WO2021161544A1 - 端末、無線通信方法及び基地局 - Google Patents
端末、無線通信方法及び基地局 Download PDFInfo
- Publication number
- WO2021161544A1 WO2021161544A1 PCT/JP2020/005914 JP2020005914W WO2021161544A1 WO 2021161544 A1 WO2021161544 A1 WO 2021161544A1 JP 2020005914 W JP2020005914 W JP 2020005914W WO 2021161544 A1 WO2021161544 A1 WO 2021161544A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission
- tci state
- mac
- signal
- measurement
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/1607—Details of the supervisory signal
- H04L1/1671—Details of the supervisory signal the supervisory signal being transmitted together with control information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0623—Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0078—Timing of allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/347—Path loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1854—Scheduling and prioritising arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
- H04L1/1829—Arrangements specially adapted for the receiver end
- H04L1/1861—Physical mapping arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0055—Physical resource allocation for ACK/NACK
Definitions
- This disclosure relates to terminals, wireless communication methods and base stations in next-generation mobile communication systems.
- LTE Long Term Evolution
- 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
- LTE Long Term Evolution
- 5G 5th generation mobile communication system
- 5G + plus
- NR New Radio
- 3GPP Rel.15 3GPP Rel.15 or later, etc.
- the user terminal (User Equipment (UE)) is a UL data channel (eg, Physical Uplink Shared Channel (PUSCH)) and a UL control channel (eg, Physical Uplink).
- PUSCH Physical Uplink Shared Channel
- UCI Uplink Control Information
- PUCCH Physical Uplink Control Channel
- UE User Equipment
- QCL Quad-Co-Location
- one of the purposes of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately transmit UL signals.
- the terminal includes a receiver that receives a medium access control-control element (MAC CE) that indicates a transmission setting instruction (TCI) state or a reference signal of a path loss reference signal (PL-RS), and if.
- MAC CE medium access control-control element
- TCI transmission setting instruction
- PL-RS path loss reference signal
- the UL signal can be appropriately transmitted.
- FIG. 1 is a diagram showing an example of a measurement delay requirement in in-frequency measurement.
- 2A and 2B are diagrams showing an example of a scaling factor in consideration of the number of samples and UE reception beam switching in the L1-RSRP measurement.
- 3A and 3B are diagrams showing an example of the L1-RSRP measurement period based on SSB.
- 4A and 4B are diagrams showing an example of the L1-RSRP measurement period based on CSI-RS.
- FIG. 5 shows Rel. It is a figure which shows an example of the update of the spatial relation in 15.
- FIG. 6 shows Rel. It is a figure which shows an example of the update of PL-RS in 16.
- FIG. 5 shows Rel. It is a figure which shows an example of the update of the spatial relation in 15.
- FIG. 6 shows Rel. It is a figure which shows an example of the update of PL-RS in 16.
- FIG. 5 shows Rel. It is a figure which shows an example of the update of the
- FIG. 7 is a diagram showing an example of a timeline of at least one switching of the default spatial relationship and the default PL-RS.
- FIG. 8 is a diagram showing an example of a timeline for switching the default PL-RS according to the seventh embodiment.
- FIG. 9 is a diagram showing another example of the timeline for switching the default PL-RS according to the seventh embodiment.
- FIG. 10 is a diagram showing still another example of the timeline for switching the default PL-RS according to the seventh embodiment.
- FIG. 11 is a diagram showing an example of a timeline for switching PL-RS according to the eighth embodiment.
- FIG. 12 is a diagram showing another example of the PL-RS switching timeline according to the eighth embodiment.
- FIG. 13 is a diagram showing still another example of the PL-RS switching timeline according to the eighth embodiment.
- FIG. 14 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- FIG. 15 is a diagram showing an example of the configuration of the base station according to the embodiment.
- FIG. 16 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
- FIG. 17 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
- reception processing for example, reception, demapping, demodulation, etc.
- transmission configuration indication state TCI state
- Controlling at least one of decoding and transmission processing eg, at least one of transmission, mapping, precoding, modulation, and coding
- the TCI state may represent what applies to the downlink signal / channel.
- the equivalent of the TCI state applied to the uplink signal / channel may be expressed as a spatial relation.
- the TCI state is information related to signal / channel pseudo collocation (Quasi-Co-Location (QCL)), and may be called spatial reception parameters, spatial relation information, or the like.
- the TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
- QCL is an index showing the statistical properties of signals / channels. For example, when one signal / channel and another signal / channel have a QCL relationship, Doppler shift, Doppler spread, and average delay are performed between these different signals / channels. ), Delay spread, and spatial parameter (for example, spatial Rx parameter) can be assumed to be the same (QCL for at least one of these). You may.
- the spatial reception parameter may correspond to the received beam of the UE (for example, the received analog beam), or the beam may be specified based on the spatial QCL.
- the QCL (or at least one element of the QCL) in the present disclosure may be read as sQCL (spatial QCL).
- QCL types A plurality of types (QCL types) may be specified for the QCL.
- QCL types AD QCL types with different parameters (or parameter sets) that can be assumed to be the same may be provided, and the parameters (which may be referred to as QCL parameters) are shown below:
- QCL Type A QCL-A
- QCL-B Doppler shift and Doppler spread
- QCL type C QCL-C
- QCL-D Spatial reception parameter.
- Control Resource Set (CORESET)
- channel or reference signal has a specific QCL (eg, QCL type D) relationship with another CORESET, channel or reference signal. It may be called a QCL assumption.
- QCL Control Resource Set
- the UE may determine at least one of the transmission beam (Tx beam) and the reception beam (Rx beam) of the signal / channel based on the TCI state of the signal / channel or the QCL assumption.
- the TCI state may be, for example, information about the QCL of the target channel (in other words, the reference signal (Reference Signal (RS)) for the channel) and another signal (for example, another RS). ..
- the TCI state may be set (instructed) by higher layer signaling, physical layer signaling, or a combination thereof.
- the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
- RRC Radio Resource Control
- MAC Medium Access Control
- MAC CE MAC Control Element
- PDU MAC Protocol Data Unit
- the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
- MIB Master Information Block
- SIB System Information Block
- RMSI Minimum System Information
- OSI Other System Information
- the physical layer signaling may be, for example, downlink control information (DCI).
- DCI downlink control information
- the channels for which the TCI state or spatial relationship is set are, for example, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), and an uplink shared channel (Physical Uplink Shared). It may be at least one of a Channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
- PDSCH Physical Downlink Shared Channel
- PDCH Downlink Control Channel
- PUSCH Physical Uplink Control Channel
- PUCCH Physical Uplink Control Channel
- the RS having a QCL relationship with the channel is, for example, a synchronization signal block (Synchronization Signal Block (SSB)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a measurement reference signal (Sounding). It may be at least one of Reference Signal (SRS)), CSI-RS for tracking (also referred to as Tracking Reference Signal (TRS)), and reference signal for QCL detection (also referred to as QRS).
- SSB Synchronization Signal Block
- CSI-RS Channel State Information Reference Signal
- Sounding Sounding
- SRS Reference Signal
- TRS Tracking Reference Signal
- QRS reference signal for QCL detection
- the SSB is a signal block including at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS)), and a broadcast channel (Physical Broadcast Channel (PBCH)).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- PBCH Physical Broadcast Channel
- the SSB may be referred to as an SS / PBCH block.
- the UE may receive setting information (for example, PDSCH-Config, tci-StatesToAddModList) including a list of information elements of the TCI state by upper layer signaling.
- setting information for example, PDSCH-Config, tci-StatesToAddModList
- the TCI state information element (RRC "TCI-state IE") set by the upper layer signaling may include a TCI state ID and one or more QCL information ("QCL-Info").
- the QCL information may include at least one of information related to the RS having a QCL relationship (RS-related information) and information indicating the QCL type (QCL type information).
- RS-related information includes RS index (for example, SSB index, non-zero power CSI-RS (Non-Zero-Power (NZP) CSI-RS) resource ID (Identifier)), cell index where RS is located, and RS position.
- Information such as the index of the Bandwidth Part (BWP) to be used may be included.
- both QCL type A RS and QCL type D RS, or only QCL type A RS can be set for the UE.
- TRS When TRS is set as the RS of QCL type A, it is assumed that the same TRS is periodically transmitted over a long period of time, unlike the PDCCH or PDSCH demodulation reference signal (DeModulation Reference Signal (DMRS)). Will be done.
- DMRS DeModulation Reference Signal
- the UE can measure the TRS and calculate the average delay, delay spread, and so on.
- a UE in which the TRS is set as the QCL type A RS in the TCI state of the PDCCH or PDSCH DMRS has the same parameters (average delay, delay spread, etc.) of the PDCCH or PDSCH DMRS and the TRS QCL type A. Since it can be assumed that there is, the parameters (average delay, delay spread, etc.) of DMRS of PDCCH or PDSCH can be obtained from the measurement result of TRS.
- the UE can perform more accurate channel estimation by using the measurement result of the TRS.
- a UE set with a QCL type D RS can determine a UE reception beam (spatial domain reception filter, UE spatial domain reception filter) using the QCL type D RS.
- a TCI-state QCL type X RS may mean an RS that has a QCL type X relationship with a channel / signal (DMRS), and this RS is called the TCI-state QCL type X QCL source. You may.
- DMRS channel / signal
- TCI state for PDCCH Information about the QCL between the PDCCH (or DMRS antenna port associated with the PDCCH) and an RS may be referred to as the TCI state for the PDCCH or the like.
- the UE may determine the TCI state for the UE-specific PDCCH (CORESET) based on the upper layer signaling. For example, for the UE, one or more (K) TCI states may be set by RRC signaling for each CORESET.
- CORESET UE-specific PDCCH
- the UE may activate one of the plurality of TCI states set by RRC signaling for each CORESET by MAC CE.
- the MAC CE may be called a TCI state indicating MAC CE (TCI State Indication for UE-specific PDCCH MAC CE) for UE-specific PDCCH.
