WO2021161620A1 - Heat shrink tube - Google Patents

Heat shrink tube Download PDF

Info

Publication number
WO2021161620A1
WO2021161620A1 PCT/JP2020/044436 JP2020044436W WO2021161620A1 WO 2021161620 A1 WO2021161620 A1 WO 2021161620A1 JP 2020044436 W JP2020044436 W JP 2020044436W WO 2021161620 A1 WO2021161620 A1 WO 2021161620A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
shrinkable tube
fluoropolymer
mass
fatty acid
Prior art date
Application number
PCT/JP2020/044436
Other languages
French (fr)
Japanese (ja)
Inventor
遼太 福本
太郎 藤田
西川 信也
清一郎 村田
Original Assignee
住友電気工業株式会社
住友電工ファインポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ファインポリマー株式会社 filed Critical 住友電気工業株式会社
Priority to JP2022500235A priority Critical patent/JPWO2021161620A1/ja
Publication of WO2021161620A1 publication Critical patent/WO2021161620A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting

Definitions

  • Fluororesin has excellent heat resistance, chemical resistance, and insulation properties, and can be extruded. Therefore, fluororesin is widely used as a main component of heat-shrinkable tubes that cover and protect connections such as electric wires and pipes. There is.
  • heat-shrinkable tube containing fluororesin has relatively high rigidity, for example, fluororubber or the like is mixed with the heat-shrinkable tube in applications requiring flexibility (see JP-A-2015-39843).
  • the heat-shrinkable tube according to one aspect of the present disclosure contains a fatty acid amide and a fluoropolymer as a main component, and the fluoropolymer contains fluororubber and fluororesin at 70 ° C. or higher as measured by a differential scanning calorimeter.
  • the amount of heat of fusion is 1 J / g or more and 12 J / g or less.
  • FIG. 1 is a schematic perspective view showing a heat-shrinkable tube according to an embodiment of the present disclosure.
  • This heat-shrinkable tube is required to have not only flexibility when coating a base material, but also quality improvement in terms of manufacturing such as shape retention during storage and suppression of sticking between tubes.
  • the present disclosure has been made based on such circumstances, and provides a heat-shrinkable tube capable of suppressing sticking between tubes while having good flexibility and improving shape retention during storage. With the goal. [Effect of the present disclosure] According to the present disclosure, it is possible to suppress sticking between tubes while providing good flexibility, and to improve shape retention during storage. [Explanation of Embodiments of the present disclosure] First, embodiments of the present disclosure will be listed and described.
  • the present inventors have found that although the flexibility is improved by reducing the crystal content of the fluoropolymer, the shape retention during storage may be lowered and the tubes may be stuck to each other.
  • general lubricants are more likely to deteriorate over time than fluoropolymers. Therefore, the heat-shrinkable tube containing the lubricant tends to cause aged deterioration.
  • fatty acid amide as a lubricant, it is possible to suppress sticking between tubes while maintaining aging resistance. As a result of further studies based on these findings, it was found that these problems can be solved by combining a fluoropolymer containing a fluororubber and a fluororesin with a fatty acid amide in a specific ratio.
  • the heat-shrinkable tube according to one aspect of the present disclosure contains a fatty acid amide and a fluoropolymer as a main component, and the fluoropolymer contains fluororubber and fluororesin at 70 ° C. or higher as measured by a differential scanning calorimeter.
  • the amount of heat of fusion is 1 J / g or more and 12 J / g or less.
  • the heat-shrinkable tube has excellent heat resistance because it is mainly composed of a fluoropolymer containing fluororubber and fluororesin. Further, when the amount of heat of melting at 70 ° C. or higher measured by a differential scanning calorimeter is 1 J / g or more, natural shrinkage during storage can be suppressed, so that shape retention during storage can be improved. On the other hand, when the amount of heat of melting is 12 J / g or less, flexibility can be imparted to the heat-shrinkable tube. Further, since the heat-shrinkable tube contains a fatty acid amide as a lubricant, it is possible to suppress sticking between the tubes while maintaining aging resistance.
  • the heat-shrinkable tube can suppress sticking between the tubes while having good flexibility, and can improve the shape retention during storage.
  • the "main component” means a component having the highest content, and means a component contained in an amount of 50% by mass or more with respect to the total mass.
  • the content of the fatty acid amide with respect to 100 parts by mass of the fluoropolymer is preferably 0.1 part by mass or more and 10 parts by mass or less.
  • the fluororubber is vinylidene fluoride-based rubber (FKM). Since the fluororubber is a vinylidene fluoride-based rubber, heat resistance, workability, and price are improved.
  • FKM vinylidene fluoride-based rubber
  • the fluororesin is polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, or a combination thereof.
  • the fluororesin is polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer or a combination thereof, the effect of suppressing natural shrinkage during storage and heat resistance can be further improved.
  • the content of the fatty acid amide is preferably 0.2 parts by mass or more and 5 parts by mass or less.
  • the effect of suppressing the adhesion between the heat-shrinkable tubes can be further improved while maintaining the aging resistance.
  • the second modulus is preferably 50 MPa or less.
  • the "second modulus” is the slope of a straight line connecting a point on the stress-strain curve and the origin, and is a value measured based on ASTM-D5223-92. It is the slope of the straight line connecting the point on the stress-strain curve and the origin, and is an index of the susceptibility to strain.
  • the heat shrinkable tube according to one embodiment of the present disclosure is used as a coating material for protecting an object to be coated.
  • the heat-shrinkable tube is a tube that shrinks in diameter when heated. More specifically, the object to be coated is protected by heating the heat-shrinkable tube into which the object to be coated is inserted on the object to be coated and coating the object to be coated with the contracted body of the heat-shrinkable tube.
  • the heat-shrinkable tube 1 of FIG. 1 is composed of a cylindrical single-layer base material layer.
  • the heat-shrinkable tube 1 is used, for example, for covering a connection portion between objects to be coated, a terminal of wiring, a metal tube, etc. for protection, insulation, waterproofing, corrosion protection, and the like.
  • the heat-shrinkable tube is formed of a resin composition for forming the heat-shrinkable tube, and the heat-shrinkable tube 1 contains a fatty acid amide and a fluoropolymer as a main component.
  • the heat-shrinkable tube 1 is excellent in heat resistance because it contains a fluoropolymer containing fluororubber and fluororesin as a main component.
  • the average inner diameter and average thickness of the heat-shrinkable tube 1 are appropriately selected according to the application and the like.
  • the average inner diameter of the heat-shrinkable tube 1 before heat-shrinkage can be, for example, 1 mm or more and 60 mm or less.
  • the average inner diameter of the heat-shrinkable tube 1 after heat-shrinking can be, for example, 30% or more and 50% or less of the average inner diameter before heat-shrinking.
  • the average thickness of the heat-shrinkable tube 1 can be, for example, 0.1 mm or more and 5 mm or less.
  • the lower limit of the amount of heat of fusion measured by the differential scanning calorimeter of the heat shrink tube 1 at 70 ° C. or higher is 1 J / g, preferably 2 J / g.
  • the upper limit of the heat of fusion is 12 J / g, preferably 8 J / g.
  • the heat of fusion can be obtained from the melting curve obtained by differential scanning calorimetry.
  • the melting curve is obtained by performing differential scanning calorimetry under the following conditions.
  • the upper limit of the second modulus of the heat-shrinkable tube 1 is preferably 50 MPa, more preferably 40 MPa. When the second modulus is 50 MPa or less, the flexibility of the heat-shrinkable tube can be further improved. If the second modulus exceeds the upper limit, the flexibility of the heat-shrinkable tube may be insufficient, and it may be difficult to bend and stretch the portion of the object to be coated that is covered with the heat-shrinkable tube. On the other hand, the lower limit of the second modulus of the heat-shrinkable tube is not particularly limited, but is usually about 20 MPa. [Fluoropolymer] The fluoropolymer includes fluororubber and fluororesin.
  • the "fluoropolymer” is an organic group in which at least one of the hydrogen atoms bonded to the carbon atom constituting the repeating unit of the polymer chain has a fluorine atom or a fluorine atom (hereinafter, also referred to as "fluorine atom-containing group"). Refers to those replaced with.
  • the fluorine atom-containing group is one in which at least one of the hydrogen atoms in the linear or branched organic group is substituted with a fluorine atom, and examples thereof include a fluoroalkyl group, a fluoroalkoxy group, and a fluoropolyether group. ..
  • fluorororubber refers to a fluoropolymer having no crystals and having a heat of fusion measured by a differential scanning calorimeter of 0 J / g.
  • fluororubber vinylidene fluoride-based rubber (FKM), tetrafluoroethylene-propylene-based rubber (FEPM), tetrafluoroethylene-purple olovinyl ether-based rubber (FFKM), and the like.
  • FKM vinylidene fluoride-based rubber
  • FEPM tetrafluoroethylene-propylene-based rubber
  • FFKM tetrafluoroethylene-purple olovinyl ether-based rubber
  • fluororesin examples include polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer (THV), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and polyfluoroethylene.
  • PVDF polyvinylidene fluoride
  • THV tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • PCTFE polychlorotrifluoroethylene
  • PVDF, THV or a combination thereof is preferable as the fluororesin. Since the melting points of PVDF and THV are relatively low, they can be heat-shrinked at a lower temperature.
  • the upper limit of the melting point of the fluororesin is preferably 260 ° C, more preferably 150 ° C. If the melting point of the fluororesin exceeds the above upper limit, the shrinkage temperature when the manufactured heat-shrinkable tube is heat-shrinked becomes high, so that the object to be coated may be damaged by heat.
  • the lower limit of the melting point of the fluororesin is not particularly limited as long as the temperature at which the heat-shrinkable tube does not soften or melt during use, but can be, for example, 100 ° C.
  • the mass ratio of fluororubber to fluororesin is preferably 20/80 or more and 90/10 or less. If the content of the fluorororubber is less than the above lower limit, the effect of improving the flexibility of the heat-shrinkable tube formed may be insufficient. On the contrary, if the content of the fluororubber exceeds the upper limit, it is difficult to maintain the shape, which may make it difficult to mold the heat-shrinkable tube.
  • the mass ratio of the fluororubber to the fluororesin is preferably 20/80 or more and 80/20 or less.
  • the mass ratio of the fluororubber to the fluororesin is preferably 50/50 or more and 90/10 or less.
  • the lower limit of the content of the fluoropolymer in the heat-shrinkable tube is preferably 60% by mass, more preferably 80% by mass, still more preferably 90% by mass.
