREA)

Abstract

A polarizing part (81) is provided between a video unit (31) for radiating projection light (60) and a projection part (laminated glass 10 for a vehicle) on which projection light (61) is projected. The polarizing part (81) transmits light that oscillates in a specific direction and that is included in the projection light (60), and the projection light (61) transmitted through the polarizing part (81) is projected to the projection part. The specific direction in which the projection light (60) is transmitted in the polarizing part (81) is parallel to an incidence plane. In this case, the present invention can be used as a P-HUD-type head-up display device. By adjusting the oscillation direction of the light transmitted by the polarizing part, the occurrence of a double image can be suppressed when an observer views an image displayed in a region near the outer periphery of a windshield surface or the central region of the windshield surface from an angle.

Description

ヘッドアップディスプレイ装置、ヘッドアップディスプレイシステム、位相差フィルム及び車両用合わせガラスHead-up display devices, head-up display systems, retardation films and laminated glass for vehicles
本開示は、ヘッドアップディスプレイ装置、ヘッドアップディスプレイシステム、位相差フィルム及び車両用合わせガラスに関する。 The present disclosure relates to head-up display devices, head-up display systems, retardation films and laminated glass for vehicles.
ヘッドアップディスプレイ(以降、HUDと表記する場合がある)装置の投影部として、移動体の前方部に設置されるウィンドシールドが用いられている。乗員は、投影部における投影光の反射像に基づく虚像を視認する。投影部では、室内側主面、室外側主面の両主面に反射像が形成され得る。 A windshield installed in the front part of the moving body is used as a projection part of the head-up display (hereinafter, may be referred to as HUD) device. The occupant visually recognizes a virtual image based on the reflected image of the projected light in the projection unit. In the projection unit, reflection images can be formed on both the indoor main surface and the outdoor main surface.
投影部での、室内側主面、室外側主面の両主面での反射像の形成は、二重像として、乗員に視認され得る虚像(二重像発生の機構は、非特許文献1を参照されたい)につながる。HUD装置における二重像を抑制する方式として、楔HUD方式と、偏光HUD方式とがある。 The formation of the reflected image on both the indoor side main surface and the outdoor side main surface in the projection unit is a virtual image that can be visually recognized by the occupant as a double image (the mechanism for generating the double image is Non-Patent Document 1). Please refer to). As a method of suppressing the double image in the HUD device, there are a wedge HUD method and a polarized HUD method.
楔HUD方式では、投影部を、厚さが徐々に変動する楔角プロファイルを備えるものとすることで、乗員から見て室内側主面に形成された反射像に基づく虚像と、室外側主面に形成された反射像に基づく虚像とが一致するように、投影光の光路が調整される(二重像抑制の機構は、非特許文献1を参照されたい)。 In the wedge HUD method, the projection portion is provided with a wedge angle profile whose thickness gradually fluctuates, so that a virtual image based on a reflection image formed on the indoor main surface and an outdoor main surface when viewed from the occupant The optical path of the projected light is adjusted so as to match the virtual image based on the reflected image formed in (see Non-Patent Document 1 for the mechanism of double image suppression).
特許文献1には、偏光HUD方式のHUD装置が開示されている。
偏光HUD方式では、乗員は、投影部におけるS偏光又はP偏光の投影光の反射像に基づく虚像表示を視認する。ここで、S偏光は入射面に対して、振動の方向が垂直方向である投影光、他方、P偏光とは、入射面に対して振動の方向が平行方向である投影光のことを言う。
Patent Document 1 discloses a polarized HUD type HUD device.
In the polarized HUD method, the occupant visually recognizes a virtual image display based on the reflected image of the projected light of S-polarized light or P-polarized light in the projection unit. Here, S-polarized light refers to projected light whose vibration direction is perpendicular to the incident surface, while P-polarized light refers to projected light whose vibration direction is parallel to the incident surface.
このHUD装置では、反射像の二重像、すなわち虚像表示の二重像の抑制は、次のような機構でなされている。投影部を、室外側に配置される第一ガラス板と、室内側に配置される第二ガラス板と、第一ガラス板と第二ガラス板との間に配置される位相差フィルムとを備え、積層部材の各材料は、可視光領域での屈折率が同等になるように調整されたものとする。そして、投影部に対し前述したS偏光又はP偏光を含む投影光がブリュースター角で入射される。 In this HUD device, the double image of the reflected image, that is, the double image of the virtual image display is suppressed by the following mechanism. The projection unit includes a first glass plate arranged on the outdoor side, a second glass plate arranged on the indoor side, and a retardation film arranged between the first glass plate and the second glass plate. , Each material of the laminated member shall be adjusted so that the refractive index in the visible light region becomes the same. Then, the projected light including the above-mentioned S-polarized light or P-polarized light is incident on the projection unit at Brewster's angle.
入射される投影光がS偏光からなる場合、第二ガラス板の室内側主面に反射像が形成される。そして、投影部を通過する投影光は位相差フィルムによりP偏光となる。該P偏光は、第一ガラス板の室外側主面に達したときは、該主面で反射されることなく、室外側へと出射される。乗員は、第二ガラス板の室内側主面に形成された、S偏光の反射像に基づく虚像表示を視認する。この場合を、S-HUDと表記する。 When the incident projected light is composed of S-polarized light, a reflected image is formed on the indoor main surface of the second glass plate. Then, the projected light passing through the projection unit is P-polarized by the retardation film. When the P-polarized light reaches the outdoor main surface of the first glass plate, it is emitted to the outdoor side without being reflected by the main surface. The occupant visually recognizes a virtual image display based on the reflected image of S-polarized light formed on the main surface of the second glass plate on the indoor side. This case is referred to as S-HUD.
また、入射される投影光がP偏光からなる場合、第二ガラス板の室内側主面で反射される投影光の割合は低い。投影部を通過する投影光は位相差フィルムによりS偏光となる。該S偏光は、第一ガラス板の室外側主面に達したとき、一部は該主面で反射され、残部は室外側から出射される。この反射像を形成した投影光は投影部の位相差フィルムを再度通過するので、P偏光へ変化する。乗員は、第一ガラス板の室外側主面に形成された反射像に基づく、P偏光による虚像表示を視認する。この場合を、P-HUDと表記する。 Further, when the incident projected light is composed of P-polarized light, the ratio of the projected light reflected on the indoor main surface of the second glass plate is low. The projected light passing through the projection unit is S-polarized by the retardation film. When the S-polarized light reaches the outdoor main surface of the first glass plate, a part of it is reflected by the main surface and the rest is emitted from the outdoor side. Since the projected light forming this reflected image passes through the retardation film of the projection unit again, it changes to P-polarized light. The occupant visually recognizes a virtual image display by P-polarized light based on the reflected image formed on the outdoor main surface of the first glass plate. This case is referred to as P-HUD.
国際公開第2019/244619号International Publication No. 2019/2446919 特開2000-249966号公報Japanese Unexamined Patent Publication No. 2000-249966
近年、HUD装置で表示する情報の多様化が求められている。例えば、標識や歩行者などをマーキングした情報を表示し、運転をアシストする用途が挙げられる。また、運転席と助手席での画像情報を共有する要望もある。共有する情報としてはカーナビゲーションシステムにより表示される情報や天気等の情報が挙げられる。 In recent years, there has been a demand for diversification of information displayed on HUD devices. For example, there is an application of displaying information marking a sign or a pedestrian to assist driving. There is also a request to share image information between the driver's seat and the passenger seat. Information to be shared includes information displayed by the car navigation system and information such as the weather.
このように、HUD装置で表示する情報を多様化するという用途に応えるためには、運転者の正面のみに情報を表示するだけでは足りず、運転者の正面以外の領域、例えば、運転者の正面よりもフロントガラス面の外周に近い領域や、助手席と運転者との間の領域に情報を表示するといったことが必要となる場合がある。 In this way, in order to meet the purpose of diversifying the information displayed by the HUD device, it is not enough to display the information only in front of the driver, and it is not enough to display the information only in front of the driver, for example, in an area other than the front of the driver. It may be necessary to display information in an area closer to the outer periphery of the windshield surface than in the front, or in an area between the passenger seat and the driver.
特許文献1のように偏光HUD方式において虚像表示をさせる場合、HUDにより情報を視認する乗員である視認者の正面に像を表示することを念頭に置いて位相差フィルムの光軸と投影光の振動方向のなす角度を調整して、二重像の発生を抑制する。 When a virtual image is displayed in the polarized HUD method as in Patent Document 1, the optical axis of the retardation film and the projected light are displayed with the image displayed in front of the viewer who is the occupant who visually recognizes the information by the HUD. The angle formed by the vibration direction is adjusted to suppress the generation of double images.
特許文献2には、偏光HUD方式において大面積表示をさせようとすると、表示面積全体にブリュースター角で表示光を入射することが困難になり、大面積表示ができないということが課題として挙げられている。
そして、大面積化に伴うブリュースター角のずれを楔角を変化させることで解決すると記載されている。
Patent Document 2 cites a problem that when a large area display is attempted in the polarized HUD method, it becomes difficult to inject the display light at the Brewster's angle over the entire display area, and the large area display cannot be performed. ing.
Then, it is described that the deviation of the Brewster angle due to the increase in area can be solved by changing the wedge angle.
特許文献2では、旋光子フィルムを挿入した位置から下辺方向にフロント合わせガラスの厚みを薄くし、該厚みの変化を挿入する旋光子フィルムの厚みによって調整すると記載されている。そして、この方法であると、旋光子フィルムを挿入した部位とその下部で反射像を表示することにより表示面積が拡大できるとされている。 Patent Document 2 describes that the thickness of the front laminated glass is reduced from the position where the optical rotation film is inserted toward the lower side, and the change in the thickness is adjusted by the thickness of the optical rotation film to be inserted. Then, according to this method, it is said that the display area can be expanded by displaying the reflected image at the portion where the optical rotation film is inserted and the lower portion thereof.
しかし、この方法による表示面積の拡大は、旋光子フィルムを挿入した部位とその下部に限られ、フロントガラス面の上下方向に対する表示面積の拡大方法に限られる。
また、下辺方向にフロント合わせガラスの厚みを薄くするのは製造過程での手間が増大するというデメリットがある。
However, the expansion of the display area by this method is limited to the portion where the optical rotation film is inserted and the lower portion thereof, and is limited to the method of expanding the display area in the vertical direction of the windshield surface.
Further, reducing the thickness of the front laminated glass in the lower side direction has a demerit that the labor in the manufacturing process increases.
乗員が移動体の運転席側及び助手席側に着座し、フロントガラス面の中央領域にHUDによる像を表示する場合、像の表示領域は、2名の乗員(視認者)のいずれからも斜め方向となる。
このような場合、たとえ偏光HUD方式により各々の視認者の正面に表示される像に対して二重像の発生を抑制するようにヘッドアップディスプレイ装置を設計していても、視認者が斜め方向の像を見ることになるために、2名の視認者のいずれもが像を二重像として視認することがある。
When the occupant sits on the driver's seat side and the passenger's seat side of the moving body and displays the image by HUD in the central area of the windshield surface, the display area of the image is oblique from either of the two occupants (viewers). It becomes the direction.
In such a case, even if the head-up display device is designed so as to suppress the generation of a double image with respect to the image displayed in front of each viewer by the polarized HUD method, the viewer is in an oblique direction. In order to see the image of, both of the two viewers may see the image as a double image.
本開示は、上記を踏まえて、フロントガラス面の外周に近い領域や、フロントガラス面の中央領域に表示された像を視認者が斜めから視認した場合に、二重像の発生を抑制し得るヘッドアップディスプレイ装置を提供するものである。 Based on the above, the present disclosure can suppress the generation of a double image when the viewer visually recognizes the image displayed in the region near the outer periphery of the windshield surface or the central region of the windshield surface from an angle. It provides a head-up display device.
本開示の第1実施形態の第1の態様に係るヘッドアップディスプレイ装置は、移動体に搭載され、投影光の投影部での反射像に基づく虚像を上記移動体の乗員である視認者に認識させる、ヘッドアップディスプレイ装置であって、
地面と水平かつ上記移動体が前進する時の進行方向と直交する方向をX軸、地面と水平かつ上記移動体が前進する時の進行方向をY軸、及び地面と垂直な方向をZ軸とし、
上記視認者の視点と上記投影光の発光点と上記投影光が反射する点である反射点とを有する面を入射面とした時、
上記ヘッドアップディスプレイ装置は、
上記投影光を照射する映像部と、
上記映像部と上記投影部との間に設けられ、上記投影光に含まれる特定方向に振動する光を透過させる偏光部と、
上記偏光部を透過した投影光が投影される上記投影部と、を備え、
上記投影部は、上記投影光の入射側である室内側から室外側へ、第二ガラス板、位相差フィルム、第一ガラス板の順になるように配置された合わせガラスであり、
上記視認者の正面である視認者正面領域と、上記X軸方向のいずれかの方向に沿って、上記視認者正面領域よりも遠くなる領域である視認者斜め前方領域とを有し、
上記投影光は、少なくとも上記視認者斜め前方領域に投影され、
上記視認者から上記投影部を見た時のX軸を0°、上記位相差フィルムに沿った面を投影面とした時、
上記位相差フィルムは、上記投影面において、X軸に対してθ傾いた光軸を有し、上記光軸により上記投影面に入射する上記投影光の振動方向を変えるものであり、
上記特定方向は、上記入射面と平行な方向であることを特徴とする。
The head-up display device according to the first aspect of the first embodiment of the present disclosure is mounted on a moving body and recognizes a virtual image based on a reflected image at a projection unit of the projected light to a viewer who is an occupant of the moving body. It is a head-up display device that lets you
The X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward, the Y-axis is the traveling direction horizontal to the ground and when the moving body moves forward, and the Z-axis is the direction perpendicular to the ground. ,
When the plane having the viewpoint of the viewer, the emission point of the projected light, and the reflection point which is the point where the projected light is reflected is defined as the incident surface,
The head-up display device is
The image unit that irradiates the projected light and
A polarizing unit provided between the image unit and the projection unit to transmit light contained in the projection light that vibrates in a specific direction,
The projection unit, which projects the projected light transmitted through the polarization unit, is provided.
The projection unit is a laminated glass arranged in the order of a second glass plate, a retardation film, and a first glass plate from the indoor side, which is the incident side of the projected light, to the outdoor side.
It has a viewer front region that is the front of the viewer and a viewer oblique front region that is a region farther than the viewer front region along any direction in the X-axis direction.
The projected light is projected onto at least the area diagonally forward to the viewer.
When the X-axis when the projection unit is viewed from the viewer is 0 ° and the plane along the retardation film is the projection plane,
The retardation film has an optical axis inclined by θ r with respect to the X axis on the projection surface, and changes the vibration direction of the projected light incident on the projection surface by the optical axis.
The specific direction is a direction parallel to the incident surface.
本開示の第1実施形態の第1の態様に係るヘッドアップディスプレイ装置では、投影光を照射する映像部と、投影光が投影される投影部との間に偏光部が設けられている。
偏光部は、投影光に含まれる特定方向に振動する光を透過させ、偏光部を透過した投影光が投影部に投影される。
偏光部において投影光を透過させる特定の方向は、入射面に平行な方向である。この場合、P-HUD方式のヘッドアップディスプレイ装置として使用することができる。
このヘッドアップディスプレイ装置は、偏光サングラスを使用するサングラスモードで使用することに適している。
偏光部によって透過させる光の振動方向を調整することにより、フロントガラス面の外周に近い領域や、フロントガラス面の中央領域に表示された像を視認者が斜めから視認した場合に、二重像の発生を抑制することができる。
In the head-up display device according to the first aspect of the first embodiment of the present disclosure, a polarizing unit is provided between an image unit that irradiates the projected light and a projection unit on which the projected light is projected.
The polarizing unit transmits light contained in the projected light that vibrates in a specific direction, and the projected light transmitted through the polarizing unit is projected onto the projection unit.
The specific direction in which the projected light is transmitted in the polarizing portion is the direction parallel to the incident surface. In this case, it can be used as a P-HUD type head-up display device.
This heads-up display device is suitable for use in sunglasses mode with polarized sunglasses.
By adjusting the vibration direction of the light transmitted by the polarizing part, when the viewer visually recognizes the image displayed in the region near the outer circumference of the windshield surface or the central region of the windshield surface from an angle, a double image is displayed. Can be suppressed.
また、本開示の第1実施形態の第1の態様に係るヘッドアップディスプレイ装置においては、上記視認者が上記第二ガラス板の室内側面以外に形成された反射像に基づく虚像を観察するようにすることが好ましい。
本開示のヘッドアップディスプレイ装置においては、上記視認者が上記第一ガラス板の室外側面に形成された反射像に基づく虚像を観察することが好ましい。
Further, in the head-up display device according to the first aspect of the first embodiment of the present disclosure, the viewer observes a virtual image based on a reflection image formed on a surface other than the indoor side surface of the second glass plate. It is preferable to do so.
In the head-up display device of the present disclosure, it is preferable that the viewer observes a virtual image based on a reflection image formed on the outdoor surface of the first glass plate.
また、本開示の第1実施形態の第2の態様に係るヘッドアップディスプレイ装置は、移動体に搭載され、投影光の投影部での反射像に基づく虚像を上記移動体の乗員である視認者に認識させる、ヘッドアップディスプレイ装置であって、
地面と水平かつ上記移動体が前進する時の進行方向と直交する方向をX軸、地面と水平かつ上記移動体が前進する時の進行方向をY軸、及び地面と垂直な方向をZ軸とし、
上記視認者の視点と上記投影光の発光点と上記投影光が反射する点である反射点とを有する面を入射面とした時、
上記ヘッドアップディスプレイ装置は、
上記投影光を照射する映像部と、
上記映像部と上記投影部との間に設けられ、上記投影光に含まれる特定方向に振動する光を透過させる偏光部と、
上記偏光部を透過した投影光が投影される上記投影部と、を備え、
上記投影部は、上記投影光の入射側である室内側から室外側へ、第二ガラス板、位相差フィルム、第一ガラス板の順になるように配置された合わせガラスであり、
上記視認者の正面である視認者正面領域と、上記X軸方向のいずれかの方向に沿って、上記視認者正面領域よりも遠くなる領域である視認者斜め前方領域とを有し、
上記投影光は、少なくとも上記視認者斜め前方領域に投影され、
上記視認者から上記投影部を見た時のX軸を0°、上記位相差フィルムに沿った面を投影面とした時、
上記位相差フィルムは、上記投影面において、X軸に対してθ傾いた光軸を有し、上記投影面に入射する上記投影光の振動方向θαと上記光軸とがなす角度をdθとした場合に、入射する上記投影光の振動方向を2dθ回転させるものであり、
上記振動方向θαは、上記投影面におけるX軸に対する上記入射面の角度をθとした場合に上記投影面において2θ-θの方向であることを特徴とする。
Further, the head-up display device according to the second aspect of the first embodiment of the present disclosure is mounted on a moving body, and a virtual image based on the reflected image at the projection unit of the projected light is displayed by a viewer who is an occupant of the moving body. It is a head-up display device that makes people recognize
The X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward, the Y-axis is the traveling direction horizontal to the ground and when the moving body moves forward, and the Z-axis is the direction perpendicular to the ground. ,
When the plane having the viewpoint of the viewer, the emission point of the projected light, and the reflection point which is the point where the projected light is reflected is defined as the incident surface,
The head-up display device is
The image unit that irradiates the projected light and
A polarizing unit provided between the image unit and the projection unit to transmit light contained in the projection light that vibrates in a specific direction,
The projection unit, which projects the projected light transmitted through the polarization unit, is provided.
The projection unit is a laminated glass arranged in the order of a second glass plate, a retardation film, and a first glass plate from the indoor side, which is the incident side of the projected light, to the outdoor side.
It has a viewer front region that is the front of the viewer and a viewer oblique front region that is a region farther than the viewer front region along any direction in the X-axis direction.
The projected light is projected onto at least the area diagonally forward to the viewer.
When the X-axis when the projection unit is viewed from the viewer is 0 ° and the plane along the retardation film is the projection plane,
The retardation film has an optical axis tilted θ r with respect to the X axis on the projection surface, and the angle formed by the vibration direction θ α of the projected light incident on the projection surface and the optical axis is dθ. In this case, the vibration direction of the incident projected light is rotated by 2dθ.
The vibration direction θ α is characterized in that it is in the direction of 2θ r − θ p on the projection surface when the angle of the incident surface with respect to the X axis on the projection surface is θ p.
本開示の第1実施形態の第2の態様に係るヘッドアップディスプレイ装置では、投影面に入射する投影光の振動方向をθαとし、X軸に対して位相差フィルムの光軸が傾く角度をθとし、投影面におけるX軸に対する入射面の角度をθとした場合に、上記振動方向θαが上記投影面において2θ-θの方向である。
投影面に入射する投影光の振動方向が上記条件を満たすと、S-HUD方式のヘッドアップディスプレイ装置として使用することができる。S-HUD方式のヘッドアップディスプレイ装置は、P-HUD方式のように雨天時に像が歪むことがないので、像を鮮明に表示させることができる。
また、斜め方向に投影する場合、例えばθ=45°の時の2θ-θの方向は、入射面と直交しない。
In the head-up display apparatus according to the second aspect of the first embodiment of the present disclosure, and the vibration direction of the projection light incident on the projection plane theta alpha, the angle at which the optical axis is inclined retardation film with respect to the X axis When θ r is set and the angle of the incident surface with respect to the X axis on the projection surface is θ p , the vibration direction θ α is the direction of 2 θ r − θ p on the projection surface.
When the vibration direction of the projected light incident on the projection surface satisfies the above conditions, it can be used as an S-HUD type head-up display device. Unlike the P-HUD system, the S-HUD system head-up display device does not distort the image in rainy weather, so that the image can be displayed clearly.
Further, when projecting in an oblique direction, for example , the direction of 2θ r − θ p when θ r = 45 ° is not orthogonal to the incident surface.
本開示の第1実施形態の第2の態様に係るヘッドアップディスプレイ装置においては、上記視認者が上記第二ガラス板の室内側面に形成された反射像に基づく虚像を観察することが好ましい。 In the head-up display device according to the second aspect of the first embodiment of the present disclosure, it is preferable that the viewer observes a virtual image based on the reflected image formed on the indoor side surface of the second glass plate.
本開示の第1実施形態に係るヘッドアップディスプレイ装置では、上記視認者が複数名であり、各視認者のそれぞれに対して、上記映像部と上記投影部との間に上記偏光部が設けられ、視認者毎に設けられた入射面である各入射面を有し、それぞれの上記偏光部は、上記各入射面に対応した上記特定方向に振動する投影光を透過させることが好ましい。
また、上記偏光部は、透過した投影光の振動方向が上記特定方向となる透過軸を有し、それぞれの上記透過軸の向きが異なることが好ましい。
また、上記投影光が、上記複数名の視認者のそれぞれの上記視認者正面領域の間であり、上記複数名の視認者のそれぞれの上記視認者斜め前方領域に相当する領域である中央領域に投影されることが好ましい。
In the head-up display device according to the first embodiment of the present disclosure, there are a plurality of the viewers, and for each of the viewers, the polarizing portion is provided between the video unit and the projection unit. It is preferable that each of the incident surfaces, which is an incident surface provided for each viewer, transmits the projected light vibrating in the specific direction corresponding to each of the incident surfaces.
Further, it is preferable that the polarizing portion has a transmission axis in which the vibration direction of the transmitted projected light is the specific direction, and the directions of the transmission axes are different from each other.
Further, the projected light is in the central region which is between the front area of each of the plurality of viewers and corresponds to the diagonally forward region of each of the plurality of viewers. It is preferably projected.
複数名の視認者のそれぞれに対して偏光部を設けて、各視認者毎に設けられた入射面と投影面の位置の関係に合わせて、偏光部において透過させる投影光の振動方向を調整する。これにより、フロントガラス面の中央領域に表示された像を複数名の視認者が斜めから視認した場合に、いずれの視認者からみても二重像の発生を抑制し得るヘッドアップディスプレイ装置とすることができる。 A polarizing unit is provided for each of a plurality of viewers, and the vibration direction of the projected light transmitted through the polarizing unit is adjusted according to the relationship between the positions of the incident surface and the projection surface provided for each viewer. .. As a result, when a plurality of viewers view the image displayed in the central region of the windshield surface at an angle, the head-up display device can suppress the generation of a double image from any of the viewers. be able to.
本開示の第1実施形態に係るヘッドアップディスプレイ装置においては、上記投影部において、上記投影光が投影される投影位置が変更可能であり、
上記投影位置の変更に伴う入射面の変更に対応して、上記偏光部が可動であり、上記偏光部を透過させる光の振動方向を変えることができることが好ましい。
投影位置が変更されると、入射面が変更される。入射面の変更に対して偏光部が可動して偏光部を透過させる光の振動方向を変えることができると、投影位置が変更された場合でも二重像を抑制することができる。
In the head-up display device according to the first embodiment of the present disclosure, the projection position on which the projected light is projected can be changed in the projection unit.
It is preferable that the polarizing portion is movable and the vibration direction of the light transmitted through the polarizing portion can be changed in response to the change of the incident surface accompanying the change of the projection position.
When the projection position is changed, the incident surface is changed. If the polarizing portion can be moved in response to a change in the incident surface to change the vibration direction of the light transmitted through the polarizing portion, the double image can be suppressed even if the projection position is changed.
本開示の第1実施形態に係るへッドアップディスプレイシステムは、移動体に搭載され、投影光の投影部での反射像に基づく虚像を上記移動体の乗員である視認者に視認させる、へッドアップディスプレイシステムであって、
地面と水平かつ上記移動体が前進する時の進行方向と直交する方向をX軸、地面と水平かつ上記移動体が前進する時の進行方向をY軸、及び地面と垂直な方向をZ軸とし、
上記視認者の視点と上記投影光の発光点と上記投影光が反射する点である反射点とを有する面を入射面とした時、
上記ヘッドアップディスプレイシステムは、
上記投影光を照射する映像部と、
上記映像部と上記投影部との間に設けられ、上記投影光に含まれる特定方向に振動する光を透過させる偏光部と、
上記投影光が投影される上記投影部と、を備え、
上記投影部は、上記投影光の入射側である室内側から室外側へ、第二ガラス板、位相差フィルム、第一ガラス板の順になるように配置された合わせガラスであり、
上記視認者の正面である視認者正面領域と、上記X軸方向のいずれかの方向に沿って、上記視認者正面領域よりも遠くなる領域である視認者斜め前方領域とを有し、
上記投影光は、少なくとも上記視認者斜め前方領域に投影され、
上記視認者から上記投影部を見た時のX軸を0°、上記位相差フィルムに沿った面を投影面とした時、
上記位相差フィルムは、上記投影面において、X軸に対してθ傾いた光軸を有し、上記光軸により上記投影面に入射する上記投影光の振動方向を変えるものであり、
上記偏光部が可動であり、上記偏光部を透過させる光の振動方向を変えることにより、以下の(A)及び(B)を切り替え可能であることを特徴とする。
(A)上記第二ガラス板へ入射する光の振動方向を、上記入射面と平行な方向とする。
(B)上記位相差フィルムが、上記投影面に入射する上記投影光の振動方向θαと上記光軸とがなす角度をdθとした場合に、入射する上記投影光の振動方向を2dθ回転させるものであるとして、上記第二ガラス板を透過した光の振動方向を、上記投影面におけるX軸に対する上記入射面の角度をθとした場合に上記投影面において2θ-θの方向となるようにする。
The head-up display system according to the first embodiment of the present disclosure is mounted on a moving body, and a virtual image based on a reflected image at a projection unit of projected light is visually recognized by a viewer who is an occupant of the moving body. It ’s a do-up display system.
The X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward, the Y-axis is the traveling direction horizontal to the ground and when the moving body moves forward, and the Z-axis is the direction perpendicular to the ground. ,
When the plane having the viewpoint of the viewer, the emission point of the projected light, and the reflection point which is the point where the projected light is reflected is defined as the incident surface,
The above head-up display system
The image unit that irradiates the projected light and
A polarizing unit provided between the image unit and the projection unit to transmit light contained in the projection light that vibrates in a specific direction,
The projection unit on which the projected light is projected is provided.
The projection unit is a laminated glass arranged in the order of a second glass plate, a retardation film, and a first glass plate from the indoor side, which is the incident side of the projected light, to the outdoor side.
It has a viewer front region that is the front of the viewer and a viewer oblique front region that is a region farther than the viewer front region along any direction in the X-axis direction.
The projected light is projected onto at least the area diagonally forward to the viewer.
When the X-axis when the projection unit is viewed from the viewer is 0 ° and the plane along the retardation film is the projection plane,
The retardation film has an optical axis inclined by θ r with respect to the X axis on the projection surface, and changes the vibration direction of the projected light incident on the projection surface by the optical axis.
The polarizing portion is movable, and the following (A) and (B) can be switched by changing the vibration direction of the light transmitted through the polarizing portion.
(A) The vibration direction of the light incident on the second glass plate is set to be a direction parallel to the incident surface.
(B) the retardation film, when the angle between the vibration direction theta alpha and the optical axis of the projection light incident on the projection plane and d [theta], thereby 2dθ rotational vibration direction of the projection light incident Assuming that, the vibration direction of the light transmitted through the second glass plate is the direction of 2θ r − θ p on the projection surface when the angle of the incident surface with respect to the X axis on the projection surface is θ p. To be.
本開示の第1実施形態に係るヘッドアップディスプレイシステムでは、上記偏光部が可動であり、上記偏光部を透過させる光の振動方向を変えることができる。これによりS-HUD方式とP-HUD方式の切り替えを行うことができる。
これにより、複数種類の二重像抑制方式を備えるヘッドアップディスプレイシステムとすることができる。
In the head-up display system according to the first embodiment of the present disclosure, the polarizing portion is movable, and the vibration direction of the light transmitted through the polarizing portion can be changed. This makes it possible to switch between the S-HUD method and the P-HUD method.
This makes it possible to obtain a head-up display system having a plurality of types of double image suppression methods.
本開示の第1実施形態に係るヘッドアップディスプレイシステムでは、上記投影部において、上記投影光が投影される投影位置が変更可能であり、
上記投影位置の変更に伴う入射面の変更に対応して、上記偏光部が可動であり、上記偏光部を透過する投影光の振動方向を変えることができることが好ましい。
投影位置が変更されると、入射面が変更される。入射面の変更に対して偏光部が可動して偏光部を透過する投影光の振動方向を変えることができると、投影位置が変更された場合でも二重像を抑制することができる。
In the head-up display system according to the first embodiment of the present disclosure, the projection position on which the projected light is projected can be changed in the projection unit.
It is preferable that the polarizing portion is movable and the vibration direction of the projected light transmitted through the polarizing portion can be changed in response to the change of the incident surface accompanying the change of the projection position.
When the projection position is changed, the incident surface is changed. If the polarizing portion can be moved in response to a change in the incident surface to change the vibration direction of the projected light transmitted through the polarizing portion, the double image can be suppressed even if the projection position is changed.
本開示の第2実施形態の第1の態様に係るヘッドアップディスプレイ装置は、
移動体に搭載され、投影光の投影部での反射像に基づく虚像を上記移動体の乗員である視認者に視認させる、へッドアップディスプレイ装置であって、
地面と水平かつ上記移動体が前進する時の進行方向と直交する方向をX軸、地面と水平かつ上記移動体が前進する時の進行方向をY軸、及び地面と垂直な方向をZ軸とし、
上記視認者の視点と上記投影光の発光点と上記投影光が反射する点である反射点とを有する面を入射面とした時、
上記ヘッドアップディスプレイ装置は、
振動方向がX軸方向である上記投影光を照射する映像部と、
上記投影光が投影される投影部と、を備え、
上記投影部は、上記視認者よりも、上記移動体が前進する時の進行方向に配置され、上記投影光の入射側に配置される第二ガラス板と、上記投影光の出射側に配置される第一ガラス板と、上記第二ガラス板と、上記第一ガラス板との間に配置される、位相差フィルムとを、備える合わせガラスからなり、
上記第一ガラス板は、室外側に露出される第一主面と、上記第一主面の反対側の第二主面とを備え、
上記第二ガラス板は、室内側に露出される第四主面と、上記第四主面の反対側の第三主面とを備え、
上記投影光を、上記位相差フィルムへ入射させることによって、上記投影光の振動方向を上記入射面に対して平行方向へ変換することができ、
上記投影部は、上記視認者の正面である視認者正面領域と、X軸方向のいずれかの方向に沿って、上記視認者正面領域に対して遠くなる領域である視認者斜め前方領域を有し、
上記視認者が上記視認者正面領域に形成された反射像を見る場合に、上記視認者正面領域に配置される上記位相差フィルムは、上記第四主面との平行面において上記位相差フィルムの光軸がX軸に対して45°±5°であり、
上記視認者が上記視認者斜め前方領域に形成された反射像を見る場合に、上記視認者斜め前方領域に配置される上記位相差フィルムは、上記第四主面との平行面において上記位相差フィルムの光軸がX軸に対して45°±5°からずれる方向に傾いており、
上記虚像は、上記第二ガラス板の上記第四主面に形成された反射像に基づき、
上記視認者正面領域及び上記視認者斜め前方領域のいずれにおいても、上記第一ガラス板の上記第一主面から出射される光は、主として上記入射面に対して平行方向に振動する上記投影光である、ことを特徴とする。
The head-up display device according to the first aspect of the second embodiment of the present disclosure is
A head-up display device mounted on a moving body that allows a viewer who is an occupant of the moving body to visually recognize a virtual image based on a reflected image at a projection unit of projected light.
The X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward, the Y-axis is the traveling direction horizontal to the ground and when the moving body moves forward, and the Z-axis is the direction perpendicular to the ground. ,
When the plane having the viewpoint of the viewer, the emission point of the projected light, and the reflection point which is the point where the projected light is reflected is defined as the incident surface,
The head-up display device is
The image unit that irradiates the projected light whose vibration direction is the X-axis direction,
A projection unit on which the projected light is projected is provided.
The projection unit is arranged in the traveling direction when the moving body moves forward, and is arranged on the incident side of the projected light and the emitting side of the projected light. It is composed of a laminated glass provided with a first glass plate, a retardation film arranged between the second glass plate and the first glass plate.
The first glass plate includes a first main surface exposed to the outdoor side and a second main surface opposite to the first main surface.
The second glass plate includes a fourth main surface exposed to the indoor side and a third main surface opposite to the fourth main surface.
By making the projected light incident on the retardation film, the vibration direction of the projected light can be converted into a direction parallel to the incident surface.
The projection unit has a viewer front region that is the front of the viewer and a viewer oblique front region that is a region that is far from the viewer front region along any direction in the X-axis direction. death,
When the viewer sees the reflected image formed in the front area of the viewer, the retardation film arranged in the front area of the viewer is a plane parallel to the fourth main surface of the retardation film. The optical axis is 45 ° ± 5 ° with respect to the X axis.
When the viewer sees the reflected image formed in the diagonally front region of the viewer, the retardation film arranged in the diagonally front region of the viewer has the phase difference on a plane parallel to the fourth main surface. The optical axis of the film is tilted from 45 ° ± 5 ° with respect to the X axis.
The imaginary image is based on a reflection image formed on the fourth main surface of the second glass plate.
In both the front area of the viewer and the diagonally front area of the viewer, the light emitted from the first main surface of the first glass plate mainly vibrates in the direction parallel to the incident surface. It is characterized by being.
本開示の第2実施形態の説明では、視認者の視点と投影部を結ぶ線のうち、Y軸に沿った線の長さ(視点から投影部までの距離)を1000mmとし、上記のY軸に沿った線を0°としたときの、X軸方向に沿って±10°の範囲を視認者正面領域とする。
視認者正面領域から、X軸方向のいずれかの方向に沿って、上記視認者正面領域に対して遠くなる領域を視認者斜め前方領域とする。
In the description of the second embodiment of the present disclosure, among the lines connecting the viewpoint of the viewer and the projection portion, the length of the line along the Y axis (distance from the viewpoint to the projection portion) is set to 1000 mm, and the above-mentioned Y axis is set. When the line along the line is 0 °, the range of ± 10 ° along the X-axis direction is defined as the front view area of the viewer.
An area far from the front area of the viewer along any direction in the X-axis direction with respect to the front area of the viewer is defined as an oblique front area of the viewer.
本開示の第2実施形態の第1の態様に係るヘッドアップディスプレイ装置では、視認者の正面である視認者正面領域に形成された反射像を見る場合に、第四主面との平行面において位相差フィルムの光軸がX軸に対して45°±5°となっている。視認者正面領域では投影光は殆どS偏光となる。視認者正面領域では位相差フィルムに入射された投影光(S偏光)がP偏光に変換される効率が高いので、二重像の発生が抑制される。 In the head-up display device according to the first aspect of the second embodiment of the present disclosure, when viewing a reflected image formed in the front area of the viewer, which is the front of the viewer, the head-up display device is parallel to the fourth main surface. The optical axis of the retardation film is 45 ° ± 5 ° with respect to the X axis. In the front region of the viewer, the projected light is almost S-polarized. In the front region of the viewer, the projected light (S-polarized light) incident on the retardation film is highly efficiently converted to P-polarized light, so that the generation of double images is suppressed.
X軸方向のいずれかの方向に沿って、上記視認者正面領域に対して遠くなる領域である視認者斜め前方領域に形成された反射像を見る場合に、第四主面との平行面において位相差フィルムの光軸がX軸に対して45°±5°からずれる方向に傾いている。
位相差フィルムの光軸の方向を、X軸に対して45°±5°からずれる方向に傾けることにより、投影光の入射面の変化に対応させて、位相差フィルムを通過した光のうち、入射面に対して平行方向に振動する光の割合を向上させる。その結果、視認者斜め前方領域でも位相差フィルムに入射された投影光がP偏光に変換される効率が高くなるので、二重像の発生が抑制される。
視認者正面領域及び視認者斜め前方領域のいずれにおいても位相差フィルムに入射された投影光がP偏光に変換される効率が高くなるので、二重像の発生が抑制される。
その結果、フロントガラス面の横方向にHUDの表示領域を拡大した場合においても、二重像の発生を抑制し得るヘッドアップディスプレイ装置を提供することができる。
When observing a reflection image formed in a region diagonally forward to the viewer, which is a region far from the front region of the viewer, along any direction in the X-axis direction, in a plane parallel to the fourth main surface. The optical axis of the retardation film is tilted in a direction deviated from 45 ° ± 5 ° with respect to the X axis.
Of the light that has passed through the retardation film, the direction of the optical axis of the retardation film is tilted in a direction that deviates from the X-axis by 45 ° ± 5 ° to correspond to the change in the incident surface of the projected light. Improve the proportion of light that oscillates in the direction parallel to the incident surface. As a result, the efficiency of converting the projected light incident on the retardation film into P-polarized light is increased even in the region diagonally forward to the viewer, so that the generation of double images is suppressed.
Since the efficiency of converting the projected light incident on the retardation film into P-polarized light is high in both the front area of the viewer and the diagonally front area of the viewer, the generation of double images is suppressed.
As a result, it is possible to provide a head-up display device capable of suppressing the generation of a double image even when the display area of the HUD is expanded in the lateral direction of the windshield surface.
また、本開示の第2実施形態の第2の態様に係るヘッドアップディスプレイ装置は、移動体に搭載され、投影光の投影部での反射像に基づく虚像を上記移動体の乗員である視認者に視認させる、へッドアップディスプレイ装置であって、
地面と水平かつ上記移動体が前進する時の進行方向と直交する方向をX軸、地面と水平かつ上記移動体が前進する時の進行方向をY軸、及び地面と垂直な方向をZ軸とし、
上記視認者の視点と上記投影光の発光点と上記投影光が反射する点である反射点とを有する面を入射面とした時、
上記ヘッドアップディスプレイ装置は、
振動方向がYZ平面に平行な方向である上記投影光を照射する映像部と、
上記投影光が投影される投影部と、を備え、
上記投影部は、上記視認者よりも、上記移動体が前進する時の進行方向に配置され、上記投影光の入射側に配置される第二ガラス板と、上記投影光の出射側に配置される第一ガラス板と、上記第二ガラス板と、上記第一ガラス板との間に配置される、位相差フィルムとを、備える合わせガラスからなり、
上記第一ガラス板は、室外側に露出される第一主面と、上記第一主面の反対側の第二主面とを備え、
上記第二ガラス板は、室内側に露出される第四主面と、上記第四主面の反対側の第三主面とを備え、
上記投影光を、上記位相差フィルムへ入射させることによって、上記投影光の振動方向を上記入射面に対して垂直方向へ変換することができ、
上記投影部は、上記視認者の正面である視認者正面領域と、X軸方向のいずれかの方向に沿って、上記視認者正面領域に対して遠くなる領域である視認者斜め前方領域を有し、
上記視認者が上記視認者正面領域に形成された反射像を見る場合に、上記視認者正面領域に配置される上記位相差フィルムは、上記第四主面との平行面において上記位相差フィルムの光軸がX軸に対して45°±5°であり、
上記視認者が上記視認者斜め前方領域に形成された反射像を見る場合に、上記視認者斜め前方領域に配置される上記位相差フィルムは、上記第四主面との平行面において上記位相差フィルムの光軸がX軸に対して45°±5°からずれる方向に傾いており、
上記虚像は、上記第一ガラス板の上記第一主面に形成された反射像に基づき、
上記視認者正面領域及び上記視認者斜め前方領域のいずれにおいても、上記第一ガラス板の上記第一主面で反射される光は、主として上記入射面に対して垂直方向に振動する上記投影光である、ことを特徴とする。
Further, the head-up display device according to the second aspect of the second embodiment of the present disclosure is mounted on the moving body, and a virtual image based on the reflected image at the projection unit of the projected light is displayed by a viewer who is an occupant of the moving body. It is a head-up display device that allows you to see
The X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward, the Y-axis is the traveling direction horizontal to the ground and when the moving body moves forward, and the Z-axis is the direction perpendicular to the ground. ,
When the plane having the viewpoint of the viewer, the emission point of the projected light, and the reflection point which is the point where the projected light is reflected is defined as the incident surface,
The head-up display device is
The image unit that irradiates the projected light whose vibration direction is parallel to the YZ plane,
A projection unit on which the projected light is projected is provided.
The projection unit is arranged in the traveling direction when the moving body moves forward, and is arranged on the incident side of the projected light and the emitting side of the projected light. It is composed of a laminated glass provided with a first glass plate, a retardation film arranged between the second glass plate and the first glass plate.
The first glass plate includes a first main surface exposed to the outdoor side and a second main surface opposite to the first main surface.
The second glass plate includes a fourth main surface exposed to the indoor side and a third main surface opposite to the fourth main surface.
By making the projected light incident on the retardation film, the vibration direction of the projected light can be converted into a direction perpendicular to the incident surface.
The projection unit has a viewer front region that is the front of the viewer and a viewer oblique front region that is a region that is far from the viewer front region along any direction in the X-axis direction. death,
When the viewer sees the reflected image formed in the front area of the viewer, the retardation film arranged in the front area of the viewer is a plane parallel to the fourth main surface of the retardation film. The optical axis is 45 ° ± 5 ° with respect to the X axis.