- the UE may monitor the CORESET based on the active TCI state corresponding to the CORESET.
- TCI state for PDSCH Information about the QCL between the PDSCH (or DMRS antenna port associated with the PDSCH) and a DL-RS may be referred to as the TCI state for the PDSCH or the like.
- the UE may notify (set) M (M ⁇ 1) TCI states (QCL information for M PDSCHs) for PDSCH by higher layer signaling.
- the number M of TCI states set in the UE may be limited by at least one of the UE capability and the QCL type.
- the DCI used for PDSCH scheduling may include a field indicating the TCI state for the PDSCH (for example, it may be called a TCI field, a TCI state field, or the like).
- the DCI may be used for scheduling the PDSCH of one cell, and may be called, for example, DL DCI, DL assignment, DCI format 1_0, DCI format 1-1-1 and the like.
- Whether or not the TCI field is included in the DCI may be controlled by the information notified from the base station to the UE.
- the information may be information indicating whether or not a TCI field exists in DCI (present or present) (for example, TCI existence information, TCI existence information in DCI, upper layer parameter TCI-PresentInDCI).
- the information may be set in the UE by, for example, higher layer signaling.
- TCI states When more than 8 types of TCI states are set in the UE, 8 or less types of TCI states may be activated (or specified) using MAC CE.
- the MAC CE may be referred to as a UE-specific PDSCH TCI state activation / deactivation MAC CE (TCI States Activation / Deactivation for UE-specific PDSCH MAC CE).
- TCI States Activation / Deactivation for UE-specific PDSCH MAC CE The value of the TCI field in DCI may indicate one of the TCI states activated by MAC CE.
- the UE sets the TCI existence information set to "enabled” for the CORESET that schedules the PDSCH (CORESET used for the PDCCH transmission that schedules the PDSCH), the UE sets the TCI field. It may be assumed that it exists in the DCI format 1-11 of the PDCCH transmitted on the CORESET.
- the UE uses the TCI state or QCL assumption for the PDSCH to determine the QCL of the PDSCH antenna port for the PDCCH transmission that schedules the PDSCH. It may be assumed that it is the same as the TCI state or QCL assumption applied to.
- the TCI presence information is set to "enabled"
- the TCI field in the DCI in the component carrier (CC) that schedules (PDSCH) will be in the activated TCI state in the scheduled CC or DL BWP.
- the UE uses a TCI that has a DCI and follows the value of the TCI field in the detected PDCCH to determine the QCL of the PDSCH antenna port. May be good.
- the UE performs the PDSCH of the serving cell. It may be assumed that the DM-RS ports are RSs and QCLs in the TCI state with respect to the QCL type parameters given by the indicated TCI state.
- the indicated TCI state may be based on the activated TCI state in the slot with the scheduled PDSCH. If the UE is configured with multiple slot PDSCH, the indicated TCI state may be based on the activated TCI state in the first slot with the scheduled PDSCH, and the UE may span the slot with the scheduled PDSCH. You may expect them to be the same. If the UE is configured with a CORESET associated with a search space set for cross-carrier scheduling, the UE will set the TCI presence information to "valid" for that CORESET and for the serving cell scheduled by the search space set. If at least one of the TCI states set in is containing a QCL type D, the UE may assume that the time offset between the detected PDCCH and the PDSCH corresponding to that PDCCH is greater than or equal to the threshold. good.
- the DL DCI In the RRC connection mode, the DL DCI (PDSCH) is set both when the TCI information in the DCI (upper layer parameter TCI-PresentInDCI) is set to "enabled” and when the TCI information in the DCI is not set. If the time offset between the receipt of the scheduled DCI) and the corresponding PDSCH (the PDSCH scheduled by the DCI) is less than the threshold, the UE will have the DM-RS port of the PDSCH of the serving cell of the serving cell.
- One or more CORESETs in the active BWP have the smallest (lowest) CORESET-ID in the latest (latest) slot monitored by the UE and are in the monitored search space.
- the associated CORESET is an RS and a QCL with respect to the QCL parameters used to indicate the PDCCH's QCL.
- This RS may be referred to as the PDSCH default TCI state or the PDSCH default QCL assumption.
- the time offset between the reception of the DL DCI and the reception of the PDSCH corresponding to the DCI may be referred to as a scheduling offset.
- the above thresholds are QCL time duration, "timeDurationForQCL”, “Threshold”, “Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI", “Threshold-Sched-Offset”. , Schedule offset threshold, scheduling offset threshold, and the like.
- the QCL time length may be based on the UE capability, for example, the delay required for PDCCH decoding and beam switching.
- the QCL time length may be the minimum time required for the UE to perform PDCCH reception and application of spatial QCL information received in the DCI for PDSCH processing.
- the QCL time length may be represented by the number of symbols for each subcarrier interval, or may be represented by the time (for example, ⁇ s).
- the QCL time length information may be reported from the UE to the base station as UE capability information, or may be set in the UE from the base station using higher layer signaling.
- the UE may assume that the DMRS port of the PDSCH is a DL-RS and QCL based on the TCI state activated for the CORESET corresponding to the minimum CORESET-ID.
- the latest slot may be, for example, a slot that receives the DCI that schedules the PDSCH.
- the CORESET-ID may be an ID set by the RRC information element "ControlResourceSet” (ID for identifying CORESET, controlResourceSetId).
- the default TCI state may be the activated TCI state that is applicable to the PDSCH in the active DL BWP of the CC and has the lowest ID.
- the delay from PDCCH to PDSCH is for QCL. If it is shorter than the time length, or if the TCI state is not in the DCI for the scheduling, the UE will from the active TCI state that is applicable to the PDSCH in the active BWP of the scheduled cell and has the lowest ID. QCL assumptions for the scheduled PDSCH of may be acquired.
- the UE may set parameters (PUCCH setting information, PUCCH-Config) used for PUCCH transmission by higher layer signaling (for example, Radio Resource Control (RRC) signaling).
- PUCCH setting information may be set for each partial band (for example, an uplink bandwidth part (BWP)) in a carrier (also referred to as a cell or a component carrier (CC)).
- BWP uplink bandwidth part
- CC component carrier
- the PUCCH setting information may include a list of PUCCH resource set information (for example, PUCCH-ResourceSet) and a list of PUCCH spatial relation information (for example, PUCCH-SpatialRelationInfo).
- PUCCH resource set information for example, PUCCH-ResourceSet
- PUCCH spatial relation information for example, PUCCH-SpatialRelationInfo
- the PUCCH resource set information may include a list (for example, resourceList) of the PUCCH resource index (ID, for example, PUCCH-ResourceId).
- the UE when the UE does not have the individual PUCCH resource setting information (for example, the individual PUCCH resource configuration) provided by the PUCCH resource set information in the PUCCH setting information (before RRC setup), the UE is a system.
- the PUCCH resource set may be determined based on the parameters (eg, pucch-ResourceCommon) in the information (eg, System Information Block Type 1 (SIB1) or Remaining Minimum System Information (RMSI)).
- SIB1 System Information Block Type 1
- RMSI Remaining Minimum System Information
- the UE may determine the PUCCH resource set according to the number of UCI information bits. good.
- the UE has a value of a field (eg, a PUCCH resource indicator field) in the Downlink Control Information (DCI) (eg, DCI format 1_0 or 1_1 used for PDSCH scheduling) and said.
- DCI Downlink Control Information
- a field eg, a PUCCH resource indicator field
- DCI Downlink Control Information
- a field eg, a PUCCH resource indicator field
- DCI Downlink Control Information
- DCI Downlink Control Information
- the PUCCH spatial relationship information may indicate a plurality of candidate beams (spatial domain filters) for PUCCH transmission.
- the PUCCH spatial relationship information may indicate the spatial relationship between RS (Reference signal) and PUCCH.
- the list of PUCCH spatial relation information may include some elements (PUCCH spatial relation information IE (Information Element)).
- Each PUCCH spatial relationship information includes, for example, an index of PUCCH spatial relationship information (ID, for example, pucch-SpatialRelationInfoId), an index of a serving cell (ID, for example, servingCellId), and information related to RS (reference RS) having a spatial relationship with PUCCH. At least one may be included.
- the information about the RS may be an SSB index, a CSI-RS index (for example, NZP-CSI-RS resource configuration ID), or an SRS resource ID and a BWP ID.
- the SSB index, CSI-RS index and SRS resource ID may be associated with at least one of the beams, resources and ports selected by the corresponding RS measurement.
- the UE When more than one spatial relation information about PUCCH is set, the UE has one at a certain time based on PUCCH spatial relation activation / deactivation MAC CE (PUCCH spatial relation Activation / Deactivation MAC CE).
- PUCCH spatial relation activation / deactivation MAC CE PUCCH spatial relation activation / Deactivation MAC CE
- One PUCCH spatial relationship information may be controlled to be active for the PUCCH resource.
- the MAC CE may include information such as a serving cell ID ("Serving Cell ID” field), a BWP ID (“BWP ID” field), and a PUCCH resource ID (“PUCCH Resource ID” field) to be applied.
- a serving cell ID (“Serving Cell ID” field)
- BWP ID BWP ID
- PUCCH resource ID PUCCH Resource ID
- the UE if the field of a certain S i indicates 1, activate the spatial relationship information of the spatial relationship information ID # i.
- the UE if the field of a certain S i indicates 0, deactivation of the spatial relationship information of the spatial relationship information ID # i.
- the UE may activate the PUCCH-related information specified by the MAC CE 3 ms after transmitting an acknowledgment (ACK) to the MAC CE that activates the PUCCH spatial-related information.
- ACK acknowledgment
- the UE receives information (SRS setting information, for example, a parameter in "SRS-Config" of the RRC control element) used for transmitting a measurement reference signal (for example, a sounding reference signal (SRS)).
- SRS setting information for example, a parameter in "SRS-Config" of the RRC control element
- SRS sounding reference signal
- the UE has information about one or more SRS resource sets (SRS resource set information, for example, "SRS-ResourceSet” of RRC control element) and information about one or more SRS resources (SRS resource).