  • the upper limit of the content of the fluoropolymer is preferably 99.9% by mass, more preferably 99.0% by mass. If the content of the fluoropolymer is less than the above lower limit, the heat-shrinking force of the manufactured heat-shrinkable tube is reduced, so that the object to be covered or the like may not be sufficiently covered. In addition, the performance peculiar to the fluoropolymer such as heat resistance may not be sufficiently exhibited in the manufactured heat-shrinkable tube.
  • the heat-shrinkable tube contains a fatty acid amide as a lubricant.
  • fatty acid amide as a lubricant, it is possible to suppress sticking between tubes while maintaining aging resistance.
  • the fatty acid amide include fatty acid amides in which the fatty acid portion is saturated fatty acids and fatty acid amides in which unsaturated fatty acids are unsaturated fatty acids.
  • Examples of the amide in which the fatty acid portion is a saturated fatty acid include stearic acid amide, lauric acid amide, palmitic acid amide, behenic acid amide, and myristic acid amide.
  • Examples of the amide of an unsaturated fatty acid having a fatty acid moiety include oleic acid amide and erucic acid amide.
  • Examples of other fatty acid amides include bisamides and methylolamides.
  • the lower limit of the content of the fatty acid amide with respect to 100 parts by mass of the fluoropolymer 0.1 part by mass is preferable, and 0.2 part by mass is more preferable.
  • the content of the fatty acid amide is less than the above lower limit, the effect of suppressing the adhesion between the heat-shrinkable tubes may be reduced.
  • the upper limit of the content of the fatty acid amide 10 parts by mass is preferable, and 5 parts by mass is more preferable. If the content of the fatty acid amide exceeds the upper limit, the aging resistance may decrease.
  • the heat-shrinkable tube 1 may contain other additives, if necessary.
  • additives include strength-retaining agents, antioxidants, flame retardants, copper damage inhibitors, colorants, heat stabilizers, ultraviolet absorbers and the like.
  • the content of the additive in the heat-shrinkable tube 1 is more preferably less than 40% by mass, further preferably less than 25% by mass. When the content of the additive is at least the above upper limit, the characteristics of the heat-shrinkable layer may easily vary.
  • the heat-shrinkable tube has good flexibility, suppresses sticking between tubes, and can improve shape retention during storage. Therefore, the heat-shrinkable tube can be suitably used as a protective material for a covering object for various industrial purposes, for example.
  • the method for producing the heat-shrinkable tube is not particularly limited, but includes, for example, the following steps. (1) A step of preparing a resin composition for forming a heat-shrinkable tube (hereinafter, also referred to as a resin composition) for forming a heat-shrinkable tube (resin composition preparation step).
  • Step of extrusion molding a resin composition for forming a heat-shrinkable tube with a melt extrusion molding machine (extrusion molding step) (3) Step of cross-linking the extruded product by irradiation (cross-linking step) (4) Step of expanding the diameter of the extruded product to obtain the heat-shrinkable tube (diameter expansion step)
  • Resin composition preparation step In the resin composition preparation step for forming a heat-shrinkable tube, each resin component of the heat-shrinkable tube, fatty acid amide, and other additives, if necessary, are mixed by a melt mixer or the like.
  • a resin composition for forming a heat-shrinkable tube for forming a heat-shrinkable tube is prepared.
  • the melting mixer known ones such as an open roll, a Banbury mixer, a pressurized kneader, a single-screw mixer, and a multi-screw mixer can be used.
  • the resin composition for forming a heat-shrinkable tube is extruded by a melt extrusion molding machine. Specifically, the resin composition for forming a heat-shrinkable tube is extruded into a cylindrical shape using an extrusion die having a cylindrical space for extruding a layer corresponding to the heat-shrinkable layer. As a result, an extruded product corresponding to the heat-shrinkable layer can be obtained.
  • the dimensions of the extruded product can be designed according to the application and the like.
  • (3) Cross-linking step In the cross-linking step, the extruded product is cross-linked by irradiation. In this step, by cross-linking the base resin of the extruded product, shrinkage (shape memory effect) when heat-shrinking at a high temperature after the diameter expansion step and shape retention at a high temperature after shrinking are imparted.
  • a method for cross-linking the base resin a method of irradiating the resin with radiation (irradiation cross-linking of the base resin) is preferable.
  • irradiation (crosslinking) with radiation is performed after the extrusion molding step.
  • irradiating radiation after extrusion molding molding can be reliably performed and the effect of irradiation with radiation can be sufficiently obtained.
  • Examples of the radiation used for irradiation cross-linking of the base resin include electron beams ( ⁇ rays) and ⁇ rays. Since the electron accelerator has a low running cost, a high-power electron beam can be obtained, and control is easy, the electron beam is preferable as the radiation.
  • the irradiation amount is preferably in the range of 50 kGy or more and 400 kGy or less.
  • the irradiation amount is less than 50 kGy, the degree of cross-linking becomes small and the shape-retaining property at the time of storage is improved, but the shape-retaining property at a high temperature after shrinkage may decrease.
  • the irradiation amount exceeds 400 kGy, the shrinkage rate of 50 ° C. or lower increases, the shape retention during storage decreases, and the strength of the tube increases, which may make it difficult to expand the diameter.
  • Diameter expansion process In the diameter expansion process, the diameter of a cylindrical extruded product is expanded.
  • a known method for increasing the diameter of the extruded product As a method for increasing the diameter of the extruded product, a known method for increasing the diameter, which is usually used for producing a conventional heat-shrinkable tube, can be used.
  • the diameter is expanded to a predetermined inner diameter by a method of introducing compressed air inside the extruded product while it is heated to a temperature equal to or higher than the melting point, a method of reducing the pressure from the outside, a method of inserting a metal rod inside, or the like. After that, a method of cooling and fixing the shape is used.
  • Such an expansion of the diameter of the extruded product is performed so that the inner diameter of the extruded product is, for example, 1.2 times or more and 4 times or less.
  • the heat-shrinkable tube By fixing the shape of the extruded product with an expanded diameter, the heat-shrinkable tube can be obtained.
  • this fixing method include a method of cooling to a temperature equal to or lower than the melting point of the base resin component.
  • the diameter expansion step in order to reduce the influence on the surface roughness of the inner surface of the heat-shrinkable tube, the roughness of the metal rod can be reduced, or a coating or a lubricant can be applied. Further, by reducing the speed of diameter expansion, the influence on the surface roughness of the inner surface of the heat shrinkable tube can be reduced.
  • the heat-shrinkable tube is formed by expanding the diameter of the extruded product and fixing the shape in this way.
  • the heat-shrinkable tube has good flexibility, suppresses sticking between tubes, and can improve shape retention during storage.
  • the heat-shrinkable tube of the present disclosure is not limited to the heat-shrinkable tube in which the base material layer is formed in a cylindrical shape shown in FIG. 1, and may be, for example, a heat-shrinkable tube in which a base material layer is formed in a cap shape.
  • a heat-shrinkable tube can be manufactured by heat-shrinking and closing one end of a cylindrical heat-shrinkable tube.
  • This heat shrinkable tube can be suitably used for, for example, terminal treatment of wiring.
  • Fluorororubber FKM "TN50A” manufactured by Solvay (density 1.86 g / cm 3 , Mooney viscosity 23 ML, 121 ° C)
  • Fluororesin THV "Dynion 221GZ” manufactured by 3M (melting point 115 ° C)
  • Fluororesin PVDF "Kiner 2800” manufactured by Arkema (melting point 140 ° C., specific density 1.78)
  • Lubricants Elcaic acid amide (“Alflow P-10” manufactured by NOF CORPORATION) (2) Lubricants oleic acid amide ("Alflow E-10” manufactured by NOF CORPORATION) (3) Lubricants Stearic acid amide (“Amid Alflow S-10” manufactured by NOF CORPORATION) (4) Lubricating stearic acid (NOF's “powdered stearic acid Sakura", melting point 57.5 ° C, molecular weight 284) (5) Lubricants Zinc stearate (“SZ-2000” manufactured by Sakai Chemical Industry Co., Ltd.) (6) Lubricants Polyethylene wax (Mitsui Chemicals'"High Wax 420P", melting point 118 ° C, molecular weight 4000, density 0.93 g / cm 3 ) (7) Lubricants A mixture of fatty acid ester and paraffin (“Emaster 430W” manufactured by RIKEN Vitamin Co., Ltd.) (8) Lubricants Acrylic polymer (“Metabren L-1000"
  • a heat-shrinkable tube was produced by extrusion molding using the above resin composition for forming a heat-shrinkable tube.
  • An extrusion die was used for extrusion molding. Extrusion molding was carried out at a die temperature of 200 ° C. and a linear speed of 10 m / min. Next, the molded product extruded by this molding die was irradiated under the condition of an irradiation amount of 90 kGy.
  • the peel strength value (mN / mm) in the 180 ° peel test shown in Table 1, Table 2 and Table 2 is a value obtained by dividing the value obtained by the test by the width of the test piece. (Sessility) Based on the value of the peel strength in the 180 ° peel test, the adhesiveness was evaluated in three stages of A, B and C. The evaluation criteria for the change in the shape of the heat-shrinkable tube were as follows. The smaller the value of the peel strength, the higher the effect of suppressing the sticking between the tubes. If the evaluation is A or B, it is passed.
  • A 150 mN / mm or less.
  • B More than 150 mN / mm and less than 300 mN / mm.
  • Shrinkage rate [%] ⁇ [(Inner diameter of tube before storage at 50 ° C)-(Inner diameter of tube after storage at 50 ° C)] / [(Inner diameter of tube before storage at 50 ° C)-(Each heat shrinkage The inner diameter of the tube before the tube diameter expansion step)] ⁇ ⁇ 100 was obtained.
  • the shrinkage rate after storage at 50 ° C. for 1 month is 20% or less, the product is accepted.
  • the tensile strength [MPa] and elongation [%] of the heat-shrinkable tube were measured according to JIS-K-7162 (1994). The greater the tensile strength and elongation of the heat-shrinkable tube, the more aging-resistant it is.
  • Tables 1 and 2 show the evaluation results of the 180 ° peeling test of the heat-shrinkable tube, stickiness, heat of fusion, second modulus, natural shrinkage during storage, and aging resistance.
  • No. 1 which contains a fluoropolymer containing fluororubber and fluororesin and a fatty acid amide and has a heat of fusion of 1 J / g or more and 12 J / g or less at 70 ° C. or higher. 1 to No. 23 and No.
  • the heat-shrinkable tubes of 30 had a good effect of suppressing sticking between the tubes and spontaneous shrinkage.
  • No. 1 in which the fatty acid amide content is 0.1 parts by mass or more and 10 parts by mass or less. 1 to No.
  • the heat-shrinkable tube of 22 was particularly excellent in aging resistance.
  • the heat-shrinkable tube can suppress sticking between tubes while having good flexibility, and can improve shape retention during storage.