When the viewer sees the reflected image formed in the diagonally front region of the viewer, the retardation film arranged in the diagonally front region of the viewer has the phase difference on a plane parallel to the fourth main surface. The optical axis of the film is tilted from 45 ° ± 5 ° with respect to the X axis.
The imaginary image is based on a reflection image formed on the first main surface of the first glass plate.
In both the front area of the viewer and the diagonally front area of the viewer, the light reflected by the first main surface of the first glass plate is the projected light that vibrates mainly in the direction perpendicular to the incident surface. It is characterized by being.
このヘッドアップディスプレイ装置は、偏光サングラスを使用するサングラスモードでも使用できる。
このヘッドアップディスプレイ装置では、視認者の正面である視認者正面領域に形成された反射像を見る場合に、第四主面との平行面において位相差フィルムの光軸がX軸に対して45°±5°となっている。視認者正面領域では投影光は殆どP偏光となる。視認者正面領域では位相差フィルムに入射された投影光(P偏光)がS偏光に変換される効率が高いので、第一ガラス板の第一主面に形成された反射像に基づく虚像表示が強くなる。そのため、相対的に第四主面で反射される投影光の影響が弱くなって、二重像の発生が抑制される。
This heads-up display device can also be used in sunglasses mode, which uses polarized sunglasses.
In this head-up display device, when viewing a reflected image formed in the front area of the viewer, which is the front of the viewer, the optical axis of the retardation film is 45 with respect to the X axis in a plane parallel to the fourth main surface. It is ° ± 5 °. In the front region of the viewer, the projected light is almost P-polarized. In the front region of the viewer, the projected light (P-polarized light) incident on the retardation film is highly efficiently converted to S-polarized light, so that a virtual image display based on the reflected image formed on the first main surface of the first glass plate can be displayed. Become stronger. Therefore, the influence of the projected light reflected on the fourth main surface is relatively weakened, and the generation of the double image is suppressed.
X軸方向のいずれかの方向に沿って、上記視認者正面領域に対して遠くなる領域である視認者斜め前方領域に形成された反射像を見る場合に、第四主面との平行面において位相差フィルムの光軸がX軸に対して45°±5°からずれる方向に傾いている。
位相差フィルムの光軸の方向を、X軸に対して45°±5°からずれる方向に傾けることにより、投影光の入射面の変化に対応させて、位相差フィルムを通過した光のうち、入射面に対して垂直方向に振動する光の割合を向上させる。その結果、視認者斜め前方領域でも第一ガラス板の第一主面に形成された反射像に基づく虚像表示が強くなる。そのため、相対的に第四主面で反射される投影光の影響が弱くなって、二重像の発生が抑制される。
視認者正面領域及び視認者斜め前方領域のいずれにおいても位相差フィルムに入射された投影光がS偏光に変換される効率が高くなるので、二重像の発生が抑制される。
その結果、フロントガラス面の横方向にHUDの表示領域を拡大した場合においても、二重像の発生を抑制し得るヘッドアップディスプレイ装置を提供することができる。
When observing a reflection image formed in a region diagonally forward to the viewer, which is a region far from the front region of the viewer, along any direction in the X-axis direction, in a plane parallel to the fourth main surface. The optical axis of the retardation film is tilted in a direction deviated from 45 ° ± 5 ° with respect to the X axis.
By tilting the direction of the optical axis of the retardation film in a direction that deviates from the X-axis by 45 ° ± 5 °, the light that has passed through the retardation film can be used in response to changes in the incident surface of the projected light. Improve the proportion of light that oscillates perpendicular to the incident surface. As a result, the virtual image display based on the reflected image formed on the first main surface of the first glass plate becomes stronger even in the area diagonally forward to the viewer. Therefore, the influence of the projected light reflected on the fourth main surface is relatively weakened, and the generation of the double image is suppressed.
Since the efficiency of converting the projected light incident on the retardation film into S-polarized light is high in both the front area of the viewer and the diagonally front area of the viewer, the generation of double images is suppressed.
As a result, it is possible to provide a head-up display device capable of suppressing the generation of a double image even when the display area of the HUD is expanded in the lateral direction of the windshield surface.
本開示の第2実施形態に係るヘッドアップディスプレイ装置では、上記視認者斜め前方領域のうち、上記視認者正面領域の右側に位置する右側周辺領域と、上記視認者正面領域の左側に位置する左側周辺領域では、上記位相差フィルムの光軸がX軸に対して45°±5°からずれる方向の向きが反対であることが好ましい。
このように定めることで、視認者の左右両側において二重像の発生を抑制することができる。
In the head-up display device according to the second embodiment of the present disclosure, the right peripheral area located on the right side of the viewer front area and the left side located on the left side of the viewer front area in the viewer oblique front area. In the peripheral region, it is preferable that the direction in which the optical axis of the retardation film deviates from the X axis by 45 ° ± 5 ° is opposite.
By defining in this way, it is possible to suppress the generation of double images on both the left and right sides of the viewer.
本開示の第2実施形態に係るヘッドアップディスプレイ装置では、上記視認者斜め前方領域における上記位相差フィルムの光軸の方向の傾きの変化が、X軸方向に沿って連続的になされていることが好ましい。
また、上記視認者斜め前方領域における上記位相差フィルムの光軸の方向の傾きの変化が、X軸方向に沿って非連続的になされていることが好ましい。
In the head-up display device according to the second embodiment of the present disclosure, the inclination of the retardation film in the direction of the optical axis in the area diagonally forward to the viewer is continuously changed along the X-axis direction. Is preferable.
Further, it is preferable that the change in the inclination of the retardation film in the direction of the optical axis in the diagonally forward region of the viewer is discontinuous along the X-axis direction.
また、本開示の第2実施形態に係る位相差フィルムは、上下方向の縦軸及び左右方向の横軸を有する、一体物である位相差フィルムであって、
上記縦軸に沿った複数の地点において、上記位相差フィルムの光軸と上記横軸とがなす角は一定であり、
上記横軸方向に沿って、上記位相差フィルムの光軸と上記横軸とがなす角が一定傾向で変化することを特徴とする。
Further, the retardation film according to the second embodiment of the present disclosure is an integral retardation film having a vertical axis in the vertical direction and a horizontal axis in the horizontal direction.
At a plurality of points along the vertical axis, the angle formed by the optical axis of the retardation film and the horizontal axis is constant.
Along the horizontal axis direction, the angle formed by the optical axis of the retardation film and the horizontal axis changes with a constant tendency.
このような位相差フィルムを、フロントガラスの横方向と位相差フィルムの横軸方向を揃えて配置することにより、フロントガラス面の横方向に広い表示領域を有するHUD装置を提供することができる。 By arranging such a retardation film so that the lateral direction of the windshield and the lateral axis direction of the retardation film are aligned, it is possible to provide a HUD device having a wide display area in the lateral direction of the windshield surface.
本開示の第2実施形態に係る位相差フィルムでは、上記横軸方向に沿って、上記位相差フィルムの光軸と上記横軸とがなす角が連続的に変化することが好ましい。
また、上記横軸方向に沿って、上記位相差フィルムの光軸と上記横軸とがなす角が非連続的に変化することが好ましい。
In the retardation film according to the second embodiment of the present disclosure, it is preferable that the angle formed by the optical axis of the retardation film and the horizontal axis continuously changes along the horizontal axis direction.
Further, it is preferable that the angle formed by the optical axis of the retardation film and the horizontal axis changes discontinuously along the horizontal axis direction.
また、本開示の第2実施形態に係る車両用合わせガラスは、第一ガラス板と、第二ガラス板と、上記第一ガラス板と上記第二ガラス板との間に配置される位相差フィルムと、を備える車両用合わせガラスであって、
上記位相差フィルムが、本開示の第2実施形態に係る位相差フィルムであることを特徴とする。
Further, the laminated glass for a vehicle according to the second embodiment of the present disclosure is a retardation film arranged between the first glass plate, the second glass plate, and the first glass plate and the second glass plate. It is a laminated glass for vehicles equipped with
The retardation film is the retardation film according to the second embodiment of the present disclosure.
このような車両用合わせガラスを使用すると、フロントガラス面の横方向に広い表示領域を有するHUD装置を提供することができる。 By using such a laminated glass for vehicles, it is possible to provide a HUD device having a wide display area in the lateral direction of the windshield surface.
本開示の第2実施形態に係るヘッドアップディスプレイシステムは、移動体に搭載され、投影光の投影部での反射像に基づく虚像を上記移動体の乗員である視認者に視認させる、へッドアップディスプレイシステムであって、
地面と水平かつ上記移動体が前進する時の進行方向と直交する方向をX軸、地面と水平かつ上記移動体が前進する時の進行方向をY軸、及び地面と垂直な方向をZ軸とし、
上記視認者の視点と上記投影光の発光点と上記投影光が反射する点である反射点とを有する面を入射面とした時、
上記ヘッドアップディスプレイシステムは、
上記投影光を照射する映像部と、
上記投影光が投影される投影部と、を備え、
上記投影部は、上記視認者よりも、上記移動体が前進する時の進行方向に配置され、上記投影光の入射側に配置される第二ガラス板と、上記投影光の出射側に配置される第一ガラス板と、上記第二ガラス板と、上記第一ガラス板との間に配置される、位相差フィルムとを、備える合わせガラスからなり、
上記第一ガラス板は、室外側に露出される第一主面と、上記第一主面の反対側の第二主面とを備え、
上記第二ガラス板は、室内側に露出される第四主面と、上記第四主面の反対側の第三主面とを備え、
上記投影光を、上記位相差フィルムへ入射させることによって、上記投影光の振動方向を上記入射面に対して平行方向又は垂直方向へ変換することができ、
上記投影部は、上記視認者の正面である視認者正面領域と、X軸方向のいずれかの方向に沿って、上記視認者正面領域に対して遠くなる領域である視認者斜め前方領域を有し、
上記視認者が上記視認者正面領域に形成された反射像を見る場合に、上記視認者正面領域に配置される上記位相差フィルムは、上記第四主面との平行面において上記位相差フィルムの光軸がX軸に対して45°±5°であり、
上記視認者が上記視認者斜め前方領域に形成された反射像を見る場合に、上記視認者斜め前方領域に配置される上記位相差フィルムは、上記第四主面との平行面において上記位相差フィルムの光軸がX軸に対して45°±5°からずれる方向に傾いており、
上記映像部は、振動方向がX軸方向である第一の投影光、及び、振動方向がYZ平面に平行な方向である第二の投影光を切り替えて照射することができ、
上記視認者が偏光板を介さずに虚像を視認する場合は、上記映像部から上記第一の投影光を照射し、上記虚像は、上記第二ガラス板の上記第四主面に形成された反射像に基づき、上記視認者正面領域及び上記視認者斜め前方領域のいずれにおいても、上記第一ガラス板の上記第一主面から出射される光は、主として上記入射面に対して平行方向に振動する投影光であり、
上記視認者が偏光板を介して虚像を視認する場合は、上記映像部から上記第二の投影光を照射し、上記虚像は、上記第一ガラス板の上記第一主面に形成された反射像に基づき、上記視認者正面領域及び上記視認者斜め前方領域のいずれにおいても、上記第一ガラス板の上記第一主面で反射される光は、主として上記入射面に対して垂直方向に振動する投影光である、ことを特徴とする。
The head-up display system according to the second embodiment of the present disclosure is mounted on a moving body, and a head-up that allows a viewer who is an occupant of the moving body to visually recognize a virtual image based on a reflected image at a projection unit of projected light. It ’s a display system,
The X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward, the Y-axis is the traveling direction horizontal to the ground and when the moving body moves forward, and the Z-axis is the direction perpendicular to the ground. ,
When the plane having the viewpoint of the viewer, the emission point of the projected light, and the reflection point which is the point where the projected light is reflected is defined as the incident surface,
The above head-up display system
The image unit that irradiates the projected light and
A projection unit on which the projected light is projected is provided.
The projection unit is arranged in the traveling direction when the moving body moves forward, and is arranged on the incident side of the projected light and the emitting side of the projected light. It is composed of a laminated glass provided with a first glass plate, a retardation film arranged between the second glass plate and the first glass plate.
The first glass plate includes a first main surface exposed to the outdoor side and a second main surface opposite to the first main surface.
The second glass plate includes a fourth main surface exposed to the indoor side and a third main surface opposite to the fourth main surface.
By making the projected light incident on the retardation film, the vibration direction of the projected light can be converted into a direction parallel to or perpendicular to the incident surface.
The projection unit has a viewer front region that is the front of the viewer and a viewer oblique front region that is a region that is far from the viewer front region along any direction in the X-axis direction. death,
When the viewer sees the reflected image formed in the front area of the viewer, the retardation film arranged in the front area of the viewer is a plane parallel to the fourth main surface of the retardation film. The optical axis is 45 ° ± 5 ° with respect to the X axis.
When the viewer sees the reflected image formed in the diagonally front region of the viewer, the retardation film arranged in the diagonally front region of the viewer has the phase difference on a plane parallel to the fourth main surface. The optical axis of the film is tilted from 45 ° ± 5 ° with respect to the X axis.
The image unit can switch between the first projected light whose vibration direction is the X-axis direction and the second projected light whose vibration direction is parallel to the YZ plane.
When the viewer visually recognizes the virtual image without passing through the polarizing plate, the first projected light is irradiated from the image unit, and the virtual image is formed on the fourth main surface of the second glass plate. Based on the reflected image, the light emitted from the first main surface of the first glass plate is mainly in the direction parallel to the incident surface in both the front area of the viewer and the oblique front area of the viewer. It is a vibrating projected light,
When the viewer visually recognizes the virtual image through the polarizing plate, the second projected light is irradiated from the image unit, and the virtual image is a reflection formed on the first main surface of the first glass plate. Based on the image, the light reflected by the first main surface of the first glass plate vibrates mainly in the direction perpendicular to the incident surface in both the front area of the viewer and the obliquely front area of the viewer. It is characterized in that it is a projected light.
本開示の第2実施形態に係るヘッドアップディスプレイシステムは、映像部から照射する2種類の投影光を切り替えることにより、偏光サングラス等の偏光板を介して虚像を視認するサングラスモードと、偏光板を介さずに虚像を視認する通常モードを切り替えて使用することができる。
そして、フロントガラス面の横方向にHUDの表示領域を拡大した場合に、いずれのモードにおいても、二重像の発生を抑制することができる。
The head-up display system according to the second embodiment of the present disclosure has a sunglasses mode in which a virtual image is visually recognized through a polarizing plate such as polarized sunglasses by switching between two types of projected light emitted from an image unit, and a polarizing plate. It is possible to switch and use the normal mode for visually recognizing a virtual image without going through it.
Then, when the display area of the HUD is expanded in the lateral direction of the windshield surface, the generation of the double image can be suppressed in any mode.
本開示によると、フロントガラス面の外周に近い領域や、フロントガラス面の中央領域に表示された像を視認者が斜めから視認した場合に、二重像の発生を抑制し得るヘッドアップディスプレイ装置を提供することができる。 According to the present disclosure, a head-up display device capable of suppressing the generation of a double image when a viewer visually recognizes an image displayed in a region near the outer periphery of the windshield surface or a central region of the windshield surface from an angle. Can be provided.
図1は、HUD装置を備える移動体の上面図である。FIG. 1 is a top view of a moving body including a HUD device. 図2は、HUD装置に使用する車両用合わせガラスを第四主面側から見た図である。FIG. 2 is a view of a laminated glass for a vehicle used in the HUD device as viewed from the fourth main surface side. 図3は、車両用合わせガラスの一例を模式的に示す分解斜視図である。FIG. 3 is an exploded perspective view schematically showing an example of laminated glass for a vehicle. 図4は、本開示の第1実施形態の第1の態様に係る第一のHUD装置の概略と、該装置での光路を示す模式図である。FIG. 4 is a schematic view showing an outline of a first HUD device according to a first aspect of the first embodiment of the present disclosure and an optical path in the device. 図5は、本開示の第1実施形態の第2の態様に係る第二のHUD装置の概略と、該装置での光路を示す模式図である。FIG. 5 is a schematic view showing an outline of a second HUD device according to a second aspect of the first embodiment of the present disclosure and an optical path in the device. 図6は、第二のHUD装置において、偏光部を透過させる光の振動方向を説明するための模式図である。FIG. 6 is a schematic diagram for explaining the vibration direction of the light transmitted through the polarizing portion in the second HUD device. 図7は、第一のHUD装置における、視認者、投影部の位置と偏光部の透過軸の位置の関係の例を模式的に示す図である。FIG. 7 is a diagram schematically showing an example of the relationship between the positions of the viewer and the projection unit and the position of the transmission axis of the polarizing unit in the first HUD device. 図8は、第二のHUD装置における、視認者、投影部の位置と偏光部の透過軸の位置の関係の例を模式的に示す図である。FIG. 8 is a diagram schematically showing an example of the relationship between the positions of the viewer and the projection unit and the position of the transmission axis of the polarizing unit in the second HUD device. 図9は、第一のHUD装置において視認者が複数名である場合の視認者、投影部の位置と偏光部の透過軸の位置の関係の例を模式的に示す図である。FIG. 9 is a diagram schematically showing an example of the relationship between the positions of the viewer and the projection unit and the position of the transmission axis of the polarizing unit when there are a plurality of viewers in the first HUD device. 図10は、第二のHUD装置において視認者が複数名である場合の視認者、投影部の位置と偏光部の透過軸の位置の関係の例を模式的に示す図である。FIG. 10 is a diagram schematically showing an example of the relationship between the positions of the viewer and the projection unit and the position of the transmission axis of the polarizing unit when there are a plurality of viewers in the second HUD device. 図11は、実施例及び比較例で使用した第一のHUD装置を模式的に示す配置図である。FIG. 11 is a layout diagram schematically showing the first HUD apparatus used in Examples and Comparative Examples. 図12は、実施例1における実験系を模式的に示す図である。FIG. 12 is a diagram schematically showing the experimental system in Example 1. 図13は、比較例1における実験系を模式的に示す図である。FIG. 13 is a diagram schematically showing the experimental system in Comparative Example 1. 図14は、実施例1及び比較例1において視認される虚像を示す写真である。FIG. 14 is a photograph showing a virtual image visually recognized in Example 1 and Comparative Example 1. 図15は、実施例2における実験系を模式的に示す図である。FIG. 15 is a diagram schematically showing the experimental system in Example 2. 図16は、比較例2における実験系を模式的に示す図である。FIG. 16 is a diagram schematically showing the experimental system in Comparative Example 2. 図17は、実施例2及び比較例2において視認される虚像を示す写真である。FIG. 17 is a photograph showing a virtual image visually recognized in Example 2 and Comparative Example 2. 図18は、本開示の第2実施形態に係る位相差フィルムの一例を模式的に示す図面である。FIG. 18 is a drawing schematically showing an example of a retardation film according to the second embodiment of the present disclosure. 図19は、本開示の第2実施形態に係る他の位相差フィルムの一例を模式的に示す図面である。FIG. 19 is a drawing schematically showing an example of another retardation film according to the second embodiment of the present disclosure. 図20は、本開示の第2実施形態に係る車両用合わせガラスの一例を模式的に示す分解斜視図である。FIG. 20 is an exploded perspective view schematically showing an example of a laminated glass for a vehicle according to a second embodiment of the present disclosure. 図21は、本開示の第2実施形態の第1の態様に係る第三のHUD装置の概略と、該装置での光路を示す模式図である。FIG. 21 is a schematic view showing an outline of a third HUD device according to the first aspect of the second embodiment of the present disclosure and an optical path in the device. 図22は、右ハンドル車における視認者正面領域及び視認者斜め前方領域の位置を模式的に示す図である。FIG. 22 is a diagram schematically showing the positions of the viewer front region and the viewer diagonally forward region in a right-hand drive vehicle. 図23は、左ハンドル車における視認者正面領域及び視認者斜め前方領域の位置を模式的に示す図である。FIG. 23 is a diagram schematically showing the positions of the viewer front region and the viewer diagonally forward region in the left-hand drive vehicle. 図24は、右ハンドル車における運転者が視認者である場合の視認者正面領域及び視認者斜め前方領域の位置の別の態様を模式的に示す図である。FIG. 24 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique front region when the driver of the right-hand drive vehicle is a viewer. 図25は、左ハンドル車における運転者が視認者である場合の視認者正面領域及び視認者斜め前方領域の位置の別の態様を模式的に示す図である。FIG. 25 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique front region when the driver of the left-hand drive vehicle is a viewer. 図26は、視認者が運転者と助手席の乗員の2名である場合の視認者正面領域及び視認者斜め前方領域の位置を模式的に示す図である。FIG. 26 is a diagram schematically showing the positions of the viewer front region and the viewer oblique front region when there are two viewers, the driver and the passenger seat occupant. 図27は、視認者が運転者と助手席の乗員の2名である場合の視認者正面領域及び視認者斜め前方領域の位置の別の態様を模式的に示す図である。FIG. 27 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique front region when there are two viewers, the driver and the passenger seat occupant. 図28は、投影部をサイドガラスにも拡張した態様を模式的に示す図である。FIG. 28 is a diagram schematically showing a mode in which the projection portion is extended to the side glass. 図29は、本開示の第2実施形態の第2の態様に係る第四のHUD装置の概略と、該装置での光路を示す模式図である。FIG. 29 is a schematic diagram showing an outline of a fourth HUD device according to a second aspect of the second embodiment of the present disclosure and an optical path in the device. 図30は、実施例及び比較例で使用した第三のHUD装置を模式的に示す配置図である。FIG. 30 is a layout diagram schematically showing the third HUD device used in Examples and Comparative Examples. 図31は、実施例3における実験系を模式的に示す図である。FIG. 31 is a diagram schematically showing the experimental system in Example 3. 図32は、比較例3における実験系を模式的に示す図である。FIG. 32 is a diagram schematically showing the experimental system in Comparative Example 3. 図33は、実施例3及び比較例3において視認される虚像を示す写真である。FIG. 33 is a photograph showing a virtual image visually recognized in Example 3 and Comparative Example 3. 図34は、実施例4における実験系を模式的に示す図である。FIG. 34 is a diagram schematically showing the experimental system in Example 4. 図35は、比較例4における実験系を模式的に示す図である。FIG. 35 is a diagram schematically showing the experimental system in Comparative Example 4. 図36は、実施例4及び比較例4において視認される虚像を示す写真である。FIG. 36 is a photograph showing a virtual image visually recognized in Example 4 and Comparative Example 4.
(第1実施形態)
本開示の第1実施形態に係るヘッドアップディスプレイ装置(HUD装置)及びヘッドアップディスプレイシステム(HUDシステム)について、それぞれ図面を用いて説明する。
(First Embodiment)
The head-up display device (HUD device) and the head-up display system (HUD system) according to the first embodiment of the present disclosure will be described with reference to the drawings.
なお、本開示の第1実施形態に係るHUD装置としては、視認者が第二ガラス板の室内側面以外に形成された反射像に基づく虚像を観察するHUD装置(P-HUD方式のHUD装置)と、視認者が第二ガラス板の室内側面に形成された反射像に基づく虚像を観察するHUD装置(S-HUD方式のHUD装置)があり、それぞれを第一のHUD装置、第二のHUD装置ともいう。本開示の第1実施形態に係るヘッドアップディスプレイ装置の説明において、第一のHUD装置と第二のHUD装置を区別しないときは単に本開示の第1実施形態に係るHUD装置という。
また、本開示の第1実施形態に係るHUDシステムは、一つのシステムにおいて偏光部を透過させる光の振動方向を切り替えることによって第一のHUD装置としても第二のHUD装置としても使用することができるようにしたシステムである。
The HUD device according to the first embodiment of the present disclosure is a HUD device (P-HUD type HUD device) in which a viewer observes a virtual image based on a reflected image formed on a surface other than the indoor side surface of the second glass plate. There are HUD devices (S-HUD type HUD devices) in which the viewer observes a virtual image based on the reflected image formed on the indoor side surface of the second glass plate, and these are the first HUD device and the second HUD, respectively. Also called a device. In the description of the head-up display device according to the first embodiment of the present disclosure, when the first HUD device and the second HUD device are not distinguished, it is simply referred to as the HUD device according to the first embodiment of the present disclosure.
Further, the HUD system according to the first embodiment of the present disclosure can be used as both a first HUD device and a second HUD device by switching the vibration direction of the light transmitted through the polarizing portion in one system. It is a system that enables it.
また、本開示の第1実施形態の説明では、視認者の視点と投影部を結ぶ線のうち、Y軸に沿った線の長さ(視点から投影部までの距離)を1000mmとし、上記のY軸に沿った線を0°としたときの、X軸方向に沿って±3°の範囲を視認者正面領域とする。また、Z軸方向に沿って範囲を拡げた場合も、視認者正面領域とする。
視認者正面領域から、X軸方向のいずれかの方向に沿って、上記視認者正面領域に対して遠くなる領域を視認者斜め前方領域とする。また、X軸方向及びZ軸方向に沿って、上記視認者正面領域に対して遠くなる領域も視認者斜め前方領域とする。
また、本開示の第1実施形態の説明では、位相差フィルムに沿った面であり、投影光が位相差フィルムに入射する面を投影面という。投影面は位相差フィルムの主面を含む面である。
Further, in the description of the first embodiment of the present disclosure, among the lines connecting the viewpoint of the viewer and the projection portion, the length of the line along the Y axis (distance from the viewpoint to the projection portion) is set to 1000 mm as described above. When the line along the Y-axis is 0 °, the range of ± 3 ° along the X-axis direction is defined as the front area of the viewer. Further, when the range is expanded along the Z-axis direction, it is also defined as the front area of the viewer.
An area far from the front area of the viewer along any direction in the X-axis direction with respect to the front area of the viewer is defined as an oblique front area of the viewer. Further, a region that is far from the viewer front region along the X-axis direction and the Z-axis direction is also defined as a viewer diagonally forward region.
Further, in the description of the first embodiment of the present disclosure, the surface along the retardation film and the surface on which the projected light is incident on the retardation film is referred to as a projection plane. The projection surface is a surface including the main surface of the retardation film.
[ヘッドアップディスプレイ装置(HUD装置)]
本開示の第1実施形態に係るHUD装置には、第一のHUD装置と第二のHUD装置の2種類がある。まず、両方のHUD装置に共通の事項であるX軸、Y軸及びZ軸の定義及び移動体について説明する。
図1は、HUD装置を備える移動体の上面図であり、図2は、HUD装置に使用する車両用合わせガラスを第二ガラス板の室内側面(第四主面)側から見た図である。
図1及び図2を参照して、本開示におけるX軸、Y軸及びZ軸の向きについて説明する。
図1には移動体としての車両20を示しており、X軸を横方向、Y軸を縦方向に示している。Z軸は紙面に垂直な方向となる。
Y軸は、地面と水平且つ移動体である車両20が前進する時の進行方向である。
X軸は、地面と水平且つ移動体である車両20が前進する時の進行方向(Y軸)と直交する方向である。
Z軸は地面と垂直な方向である。
また、第二ガラス板側から第一ガラス板側を見た時の、第一ガラス板の方向を「前方」とする。
[Head-up display device (HUD device)]
There are two types of HUD devices according to the first embodiment of the present disclosure, a first HUD device and a second HUD device. First, the definitions of the X-axis, the Y-axis, and the Z-axis, which are common to both HUD devices, and the moving body will be described.
FIG. 1 is a top view of a moving body including a HUD device, and FIG. 2 is a view of a laminated glass for a vehicle used for the HUD device as viewed from the indoor side surface (fourth main surface) side of the second glass plate. ..
The orientations of the X-axis, Y-axis, and Z-axis in the present disclosure will be described with reference to FIGS. 1 and 2.
FIG. 1 shows the vehicle 20 as a moving body, and the X-axis is shown in the horizontal direction and the Y-axis is shown in the vertical direction. The Z axis is in the direction perpendicular to the paper surface.
The Y-axis is the traveling direction when the vehicle 20 which is horizontal to the ground and is a moving body moves forward.
The X-axis is a direction that is horizontal to the ground and orthogonal to the traveling direction (Y-axis) when the moving vehicle 20 moves forward.
The Z axis is perpendicular to the ground.
Further, the direction of the first glass plate when the first glass plate side is viewed from the second glass plate side is defined as "forward".
移動体としては、車両(乗用車、トラック、バス、電車等)、汽車、船、飛行機等が挙げられる。これらの中では車両であることが好ましい。 Examples of the moving body include vehicles (passenger cars, trucks, buses, trains, etc.), trains, ships, airplanes, and the like. Among these, a vehicle is preferable.
図2には車両用合わせガラス10を示している。車両用合わせガラス10は車両に設置される際にはそのガラス面はXZ平面とは平行とはならず、XZ平面から傾けて配置されることが多い。 FIG. 2 shows a laminated glass 10 for a vehicle. When the laminated glass 10 for a vehicle is installed in a vehicle, its glass surface is not parallel to the XZ plane, and is often arranged at an angle from the XZ plane.
次に、車両用合わせガラスについて説明する。
図3は、車両用合わせガラスの一例を模式的に示す分解斜視図である。
第一ガラス板は、室外側に露出される第一主面と、第一主面の反対側の第二主面とを備える。
また、第二ガラス板は、室内側に露出される第四主面と、第四主面の反対側の第三主面とを備える。
なお、上記の「露出される」とは、車両用合わせガラスの機能を損なわない範囲で、防曇性、耐傷性等の各種機能を付与する為のフィルムや膜等を、各主面上に有していてもよいものとする。
図3には車両用合わせガラス10を示している。
図3には図面の手前側に第二ガラス板12を配置した図を示しており、手前側に見える面が第四主面124である。第四主面124の反対側の面が第三主面123である。
図面の奥側に第一ガラス板11を配置しており、手前側に見える面が第二主面112である。第二主面112の反対側の面が第一主面111である。
第一ガラス板11と第二ガラス板12との間に、位相差フィルム100が配置されている。
第四主面124は室内側に露出される面であるので、車両に車両用合わせガラスを配置した際に視認者が直接視認する面になる。すなわち、図3には視認者が車内から直接視認する位置関係を示している。
Next, the laminated glass for vehicles will be described.
FIG. 3 is an exploded perspective view schematically showing an example of laminated glass for a vehicle.
The first glass plate includes a first main surface exposed to the outdoor side and a second main surface opposite to the first main surface.
Further, the second glass plate includes a fourth main surface exposed to the indoor side and a third main surface opposite to the fourth main surface.
The above-mentioned "exposed" means that a film, a film, or the like for imparting various functions such as anti-fog property and scratch resistance is placed on each main surface within a range that does not impair the function of the laminated glass for vehicles. You may have it.
FIG. 3 shows a laminated glass 10 for a vehicle.
FIG. 3 shows a view in which the second glass plate 12 is arranged on the front side of the drawing, and the surface visible on the front side is the fourth main surface 124. The surface opposite to the fourth main surface 124 is the third main surface 123.
The first glass plate 11 is arranged on the back side of the drawing, and the surface visible on the front side is the second main surface 112. The surface opposite to the second main surface 112 is the first main surface 111.
A retardation film 100 is arranged between the first glass plate 11 and the second glass plate 12.
Since the fourth main surface 124 is a surface exposed to the indoor side, it is a surface that the viewer can directly see when the laminated glass for the vehicle is arranged on the vehicle. That is, FIG. 3 shows the positional relationship in which the viewer directly sees from the inside of the vehicle.
車両用合わせガラスにおいては、第一ガラス板と、第二ガラス板とが、中間膜を介して接合され、一体構造となっていることが好ましい。中間膜は、中間膜を構成するポリマーが軟化する温度で、加熱することで、第一ガラス板と、第二ガラス板とを合わせ化するもので、ポリマーとして、ポリビニルブチラール(PVB)、エチレン酢酸ビニル(EVA)、アクリル樹脂(PMMA)、ウレタン樹脂、ポリエチレンテレフタレート(PET)、シクロオレフィンポリマー(COP)等を使用することができる。なお、中間膜は複数の樹脂層で構成されていても良い。 In the laminated glass for vehicles, it is preferable that the first glass plate and the second glass plate are joined via an interlayer film to form an integral structure. The interlayer film combines the first glass plate and the second glass plate by heating at a temperature at which the polymer constituting the interlayer film softens. As polymers, polyvinyl butyral (PVB) and ethylene acetate are used. Vinyl (EVA), acrylic resin (PMMA), urethane resin, polyethylene terephthalate (PET), cycloolefin polymer (COP) and the like can be used. The interlayer film may be composed of a plurality of resin layers.
車両用合わせガラスを構成するガラス材料としては、平板状のガラス板が湾曲形状に加工されたものを好適に使用することができる。ガラス板の材質としては、ISO16293-1で規定されているようなソーダ石灰珪酸塩ガラスの他、アルミノシリケートガラスやホウケイ酸塩ガラス、無アルカリガラス等の公知のガラス組成のものを使用することができる。第一ガラス板、第二ガラス板の、それぞれの厚みは、例えば、0.4mm~3mmとしてもよい。また、第一ガラス板と、第二ガラス板との間隔は、0.01mm~2.5mmとしてもよい。 As the glass material constituting the laminated glass for vehicles, a flat glass plate processed into a curved shape can be preferably used. As the material of the glass plate, in addition to soda lime silicate glass as specified in ISO16293-1, a glass having a known glass composition such as aluminosilicate glass, borosilicate glass, and non-alkali glass can be used. can. The thickness of each of the first glass plate and the second glass plate may be, for example, 0.4 mm to 3 mm. The distance between the first glass plate and the second glass plate may be 0.01 mm to 2.5 mm.
位相差フィルム100は、投影面において、X軸に対してθ傾いた光軸を有し、上記光軸により上記投影面に入射する上記投影光の振動方向を変えるものである。例えば、位相差フィルムが1/2波長フィルムの場合は、上記投影面に入射する投影光の振動方向と、上記光軸とがなす角度をdθとしたとき、入射する上記投影光の振動方向を2dθ回転させる。
なお、本開示の第1実施形態において、位相差フィルムの光軸とは、位相差フィルムにおける屈折率が最も大きい方向の軸を意味する。また、位相差フィルムとしては、基材を持たない層や膜を含んでもよい。例えば、投影部内に光軸を有する層を、塗布、積層、添着、付着、圧着、転写等により形成したものが挙げられる。
The retardation film 100 has an optical axis inclined by θ r with respect to the X axis on the projection surface, and the optical axis changes the vibration direction of the projected light incident on the projection surface. For example, when the retardation film is a 1/2 wavelength film, when the vibration direction of the projected light incident on the projection surface and the angle formed by the optical axis are dθ, the vibration direction of the incident projected light is set. Rotate by 2dθ.
In the first embodiment of the present disclosure, the optical axis of the retardation film means the axis in the direction in which the refractive index of the retardation film is the largest. Further, the retardation film may include a layer or a film having no base material. For example, a layer having an optical axis in the projection portion may be formed by coating, laminating, adhering, adhering, crimping, transferring, or the like.
位相差フィルムは、第一ガラス板と第二ガラス板との間に配置される。
位相差フィルムは中間膜の内部に配置されていてもよいし、第一ガラス板に接する位置に配置されていてもよいし、第二ガラス板に接する位置に配置されていてもよい。また、図3に示したように、位相差フィルムの面が第二主面及び第三主面と面するように配置されるとしてもよい。また、位相差フィルムは全面に配置されても、部分的に配置されてもよく、第二主面や第三主面と面する位相差フィルムの面の面積の合計が、第二主面や第三主面の面積と同等以下であることが好ましい。
また、必要に応じて複数の位相差フィルムを用いてもよく、異なる種類の位相差フィルムや、位相差フィルム以外のフィルムを組み合わせて用いるものでもよい。
上記の位相差フィルムを配置した車両用合わせガラスの辺を、X軸に沿うように配置することによりフロントガラスとしての車両用合わせガラスとすることができる。
The retardation film is arranged between the first glass plate and the second glass plate.
The retardation film may be arranged inside the interlayer film, may be arranged at a position in contact with the first glass plate, or may be arranged at a position in contact with the second glass plate. Further, as shown in FIG. 3, the surface of the retardation film may be arranged so as to face the second main surface and the third main surface. Further, the retardation film may be arranged on the entire surface or partially, and the total area of the surfaces of the retardation film facing the second main surface or the third main surface is the second main surface or It is preferably equal to or less than the area of the third main surface.
Further, a plurality of retardation films may be used as needed, and different types of retardation films or films other than the retardation films may be used in combination.
By arranging the sides of the laminated glass for vehicles on which the above retardation film is arranged along the X-axis, the laminated glass for vehicles as a windshield can be obtained.
位相差フィルムとしては、ポリカーボネート、ポリアリレート、ポリエーテルサルフォン、シクロオレフィンポリマー、トリアセチルセルロース、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のプラスチックフィルムを一軸又は二軸延伸した位相差素子や、液晶ポリマーを特定方向に配向させて配向状態を固定化した位相差素子を用いることができる。
前者のプラスチックフィルムを一軸又は二軸延伸した位相差素子としては、例えば、高分子樹脂を溶媒に溶解した後、ステンレスベルトやポリエチレンテレフタレート(PET)などの平滑な表面上に塗布し、溶媒を蒸発させた後にフィルムを巻き取る溶剤キャスト法や、高分子樹脂を押し出し機に入れて加熱溶融し、スリット(Tダイ)から押し出し冷却した後にフィルムを巻き取る溶融押出法などの方法により製膜したものを使用できる。延伸には一般的に延伸機が用いられ、縦、横、斜めなどに延伸された位相差フィルムを得ることができる。
後者の位相差素子としては、例えば、液晶ポリマーを配向処理したポリエチレンテレフタレート(PET)やトリアセチルセルロース(TAC)等の透明プラスチックフィルムなどの透明基板上に塗布し、熱処理、冷却して液晶配向を固定化したものを使用できる。
上記の液晶ポリマーの例としては、特定の方向に配向する際、ネマティック液晶、ねじれネマティック液晶、ディスコティック液晶、コレステリック液晶などの液晶性を示す化合物であれば特に限定されない。例えば、液晶状態でねじれネマティック配向し、液晶転移点以下ではガラス状態となるものは使用することができ、光学活性なポリエステル、ポリアミド、ポリカーボネート、ポリエステルイミドなどの主鎖型液晶ポリマー、光学活性なポリアクリレート、ポリメタクリレート、ポリマロート、ポリシロキサンなどの側鎖型液晶ポリマーなどが挙げられる。また、光学活性でないこれらの主鎖型あるいは側鎖型ポリマーに、他の低分子あるいは高分子の光学活性化合物を加えたポリマー組成物などを例示することができる。
第一のHUD装置、第二のHUD装置のそれぞれにおける位相差フィルムの役割については、後にそれぞれ説明する。
As the retardation film, a retardation element obtained by uniaxially or biaxially stretching a plastic film such as polycarbonate, polyarylate, polyether sulfone, cycloolefin polymer, triacetyl cellulose, polyethylene terephthalate (PET), or polyethylene naphthalate (PEN). Alternatively, a retardation element in which the liquid crystal polymer is oriented in a specific direction and the orientation state is fixed can be used.
As the former phase difference element obtained by stretching a plastic film uniaxially or biaxially, for example, a polymer resin is dissolved in a solvent and then applied on a smooth surface such as a stainless steel belt or polyethylene terephthalate (PET) to evaporate the solvent. The film is formed by a solvent casting method in which the film is wound after being wound, or a melt extrusion method in which a polymer resin is placed in an extruder to be heated and melted, extruded from a slit (T die), cooled, and then the film is wound. Can be used. A stretching machine is generally used for stretching, and a retardation film stretched vertically, horizontally, diagonally, or the like can be obtained.
As the latter retardation element, for example, a liquid crystal polymer is coated on a transparent substrate such as a transparent plastic film such as polyethylene terephthalate (PET) or triacetyl cellulose (TAC) which has been oriented, and heat-treated and cooled to align the liquid crystal. A fixed one can be used.
Examples of the above-mentioned liquid crystal polymer are not particularly limited as long as they are compounds exhibiting liquid crystal properties such as nematic liquid crystal, twisted nematic liquid crystal, discotic liquid crystal, and cholesteric liquid crystal when oriented in a specific direction. For example, those that are twisted and nematically oriented in the liquid crystal state and are in the glass state below the liquid crystal transition point can be used, and can be used as a main chain type liquid crystal polymer such as optically active polyester, polyamide, polycarbonate, polyesterimide, or optically active poly. Examples thereof include side-chain liquid crystal polymers such as acrylate, polymethacrylate, polycarbonate, and polysiloxane. Further, a polymer composition obtained by adding another small molecule or high molecular weight optically active compound to these non-optically active main chain type or side chain type polymers can be exemplified.
The role of the retardation film in each of the first HUD device and the second HUD device will be described later.
[第一のHUD装置]
まず、第一のHUD装置を例にして本開示の第1実施形態の第1の態様に係るHUD装置について説明する。
図4は、本開示の第1実施形態の第1の態様に係る第一のHUD装置の概略と、該装置での光路を示す模式図である。
図4では、投影光の光路は実線で示されている。
第一のHUD装置1において、投影部は図3に示した車両用合わせガラス10である。
[First HUD device]
First, the HUD device according to the first aspect of the first embodiment of the present disclosure will be described by taking the first HUD device as an example.
FIG. 4 is a schematic diagram showing an outline of a first HUD device according to a first aspect of the first embodiment of the present disclosure and an optical path in the device.
In FIG. 4, the optical path of the projected light is shown by a solid line.
In the first HUD device 1, the projection unit is the vehicle laminated glass 10 shown in FIG.
図4に示す第一のHUD装置1では、映像部31から投影光60が照射される。
ここで、映像部31の発光点32、第一主面111で投影光60が反射する反射点33、視認者35の視点34の3点を含む平面が入射面である。
In the first HUD device 1 shown in FIG. 4, the projected light 60 is emitted from the image unit 31.
Here, the plane including the light emitting point 32 of the image unit 31, the reflection point 33 on which the projected light 60 is reflected on the first main surface 111, and the viewpoint 34 of the viewer 35 is the incident surface.
映像部31から照射された投影光60は、振動方向が限定される必要はないが、振動方向が入射面と平行であるP偏光の光だと、偏光部81を通過する光の量が多くなり、第一主面へ到達する光の量を多く出来るため好ましい。
車両において、映像部31は車両のダッシュボード等に配置することが好ましい。
映像部31から投影光60を照射する向きを変えたり、映像部31の位置を動かすことによって、投影光60を照射する位置を移動させることができる。
The projected light 60 emitted from the image unit 31 does not need to be limited in the vibration direction, but if the light is P-polarized light whose vibration direction is parallel to the incident surface, the amount of light passing through the polarized light unit 81 is large. Therefore, it is preferable because the amount of light reaching the first main surface can be increased.
In the vehicle, it is preferable that the image unit 31 is arranged on the dashboard or the like of the vehicle.
The position of irradiating the projected light 60 can be moved by changing the direction of irradiating the projected light 60 from the image unit 31 or moving the position of the image unit 31.
映像部31と投影部(車両用合わせガラス10)の間には偏光部81が設けられている。偏光部81は、透過した投影光60の振動方向が特定方向となる透過軸を有する部材であり、例えば、公知の偏光板等を用いることができる。
上記の偏光板は上記の特定方向と垂直方向に振動する光を吸収する吸収軸を有するのが望ましい。上記のような透過軸及び吸収軸を有すると、例えば透過軸及び吸収軸のどちらにも沿わない方向に振動する光が入射した際、透過後の光の振動方向を上記特定方向とすることが容易となる。
偏光部81は、投影光60が投影部に到達するより前に、当該偏光部81を通過可能な位置に配置されていればよい。例えば、車両において、偏光部81は上記の映像部31と同様にダッシュボードの中に配置され、光源からの光が迅速に偏光部81を透過するように、光源と隣接して配置されることが好ましい。
A polarizing unit 81 is provided between the image unit 31 and the projection unit (laminated glass 10 for a vehicle). The polarizing unit 81 is a member having a transmission axis in which the vibration direction of the transmitted projected light 60 is a specific direction, and for example, a known polarizing plate or the like can be used.
It is desirable that the above-mentioned polarizing plate has an absorption axis that absorbs light vibrating in the direction perpendicular to the above-mentioned specific direction. With the above-mentioned transmission axis and absorption axis, for example, when light that vibrates in a direction that does not follow either the transmission axis or the absorption axis is incident, the vibration direction of the transmitted light can be set to the above-mentioned specific direction. It will be easy.
The polarizing unit 81 may be arranged at a position where it can pass through the polarizing unit 81 before the projected light 60 reaches the projection unit. For example, in a vehicle, the polarizing unit 81 is arranged in the dashboard in the same manner as the video unit 31 described above, and is arranged adjacent to the light source so that the light from the light source quickly passes through the polarizing unit 81. Is preferable.