- SRS resource set information for example, "SRS-ResourceSet” of RRC control element
- SRS resource information about one or more SRS resources
- Information for example, at least one of the RRC control elements "SRS-Resource" may be received.
- One SRS resource set may be associated with several SRS resources (several SRS resources may be grouped together). Each SRS resource may be specified by an SRS resource identifier (SRS Resource Indicator (SRI)) or an SRS resource ID (Identifier).
- SRI SRS Resource Indicator
- SRS resource ID Identifier
- the SRS resource set information may include information on the SRS resource set ID (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, the SRS resource type, and the usage of the SRS.
- SRS-ResourceSetId information on the SRS resource set ID
- SRS-ResourceId list of SRS resource IDs
- the SRS resource types are periodic SRS (Periodic SRS (P-SRS)), semi-persistent SRS (Semi-Persistent SRS (SP-SRS)), and aperiodic SRS (Aperiodic SRS (A-SRS, AP)).
- P-SRS Period SRS
- SP-SRS semi-persistent SRS
- Aperiodic SRS Aperiodic SRS
- AP aperiodic SRS
- -SRS periodic SRS
- the UE may transmit P-SRS and SP-SRS periodically (or periodically after activation), and may transmit A-SRS based on DCI's SRS request.
- the applications are, for example, beam management, codebook-based transmission (codebook: CB), and non-codebook-based transmission. (NonCodebook: NCB), antenna switching, and the like may be used.
- SRS for codebook-based or non-codebook-based transmission may be used to determine a precoder for codebook-based or non-codebook-based PUSCH transmission based on SRI.
- the UE determines a precoder for PUSCH transmission based on SRI, transmission rank indicator (Transmitted Rank Indicator: TRI), and transmission precoding matrix indicator (Transmitted Precoding Matrix Indicator: TPMI). You may.
- the UE may determine a precoder for PUSCH transmission based on SRI.
- the SRS resource information includes SRS resource ID (SRS-ResourceId), number of SRS ports, SRS port number, transmission comb, SRS resource mapping (for example, time and / or frequency resource position, resource offset, resource cycle, number of repetitions, SRS).
- SRS resource ID SRS-ResourceId
- number of SRS ports SRS port number
- transmission comb SRS resource mapping (for example, time and / or frequency resource position, resource offset, resource cycle, number of repetitions, SRS).
- SRS resource mapping for example, time and / or frequency resource position, resource offset, resource cycle, number of repetitions, SRS.
- the number of symbols, SRS bandwidth, etc. may be included.
- the spatial relationship information of the SRS may indicate the spatial relationship information between a certain reference signal and the SRS.
- the reference signal is at least a synchronization signal / broadcast channel (Synchronization Signal / Physical Broadcast Channel: SS / PBCH) block, a channel state information reference signal (Channel State Information Reference Signal: CSI-RS), and an SRS (for example, another SRS). There may be one.
- the SS / PBCH block may be referred to as a synchronous signal block (SSB).
- the SRS spatial relationship information may include at least one of the SSB index, the CSI-RS resource ID, and the SRS resource ID as the index of the reference signal.
- the SSB index, SSB resource ID, and SSBRI may be read as each other. Further, the CSI-RS index, the CSI-RS resource ID and the CRI (CSI-RS Resource Indicator) may be read as each other. Further, the SRS index, SRS resource ID and SRI may be read as each other.
- the SRS spatial relationship information may include a serving cell index, a BWP index (BWP ID), and the like corresponding to the reference signal.
- BWP ID BWP index
- BC means, for example, a node (for example, a base station or a UE) determines a beam (transmission beam, Tx beam) used for signal transmission based on a beam (reception beam, Rx beam) used for signal reception. It may be the ability to do.
- Tx beam transmission beam
- Rx beam reception beam
- BC is transmission / reception beam correspondence (Tx / Rx beam correspondence), beam reciprocity (beam reciprocity), beam calibration (beam calibration), calibrated / uncalibrated (Calibrated / Non-calibrated), reciprocity calibration. It may be called reciprocity calibrated / non-calibrated, degree of correspondence, degree of agreement, and the like.
- the UE uses the same beam (spatial domain transmission filter) as the SRS (or SRS resource) instructed by the base station based on the measurement result of one or more SRS (or SRS resource).
- Upstream signals eg, PUSCH, PUCCH, SRS, etc. may be transmitted.
- the UE uses the same or corresponding beam (spatial domain transmission filter) as the beam (spatial domain reception filter) used for receiving SSB or CSI-RS (or CSI-RS resource).
- Uplink signals eg, PUSCH, PUCCH, SRS, etc. may be transmitted.
- the UE When the UE sets spatial relation information about SSB or CSI-RS and SRS for a certain SRS resource (for example, when BC is present), the UE is a spatial domain for receiving the SSB or CSI-RS.
- the SRS resource may be transmitted using the same spatial domain filter (spatial domain transmit filter) as the filter (spatial domain receive filter). In this case, the UE may assume that the SSB or CSI-RS UE receive beam and the SRS UE transmit beam are the same.
- the reference SRS When the UE is set spatial relationship information regarding another SRS (reference SRS) and the SRS (target SRS) for one SRS (target SRS) resource (for example, in the case of no BC), the reference SRS is set.
- the target SRS resource may be transmitted using the same spatial domain filter (spatial domain transmission filter) as the spatial domain filter (spatial domain transmission filter) for transmission of. That is, in this case, the UE may assume that the UE transmission beam of the reference SRS and the UE transmission beam of the target SRS are the same.
- the UE may determine the spatial relationship of the PUSCH scheduled by the DCI based on the value of the field (eg, the SRS Resource Identifier (SRI) field) in the DCI (eg, DCI format 0_1). Specifically, the UE may use the spatial relationship information of the SRS resource (for example, “spatialRelationInfo” of the RRC information element) determined based on the value of the field (for example, SRI) for PUSCH transmission.
- SRI SRS Resource Identifier
- the UE When using codebook-based transmission for PUSCH, the UE may set two SRS resources by RRC and indicate one of the two SRS resources by DCI (1 bit field). When using non-codebook-based transmission for PUSCH, the UE may have four SRS resources set by the RRC and one of the four SRS resources indicated by a DCI (2-bit field). In order to use a spatial relationship other than the two or four spatial relationships set by the RRC, it is necessary to reset the RRC.
- the DL-RS can be set for the spatial relationship of SRS resources used for PUSCH.
- the UE can set the spatial relationship of a plurality of (for example, up to 16) SRS resources by RRC, and can instruct one of the plurality of SRS resources by MAC CE.
- the path loss PL b, f, c (q d ) [dB] in the transmission power control of PUSCH, PUCCH, and SRS is a reference signal (RS,) for the downlink BWP associated with the active UL BWP b of the carrier f of the serving cell c. using the index q d pathloss reference RS (PathlossReferenceRS)) is computed by the UE.
- the path loss reference RS, the path loss (PL) -RS, the index q d , the RS used for the path loss calculation, and the RS resource used for the path loss calculation may be read as each other.
- calculations, estimates, measurements, and tracks may be read interchangeably.
- the path loss measurement based on L1-RSRP may be applied. Even if the upper layer filter RSRP is used for path loss measurement and L1-RSRP is used for path loss measurement before the upper layer filter RSRP is applied at the available timing after MAC CE for updating the path loss RS. good.
- the upper layer filter RSRP may be used for path loss measurement at the available timing after MAC CE for updating the path loss RS, and the upper layer filter RSRP of the previous path loss RS may be used before that timing. .. Rel. Similar to the operation of 15, the upper layer filter RSRP is used for the path loss measurement, and the UE may track all the path loss RS candidates set by the RRC.
- the maximum number of path loss RSs that can be set by the RRC may depend on the UE capability. When the maximum number of path loss RSs that can be set by RRC is X, path loss RS candidates of X or less may be set by RRC, and path loss RS may be selected by MAC CE from the set path loss RS candidates.
- the maximum number of path loss RSs that can be set by the RRC may be 4, 8, 16, 64, or the like.
- the upper layer filter RSRP, the filtered RSRP, and the layer 3 filter RSRP may be read as each other.
- Measurement delay requirements for intra-frequency measurements are specified for radio resource management (RRM) measurements for Layer 3 (L3) mobility. As shown in FIG. 1, measurement delay requirements are specified for each of cell detection, RSRP measurement, and SSB index detection.
- RRM radio resource management
- M pss / sss_sync_w / o_gaps is 40 for the UE supporting FR2 power class 1, 24 for the UE supporting power class 2, and 24 for the UE supporting FR2 power class 3. Yes, 24 for UEs that support FR2 power class 4.
- M meas_period_w / o_gaps is 40 for UEs that support power class 1, 24 for UEs that support FR2 power class 2, 24 for UEs that support power class 3, and supports power class 4. 24 for the UE to do. If the intra-frequency SSB measurement timing configuration (SMTC) does not completely overlap the measurement gap (MG), or if the intra-frequency SMTC completely overlaps the MG.
- SMTC intra-frequency SSB measurement timing configuration
- K RLM K layer1_measurement
- RLM is a non-MG radio link monitoring (RLM), beam failure detection (BFD), candidate beam detection (CBD), or beam. It is 1 or 1.5 depending on the relationship between all the reference signals set for the reporting L1-RSRP and the intra-frequency SMTC occasion.
- CSSF intra is a carrier-specific scaling factor.
- the ceil function is multiplied by 1.5 in consideration of the DRX on duration (duration) and the misalignment of the SMTC window.
- 600 ms for LTE cell detection and 200 ms for LTE RSRP measurement are defined as lower limit values in order to avoid unnecessarily high frequency measurement.
- the measurement delay requirement according to the SMTC cycle is applied.
- the UE measures the value of layer 1 (L1) -RSRP for each RS (each base station transmission beam) set by the RRC.
- a measurement period indicating how many samples immediately before the L1-RSRP measurement should be completed is specified.