Abstract

The invention is a heat shrink tube comprising a fluoropolymer as the main component and a fatty acid amide, wherein the fluoropolymer includes a fluororubber and a fluororesin. The heat shrink tube has a melting heat amount of between 1 J/g and 12 J/g inclusive at 70°C or higher, as measured with a differential scanning calorimeter.

Description

熱収縮チューブHeat shrink tube
 本開示は、熱収縮チューブに関する。本出願は、2020年2月13日に出願した日本特許出願である特願2020-022886号に基づく優先権を主張し、前記日本特許出願に記載された全ての記載内容を援用するものである。 This disclosure relates to heat shrinkable tubes. This application claims priority based on Japanese Patent Application No. 2020-022886, which is a Japanese patent application filed on February 13, 2020, and incorporates all the contents described in the Japanese patent application. ..
 フッ素樹脂は、耐熱性、耐薬品性、及び絶縁性に優れ、また押出成形が可能であることから、電線、パイプ等の接続部を被覆保護する熱収縮チューブの主成分として、広く用いられている。 Fluororesin has excellent heat resistance, chemical resistance, and insulation properties, and can be extruded. Therefore, fluororesin is widely used as a main component of heat-shrinkable tubes that cover and protect connections such as electric wires and pipes. There is.
 フッ素樹脂を含む熱収縮チューブは比較的剛性が高いため、柔軟性が要求される用途では例えばフッ素ゴム等が熱収縮チューブに混合される(特開2015-39843号公報参照)。 Since the heat-shrinkable tube containing fluororesin has relatively high rigidity, for example, fluororubber or the like is mixed with the heat-shrinkable tube in applications requiring flexibility (see JP-A-2015-39843).
特開2015-39843号公報JP-A-2015-39843
 本開示の一態様に係る熱収縮チューブは、脂肪酸アミドと主成分としてのフッ素ポリマーとを含有し、上記フッ素ポリマーがフッ素ゴム及びフッ素樹脂を含み、示差走査熱量計により測定される70℃以上における融解熱量が1J/g以上12J/g以下である。 The heat-shrinkable tube according to one aspect of the present disclosure contains a fatty acid amide and a fluoropolymer as a main component, and the fluoropolymer contains fluororubber and fluororesin at 70 ° C. or higher as measured by a differential scanning calorimeter. The amount of heat of fusion is 1 J / g or more and 12 J / g or less.
図1は、本開示の一実施形態に係る熱収縮チューブを示す模式的斜視図である。FIG. 1 is a schematic perspective view showing a heat-shrinkable tube according to an embodiment of the present disclosure.
[本開示が解決しようとする課題]
 この熱収縮チューブは、基材を被覆する場合の柔軟性のみならず、保管時における形状保持性やチューブ同士の固着の抑制などの製造面での品質向上が求められる。
[Issues to be solved by this disclosure]
This heat-shrinkable tube is required to have not only flexibility when coating a base material, but also quality improvement in terms of manufacturing such as shape retention during storage and suppression of sticking between tubes.
 本開示は、このような事情に基づいてなされたものであり、良好な柔軟性を備えつつチューブ同士の固着を抑制し、保管時における形状保持性の向上を図ることができる熱収縮チューブの提供を目的とする。
[本開示の効果]
 本開示によれば、良好な柔軟性を備えつつチューブ同士の固着を抑制し、保管時における形状保持性の向上を図ることができる。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
The present disclosure has been made based on such circumstances, and provides a heat-shrinkable tube capable of suppressing sticking between tubes while having good flexibility and improving shape retention during storage. With the goal.
[Effect of the present disclosure]
According to the present disclosure, it is possible to suppress sticking between tubes while providing good flexibility, and to improve shape retention during storage.
[Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
 本発明者らは、フッ素系ポリマーの結晶量を下げると柔軟性が向上するが、保管時における形状保持性の低下及びチューブ同士の固着が生じるおそれがあることを知見した。また、一般的な滑剤はフッ素ポリマーよりも経年劣化しやすい。このため、滑剤を含有する熱収縮チューブは、経年劣化を引き起こし易い。しかしながら、滑剤として脂肪酸アミドを選定することで、耐老化性を維持しつつチューブ同士の固着を抑制できることも知見した。これらの知見に基づきさらに検討を進めた結果、フッ素ゴム及びフッ素樹脂を含むフッ素ポリマーと脂肪酸アミドとを特定の割合で組み合わせることで、これらの課題を解決できることを見出した。 The present inventors have found that although the flexibility is improved by reducing the crystal content of the fluoropolymer, the shape retention during storage may be lowered and the tubes may be stuck to each other. In addition, general lubricants are more likely to deteriorate over time than fluoropolymers. Therefore, the heat-shrinkable tube containing the lubricant tends to cause aged deterioration. However, it was also found that by selecting fatty acid amide as a lubricant, it is possible to suppress sticking between tubes while maintaining aging resistance. As a result of further studies based on these findings, it was found that these problems can be solved by combining a fluoropolymer containing a fluororubber and a fluororesin with a fatty acid amide in a specific ratio.
 本開示の一態様に係る熱収縮チューブは、脂肪酸アミドと主成分としてのフッ素ポリマーとを含有し、上記フッ素ポリマーがフッ素ゴム及びフッ素樹脂を含み、示差走査熱量計により測定される70℃以上における融解熱量が1J/g以上12J/g以下である。 The heat-shrinkable tube according to one aspect of the present disclosure contains a fatty acid amide and a fluoropolymer as a main component, and the fluoropolymer contains fluororubber and fluororesin at 70 ° C. or higher as measured by a differential scanning calorimeter. The amount of heat of fusion is 1 J / g or more and 12 J / g or less.
 当該熱収縮チューブは、フッ素ゴム及びフッ素樹脂を含むフッ素ポリマーを主成分とすることで、耐熱性に優れる。また、示差走査熱量計により測定される70℃以上における融解熱量が1J/g以上であることで、保管時における自然収縮を抑制できるため、保管時における形状保持性を向上できる。一方、上記融解熱量が12J/g以下であることで、当該熱収縮チューブに柔軟性を付与できる。また、当該熱収縮チューブは、滑剤として脂肪酸アミドを含有することで、耐老化性を維持しつつチューブ同士の固着を抑制できる。従って、当該熱収縮チューブは、良好な柔軟性を備えつつチューブ同士の固着を抑制し、保管時における形状保持性の向上を図ることができる。ここで、「主成分」とは、最も含有量の多い成分を意味し、総質量に対して50質量%以上含まれる成分をいう。 The heat-shrinkable tube has excellent heat resistance because it is mainly composed of a fluoropolymer containing fluororubber and fluororesin. Further, when the amount of heat of melting at 70 ° C. or higher measured by a differential scanning calorimeter is 1 J / g or more, natural shrinkage during storage can be suppressed, so that shape retention during storage can be improved. On the other hand, when the amount of heat of melting is 12 J / g or less, flexibility can be imparted to the heat-shrinkable tube. Further, since the heat-shrinkable tube contains a fatty acid amide as a lubricant, it is possible to suppress sticking between the tubes while maintaining aging resistance. Therefore, the heat-shrinkable tube can suppress sticking between the tubes while having good flexibility, and can improve the shape retention during storage. Here, the "main component" means a component having the highest content, and means a component contained in an amount of 50% by mass or more with respect to the total mass.
 上記フッ素ポリマー100質量部に対する上記脂肪酸アミドの含有量が0.1質量部以上10質量部以下であることが好ましい。上記脂肪酸アミドの含有量を上記範囲とすることで、良好な耐老化性を有しつつ熱収縮チューブ同士の固着に対する抑制効果を向上できる。 The content of the fatty acid amide with respect to 100 parts by mass of the fluoropolymer is preferably 0.1 part by mass or more and 10 parts by mass or less. By setting the content of the fatty acid amide in the above range, it is possible to improve the effect of suppressing the adhesion between the heat-shrinkable tubes while having good aging resistance.
 上記フッ素ゴムがビニリデンフロライド系ゴム(FKM)であることが好ましい。上記フッ素ゴムがビニリデンフロライド系ゴムであることで、耐熱性、加工性、価格性が良好となる。 It is preferable that the fluororubber is vinylidene fluoride-based rubber (FKM). Since the fluororubber is a vinylidene fluoride-based rubber, heat resistance, workability, and price are improved.
 上記フッ素樹脂がポリビニリデンフロライド、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフロライド共重合体又はこの組み合わせであることが好ましい。上記フッ素樹脂がポリビニリデンフロライド、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフロライド共重合体又はこの組み合わせであることで、保管時における自然収縮に対する抑制効果及び耐熱性をより向上できる。 It is preferable that the fluororesin is polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer, or a combination thereof. When the fluororesin is polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer or a combination thereof, the effect of suppressing natural shrinkage during storage and heat resistance can be further improved.
 上記脂肪酸アミドの含有量が0.2質量部以上5質量部以下であることが好ましい。上記脂肪酸アミドの含有量が上記範囲であることで、耐老化性を維持しつつ熱収縮チューブ同士の固着に対する抑制効果をより向上できる。 The content of the fatty acid amide is preferably 0.2 parts by mass or more and 5 parts by mass or less. When the content of the fatty acid amide is in the above range, the effect of suppressing the adhesion between the heat-shrinkable tubes can be further improved while maintaining the aging resistance.
 セカントモジュラスが50MPa以下であることが好ましい。セカントモジュラスが50MPa以下であることで、当該熱収縮チューブの柔軟性をより向上できる。ここで、「セカントモジュラス」とは、応力-ひずみ曲線上の点と原点を結ぶ直線の傾きであり、ASTM-D5223-92に基づき測定される値である。応力-ひずみ曲線上の点と原点を結ぶ直線の傾きであり、ひずみの生じやすさの指標となるものである。
[本開示の実施形態の詳細]
 以下、本開示の実施形態に係る熱収縮チューブについて、適宜図面を参照しつつ詳説する。
<熱収縮チューブ>
 本開示の一実施形態に係る熱収縮チューブは、被覆対象物を保護するための被覆材として使用される。熱収縮チューブは、加熱されることで縮径するチューブである。より具体的には、被覆対象物が挿入された熱収縮チューブを被覆対象物上で加熱し、上記熱収縮チューブの収縮体で被覆対象物を被覆することで、被覆対象物が保護される。
The second modulus is preferably 50 MPa or less. When the second modulus is 50 MPa or less, the flexibility of the heat-shrinkable tube can be further improved. Here, the "second modulus" is the slope of a straight line connecting a point on the stress-strain curve and the origin, and is a value measured based on ASTM-D5223-92. It is the slope of the straight line connecting the point on the stress-strain curve and the origin, and is an index of the susceptibility to strain.
[Details of Embodiments of the present disclosure]
Hereinafter, the heat-shrinkable tube according to the embodiment of the present disclosure will be described in detail with reference to the drawings as appropriate.
<Heat shrink tube>
The heat shrinkable tube according to one embodiment of the present disclosure is used as a coating material for protecting an object to be coated. The heat-shrinkable tube is a tube that shrinks in diameter when heated. More specifically, the object to be coated is protected by heating the heat-shrinkable tube into which the object to be coated is inserted on the object to be coated and coating the object to be coated with the contracted body of the heat-shrinkable tube.
 図1の熱収縮チューブ1は、円筒形状の単層の基材層から構成されている。熱収縮チューブ1は、例えば被覆対象物同士の接続部分、配線の端末、金属管等の保護、絶縁、防水、防食等のための被覆に使用される。また、当該熱収縮チューブは、熱収縮チューブ形成用の樹脂組成物により形成され、当該熱収縮チューブ1は、脂肪酸アミドと主成分としてのフッ素ポリマーとを含有する。当該熱収縮チューブ1は、フッ素ゴム及びフッ素樹脂を含むフッ素ポリマーを主成分とすることで、耐熱性に優れる。 The heat-shrinkable tube 1 of FIG. 1 is composed of a cylindrical single-layer base material layer. The heat-shrinkable tube 1 is used, for example, for covering a connection portion between objects to be coated, a terminal of wiring, a metal tube, etc. for protection, insulation, waterproofing, corrosion protection, and the like. Further, the heat-shrinkable tube is formed of a resin composition for forming the heat-shrinkable tube, and the heat-shrinkable tube 1 contains a fatty acid amide and a fluoropolymer as a main component. The heat-shrinkable tube 1 is excellent in heat resistance because it contains a fluoropolymer containing fluororubber and fluororesin as a main component.