第一のHUD装置1において、偏光部81は、入射面と平行な方向に振動する光を透過させる。すなわち、偏光部81を透過した後の投影光61はP偏光となる。 In the first HUD device 1, the polarizing unit 81 transmits light vibrating in a direction parallel to the incident surface. That is, the projected light 61 after passing through the polarizing unit 81 becomes P-polarized light.
偏光部81を透過した後の投影光61がP偏光である場合、偏光サングラス越しで虚像を観察する、サングラスモードでも使用することができる。また、図4では偏光サングラス36を用いているが、当然裸眼でも虚像を観察可能である。まず、映像部31から出射された投影光60は、偏光部81を透過することで、P偏光の投影光61として第四主面124に照射される。この時の角度はブリュースター角が望ましい。一般的に、ブリュースター角で入射したP偏光は反射を生じない為、二重像の原因となる第四主面124での反射を抑制することが可能となる。
映像部は、投影光61が第四主面124に照射されるときの角度がブリュースター角となるように、X軸方向およびY軸方向に移動させることができる。
次に、投影部内を進行した投影光61は、位相差フィルム100に入射されると振動方向が変わる。
第一のHUD装置1においては、第四主面以外のいずれかの面で反射が生じればよいので、位相差フィルム100として1/2波長フィルム(半波長フィルム)や、1/4波長フィルム等を用いることが可能である。
位相差フィルム100を通過した後の光の振動方向は、位相差フィルムの種類や光軸の向きによって様々だが、例えば、位相差フィルムとして1/2波長フィルムを用いている場合は、投影面に入射する投影光の振動方向と、位相差フィルムの光軸とがなす角度をdθとしたとき、投影光の振動方向を2dθ回転させた方向になる。
次に、上記の投影光が第一主面111へ到達すると、反射して反射像を形成する。この時、反射光としてS偏光が反射され、反射しなかった他の光は第一主面111を通過し、室外側へ放出される。
次に、第一主面111で形成された反射像は、再度、位相差フィルム100を通過し、P偏光になる。視認者35は、第一主面111での反射像に基づく光路62の延長上にある虚像621を視認する。
この虚像621はP偏光からなるので、視認者35は偏光サングラス36越しでも、虚像621を視認することができる。
この場合、視認者は、第一ガラス板の室外側面(すなわち第一主面)に形成された反射像に基づく虚像を観察することになる。
When the projected light 61 after passing through the polarizing unit 81 is P-polarized, it can also be used in sunglasses mode in which a virtual image is observed through polarized sunglasses. Further, although polarized sunglasses 36 are used in FIG. 4, a virtual image can be observed with the naked eye as a matter of course. First, the projected light 60 emitted from the image unit 31 passes through the polarizing unit 81 and is irradiated on the fourth main surface 124 as the projected light 61 of P-polarized light. The angle at this time is preferably Brewster's angle. In general, P-polarized light incident at Brewster's angle does not cause reflection, so that it is possible to suppress reflection on the fourth main surface 124, which causes a double image.
The image unit can be moved in the X-axis direction and the Y-axis direction so that the angle at which the projected light 61 is applied to the fourth main surface 124 is the Brewster's angle.
Next, when the projected light 61 traveling in the projection unit is incident on the retardation film 100, the vibration direction changes.
In the first HUD device 1, since it is sufficient that reflection occurs on any surface other than the fourth main surface, the retardation film 100 is a 1/2 wavelength film (half wavelength film) or a 1/4 wavelength film. Etc. can be used.
The vibration direction of light after passing through the retardation film 100 varies depending on the type of retardation film and the direction of the optical axis. For example, when a 1/2 wavelength film is used as the retardation film, the projection surface When the angle formed by the vibration direction of the incident projected light and the optical axis of the retardation film is dθ, the vibration direction of the projected light is rotated by 2 dθ.
Next, when the projected light reaches the first main surface 111, it is reflected to form a reflected image. At this time, S-polarized light is reflected as reflected light, and other light that is not reflected passes through the first main surface 111 and is emitted to the outdoor side.
Next, the reflected image formed on the first main surface 111 passes through the retardation film 100 again and becomes P-polarized light. The viewer 35 visually recognizes the virtual image 621 on the extension of the optical path 62 based on the reflected image on the first main surface 111.
Since the virtual image 621 is composed of P-polarized light, the viewer 35 can visually recognize the virtual image 621 even through the polarized sunglasses 36.
In this case, the viewer observes a virtual image based on the reflected image formed on the outdoor side surface (that is, the first main surface) of the first glass plate.
また、第一主面111へ到達する前に光を反射させる反射用の層がある場合は、当該層で反射が生じる。その場合、反射しなかった光が第一主面111へ到達し、更なる反射が生じると、この反射が二重像の原因となってしまう場合がある。その為、第一主面111へ到達する前に反射が生じる場合は、第一主面111へ到達する前に、再度P偏光となるように光の振動方向を変えることが好ましい。
このような場合も含めると、視認者は、第二ガラス板の室内側面以外に形成された反射像に基づく虚像を観察するようにすることが好ましい。「第二ガラス板の室内側面以外に形成された反射像」には、「第一ガラス板の室外側面に形成された反射像」も含む。
Further, if there is a reflection layer that reflects light before reaching the first main surface 111, reflection occurs in the layer. In that case, if the unreflected light reaches the first main surface 111 and further reflection occurs, this reflection may cause a double image. Therefore, if reflection occurs before reaching the first main surface 111, it is preferable to change the vibration direction of the light so that the light becomes P-polarized again before reaching the first main surface 111.
Including such a case, it is preferable that the viewer observes a virtual image based on the reflected image formed on the side other than the indoor side surface of the second glass plate. The "reflection image formed on the indoor side surface of the second glass plate" also includes the "reflection image formed on the outdoor side surface of the first glass plate".
また、第一のHUD装置において、偏光部81は可動であり、偏光部81を透過させる光の振動方向を変えることができることが好ましい。
偏光部81が可動であると、入射面が変化した場合に、偏光部81が動くことによって、上記特定方向を入射面と平行な方向に合わせることができる。当該特定方向を入射面と平行な方向に合わせることによって、P-HUD方式のHUD装置として好適に使用することができる。
Further, in the first HUD device, it is preferable that the polarizing unit 81 is movable and the vibration direction of the light transmitted through the polarizing unit 81 can be changed.
When the polarizing unit 81 is movable, when the incident surface changes, the polarizing unit 81 moves so that the specific direction can be aligned with the direction parallel to the incident surface. By aligning the specific direction with the direction parallel to the incident surface, it can be suitably used as a P-HUD type HUD device.
[第二のHUD装置]
次に、第二のHUD装置を例にして本開示の第1実施形態の第2の態様に係るHUD装置について説明する。
図5は、本開示の第1実施形態の第2の態様に係る第二のHUD装置の概略と、該装置での光路を示す模式図である。
図5では、投影光の光路は実線で示されている。
第二のHUD装置2において、投影部は図3に示した車両用合わせガラス10である。
[Second HUD device]
Next, the HUD device according to the second aspect of the first embodiment of the present disclosure will be described by taking the second HUD device as an example.
FIG. 5 is a schematic view showing an outline of a second HUD device according to a second aspect of the first embodiment of the present disclosure and an optical path in the device.
In FIG. 5, the optical path of the projected light is shown by a solid line.
In the second HUD device 2, the projection unit is the vehicle laminated glass 10 shown in FIG.
映像部31と投影部(車両用合わせガラス10)の間には偏光部82が設けられている。偏光部82は、投影光に含まれる特定方向に振動する光を透過させる透過軸を有する部材であり、例えば、公知の偏光板等を用いることができる。
偏光部82は、投影光40が投影部に到達するより前に、当該偏光部82を通過可能な位置に配置されていればよい。例えば、車両において、偏光部82は上記の映像部31と同様にダッシュボードの中に配置され、光源からの光が迅速に偏光部82を透過するように、光源と隣接して配置されることが好ましい。
A polarizing unit 82 is provided between the image unit 31 and the projection unit (laminated glass 10 for a vehicle). The polarizing unit 82 is a member having a transmission axis that transmits light contained in the projected light that vibrates in a specific direction, and for example, a known polarizing plate or the like can be used.
The polarizing unit 82 may be arranged at a position where it can pass through the polarizing unit 82 before the projected light 40 reaches the projection unit. For example, in a vehicle, the polarizing unit 82 is arranged in the dashboard in the same manner as the video unit 31 described above, and is arranged adjacent to the light source so that the light from the light source quickly passes through the polarizing unit 82. Is preferable.
第二のHUD装置2において、偏光部82は、投影光40に含まれる特定方向に振動する光を透過させる。 In the second HUD device 2, the polarizing unit 82 transmits light contained in the projected light 40 that vibrates in a specific direction.
第二のHUD装置2では、映像部31から投影光40が照射される。
投影光40が偏光部82を透過した後の投影光41が第四主面124に照射され、第四主面124には反射像が形成される。視認者35は第四主面124に形成された反射像に基づく光路42の延長上にある虚像421を観察する。
In the second HUD device 2, the projected light 40 is emitted from the image unit 31.
The projected light 41 after the projected light 40 has passed through the polarizing portion 82 is irradiated on the fourth main surface 124, and a reflected image is formed on the fourth main surface 124. The viewer 35 observes the virtual image 421 on the extension of the optical path 42 based on the reflected image formed on the fourth main surface 124.
映像部31の発光点32、第四主面124で投影光41が反射する反射点33、視認者35の視点34の3点を含む平面が入射面である。 The plane including the light emitting point 32 of the image unit 31, the reflection point 33 on which the projected light 41 is reflected on the fourth main surface 124, and the viewpoint 34 of the viewer 35 is the incident surface.
映像部31から照射された投影光40は、光の振動方向が特に限定されるものではないが、偏光部82を透過する特定方向に振動する光の量を多くする目的で、偏光部82の透過軸に平行な方向に振動する光を含むことが望ましい。
特定方向に振動する投影光は、第二ガラス板を透過する透過光及び第二ガラス板の室内側面で反射する反射光となるものである。偏光部を透過した特定方向に振動する投影光の振動方向は、第二ガラス板を透過後に下記する振動方向θαとなる。
The direction of vibration of the projected light 40 emitted from the image unit 31 is not particularly limited, but for the purpose of increasing the amount of light that vibrates in a specific direction transmitted through the polarizing unit 82, the polarizing unit 82 It is desirable to include light that oscillates in a direction parallel to the transmission axis.
The projected light that vibrates in a specific direction is a transmitted light that passes through the second glass plate and a reflected light that is reflected on the indoor side surface of the second glass plate. The vibration direction of the projected light that vibrates in a specific direction that has passed through the polarizing portion is the vibration direction θ α described below after passing through the second glass plate.
車両において、映像部31は車両のダッシュボードに配置することが好ましい。
映像部31から投影光40を照射する向きを変えたり、映像部31の位置を動かすことによって、投影光40を照射する位置を移動させることができる。
In the vehicle, the image unit 31 is preferably arranged on the dashboard of the vehicle.
The position of irradiating the projected light 40 can be moved by changing the direction of irradiating the projected light 40 from the image unit 31 or moving the position of the image unit 31.
偏光部82を透過した後の投影光41の一部が第四主面124で反射せずに、第四主面124を透過すると、投影部内を進行した投影光41の振動方向が、位相差フィルム100を通過することで変化する。
位相差フィルム100が投影面においてX軸に対してθ傾いた光軸を有していて、第二ガラス板12を透過し、投影面に入射する投影光41の振動方向θαが、投影面におけるX軸に対する入射面の角度をθとした場合に投影面において2θ-θの方向となっていると、位相差フィルム100を通過することによって、投影光の振動方向が前述したように2dθ回転し、入射面と平行な方向、すなわちP偏光と同様の振動方向になる。
投影光41の振動方向の変化については、図面を参照して以下に説明する。
When a part of the projected light 41 after passing through the polarizing portion 82 is not reflected by the fourth main surface 124 and is transmitted through the fourth main surface 124, the vibration direction of the projected light 41 traveling in the projection portion has a phase difference. It changes by passing through the film 100.
The retardation film 100 has an optical axis tilted θ r with respect to the X axis on the projection surface, and the vibration direction θ α of the projected light 41 that passes through the second glass plate 12 and is incident on the projection surface is projected. When the angle of the incident surface with respect to the X-axis on the surface is θ p , if the direction is 2 θ r − θ p on the projected surface, the vibration direction of the projected light is described above by passing through the retardation film 100. In this way, it rotates by 2dθ and becomes a direction parallel to the incident surface, that is, a vibration direction similar to that of P-polarized light.
The change in the vibration direction of the projected light 41 will be described below with reference to the drawings.
図6は、第二のHUD装置において、位相差フィルム100へ入射させる光の振動方向を説明するための模式図である。また、図6は視認者が前方(第四主面側から第一主面側を見た方向)を見た場合を示す。
図6ではX軸を0°として示している。
X軸に対する位相差フィルムの光軸の角度がθである。ここでは、θを45°で示している。
P偏光の振動方向は入射面に対して平行な方向であり、S偏光の振動方向は入射面に対して垂直な方向である。
投影光41の振動方向と位相差フィルムの光軸のなす角度をdθとする。投影光41が位相差フィルムを通過すると、投影光の振動方向が2dθ回転する。すなわち、投影光41の振動方向が図面において時計回り又は反時計回りに2dθ回転する。この回転により、投影光41の振動方向が入射面に平行になるようにする。
このような条件を満たす場合に、投影光41が位相差フィルムを通過することによってP偏光に変化することになる。
FIG. 6 is a schematic diagram for explaining the vibration direction of the light incident on the retardation film 100 in the second HUD device. Further, FIG. 6 shows a case where the viewer looks forward (direction in which the first main surface side is viewed from the fourth main surface side).
In FIG. 6, the X axis is shown as 0 °.
The angle of the optical axis of the retardation film with respect to the X axis is θ r . Here, θ r is shown at 45 °.
The vibration direction of P-polarized light is a direction parallel to the incident surface, and the vibration direction of S-polarized light is a direction perpendicular to the incident surface.
Let dθ be the angle formed by the vibration direction of the projected light 41 and the optical axis of the retardation film. When the projected light 41 passes through the retardation film, the vibration direction of the projected light is rotated by 2 dθ. That is, the vibration direction of the projected light 41 rotates 2dθ clockwise or counterclockwise in the drawing. By this rotation, the vibration direction of the projected light 41 is made parallel to the incident surface.
When such a condition is satisfied, the projected light 41 passes through the retardation film and changes to P-polarized light.
この条件を満たすような投影面に入射する投影光振動方向をθαと置く。
θαは以下のようにして求められる。
X軸に対する入射面の角度が、図6においてθで示される角度である。
図6より、dθ=θ-θである。・・・式(1)
図6より、θα=θ-dθである。・・・式(2)
上記式(1)、式(2)より、θα=2θ-θ
となる。
上記式(1)が+の場合は図6において反時計回りに振動方向が回転し、-の場合は時計回りに回転する。
すなわち、θα=2θ-θを満たす投影光41を位相差フィルムに入射させると、位相差フィルムを通過した後の光の振動方向が入射面と平行な方向になる。
投影光を位相差フィルム100に入射させる前に、投影光の振動方向θαをθα=2θ-θを満たすようにすることにより、二重像の原因となる他の振動方向の光が位相差フィルムに入射しないようにしている。
The projection light oscillation direction incident on the projection surface such as to satisfy the condition puts a theta alpha.
θ α is obtained as follows.
The angle of the incident surface with respect to the X-axis is the angle indicated by θ p in FIG.
From FIG. 6, dθ = θ p −θ r . ... Equation (1)
From FIG. 6, θ α = θ r − dθ. ... Equation (2)
From the above equations (1) and (2), θ α = 2 θ r −θ p
Will be.
When the above equation (1) is +, the vibration direction rotates counterclockwise in FIG. 6, and when −, it rotates clockwise.
That is, when the projected light 41 satisfying θ α = 2 θ r −θ p is incident on the retardation film, the vibration direction of the light after passing through the retardation film becomes parallel to the incident surface.
By making the vibration direction θ α of the projected light satisfy θ α = 2 θ r −θ p before the projected light is incident on the retardation film 100, the light in the other vibration directions causing the double image. Is prevented from entering the retardation film.
位相差フィルム100を通過してP偏光となった投影光は、第一主面111で反射が生じることなく、投影光はP偏光のまま室外側へ放出される。
このように、第四主面124で反射しなかった投影光について、第一主面111での反射を抑制することができれば、二重像の発生が抑制される。
The projected light that has passed through the retardation film 100 and becomes P-polarized is emitted to the outdoor side as P-polarized light without being reflected by the first main surface 111.
As described above, if it is possible to suppress the reflection of the projected light that was not reflected by the fourth main surface 124 on the first main surface 111, the generation of the double image is suppressed.
また、第二のHUD装置において、偏光部82は可動であり、偏光部82を透過させる光の振動方向を変えることができることが好ましい。
偏光部82が可動であると、入射面が変化した場合に、偏光部82が動くことによって、偏光部82を透過した光の振動方向を変化させることができ、投影面に入射する投影光の振動方向θαをθα=2θ-θを満たす方向に合わせることができる。偏光部82が可動であることによって、投影位置を変えても投影面に入射する投影光の振動方向θαをθα=2θ-θを満たす方向に合わせやすくなる為、S-HUD方式のHUD装置として好適に使用することができる。
Further, in the second HUD device, it is preferable that the polarizing unit 82 is movable and the vibration direction of the light transmitted through the polarizing unit 82 can be changed.
When the polarizing unit 82 is movable, when the incident surface changes, the polarizing unit 82 moves, so that the vibration direction of the light transmitted through the polarizing unit 82 can be changed, and the projected light incident on the projection surface can be changed. The vibration direction θ α can be adjusted to satisfy θ α = 2 θ r − θ p. Since the polarizing unit 82 is movable, it becomes easy to adjust the vibration direction θ α of the projected light incident on the projection surface to the direction satisfying θ α = 2 θ r −θ p even if the projection position is changed. Therefore, the S-HUD method is used. Can be suitably used as a HUD device of.
[偏光部の透過軸の向きの例]
続いて、第一のHUD装置、第二のHUD装置のそれぞれにおける偏光部の透過軸の向きの例について説明する。なお、本開示のHUD装置は以下に挙げる例に限定されるものではない。
以下の例では、視認者は右ハンドル車の運転者の位置に着座している。
視認者の正面が視認者正面領域であり、X軸方向のいずれかの方向に沿って、視認者正面領域よりも遠くなる領域を視認者斜め前方領域とする。
[Example of orientation of transmission axis of polarizing part]
Subsequently, an example of the direction of the transmission axis of the polarizing portion in each of the first HUD device and the second HUD device will be described. The HUD device of the present disclosure is not limited to the examples given below.
In the example below, the viewer is seated in the position of the driver of a right-hand drive vehicle.
The front of the viewer is the front area of the viewer, and the area farther than the front area of the viewer along any direction in the X-axis direction is defined as the diagonally front region of the viewer.
図7は、第一のHUD装置における、視認者、投影部の位置と偏光部の透過軸の向きの関係の一例を模式的に示す図である。
図7において、視認者35は右ハンドル車の運転者の位置に着座している。
図7には、視認者35の左側の視認者斜め前方領域に投影した像621Lと、像621Lを見る場合に使用する偏光部81Lの透過軸の向きを示している。また、視認者の右側の視認者斜め前方領域に投影した像621Rと、像621Rを見る場合に使用する偏光部81Rの透過軸の向きを示している。
FIG. 7 is a diagram schematically showing an example of the relationship between the positions of the viewer and the projection unit and the orientation of the transmission axis of the polarizing unit in the first HUD device.
In FIG. 7, the viewer 35 is seated at the position of the driver of the right-hand drive vehicle.
FIG. 7 shows the orientation of the transmission axis of the image 621L projected on the left side of the viewer 35 in the diagonally forward region of the viewer and the polarizing portion 81L used when viewing the image 621L. Further, it shows the orientation of the transmission axis of the image 621R projected onto the area diagonally forward of the viewer on the right side of the viewer and the polarizing portion 81R used when viewing the image 621R.
視認者がそれぞれの像を見る場合に、偏光部の透過軸の向きを調整する。
図7における偏光部の透過軸の向きは、視認者正面領域であればZ軸に沿った向きであり、この場合を基準線として偏光部81L、偏光部81Rの中に点線で示している。
これに対して、偏光部81L、偏光部81Rの透過軸は、偏光部81L、偏光部81Rの中に示す実線である。
図7の場合、例えば、視認者の左側に設ける偏光部81Lでは透過軸を、X-Z面に沿った面上で反時計回りに回転させる。一方、視認者の右側に設ける偏光部81Rでは透過軸を時計回りに回転させる。透過軸を回転させる角度は二重像が最も低減されるような角度に調整すればよい。また、透過軸が入射面と平行な方向になるように調整するのが好ましい。
なお、図7では透過軸がZ軸上にある為、Z軸方向に沿った向きを基準としているが、図8のように透過軸がX軸上にある場合はX軸に沿った向きを基準とする。
When the viewer sees each image, the direction of the transmission axis of the polarizing portion is adjusted.
The direction of the transmission axis of the polarizing portion in FIG. 7 is the direction along the Z axis in the front region of the viewer, and this case is shown as a dotted line in the polarizing portion 81L and the polarizing portion 81R as a reference line.
On the other hand, the transmission axis of the polarizing unit 81L and the polarizing unit 81R is a solid line shown in the polarizing unit 81L and the polarizing unit 81R.
In the case of FIG. 7, for example, in the polarizing portion 81L provided on the left side of the viewer, the transmission axis is rotated counterclockwise on a plane along the XX plane. On the other hand, in the polarizing unit 81R provided on the right side of the viewer, the transmission axis is rotated clockwise. The angle at which the transmission axis is rotated may be adjusted to an angle that minimizes the double image. Further, it is preferable to adjust the transmission axis so that the direction is parallel to the incident surface.
Since the transmission axis is on the Z axis in FIG. 7, the direction along the Z axis direction is used as a reference. However, when the transmission axis is on the X axis as shown in FIG. 8, the direction along the X axis is used. Use as a reference.
図8は、第二のHUD装置における、視認者、投影部の位置と偏光部の透過軸の向きの関係の一例を模式的に示す図である。
図8において、視認者35は右ハンドル車の運転者の位置に着座している。
図8には、視認者35の左側の視認者斜め前方領域に投影した像421Lと、像421Lを見る場合に使用する偏光部82Lの透過軸の向きを示している。また、視認者の右側の視認者斜め前方領域に投影した像421Rと、像421Rを見る場合に使用する偏光部82Rの透過軸の向きを示している。
FIG. 8 is a diagram schematically showing an example of the relationship between the positions of the viewer and the projection unit and the orientation of the transmission axis of the polarizing unit in the second HUD device.
In FIG. 8, the viewer 35 is seated at the position of the driver of the right-hand drive vehicle.
FIG. 8 shows the orientation of the transmission axis of the image 421L projected on the left side of the viewer 35 in the diagonally forward region of the viewer and the polarizing portion 82L used when viewing the image 421L. Further, the orientation of the transmission axis of the image 421R projected on the right side of the viewer and the obliquely forward region of the viewer and the polarizing portion 82R used when viewing the image 421R is shown.
視認者がそれぞれの像を見る場合に、偏光部の透過軸の向きを調整する。
図8における偏光部の透過軸の向きは、視認者正面領域であればX軸に沿った向きであり、この場合を基準線として偏光部82L、偏光部82Rの中に点線で示している。
これに対して、偏光部82L、偏光部82Rの透過軸は、偏光部82L、偏光部82Rの中に示す実線である。
図8の場合、例えば、視認者の左側に設ける偏光部82Lでは透過軸を、X-Z面に沿った面上で時計回りに回転させる。一方、視認者の右側に設ける偏光部82Rでは透過軸を反時計回りに回転させる。
透過軸を回転させる角度は二重像が最も低減されるような角度に調整すればよい。
When the viewer sees each image, the direction of the transmission axis of the polarizing portion is adjusted.
The direction of the transmission axis of the polarizing section in FIG. 8 is the direction along the X axis in the front region of the viewer, and this case is shown as a dotted line in the polarizing section 82L and the polarizing section 82R with this case as a reference line.
On the other hand, the transmission axes of the polarizing section 82L and the polarizing section 82R are solid lines shown in the polarizing section 82L and the polarizing section 82R.
In the case of FIG. 8, for example, in the polarizing portion 82L provided on the left side of the viewer, the transmission axis is rotated clockwise on a plane along the XX plane. On the other hand, in the polarizing unit 82R provided on the right side of the viewer, the transmission axis is rotated counterclockwise.
The angle at which the transmission axis is rotated may be adjusted to an angle that minimizes the double image.
なお、図7及び図8には位相差フィルムの光軸が45°の場合の例を示しているが、光軸の角度によっては、透過軸を回転させる方向を前述した方向と逆にした方が、二重像をより抑制できることがある。 Although FIGS. 7 and 8 show an example when the optical axis of the retardation film is 45 °, the direction in which the transmission axis is rotated may be opposite to the above-described direction depending on the angle of the optical axis. However, it may be possible to suppress the double image more.
[任意形態]
前述したHUD装置は、特に自動車のフロントガラスに映像を投影する際に適したものであるが、当然、自動車のサイドガラス等に映像を投影してもよい。サイドガラスに映像を投影する場合は、サイドガラスに位相差フィルムを配置し、地面と水平かつ上記移動体が前進する時の進行方向と直交する方向をY軸、地面と水平かつ上記移動体が前進する時の進行方向をX軸として、その他はフロントガラスの場合と同様に投影光を照射すればよい。
[Arbitrary form]
The above-mentioned HUD device is particularly suitable for projecting an image on the windshield of an automobile, but of course, the image may be projected on the side glass of the automobile or the like. When projecting an image on the side glass, a retardation film is placed on the side glass, and the Y-axis is horizontal to the ground and orthogonal to the traveling direction when the moving body moves forward, and the moving body moves horizontally and horizontally to the ground. The direction of travel of time may be set as the X-axis, and the other areas may be irradiated with projected light in the same manner as in the case of the windshield.
[視認者が複数名である場合の例]
本開示の第1実施形態に係るHUD装置は、視認者が複数名である場合に、フロントガラス面の中央領域に表示された像を複数名の視認者が斜めから視認した場合に、いずれの視認者からみても二重像の発生を抑制し得るヘッドアップディスプレイ装置とすることができる。
以下に、視認者が、右ハンドル車の運転者の位置に着座する運転者と助手席に着座する同乗者の2名である場合の二重像の発生の抑制について説明する。
運転者、同乗者のそれぞれの正面がそれぞれの視認者の正面の視認者正面領域であり、X軸方向のいずれかの方向に沿って、視認者正面領域よりも遠くなる領域を視認者斜め前方領域とする。また、X軸方向及びZ軸方向に沿って、上記視認者正面領域に対して遠くなる領域も視認者斜め前方領域とする。
投影光は、運転者と同乗者のそれぞれの視認者正面領域の間であり、運転者と同乗者のそれぞれの視認者斜め前方領域に相当する領域である中央領域に投影される。
[Example when there are multiple viewers]
The HUD device according to the first embodiment of the present disclosure is any of the above, when there are a plurality of viewers and the image displayed in the central region of the windshield surface is visually recognized by the plurality of viewers from an angle. It can be a head-up display device that can suppress the generation of double images even from the viewpoint of the viewer.
The suppression of the occurrence of double images when the viewer is two people, a driver sitting in the position of the driver of the right-hand drive vehicle and a passenger seated in the passenger seat, will be described below.
The front of each of the driver and the passenger is the front area of the viewer in front of each viewer, and the area farther than the front area of the viewer is diagonally forward of the viewer along any direction in the X-axis direction. Let it be an area. Further, a region that is far from the viewer front region along the X-axis direction and the Z-axis direction is also defined as a viewer diagonally forward region.
The projected light is projected between the front area of each of the driver and the passenger, and is projected onto the central area, which is an area corresponding to the diagonally forward area of each of the driver and the passenger.
図9は、第一のHUD装置において視認者が複数名である場合の視認者、投影部の位置と偏光部の透過軸の向きの関係の一例を模式的に示す図である。
図9に示す第一のHUD装置1において、視認者である運転者35D、同乗者35Pは、中央領域に投影された像621Cを視認する。
なお、図9では像621Cを1つ表示させているが、複数表示させてもよい。
FIG. 9 is a diagram schematically showing an example of the relationship between the positions of the viewers and the projection unit and the orientation of the transmission axis of the polarizing unit when there are a plurality of viewers in the first HUD device.
In the first HUD device 1 shown in FIG. 9, the driver 35D and the passenger 35P, who are the viewers, visually recognize the image 621C projected on the central region.
Although one image 621C is displayed in FIG. 9, a plurality of images 621C may be displayed.
図9においては、運転者35D、同乗者35Pのそれぞれに対して映像部(図示省略)が設けられており、各映像部は、中央領域において像621Cが重なるように投影光を投影部(フロントガラス面)に照射する。
車両において、映像部は車両のダッシュボードに、複数の視認者に合わせて複数配置されることが好ましい。
また、運転者35D、同乗者35Pのそれぞれに対して、偏光部81D、偏光部81Pが設けられている。偏光部81D、偏光部81Pは運転者35D、同乗者35Pのそれぞれに対応する映像部と投影部の間に設けられる。
車両において、偏光部81D及び偏光部81Pは映像部と同様にダッシュボードの中に配置され、光源からの光が迅速に偏光部81D又は偏光部81Pを透過するように、光源と隣接して配置されることが好ましい。
In FIG. 9, an image unit (not shown) is provided for each of the driver 35D and the passenger 35P, and each image unit projects projected light (front) so that the image 621C overlaps in the central region. Irradiate the glass surface).
In the vehicle, it is preferable that a plurality of image units are arranged on the dashboard of the vehicle according to a plurality of viewers.
Further, a polarizing unit 81D and a polarizing unit 81P are provided for each of the driver 35D and the passenger 35P. The polarizing unit 81D and the polarizing unit 81P are provided between the image unit and the projection unit corresponding to the driver 35D and the passenger 35P, respectively.
In the vehicle, the polarizing section 81D and the polarizing section 81P are arranged in the dashboard in the same manner as the video section, and are arranged adjacent to the light source so that the light from the light source quickly passes through the polarizing section 81D or the polarizing section 81P. It is preferable to be done.
偏光部81Dは運転者35Dの入射面に平行な方向に振動する投影光を透過させる透過軸を有し、偏光部81Pは同乗者35Pの入射面に平行な方向に振動する投影光を透過させる透過軸を有する。
偏光部81Dの透過軸の向きと、偏光部81Pの透過軸の向きは異なっている。
具体的には、図9における偏光部81Dの透過軸の向きは、視認者正面領域であればY-Z面に沿った向きであり、この場合を基準線として反時計回りに回転した方向である。偏光部81Pの透過軸の向きは、視認者正面領域であればY-Z面に沿った向きであり、この場合を基準線として時計回りに回転した方向である。
偏光部81Dの透過軸の向きと偏光部81Pの透過軸の向きが、視認者毎に設けられた入射面と投影面の位置の関係に合わせて調整される。このようにすることによって、フロントガラス面の中央領域に表示された像を複数名の視認者(運転者及び同乗者)が斜めから視認した場合に、いずれの視認者からみても二重像の発生を抑制し得るヘッドアップディスプレイ装置とすることができる。
The polarizing unit 81D has a transmission axis that transmits the projected light that vibrates in the direction parallel to the incident surface of the driver 35D, and the polarizing unit 81P transmits the projected light that vibrates in the direction parallel to the incident surface of the passenger 35P. It has a transmission axis.
The direction of the transmission axis of the polarizing section 81D and the direction of the transmission axis of the polarizing section 81P are different.
Specifically, the direction of the transmission axis of the polarizing portion 81D in FIG. 9 is the direction along the YY plane in the front region of the viewer, and in the direction rotated counterclockwise with this case as the reference line. be. The direction of the transmission axis of the polarizing portion 81P is the direction along the YY plane in the front region of the viewer, and is the direction rotated clockwise with this case as the reference line.
The orientation of the transmission axis of the polarizing section 81D and the orientation of the transmission axis of the polarizing section 81P are adjusted according to the relationship between the positions of the incident surface and the projection surface provided for each viewer. By doing so, when the image displayed in the central region of the windshield surface is visually recognized by a plurality of viewers (driver and passenger) from an angle, the double image can be seen from any of the viewers. It can be a head-up display device that can suppress the occurrence.
図10は、第二のHUD装置において視認者が複数名である場合の視認者、投影部の位置と偏光部の透過軸の向きの関係の一例を模式的に示す図である。
図10に示す第二のHUD装置2において、視認者である運転者35D、同乗者35Pは、中央領域に投影された像421Cを視認する。
FIG. 10 is a diagram schematically showing an example of the relationship between the positions of the viewers and the projection unit and the orientation of the transmission axis of the polarizing unit when there are a plurality of viewers in the second HUD device.
In the second HUD device 2 shown in FIG. 10, the driver 35D and the passenger 35P, who are the viewers, visually recognize the image 421C projected on the central region.
運転者35D、同乗者35Pのそれぞれに対して入射面が設けられている。
また、運転者35D、同乗者35Pのそれぞれに対して、偏光部82D、偏光部82Pが設けられている。
偏光部82Dは、位相差フィルムの光軸の角度をθとし、投影面におけるX軸に対する、運転者35Dにとっての入射面の角度をθとした場合に、偏光部82Dを透過して、投影面に入射する投影光の振動方向θαがθα=2θ-θを満たすように設けられている。
また、偏光部82Pは、位相差フィルムの光軸の角度をθとし、投影面におけるX軸に対する、同乗者35Pにとっての入射面の角度をθとした場合に、偏光部82Pを透過して、投影面に入射する投影光の振動方向θαがθα=2θ-θを満たすように設けられている。
偏光部82Dの透過軸の向きと、偏光部82Pの透過軸の向きは異なっている。
具体的には、図10における偏光部82Dの透過軸の向きは、視認者正面領域であればX-Y面に沿った向きであり、この場合を基準線として時計回りに回転した方向である。偏光部82Pの透過軸の向きは、視認者正面領域であればX-Y面に沿った向きであり、この場合を基準線として反時計回りに回転した方向である。
偏光部82Dの透過軸の向きと偏光部82Pの透過軸の向きが、視認者毎に設けられた入射面と投影面の位置の関係に合わせて調整される。このようにすることによって、フロントガラス面の中央領域に表示された像を複数名の視認者(運転者及び同乗者)が斜めから視認した場合に、いずれの視認者からみても二重像の発生を抑制し得るヘッドアップディスプレイ装置とすることができる。
An incident surface is provided for each of the driver 35D and the passenger 35P.
Further, a polarizing unit 82D and a polarizing unit 82P are provided for each of the driver 35D and the passenger 35P.
The polarizing unit 82D transmits through the polarizing unit 82D when the angle of the optical axis of the retardation film is θ r and the angle of the incident surface for the driver 35D with respect to the X axis on the projection surface is θ p . The vibration direction θ α of the projected light incident on the projection surface is provided so as to satisfy θ α = 2 θ r −θ p.
Further, the polarizing unit 82P transmits the polarizing unit 82P when the angle of the optical axis of the retardation film is θ r and the angle of the incident surface for the passenger 35P with respect to the X axis on the projection surface is θ p. Therefore, the vibration direction θ α of the projected light incident on the projection surface is provided so as to satisfy θ α = 2 θ r −θ p.
The direction of the transmission axis of the polarizing unit 82D is different from the direction of the transmission axis of the polarizing unit 82P.
Specifically, the direction of the transmission axis of the polarizing portion 82D in FIG. 10 is the direction along the XY plane in the front region of the viewer, and is the direction rotated clockwise with this case as the reference line. .. The direction of the transmission axis of the polarizing unit 82P is the direction along the XY plane in the front region of the viewer, and is the direction of rotation counterclockwise with this case as the reference line.
The direction of the transmission axis of the polarizing unit 82D and the direction of the transmission axis of the polarizing unit 82P are adjusted according to the relationship between the positions of the incident surface and the projection surface provided for each viewer. By doing so, when the image displayed in the central region of the windshield surface is visually recognized by a plurality of viewers (driver and passenger) from an angle, the double image can be seen from any of the viewers. It can be a head-up display device that can suppress the occurrence.
[ヘッドアップディスプレイシステム(HUDシステム)]
本開示の第1実施形態に係るHUDシステムは、一つのシステムにおいて偏光部を透過させる光の振動方向を切り替えることができるようにしたシステムである。
そして、偏光部を透過させる光の振動方向を変えることによって、第一のHUD装置としても第二のHUD装置としても使用することができるようにしたシステムである。
具体的には以下の(A)及び(B)を切り替え可能である。
(A)上記第二ガラス板へ入射する光の振動方向を、上記入射面と平行な方向とする。
(B)上記位相差フィルムが、上記投影面に入射する上記投影光の振動方向θαと上記光軸とがなす角度をdθとした場合に、入射する上記投影光の振動方向を2dθ回転させるものであるとして、上記第二ガラス板を透過した光の振動方向を、上記投影面におけるX軸に対する上記入射面の角度をθとした場合に上記投影面において2θ-θの方向となるようにする。
上記(A)のようにした場合はP-HUDとなり、第一のHUD装置として使用することができる。
上記(B)のようにした場合はS-HUDとなり、第二のHUD装置として使用することができる。
[Head-up display system (HUD system)]
The HUD system according to the first embodiment of the present disclosure is a system capable of switching the vibration direction of the light transmitted through the polarizing portion in one system.
Then, by changing the vibration direction of the light transmitted through the polarizing portion, the system can be used as both the first HUD device and the second HUD device.
Specifically, the following (A) and (B) can be switched.
(A) The vibration direction of the light incident on the second glass plate is set to be a direction parallel to the incident surface.
(B) the retardation film, when the angle between the vibration direction theta alpha and the optical axis of the projection light incident on the projection plane and d [theta], thereby 2dθ rotational vibration direction of the projection light incident Assuming that, the vibration direction of the light transmitted through the second glass plate is the direction of 2θ r − θ p on the projection surface when the angle of the incident surface with respect to the X axis on the projection surface is θ p. To be.
When the above (A) is performed, it becomes P-HUD and can be used as the first HUD device.
When the above (B) is performed, it becomes S-HUD and can be used as a second HUD device.
また、投影部において、投影光が投影される投影位置が変更可能であるようにしてもよい。
第一のHUD装置の場合、偏光部は、入射面と平行な特定方向に振動する光を透過させる透過軸を有している。
ここで、投影位置が変更になると、入射面が変更になる。
入射面が変更になった場合に偏光部の位置がそのままであると、偏光部を透過した光の振動方向が入射面と平行な方向からずれてしまう。そのため、偏光部を透過した後にP偏光ではない光の割合が高くなり、二重像が生じやすくなる。
そこで、投影位置が変更になった場合に、投影位置に合わせて偏光部を可動させて、偏光部を透過する投影光の振動方向を変えて、変更された入射面と平行な方向に振動する光を透過させるようにする。
これにより、投影位置が変更になった場合でも、二重像を抑制することができる。
Further, the projection position on which the projected light is projected may be changed in the projection unit.
In the case of the first HUD device, the polarizing portion has a transmission axis that transmits light oscillating in a specific direction parallel to the incident surface.
Here, when the projection position is changed, the incident surface is changed.
If the position of the polarizing portion remains the same when the incident surface is changed, the vibration direction of the light transmitted through the polarizing portion deviates from the direction parallel to the incident surface. Therefore, the proportion of light that is not P-polarized light increases after passing through the polarized light portion, and a double image is likely to occur.
Therefore, when the projection position is changed, the polarizing portion is moved according to the projection position to change the vibration direction of the projected light transmitted through the polarizing portion, and the light vibrates in a direction parallel to the changed incident surface. Allow light to pass through.
As a result, even if the projection position is changed, the double image can be suppressed.
第二のHUD装置の場合でも同様であり、投影位置が変更されて入射面が変更されたことに合わせて、偏光部及び透過軸を可動させる。
具体的には、変更された投影面におけるX軸に対する変更された入射面の角度をθとした場合に変更された投影面において2θ-θの方向(位相差フィルムの光軸の角度がθ)となる光を透過させるようにする。
これにより、投影位置が変更になった場合でも、二重像を抑制することができる。
The same applies to the case of the second HUD device, and the polarizing unit and the transmission axis are moved according to the change in the projection position and the change in the incident surface.
Specifically, when the angle of the changed incident surface with respect to the X axis on the changed projection surface is θ p , the direction of 2θ r − θ p on the changed projection surface (angle of the optical axis of the retardation film). Is made to transmit light such that is θ r).
As a result, even if the projection position is changed, the double image can be suppressed.
(本開示の第1の実施形態に係る実施例)
視認者正面領域と視認者斜め前方領域のそれぞれにおいて、偏光部を透過させる光の振動方向を変化させた場合の二重像の発生の様子を比較する実験を行った。
まず、第一のHUD装置を使用した場合の実験結果を示す。
図11は、実施例及び比較例で使用した第一のHUD装置を模式的に示す配置図である。
図12は、実施例1における実験系を模式的に示す図であり、図13は、比較例1における実験系を模式的に示す図である。
(Example according to the first embodiment of the present disclosure)
An experiment was conducted to compare the generation of double images when the vibration direction of the light transmitted through the polarizing portion was changed in each of the front area of the viewer and the diagonally front area of the viewer.
First, the experimental results when the first HUD device is used are shown.
FIG. 11 is a layout diagram schematically showing the first HUD apparatus used in Examples and Comparative Examples.
FIG. 12 is a diagram schematically showing the experimental system in Example 1, and FIG. 13 is a diagram schematically showing the experimental system in Comparative Example 1.
図11に示すような第一のHUD装置を準備した。第一のHUD装置1は、P-HUD方式用の、150mm×150mmの正方形の投影部を有する。第一のHUD装置1内の位相差フィルムの光軸は45°とした。
図11に示すとおり、映像部31を水平に置き、車両用合わせガラス10を、映像部31に対して、ブリュースター角を形成する57°の位置関係で配置する。
映像部31の上に偏光部81としての偏光板を載置することにより、映像部31と車両用合わせガラス10の間に偏光部81を配置する。
映像部31から、垂直上方へ向けて、投影光を照射し、視認者35は、第一主面111での反射像に基づく光路の延長上にある虚像を観察する。
視認者の視点と車両用合わせガラスの高さは同じである。
映像部31としてはタブレットを使用し、タブレットから緑色格子像を表示する。タブレットの上に偏光板を載置して車両用合わせガラスの直下に配置する。
また、移動体の夜間での走行を模擬するために、視認者35が視認する方向で、車両用合わせガラス10の向こう側には、黒の背景板37が配置されている。
A first HUD device as shown in FIG. 11 was prepared. The first HUD device 1 has a 150 mm × 150 mm square projection unit for the P-HUD system. The optical axis of the retardation film in the first HUD device 1 was set to 45 °.
As shown in FIG. 11, the image unit 31 is placed horizontally, and the vehicle laminated glass 10 is arranged with respect to the image unit 31 in a positional relationship of 57 ° forming a Brewster angle.
By placing a polarizing plate as a polarizing unit 81 on the image unit 31, the polarizing unit 81 is arranged between the image unit 31 and the laminated glass 10 for a vehicle.
The image unit 31 irradiates the projected light vertically upward, and the viewer 35 observes a virtual image on the extension of the optical path based on the reflected image on the first main surface 111.
The viewpoint of the viewer and the height of the laminated glass for the vehicle are the same.
A tablet is used as the image unit 31, and a green grid image is displayed from the tablet. A polarizing plate is placed on the tablet and placed directly under the laminated glass for vehicles.
Further, in order to simulate the traveling of the moving body at night, a black background plate 37 is arranged on the other side of the laminated glass 10 for the vehicle in the direction in which the viewer 35 visually recognizes the moving body.
図12及び図13に示すように、観察点として視認者35の正面をX軸方向の位置0の地点として、左側に-200mm地点、-400mm地点を設けた。
なお、X軸方向の左側を「-」方向、右側を「+」方向としている。
実施例1では、図12に示す通り、視認者正面領域(X軸方向の位置0の地点)では偏光部81の透過軸をY軸方向を基準線として0°としている。
図12及び図13並びに後述する図15及び図16では、偏光部の位置はX-Y面での位置として示し、車両用合わせガラスの位置はX-Z面での位置として示している。
視認者斜め前方領域である-200mm地点、-400mm地点では偏光部81の透過軸を反時計回りに回転させた。回転角はそれぞれ+10°、+25°とした。回転角は反時計回り方向を+、時計回り方向を-としている。
上記実験は、視認者35の位置を固定して、150mm×150mmの正方形の投影部の位置をそれぞれX軸方向に-200mmずつずらし、さらに映像部をX軸方向に-200mmずつずらし、偏光部も投影部と映像部の間に配置されるように、同様にX軸方向に-200mmずつずらすことによって行った。
比較例1では、図13に示す通り、すべての観察点で偏光部81の透過軸をY軸方向を基準線として0°とした。
As shown in FIGS. 12 and 13, the front of the viewer 35 was set as the point of position 0 in the X-axis direction as the observation point, and the -200 mm point and the -400 mm point were provided on the left side.