- the measurement period T in FR1 is expressed as M ⁇ P ⁇ RS transmission cycle
- the measurement period T in FR2 is M ⁇ N ⁇ P ⁇ RS. It is expressed as a transmission cycle.
- timeRestrictionForChannelMeasurements for channel (signal) measurement
- N 1 when the L1-RSRP report is based on CSI-RS
- N 8 when the L1-RSRP report is based on SSB
- the L1-RSRP report is a repetitive CSI.
- N ceil (maxNumberRxBeam / number of CSI-RS resources).
- the measurement accuracy of L1-RSRP based on 1 sample measurement is specified.
- the presence or absence of RSRP averaging in L1 may depend on the UE implementation. If a time domain measurement limit for channel measurement is set, the UE reports one sample of RSRP as the L1-RSRP measurement result without averaging.
- FIG. 3A shows the SSB-based L1-RSRP measurement period T L1-RSRP_Measurement_Period_SSB for FR1.
- FIG. 3B shows the SSB-based L1-RSRP measurement period T L1-RSRP_Measurement_Period_SSB for FR2.
- T SSB ssb-periodicityServingCell is the period of the SSB index set for the L1-RSRP measurement.
- T DRX is the DRX cycle length.
- T Report is a cycle set for reporting.
- FIG. 4A shows the L1-RSRP measurement period T L1-RSRP_Measurement_Period_CSI-RS based on CSI-RS for FR1.
- FIG. 4B shows the L1-RSRP measurement period T L1-RSRP_Measurement_Period_CSI-RS based on CSI-RS for FR2.
- MAC CE for activation / deactivation related to PUCCH space and a MAC CE for activation / deactivation related to SRS space are required individually.
- the PUSCH spatial relationship follows the SRS spatial relationship.
- At least one of the MAC CE for activation / deactivation related to PUCCH space and the MAC CE for activation / deactivation related to SRS space may not be used.
- both the spatial relationship for PUCCH and PL-RS are not set in FR2, the spatial relationship and the default assumption of PL-RS (default spatial relationship and default PL-RS) are applied to PUCCH. If both the spatial relationship for SRS and PL-RS are not set in FR2, the spatial relationship and PL-RS default assumptions for PUSCH and SRS scheduled by DCI format 0_1 (default spatial relationship and default PL- RS) applies.
- the default spatial relationship and default PL-RS may be the TCI state or QCL assumption of CORESET having the lowest CORESET ID in the active DL BWP. If CORESET is not set for the active DL BWP on the CC, the default spatial relationship and the default PL-RS may be the active TCI state having the lowest ID of the PDSCH in the active DL BWP.
- the spatial relationship of the PUSCH scheduled by DCI format 0_0 follows the spatial relationship of the PUCCH resource having the lowest PUCCH resource ID among the active spatial relationships of the PUCCH on the same CC.
- the network needs to update the PUCCH spatial relationships on all SCells, even if the PUCCHs are not transmitted on the SCells.
- PUCCH setting is not required for PUSCH scheduled by DCI format 0_0.
- the default spatial relationship and default PL-RS apply to PUSCHs scheduled in DCI format 0_0.
- PL-RS For accurate path loss measurement for transmission power control, Rel. In 15 UEs, up to 4 PL-RSs are set by RRC signaling. As shown in FIG. 5, even when the UL transmission beam (spatial relation) is updated by MAC CE, PL-RS cannot be updated by MAC CE.
- PL-RSs are set by RRC signaling, and one PL-RS is instructed (activated) by MAC CE.
- the UE is required to track up to four active PL-RSs for all UL channels (SRS and PUCCH and PUSCH). Tracking the PL-RS may be to calculate the path loss based on the measurement of the PL-RS and retain (store) the path loss.
- the upper layer filter RSRP (average of multiple RSRP measurements) is used for path loss calculation.
- PL-RS is updated by MAC CE (different from PL-RS (previous PL-RS) used for path loss calculation in the PL-RS list set by RRC).
- PL-RS # 1 is indicated by MAC CE
- the first RSRP measurement instance 3 ms after transmission of ACK to the MAC CE is used as the first RSRP measurement sample, and the slot after the fifth RSRP measurement sample.
- PL-RS # 1 may be applied to the boundary (may be used for path loss calculation).
- RSRP measurement RSRP measurement sample, RSRP measurement resource, RSRP measurement timing, RSRP measurement instance, PL-RS measurement sample, PL-RS measurement resource, PL-RS measurement, PL-RS measurement timing, PL-RS measurement. Instances, may be read interchangeably.
- PL-RS is also updated to the TCI state.
- the UE applies the default spatial relationship and the default PL-RS, it is not clear how to apply the updated PL-RS. Since it takes time to measure for the upper layer filter RSRP, the updated PL-RS cannot be applied immediately after the TCI state is updated.
- the UE may have one or more TCI states set on the serving cell.
- the UE completes the switching of the active TCI state within the delay time.
- the target TCI state is known when the updated TCI state (target TCI state) is applied (how long the delay time is). , Measured). If the target TCI is unknown, the UE may apply the target TCI state after the time it takes for the target TCI to become known.
- the target TCI state is known. -The relevant L1-RSRP measurement for the L1-RSRP measurement during the period (TCI switching period) from the last transmission of the RS resource used for the L1-RSRP measurement report to the target TCI state to the completion of the active TCI state switching.
- the RS resource is an RS in the target TCI state or an RS QCLed into the target TCI state.
- the TCI state switching command is received within 1280 ms of the last transmission of the RS resource for beam reporting or measurement.
- the UE sent at least one L1-RSRP report for the target TCI state prior to the TCI state switching command.
- the target TCI state is in a detectable state.
- the SSB associated with the target TCI state is in a detectable state.
- the signal-to-noise ratio (SNR) of the target TCI state is -3 dB or more.
- the target TCI state is unknown.
- the UE receives slot n + T HARQ + (3ms + TO k * (T first-SSB + T SSB) in response to receiving a PDSCH carrying a MAC CE activation command in slot n. -proc )) It is possible to receive the PDCCH having the target TCI state of the serving cell in which the TCI state switching occurs before the / NR slot length.
- the UE can receive PDCCH with the old (pre-update) TCI state up to slot n + T HARQ + (3ms + TO k * (T first-SSB)) / NR slot length.
- T HARQ is the time between DL data transmission and acknowledgment.
- T first-SSB is the time from when the MAC CE command is decrypted by the UE to when the first SSC is transmitted.
- T SSB-proc is 2ms.
- TO k is 1 if the target TCI state is not in the active TCI state list for PDSCH, and 0 otherwise.
- the UE will receive slot n + T HARQ + (3ms + T L1-RSRP + TO uk * (T first) in response to receiving a PDSCH carrying a MAC CE activation command in slot n. -SSB + T SSB-proc )) / NR
- a PDCCH having a target TCI state of a serving cell in which a TCI state switch occurs before the slot length can be received.
- the UE can receive PDCCH with the old (pre-update) TCI state up to the slot n + T HARQ + (3ms + T L1-RSRP + TO uk * (T first-SSB)) / NR slot length.
- T L1-RSRP is the time for L1-RSRP measurement for improving the received beam.
- T L1-RSRP_Measurement_Period_CSI-RS is the time for L1-RSRP measurement for improving the received beam.
- the TO uk is 1 for the CSI-RS-based L1-RSRP measurement and 0 for the SSB-based L1-RSRP measurement when the TCI state switch includes a QCL type D. Also, TO uk is 1 when the TCI state switch includes other QCL types.
- TCI state switching includes only QCL type A, QCL type B, or QCL type C
- T L1-RSRP_Measurement_Period_SSB 0
- T L1-RSRP_Measurement_Period_CSI-RS 0 in FR2 with respect to SSB in FR2.
- the T first-SSB is the time to the first SSB measurement after the L1-RSRP measurement.
- T first-SSB is the time to the first SSC transmission after the MAC CE command has been decrypted by the UE.
- the SSB is QCL type A or QCL type C.
- the timing of switching to the target TCI state may be the timing at which T L1-RSRP is added to the timing of switching to the target TCI state when the target TCI state is known.
- the UE applying the default spatial relationship preferably matches the default spatial relationship with the updated TCI state.
- the timeline for switching the default spatial relationship is not clear.
- the TCI state updated by MAC CE is unknown, it is not clear how to switch the default spatial relationship.
- the present inventors have conceived a method of appropriately switching the default spatial relationship according to the update of the TCI state based on MAC CE.
- a / B and “at least one of A and B” may be read as each other.
- cells, CCs, carriers, BWPs, bands may be read interchangeably.
- the index, the ID, the indicator, and the resource ID may be read as each other.
- the RRC parameter, the upper layer parameter, the RRC information element (IE), and the RRC message may be read as each other.
- the RS of type D, the TCI state, or the RS of QCL type A assumed to be QCL may be read as each other.
- the RS of QCL type D, the DL-RS associated with the QCL type D, the DL-RS having QCL type D, the source of DL-RS, the SSB, and the CSI-RS may be read as each other.
- spatial relation spatial relation information, spatial relation assumption, QCL parameter, spatial domain transmission filter, UE spatial domain transmission filter, UE transmission beam, UL transmission beam, UL precoding, UL precoder, spatial relation RS, DL -RS, QCL assumption, SRI, spatial relationship based on SRI, UL TCI, may be read as each other.
- the TRS, the CSI-RS for tracking, the CSI-RS having the TRS information (upper layer parameter trs-Info), and the NZP-CSI-RS resource having the TRS information in the NZP-CSI-RS resource set are mutually exclusive. It may be read as.
- DCI format 0_0 DCI without SRI, DCI without spatial indication, and DCI without CIF may be read as each other.
- DCI format 0_1 DCI including SRI, DCI including spatially related instructions, and DCI including CIF may be read interchangeably.
- the individual PUCCH and the PUCCH based on the individual PUCCH setting may be read as each other.
- the individual SRS and the SRS based on the individual SRS setting may be read as each other.