 熱収縮チューブ1の平均内径及び平均厚さは、用途等に合わせて適宜選択される。熱収縮チューブ1の熱収縮前の平均内径としては、例えば1mm以上60mm以下とできる。また、熱収縮チューブ1の熱収縮後の平均内径としては、例えば熱収縮前の平均内径の30%以上50%以下とできる。また、熱収縮チューブ1の平均厚さとしては、例えば0.1mm以上5mm以下とできる。 The average inner diameter and average thickness of the heat-shrinkable tube 1 are appropriately selected according to the application and the like. The average inner diameter of the heat-shrinkable tube 1 before heat-shrinkage can be, for example, 1 mm or more and 60 mm or less. The average inner diameter of the heat-shrinkable tube 1 after heat-shrinking can be, for example, 30% or more and 50% or less of the average inner diameter before heat-shrinking. The average thickness of the heat-shrinkable tube 1 can be, for example, 0.1 mm or more and 5 mm or less.
 熱収縮チューブ1の示差走査熱量計により測定される70℃以上における融解熱量の下限としては、1J/gであり、2J/gが好ましい。上記融解熱量の下限が上記範囲であることで、保管時における自然収縮を抑制できるため、保管時における形状保持性を向上できる。一方、上記融解熱量の上限としては、12J/gであり、8J/gが好ましい。上記融解熱量の上限が上記範囲であることで、当該熱収縮チューブに柔軟性を付与できる。なお、上記融解熱量は、示差走査熱量分析で得られる融解曲線から得ることができる。融解曲線は、以下の条件で示差走査熱量分析を行うことにより求める。示差走査熱量計を用いて、5mgの試料を窒素雰囲気下で-50℃から昇温速度10℃/分で300℃まで昇温し、70℃以降に現れる全ての吸熱ピークの面積を算出して求める。なお、ピークが多峰性の場合は、全体のピークの面積を算出して求める。 The lower limit of the amount of heat of fusion measured by the differential scanning calorimeter of the heat shrink tube 1 at 70 ° C. or higher is 1 J / g, preferably 2 J / g. When the lower limit of the heat of fusion is in the above range, natural shrinkage during storage can be suppressed, so that shape retention during storage can be improved. On the other hand, the upper limit of the heat of fusion is 12 J / g, preferably 8 J / g. When the upper limit of the heat of fusion is within the above range, flexibility can be imparted to the heat shrinkable tube. The heat of fusion can be obtained from the melting curve obtained by differential scanning calorimetry. The melting curve is obtained by performing differential scanning calorimetry under the following conditions. Using a differential scanning calorimeter, raise the temperature of a 5 mg sample from -50 ° C to 300 ° C at a heating rate of 10 ° C / min in a nitrogen atmosphere, and calculate the area of all endothermic peaks that appear after 70 ° C. Ask. If the peak is multimodal, the area of the entire peak is calculated and calculated.
 当該熱収縮チューブ1のセカントモジュラスの上限としては、50MPaが好ましく、40MPaがより好ましい。セカントモジュラスが50MPa以下であることで、当該熱収縮チューブの柔軟性をより向上できる。上記セカントモジュラスが上記上限を超えると、当該熱収縮チューブの柔軟性が不足し、被覆対象物における当該熱収縮チューブで被覆される部分の曲げ伸ばしが困難となるおそれがある。一方、当該熱収縮チューブのセカントモジュラスの下限としては、特に限定されないが、通常20MPa程度である。
[フッ素ポリマー]
 上記フッ素ポリマーは、フッ素ゴム及びフッ素樹脂を含む。ここで、「フッ素ポリマー」は、高分子鎖の繰り返し単位を構成する炭素原子に結合する水素原子の少なくとも1つが、フッ素原子又はフッ素原子を有する有機基(以下「フッ素原子含有基」ともいう)で置換されたものをいう。フッ素原子含有基は、直鎖状又は分岐状の有機基中の水素原子の少なくとも1つがフッ素原子で置換されたものであり、例えばフルオロアルキル基、フルオロアルコキシ基、フルオロポリエーテル基等が挙げられる。また、「フッ素ゴム」とは、上記フッ素ポリマーのうち、結晶を有さず、示差走査熱量計により測定される融解熱量が0J/gであるポリマーをいう。
(フッ素ゴム)
 当該熱収縮チューブがフッ素ポリマーとして、フッ素ゴムを含むことで、製造される熱収縮チューブの柔軟性が優れる。フッ素ゴムとしては、例えばビニリデンフロライド系ゴム(FKM)、テトラフルオロエチレン-プロピレン系ゴム(FEPM)、テトラフルオロエチレン-パープルオロビニルエーテル系ゴム(FFKM)等が挙げられる。これらの中でも、耐熱性、加工性、価格性が良好なFKMが好ましい。
(フッ素樹脂)
 フッ素樹脂としては、例えばポリビニリデンフロライド(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフロライド共重合体(THV)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリフッ化エチレンプロピレン(FEP)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)等を挙げることができる。フッ素樹脂としては、これらの中でもPVDF、THV又はこれらの組み合わせが好ましい。PVDF及びTHVの融点は、比較的低いことからより低温で熱収縮させることができる。
The upper limit of the second modulus of the heat-shrinkable tube 1 is preferably 50 MPa, more preferably 40 MPa. When the second modulus is 50 MPa or less, the flexibility of the heat-shrinkable tube can be further improved. If the second modulus exceeds the upper limit, the flexibility of the heat-shrinkable tube may be insufficient, and it may be difficult to bend and stretch the portion of the object to be coated that is covered with the heat-shrinkable tube. On the other hand, the lower limit of the second modulus of the heat-shrinkable tube is not particularly limited, but is usually about 20 MPa.
[Fluoropolymer]
The fluoropolymer includes fluororubber and fluororesin. Here, the "fluoropolymer" is an organic group in which at least one of the hydrogen atoms bonded to the carbon atom constituting the repeating unit of the polymer chain has a fluorine atom or a fluorine atom (hereinafter, also referred to as "fluorine atom-containing group"). Refers to those replaced with. The fluorine atom-containing group is one in which at least one of the hydrogen atoms in the linear or branched organic group is substituted with a fluorine atom, and examples thereof include a fluoroalkyl group, a fluoroalkoxy group, and a fluoropolyether group. .. The term "fluororubber" refers to a fluoropolymer having no crystals and having a heat of fusion measured by a differential scanning calorimeter of 0 J / g.
(Fluororubber)
Since the heat-shrinkable tube contains fluororubber as a fluoropolymer, the flexibility of the manufactured heat-shrinkable tube is excellent. Examples of the fluororubber include vinylidene fluoride-based rubber (FKM), tetrafluoroethylene-propylene-based rubber (FEPM), tetrafluoroethylene-purple olovinyl ether-based rubber (FFKM), and the like. Among these, FKM having good heat resistance, processability, and price is preferable.
(Fluororesin)
Examples of the fluororesin include polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer (THV), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and polyfluoroethylene. Examples thereof include propylene (FEP), polytetrafluoroethylene (PTFE), tetrafluoroethylene-ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE) and the like. Among these, PVDF, THV or a combination thereof is preferable as the fluororesin. Since the melting points of PVDF and THV are relatively low, they can be heat-shrinked at a lower temperature.
 上記フッ素樹脂の融点の上限としては、260℃が好ましく、150℃がより好ましい。上記フッ素樹脂の融点が上記上限を超えると、製造された熱収縮チューブを熱収縮させる際の収縮温度が高くなるため、被覆対象物に熱によるダメージを与えるおそれがある。一方、上記フッ素樹脂の融点の下限は、熱収縮チューブが使用時に軟化又は溶融しない温度である限り特に限定されないが、例えば100℃とできる。 The upper limit of the melting point of the fluororesin is preferably 260 ° C, more preferably 150 ° C. If the melting point of the fluororesin exceeds the above upper limit, the shrinkage temperature when the manufactured heat-shrinkable tube is heat-shrinked becomes high, so that the object to be coated may be damaged by heat. On the other hand, the lower limit of the melting point of the fluororesin is not particularly limited as long as the temperature at which the heat-shrinkable tube does not soften or melt during use, but can be, for example, 100 ° C.
 フッ素樹脂に対するフッ素ゴムの質量比としては、20/80以上90/10以下が好ましい。上記フッ素ゴムの含有率が上記下限未満であると、形成される熱収縮チューブの柔軟性向上効果が不十分となるおそれがある。逆に、上記フッ素ゴムの含有率が上記上限を超えると、形状保持が難しいため、熱収縮チューブの成形が困難となるおそれがある。また、具体的には、フッ素ゴムとしてFKMを用い、フッ素樹脂としてTHVを用いた場合のフッ素樹脂に対するフッ素ゴムの質量比としては、20/80以上80/20以下が好ましい。また、フッ素ゴムとしてFKMを用い、フッ素樹脂としてPVDFを用いた場合のフッ素樹脂に対するフッ素ゴムの質量比としては、50/50以上90/10以下が好ましい。 The mass ratio of fluororubber to fluororesin is preferably 20/80 or more and 90/10 or less. If the content of the fluororubber is less than the above lower limit, the effect of improving the flexibility of the heat-shrinkable tube formed may be insufficient. On the contrary, if the content of the fluororubber exceeds the upper limit, it is difficult to maintain the shape, which may make it difficult to mold the heat-shrinkable tube. Specifically, when FKM is used as the fluororubber and THV is used as the fluororesin, the mass ratio of the fluororubber to the fluororesin is preferably 20/80 or more and 80/20 or less. When FKM is used as the fluororubber and PVDF is used as the fluororesin, the mass ratio of the fluororubber to the fluororesin is preferably 50/50 or more and 90/10 or less.
 当該熱収縮チューブにおけるフッ素ポリマーの含有量の下限としては、60質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。一方、上記フッ素ポリマーの含有量の上限としては、99.9質量%が好ましく、99.0質量%がより好ましい。上記フッ素ポリマーの含有量が上記下限未満であると、製造された熱収縮チューブの熱収縮力が低下するため、被覆対象物等を十分に被覆できないおそれがある。また、耐熱性等のフッ素ポリマー特有の性能が、製造された熱収縮チューブにおいて十分に発現しないおそれがある。逆に、上記フッ素ポリマーの含有量が上記上限を超えると、添加剤の含有量が不足するため、各添加剤による効果が不十分となるおそれがある。
[脂肪酸アミド]
 当該熱収縮チューブは、滑剤として脂肪酸アミドを含む。滑剤として脂肪酸アミドを含有することで、耐老化性を維持しつつチューブ同士の固着を抑制できる。上記脂肪酸アミドとしては、例えば脂肪酸部分が飽和脂肪酸の脂肪酸アミドと不飽和脂肪酸の脂肪酸アミドが挙げられる。脂肪酸部分が飽和脂肪酸のアミドとしては、例えばステアリン酸アミド、ラウリン酸アミド、パルミチン酸アミド、ベヘン酸アミド、ミリスチン酸アミド等が挙げられる。脂肪酸部分が不飽和脂肪酸のアミドとしては、例えばオレイン酸アミド、エルカ酸アミド等が挙げられる。その他の脂肪酸アミドとしては、例えばビスアミド、メチロールアミド等が挙げられる。
The lower limit of the content of the fluoropolymer in the heat-shrinkable tube is preferably 60% by mass, more preferably 80% by mass, still more preferably 90% by mass. On the other hand, the upper limit of the content of the fluoropolymer is preferably 99.9% by mass, more preferably 99.0% by mass. If the content of the fluoropolymer is less than the above lower limit, the heat-shrinking force of the manufactured heat-shrinkable tube is reduced, so that the object to be covered or the like may not be sufficiently covered. In addition, the performance peculiar to the fluoropolymer such as heat resistance may not be sufficiently exhibited in the manufactured heat-shrinkable tube. On the contrary, when the content of the fluoropolymer exceeds the above upper limit, the content of the additive is insufficient, so that the effect of each additive may be insufficient.
[Fatty acid amide]
The heat-shrinkable tube contains a fatty acid amide as a lubricant. By containing fatty acid amide as a lubricant, it is possible to suppress sticking between tubes while maintaining aging resistance. Examples of the fatty acid amide include fatty acid amides in which the fatty acid portion is saturated fatty acids and fatty acid amides in which unsaturated fatty acids are unsaturated fatty acids. Examples of the amide in which the fatty acid portion is a saturated fatty acid include stearic acid amide, lauric acid amide, palmitic acid amide, behenic acid amide, and myristic acid amide. Examples of the amide of an unsaturated fatty acid having a fatty acid moiety include oleic acid amide and erucic acid amide. Examples of other fatty acid amides include bisamides and methylolamides.