The left side in the X-axis direction is the "-" direction, and the right side is the "+" direction.
In the first embodiment, as shown in FIG. 12, the transmission axis of the polarizing portion 81 is set to 0 ° with the Y-axis direction as a reference line in the front area of the viewer (the point at the position 0 in the X-axis direction).
In FIGS. 12 and 13 and FIGS. 15 and 16 described later, the position of the polarizing portion is shown as the position on the XY plane, and the position of the laminated glass for the vehicle is shown as the position on the XY plane.
The transmission axis of the polarizing portion 81 was rotated counterclockwise at the -200 mm point and the -400 mm point, which are diagonally forward regions of the viewer. The rotation angles were + 10 ° and + 25 °, respectively. The rotation angle is + in the counterclockwise direction and-in the clockwise direction.
In the above experiment, the position of the viewer 35 was fixed, the position of the projection portion of a 150 mm × 150 mm square was shifted by -200 mm in the X-axis direction, and the image portion was further shifted by -200 mm in the X-axis direction. Was also performed by shifting by −200 mm in the X-axis direction so as to be arranged between the projection unit and the image unit.
In Comparative Example 1, as shown in FIG. 13, the transmission axis of the polarizing unit 81 was set to 0 ° with the Y-axis direction as the reference line at all observation points.
図14は、実施例1及び比較例1において視認される虚像を示す写真である。
それぞれ視認者からの距離が同じ位置で比較すると、実施例1において視認者斜め前方領域にあたる-200mm地点、-400mm地点において二重像の発生が抑制されていることが確認できた。
一方、比較例1ではこれらの地点で横方向及び縦方向に伸びる二重像が観察された。
FIG. 14 is a photograph showing a virtual image visually recognized in Example 1 and Comparative Example 1.
Comparing the two at the same distance from the viewer, it was confirmed that in Example 1, the occurrence of double images was suppressed at the -200 mm point and the -400 mm point, which correspond to the diagonally forward region of the viewer.
On the other hand, in Comparative Example 1, double images extending in the horizontal and vertical directions were observed at these points.
次に、第二のHUD装置を使用した場合の実験結果を示す。
実験系自体は図11に示した第一のHUD装置と同様である。偏光部81に代えて第二のHUD装置で使用する偏光部82としての偏光板を用いている。また、視認者35は、第四主面124での反射像に基づく光路の延長上にある虚像を観察する。
図15は、実施例2における実験系を模式的に示す図であり、図16は、比較例2における実験系を模式的に示す図である。
Next, the experimental results when the second HUD device is used are shown.
The experimental system itself is similar to the first HUD apparatus shown in FIG. Instead of the polarizing unit 81, a polarizing plate as the polarizing unit 82 used in the second HUD device is used. In addition, the viewer 35 observes a virtual image on the extension of the optical path based on the reflected image on the fourth main surface 124.
FIG. 15 is a diagram schematically showing the experimental system in Example 2, and FIG. 16 is a diagram schematically showing the experimental system in Comparative Example 2.
図15及び図16に示すように、観察点として視認者35の正面をX軸方向の位置0の地点として、左側に-200mm地点、-400mm地点を設けた。
なお、X軸方向の左側を「-」方向、右側を「+」方向としている。
実施例2では、図15に示す通り、視認者正面領域(X軸方向の位置0の地点)では偏光部82の透過軸をX軸方向を基準線として0°としている。
視認者斜め前方領域である-200mm地点、-400mm地点では偏光部82の透過軸を時計回りに回転させた。回転角はそれぞれ-15°、-20°とした。回転角は反時計回り方向を+、時計回り方向を-としている。
上記実験は、視認者35の位置を固定して、150mm×150mmの正方形の投影部の位置をそれぞれX軸方向に-200mmずつずらし、さらに映像部をX軸方向に-200mmずつずらし、偏光部も投影部と映像部の間に配置されるように、同様にX軸方向に-200mmずつずらすことによって行った。
比較例2では、図16に示す通り、すべての観察点で偏光部82の透過軸をX軸方向を基準線として0°とした。
As shown in FIGS. 15 and 16, the front of the viewer 35 was set as the point of position 0 in the X-axis direction as the observation point, and the -200 mm point and the -400 mm point were provided on the left side.
The left side in the X-axis direction is the "-" direction, and the right side is the "+" direction.
In the second embodiment, as shown in FIG. 15, the transmission axis of the polarizing unit 82 is set to 0 ° with the X-axis direction as the reference line in the front area of the viewer (the point at the position 0 in the X-axis direction).
The transmission axis of the polarizing portion 82 was rotated clockwise at the −200 mm point and the −400 mm point, which are the areas diagonally forward to the viewer. The rotation angles were -15 ° and -20 °, respectively. The rotation angle is + in the counterclockwise direction and-in the clockwise direction.
In the above experiment, the position of the viewer 35 was fixed, the position of the projection portion of a 150 mm × 150 mm square was shifted by -200 mm in the X-axis direction, and the image portion was further shifted by -200 mm in the X-axis direction. Was also performed by shifting by −200 mm in the X-axis direction so as to be arranged between the projection unit and the image unit.
In Comparative Example 2, as shown in FIG. 16, the transmission axis of the polarizing unit 82 was set to 0 ° with the X-axis direction as the reference line at all observation points.
図17は、実施例2及び比較例2において視認される虚像を示す写真である。
それぞれ視認者からの距離が同じ位置で比較すると、実施例2において視認者斜め前方領域にあたる-200mm地点、-400mm地点において二重像の発生が抑制されていることが確認できた。
一方、比較例2ではこれらの地点で横方向及び縦方向に伸びる二重像が観察された。
FIG. 17 is a photograph showing a virtual image visually recognized in Example 2 and Comparative Example 2.
Comparing the two at the same distance from the viewer, it was confirmed that in Example 2, the occurrence of double images was suppressed at the -200 mm point and the -400 mm point, which correspond to the diagonally forward region of the viewer.
On the other hand, in Comparative Example 2, double images extending in the horizontal and vertical directions were observed at these points.
(第2実施形態)
本開示の第2実施形態に係るヘッドアップディスプレイ装置(HUD装置)、位相差フィルム、車両用合わせガラス及びヘッドアップディスプレイシステム(HUDシステム)について、それぞれ図面を用いて説明する。
(Second Embodiment)
The head-up display device (HUD device), retardation film, laminated glass for vehicles, and head-up display system (HUD system) according to the second embodiment of the present disclosure will be described with reference to the drawings.
なお、本開示の第2実施形態に係るHUD装置としては、振動方向がX方向である投影光を照射する映像部を備えるHUD装置と、振動方向がYZ平面に平行な方向である投影光を照射する映像部を備えるHUD装置があり、それぞれを第三のHUD装置、第四のHUD装置ともいう。本開示の第2実施形態に係るヘッドアップディスプレイ装置の説明において、第三のHUD装置と第四のHUD装置を区別しないときは単に本開示の第2実施形態に係るHUD装置という。
また、本開示の第2実施形態に係るHUDシステムは、一つのシステムにおいて照射する投影光の種類を切り替えることによって第三のHUD装置としても第四のHUD装置としても使用することができるようにしたシステムである。
The HUD device according to the second embodiment of the present disclosure includes a HUD device including an image unit that irradiates a projected light whose vibration direction is the X direction, and a projected light whose vibration direction is parallel to the YZ plane. There is a HUD device provided with an image unit to be irradiated, and each is also referred to as a third HUD device and a fourth HUD device. In the description of the head-up display device according to the second embodiment of the present disclosure, when the third HUD device and the fourth HUD device are not distinguished, it is simply referred to as the HUD device according to the second embodiment of the present disclosure.
Further, the HUD system according to the second embodiment of the present disclosure can be used as both a third HUD device and a fourth HUD device by switching the type of projected light emitted in one system. It is a system that has been used.
また、本開示の第2実施形態に係る位相差フィルムは、本開示の第2実施形態に係る車両用合わせガラス、HUD装置及びHUDシステムに使用可能な位相差フィルムである。また、本開示の第2実施形態に係る車両用合わせガラスは、本開示の第2実施形態に係るHUD装置及びHUDシステムに使用可能な車両用合わせガラスである。 The retardation film according to the second embodiment of the present disclosure is a retardation film that can be used for the laminated glass for vehicles, the HUD device, and the HUD system according to the second embodiment of the present disclosure. The vehicle laminated glass according to the second embodiment of the present disclosure is a vehicle laminated glass that can be used for the HUD device and the HUD system according to the second embodiment of the present disclosure.
まず、本開示の第2実施形態に係る位相差フィルムについて説明し、次に本開示の第2実施形態に係る車両用合わせガラスについて説明する。
続けて本開示の第2実施形態に係るHUD装置について説明し、最後に本開示の第2実施形態に係るHUDシステムについて説明する。
First, the retardation film according to the second embodiment of the present disclosure will be described, and then the laminated glass for vehicles according to the second embodiment of the present disclosure will be described.
Subsequently, the HUD device according to the second embodiment of the present disclosure will be described, and finally, the HUD system according to the second embodiment of the present disclosure will be described.
[位相差フィルム]
本開示の第2実施形態に係る位相差フィルムは、上下方向の縦軸及び左右方向の横軸を有する、一体物である位相差フィルムであって、縦軸に沿った複数の地点において、位相差フィルムの光軸と横軸とがなす角は一定であり、横軸方向に沿って、位相差フィルムの光軸と横軸とがなす角が一定傾向で変化することを特徴とする。
本開示の第2実施形態において、位相差フィルムの光軸とは、位相差フィルムにおける屈折率が最も大きい方向の軸を意味する。
また、本開示の第2実施形態における位相差フィルムは、1/2波長フィルム(半波長フィルム)である。
[Phase difference film]
The retardation film according to the second embodiment of the present disclosure is an integral retardation film having a vertical axis in the vertical direction and a horizontal axis in the horizontal direction, and is positioned at a plurality of points along the vertical axis. The angle formed by the optical axis and the horizontal axis of the retardation film is constant, and the angle formed by the optical axis and the horizontal axis of the retardation film changes with a constant tendency along the horizontal axis direction.
In the second embodiment of the present disclosure, the optical axis of the retardation film means the axis in the direction in which the refractive index of the retardation film is the largest.
The retardation film in the second embodiment of the present disclosure is a 1/2 wavelength film (half wavelength film).
図18は、本開示の第2実施形態に係る位相差フィルムの一例を模式的に示す図面である。
図18には、位相差フィルム201の各地点における位相差フィルムの光軸を模式的に示している。また、「横軸」と「縦軸」の向きを示している。
図18のP地点において、位相差フィルムの光軸と横軸とがなす角は45°である。
なお、位相差フィルムの光軸と横軸とがなす角は、2直線の交点で形成される角度のうち小さい方の角度として定める。位相差フィルムの光軸と横軸が平行の場合は、位相差フィルムの光軸と横軸とがなす角は0°とする。
縦軸に沿った複数の地点であるP地点、P地点、P地点においてはいずれも位相差フィルムの光軸と横軸がなす角は一定であり、45°である。
FIG. 18 is a drawing schematically showing an example of a retardation film according to the second embodiment of the present disclosure.
FIG. 18 schematically shows the optical axis of the retardation film at each point of the retardation film 201. In addition, the directions of the "horizontal axis" and the "vertical axis" are shown.
In P 1 point in FIG. 18, the angle formed with the optical axis and the horizontal axis of the retardation film is 45 °.
The angle formed by the optical axis and the horizontal axis of the retardation film is defined as the smaller angle of the angles formed at the intersections of the two straight lines. When the optical axis and the horizontal axis of the retardation film are parallel, the angle formed by the optical axis and the horizontal axis of the retardation film is 0 °.
At a plurality of points along the vertical axis, P 1 , P 2 , and P 3 , the angle formed by the optical axis and the horizontal axis of the retardation film is constant and is 45 °.
本開示の第2実施形態に係る位相差フィルムでは、横軸方向に沿って、位相差フィルムの光軸と横軸とがなす角が一定傾向で変化する。
図18には、横軸方向に沿って、位相差フィルムの光軸と横軸とがなす角が連続的に変化する形態の位相差フィルムを示している。
In the retardation film according to the second embodiment of the present disclosure, the angle formed by the optical axis and the horizontal axis of the retardation film changes with a constant tendency along the horizontal axis direction.
FIG. 18 shows a retardation film in a form in which the angle formed by the optical axis and the horizontal axis of the retardation film continuously changes along the horizontal axis direction.
図18に示す位相差フィルム201には、P地点から横軸方向に沿って左側に位置する点であるN地点、O地点とP地点から横軸方向に沿って右側に位置する点であるQ地点、R地点を示している。
図18の左から右に向かう各地点で、位相差フィルムの光軸と横軸とがなす角は、N地点では35°、O地点では40°、P地点では45°、Q地点では50°、R地点では55°となっており、横軸方向に沿って、位相差フィルムの光軸と横軸とがなす角が一定傾向で変化していることがわかる。
また、位相差フィルムの光軸と横軸とがなす角が連続的に変化していることから、例えばO地点とP地点の間では、図18の左から右に向かう各地点で位相差フィルムの光軸と横軸とがなす角が40°から45°に向かって連続的に変化している。
The retardation film 201 illustrated in FIG. 18, located on the right N 1 point along the horizontal axis from P 1 point is a point located on the left side, from O 1 point and P 1 point along the horizontal axis in which Q 1 point point, shows the R 1 point.
In each point from left to right in FIG. 18, the angle formed with the optical axis and the horizontal axis of the retardation film, 35 ° in N 1 point, 40 ° in the O 1 point, 45 ° at P 1 point, Q 1 50 ° is the point, in R 1 point has a 55 °, along the horizontal axis, it can be seen that the angle between the optical axis and the horizontal axis of the retardation film is changed at a constant tendency.
Further, since the angle between the optical axis and the horizontal axis of the retardation film varies continuously, between, for example, O 1 point and P 1 point, position at each point from left to right in FIG. 18 The angle formed by the optical axis and the horizontal axis of the retardation film continuously changes from 40 ° to 45 °.
図19は、本開示の第2実施形態に係る他の位相差フィルムの一例を模式的に示す図面である。
図19には、横軸方向に沿って、位相差フィルムの光軸と横軸とがなす角が非連続的に変化する形態の位相差フィルムを示している。
図19に示す位相差フィルム202には、その横軸方向中央付近に、位相差フィルムの光軸と横軸とがなす角が45°であるp領域を示している。p領域の幅を位相差フィルム202の上に両矢印で示している。
このp領域においては、位相差フィルムの光軸と横軸とがなす角はすべて同じであり45°である。
FIG. 19 is a drawing schematically showing an example of another retardation film according to the second embodiment of the present disclosure.
FIG. 19 shows a retardation film in a form in which the angle formed by the optical axis and the horizontal axis of the retardation film changes discontinuously along the horizontal axis direction.
The retardation film 202 illustrated in FIG. 19, in the vicinity of the horizontal axis center angle formed with the optical axis and the horizontal axis of the retardation film indicates the p 1 region is 45 °. is indicated by double arrow a width of p 1 region on the phase difference film 202.
In the p 1 region, the optical axis and the horizontal axis and the angle formed of the retardation film are all the same 45 °.
図19に示す位相差フィルム202には、p領域から横軸方向に沿って左側に位置する領域であるn領域、o領域とp領域から横軸方向に沿って右側に位置する領域であるq領域、r領域を示している。
各領域の境界は図19中に点線で示している。
各領域内における位相差フィルムの光軸と横軸とがなす角はすべて同じとなっている。
The retardation film 202 illustrated in FIG. 19, located on the right side along n 1 region is a region located on the left side from p 1 region along the horizontal axis, from o 1 region and the p 1 region in the horizontal axis direction The q 1 region and the r 1 region, which are regions, are shown.
The boundaries of each region are shown by dotted lines in FIG.
The angles formed by the optical axis and the horizontal axis of the retardation film in each region are all the same.
図19の左から右に向かう各領域で、位相差フィルムの光軸と横軸とがなす角は、n領域では35°、o領域では40°、p領域では45°、q領域では50°、r領域では55°となっており、横軸方向に沿って、位相差フィルムの光軸と横軸とがなす角が一定傾向で変化していることがわかる。
また、位相差フィルムの光軸と横軸とがなす角は各領域内では同じであることから、位相差フィルムの光軸と横軸とがなす角が非連続的に変化することがわかる。
In each region from left to right in FIG. 19, the angles formed by the optical axis and the horizontal axis of the retardation film are 35 ° in the n 1 region, 40 ° in the o 1 region, 45 ° in the p 1 region, and q 1 50 ° in the region, the r 1 region has a 55 °, along the horizontal axis, it can be seen that the angle between the optical axis and the horizontal axis of the retardation film is changed at a constant tendency.
Further, since the angle formed by the optical axis and the horizontal axis of the retardation film is the same in each region, it can be seen that the angle formed by the optical axis and the horizontal axis of the retardation film changes discontinuously.
なお、ここまでの説明では、位相差フィルムの光軸と横軸がなす角が45°である地点又は領域を有する位相差フィルムについて説明したが、位相差フィルムの光軸と横軸がなす角の具体的な値は上述した例の範囲に限定されるものではない。横軸方向に沿って、位相差フィルムの光軸と横軸とがなす角が一定傾向で変化する位相差フィルムであれば本開示の第2実施形態に係る位相差フィルムとなる。また、位相差フィルムの光軸と横軸とがなす角が非連続的に変化する場合に、隣接する領域間で角度が変化する幅は5°に限定されるものではない。また、隣接する領域間で角度が変化する幅は一定でなくてもよい。 In the explanation so far, the retardation film having a point or region where the angle formed by the optical axis and the horizontal axis of the retardation film is 45 ° has been described, but the angle formed by the optical axis and the horizontal axis of the retardation film has been described. The specific value of is not limited to the range of the above-mentioned example. A retardation film according to the second embodiment of the present disclosure is a retardation film in which the angle formed by the optical axis and the horizontal axis of the retardation film changes with a constant tendency along the horizontal axis direction. Further, when the angle formed by the optical axis and the horizontal axis of the retardation film changes discontinuously, the width at which the angle changes between adjacent regions is not limited to 5 °. Further, the width at which the angle changes between adjacent regions does not have to be constant.
位相差フィルムとしては、ポリカーボネート、ポリアリレート、ポリエーテルサルフォン、シクロオレフィンポリマー、トリアセチルセルロース、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のプラスチックフィルムを一軸又は二軸延伸した位相差素子や、液晶ポリマーを特定方向に配向させて配向状態を固定化した位相差素子を用いることができる。
前者のプラスチックフィルムを一軸又は二軸延伸した位相差素子としては、例えば、高分子樹脂を溶媒に溶解した後、ステンレスベルトやポリエチレンテレフタレート(PET)などの平滑な表面上に塗布し、溶媒を蒸発させた後にフィルムを巻き取る溶剤キャスト法や、高分子樹脂を押し出し機に入れて加熱溶融し、スリット(Tダイ)から押し出し冷却した後にフィルムを巻き取る溶融押出法などの方法により製膜したものを使用できる。延伸には一般的に延伸機が用いられ、縦、横、斜めなどに延伸された位相差フィルムを得ることができる。
後者の位相差素子としては、例えば、液晶ポリマーを配向処理したポリエチレンテレフタレート(PET)やトリアセチルセルロース(TAC)等の透明プラスチックフィルムなどの透明基板上に塗布し、熱処理、冷却して液晶配向を固定化したものを使用できる。
上記の液晶ポリマーの例としては、特定の方向に配向する際、ネマティック液晶、ねじれネマティック液晶、ディスコティック液晶、コレステリック液晶などの液晶性を示す化合物であれば特に限定されない。例えば、液晶状態でねじれネマティック配向し、液晶転移点以下ではガラス状態となるものは使用することができ、光学活性なポリエステル、ポリアミド、ポリカーボネート、ポリエステルイミドなどの主鎖型液晶ポリマー、光学活性なポリアクリレート、ポリメタクリレート、ポリマロート、ポリシロキサンなどの側鎖型液晶ポリマーなどが挙げられる。また、光学活性でないこれらの主鎖型あるいは側鎖型ポリマーに、他の低分子あるいは高分子の光学活性化合物を加えたポリマー組成物などを例示することができる。
As the retardation film, a retardation element obtained by uniaxially or biaxially stretching a plastic film such as polycarbonate, polyarylate, polyether sulfone, cycloolefin polymer, triacetyl cellulose, polyethylene terephthalate (PET), or polyethylene naphthalate (PEN). Alternatively, a retardation element in which the liquid crystal polymer is oriented in a specific direction and the orientation state is fixed can be used.
As the former phase difference element obtained by stretching a plastic film uniaxially or biaxially, for example, a polymer resin is dissolved in a solvent and then applied on a smooth surface such as a stainless steel belt or polyethylene terephthalate (PET) to evaporate the solvent. The film is formed by a solvent casting method in which the film is wound after being wound, or a melt extrusion method in which a polymer resin is placed in an extruder to be heated and melted, extruded from a slit (T die), cooled, and then the film is wound. Can be used. A stretching machine is generally used for stretching, and a retardation film stretched vertically, horizontally, diagonally, or the like can be obtained.
As the latter retardation element, for example, a liquid crystal polymer is coated on a transparent substrate such as a transparent plastic film such as polyethylene terephthalate (PET) or triacetyl cellulose (TAC) which has been oriented, and heat-treated and cooled to align the liquid crystal. A fixed one can be used.
Examples of the above-mentioned liquid crystal polymer are not particularly limited as long as they are compounds exhibiting liquid crystal properties such as nematic liquid crystal, twisted nematic liquid crystal, discotic liquid crystal, and cholesteric liquid crystal when oriented in a specific direction. For example, those that are twisted and nematically oriented in the liquid crystal state and are in the glass state below the liquid crystal transition point can be used, and can be used as a main chain type liquid crystal polymer such as optically active polyester, polyamide, polycarbonate, polyesterimide, or optically active poly. Examples thereof include side-chain liquid crystal polymers such as acrylate, polymethacrylate, polycarbonate, and polysiloxane. Further, a polymer composition obtained by adding another small molecule or high molecular weight optically active compound to these non-optically active main chain type or side chain type polymers can be exemplified.
配向処理する方法としては、例えば、透明基板となるプラスチックフィルムの表面をラビング処理する方法や、ガラス板やプラスチックフィルム上にポリイミドなどの有機薄膜(配向膜)を形成し、上記配向膜をラビング処理又は光配向処理する方法等が挙げられる。ラビング処理としては、ナイロンやレーヨンなどのラビング布でプラスチックフィルムや配向膜の表面を擦る方法が適用できる。
液晶ポリマーの塗布方法としては、スピンコート、ダイコート、スプレーコート、カレンダーコート、グラビアコートなど、一般的に知られている方法を用いることができる。
また、位相差フィルムの光軸と横軸とがなす角が非連続的に変化する位相差フィルムは、複数の位相差フィルムを領域ごとに位相差フィルムの光軸が異なるように傾けて積層、又は、貼り合わせることによって作製してもよい。
Examples of the alignment treatment method include a method of rubbing the surface of a plastic film to be a transparent substrate, or a method of forming an organic thin film (alignment film) such as polyimide on a glass plate or a plastic film and rubbing the alignment film. Alternatively, a method of photoalignment treatment or the like can be mentioned. As the rubbing treatment, a method of rubbing the surface of a plastic film or an alignment film with a rubbing cloth such as nylon or rayon can be applied.
As a method for applying the liquid crystal polymer, generally known methods such as spin coating, die coating, spray coating, calendar coating, and gravure coating can be used.
Further, in a retardation film in which the angle formed by the optical axis and the horizontal axis of the retardation film changes discontinuously, a plurality of retardation films are laminated by tilting the retardation films so that the optical axes of the retardation films are different for each region. Alternatively, it may be produced by laminating.
図18に示す位相差フィルム201、図19に示す位相差フィルム202は、いずれも本開示の第2実施形態に係る車両用合わせガラス、本開示の第2実施形態に係るHUD装置、本開示の第2実施形態に係るHUDシステムを得るために使用することができる。
すなわち、本開示の第2実施形態に係る位相差フィルムを使用することによって、フロントガラス面の横方向に広い表示領域を有するHUD装置を提供することができる。
The retardation film 201 shown in FIG. 18 and the retardation film 202 shown in FIG. 19 are the laminated glass for vehicles according to the second embodiment of the present disclosure, the HUD device according to the second embodiment of the present disclosure, and the present disclosure. It can be used to obtain the HUD system according to the second embodiment.
That is, by using the retardation film according to the second embodiment of the present disclosure, it is possible to provide a HUD device having a wide display area in the lateral direction of the windshield surface.
[車両用合わせガラス]
本開示の第2実施形態に係る車両用合わせガラスは、第一ガラス板と、第二ガラス板と、第一ガラス板と第二ガラス板との間に配置される位相差フィルムと、を備える車両用合わせガラスであって、位相差フィルムが、本開示の第2実施形態に係る位相差フィルムであることを特徴とする。
[Laminated glass for vehicles]
The laminated glass for a vehicle according to the second embodiment of the present disclosure includes a first glass plate, a second glass plate, and a retardation film arranged between the first glass plate and the second glass plate. It is a laminated glass for a vehicle, and the retardation film is a retardation film according to the second embodiment of the present disclosure.
図20は、本開示の第2実施形態に係る車両用合わせガラスの一例を模式的に示す分解斜視図である。
第一ガラス板は、室外側に露出される第一主面と、第一主面の反対側の第二主面とを備える。
また、第二ガラス板は、室内側に露出される第四主面と、第四主面の反対側の第三主面とを備える。
図20には車両用合わせガラス210を示している。
図20には図面の手前側に第二ガラス板12を配置した図を示しており、手前側に見える面が第四主面124である。第四主面124の反対側の面が第三主面123である。
図面の奥側に第一ガラス板11を配置しており、手前側に見える面が第二主面112である。第二主面112の反対側の面が第一主面111である。
第一ガラス板11と第二ガラス板12との間に、図18で説明した位相差フィルム201が配置されている。
第四主面124は室内側に露出される面であるので、車両に車両用合わせガラスを配置した際に視認者が直接視認する面になる。すなわち、図20には視認者が車内から直接視認する位置関係を示している。
FIG. 20 is an exploded perspective view schematically showing an example of a laminated glass for a vehicle according to a second embodiment of the present disclosure.
The first glass plate includes a first main surface exposed to the outdoor side and a second main surface opposite to the first main surface.
Further, the second glass plate includes a fourth main surface exposed to the indoor side and a third main surface opposite to the fourth main surface.
FIG. 20 shows a laminated glass 210 for a vehicle.
FIG. 20 shows a view in which the second glass plate 12 is arranged on the front side of the drawing, and the surface visible on the front side is the fourth main surface 124. The surface opposite to the fourth main surface 124 is the third main surface 123.
The first glass plate 11 is arranged on the back side of the drawing, and the surface visible on the front side is the second main surface 112. The surface opposite to the second main surface 112 is the first main surface 111.
The retardation film 201 described with reference to FIG. 18 is arranged between the first glass plate 11 and the second glass plate 12.
Since the fourth main surface 124 is a surface exposed to the indoor side, it is a surface that the viewer can directly see when the laminated glass for the vehicle is arranged on the vehicle. That is, FIG. 20 shows the positional relationship in which the viewer directly sees from the inside of the vehicle.
この車両用合わせガラス210は右ハンドル車用の車両用合わせガラスであり、HUD像を視認する視認者は運転者である。位相差フィルムにおける光軸と横軸がなす角が45°となる地点が右ハンドル車において運転者である視認者の正面となるように、位相差フィルム201の位置が定められている。
また、視認者の左側で光軸と横軸がなす角が45°より小さくなっており、視認者の右側で光軸と横軸がなす角が45°より大きくなっている。
The vehicle laminated glass 210 is a vehicle laminated glass for a right-hand drive vehicle, and the viewer who visually recognizes the HUD image is the driver. The position of the retardation film 201 is determined so that the point where the angle formed by the optical axis and the horizontal axis of the retardation film is 45 ° is in front of the viewer who is the driver in the right-hand drive vehicle.
Further, the angle formed by the optical axis and the horizontal axis on the left side of the viewer is smaller than 45 °, and the angle formed by the optical axis and the horizontal axis on the right side of the viewer is larger than 45 °.
図20には、視認者の正面において光軸が右上がりになっていて光軸と横軸がなす角が45°となっている場合を示しているが、視認者の正面において光軸が左上がりになっていて光軸と横軸がなす角が45°となっていてもよい。視認者の正面において光軸が左上がりになっている場合、視認者の左側で光軸と横軸がなす角が45°より大きくなり、視認者の右側で光軸と横軸がなす角が45°より小さくなる。
なお、光軸が左上がりになっている場合に光軸と横軸がなす角については、光軸が右上がりになっている場合と同じ角度の取り方では角度が鈍角となるので、当該鈍角の補角となる鋭角の値を指すものとする。
FIG. 20 shows a case where the optical axis is rising to the right in front of the viewer and the angle formed by the optical axis and the horizontal axis is 45 °, but the optical axis is on the left in front of the viewer. The angle between the optical axis and the horizontal axis may be 45 °. When the optical axis is rising to the left in front of the viewer, the angle between the optical axis and the horizontal axis is larger than 45 ° on the left side of the viewer, and the angle between the optical axis and the horizontal axis is on the right side of the viewer. It is smaller than 45 °.
Regarding the angle formed by the optical axis and the horizontal axis when the optical axis is rising to the left, the angle is obtuse if the same angle is taken as when the optical axis is rising to the right. It shall refer to the value of the acute angle that is the complementary angle of.
車両用合わせガラスにおいては、第一ガラス板と、第二ガラス板とが、中間膜を介して接合され、一体構造となっていることが好ましい。中間膜は、中間膜を構成するポリマーが軟化する温度で、加熱することで、第一ガラス板と、第二ガラス板とを合わせ化するもので、ポリマーとして、ポリビニルブチラール(PVB)、エチレン酢酸ビニル(EVA)、アクリル樹脂(PMMA)、ウレタン樹脂、ポリエチレンテレフタレート(PET)、シクロオレフィンポリマー(COP)等を使用することができる。なお、中間膜は複数の樹脂層で構成されていても良い。 In the laminated glass for vehicles, it is preferable that the first glass plate and the second glass plate are joined via an interlayer film to form an integral structure. The interlayer film combines the first glass plate and the second glass plate by heating at a temperature at which the polymer constituting the interlayer film softens. As polymers, polyvinyl butyral (PVB) and ethylene acetate are used. Vinyl (EVA), acrylic resin (PMMA), urethane resin, polyethylene terephthalate (PET), cycloolefin polymer (COP) and the like can be used. The interlayer film may be composed of a plurality of resin layers.
位相差フィルムは、第一ガラス板と第二ガラス板との間に配置される。
位相差フィルムは中間膜の内部に配置されていてもよいし、第一ガラス板に接する位置に配置されていてもよいし、第二ガラス板に接する位置に配置されていてもよい。
第一ガラス板及び第二ガラス板の横方向と位相差フィルムの横軸方向を揃えて配置することによりフロントガラスとしての車両用合わせガラスとすることができる。
The retardation film is arranged between the first glass plate and the second glass plate.
The retardation film may be arranged inside the interlayer film, may be arranged at a position in contact with the first glass plate, or may be arranged at a position in contact with the second glass plate.
By arranging the first glass plate and the second glass plate in the horizontal direction and the lateral axis direction of the retardation film in the same direction, a laminated glass for a vehicle as a windshield can be obtained.
車両用合わせガラスを構成するガラス材料としては、平板状のガラス板が湾曲形状に加工されたものを好適に使用することができる。ガラス板の材質としては、ISO16293-1で規定されているようなソーダ石灰珪酸塩ガラスの他、アルミノシリケートガラスやホウケイ酸塩ガラス、無アルカリガラス等の公知のガラス組成のものを使用することができる。第一ガラス板、第二ガラス板の、それぞれの厚みは、例えば、0.4mm~3mmとしてもよい。また、第一ガラス板と、第二ガラス板との間隔は、0.05mm~1mmとしてもよい。 As the glass material constituting the laminated glass for vehicles, a flat glass plate processed into a curved shape can be preferably used. As the material of the glass plate, in addition to soda lime silicate glass as specified in ISO16293-1, a glass having a known glass composition such as aluminosilicate glass, borosilicate glass, and non-alkali glass can be used. can. The thickness of each of the first glass plate and the second glass plate may be, for example, 0.4 mm to 3 mm. The distance between the first glass plate and the second glass plate may be 0.05 mm to 1 mm.
図20には、図18で説明した位相差フィルム201が配置された車両用合わせガラスを示したが、位相差フィルムとして図19で説明した位相差フィルム202を用いた車両用合わせガラスも、本開示の第2実施形態に係る車両用合わせガラスである。 FIG. 20 shows the laminated glass for vehicles on which the retardation film 201 described in FIG. 18 is arranged, but the laminated glass for vehicles using the retardation film 202 described in FIG. 19 as the retardation film is also present. It is a laminated glass for a vehicle according to the second embodiment of the disclosure.
本開示の第2実施形態に係る車両用合わせガラスは、本開示の第2実施形態に係るHUD装置、本開示の第2実施形態に係るHUDシステムを得るために使用することができる。
すなわち、本開示の第2実施形態に係る車両用合わせガラスを使用することによって、フロントガラス面の横方向に広い表示領域を有するHUD装置を提供することができる。
The laminated glass for vehicles according to the second embodiment of the present disclosure can be used to obtain the HUD device according to the second embodiment of the present disclosure and the HUD system according to the second embodiment of the present disclosure.
That is, by using the laminated glass for vehicles according to the second embodiment of the present disclosure, it is possible to provide a HUD device having a wide display area in the lateral direction of the windshield surface.
また、フロントガラス同様に、サイドガラスに上記の車両用合わせガラスを用いることによって、HUD像が表示される領域を拡大してもよい。この時の投影光が投影される投影部は、視認者の真横よりも前方とするのが好ましい。 Further, similarly to the windshield, the area where the HUD image is displayed may be enlarged by using the above-mentioned laminated glass for vehicles for the side glass. The projection portion on which the projected light at this time is projected is preferably in front of the side of the viewer.
[ヘッドアップディスプレイ装置(HUD装置)]
本開示の第2実施形態に係るHUD装置には、第三のHUD装置と第四のHUD装置の2種類がある。まず、両方のHUD装置に共通の事項であるX軸、Y軸及びZ軸の定義及び移動体の定義並びに移動体の例示は、本開示の第1実施形態に係るHUD装置及び移動体と同様である。
[Head-up display device (HUD device)]
There are two types of HUD devices according to the second embodiment of the present disclosure, a third HUD device and a fourth HUD device. First, the definitions of the X-axis, Y-axis, and Z-axis, the definition of the moving body, and the example of the moving body, which are common to both HUD devices, are the same as those of the HUD device and the moving body according to the first embodiment of the present disclosure. Is.
HUD装置に使用する車両用合わせガラスとしては、本開示の第2実施形態に係る車両用合わせガラスを使用することができる。 As the laminated glass for vehicles used in the HUD device, the laminated glass for vehicles according to the second embodiment of the present disclosure can be used.
[第三のHUD装置]
第三のHUD装置は、第二ガラス板の第四主面に形成された反射像を虚像として観察する装置であり、S-HUD方式のHUD装置である。
図21は、本開示の第2実施形態の第1の態様に係る第三のHUD装置の概略と、該装置での光路を示す模式図である。
この模式図では、視認者を運転者とし、視認者の正面である視認者正面領域における断面の模式図を示している。また、紙面に垂直な方向がX軸である。
図21では、投影光の光路は実線で示されている。
第三のHUD装置3において、投影部は車両用合わせガラス210であり、車両用合わせガラス210は、移動体である車両の室外側に配置される第一ガラス板11と、車両の室内側に配置される第二ガラス板12とを備えている。
第一ガラス板11は、室外側に露出される第一主面111と、第一主面111の反対側の第二主面112とを備える。
また、第二ガラス板12は、室内側に露出される第四主面124と、第四主面124の反対側の第三主面123とを備える。
第一ガラス板11と第二ガラス板12との間には位相差フィルム201が配置されている。
[Third HUD device]
The third HUD device is a device for observing a reflected image formed on the fourth main surface of the second glass plate as a virtual image, and is an S-HUD type HUD device.
FIG. 21 is a schematic view showing an outline of a third HUD device according to the first aspect of the second embodiment of the present disclosure and an optical path in the device.
In this schematic view, a visual figure is set as a driver, and a schematic view of a cross section in a visible person front area, which is the front of the visual person, is shown. The direction perpendicular to the paper surface is the X-axis.
In FIG. 21, the optical path of the projected light is shown by a solid line.
In the third HUD device 3, the projection unit is a laminated glass 210 for a vehicle, and the laminated glass 210 for a vehicle is on the first glass plate 11 arranged on the outdoor side of the vehicle, which is a moving body, and on the indoor side of the vehicle. It includes a second glass plate 12 to be arranged.
The first glass plate 11 includes a first main surface 111 exposed to the outdoor side and a second main surface 112 on the opposite side of the first main surface 111.
Further, the second glass plate 12 includes a fourth main surface 124 exposed to the indoor side and a third main surface 123 on the opposite side of the fourth main surface 124.
A retardation film 201 is arranged between the first glass plate 11 and the second glass plate 12.
投影光240は、映像部31から第四主面124に照射され、第四主面124には反射像が形成される。視認者35は第四主面124に形成された反射像に基づく光路241の延長上にある虚像412を観察する。 The projected light 240 is irradiated from the image unit 31 to the fourth main surface 124, and a reflected image is formed on the fourth main surface 124. The viewer 35 observes the virtual image 412 on the extension of the optical path 241 based on the reflected image formed on the fourth main surface 124.
第三のHUD装置3では、映像部31から振動方向がX軸方向である投影光240が照射される。
ここで、映像部31の発光点32、第四主面124で投影光240が反射する反射点33、視認者35の視点34の3点を含む平面が入射面である。
図21では紙面が入射面とほぼ同じ面に相当する。
振動方向が入射面に対して垂直となる光がS偏光の光である。入射面がX軸に対して垂直になる場合、当該入射面に対して振動方向がX軸方向である投影光を入射すると、当該投影光はS偏光となる。
In the third HUD device 3, the image unit 31 irradiates the projected light 240 whose vibration direction is the X-axis direction.
Here, the plane including the light emitting point 32 of the image unit 31, the reflection point 33 on which the projected light 240 is reflected on the fourth main surface 124, and the viewpoint 34 of the viewer 35 is the incident surface.
In FIG. 21, the paper surface corresponds to substantially the same surface as the incident surface.
Light whose vibration direction is perpendicular to the incident surface is S-polarized light. When the incident surface is perpendicular to the X-axis, when the projected light whose vibration direction is the X-axis direction is incident on the incident surface, the projected light becomes S-polarized.
投影光がS偏光である場合に、第四主面124を透過し、投影部内を進行した投影光は、位相差フィルム201を通過することで、P偏光に変換され、第一主面111で反射が生じることなく、投影光はP偏光のまま室外側へ放出される。
このように第一主面111での反射を抑制することができれば、二重像の発生が抑制される。
When the projected light is S-polarized light, the projected light transmitted through the fourth main surface 124 and traveling in the projection portion is converted to P-polarized light by passing through the retardation film 201, and is converted to P-polarized light on the first main surface 111. The projected light is emitted to the outdoor side as P-polarized light without any reflection.
If the reflection on the first main surface 111 can be suppressed in this way, the generation of the double image is suppressed.
視認者が視認者正面領域に形成された反射像を見る場合に、視認者正面領域に配置される位相差フィルムは、第四主面との平行面において位相差フィルムの光軸がX軸に対して45°±5°となっている。
X軸に沿った振動方向を有するS偏光が透過する位相差フィルム201の光軸がX軸に対して45°±5°であればS偏光がP偏光に変換される割合が多いことになる。視認者正面領域においては入射面がX軸と垂直になり、投影光がS偏光となるのでこれに対応する位相差フィルムの光軸をX軸に対して45°±5°としておくことで二重像の発生を抑制できる。
When the viewer sees the reflected image formed in the front area of the viewer, the retardation film arranged in the front area of the viewer has the optical axis of the retardation film on the X-axis in a plane parallel to the fourth main surface. On the other hand, it is 45 ° ± 5 °.
If the optical axis of the retardation film 201 through which S-polarized light having a vibration direction along the X-axis is transmitted is 45 ° ± 5 ° with respect to the X-axis, the ratio of S-polarized light being converted to P-polarized light is large. .. In the front area of the viewer, the incident surface is perpendicular to the X-axis and the projected light is S-polarized. Therefore, the optical axis of the corresponding retardation film is set to 45 ° ± 5 ° with respect to the X-axis. The generation of heavy images can be suppressed.
次に、視認者が、X軸方向のいずれかの方向に沿って、視認者正面領域に対して遠くなる領域である視認者斜め前方領域に形成された反射像を見る場合について説明する。
視認者が視認者斜め前方領域を見る場合、視認者が視認者正面領域を見る場合と入射面が異なる。投影光の振動方向はX軸方向のままであるので、入射面に対する投影光の振動方向(X軸)は垂直方向からずれてしまい、投影光はS偏光とP偏光の混合光となり、視認者正面領域から遠くなるほどにP偏光成分の割合が高くなる。
このような混合光に対して、位相差フィルムの光軸をX軸に対して45°±5°のままにしておくと位相差フィルムを通過した後の投影光に占めるP偏光の割合が少なくなり、S偏光の割合が高くなってしまう。
そこで、視認者が視認者斜め前方領域に形成された反射像を見る場合に、視認者斜め前方領域に配置される位相差フィルムにつき、位相差フィルムの光軸をX軸に対して45°±5°からずらすことによって、S偏光とP偏光の混合光が位相差フィルムを通過した後にP偏光となる成分の割合を増やし、二重像の発生を抑制する。
Next, a case will be described in which the viewer sees a reflected image formed in a region diagonally forward to the viewer, which is a region far from the front region of the viewer, along any direction in the X-axis direction.
When the viewer looks at the area diagonally forward of the viewer, the incident surface is different from when the viewer looks at the area in front of the viewer. Since the vibration direction of the projected light remains the X-axis direction, the vibration direction (X-axis) of the projected light with respect to the incident surface deviates from the vertical direction, and the projected light becomes a mixed light of S-polarized light and P-polarized light, and the viewer The farther from the front region, the higher the proportion of the P polarization component.
If the optical axis of the retardation film is left at 45 ° ± 5 ° with respect to the X-axis with respect to such mixed light, the proportion of P-polarized light in the projected light after passing through the retardation film is small. As a result, the proportion of S-polarized light becomes high.
Therefore, when the viewer sees the reflected image formed in the diagonally forward region of the viewer, the optical axis of the retardation film is 45 ° ± with respect to the X axis for the retardation film arranged in the obliquely front region of the viewer. By shifting from 5 °, the proportion of the component that becomes P-polarized light after the mixed light of S-polarized light and P-polarized light passes through the retardation film is increased, and the generation of double image is suppressed.
視認者正面領域、視認者斜め前方領域のいずれにおいても、投影光を位相差フィルムへ入射させることによって、投影光の振動方向を入射面に対して平行方向へ変換するようにする。振動方向が入射面に対して平行方向となる光がP偏光である。
位相差フィルムを通過した後の投影光がP偏光であると第一主面で反射が生じることなく、投影光はP偏光のまま室外側へ放出される。従って視認者正面領域、視認者斜め前方領域のいずれにおいても二重像の発生が抑制されて、フロントガラス面の横方向にHUDの表示領域を拡大した場合においても、二重像の発生を抑制し得るHUD装置となる。
In both the front area of the viewer and the diagonally front area of the viewer, the projected light is incident on the retardation film so that the vibration direction of the projected light is converted to a direction parallel to the incident surface. Light whose vibration direction is parallel to the incident surface is P-polarized light.
If the projected light after passing through the retardation film is P-polarized, the projected light is emitted to the outdoor side as P-polarized light without being reflected on the first main surface. Therefore, the generation of the double image is suppressed in both the front area of the viewer and the diagonally front area of the viewer, and the generation of the double image is suppressed even when the display area of the HUD is enlarged in the lateral direction of the windshield surface. It becomes a possible HUD device.
図22は、右ハンドル車における運転者が視認者である場合の視認者正面領域及び視認者斜め前方領域の位置を模式的に示す図である。
図22には、HUD装置を構成する車両用合わせガラス210のみを示しており、車両用合わせガラス210を構成する位相差フィルムの光軸の方向も模式的に示している。
右ハンドル車においては車両用合わせガラス210の図面右側が視認者35の正面にあたるのでこの部分に視認者正面領域250を設ける。視認者正面領域250では位相差フィルムの光軸がX軸に対して45°±5°である。
X軸方向の右方向に沿って視認者正面領域250に対して遠くなる領域が右側周辺領域251である。一方、X軸方向の左方向に沿って視認者正面領域250に対して遠くなる領域が左側周辺領域252である。
右側周辺領域251では位相差フィルムの光軸がX軸に対して50°よりも大きくなる方向にずれている。一方、左側周辺領域252では位相差フィルムの光軸がX軸に対して40°よりも小さくなる方向にずれている。