- the specific UL signal and the specific type of UL signal may be read as each other.
- the specific UL signal may be at least one of PUCCH (individual PUCCH), SRS (individual SRS), PUSCH scheduled by DCI format 0_1, and PUSCH scheduled by DCI format 0_1.
- the specific DL signal, the specific type DL signal, the specific DL channel, and the specific type DL channel may be read as each other.
- the specific DL signal may be at least one of PDCCH, PDSCH, and CORESET.
- the default spatial relationship of the signal and the TCI state referenced by at least one of the default PL-RSs may be read interchangeably.
- 3ms may be read as a specific time.
- the specific time does not have to be 3ms.
- the specific time may be specified in the specification, set by the RRC parameter, or may be a value reported by the UE capability information.
- the number of measurement samples N may be specified in the specifications, may be set by RRC parameters, or may be a value reported by UE capability information. N may or may not be 5.
- the target TCI targets at least one of the default spatial relationship and default PL-RS of the specific UL signal according to the specific timeline. You may switch to the state.
- the applicable conditions are that the frequency of the specific UL signal is within the specific frequency range (FR), that the specific upper layer parameter corresponding to the specific UL signal is set, and that the specific UL signal condition corresponding to the specific UL signal is set. At least one of being satisfied and having a known target TCI state may be required.
- the specific frequency range may be FR2 or other than FR1.
- the specific upper layer parameter may correspond to the specific UL signal.
- the corresponding specific upper layer parameter may be the default beam path loss enablement information (enableDefaultBeamPlForPUSCH0_0).
- the specific UL signal is an individual PUCCH
- the corresponding specific upper layer parameter may be default beam path loss enablement information (enableDefaultBeamPlForPUCCH).
- the particular UL signal is at least one of an individual SRS and a PUSCH scheduled by DCI format 0_1, the corresponding particular upper layer parameter may be the default beam path loss enablement information (enableDefaultBeamPlForSRS). ..
- the combination of the specific UL signal and the specific UL signal condition for the specific UL signal may be at least one of the following specific UL signals 1 to 4.
- the specific UL signal is an individual PUCCH.
- the specific UL signal condition is that neither the spatial relationship nor the PL-RS is set for the specific UL signal.
- the specific UL signal is an individual SRS.
- the specific UL signal condition is that neither the spatial relationship nor the PL-RS is set for the specific UL signal.
- the specific UL signal is a PUSCH scheduled by DCI format 0_0.
- the specific UL signal condition is that there is no PUCCH resource setting on the active UL BWP or there is no active spatial relationship on the PUCCH resource on the active UL BWP for the specific UL signal.
- the specific UL signal is a PUSCH scheduled by DCI format 0-1.
- the specific UL signal condition is that the corresponding SRS resource (SRS resource indicated by SRI) does not include the spatial relationship and PL-RS for the specific UL signal.
- the specific DL signal may be PDCCH. If CORESET is not set in the active DL BWP on the CC of the specific UL signal, the specific DL signal may be PDSCH.
- the specific timeline may follow any of the following timelines 1 and 2.
- the timeline for switching the default spatial relationship may be the same as the timeline for switching the default PL-RS.
- the timing of switching from the previous spatial relationship to the target TCI state may be the same as the timing of switching from the previous PL-RS to the target TCI state.
- the UE calculates the switching time of the default PL-RS and the switching time of the default spatial relationship, and the longer switching time of the two calculated switching times is used to switch both the default PL-RS and the default spatial relationship. It may be time.
- the switching time may be the time from the reception of the MAC CE that updates the TCI state to the switching of at least one of the default spatial relationship and the default PL-RS, and from the ACK transmission to the MAC CE, the default spatial relationship and the default spatial relationship. It may be the time until at least one switch of the default PL-RS, or it may be the time from 3 ms after the ACK transmission to the MAC CE to at least one switch of the default spatial relationship and the default PL-RS. good.
- the default spatial relationship and the default PL-RS can always be the same, and the UE can appropriately calculate the transmission power.
- the timeline for switching the default spatial relationship may be different from the timeline for switching the default PL-RS.
- the switching time of the default spatial relationship may be shorter than the switching time of the default PL-RS.
- the UE may switch the default spatial relationship to the target TCI state 3 ms after ACK transmission to the MAC CE updating the TCI state, and later switch the default PL-RS to the target TCI state.
- the switching time of the default spatial relationship (UL transmission beam) can be shortened.
- the UE of the specific DL signal 3 ms after ACK transmission to the PDSCH carrying the MAC CE (DL switching timing).
- the TCI state for reception may be switched to the target TCI state.
- the UE may switch at least one of the default spatial relationship and the default PL-RS of the specific UL signal to the target TCI state after 3 ms + offset (UL switching timing) from the ACK transmission. ..
- offset and time offset may be read interchangeably.
- the UE when the MAC CE activates the TCI state # 1 and the TCI state # 1 is known, the UE performs the specific DL at a timing 3 ms after the ACK transmission to the MAC CE.
- the TCI state for the signal is switched to TCI state # 1, and after an offset time from that timing, at least one of the default spatial relationship and the default PL-RS of the specific UL signal is switched to TCI state # 1.
- the UE can appropriately switch at least one of the default spatial relationship and the default PL-RS.
- the offset in the second embodiment may be set by the RRC parameter, may be specified in the specification, or may be a value reported by the UE capability information.
- the offset may be any of the following offsets 1 to 5.
- At least one switching timing of the default spatial relationship and the default PL-RS may be 3 ms after ACK transmission to the MAC CE (may be the switching timing of the TCI state when the target TCI state is known). ..
- the UL switching timing may be the same as the DL switching timing.
- x [Offset 2] x [ms] or x [slot].
- x may be specified by the specification or set by the RRC parameter. x may depend on the subcarrier spacing (SCS) or slot length.
- SCS subcarrier spacing
- Offset 3 Offset for switching spatial relationships based on MAC CE.
- the offset may be specified in the specification or set by the RRC parameter. For example, if the target TCI state is known, the offset may be TO k * (T first-SSB + T SSB-proc ). If the target TCI state is unknown, the offset may be T L1-RSRP + TO uk * (T first-SSB + T SSB-proc ).
- the offset may be a time based on the time T L1-RSRP for L1-RSRP measurements, may be a T L1-RSRP + TO uk * (T first-SSB + T SSB-proc) .
- the offset may be a time based on the time T L1-SINR for L1-SINR measurement may be a T L1-SINR + TO uk * (T first-SSB + T SSB-proc) ..
- Offset 5 The time it takes for the target TCI state to change from unknown to known.
- the offset may be the time based on the time T L1-RSRP for L1-RSRP measurement or T L1-RSRP .
- the offset may be the time based on the time T L1-SINR for L1-SINR measurement or T L1-SINR .
- the UE can switch at least one of the default spatial relationship and the default PL-RS at an appropriate timing.
- the offset of the third embodiment may depend on the type of parameter (reference parameter) referenced by at least one of the default spatial relationship and the default PL-RS.
- the reference parameter, the TCI state or QCL assumption, the reference parameter before the update, the reference parameter after the update, and the target TCI state may be read as each other.
- the offset may depend on at least one of the following types 1 and 2 of the reference parameter.
- the offset depends on whether the reference parameter is in the TCI state for PDCCH (CORESET) or the TCI state for PDSCH.
- the offset when the reference parameter is in the TCI state for PDCCH and the offset when the reference parameter is in the TCI state for PDSCH may be different from each other.
- the offset may depend on whether or not CORESET is set for the active DL BWP on the CC.
- the offset when CORESET is set in the active DL BWP on the CC and the offset when CORESET is not set in the active DL BWP on the CC may be different from each other.
- the reference parameter is the TCI state for PDCCH. If CORESET is not set in the active DL BWP on the CC, the reference parameter is the TCI state for PDSCH.
- the offset depends on whether the reference parameter is in the TCI state or the QCL assumption.
- the offset when the reference parameter is in the TCI state for PDCCH and the offset when the reference parameter is in the TCI state for PDSCH may be different from each other.
- the UE uses the TCI state to receive the PDCCH. If the TCI state is not set for the CORESET, the UE will have an SSB (SSB identified by the UE during the initial access procedure) corresponding to the random access channel (RACH) transmit occasion DM-RS associated with PDCCH reception. It is assumed that the QCL is performed with the antenna port, and this QCL assumption is used for PDCCH reception.
- the UE can use an appropriate offset depending on the default spatial relationship and the RS referenced by at least one of the default PL-RSs.
- the offset of the third embodiment may have one of the following relationships 1 and 2 with respect to whether the target TCI state is known or unknown.
- the shorter offset eg, 0
- the longer offset eg, greater than 0
- the long offset may be the offset 4 of the third embodiment or the offset 5 of the third embodiment.
- the offset does not depend on whether the target TCI state is known or unknown. The same offset may be used between the case where the target TCI state is known and the case where the target TCI state is unknown.
- the UE may determine the receive beam / transmit beam based on an unknown TCI state (may determine / measure the RS of QCL type D).
- the UE can use an appropriate offset regardless of whether the RS referenced by at least one of the default spatial relationship and the default PL-RS is known or unknown.
- the UE may perform either of the following operations 1 and 2 during the period corresponding to the offset of the second embodiment.
- the period corresponding to the offset may start 3 ms after the ACK transmission to the MAC CE and have an offset length.
- the UE transmits a specific UL signal by applying / assuming the spatial relationship before the update.
- Performance requirements may be relaxed during the period corresponding to the offset.
- performance requirements may be defined by at least one of the required signal-to-noise ratio and the required error rate.
- the UE can operate appropriately in switching the TCI state.
- the UE will ACK for that MAC CE.
- the L1-RSRP measurement sample may be counted from 3 ms after transmission, and at least one of the default spatial relationship and the default PL-RS may be switched to the target TCI state in the slot next to the Nth sample.
- N may be specified in the specifications, may be set by RRC parameters, or may be a value reported by UE capability information.