 上記フッ素ポリマー100質量部に対する上記脂肪酸アミドの含有量の下限としては、0.1質量部が好ましく、0.2質量部がより好ましい。上記脂肪酸アミドの含有量が上記下限未満の場合、熱収縮チューブ同士の固着に対する抑制効果が小さくなるおそれがある。一方、上記脂肪酸アミドの含有量の上限としては、10質量部が好ましく、5質量部がより好ましい。上記脂肪酸アミドの含有量が上記上限を超える場合、耐老化性が低下するおそれがある。 As the lower limit of the content of the fatty acid amide with respect to 100 parts by mass of the fluoropolymer, 0.1 part by mass is preferable, and 0.2 part by mass is more preferable. When the content of the fatty acid amide is less than the above lower limit, the effect of suppressing the adhesion between the heat-shrinkable tubes may be reduced. On the other hand, as the upper limit of the content of the fatty acid amide, 10 parts by mass is preferable, and 5 parts by mass is more preferable. If the content of the fatty acid amide exceeds the upper limit, the aging resistance may decrease.
 当該熱収縮チューブ1は、必要に応じてその他の添加剤を含有していてもよい。そのような添加剤としては、例えば強度保持剤、酸化防止剤、難燃剤、銅害防止剤、着色剤、熱安定剤、紫外線吸収剤等が挙げられる。当該熱収縮チューブ1における添加剤の含有量は、40質量%未満とすることがより好ましく、25質量%未満とすることがさらに好ましい。添加剤の含有量が上記上限以上の場合、熱収縮層の特性にバラツキが生じ易くなるおそれがある。 The heat-shrinkable tube 1 may contain other additives, if necessary. Examples of such additives include strength-retaining agents, antioxidants, flame retardants, copper damage inhibitors, colorants, heat stabilizers, ultraviolet absorbers and the like. The content of the additive in the heat-shrinkable tube 1 is more preferably less than 40% by mass, further preferably less than 25% by mass. When the content of the additive is at least the above upper limit, the characteristics of the heat-shrinkable layer may easily vary.
 当該熱収縮チューブは、良好な柔軟性を備えつつチューブ同士の固着を抑制し、保管時における形状保持性の向上を図ることができる。従って、当該熱収縮チューブは、例えば各種工業用等の用途の被覆対象物の保護材として好適に使用できる。
[熱収縮チューブの製造方法]
 当該熱収縮チューブの製造方法は、特に限定されないが、例えば以下の工程を備える。
(1)熱収縮チューブを形成するための熱収縮チューブ形成用樹脂組成物(以下、樹脂組成物ともいう)を調製する工程(樹脂組成物調製工程)
(2)熱収縮チューブ形成用樹脂組成物を溶融押出成形機により押出成形する工程(押出成形工程)
(3)押出成形品を照射により架橋する工程(架橋工程)
(4)押出成形品を拡径して当該熱収縮チューブを得る工程(拡径工程)
(1)樹脂組成物調製工程
 熱収縮チューブ形成用樹脂組成物調製工程では、当該熱収縮チューブの各樹脂成分、脂肪酸アミド及び必要に応じてその他の添加剤を溶融混合機等により混合することにより熱収縮チューブを形成するための熱収縮チューブ形成用樹脂組成物を調製する。溶融混合機としては、公知のもの、例えばオープンロール、バンバリーミキサー、加圧ニーダー、単軸混合機、多軸混合機等を使用できる。
(2)押出成形工程
 押出成形工程では、上記熱収縮チューブ形成用樹脂組成物を溶融押出成形機により押出成形する。具体的には、熱収縮層に対応する層を押出す円筒状の空間を有する押出ダイスを用いて熱収縮チューブ形成用樹脂組成物を円筒形状に押出成形する。これにより、熱収縮層に対応する押出成形品が得られる。押出成形品の寸法は、用途等に応じて設計することができる。
(3)架橋工程
 架橋工程では、押出成形品を照射により架橋する。本工程では、押出成形品のベース樹脂を架橋することにより、拡径工程後に高温で加熱収縮させる際の収縮性(形状記憶効果)及び収縮後の高温での形状保持性を付与する。ベース樹脂を架橋する方法としては、樹脂に放射線を照射する方法(ベース樹脂の照射架橋)が好ましい。放射線の照射によりベース樹脂を架橋した後は成形が困難になるので、放射線の照射(架橋)は押出成形工程後に行われる。押出成形後に放射線の照射を行うことにより、成形を確実に実施し、かつ放射線の照射による効果を充分に得ることができる。
The heat-shrinkable tube has good flexibility, suppresses sticking between tubes, and can improve shape retention during storage. Therefore, the heat-shrinkable tube can be suitably used as a protective material for a covering object for various industrial purposes, for example.
[Manufacturing method of heat shrinkable tube]
The method for producing the heat-shrinkable tube is not particularly limited, but includes, for example, the following steps.
(1) A step of preparing a resin composition for forming a heat-shrinkable tube (hereinafter, also referred to as a resin composition) for forming a heat-shrinkable tube (resin composition preparation step).
(2) Step of extrusion molding a resin composition for forming a heat-shrinkable tube with a melt extrusion molding machine (extrusion molding step)
(3) Step of cross-linking the extruded product by irradiation (cross-linking step)
(4) Step of expanding the diameter of the extruded product to obtain the heat-shrinkable tube (diameter expansion step)
(1) Resin composition preparation step In the resin composition preparation step for forming a heat-shrinkable tube, each resin component of the heat-shrinkable tube, fatty acid amide, and other additives, if necessary, are mixed by a melt mixer or the like. A resin composition for forming a heat-shrinkable tube for forming a heat-shrinkable tube is prepared. As the melting mixer, known ones such as an open roll, a Banbury mixer, a pressurized kneader, a single-screw mixer, and a multi-screw mixer can be used.
(2) Extrusion molding step In the extrusion molding step, the resin composition for forming a heat-shrinkable tube is extruded by a melt extrusion molding machine. Specifically, the resin composition for forming a heat-shrinkable tube is extruded into a cylindrical shape using an extrusion die having a cylindrical space for extruding a layer corresponding to the heat-shrinkable layer. As a result, an extruded product corresponding to the heat-shrinkable layer can be obtained. The dimensions of the extruded product can be designed according to the application and the like.
(3) Cross-linking step In the cross-linking step, the extruded product is cross-linked by irradiation. In this step, by cross-linking the base resin of the extruded product, shrinkage (shape memory effect) when heat-shrinking at a high temperature after the diameter expansion step and shape retention at a high temperature after shrinking are imparted. As a method for cross-linking the base resin, a method of irradiating the resin with radiation (irradiation cross-linking of the base resin) is preferable. Since molding becomes difficult after the base resin is crosslinked by irradiation with radiation, irradiation (crosslinking) with radiation is performed after the extrusion molding step. By irradiating radiation after extrusion molding, molding can be reliably performed and the effect of irradiation with radiation can be sufficiently obtained.
 ベース樹脂の照射架橋に使用される放射線としては、電子線(β線)、γ線等が挙げられる。電子加速器はランニングコストが低く、大出力の電子線が得られ、また、制御も容易であるので、放射線としては電子線が好ましい。 Examples of the radiation used for irradiation cross-linking of the base resin include electron beams (β rays) and γ rays. Since the electron accelerator has a low running cost, a high-power electron beam can be obtained, and control is easy, the electron beam is preferable as the radiation.
 放射線照射量としては、50kGy以上400kGy以下の範囲が好ましい。上記放射線照射量が50kGy未満の場合、架橋度が小さくなり、保管時における形状保持性は改善されるが、収縮後の高温における形状保持性が低下するおそれがある。一方、上記放射線照射量が400kGy超の場合、50℃以下の収縮率が増大し、保管時における形状保持性が低下するとともに、チューブの強度が増加して拡径が困難になるおそれがある。
(4)拡径工程
 拡径工程では、円筒状の押出成形品を拡径する。押出成形品の拡径の方法としては、従来の熱収縮チューブの作製に通常使用されている公知の拡径方法を用いることができる。例えば、押出成形品を融点以上の温度に加熱した状態で内部に圧縮空気を導入する方法や、外部から減圧する方法、内部に金属棒を挿入する方法等により所定の内径となるように拡径させた後、冷却して形状を固定させる方法等が用いられる。このような押出成形品の拡径は、例えば押出成形品の内径が例えば1.2倍以上4倍以下となるように行われる。拡径した押出成形品の形状を固定することで、当該熱収縮チューブが得られる。この固定方法としては、例えばベース樹脂成分の融点以下の温度に冷却する方法等が挙げられる。なお、拡径工程において、上記熱収縮チューブの内表面の表面粗さへの影響を小さくするために、金属棒の粗さを低減したり、コーティングや潤滑剤の塗布を行うことができる。また、拡径の速度を低減することによっても上記熱収縮チューブの内表面の表面粗さへの影響を小さくすることができる。このようにして押出成形品を拡径させて形状固定したものが当該熱収縮チューブとなる。
The irradiation amount is preferably in the range of 50 kGy or more and 400 kGy or less. When the irradiation amount is less than 50 kGy, the degree of cross-linking becomes small and the shape-retaining property at the time of storage is improved, but the shape-retaining property at a high temperature after shrinkage may decrease. On the other hand, when the irradiation amount exceeds 400 kGy, the shrinkage rate of 50 ° C. or lower increases, the shape retention during storage decreases, and the strength of the tube increases, which may make it difficult to expand the diameter.
(4) Diameter expansion process In the diameter expansion process, the diameter of a cylindrical extruded product is expanded. As a method for increasing the diameter of the extruded product, a known method for increasing the diameter, which is usually used for producing a conventional heat-shrinkable tube, can be used. For example, the diameter is expanded to a predetermined inner diameter by a method of introducing compressed air inside the extruded product while it is heated to a temperature equal to or higher than the melting point, a method of reducing the pressure from the outside, a method of inserting a metal rod inside, or the like. After that, a method of cooling and fixing the shape is used. Such an expansion of the diameter of the extruded product is performed so that the inner diameter of the extruded product is, for example, 1.2 times or more and 4 times or less. By fixing the shape of the extruded product with an expanded diameter, the heat-shrinkable tube can be obtained. Examples of this fixing method include a method of cooling to a temperature equal to or lower than the melting point of the base resin component. In the diameter expansion step, in order to reduce the influence on the surface roughness of the inner surface of the heat-shrinkable tube, the roughness of the metal rod can be reduced, or a coating or a lubricant can be applied. Further, by reducing the speed of diameter expansion, the influence on the surface roughness of the inner surface of the heat shrinkable tube can be reduced. The heat-shrinkable tube is formed by expanding the diameter of the extruded product and fixing the shape in this way.
 当該熱収縮チューブは、良好な柔軟性を備えつつチューブ同士の固着を抑制し、保管時における形状保持性の向上を図ることができる。
[その他の実施形態]
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記実施形態の構成に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
The heat-shrinkable tube has good flexibility, suppresses sticking between tubes, and can improve shape retention during storage.
[Other Embodiments]
It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present disclosure is not limited to the configuration of the above-described embodiment, but is indicated by the scope of claims and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 本開示の熱収縮チューブは、図1に示した円筒状に基材層が形成された熱収縮チューブに限らず、例えばキャップ状に基材層が形成された熱収縮チューブであってもよい。このような熱収縮チューブは、円筒状の熱収縮チューブの一端部を加熱収縮させて閉じることで製造できる。この熱収縮チューブは、例えば配線の端末処理に好適に使用することができる。 The heat-shrinkable tube of the present disclosure is not limited to the heat-shrinkable tube in which the base material layer is formed in a cylindrical shape shown in FIG. 1, and may be, for example, a heat-shrinkable tube in which a base material layer is formed in a cap shape. Such a heat-shrinkable tube can be manufactured by heat-shrinking and closing one end of a cylindrical heat-shrinkable tube. This heat shrinkable tube can be suitably used for, for example, terminal treatment of wiring.