すなわち、右側周辺領域と左側周辺領域では、位相差フィルムの光軸がX軸に対して45°±5°からずれる方向の向きが反対である。
なお、左ハンドル車において助手席に乗車する乗員が視認者である場合も同じである。
FIG. 22 is a diagram schematically showing the positions of the viewer front region and the viewer diagonally forward region when the driver of the right-hand drive vehicle is a viewer.
FIG. 22 shows only the laminated glass 210 for vehicles constituting the HUD device, and schematically shows the direction of the optical axis of the retardation film constituting the laminated glass 210 for vehicles.
In a right-hand drive vehicle, the right side of the drawing of the laminated glass 210 for a vehicle corresponds to the front of the viewer 35, so the viewer front area 250 is provided in this portion. In the viewer front region 250, the optical axis of the retardation film is 45 ° ± 5 ° with respect to the X axis.
The region distant from the viewer front region 250 along the right direction in the X-axis direction is the right peripheral region 251. On the other hand, the region distant from the viewer front region 250 along the left direction in the X-axis direction is the left peripheral region 252.
In the right peripheral region 251, the optical axis of the retardation film is shifted in a direction larger than 50 ° with respect to the X axis. On the other hand, in the left peripheral region 252, the optical axis of the retardation film is shifted in a direction smaller than 40 ° with respect to the X axis.
That is, in the right peripheral region and the left peripheral region, the directions in which the optical axis of the retardation film deviates from the X axis by 45 ° ± 5 ° are opposite.
The same applies when the occupant in the passenger seat of the left-hand drive vehicle is a visible person.
図23は、左ハンドル車における視認者正面領域及び視認者斜め前方領域の位置を模式的に示す図である。
左ハンドル車においては車両用合わせガラス210の図面左側が視認者35の正面にあたるのでこの部分に視認者正面領域250を設ける。視認者正面領域250では位相差フィルムの光軸がX軸に対して45°±5°である。図22に示す形態と同様に、X軸方向の右方向に沿って視認者正面領域250に対して遠くなる領域が右側周辺領域251であり、X軸方向の左方向に沿って視認者正面領域250に対して遠くなる領域が左側周辺領域252である。
右側周辺領域251では位相差フィルムの光軸がX軸に対して50°よりも大きくなる方向にずれている。一方、左側周辺領域252では位相差フィルムの光軸がX軸に対して40°よりも小さくなる方向にずれている。
すなわち、右側周辺領域と左側周辺領域では、位相差フィルムの光軸がX軸に対して45°±5°からずれる方向の向きが反対である。
なお、右ハンドル車において助手席に乗車する乗員が視認者である場合も同じである。
FIG. 23 is a diagram schematically showing the positions of the viewer front region and the viewer diagonally forward region in the left-hand drive vehicle.
In a left-hand drive vehicle, the left side of the drawing of the laminated glass 210 for a vehicle corresponds to the front of the viewer 35, so the viewer front area 250 is provided in this portion. In the viewer front region 250, the optical axis of the retardation film is 45 ° ± 5 ° with respect to the X axis. Similar to the embodiment shown in FIG. 22, the region farther from the viewer front region 250 along the right direction in the X-axis direction is the right peripheral region 251, and the viewer front region along the left direction in the X-axis direction. The region farther from 250 is the left peripheral region 252.
In the right peripheral region 251, the optical axis of the retardation film is shifted in a direction larger than 50 ° with respect to the X axis. On the other hand, in the left peripheral region 252, the optical axis of the retardation film is shifted in a direction smaller than 40 ° with respect to the X axis.
That is, in the right peripheral region and the left peripheral region, the directions in which the optical axis of the retardation film deviates from the X axis by 45 ° ± 5 ° are opposite.
The same applies when the occupant in the passenger seat of a right-hand drive vehicle is a visible person.
図24は、右ハンドル車における運転者が視認者である場合の視認者正面領域及び視認者斜め前方領域の位置の別の態様を模式的に示す図である。
図22に示す態様とは、位相差フィルムの光軸の方向が異なる。図22に示す態様では視認者の正面において光軸が右上がりとなっていて光軸と横軸がなす角が45°となっているが、図24に示す態様では視認者の正面において光軸が左上がりとなっていて光軸と横軸がなす角が45°となっている。
右側周辺領域251では位相差フィルムの光軸がX軸に対して40°よりも小さくなる方向にずれている。一方、左側周辺領域252では位相差フィルムの光軸がX軸に対して50°よりも大きくなる方向にずれている。
すなわち、右側周辺領域と左側周辺領域では、位相差フィルムの光軸がX軸に対して45°±5°からずれる方向の向きが反対である。
なお、左ハンドル車において助手席に乗車する乗員が視認者である場合も同じである。
FIG. 24 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique front region when the driver of the right-hand drive vehicle is a viewer.
The direction of the optical axis of the retardation film is different from that shown in FIG. In the aspect shown in FIG. 22, the optical axis rises to the right in front of the viewer and the angle formed by the optical axis and the horizontal axis is 45 °, but in the aspect shown in FIG. 24, the optical axis is in front of the viewer. Is rising to the left, and the angle between the optical axis and the horizontal axis is 45 °.
In the right peripheral region 251, the optical axis of the retardation film is shifted in a direction smaller than 40 ° with respect to the X axis. On the other hand, in the left peripheral region 252, the optical axis of the retardation film is shifted in a direction larger than 50 ° with respect to the X axis.
That is, in the right peripheral region and the left peripheral region, the directions in which the optical axis of the retardation film deviates from the X axis by 45 ° ± 5 ° are opposite.
The same applies when the occupant in the passenger seat of the left-hand drive vehicle is a visible person.
図25は、左ハンドル車における運転者が視認者である場合の視認者正面領域及び視認者斜め前方領域の位置の別の態様を模式的に示す図である。
図23に示す態様とは、位相差フィルムの光軸の方向が異なる。図23に示す態様では視認者の正面において光軸が右上がりとなっていて光軸と横軸がなす角が45°となっているが、図25に示す態様では視認者の正面において光軸が左上がりとなっていて光軸と横軸がなす角が45°となっている。
右側周辺領域251では位相差フィルムの光軸がX軸に対して40°よりも小さくなる方向にずれている。一方、左側周辺領域252では位相差フィルムの光軸がX軸に対して50°よりも大きくなる方向にずれている。
すなわち、右側周辺領域と左側周辺領域では、位相差フィルムの光軸がX軸に対して45°±5°からずれる方向の向きが反対である。
なお、右ハンドル車において助手席に乗車する乗員が視認者である場合も同じである。
FIG. 25 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique front region when the driver of the left-hand drive vehicle is a viewer.
The direction of the optical axis of the retardation film is different from that shown in FIG. 23. In the aspect shown in FIG. 23, the optical axis rises to the right in front of the viewer and the angle formed by the optical axis and the horizontal axis is 45 °, but in the aspect shown in FIG. 25, the optical axis is in front of the viewer. Is rising to the left, and the angle between the optical axis and the horizontal axis is 45 °.
In the right peripheral region 251, the optical axis of the retardation film is shifted in a direction smaller than 40 ° with respect to the X axis. On the other hand, in the left peripheral region 252, the optical axis of the retardation film is shifted in a direction larger than 50 ° with respect to the X axis.
That is, in the right peripheral region and the left peripheral region, the directions in which the optical axis of the retardation film deviates from the X axis by 45 ° ± 5 ° are opposite.
The same applies when the occupant in the passenger seat of a right-hand drive vehicle is a visible person.
図26は、視認者が運転者と助手席の乗員の2名である場合の視認者正面領域及び視認者斜め前方領域の位置を模式的に示す図である。
この態様では、運転者と助手席の乗員の2名のそれぞれに異なる像を視認させる。
各視認者に対して視認者正面領域と視認者斜め前方領域で位相差フィルムの光軸とX軸のなす角が最適化されるようにする。
視認者が運転者と助手席の乗員の2名である場合、図26の右側に示す運転者としての視認者35に対して視認者正面領域250が設けられ、X軸方向の右方向に沿って視認者正面領域250に対して遠くなる領域に右側周辺領域251が設けられている。
また、図26の左側に示す助手席の乗員としての視認者35´に対して視認者正面領域250´が設けられ、X軸方向の左方向に沿って視認者正面領域250´に対して遠くなる領域に左側周辺領域252´が設けられている。
なお、図26は運転席が右側、助手席が左側の右ハンドル車を想定しているが、運転席が左側、助手席が右側の左ハンドル車でも同じである。
FIG. 26 is a diagram schematically showing the positions of the viewer front region and the viewer oblique front region when there are two viewers, the driver and the passenger seat occupant.
In this aspect, the driver and the passenger seat occupant are made to visually recognize different images.
The angle formed by the optical axis and the X-axis of the retardation film is optimized for each viewer in the front area of the viewer and the diagonally front region of the viewer.
When there are two viewers, a driver and a passenger seat occupant, a viewer front area 250 is provided for the viewer 35 as a driver shown on the right side of FIG. 26, and is provided along the right direction in the X-axis direction. A right peripheral area 251 is provided in an area far from the viewer front area 250.
Further, a viewer front area 250'is provided for the viewer 35'as a passenger seat occupant shown on the left side of FIG. 26, and is far from the viewer front area 250' along the left direction in the X-axis direction. A left peripheral area 252'is provided in the area.
Note that FIG. 26 assumes a right-hand drive vehicle in which the driver's seat is on the right side and the passenger seat is on the left side, but the same applies to a left-hand drive vehicle in which the driver's seat is on the left side and the passenger seat is on the right side.
図26に示す態様では、運転者としての視認者35に対する左側周辺領域、助手席の乗員である視認者35´に対する右側周辺領域は設けられていないが、運転者としての視認者35に対する投影部、助手席の乗員である視認者35´に対する投影部の配置によっては、これらの領域を設けてもよい。
また、それぞれの視認者から投影光を視認可能なように、図20に示したような位相差フィルムを複数枚組み合わせて用いてもよい。
In the aspect shown in FIG. 26, the left peripheral area with respect to the visual view 35 as a driver and the right peripheral area with respect to the visual figure 35'as a passenger seat occupant are not provided, but the projection unit with respect to the visual view 35 as a driver is not provided. , These areas may be provided depending on the arrangement of the projection unit with respect to the viewer 35'who is a passenger in the passenger seat.
Further, a plurality of retardation films as shown in FIG. 20 may be used in combination so that the projected light can be visually recognized by each viewer.
図27は、視認者が運転者と助手席の乗員の2名である場合の視認者正面領域及び視認者斜め前方領域の位置の別の態様を模式的に示す図である。
図26に示す態様とは、位相差フィルムの光軸の方向が異なる。図26に示す態様では視認者の正面において光軸が右上がりとなっていて光軸と横軸がなす角が45°となっているが、図27に示す態様では視認者の正面において光軸が左上がりとなっていて光軸と横軸がなす角が45°となっている。
運転者としての視認者35に対する右側周辺領域251では位相差フィルムの光軸がX軸に対して40°よりも小さくなる方向にずれている。一方、助手席の乗員としての視認者35´に対する左側周辺領域252´では位相差フィルムの光軸がX軸に対して50°よりも大きくなる方向にずれている。
FIG. 27 is a diagram schematically showing another aspect of the positions of the viewer front region and the viewer oblique front region when there are two viewers, the driver and the passenger seat occupant.
The direction of the optical axis of the retardation film is different from that shown in FIG. In the aspect shown in FIG. 26, the optical axis rises to the right in front of the viewer and the angle formed by the optical axis and the horizontal axis is 45 °, but in the aspect shown in FIG. 27, the optical axis is in front of the viewer. Is rising to the left, and the angle between the optical axis and the horizontal axis is 45 °.
In the right peripheral region 251 with respect to the viewer 35 as a driver, the optical axis of the retardation film is shifted in a direction smaller than 40 ° with respect to the X axis. On the other hand, in the left peripheral region 252'with respect to the viewer 35'as a passenger seat occupant, the optical axis of the retardation film is deviated in a direction larger than 50 ° with respect to the X axis.
視認者斜め前方領域は、視認者の横に配置されるサイドガラスにおける、視認者の斜め前の領域に拡張してもよく、投影部をサイドガラスに拡張してもよい。
図28は、投影部をサイドガラスにも拡張した態様を模式的に示す図である。
図28には、車両用合わせガラス210の右側に配置されるサイドガラス270を示している。視認者は、右側のサイドガラス270に投影された投影光を視認することができる。
サイドガラス270において投影光が投影される領域を右側拡張領域271とする。
右側拡張領域271でも、視認者正面領域の右側周辺領域において位相差フィルムの光軸の角度が変化していく。
視認者斜め前方領域をサイドガラスに拡張した拡張領域でも同様の思想によって二重像の発生を抑制することができる。
The viewer oblique front region may be extended to the region diagonally in front of the viewer in the side glass arranged next to the viewer, or the projection portion may be extended to the side glass.
FIG. 28 is a diagram schematically showing a mode in which the projection portion is extended to the side glass.
FIG. 28 shows a side glass 270 arranged on the right side of the vehicle laminated glass 210. The viewer can visually recognize the projected light projected on the side glass 270 on the right side.
The region on which the projected light is projected on the side glass 270 is defined as the right extended region 271.
Even in the right-side expansion region 271, the angle of the optical axis of the retardation film changes in the right peripheral region of the viewer front region.
The generation of double images can be suppressed by the same idea even in the extended area in which the diagonally forward area of the viewer is extended to the side glass.
[第四のHUD装置]
第四のHUD装置は、第一ガラス板の第一主面に形成された反射像を虚像として観察する装置であり、P-HUD方式のHUD装置である。
図29は、本開示の第2実施形態の第2の態様に係る第四のHUD装置の概略と、該装置での光路を示す模式図である。
この模式図では、視認者を運転者とし、視認者の正面である視認者正面領域における断面の模式図を示している。また、紙面がYZ平面と平行な面である。
図29では、投影光の光路は実線で示されている。
第四のHUD装置4において、投影部は車両用合わせガラス210であり、車両用合わせガラス210は、移動体である車両の室外側に配置される第一ガラス板11と、車両の室内側に配置される第二ガラス板12とを備えている。
第一ガラス板11は、室外側に露出される第一主面111と、第一主面111の反対側の第二主面112とを備える。
また、第二ガラス板12は、室内側に露出される第四主面124と、第四主面124の反対側の第三主面123とを備える。
第一ガラス板11と第二ガラス板12との間には位相差フィルム201が配置されている。
[Fourth HUD device]
The fourth HUD device is a device for observing a reflected image formed on the first main surface of the first glass plate as a virtual image, and is a P-HUD type HUD device.
FIG. 29 is a schematic diagram showing an outline of a fourth HUD device according to a second aspect of the second embodiment of the present disclosure and an optical path in the device.
In this schematic view, a visual figure is set as a driver, and a schematic view of a cross section in a visible person front area, which is the front of the visual person, is shown. Further, the paper surface is a surface parallel to the YZ plane.
In FIG. 29, the optical path of the projected light is shown by a solid line.
In the fourth HUD device 4, the projection unit is a laminated glass 210 for a vehicle, and the laminated glass 210 for a vehicle is on the first glass plate 11 arranged on the outdoor side of the vehicle, which is a moving body, and on the indoor side of the vehicle. It includes a second glass plate 12 to be arranged.
The first glass plate 11 includes a first main surface 111 exposed to the outdoor side and a second main surface 112 on the opposite side of the first main surface 111.
Further, the second glass plate 12 includes a fourth main surface 124 exposed to the indoor side and a third main surface 123 on the opposite side of the fourth main surface 124.
A retardation film 201 is arranged between the first glass plate 11 and the second glass plate 12.
第四のHUD装置4では、映像部31から振動方向がYZ平面に平行な方向である投影光260が照射される。
ここで、映像部31の発光点32、第一主面111で投影光260が反射する反射点33、視認者35の視点34の3点を含む平面が入射面である。
図29では紙面が入射面とほぼ同じ面に相当する。
振動方向が入射面と平行になる光がP偏光の光である。入射面がYZ平面に平行になる場合、当該入射面に対して振動方向がYZ平面に平行な方向である投影光を入射すると、当該投影光はP偏光となる。
In the fourth HUD device 4, the image unit 31 irradiates the projected light 260 whose vibration direction is parallel to the YZ plane.
Here, the plane including the light emitting point 32 of the image unit 31, the reflection point 33 on which the projected light 260 is reflected by the first main surface 111, and the viewpoint 34 of the viewer 35 is the incident surface.
In FIG. 29, the paper surface corresponds to substantially the same surface as the incident surface.
Light whose vibration direction is parallel to the incident surface is P-polarized light. When the incident surface is parallel to the YZ plane, when the projected light whose vibration direction is parallel to the YZ plane is incident on the incident surface, the projected light becomes P-polarized light.
投影光260がP偏光である場合、偏光サングラス越しで虚像を観察する、サングラスモードでも使用することができる。
投影光260は、映像部31から第四主面124に照射され、投影部内を進行した投影光は、位相差フィルム201で、S偏光に変換され、第一主面111で反射像を形成しつつ、反射しなかった一部のS偏光は第一主面111を通過し、S偏光のまま室外側へ放出される。
第一主面111で形成された反射像は、再度、位相差フィルム201を通過し、P偏光に変換される。視認者35は、第一主面111での反射像に基づく光路261の延長上にある虚像612を視認する。
この虚像612はP偏光からなるので、視認者35は偏光サングラス36越しでも、虚像を視認することができる。
When the projected light 260 is P-polarized, it can also be used in sunglasses mode, in which a virtual image is observed through polarized sunglasses.
The projected light 260 is emitted from the image unit 31 to the fourth main surface 124, and the projected light traveling in the projection unit is converted into S-polarized light by the retardation film 201 to form a reflected image on the first main surface 111. On the other hand, a part of the S-polarized light that was not reflected passes through the first main surface 111 and is emitted to the outdoor side as the S-polarized light.
The reflected image formed on the first main surface 111 passes through the retardation film 201 again and is converted into P-polarized light. The viewer 35 visually recognizes the virtual image 612 on the extension of the optical path 261 based on the reflected image on the first main surface 111.
Since the virtual image 612 is composed of P-polarized light, the viewer 35 can visually recognize the virtual image even through the polarized sunglasses 36.
なお、第四主面124では反射像は形成されないか、反射像が少し形成される。第四主面124で形成された反射像の強度が第一主面111での反射像と比較して相対的に強い場合は、第四主面124で形成された反射像が二重像として観察される。 A reflected image is not formed on the fourth main surface 124, or a reflected image is formed a little. When the intensity of the reflected image formed on the fourth main surface 124 is relatively stronger than that on the first main surface 111, the reflected image formed on the fourth main surface 124 is regarded as a double image. Observed.
視認者が視認者正面領域に形成された反射像を見る場合に、視認者正面領域に配置される位相差フィルムは、第四主面との平行面において位相差フィルムの光軸がX軸に対して45°±5°となっている。
視認者正面領域では投影光は殆どP偏光となる。視認者正面領域においてP偏光が透過する位相差フィルム201の光軸がX軸に対して45°±5°であればP偏光がS偏光に変換される割合が多いことになる。
位相差フィルムに入射された投影光(P偏光)がS偏光に変換される効率が高ければ、第一ガラス板の第一主面に形成された反射像に基づく虚像表示が強くなる。そのため、相対的に第四主面で形成された反射像の影響が弱くなって、二重像の発生が抑制される。
When the viewer sees the reflected image formed in the front area of the viewer, the retardation film arranged in the front area of the viewer has the optical axis of the retardation film on the X-axis in a plane parallel to the fourth main surface. On the other hand, it is 45 ° ± 5 °.
In the front region of the viewer, the projected light is almost P-polarized. If the optical axis of the retardation film 201 through which P-polarized light is transmitted in the front region of the viewer is 45 ° ± 5 ° with respect to the X-axis, the ratio of P-polarized light converted to S-polarized light is large.
If the efficiency of converting the projected light (P-polarized light) incident on the retardation film into S-polarized light is high, the virtual image display based on the reflected image formed on the first main surface of the first glass plate becomes stronger. Therefore, the influence of the reflected image formed on the fourth main surface is relatively weakened, and the generation of the double image is suppressed.
次に、視認者が、X軸方向のいずれかの方向に沿って、視認者正面領域に対して遠くなる領域である視認者斜め前方領域に形成された反射像を見る場合について説明する。
視認者が視認者斜め前方領域を見る場合、視認者が視認者正面領域を見る場合と入射面が異なる。投影光の振動方向はYZ平面に平行な方向のままであるので、入射面に対する投影光の振動方向(YZ平面に平行な方向)は平行方向からずれてしまい、投影光はS偏光とP偏光の混合光となり、視認者正面領域から遠くなるほどにS偏光成分の割合が高くなる。
このような混合光に対して、位相差フィルムの光軸をX軸に対して45°±5°のままにしておくと位相差フィルムを通過した後の投影光に占めるS偏光の割合が少なくなり、P偏光の割合が高くなってしまう。
そこで、視認者が視認者斜め前方領域に形成された反射像を見る場合に、視認者斜め前方領域に配置される位相差フィルムにつき、位相差フィルムの光軸をX軸に対して45°±5°からずらすことによって、S偏光とP偏光の混合光が位相差フィルムを通過した後にS偏光となる成分の割合を増やし、第一ガラス板の第一主面に形成された反射像に基づく虚像表示を強くする。
第一主面に形成された反射像に基づく虚像表示を強くすることで、相対的に第四主面で反射される投影光の影響が弱くなって、二重像の発生が抑制される。
Next, a case will be described in which the viewer sees a reflected image formed in a region diagonally forward to the viewer, which is a region far from the front region of the viewer, along any direction in the X-axis direction.
When the viewer looks at the area diagonally forward of the viewer, the incident surface is different from when the viewer looks at the area in front of the viewer. Since the vibration direction of the projected light remains parallel to the YZ plane, the vibration direction of the projected light with respect to the incident surface (direction parallel to the YZ plane) deviates from the parallel direction, and the projected light is S-polarized and P-polarized. The ratio of the S polarization component increases as the distance from the front region of the viewer increases.
If the optical axis of the retardation film is left at 45 ° ± 5 ° with respect to the X-axis with respect to such mixed light, the proportion of S-polarized light in the projected light after passing through the retardation film is small. As a result, the proportion of P-polarized light becomes high.
Therefore, when the viewer sees the reflected image formed in the diagonally forward region of the viewer, the optical axis of the retardation film is 45 ° ± with respect to the X axis for the retardation film arranged in the obliquely front region of the viewer. By shifting from 5 °, the proportion of the component that becomes S-polarized light after the mixed light of S-polarized light and P-polarized light passes through the retardation film is increased, and it is based on the reflection image formed on the first main surface of the first glass plate. Strengthen the virtual image display.
By strengthening the virtual image display based on the reflected image formed on the first main surface, the influence of the projected light reflected on the fourth main surface is relatively weakened, and the generation of the double image is suppressed.
視認者正面領域、視認者斜め前方領域のいずれにおいても、投影光を位相差フィルムへ入射させることによって、投影光の振動方向を入射面に対して垂直方向へ変換するようにする。振動方向が入射面に対して垂直方向となる光がS偏光である。
位相差フィルムを通過した後の投影光がS偏光であると第一主面の反射が強くなるので、一ガラス板の第一主面に形成された反射像に基づく虚像表示が強くなる。
従って視認者正面領域、視認者斜め前方領域のいずれにおいても二重像の発生が抑制されて、フロントガラス面の横方向にHUDの表示領域を拡大した場合においても、二重像の発生を抑制し得るHUD装置となる。
In both the front area of the viewer and the diagonally front area of the viewer, the projected light is incident on the retardation film so that the vibration direction of the projected light is changed to the direction perpendicular to the incident surface. Light whose vibration direction is perpendicular to the incident surface is S-polarized light.
When the projected light after passing through the retardation film is S-polarized light, the reflection of the first main surface becomes strong, so that the virtual image display based on the reflected image formed on the first main surface of one glass plate becomes strong.
Therefore, the generation of the double image is suppressed in both the front area of the viewer and the diagonally front area of the viewer, and the generation of the double image is suppressed even when the display area of the HUD is enlarged in the lateral direction of the windshield surface. It becomes a possible HUD device.
第四のHUD装置においても、第三のHUD装置と同様に視認者正面領域、視認者斜め前方領域の位置を定めることができる。右ハンドル車、左ハンドル車のそれぞれにおける視認者正面領域、視認者斜め前方領域の位置の例は図22及び図23を参照して説明した通りとすることができる。
また、位相差フィルムの光軸の方向が左上がりとなる場合の例は図24及び図25を参照して説明した通りとすることができる。
また、視認者が2名である場合の例は図26と図27を参照して説明した通りとすることができる。
また、投影部をサイドガラスに拡張した場合の例は図28を参照して説明した通りとすることができる。
In the fourth HUD device as well, the positions of the viewer front region and the viewer oblique front region can be determined in the same manner as in the third HUD device. Examples of the positions of the viewer front region and the viewer diagonally forward region in each of the right-hand drive vehicle and the left-hand drive vehicle can be as described with reference to FIGS. 22 and 23.
Further, an example in which the direction of the optical axis of the retardation film rises to the left can be as described with reference to FIGS. 24 and 25.
Further, an example in which there are two viewers can be as described with reference to FIGS. 26 and 27.
Further, an example in which the projection unit is extended to the side glass can be as described with reference to FIG. 28.
なお、ここまで説明した第三のHUD装置、第四のHUD装置とも、視認者斜め前方領域における位相差フィルムの光軸の方向の傾きの変化が、X軸方向に沿って連続的になされているもの(すなわち、図18に示す位相差フィルムを使用した例)を図示して説明したが、視認者斜め前方領域における位相差フィルムの光軸の方向の傾きの変化が、X軸方向に沿って非連続的になされているもの(すなわち、図19に示す位相差フィルムを使用した例)を使用してもよい。 In both the third HUD device and the fourth HUD device described so far, the inclination of the retardation film in the direction of the optical axis in the diagonally forward region of the viewer is continuously changed along the X-axis direction. (That is, an example using the retardation film shown in FIG. 18) has been illustrated and described, but the change in the inclination of the retardation film in the direction of the optical axis in the diagonally forward region of the viewer is along the X-axis direction. (That is, an example using the retardation film shown in FIG. 19) may be used.
[ヘッドアップディスプレイシステム(HUDシステム)]
本開示の第2実施形態に係るHUDシステムは、一つのシステムにおいて照射する投影光の種類を切り替えることによって第三のHUD装置としても第四のHUD装置としても使用することができるようにしたシステムである。
HUDシステムにおいて、映像部は、振動方向がX軸方向である第一の投影光、及び、振動方向がYZ平面に平行な方向である第二の投影光を切り替えて照射することができる。
第一の投影光を照射する場合はS-HUDとなり、第三のHUD装置として使用することができる。第二の投影光を照射する場合はP-HUDとなり、第四のHUD装置として使用することができる。
視認者が、偏光サングラス等の偏光板を介して虚像を視認する場合に、第四のHUD装置として使用する。
HUDシステムにおける映像部以外の構成は、第三のHUD装置及び第四のHUD装置と同様の構成とすることができる。
以下には、映像部における第一の投影光と第二の投影光の切り替えについて説明する。
[Head-up display system (HUD system)]
The HUD system according to the second embodiment of the present disclosure is a system that can be used as both a third HUD device and a fourth HUD device by switching the type of projected light emitted in one system. Is.
In the HUD system, the image unit can switch between the first projected light whose vibration direction is the X-axis direction and the second projected light whose vibration direction is parallel to the YZ plane.
When irradiating the first projected light, it becomes S-HUD and can be used as a third HUD device. When irradiating the second projected light, it becomes P-HUD and can be used as a fourth HUD device.
It is used as a fourth HUD device when a viewer visually recognizes a virtual image through a polarizing plate such as polarized sunglasses.
The configuration other than the image unit in the HUD system can be the same as that of the third HUD device and the fourth HUD device.
The switching between the first projected light and the second projected light in the image unit will be described below.
映像部は、振動方向がX軸方向である第一の投影光を投影することができる装置であってもよく、振動方向がYZ平面に平行な方向である第二の投影光を投影することができる装置であってもよい。
また、2種類の投影機構を有していて投影光の種類を切り替えることができる装置であってもよい。
また、ある偏光の光を最初に照射し、その光の光路に偏光制御部を配置することで、投影する光を第一の投影光又は第二の投影光に変換することができる装置であってもよい。
変換前の投影光の種類としては、あらゆる偏光をランダムに含んだもの(無偏光)、円偏光や楕円偏光、P偏光とS偏光との混合光、P偏光、S偏光でもない直線偏光などが挙げられる。
映像部としては、投影光を照射できるプロジェクターが好適に使用される。そのようなプロジェクターの例としては、DMD投影システム方式プロジェクター、レーザー走査型MEMS投影システム方式プロジェクター、または、反射型液晶方式プロジェクター等が挙げられる。
The image unit may be a device capable of projecting the first projected light whose vibration direction is the X-axis direction, and projects the second projected light whose vibration direction is parallel to the YZ plane. It may be a device capable of
Further, the device may have two types of projection mechanisms and can switch the type of projected light.
Further, it is a device capable of converting the projected light into the first projected light or the second projected light by first irradiating the light of a certain polarization and arranging the polarization control unit in the optical path of the light. You may.
Types of projected light before conversion include those that randomly contain all kinds of polarized light (unpolarized light), circularly polarized light and elliptically polarized light, mixed light of P-polarized light and S-polarized light, P-polarized light, and linearly polarized light that is not S-polarized light. Can be mentioned.
As the image unit, a projector capable of irradiating the projected light is preferably used. Examples of such a projector include a DMD projection system projector, a laser scanning MEMS projection system projector, a reflective liquid crystal projector, and the like.
例えば、映像部が最初に振動方向がX軸方向である第一の投影光を照射する機構を有する場合、その投影光の光路に偏光制御部として半波長板(第一の投影光の振動方向に対する位相差フィルムの光軸が45°となる位相差フィルム)を設けることで、第一の投影光を第二の投影光に変換することができる。
第一の投影光をそのまま投影光として使用する場合は偏光制御部を通過させないようにして、第二の投影光とする場合は偏光制御部を通過させるようにすればよい。
偏光制御部の通過/非通過を制御することによって、第一の投影光と第二の投影光の切り替えを行うことができる。
For example, when the image unit first has a mechanism for irradiating the first projected light whose vibration direction is the X-axis direction, a half-wave plate (vibration direction of the first projected light) is used as a polarization control unit in the optical path of the projected light. By providing a retardation film) in which the optical axis of the retardation film is 45 °, the first projected light can be converted into the second projected light.
When the first projected light is used as the projected light as it is, it may not pass through the polarization control unit, and when it is used as the second projected light, it may pass through the polarization control unit.
By controlling the passage / non-passage of the polarization control unit, it is possible to switch between the first projected light and the second projected light.
映像部が最初に振動方向がYZ平面に平行な方向である第二の投影光を照射する機構を有する場合も、同様の構成とすることで第二の投影光を第一の投影光に変換することができるので、偏光制御部の通過/非通過を制御することによって、第二の投影光と第一の投影光の切り替えを行うことができる。 Even when the image unit first has a mechanism for irradiating the second projected light whose vibration direction is parallel to the YZ plane, the same configuration is used to convert the second projected light into the first projected light. Therefore, it is possible to switch between the second projected light and the first projected light by controlling the passage / non-passage of the polarization control unit.
第四のHUD装置では第一ガラス板の第一主面に形成された反射像を虚像として観察するが、投影光の強度が第三のHUD装置と同じである場合、第三のHUD装置で第二ガラス板の第四主面に形成された反射像よりも虚像表示が弱くなる。
そのため、第二の投影光を投影する場合の照射強度を、第一の投影光を投影する場合の照射強度よりも高いものとなるようにすることが好ましい。これは、映像部から照射する投影光の照射強度を第一の投影光と第二の投影光の場合で切り替えることにより行うことができる。また、第一の投影光を投影する場合にNDフィルター等を透過させることによってその照射強度を低下させるようにしてもよい。
In the fourth HUD device, the reflected image formed on the first main surface of the first glass plate is observed as a virtual image, but if the intensity of the projected light is the same as that of the third HUD device, the third HUD device The virtual image display is weaker than the reflected image formed on the fourth main surface of the second glass plate.
Therefore, it is preferable that the irradiation intensity when projecting the second projected light is higher than the irradiation intensity when projecting the first projected light. This can be done by switching the irradiation intensity of the projected light emitted from the image unit between the case of the first projected light and the case of the second projected light. Further, when the first projected light is projected, the irradiation intensity may be lowered by transmitting the ND filter or the like.
(本開示の第2の実施形態に係る実施例)
視認者正面領域と視認者斜め前方領域のそれぞれにおける、位相差フィルムの光軸とX軸のなす角度とが変化した場合の二重像の発生の様子を比較する実験を行った。
まず、視認者斜め前方領域が視認者の右側にある場合についての実験結果を示す。
図30は、実施例及び比較例で使用した第三のHUD装置を模式的に示す配置図である。
図31は、実施例3における実験系を模式的に示す図であり、図32は、比較例3における実験系を模式的に示す図である。
(Example according to the second embodiment of the present disclosure)
An experiment was conducted to compare the appearance of double images when the angle formed by the optical axis and the X-axis of the retardation film changes in each of the front area of the viewer and the diagonally front area of the viewer.
First, the experimental results for the case where the diagonally forward region of the viewer is on the right side of the viewer are shown.
FIG. 30 is a layout diagram schematically showing the third HUD device used in Examples and Comparative Examples.
FIG. 31 is a diagram schematically showing the experimental system in Example 3, and FIG. 32 is a diagram schematically showing the experimental system in Comparative Example 3.
図30に示すような第三のHUD装置を準備した。第三のHUD装置3は、S-HUD方式用の、200mm×200mmの正方形の投影部を有する。
図30に示すとおり、映像部31を水平に置き、車両用合わせガラス210を、映像部31に対して、ブリュースター角を形成する56°の位置関係で配置する。
映像部31から、垂直上方へ向けて、X軸方向に振動する投影光を照射し、視認者35は、第四主面124に表示された虚像を観察する。視認者の視点と車両用合わせガラスの高さは同じである。
映像部31としてはタブレットを使用し、タブレットから白色格子像を表示する。タブレットは車両用合わせガラスの直下に配置する。
また、移動体の夜間での走行を模擬するために、視認者35が視認する方向で、車両用合わせガラス210の向こう側には、黒の背景板37が配置されている。
A third HUD device as shown in FIG. 30 was prepared. The third HUD device 3 has a 200 mm × 200 mm square projection unit for the S-HUD system.
As shown in FIG. 30, the image unit 31 is placed horizontally, and the vehicle laminated glass 210 is arranged with respect to the image unit 31 in a positional relationship of 56 ° that forms a Brewster angle.
The image unit 31 irradiates the projected light vibrating in the X-axis direction vertically upward, and the viewer 35 observes the virtual image displayed on the fourth main surface 124. The viewpoint of the viewer and the height of the laminated glass for the vehicle are the same.
A tablet is used as the image unit 31, and a white grid image is displayed from the tablet. The tablet is placed directly under the laminated glass for vehicles.
Further, in order to simulate the traveling of the moving body at night, a black background plate 37 is arranged on the other side of the laminated glass 210 for the vehicle in the direction in which the viewer 35 can visually recognize the moving body.
図31及び図32に示すように、観察点として視認者の正面をX軸方向の位置0の地点として、右側に+200mm地点、+400mm地点を設けた。
実施例3では、図31に示す通り、視認者正面領域(X軸方向の位置0の地点)では位相差フィルムの光軸がX軸に対して45°となるように投影部を配置した。さらに視認者斜め前方領域である+200mm地点、+400mm地点では位相差フィルムの光軸がX軸に対してそれぞれ55°、65°となるように投影部を配置した。
上記実験は、200mm×200mmの正方形の投影部の位置をそれぞれ200mmずつずらし、さらに投影部を傾けることで位相差フィルムの光軸を傾けるように投影部を配置することにより行った。
比較例3では、図32に示す通り、すべての観察点で位相差フィルムの光軸がX軸に対して45°となるように投影部を配置した。
As shown in FIGS. 31 and 32, the front of the viewer was set as the point of position 0 in the X-axis direction as the observation point, and the + 200 mm point and the + 400 mm point were provided on the right side.
In the third embodiment, as shown in FIG. 31, the projection unit is arranged so that the optical axis of the retardation film is 45 ° with respect to the X axis in the front area of the viewer (the point at the position 0 in the X-axis direction). Further, the projection unit was arranged so that the optical axes of the retardation film were 55 ° and 65 ° with respect to the X axis, respectively, at the + 200 mm point and the + 400 mm point, which are the areas diagonally forward to the viewer.
The above experiment was carried out by shifting the positions of the 200 mm × 200 mm square projection portions by 200 mm, and arranging the projection portions so that the optical axis of the retardation film was tilted by further tilting the projection portion.
In Comparative Example 3, as shown in FIG. 32, the projection unit was arranged so that the optical axis of the retardation film was 45 ° with respect to the X axis at all observation points.
図33は、実施例3及び比較例3において視認される虚像を示す写真である。
それぞれ視認者からの距離が同じ位置で比較すると、実施例3において視認者斜め前方領域にあたる+200mm地点、+400mm地点において二重像の発生が抑制されていることが確認できた。
一方、比較例3ではこれらの地点で横方向に伸びる二重像が観察された。
FIG. 33 is a photograph showing a virtual image visually recognized in Example 3 and Comparative Example 3.
Comparing the two at the same distance from the viewer, it was confirmed that in Example 3, the generation of the double image was suppressed at the +200 mm point and the +400 mm point, which correspond to the diagonally forward region of the viewer.
On the other hand, in Comparative Example 3, a double image extending in the lateral direction was observed at these points.
続いて、視認者斜め前方領域が視認者の左側にある場合についての実験結果を示す。
図34は、実施例4における実験系を模式的に示す図であり、図35は、比較例4における実験系を模式的に示す図である。実験の手法は実施例3と同様である。
図34及び図35に示すように、観察点として視認者の正面をX軸方向の位置0の地点として、左側に-100mm地点、-200mm地点、-300mm地点、-400mm地点、-500mm地点を設けた。
図34に示す通り、実施例4では視認者正面領域(X軸方向の位置0の地点)では位相差フィルムの光軸がX軸に対して45°となるようにして、視認者斜め前方領域である-100mm地点、-200mm地点、-300mm地点、-400mm地点、-500mmでは位相差フィルムの光軸がX軸に対してそれぞれ40°、35°、30°、25°、20°となるようにした。
図35に示す通り、比較例4ではすべての観察点で位相差フィルムの光軸がX軸に対して45°となるようにした。
Subsequently, the experimental results for the case where the diagonally forward region of the viewer is on the left side of the viewer are shown.
FIG. 34 is a diagram schematically showing the experimental system in Example 4, and FIG. 35 is a diagram schematically showing the experimental system in Comparative Example 4. The experimental method is the same as in Example 3.
As shown in FIGS. 34 and 35, the front of the viewer is the point 0 in the X-axis direction as the observation point, and the -100 mm point, the -200 mm point, the -300 mm point, the -400 mm point, and the -500 mm point are on the left side. Provided.
As shown in FIG. 34, in the fourth embodiment, the optical axis of the retardation film is set to 45 ° with respect to the X axis in the viewer front region (position 0 in the X-axis direction), and the viewer diagonally forward region. At -100 mm point, -200 mm point, -300 mm point, -400 mm point, and -500 mm, the optical axes of the retardation film are 40 °, 35 °, 30 °, 25 °, and 20 ° with respect to the X axis, respectively. I did.
As shown in FIG. 35, in Comparative Example 4, the optical axis of the retardation film was set to 45 ° with respect to the X axis at all observation points.
図36は、実施例4及び比較例4において視認される虚像を示す写真である。
それぞれ視認者からの距離が同じ位置で比較すると、実施例4において視認者斜め前方領域にあたる-100mm地点、-200mm地点、-300mm地点、-400mm地点、-500mmにおいて二重像の発生が抑制されていることが確認できた。
一方、比較例4では特に-300mm地点、-400mm地点、-500mmにおいて横方向に伸びる二重像が観察された。
FIG. 36 is a photograph showing a virtual image visually recognized in Example 4 and Comparative Example 4.
When the distances from the viewers are compared at the same position, the generation of double images is suppressed at the -100 mm point, -200 mm point, -300 mm point, -400 mm point, and -500 mm, which correspond to the diagonally forward region of the viewer in the fourth embodiment. I was able to confirm that.
On the other hand, in Comparative Example 4, a double image extending in the lateral direction was observed especially at the -300 mm point, the -400 mm point, and the -500 mm point.
自動車などの車両のフロントガラス面の外周に近い領域や、フロントガラス面の中央領域に表示された像を視認者が斜めから視認した場合に、二重像の発生を抑制し得るHUD装置を提供することができる。 Provided is a HUD device capable of suppressing the generation of a double image when a viewer visually recognizes an image displayed in a region near the outer periphery of the windshield surface of a vehicle such as an automobile or in the central region of the windshield surface from an angle. can do.
本願は、2020年2月13日に出願された日本国特許出願2020-022342号、2020年2月21日に出願された日本国特許出願2020-027920号、及び、2020年8月24日に出願された日本国特許出願2020-140713号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。 This application applies to Japanese Patent Application No. 2020-022342 filed on February 13, 2020, Japanese Patent Application No. 2020-0279220 filed on February 21, 2020, and August 24, 2020. Based on the applied Japanese patent application 2020-140713, it claims priority based on the Paris Convention or the laws and regulations of the transitioning country. The entire content of the application is incorporated herein by reference in its entirety.
1 第一のHUD装置
2 第二のHUD装置
3 第三のHUD装置
4 第四のHUD装置
10、210 車両用合わせガラス
11 第一ガラス板
12 第二ガラス板
20 車両
31 映像部
32 発光点
33 反射点
34 視点
35 視認者
35D 運転者(視認者)
35P 同乗者(視認者)
36 偏光サングラス
40、60 投影光
41 偏光部を透過した後の投影光
42、241 第四主面に形成された反射像に基づく光路
61 偏光部を透過した後の投影光
62、261 第一主面に形成された反射像に基づく光路
81、81L、81R、81D、81P、82、82L、82R、82D、82P 偏光部
100、201、202 位相差フィルム
111 第一主面
112 第二主面
123 第三主面
124 第四主面
240 振動方向がX軸方向である投影光
250、250´ 第2実施形態の視認者正面領域
251 右側周辺領域(第2実施形態の視認者斜め前方領域)
252、252´ 左側周辺領域(第2実施形態の視認者斜め前方領域)
260 振動方向がYZ平面に平行な方向である投影光
270 サイドガラス
271 右側拡張領域
412、421、421C、421L、421R 虚像(第四主面に形成された反射像に基づく光路の延長上にある虚像)
612、621、621C、621L、621R 虚像(第一主面に形成された反射像に基づく光路の延長上にある虚像)
1 First HUD device 2 Second HUD device 3 Third HUD device 4 Fourth HUD device 10, 210 Laminated glass for vehicles 11 First glass plate 12 Second glass plate 20 Vehicle 31 Image unit 32 Light emitting point 33 Reflection point 34 Viewpoint 35 Viewer 35D Driver (viewer)
35P passenger (visual person)
36 Polarized sunglasses 40, 60 Projected light 41 Projected light after passing through the polarized part 42, 241 Optical path based on the reflected image formed on the fourth main surface 61 Projected light after passing through the polarized part 62, 261 First main Optical paths 81, 81L, 81R, 81D, 81P, 82, 82L, 82R, 82D, 82P based on the reflection image formed on the surface Polarizing parts 100, 201, 202 Phase difference film 111 First main surface 112 Second main surface 123 Third main surface 124 Fourth main surface 240 Projected light whose vibration direction is the X-axis direction 250, 250 ′ Visualist front area 251 of the second embodiment Right peripheral area (viewer oblique front area of the second embodiment)
252, 252'Left peripheral area (viewer diagonally forward area of the second embodiment)
260 Projected light whose vibration direction is parallel to the YZ plane 270 Side glass 271 Right expansion region 412, 421, 421C, 421L, 421R Virtual image (virtual image on the extension of the optical path based on the reflection image formed on the fourth main surface) )
612, 621, 621C, 621L, 621R Virtual image (virtual image on the extension of the optical path based on the reflection image formed on the first main surface)