- N may be 5.
- the UE will ACK for the MAC CE.
- the TCI state # 1 may be used for PL-RS in the slot next to the fifth L1-RSRP measurement from 3 ms after transmission.
- the UE knows the target TCI state.
- the L1-RSRP measurement sample is counted from the timing of becoming (the known condition for TCI), and at least one of the default spatial relationship and the default PL-RS is switched to the target TCI state in the slot next to the Nth sample. You may.
- the UE will have the TCI state # 1.
- the TCI state # 1 may be used for PL-RS in the slot next to the fifth L1-RSRP measurement from the known timing.
- the UE measures the received beam. Therefore, it is preferable to wait for the time for the measurement before switching to the target TCI state.
- the target TCI state (activated / updated TCI state) is known
- the additional application time of T L1-RSRP is assumed before N measurement samples. May be done.
- an additional application time of T L1-RSRP may be assumed after N measurement samples.
- both spatial relations / PL-RS are set in FR2 and the TCI state used for the default spatial relations / default PL-RS is activated / updated by MAC CE, the PUCCH / SRS / PUSCH after the MAC CE.
- the timing of application of the path loss measurement to the default PL-RS to the upper layer filtered RSRP is defined.
- the filtered RSRP value for the previous PL-RS is used before the application timing.
- the application timing is the next slot after the fifth measurement sample.
- the first measurement sample corresponds to the first instance 3 ms after the transmission of the ACL to the MAC CE.
- an additional application time of T L1-RSRP may be assumed before the 5 measurement samples.
- the UE will ACK for that MAC CE.
- T L1-RSRP 3ms after transmission (after 3ms + T L1-RSRP of ACK transmission)
- the L1-RSRP measurement sample is counted, and in the slot next to the Nth sample, the default spatial relationship and the default PL-RS At least one may be switched to the target TCI state.
- the time T L1-SINR for measuring L1-SINR may be used, or any of offsets 1-5 of Embodiment 3 may be used.
- the UE will ACK for the MAC CE.
- the TCI state # 1 may be used for PL-RS in the slot next to the fifth L1-RSRP measurement after 3ms + T L1-RSRP of transmission.
- the UE will ACK for that MAC CE.
- the L1-RSRP measurement sample is counted from 3 ms after transmission, and at least one of the default spatial relationship and the default PL-RS is moved to the target TCI state in the next slot after T L1-RSRP from the measurement of the Nth sample. You may switch.
- T L1-RSRP the time T L1-SINR for measuring L1-SINR may be used, or any of offsets 1-5 of Embodiment 3 may be used.
- the UE can switch the default PL-RS at an appropriate timing.
- the PL-RS list is set by the RRC parameter, and PL-RS (target PL-RS) different from PL-RS (previous PL-RS) used for path loss calculation is activated by MAC CE. If so, the UE may switch PL-RS using the same timeline as in Embodiment 7.
- the UE will perform L1-RSRP 3 ms after ACK transmission to the MAC CE.
- the measurement sample may be counted and the previous PL-RS may be switched to the activated PL-RS in the slot next to the Nth sample.
- the UE when the MAC CE activates PL-RS # 1, which is different from the previous PL-RS, and the TCI state of PL-RS # 1 is known, the UE with respects to the MAC CE. In the slot next to the fifth L1-RSRP measurement from 3 ms after the ACK transmission, the previous PL-RS may be switched to PL-RS # 1.
- the UE becomes known the TCI state of the target PL-RS (The L1-RSRP measurement sample may be counted from the timing (which satisfies the known condition for TCI), and the previous PL-RS may be switched to the target PL-RS in the slot next to the Nth sample.
- the UE when the MAC CE activates PL-RS # 1 different from the previous PL-RS, and the TCI state of PL-RS # 1 is unknown, the UE is set to PL-RS #. In the slot next to the fifth L1-RSRP measurement from the timing when the TCI state of 1 becomes known, the previous PL-RS may be switched to PL-RS # 1.
- the UE has not measured the received beam, so the measurement is performed. It is preferable to wait for the time to switch PL-RS.
- TCI state of the target PL-RS activated / updated PL-RS
- TCI state of the target PL-RS is unknown, T before N measurement samples.
- An additional application time of L1-RSRP may be expected.
- TCI state of the target PL-RS is known, if the TCI state of the target PL-RS is unknown, an additional application time of T L1-RSRP is assumed after N measurement samples. May be good.
- the UE will perform T L1 3 ms after ACK transmission to the MAC CE.
- T L1-RSRP 3ms + T after ACK transmission
- the L1-RSRP measurement sample may be counted, and the previous PL-RS may be switched to the target PL-RS in the slot next to the Nth sample.
- the time T L1-SINR for measuring L1-SINR may be used, or any of offsets 1-5 of Embodiment 3 may be used.
- the UE will: In the slot next to the fifth L1-RSRP measurement after 3 ms + T L1-RSRP of ACK transmission to the MAC CE, the previous PL-RS may be switched to PL-RS # 1.
- the UE will perform L1 from 3 ms after ACK transmission to the MAC CE. -The RSRP measurement sample may be counted and the previous PL-RS may be switched to the target PL-RS in the next slot after T L1-RSRP from the measurement of the Nth sample.
- T L1-RSRP the time T L1-SINR for measuring L1-SINR may be used, or any of offsets 1-5 of Embodiment 3 may be used.
- the UE can switch the PL-RS at an appropriate timing.
- wireless communication system Wireless communication system
- communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
- FIG. 14 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
- the radio communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
- MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
- -UTRA Dual Connectivity (NE-DC) may be included.
- the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
- the base station (gNB) of NR is MN
- the base station (eNB) of LTE (E-UTRA) is SN.
- the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
- a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
- NR-NR Dual Connectivity NR-DC
- gNB NR base stations
- the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
- the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
- the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
- the user terminal 20 may be connected to at least one of the plurality of base stations 10.
- the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
- CA Carrier Aggregation
- DC dual connectivity
- CC Component Carrier
- Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
- the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
- FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
- the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
- the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
- wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
- NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
- IAB Integrated Access Backhaul
- relay station relay station
- the base station 10 may be connected to the core network 30 via another base station 10 or directly.
- the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
- EPC Evolved Packet Core
- 5GCN 5G Core Network
- NGC Next Generation Core
- the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
- a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
- OFDM Orthogonal Frequency Division Multiplexing
- DL Downlink
- UL Uplink
- CP-OFDM Cyclic Prefix OFDM
- DFT-s-OFDM Discrete Fourier Transform Spread OFDM
- OFDMA Orthogonal Frequency Division Multiple. Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the wireless access method may be called a waveform.
- another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
- the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
- downlink shared channels Physical Downlink Shared Channel (PDSCH)
- broadcast channels Physical Broadcast Channel (PBCH)
- downlink control channels Physical Downlink Control
- Channel PDCCH
- the uplink shared channel Physical Uplink Shared Channel (PUSCH)
- the uplink control channel Physical Uplink Control Channel (PUCCH)
- the random access channel shared by each user terminal 20 are used.
- Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
- PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
- User data, upper layer control information, and the like may be transmitted by the PUSCH.
- MIB Master Information Block
- PBCH Master Information Block
- Lower layer control information may be transmitted by PDCCH.
- the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
- DCI Downlink Control Information
- the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
- the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
- the PDSCH may be read as DL data
- the PUSCH may be read as UL data.
- a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect PDCCH.
- CORESET corresponds to a resource that searches for DCI.
- the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
- One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
- One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
- One or more search spaces may be referred to as a search space set.
- the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
- channel state information (Channel State Information (CSI)
- delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
- scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)
- the PRACH may transmit a random access preamble to establish a connection with the cell.
- downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
- a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
- the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
- CRS Cell-specific Reference Signal
- CSI-RS Channel State Information Reference Signal
- DeModulation Demodulation reference signal
- Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
- PRS Positioning Reference Signal
- PTRS Phase Tracking Reference Signal
- the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
- PSS Primary Synchronization Signal
- SSS Secondary Synchronization Signal
- the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
- SS, SSB and the like may also be called a reference signal.
- a measurement reference signal Sounding Reference Signal (SRS)
- a demodulation reference signal DMRS
- UL-RS Uplink Reference Signal
- UE-specific Reference Signal UE-specific Reference Signal
- FIG. 15 is a diagram showing an example of the configuration of the base station according to the embodiment.
- the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
- the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
- this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
- the control unit 110 controls the entire base station 10.
- the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
- the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
- the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
- the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
- the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
- the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
- the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
- the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
- the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
- the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
- the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
- the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
- the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
- digital beamforming for example, precoding
- analog beamforming for example, phase rotation
- the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- HARQ retransmission control HARQ retransmission control
- the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
- the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
- IFFT inverse fast Fourier transform
- the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
- the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
- the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
- FFT fast Fourier transform
- IDFT inverse discrete Fourier transform
- the transmission / reception unit 120 may perform measurement on the received signal.
- the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
- the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
- RSRP Reference Signal Received Power
- RSSQ Reference Signal Received Quality
- SINR Signal to Noise Ratio
- Signal strength for example, Received Signal Strength Indicator (RSSI)
- propagation path information for example, CSI
- the measurement result may be output to the control unit 110.
- the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
- the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
- the transmission / reception unit 120 may transmit a medium access control-control element (MAC CE) that indicates a transmission setting instruction (TCI) state. If the specific uplink signal satisfies the applicable condition, the transmission / reception unit 120 transmits the TCI state using a spatial relationship after the timing after the acknowledgment (ACK) transmission to the MAC CE. A link signal may be received.
- MAC CE medium access control-control element
- TCI transmission setting instruction
- the transmission / reception unit 120 may transmit a medium access control-control element (MAC CE) that indicates a transmission setting instruction (TCI) state or a reference signal of a path loss reference signal (PL-RS). If the specific uplink signal satisfies the applicable condition, the transmission / reception unit 120 transmits the specific uplink using the reference signal for path loss calculation after a timing after the acknowledgment (ACK) transmission to the MAC CE. A link signal may be received.