 以下、実施例によって本開示をさらに具体的に説明するが、本開示は以下の実施例に限定されるものではない。
<熱収縮チューブNo.1~No.36>
 以下の手順により単層からなるNo.1~No.36の熱収縮チューブを形成した。
[フッ素ポリマー]
 フッ素ポリマーとして、以下の3種類を用いた。
(1)フッ素ゴム
 FKM:ソルベイ社製の「TN50A」(密度1.86g/cm、ムーニー粘度23ML,121℃)
(2)フッ素樹脂
 THV:3M社製の「ダイニオン221GZ」(融点115℃)
(3)フッ素樹脂
 PVDF:アルケマ社製の「カイナー2800」(融点140℃、比重1.78)
[添加剤]
 添加剤として、以下の9種類の添加剤を用いた。
(1)滑剤
 エルカ酸アミド(日油株式会社製の「アルフローP-10」)
(2)滑剤
 オレイン酸アミド(日油株式会社製の「アルフローE-10」)
(3)滑剤
 ステアリン酸アミド(日油株式会社製の「アミドアルフローS-10」)
(4)滑剤
 ステアリン酸(日本油脂製の「粉末ステアリン酸さくら」、融点57.5℃、分子量284)
(5)滑剤
 ステアリン酸亜鉛(堺化学社製の「SZ-2000」)
(6)滑剤
 ポリエチレンワックス(三井化学製の「ハイワックス420P」、融点118℃、分子量4000、密度0.93g/cm
(7)滑剤
 脂肪酸エステル及びパラフィンの混合品(理研ビタミン社製の「エマスター430W」)
(8)滑剤
 アクリル系高分子(三菱レイヨン製の「メタブレンL-1000」)
(9)滑剤
 シリコーン(東レ・ダウコーニング社製の「トレフィルR902A」、比重1.33)
 上記フッ素ポリマーと添加剤を用いて熱収縮チューブ形成用樹脂組成物を調製した。フッ素ポリマー及び添加剤の含有量を表1及び表2に示す。「-」は該当する成分を用いていないことを示す。
[熱収縮チューブの製造]
 上記熱収縮チューブ形成用樹脂組成物を用いて押出成形により熱収縮チューブを製造した。押出成形には、押出成形用ダイを用いた。押出成形は、ダイス温度200℃で、線速10m/minで行った。次に、この成形用ダイにより押出される成形体を照射量90kGyの条件で放射線照射を行った。このようにして得られた押出成形品を拡径装置により拡径させて形状固定することで、外径4.4mm、内径2.6mmのNo.1~No.36の熱収縮チューブを得た。
[評価]
 熱収縮チューブNo.1~No.36について、180°剥離試験、固着性評価、融解熱量、セカントモジュラス、保管時における自然収縮率及び耐老化性を評価した。
(180°剥離試験)
 180°剥離試験は、圧力100kPa下で常温にて1日加圧した後、JIS-K6854-2(1999)に準拠して剥離強度を測定した。なお、表1及び表2及び表2に記載した180°剥離試験における剥離強度の値(mN/mm)は、試験によって得られた値を試験片の幅で割った値である。
(固着性)
 上記180°剥離試験における剥離強度の値に基づいて、固着性をA、B及びCの3段階で評価した。上記熱収縮チューブの形状の変化の評価基準は以下の通りとした。剥離強度の値が小さいほどチューブ同士の固着に対する抑制効果が高い。評価がA又はBであれば合格とする。
Hereinafter, the present disclosure will be described in more detail by way of examples, but the present disclosure is not limited to the following examples.
<Heat shrink tube No. 1 to No. 36>
No. 1 composed of a single layer by the following procedure. 1 to No. Thirty-six heat-shrinkable tubes were formed.
[Fluoropolymer]
The following three types were used as the fluoropolymer.
(1) Fluororubber FKM: "TN50A" manufactured by Solvay (density 1.86 g / cm 3 , Mooney viscosity 23 ML, 121 ° C)
(2) Fluororesin THV: "Dynion 221GZ" manufactured by 3M (melting point 115 ° C)
(3) Fluororesin PVDF: "Kiner 2800" manufactured by Arkema (melting point 140 ° C., specific density 1.78)
[Additive]
The following 9 types of additives were used as additives.
(1) Lubricants Elcaic acid amide ("Alflow P-10" manufactured by NOF CORPORATION)
(2) Lubricants oleic acid amide ("Alflow E-10" manufactured by NOF CORPORATION)
(3) Lubricants Stearic acid amide ("Amid Alflow S-10" manufactured by NOF CORPORATION)
(4) Lubricating stearic acid (NOF's "powdered stearic acid Sakura", melting point 57.5 ° C, molecular weight 284)
(5) Lubricants Zinc stearate ("SZ-2000" manufactured by Sakai Chemical Industry Co., Ltd.)
(6) Lubricants Polyethylene wax (Mitsui Chemicals'"High Wax 420P", melting point 118 ° C, molecular weight 4000, density 0.93 g / cm 3 )
(7) Lubricants A mixture of fatty acid ester and paraffin ("Emaster 430W" manufactured by RIKEN Vitamin Co., Ltd.)
(8) Lubricants Acrylic polymer ("Metabren L-1000" manufactured by Mitsubishi Rayon)
(9) Lubricating silicone ("Trefil R902A" manufactured by Toray Dow Corning, specific density 1.33)
A resin composition for forming a heat-shrinkable tube was prepared using the above-mentioned fluoropolymer and additives. The contents of the fluoropolymer and the additive are shown in Tables 1 and 2. "-" Indicates that the corresponding component is not used.
[Manufacturing of heat shrinkable tubes]
A heat-shrinkable tube was produced by extrusion molding using the above resin composition for forming a heat-shrinkable tube. An extrusion die was used for extrusion molding. Extrusion molding was carried out at a die temperature of 200 ° C. and a linear speed of 10 m / min. Next, the molded product extruded by this molding die was irradiated under the condition of an irradiation amount of 90 kGy. By expanding the diameter of the extruded product thus obtained by a diameter-expanding device and fixing the shape, a No. 1 having an outer diameter of 4.4 mm and an inner diameter of 2.6 mm can be obtained. 1 to No. 36 heat shrinkable tubes were obtained.
[evaluation]
Heat shrink tube No. 1 to No. For 36, 180 ° peeling test, stickiness evaluation, heat of fusion, second modulus, natural shrinkage rate during storage and aging resistance were evaluated.
(180 ° peeling test)
In the 180 ° peeling test, the peeling strength was measured according to JIS-K6854-2 (1999) after pressurizing at room temperature for 1 day under a pressure of 100 kPa. The peel strength value (mN / mm) in the 180 ° peel test shown in Table 1, Table 2 and Table 2 is a value obtained by dividing the value obtained by the test by the width of the test piece.
(Sessility)
Based on the value of the peel strength in the 180 ° peel test, the adhesiveness was evaluated in three stages of A, B and C. The evaluation criteria for the change in the shape of the heat-shrinkable tube were as follows. The smaller the value of the peel strength, the higher the effect of suppressing the sticking between the tubes. If the evaluation is A or B, it is passed.
 A:150mN/mm以下である。
 B:150mN/mm超300mN/mm以下である。
A: 150 mN / mm or less.
B: More than 150 mN / mm and less than 300 mN / mm.
 C:300mN/mm超である。
(融解熱量)
 融解熱量は、以下の条件でDSC測定を行い求めた。
C: Over 300 mN / mm.
(Chemical amount of melting)
The amount of heat of fusion was determined by DSC measurement under the following conditions.
 示差走査熱量計(商品名「DSC8500」、Perkin Elmer社製)を用いて、5mgの試料を窒素雰囲気下で-50℃から昇温速度10℃/分で300℃まで昇温した。この昇温の際に70℃に達した以降に観測される全ての吸熱ピークの面積を算出して求めた。
(セカントモジュラス)
 得られた各熱収縮チューブのセカントモジュラスをASTM-D5223-92に準拠して測定した。結果を表1及び表2に示す。なお、セカントモジュラスは、測定値が小さいほど熱収縮チューブが柔軟性に優れることを意味する。
(保管時における自然収縮率)
 上記拡径工程後の各熱収縮チューブを50℃の恒温条件下に保管し、1か月経過後の自然収縮率を測定することにより、保管時における形状保持性の指標とした。そして、下記式より、収縮率[%]を求めた。
Using a differential scanning calorimeter (trade name “DSC8500”, manufactured by PerkinElmer), a 5 mg sample was heated from −50 ° C. to 300 ° C. at a heating rate of 10 ° C./min under a nitrogen atmosphere. The areas of all endothermic peaks observed after reaching 70 ° C. at the time of this temperature rise were calculated and obtained.
(Second modulus)
The second modulus of each heat-shrinkable tube obtained was measured according to ASTM-D5223-92. The results are shown in Tables 1 and 2. The second modulus means that the smaller the measured value, the more flexible the heat-shrinkable tube.
(Natural shrinkage rate during storage)
Each heat-shrinkable tube after the diameter-expanding step was stored under a constant temperature condition of 50 ° C., and the natural shrinkage rate after 1 month was measured to use it as an index of shape retention during storage. Then, the shrinkage rate [%] was calculated from the following formula.
 収縮率[%]={[(50℃での保管前のチューブ内径)-(50℃での保管後のチューブ内径)]/[(50℃での保管前のチューブ内径)-(各熱収縮チューブの拡径工程前のチューブ内径)]}×100として求めた。 Shrinkage rate [%] = {[(Inner diameter of tube before storage at 50 ° C)-(Inner diameter of tube after storage at 50 ° C)] / [(Inner diameter of tube before storage at 50 ° C)-(Each heat shrinkage The inner diameter of the tube before the tube diameter expansion step)]} × 100 was obtained.
 50℃で1か月保管後の収縮率が20%以下であれば合格とする。
(耐老化性)
 得られた各熱収縮チューブの耐老化性について、250℃で7日間加熱した後の引張強さ及び伸びとを測定した。なお、熱収縮チューブの引張強さ[MPa]及び伸び[%]は、JIS-K-7162(1994)に準拠して測定した。熱収縮チューブの引張強さ及び伸びが大きいほど耐老化性を有することを意味する。
If the shrinkage rate after storage at 50 ° C. for 1 month is 20% or less, the product is accepted.
(Aging resistance)
Regarding the aging resistance of each of the obtained heat-shrinkable tubes, the tensile strength and elongation after heating at 250 ° C. for 7 days were measured. The tensile strength [MPa] and elongation [%] of the heat-shrinkable tube were measured according to JIS-K-7162 (1994). The greater the tensile strength and elongation of the heat-shrinkable tube, the more aging-resistant it is.
 上記熱収縮チューブの180°剥離試験、固着性、融解熱量、セカントモジュラス、保管時における自然収縮率及び耐老化性の評価結果を表1及び表2に示す。 Tables 1 and 2 show the evaluation results of the 180 ° peeling test of the heat-shrinkable tube, stickiness, heat of fusion, second modulus, natural shrinkage during storage, and aging resistance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2の結果から、フッ素ゴム及びフッ素樹脂を含むフッ素ポリマーと、脂肪酸アミドとを含有し、70℃以上における融解熱量が1J/g以上12J/g以下であるNo.1~No.23及びNo.30の熱収縮チューブは、チューブ同士の固着及び自然収縮に対する抑制効果が良好であった。また、脂肪酸アミドの含有量が0.1質量部以上10質量部以下であるNo.1~No.23の熱収縮チューブは、良好な耐老化性を有しつつチューブ同士の固着に対する抑制効果が特に優れており、脂肪酸アミドの含有量が0.2質量部以上5質量部以下であるNo.1~No.14、No.16~No.18及びNo.20~No.22の熱収縮チューブは、耐老化性が特に優れていた。 From the results of Tables 1 and 2, No. 1 which contains a fluoropolymer containing fluororubber and fluororesin and a fatty acid amide and has a heat of fusion of 1 J / g or more and 12 J / g or less at 70 ° C. or higher. 1 to No. 23 and No. The heat-shrinkable tubes of 30 had a good effect of suppressing sticking between the tubes and spontaneous shrinkage. In addition, No. 1 in which the fatty acid amide content is 0.1 parts by mass or more and 10 parts by mass or less. 1 to No. The heat-shrinkable tube No. 23 has good aging resistance and is particularly excellent in suppressing sticking between tubes, and has a fatty acid amide content of 0.2 parts by mass or more and 5 parts by mass or less. 1 to No. 14, No. 16-No. 18 and No. 20-No. The heat-shrinkable tube of 22 was particularly excellent in aging resistance.
 これに対し、脂肪酸アミドを含有しないNo.27~No.29及びNo.31~No.36の熱収縮チューブは、チューブ同士の固着に対する抑制効果が劣っていた。また、融解熱量が1J/g未満又は以上12J/g超であるNo.24~No.26の熱収縮チューブは、自然収縮率に対する抑制効果又は柔軟性が劣っていた。 On the other hand, No. which does not contain fatty acid amide. 27-No. 29 and No. 31-No. The heat-shrinkable tubes of 36 were inferior in the effect of suppressing the sticking between the tubes. In addition, No. 1 having a heat of fusion of less than 1 J / g or more than 12 J / g. 24-No. The heat shrinkable tube of 26 was inferior in suppressing effect or flexibility with respect to the natural shrinkage rate.
 以上の結果より、当該熱収縮チューブは、良好な柔軟性を備えつつチューブ同士の固着を抑制し、保管時における形状保持性の向上を図ることができることが示された。 From the above results, it was shown that the heat-shrinkable tube can suppress sticking between tubes while having good flexibility, and can improve shape retention during storage.
 1 熱収縮チューブ 1 Heat shrink tube