Claims (21)

  1. 移動体に搭載され、投影光の投影部での反射像に基づく虚像を前記移動体の乗員である視認者に認識させる、ヘッドアップディスプレイ装置であって、
    地面と水平かつ前記移動体が前進する時の進行方向と直交する方向をX軸、地面と水平かつ前記移動体が前進する時の進行方向をY軸、及び地面と垂直な方向をZ軸とし、
    前記視認者の視点と前記投影光の発光点と前記投影光が反射する点である反射点とを有する面を入射面とした時、
    前記ヘッドアップディスプレイ装置は、
    前記投影光を照射する映像部と、
    前記映像部と前記投影部との間に設けられ、前記投影光に含まれる特定方向に振動する光を透過させる偏光部と、
    前記偏光部を透過した投影光が投影される前記投影部と、を備え、
    前記投影部は、前記投影光の入射側である室内側から室外側へ、第二ガラス板、位相差フィルム、第一ガラス板の順になるように配置された合わせガラスであり、
    前記視認者の正面である視認者正面領域と、前記X軸方向のいずれかの方向に沿って、前記視認者正面領域よりも遠くなる領域である視認者斜め前方領域とを有し、
    前記投影光は、少なくとも前記視認者斜め前方領域に投影され、
    前記視認者から前記投影部を見た時のX軸を0°、前記位相差フィルムに沿った面を投影面とした時、
    前記位相差フィルムは、前記投影面において、X軸に対してθ傾いた光軸を有し、前記光軸により前記投影面に入射する前記投影光の振動方向を変えるものであり、
    前記特定方向は、前記入射面と平行な方向であることを特徴とするヘッドアップディスプレイ装置。
    A head-up display device mounted on a moving body that allows a viewer who is an occupant of the moving body to recognize a virtual image based on a reflected image at a projection unit of projected light.
    The X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body advances, the Y-axis is horizontal to the ground and the traveling direction when the moving body advances, and the Z-axis is the direction perpendicular to the ground. ,
    When the plane having the viewpoint of the viewer, the emission point of the projected light, and the reflection point which is the point at which the projected light is reflected is defined as the incident surface.
    The head-up display device is
    The image unit that irradiates the projected light and
    A polarizing unit provided between the image unit and the projection unit to transmit light contained in the projection light that vibrates in a specific direction.
    The projection unit, which projects the projected light transmitted through the polarization unit, is provided.
    The projection unit is a laminated glass arranged in the order of a second glass plate, a retardation film, and a first glass plate from the indoor side, which is the incident side of the projected light, to the outdoor side.
    It has a viewer front region that is the front of the viewer, and a viewer oblique front region that is a region farther than the viewer front region along any direction in the X-axis direction.
    The projected light is projected onto at least the area diagonally forward to the viewer.
    When the X-axis when the projection unit is viewed from the viewer is 0 ° and the plane along the retardation film is the projection plane,
    The retardation film has an optical axis inclined by θ r with respect to the X axis on the projection surface, and changes the vibration direction of the projected light incident on the projection surface by the optical axis.
    A head-up display device characterized in that the specific direction is a direction parallel to the incident surface.
  2. 前記視認者が前記第二ガラス板の室内側面以外に形成された反射像に基づく虚像を観察する請求項1に記載のヘッドアップディスプレイ装置。 The head-up display device according to claim 1, wherein the viewer observes a virtual image based on a reflected image formed on a side surface other than the indoor side surface of the second glass plate.
  3. 前記視認者が前記第一ガラス板の室外側面に形成された反射像に基づく虚像を観察する請求項1に記載のヘッドアップディスプレイ装置。 The head-up display device according to claim 1, wherein the viewer observes a virtual image based on a reflected image formed on the outdoor surface of the first glass plate.
  4. 移動体に搭載され、投影光の投影部での反射像に基づく虚像を前記移動体の乗員である視認者に認識させる、ヘッドアップディスプレイ装置であって、
    地面と水平かつ前記移動体が前進する時の進行方向と直交する方向をX軸、地面と水平かつ前記移動体が前進する時の進行方向をY軸、及び地面と垂直な方向をZ軸とし、
    前記視認者の視点と前記投影光の発光点と前記投影光が反射する点である反射点とを有する面を入射面とした時、
    前記ヘッドアップディスプレイ装置は、
    前記投影光を照射する映像部と、
    前記映像部と前記投影部との間に設けられ、前記投影光に含まれる特定方向に振動する光を透過させる偏光部と、
    前記偏光部を透過した投影光が投影される前記投影部と、を備え、
    前記投影部は、前記投影光の入射側である室内側から室外側へ、第二ガラス板、位相差フィルム、第一ガラス板の順になるように配置された合わせガラスであり、
    前記視認者の正面である視認者正面領域と、前記X軸方向のいずれかの方向に沿って、前記視認者正面領域よりも遠くなる領域である視認者斜め前方領域とを有し、
    前記投影光は、少なくとも前記視認者斜め前方領域に投影され、
    前記視認者から前記投影部を見た時のX軸を0°、前記位相差フィルムに沿った面を投影面とした時、
    前記位相差フィルムは、前記投影面において、X軸に対してθ傾いた光軸を有し、前記投影面に入射する前記投影光の振動方向θαと前記光軸とがなす角度をdθとした場合に、入射する前記投影光の振動方向を2dθ回転させるものであり、
    前記振動方向θαは、前記投影面におけるX軸に対する前記入射面の角度をθとした場合に前記投影面において2θ-θの方向であることを特徴とするヘッドアップディスプレイ装置。
    A head-up display device mounted on a moving body that allows a viewer who is an occupant of the moving body to recognize a virtual image based on a reflected image at a projection unit of projected light.
    The X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body advances, the Y-axis is horizontal to the ground and the traveling direction when the moving body advances, and the Z-axis is the direction perpendicular to the ground. ,
    When the plane having the viewpoint of the viewer, the emission point of the projected light, and the reflection point which is the point at which the projected light is reflected is defined as the incident surface.
    The head-up display device is
    The image unit that irradiates the projected light and
    A polarizing unit provided between the image unit and the projection unit to transmit light contained in the projection light that vibrates in a specific direction.
    The projection unit, which projects the projected light transmitted through the polarization unit, is provided.
    The projection unit is a laminated glass arranged in the order of a second glass plate, a retardation film, and a first glass plate from the indoor side, which is the incident side of the projected light, to the outdoor side.
    It has a viewer front region that is the front of the viewer, and a viewer oblique front region that is a region farther than the viewer front region along any direction in the X-axis direction.
    The projected light is projected onto at least the area diagonally forward to the viewer.
    When the X-axis when the projection unit is viewed from the viewer is 0 ° and the plane along the retardation film is the projection plane,
    The retardation film has an optical axis inclined by θ r with respect to the X axis on the projection surface, and the angle formed by the vibration direction θ α of the projected light incident on the projection surface and the optical axis is dθ. In this case, the vibration direction of the incident projected light is rotated by 2dθ.
    The head-up display device is characterized in that the vibration direction θ α is a direction of 2 θ r − θ p on the projection surface when the angle of the incident surface with respect to the X axis on the projection surface is θ p.
  5. 前記視認者が前記第二ガラス板の室内側面に形成された反射像に基づく虚像を観察する請求項4に記載のヘッドアップディスプレイ装置。 The head-up display device according to claim 4, wherein the viewer observes a virtual image based on a reflected image formed on the indoor side surface of the second glass plate.
  6. 前記視認者が複数名であり、
    各視認者のそれぞれに対して、前記映像部と前記投影部との間に前記偏光部が設けられ、視認者毎に設けられた入射面である各入射面を有し、
    それぞれの前記偏光部は、前記各入射面に対応した前記特定方向に振動する投影光を透過させる、請求項1~5のいずれかに記載のヘッドアップディスプレイ装置。
    There are multiple viewers,
    For each of the viewers, the polarizing portion is provided between the image unit and the projection unit, and each of the viewers has each incident surface which is an incident surface provided for each viewer.
    The head-up display device according to any one of claims 1 to 5, wherein each of the polarizing portions transmits projected light that vibrates in the specific direction corresponding to each incident surface.
  7. 前記偏光部は、透過した投影光の振動方向が前記特定方向となる透過軸を有し、
    それぞれの前記透過軸の向きが異なる請求項6に記載のヘッドアップディスプレイ装置。
    The polarizing portion has a transmission axis in which the vibration direction of the transmitted projected light is the specific direction.
    The head-up display device according to claim 6, wherein the directions of the transmission axes are different from each other.
  8. 前記投影光が、前記複数名の視認者のそれぞれの前記視認者正面領域の間であり、前記複数名の視認者のそれぞれの前記視認者斜め前方領域に相当する領域である中央領域に投影される請求項7に記載のヘッドアップディスプレイ装置。 The projected light is projected onto the central region, which is between the front area of each of the plurality of viewers and corresponds to the diagonally forward region of each of the plurality of viewers. The head-up display device according to claim 7.
  9. 前記投影部において、前記投影光が投影される投影位置が変更可能であり、
    前記投影位置の変更に伴う入射面の変更に対応して、前記偏光部が可動であり、前記偏光部を透過させる光の振動方向を変えることができる請求項1~8に記載のヘッドアップディスプレイ装置。
    In the projection unit, the projection position on which the projected light is projected can be changed.
    The head-up display according to claim 1 to 8, wherein the polarizing portion is movable and the vibration direction of the light transmitted through the polarizing portion can be changed in response to a change in the incident surface accompanying the change in the projection position. Device.
  10. 移動体に搭載され、投影光の投影部での反射像に基づく虚像を前記移動体の乗員である視認者に視認させる、へッドアップディスプレイシステムであって、
    地面と水平かつ前記移動体が前進する時の進行方向と直交する方向をX軸、地面と水平かつ前記移動体が前進する時の進行方向をY軸、及び地面と垂直な方向をZ軸とし、
    前記視認者の視点と前記投影光の発光点と前記投影光が反射する点である反射点とを有する面を入射面とした時、
    前記ヘッドアップディスプレイシステムは、
    前記投影光を照射する映像部と、
    前記映像部と前記投影部との間に設けられ、前記投影光に含まれる特定方向に振動する光を透過させる偏光部と、
    前記投影光が投影される前記投影部と、を備え、
    前記投影部は、前記投影光の入射側である室内側から室外側へ、第二ガラス板、位相差フィルム、第一ガラス板の順になるように配置された合わせガラスであり、
    前記視認者の正面である視認者正面領域と、前記X軸方向のいずれかの方向に沿って、前記視認者正面領域よりも遠くなる領域である視認者斜め前方領域とを有し、
    前記投影光は、少なくとも前記視認者斜め前方領域に投影され、
    前記視認者から前記投影部を見た時のX軸を0°、前記位相差フィルムに沿った面を投影面とした時、
    前記位相差フィルムは、前記投影面において、X軸に対してθ傾いた光軸を有し、前記光軸により前記投影面に入射する前記投影光の振動方向を変えるものであり、
    前記偏光部が可動であり、前記偏光部を透過させる光の振動方向を変えることにより、以下の(A)及び(B)を切り替え可能であることを特徴とする。
    (A)前記第二ガラス板へ入射する光の振動方向を、前記入射面と平行な方向とする。
    (B)前記位相差フィルムが、前記投影面に入射する前記投影光の振動方向θαと前記光軸とがなす角度をdθとした場合に、入射する前記投影光の振動方向を2dθ回転させるものであるとして、前記第二ガラス板を透過した光の振動方向を、前記投影面におけるX軸に対する前記入射面の角度をθとした場合に前記投影面において2θ-θの方向となるようにする。
    A head-up display system mounted on a moving body that allows a viewer who is an occupant of the moving body to visually recognize a virtual image based on a reflected image at a projection unit of projected light.
    The X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body advances, the Y-axis is horizontal to the ground and the traveling direction when the moving body advances, and the Z-axis is the direction perpendicular to the ground. ,
    When the plane having the viewpoint of the viewer, the emission point of the projected light, and the reflection point which is the point at which the projected light is reflected is defined as the incident surface.
    The head-up display system
    The image unit that irradiates the projected light and
    A polarizing unit provided between the image unit and the projection unit to transmit light contained in the projection light that vibrates in a specific direction.
    The projection unit on which the projected light is projected is provided.
    The projection unit is a laminated glass arranged in the order of a second glass plate, a retardation film, and a first glass plate from the indoor side, which is the incident side of the projected light, to the outdoor side.
    It has a viewer front region that is the front of the viewer, and a viewer oblique front region that is a region farther than the viewer front region along any direction in the X-axis direction.
    The projected light is projected onto at least the area diagonally forward to the viewer.
    When the X-axis when the projection unit is viewed from the viewer is 0 ° and the plane along the retardation film is the projection plane,
    The retardation film has an optical axis inclined by θ r with respect to the X axis on the projection surface, and changes the vibration direction of the projected light incident on the projection surface by the optical axis.
    The polarizing portion is movable, and the following (A) and (B) can be switched by changing the vibration direction of the light transmitted through the polarizing portion.
    (A) The vibration direction of the light incident on the second glass plate is set to be a direction parallel to the incident surface.
    (B) the retardation film, when a dθ the angle vibration direction theta alpha and said optical axis of said projection light incident on the projection plane, thereby 2dθ rotational oscillation direction of the projection light incident Assuming that, the vibration direction of the light transmitted through the second glass plate is the direction of 2θ r − θ p on the projection surface when the angle of the incident surface with respect to the X axis on the projection surface is θ p. To be.
  11. 前記投影部において、前記投影光が投影される投影位置が変更可能であり、
    前記投影位置の変更に伴う入射面の変更に対応して、前記偏光部が可動であり、前記偏光部を透過する投影光の振動方向を変えることができる請求項10に記載のヘッドアップディスプレイシステム。
    In the projection unit, the projection position on which the projected light is projected can be changed.
    The head-up display system according to claim 10, wherein the polarizing portion is movable and the vibration direction of the projected light transmitted through the polarizing portion can be changed in response to a change in the incident surface accompanying the change in the projection position. ..
  12. 移動体に搭載され、投影光の投影部での反射像に基づく虚像を前記移動体の乗員である視認者に視認させる、へッドアップディスプレイ装置であって、
    地面と水平かつ前記移動体が前進する時の進行方向と直交する方向をX軸、地面と水平かつ前記移動体が前進する時の進行方向をY軸、及び地面と垂直な方向をZ軸とし、
    前記視認者の視点と前記投影光の発光点と前記投影光が反射する点である反射点とを有する面を入射面とした時、
    前記ヘッドアップディスプレイ装置は、
    振動方向がX軸方向である前記投影光を照射する映像部と、
    前記投影光が投影される投影部と、を備え、
    前記投影部は、前記視認者よりも、前記移動体が前進する時の進行方向に配置され、前記投影光の入射側に配置される第二ガラス板と、前記投影光の出射側に配置される第一ガラス板と、前記第二ガラス板と、前記第一ガラス板との間に配置される、位相差フィルムとを、備える合わせガラスからなり、
    前記第一ガラス板は、室外側に露出される第一主面と、前記第一主面の反対側の第二主面とを備え、
    前記第二ガラス板は、室内側に露出される第四主面と、前記第四主面の反対側の第三主面とを備え、
    前記投影光を、前記位相差フィルムへ入射させることによって、前記投影光の振動方向を前記入射面に対して平行方向へ変換することができ、
    前記投影部は、前記視認者の正面である視認者正面領域と、X軸方向のいずれかの方向に沿って、前記視認者正面領域に対して遠くなる領域である視認者斜め前方領域を有し、
    前記視認者が前記視認者正面領域に形成された反射像を見る場合に、前記視認者正面領域に配置される前記位相差フィルムは、前記第四主面との平行面において前記位相差フィルムの光軸がX軸に対して45°±5°であり、
    前記視認者が前記視認者斜め前方領域に形成された反射像を見る場合に、前記視認者斜め前方領域に配置される前記位相差フィルムは、前記第四主面との平行面において前記位相差フィルムの光軸がX軸に対して45°±5°からずれる方向に傾いており、
    前記虚像は、前記第二ガラス板の前記第四主面に形成された反射像に基づき、
    前記視認者正面領域及び前記視認者斜め前方領域のいずれにおいても、前記第一ガラス板の前記第一主面から出射される光は、主として前記入射面に対して平行方向に振動する前記投影光である、ことを特徴とする、ヘッドアップディスプレイ装置。
    A head-up display device mounted on a moving body that allows a viewer who is an occupant of the moving body to visually recognize a virtual image based on a reflected image at a projection unit of projected light.
    The X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body advances, the Y-axis is horizontal to the ground and the traveling direction when the moving body advances, and the Z-axis is the direction perpendicular to the ground. ,
    When the plane having the viewpoint of the viewer, the emission point of the projected light, and the reflection point which is the point at which the projected light is reflected is defined as the incident surface.
    The head-up display device is
    An image unit that irradiates the projected light whose vibration direction is the X-axis direction, and
    A projection unit on which the projected light is projected is provided.
    The projection unit is arranged in the traveling direction when the moving body moves forward, and is arranged on the incident side of the projected light and the emitting side of the projected light. It is composed of a laminated glass provided with a first glass plate, a retardation film arranged between the second glass plate, and the first glass plate.
    The first glass plate includes a first main surface exposed to the outdoor side and a second main surface opposite to the first main surface.
    The second glass plate includes a fourth main surface exposed to the indoor side and a third main surface opposite to the fourth main surface.
    By making the projected light incident on the retardation film, the vibration direction of the projected light can be converted into a direction parallel to the incident surface.
    The projection unit has a viewer front region that is the front of the viewer and a viewer oblique front region that is a region that is far from the viewer front region along any direction in the X-axis direction. death,
    When the viewer sees the reflected image formed in the front area of the viewer, the retardation film arranged in the front area of the viewer is a plane parallel to the fourth main surface of the retardation film. The optical axis is 45 ° ± 5 ° with respect to the X axis.
    When the viewer sees the reflected image formed in the viewer obliquely front region, the retardation film arranged in the viewer diagonally front region has the phase difference in a plane parallel to the fourth main surface. The optical axis of the film is tilted in a direction that deviates from the X axis by 45 ° ± 5 °.
    The imaginary image is based on a reflection image formed on the fourth main surface of the second glass plate.
    In both the front area of the viewer and the diagonally front area of the viewer, the light emitted from the first main surface of the first glass plate is the projected light that vibrates mainly in a direction parallel to the incident surface. A head-up display device characterized by being.
  13. 移動体に搭載され、投影光の投影部での反射像に基づく虚像を前記移動体の乗員である視認者に視認させる、へッドアップディスプレイ装置であって、
    地面と水平かつ前記移動体が前進する時の進行方向と直交する方向をX軸、地面と水平かつ前記移動体が前進する時の進行方向をY軸、及び地面と垂直な方向をZ軸とし、
    前記視認者の視点と前記投影光の発光点と前記投影光が反射する点である反射点とを有する面を入射面とした時、
    前記ヘッドアップディスプレイ装置は、
    振動方向がYZ平面に平行な方向である前記投影光を照射する映像部と、
    前記投影光が投影される投影部と、を備え、
    前記投影部は、前記視認者よりも、前記移動体が前進する時の進行方向に配置され、前記投影光の入射側に配置される第二ガラス板と、前記投影光の出射側に配置される第一ガラス板と、前記第二ガラス板と、前記第一ガラス板との間に配置される、位相差フィルムとを、備える合わせガラスからなり、
    前記第一ガラス板は、室外側に露出される第一主面と、前記第一主面の反対側の第二主面とを備え、
    前記第二ガラス板は、室内側に露出される第四主面と、前記第四主面の反対側の第三主面とを備え、
    前記投影光を、前記位相差フィルムへ入射させることによって、前記投影光の振動方向を前記入射面に対して垂直方向へ変換することができ、
    前記投影部は、前記視認者の正面である視認者正面領域と、X軸方向のいずれかの方向に沿って、前記視認者正面領域に対して遠くなる領域である視認者斜め前方領域を有し、
    前記視認者が前記視認者正面領域に形成された反射像を見る場合に、前記視認者正面領域に配置される前記位相差フィルムは、前記第四主面との平行面において前記位相差フィルムの光軸がX軸に対して45°±5°であり、
    前記視認者が前記視認者斜め前方領域に形成された反射像を見る場合に、前記視認者斜め前方領域に配置される前記位相差フィルムは、前記第四主面との平行面において前記位相差フィルムの光軸がX軸に対して45°±5°からずれる方向に傾いており、
    前記虚像は、前記第一ガラス板の前記第一主面に形成された反射像に基づき、
    前記視認者正面領域及び前記視認者斜め前方領域のいずれにおいても、前記第一ガラス板の前記第一主面で反射される光は、主として前記入射面に対して垂直方向に振動する前記投影光である、ことを特徴とする、ヘッドアップディスプレイ装置。
    A head-up display device mounted on a moving body that allows a viewer who is an occupant of the moving body to visually recognize a virtual image based on a reflected image at a projection unit of projected light.
    The X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body advances, the Y-axis is horizontal to the ground and the traveling direction when the moving body advances, and the Z-axis is the direction perpendicular to the ground. ,
    When the plane having the viewpoint of the viewer, the emission point of the projected light, and the reflection point which is the point at which the projected light is reflected is defined as the incident surface.
    The head-up display device is
    The image unit that irradiates the projected light whose vibration direction is parallel to the YZ plane, and
    A projection unit on which the projected light is projected is provided.
    The projection unit is arranged in the traveling direction when the moving body moves forward, and is arranged on the incident side of the projected light and the emitting side of the projected light. It is composed of a laminated glass provided with a first glass plate, a retardation film arranged between the second glass plate, and the first glass plate.
    The first glass plate includes a first main surface exposed to the outdoor side and a second main surface opposite to the first main surface.
    The second glass plate includes a fourth main surface exposed to the indoor side and a third main surface opposite to the fourth main surface.
    By making the projected light incident on the retardation film, the vibration direction of the projected light can be converted into a direction perpendicular to the incident surface.
    The projection unit has a viewer front region that is the front of the viewer and a viewer oblique front region that is a region that is far from the viewer front region along any direction in the X-axis direction. death,
    When the viewer sees the reflected image formed in the front area of the viewer, the retardation film arranged in the front area of the viewer is a plane parallel to the fourth main surface of the retardation film. The optical axis is 45 ° ± 5 ° with respect to the X axis.
    When the viewer sees the reflected image formed in the viewer obliquely front region, the retardation film arranged in the viewer diagonally front region has the phase difference in a plane parallel to the fourth main surface. The optical axis of the film is tilted in a direction that deviates from the X axis by 45 ° ± 5 °.
    The imaginary image is based on a reflection image formed on the first main surface of the first glass plate.
    In both the front area of the viewer and the diagonally front area of the viewer, the light reflected by the first main surface of the first glass plate is the projected light that vibrates mainly in the direction perpendicular to the incident surface. A head-up display device, characterized in that it is.
  14. 前記視認者斜め前方領域のうち、前記視認者正面領域の右側に位置する右側周辺領域と、前記視認者正面領域の左側に位置する左側周辺領域では、前記位相差フィルムの光軸がX軸に対して45°±5°からずれる方向の向きが反対である請求項12又は13に記載のヘッドアップディスプレイ装置。 In the right peripheral region located on the right side of the visual visual front region and the left peripheral region located on the left side of the visual visual front region, the optical axis of the retardation film is the X-axis in the visible diagonal front region. The head-up display device according to claim 12 or 13, wherein the direction of deviation from 45 ° ± 5 ° is opposite to that of the device.
  15. 前記視認者斜め前方領域における前記位相差フィルムの光軸の方向の傾きの変化が、X軸方向に沿って連続的になされている請求項12~14のいずれかに記載のヘッドアップディスプレイ装置。 The head-up display device according to any one of claims 12 to 14, wherein the change in the inclination of the retardation film in the direction of the optical axis in the diagonally forward region of the viewer is continuously made along the X-axis direction.
  16. 前記視認者斜め前方領域における前記位相差フィルムの光軸の方向の傾きの変化が、X軸方向に沿って非連続的になされている請求項12~14のいずれかに記載のヘッドアップディスプレイ装置。 The head-up display device according to any one of claims 12 to 14, wherein the change in the inclination of the retardation film in the direction of the optical axis in the area diagonally forward to the viewer is discontinuous along the X-axis direction. ..
  17. 上下方向の縦軸及び左右方向の横軸を有する、一体物である位相差フィルムであって、
    前記縦軸に沿った複数の地点において、前記位相差フィルムの光軸と前記横軸とがなす角は一定であり、
    前記横軸方向に沿って、前記位相差フィルムの光軸と前記横軸とがなす角が一定傾向で変化することを特徴とする位相差フィルム。
    An integral retardation film having a vertical axis in the vertical direction and a horizontal axis in the horizontal direction.
    At a plurality of points along the vertical axis, the angle formed by the optical axis of the retardation film and the horizontal axis is constant.
    A retardation film characterized in that the angle formed by the optical axis of the retardation film and the horizontal axis changes with a constant tendency along the horizontal axis direction.
  18. 前記横軸方向に沿って、前記位相差フィルムの光軸と前記横軸とがなす角が連続的に変化する請求項17に記載の位相差フィルム。 The retardation film according to claim 17, wherein the angle formed by the optical axis of the retardation film and the horizontal axis continuously changes along the horizontal axis direction.
  19. 前記横軸方向に沿って、前記位相差フィルムの光軸と前記横軸とがなす角が非連続的に変化する請求項17に記載の位相差フィルム。 The retardation film according to claim 17, wherein the angle formed by the optical axis of the retardation film and the horizontal axis changes discontinuously along the horizontal axis direction.
  20. 第一ガラス板と、第二ガラス板と、前記第一ガラス板と前記第二ガラス板との間に配置される位相差フィルムと、を備える車両用合わせガラスであって、
    前記位相差フィルムが、請求項17~19のいずれかに記載の位相差フィルムであることを特徴とする車両用合わせガラス。
    A laminated glass for a vehicle including a first glass plate, a second glass plate, and a retardation film arranged between the first glass plate and the second glass plate.
    A laminated glass for a vehicle, wherein the retardation film is the retardation film according to any one of claims 17 to 19.
  21. 移動体に搭載され、投影光の投影部での反射像に基づく虚像を前記移動体の乗員である視認者に視認させる、へッドアップディスプレイシステムであって、
    地面と水平かつ前記移動体が前進する時の進行方向と直交する方向をX軸、地面と水平かつ前記移動体が前進する時の進行方向をY軸、及び地面と垂直な方向をZ軸とし、
    前記視認者の視点と前記投影光の発光点と前記投影光が反射する点である反射点とを有する面を入射面とした時、
    前記ヘッドアップディスプレイシステムは、
    前記投影光を照射する映像部と、
    前記投影光が投影される投影部と、を備え、
    前記投影部は、前記視認者よりも、前記移動体が前進する時の進行方向に配置され、前記投影光の入射側に配置される第二ガラス板と、前記投影光の出射側に配置される第一ガラス板と、前記第二ガラス板と、前記第一ガラス板との間に配置される、位相差フィルムとを、備える合わせガラスからなり、
    前記第一ガラス板は、室外側に露出される第一主面と、前記第一主面の反対側の第二主面とを備え、
    前記第二ガラス板は、室内側に露出される第四主面と、前記第四主面の反対側の第三主面とを備え、
    前記投影光を、前記位相差フィルムへ入射させることによって、前記投影光の振動方向を前記入射面に対して平行方向又は垂直方向へ変換することができ、
    前記投影部は、前記視認者の正面である視認者正面領域と、X軸方向のいずれかの方向に沿って、前記視認者正面領域に対して遠くなる領域である視認者斜め前方領域を有し、
    前記視認者が前記視認者正面領域に形成された反射像を見る場合に、前記視認者正面領域に配置される前記位相差フィルムは、前記第四主面との平行面において前記位相差フィルムの光軸がX軸に対して45°±5°であり、
    前記視認者が前記視認者斜め前方領域に形成された反射像を見る場合に、前記視認者斜め前方領域に配置される前記位相差フィルムは、前記第四主面との平行面において前記位相差フィルムの光軸がX軸に対して45°±5°からずれる方向に傾いており、
    前記映像部は、振動方向がX軸方向である第一の投影光、及び、振動方向がYZ平面に平行な方向である第二の投影光を切り替えて照射することができ、
    前記視認者が偏光板を介さずに虚像を視認する場合は、前記映像部から前記第一の投影光を照射し、前記虚像は、前記第二ガラス板の前記第四主面に形成された反射像に基づき、前記視認者正面領域及び前記視認者斜め前方領域のいずれにおいても、前記第一ガラス板の前記第一主面から出射される光は、主として前記入射面に対して平行方向に振動する投影光であり、
    前記視認者が偏光板を介して虚像を視認する場合は、前記映像部から前記第二の投影光を照射し、前記虚像は、前記第一ガラス板の前記第一主面に形成された反射像に基づき、前記視認者正面領域及び前記視認者斜め前方領域のいずれにおいても、前記第一ガラス板の前記第一主面で反射される光は、主として前記入射面に対して垂直方向に振動する投影光である、ことを特徴とする、ヘッドアップディスプレイシステム。
     
    A head-up display system mounted on a moving body that allows a viewer who is an occupant of the moving body to visually recognize a virtual image based on a reflected image at a projection unit of projected light.
    The X-axis is the direction horizontal to the ground and orthogonal to the traveling direction when the moving body advances, the Y-axis is horizontal to the ground and the traveling direction when the moving body advances, and the Z-axis is the direction perpendicular to the ground. ,
    When the plane having the viewpoint of the viewer, the emission point of the projected light, and the reflection point which is the point at which the projected light is reflected is defined as the incident surface.
    The head-up display system
    The image unit that irradiates the projected light and
    A projection unit on which the projected light is projected is provided.
    The projection unit is arranged in the traveling direction when the moving body moves forward, and is arranged on the incident side of the projected light and the emitting side of the projected light. It is composed of a laminated glass provided with a first glass plate, a retardation film arranged between the second glass plate, and the first glass plate.
    The first glass plate includes a first main surface exposed to the outdoor side and a second main surface opposite to the first main surface.
    The second glass plate includes a fourth main surface exposed to the indoor side and a third main surface opposite to the fourth main surface.
    By making the projected light incident on the retardation film, the vibration direction of the projected light can be converted into a direction parallel to or perpendicular to the incident surface.
    The projection unit has a viewer front region that is the front of the viewer and a viewer oblique front region that is a region that is far from the viewer front region along any direction in the X-axis direction. death,
    When the viewer sees the reflected image formed in the front area of the viewer, the retardation film arranged in the front area of the viewer is a plane parallel to the fourth main surface of the retardation film. The optical axis is 45 ° ± 5 ° with respect to the X axis.
    When the viewer sees the reflected image formed in the viewer obliquely front region, the retardation film arranged in the viewer diagonally front region has the phase difference in a plane parallel to the fourth main surface. The optical axis of the film is tilted in a direction that deviates from the X axis by 45 ° ± 5 °.
    The image unit can switch between the first projected light whose vibration direction is the X-axis direction and the second projected light whose vibration direction is parallel to the YZ plane.
    When the viewer visually recognizes the virtual image without passing through the polarizing plate, the first projected light is irradiated from the image unit, and the virtual image is formed on the fourth main surface of the second glass plate. Based on the reflected image, the light emitted from the first main surface of the first glass plate is mainly in the direction parallel to the incident surface in both the viewer front region and the viewer oblique front region. It is a vibrating projected light,
    When the viewer visually recognizes the virtual image through the polarizing plate, the second projected light is irradiated from the image unit, and the virtual image is a reflection formed on the first main surface of the first glass plate. Based on the image, the light reflected by the first main surface of the first glass plate vibrates mainly in the direction perpendicular to the incident surface in both the viewer front region and the viewer oblique front region. A head-up display system characterized by being projected light.
PCT/JP2021/003464 2020-02-13 2021-02-01 Head-up display device, head-up display system, phase difference film, and laminated glass for vehicle WO2021161829A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180013237.1A CN115066645A (en) 2020-02-13 2021-02-01 Head-up display device, head-up display system, retardation film, and laminated glass for vehicle
JP2022500325A JPWO2021161829A1 (en) 2020-02-13 2021-02-01