Claims (6)

  1.  脂肪酸アミドと主成分としてのフッ素ポリマーとを含有し、
     前記フッ素ポリマーがフッ素ゴム及びフッ素樹脂を含み、
     示差走査熱量計により測定される70℃以上における融解熱量が1J/g以上12J/g以下である熱収縮チューブ。
    Contains fatty acid amide and fluoropolymer as the main component,
    The fluoropolymer contains fluororubber and fluororesin.
    A heat-shrinkable tube having a heat of fusion of 1 J / g or more and 12 J / g or less at 70 ° C. or higher as measured by a differential scanning calorimeter.
  2.  前記フッ素ポリマー100質量部に対する前記脂肪酸アミドの含有量が0.1質量部以上10質量部以下である請求項1に記載の熱収縮チューブ。 The heat-shrinkable tube according to claim 1, wherein the content of the fatty acid amide with respect to 100 parts by mass of the fluoropolymer is 0.1 part by mass or more and 10 parts by mass or less.
  3.  前記フッ素ゴムがビニリデンフロライド系ゴムである請求項1又は請求項2に記載の熱収縮チューブ。 The heat-shrinkable tube according to claim 1 or 2, wherein the fluororubber is a vinylidene fluoride-based rubber.
  4.  前記フッ素樹脂がポリビニリデンフロライド、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフロライド共重合体又はこの組み合わせである請求項1、請求項2又は請求項3に記載の熱収縮チューブ。 The heat-shrinkable tube according to claim 1, claim 2 or claim 3, wherein the fluororesin is polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer or a combination thereof.
  5.  前記フッ素ポリマー100質量部に対する前記脂肪酸アミドの含有量が0.2質量部以上5質量部以下である請求項1から請求項4のいずれか1項に記載の熱収縮チューブ。 The heat-shrinkable tube according to any one of claims 1 to 4, wherein the content of the fatty acid amide with respect to 100 parts by mass of the fluoropolymer is 0.2 parts by mass or more and 5 parts by mass or less.
  6.  セカントモジュラスが50MPa以下である請求項1から請求項5のいずれか1項に記載の熱収縮チューブ。 The heat-shrinkable tube according to any one of claims 1 to 5, wherein the second modulus is 50 MPa or less.
PCT/JP2020/044436 2020-02-13 2020-11-30 Heat shrink tube WO2021161620A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022500235A JPWO2021161620A1 (en) 2020-02-13 2020-11-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020022886 2020-02-13
JP2020-022886 2020-02-13

Publications (1)

Publication Number Publication Date
WO2021161620A1 true WO2021161620A1 (en) 2021-08-19

Family

ID=77292827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044436 WO2021161620A1 (en) 2020-02-13 2020-11-30 Heat shrink tube

Country Status (2)

Country Link
JP (1) JPWO2021161620A1 (en)
WO (1) WO2021161620A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012731A (en) * 2000-06-29 2002-01-15 Mitsubishi Plastics Ind Ltd Thermal shrinkable polyolefin tube
JP2010210094A (en) * 2010-06-17 2010-09-24 Kurabe Ind Co Ltd Hose
JP2013216915A (en) * 2012-07-27 2013-10-24 Daikin Industries Ltd Crosslinkable composition including fluorine-containing elastomer and crosslinked rubber molded product
JP2014136756A (en) * 2013-01-17 2014-07-28 Sumitomo Electric Ind Ltd Heat-resistant, flame-retardant rubber composition, insulated electric cable, and rubber tube
WO2018230336A1 (en) * 2017-06-12 2018-12-20 Nok株式会社 Fluororubber composition and fluororubber sealing material
WO2020026909A1 (en) * 2018-07-30 2020-02-06 ダイキン工業株式会社 Fluoropolymer-containing composition and molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012731A (en) * 2000-06-29 2002-01-15 Mitsubishi Plastics Ind Ltd Thermal shrinkable polyolefin tube
JP2010210094A (en) * 2010-06-17 2010-09-24 Kurabe Ind Co Ltd Hose
JP2013216915A (en) * 2012-07-27 2013-10-24 Daikin Industries Ltd Crosslinkable composition including fluorine-containing elastomer and crosslinked rubber molded product
JP2014136756A (en) * 2013-01-17 2014-07-28 Sumitomo Electric Ind Ltd Heat-resistant, flame-retardant rubber composition, insulated electric cable, and rubber tube
WO2018230336A1 (en) * 2017-06-12 2018-12-20 Nok株式会社 Fluororubber composition and fluororubber sealing material
WO2020026909A1 (en) * 2018-07-30 2020-02-06 ダイキン工業株式会社 Fluoropolymer-containing composition and molded article

Also Published As

Publication number Publication date
JPWO2021161620A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
US20160158491A1 (en) Multiple Wall Dimensionally Recoverable Tubing for Forming Reinforced Medical Devices
JP2007126631A (en) Resin composition and electric wire or cable, insulation tube, and heat-shrinkable tube using the resin composition
JP6630021B2 (en) Heat-resistant two-layer heat-shrinkable tube and method of coating object to be coated
JPH0655636A (en) Tube
JP4703967B2 (en) HOT MELT ADHESIVE, ITS MANUFACTURING METHOD, MOLDED ARTICLE, AND HEAT SHRINKABLE TUBE MANUFACTURING METHOD
WO2021161620A1 (en) Heat shrink tube
JP6065341B2 (en) Heat resistant flame retardant rubber composition, insulated wire, rubber tube
JP2015229732A (en) Fire retardant flexible resin composition, and resin tube and insulate cable each using the resin composition
JP4246388B2 (en) Heat shrinkable multilayer film
JP6738181B2 (en) Resin composition and heat recovery article
JPH068030B2 (en) Method for manufacturing sealant coated article
JP2023097077A (en) Insulated wire and heat-shrinkable tube
JPH08259704A (en) Crosslinked tube and heat-shrinkable tube
JP4070006B2 (en) Fluorine-containing elastomer composition
JP2017213794A (en) Heat shrinkable tube, manufacturing method therefor and solder sleeve
JPS581921A (en) Fluorine-containing elastomer insulated electric wire
JP7406043B2 (en) Heat-shrinkable tube, heat-shrinkable connecting parts, manufacturing method of heat-shrinkable tube, and manufacturing method of heat-shrinkable connecting parts
JPH08120145A (en) Fluoroelastomer molded form, insulated electric wire and insulated tube
JP5068130B2 (en) Polyolefin-based multilayer shrink film and packaging method
WO2020158854A1 (en) Heat-shrinkable tube having tearable properties
KR20110107610A (en) Resin composition with high flexibility and resistance against heat and oil, and heat shrinkable tube using the same
JP2011103204A (en) Electric wire for submersible motor and its manufacturing method
JPH10233125A (en) Cable
JP3321990B2 (en) Extruded fluororesin
JPH05325692A (en) Tube and heat contraction tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500235

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918613

Country of ref document: EP

Kind code of ref document: A1