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-022342 2020-02-13
JP2020022342 2020-02-13
JP2020027920 2020-02-21
JP2020-027920 2020-02-21
JP2020140713 2020-08-24
JP2020-140713 2020-08-24

Publications (1)

Publication Number Publication Date
WO2021161829A1 true WO2021161829A1 (en) 2021-08-19

Family

ID=77292377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003464 WO2021161829A1 (en) 2020-02-13 2021-02-01 Head-up display device, head-up display system, phase difference film, and laminated glass for vehicle

Country Status (3)

Country Link
JP (1) JPWO2021161829A1 (en)
CN (1) CN115066645A (en)
WO (1) WO2021161829A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195156A (en) * 1997-06-30 1999-04-09 Central Glass Co Ltd Display device
WO2013145550A1 (en) * 2012-03-26 2013-10-03 株式会社有沢製作所 Method for manufacturing phase-shift plate
US20140307176A1 (en) * 2013-04-12 2014-10-16 Bayerische Motoren Werke Aktiengesellschaft Light-Transmitting Pane for Displaying an Image of a Head-Up Display for Polarized Sunglasses
JP2015225236A (en) * 2014-05-28 2015-12-14 株式会社デンソー Projection member, head-up display device, and polarized sunglass
JP2016071078A (en) * 2014-09-29 2016-05-09 富士フイルム株式会社 Member for displaying projection image and projection image display system
WO2019244619A1 (en) * 2018-06-22 2019-12-26 セントラル硝子株式会社 Head-up display device and method for using head-up display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195156A (en) * 1997-06-30 1999-04-09 Central Glass Co Ltd Display device
WO2013145550A1 (en) * 2012-03-26 2013-10-03 株式会社有沢製作所 Method for manufacturing phase-shift plate
US20140307176A1 (en) * 2013-04-12 2014-10-16 Bayerische Motoren Werke Aktiengesellschaft Light-Transmitting Pane for Displaying an Image of a Head-Up Display for Polarized Sunglasses
JP2015225236A (en) * 2014-05-28 2015-12-14 株式会社デンソー Projection member, head-up display device, and polarized sunglass
JP2016071078A (en) * 2014-09-29 2016-05-09 富士フイルム株式会社 Member for displaying projection image and projection image display system
WO2019244619A1 (en) * 2018-06-22 2019-12-26 セントラル硝子株式会社 Head-up display device and method for using head-up display device

Also Published As

Publication number Publication date
CN115066645A (en) 2022-09-16
JPWO2021161829A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
CN109791291B (en) Head-up display device
US7355796B2 (en) Automobile windshield for HUD system
US10036890B2 (en) Head-up display device
CN106990530B (en) Cold mirror for head-up display device and head-up display device
CN108885344B (en) Head-up display device
US11453340B2 (en) Display device
JP6652634B2 (en) Display device and optical element
EP4139127A1 (en) Vehicle compound glazing unit with projection area and vehicle glazing and display system
WO2021139995A1 (en) Glass vehicle side window and partition window with active projection transparent screen
US20220187602A1 (en) Image display system and head-up display system
TWI545375B (en) An image display device, a retardation film for use, and a polarizing plate
WO2021161829A1 (en) Head-up display device, head-up display system, phase difference film, and laminated glass for vehicle
US20230017066A1 (en) Optical system and heads up display systems
WO2019244619A1 (en) Head-up display device and method for using head-up display device
JP7397339B2 (en) heads up display device
JP2022097161A (en) Optical system including head-up display device
WO2019087676A1 (en) Image display system
JP6683149B2 (en) Head-up display device
WO2021153468A1 (en) Image display device
WO2022131097A1 (en) Head-up display device
US20230013999A1 (en) Optical systems for hud systems
TWI738486B (en) Vehicular head-up display system with virtual images in different distances
US20230004001A1 (en) Method for improving the image quality of a hud system, a polarizing element, and a hud system comprising such a polarizing element
US20230134930A1 (en) Heads-up display with ghost image mitigation
JP2003050373A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500325

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753758

Country of ref document: EP

Kind code of ref document: A1