- MAC CE medium access control-control element
- TCI transmission setting instruction
- PL-RS path loss reference signal
- FIG. 16 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
- the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
- the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
- this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
- the control unit 210 controls the entire user terminal 20.
- the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
- the control unit 210 may control signal generation, mapping, and the like.
- the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
- the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
- the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
- the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
- the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
- the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
- the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
- the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
- the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
- the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
- the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
- digital beamforming for example, precoding
- analog beamforming for example, phase rotation
- the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
- RLC layer processing for example, RLC retransmission control
- MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
- HARQ retransmission control HARQ retransmission control
- the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
- Whether or not to apply the DFT process may be based on the transform precoding setting.
- the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
- the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
- the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
- the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
- the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
- the transmission / reception unit 220 may perform measurement on the received signal.
- the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
- the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
- the measurement result may be output to the control unit 210.
- the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
- the transmission / reception unit 220 may receive a medium access control-control element (MAC CE) that indicates a transmission setting instruction (TCI) state. If the specific uplink signal satisfies the applicable condition, the control unit 210 sets the TCI state to the specific uplink signal at a timing (for example, UL switching timing) after the acknowledgment (ACK) transmission to the MAC CE. It may be used for the spatial relationship of (for example, at least one of the default spatial relationship and the default PL-RS).
- TCI transmission setting instruction
- the timing may be after 3 ms + time offset from the ACK transmission.
- the time offset when the TCI state is set for the physical downlink control channel and the time offset when the TCI state is set for the physical downlink shared channel may be different from each other. ..
- the offset when the TCI state satisfies the condition for being considered known and the offset when the TCI state does not satisfy the condition may be different from each other.
- the transmission / reception unit 220 may receive a medium access control-control element (MAC CE) that indicates a transmission setting instruction (TCI) state or a reference signal of a path loss reference signal (PL-RS). If the specific uplink signal satisfies the applicable condition, the control unit 210 may use the reference signal for path loss calculation of the specific uplink signal at a timing after the acknowledgment (ACK) transmission to the MAC CE. good.
- MAC CE medium access control-control element
- TCI transmission setting instruction
- PL-RS path loss reference signal
- the timing may be the slot after 3 ms and N (eg, 5) measurements after the time for measurement from the ACK transmission.
- the measurement may be a layer 1 reference signal reception power (L1-RSRP) measurement.
- L1-RSRP layer 1 reference signal reception power
- the measurement may be a layer 1 signal-to-interference noise ratio (L1-SINR) measurement.
- L1-SINR layer 1 signal-to-interference noise ratio
- each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
- the functional block may be realized by combining the software with the one device or the plurality of devices.
- the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
- a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
- the method of realizing each of them is not particularly limited.
- the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
- FIG. 17 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
- the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
- processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
- the processor 1001 may be mounted by one or more chips.
- the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
- predetermined software program
- Processor 1001 operates, for example, an operating system to control the entire computer.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
- CPU central processing unit
- control unit 110 210
- transmission / reception unit 120 220
- the like may be realized by the processor 1001.
- the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- a program program code
- the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
- the memory 1002 is a computer-readable recording medium, such as at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
- the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
- the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
- the storage 1003 may be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
- the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
- the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
- the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
- DSP Digital Signal Processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- the wireless frame may be composed of one or more periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
- the subframe may be composed of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
- the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
- Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
- SCS subcarrier Spacing
- TTI Transmission Time Interval
- a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like may be indicated.
- the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.).
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the slot may be a time unit based on numerology.
- the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. A minislot may consist of a smaller number of symbols than the slot.
- a PDSCH (or PUSCH) transmitted in a time unit larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
- the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
- the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
- the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
- the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
- one subframe may be called TTI
- a plurality of consecutive subframes may be called TTI
- one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
- the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
- TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
- the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
- the definition of TTI is not limited to this.
- the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
- the time interval for example, the number of symbols
- the transport block, code block, code word, etc. may be shorter than the TTI.
- one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
- TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
- the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
- the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
- the number of subcarriers contained in the RB may be determined based on numerology.
- the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
- Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
- One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
- Physical RB Physical RB (PRB)
- SCG sub-carrier Group
- REG resource element group
- the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
- RE Resource Element
- 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
- Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
- the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
- BWP UL BWP
- BWP for DL DL BWP
- One or more BWPs may be set in one carrier for the UE.
- At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
- “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
- the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
- the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained in a slot, the number of symbols and RBs contained in a slot or minislot, and the number of RBs.
- the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
- the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
- information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
- Information, signals, etc. may be input / output via a plurality of network nodes.
- Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
- the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using other methods.
- the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
- DCI downlink control information
- UCI Uplink Control Information
- RRC Radio Resource Control
- MIB master information block
- SIB system information block
- MAC medium access control
- the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
- the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
- MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
- CE MAC Control Element
- the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
- the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
- Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
- Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
- software, instructions, information, etc. may be transmitted and received via a transmission medium.
- a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
- wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.
- wireless technology infrared, microwave, etc.
- the terms “system” and “network” used in this disclosure may be used interchangeably.
- the “network” may mean a device (eg, a base station) included in the network.
- precoding "precoding weight”
- QCL Quality of Co-Co-Location
- TCI state Transmission Configuration Indication state
- space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
- Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
- Base station BS
- radio base station fixed station
- NodeB NodeB
- eNB eNodeB
- gNB gNodeB
- Access point "Transmission point (Transmission Point (TP))
- RP Reception point
- TRP Transmission / Reception Point
- Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
- Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
- the base station can accommodate one or more (for example, three) cells.
- a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
- Communication services can also be provided by Head (RRH))).
- RRH Head
- the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
- MS mobile station
- UE user equipment
- terminal terminal
- Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
- At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
- the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
- at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
- at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be read by the user terminal.
- the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- D2D Device-to-Device
- V2X Vehicle-to-Everything
- Each aspect / embodiment of the present disclosure may be applied to the configuration.
- the user terminal 20 may have the function of the base station 10 described above.
- words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
- an uplink channel, a downlink channel, and the like may be read as a side channel.
- the user terminal in the present disclosure may be read as a base station.
- the base station 10 may have the functions of the user terminal 20 described above.
- the operation performed by the base station may be performed by its upper node (upper node) in some cases.
- various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
- Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
- each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- SUPER 3G IMT-Advanced
- 4G 4th generation mobile communication system
- 5G 5th generation mobile communication system
- 6G 6th generation mobile communication system
- xG xG (xG (x is, for example, integer, fraction)
- Future Radio Access FAA
- RAT New -Radio Access Technology
- NR New Radio
- NX New radio access
- FX Future generation radio access
- GSM registered trademark
- CDMA2000 Code Division Multiple Access
- UMB Ultra Mobile Broadband
- LTE 802.11 Wi-Fi®
- LTE 802.16 WiMAX®
- LTE 802.20 Ultra-WideBand (UWB), Bluetooth®, and other suitable radios. It may be applied to a system using a communication method, a next-generation system extended based on these, and the like.
- UMB Ultra-WideBand
- references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
- determining used in this disclosure may include a wide variety of actions.
- judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
- judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
- judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
- the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
- connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
- the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
- the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
- the term "A and B are different” may mean “A and B are different from each other”.
- the term may mean that "A and B are different from C”.
- Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本開示の一態様に係る端末は、送信設定指示(TCI)状態又はパスロス参照信号(PL-RS)の参照信号を指示する媒体アクセス制御-制御要素(MAC CE)を受信する受信部と、もし特定上りリンク信号が適用条件を満たす場合、前記MAC CEに対する肯定応答(ACK)送信よりも後のタイミングにおいて、前記特定上りリンク信号のパスロス計算に前記参照信号を用いる制御部と、を有する。本開示の一態様によれば、UL信号を適切に送信できる。
Description
本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
既存のLTEシステム(例えば、3GPP Rel.8-14)では、ユーザ端末(User Equipment(UE))は、ULデータチャネル(例えば、Physical Uplink Shared Channel(PUSCH))及びUL制御チャネル(例えば、Physical Uplink Control Channel(PUCCH))の少なくとも一方を用いて、上りリンク制御情報(Uplink Control Information(UCI))を送信する。
将来の無線通信システム(例えば、NR)において、ユーザ端末(端末、user terminal、User Equipment(UE))は、疑似コロケーション(Quasi-Co-Location(QCL))に関する情報に基づいて、送受信処理を制御することが検討されている。
しかしながら、下りリンク信号のQCLに関する情報の更新に基づき、上りリンク信号の空間関係及びパスロス参照信号の少なくとも1つをどのように切り替えるかが明らかでない。UEが空間関係及びパスロス参照信号の少なくとも1つを適切に切り替えなければ、UL信号を適切に送信できず、スループットの低下など、システム性能が低下するおそれがある。
そこで、本開示は、UL信号を適切に送信する端末、無線通信方法及び基地局を提供することを目的の1つとする。
本開示の一態様に係る端末は、送信設定指示(TCI)状態又はパスロス参照信号(PL-RS)の参照信号を指示する媒体アクセス制御-制御要素(MAC CE)を受信する受信部と、もし特定上りリンク信号が適用条件を満たす場合、前記MAC CEに対する肯定応答(ACK)送信よりも後のタイミングにおいて、前記特定上りリンク信号のパスロス計算に前記参照信号を用いる制御部と、を有する。
本開示の一態様によれば、UL信号を適切に送信できる。
(TCI、空間関係、QCL)
NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。
TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。
QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。
QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
・QCLタイプD(QCL-D):空間受信パラメータ。
・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
・QCLタイプD(QCL-D):空間受信パラメータ。
ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。
UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。
本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。
TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。
また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。
SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。
UEは、TCI状態の情報要素のリストを含む設定情報(例えば、PDSCH-Config、tci-StatesToAddModList)を上位レイヤシグナリングによって受信してもよい。
上位レイヤシグナリングによって設定されるTCI状態の情報要素(RRCの「TCI-state IE」)は、TCI状態IDと、1つ又は複数のQCL情報(「QCL-Info」)と、を含んでもよい。QCL情報は、QCL関係となるRSに関する情報(RS関係情報)及びQCLタイプを示す情報(QCLタイプ情報)の少なくとも1つを含んでもよい。RS関係情報は、RSのインデックス(例えば、SSBインデックス、ノンゼロパワーCSI-RS(Non-Zero-Power(NZP) CSI-RS)リソースID(Identifier))、RSが位置するセルのインデックス、RSが位置するBandwidth Part(BWP)のインデックスなどの情報を含んでもよい。
Rel.15 NRにおいては、PDCCH及びPDSCHの少なくとも1つのTCI状態として、QCLタイプAのRSとQCLタイプDのRSの両方、又はQCLタイプAのRSのみがUEに対して設定され得る。
QCLタイプAのRSとしてTRSが設定される場合、TRSは、PDCCH又はPDSCHの復調用参照信号(DeModulation Reference Signal(DMRS))と異なり、長時間にわたって周期的に同じTRSが送信されることが想定される。UEは、TRSを測定し、平均遅延、遅延スプレッドなどを計算することができる。
PDCCH又はPDSCHのDMRSのTCI状態に、QCLタイプAのRSとして前記TRSを設定されたUEは、PDCCH又はPDSCHのDMRSと前記TRSのQCLタイプAのパラメータ(平均遅延、遅延スプレッドなど)が同じであると想定できるので、前記TRSの測定結果から、PDCCH又はPDSCHのDMRSのタイプAのパラメータ(平均遅延、遅延スプレッドなど)を求めることができる。UEは、PDCCH及びPDSCHの少なくとも1つのチャネル推定を行う際に、前記TRSの測定結果を用いて、より精度の高いチャネル推定を行うことができる。
QCLタイプDのRSを設定されたUEは、QCLタイプDのRSを用いて、UE受信ビーム(空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ)を決定できる。
TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。
<PDCCHのためのTCI状態>
PDCCH(又はPDCCHに関連するDMRSアンテナポート)と、あるRSとの、QCLに関する情報は、PDCCHのためのTCI状態などと呼ばれてもよい。
PDCCH(又はPDCCHに関連するDMRSアンテナポート)と、あるRSとの、QCLに関する情報は、PDCCHのためのTCI状態などと呼ばれてもよい。
UEは、UE固有のPDCCH(CORESET)のためのTCI状態を、上位レイヤシグナリングに基づいて判断してもよい。例えば、UEに対して、CORESETごとに、1つ又は複数(K個)のTCI状態がRRCシグナリングによって設定されてもよい。
UEは、各CORESETに対し、RRCシグナリングによって設定された複数のTCI状態の1つを、MAC CEによってアクティベートされてもよい。当該MAC CEは、UE固有PDCCH用TCI状態指示MAC CE(TCI State Indication for UE-specific PDCCH MAC CE)と呼ばれてもよい。UEは、CORESETのモニタを、当該CORESETに対応するアクティブなTCI状態に基づいて実施してもよい。
<PDSCHのためのTCI状態>
PDSCH(又はPDSCHに関連するDMRSアンテナポート)と、あるDL-RSとの、QCLに関する情報は、PDSCHのためのTCI状態などと呼ばれてもよい。
PDSCH(又はPDSCHに関連するDMRSアンテナポート)と、あるDL-RSとの、QCLに関する情報は、PDSCHのためのTCI状態などと呼ばれてもよい。
UEは、PDSCH用のM(M≧1)個のTCI状態(M個のPDSCH用のQCL情報)を、上位レイヤシグナリングによって通知(設定)されてもよい。なお、UEに設定されるTCI状態の数Mは、UE能力(UE capability)及びQCLタイプの少なくとも1つによって制限されてもよい。
PDSCHのスケジューリングに用いられるDCIは、当該PDSCH用のTCI状態を示すフィールド(例えば、TCIフィールド、TCI状態フィールドなどと呼ばれてもよい)を含んでもよい。当該DCIは、1つのセルのPDSCHのスケジューリングに用いられてもよく、例えば、DL DCI、DLアサインメント、DCIフォーマット1_0、DCIフォーマット1_1などと呼ばれてもよい。
TCIフィールドがDCIに含まれるか否かは、基地局からUEに通知される情報によって制御されてもよい。当該情報は、DCI内にTCIフィールドが存在するか否か(present or absent)を示す情報(例えば、TCI存在情報、DCI内TCI存在情報、上位レイヤパラメータTCI-PresentInDCI)であってもよい。当該情報は、例えば、上位レイヤシグナリングによってUEに設定されてもよい。
8種類を超えるTCI状態がUEに設定される場合、MAC CEを用いて、8種類以下のTCI状態がアクティベート(又は指定)されてもよい。当該MAC CEは、UE固有PDSCH用TCI状態アクティベーション/ディアクティベーションMAC CE(TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)と呼ばれてもよい。DCI内のTCIフィールドの値は、MAC CEによりアクティベートされたTCI状態の一つを示してもよい。
UEが、PDSCHをスケジュールするCORESET(PDSCHをスケジュールするPDCCH送信に用いられるCORESET)に対して、「有効(enabled)」とセットされたTCI存在情報を設定される場合、UEは、TCIフィールドが、当該CORESET上で送信されるPDCCHのDCIフォーマット1_1内に存在すると想定してもよい。
PDSCHをスケジュールするCORESETに対して、TCI存在情報が設定されない、又は、当該PDSCHがDCIフォーマット1_0によってスケジュールされる場合において、DL DCI(当該PDSCHをスケジュールするDCI)の受信と当該DCIに対応するPDSCHの受信との間の時間オフセットが閾値以上である場合、UEは、PDSCHアンテナポートのQCLを決定するために、当該PDSCHに対するTCI状態又はQCL想定が、当該PDSCHをスケジュールするPDCCH送信に用いられるCORESETに対して適用されるTCI状態又はQCL想定と同一であると想定してもよい。
TCI存在情報が「有効(enabled)」とセットされた場合、(PDSCHを)スケジュールするコンポーネントキャリア(CC)内のDCI内のTCIフィールドが、スケジュールされるCC又はDL BWP内のアクティベートされたTCI状態を示し、且つ当該PDSCHがDCIフォーマット1_1によってスケジュールされる場合、UEは、当該PDSCHアンテナポートのQCLを決定するために、DCIを有し検出されたPDCCH内のTCIフィールドの値に従うTCIを用いてもよい。(当該PDSCHをスケジュールする)DL DCIの受信と、当該DCIに対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値以上である場合、UEは、サービングセルのPDSCHのDM-RSポートが、指示されたTCI状態によって与えられるQCLタイプパラメータに関するTCI状態内のRSとQCLである、と想定してもよい。
UEが単一スロットPDSCHを設定された場合、指示されたTCI状態は、スケジュールされたPDSCHを有するスロット内のアクティベートされたTCI状態に基づいてもよい。UEが複数スロットPDSCHを設定された場合、指示されたTCI状態は、スケジュールされたPDSCHを有する最初のスロット内のアクティベートされたTCI状態に基づいてもよく、UEはスケジュールされたPDSCHを有するスロットにわたって同一であると期待してもよい。UEがクロスキャリアスケジューリング用のサーチスペースセットに関連付けられたCORESETを設定される場合、UEは、当該CORESETに対し、TCI存在情報が「有効」とセットされ、サーチスペースセットによってスケジュールされるサービングセルに対して設定されるTCI状態の少なくとも1つがQCLタイプDを含む場合、UEは、検出されたPDCCHと、当該PDCCHに対応するPDSCHと、の間の時間オフセットが、閾値以上であると想定してもよい。
RRC接続モードにおいて、DCI内TCI情報(上位レイヤパラメータTCI-PresentInDCI)が「有効(enabled)」とセットされる場合と、DCI内TCI情報が設定されない場合と、の両方において、DL DCI(PDSCHをスケジュールするDCI)の受信と、対応するPDSCH(当該DCIによってスケジュールされるPDSCH)と、の間の時間オフセットが、閾値未満である場合、UEは、サービングセルのPDSCHのDM-RSポートが、サービングセルのアクティブBWP内の1つ以上のCORESETが当該UEによってモニタされる最新(直近、latest)のスロットにおける最小(最低、lowest)のCORESET-IDを有し、モニタされるサーチスペース(monitored search space)に関連付けられたCORESETの、PDCCHのQCL指示に用いられるQCLパラメータに関するRSとQCLである、と想定してもよい。このRSは、PDSCHのデフォルトTCI状態又はPDSCHのデフォルトQCL想定と呼ばれてもよい。
DL DCIの受信と当該DCIに対応するPDSCHの受信との間の時間オフセットは、スケジューリングオフセットと呼ばれてもよい。
また、上記閾値は、QCL用時間長(time duration)、「timeDurationForQCL」、「Threshold」、「Threshold for offset between a DCI indicating a TCI state and a PDSCH scheduled by the DCI」、「Threshold-Sched-Offset」、スケジュールオフセット閾値、スケジューリングオフセット閾値、などと呼ばれてもよい。
QCL用時間長は、UE能力に基づいてもよく、例えばPDCCHの復号及びビーム切り替えに掛かる遅延に基づいてもよい。QCL用時間長は、PDCCH受信と、PDSCH処理用のDCI内で受信される空間QCL情報の適用と、を行うためにUEに必要とされる最小時間であってもよい。QCL用時間長は、サブキャリア間隔毎にシンボル数で表されてもよいし、時間(例えば、μs)で表されてもよい。当該QCL用時間長の情報は、UEからUE能力情報として基地局に報告されてもよいし、基地局から上位レイヤシグナリングを用いてUEに設定されてもよい。
例えば、UEは、上記PDSCHのDMRSポートが、上記最小のCORESET-IDに対応するCORESETについてアクティベートされたTCI状態に基づくDL-RSとQCLであると想定してもよい。最新のスロットは、例えば、上記PDSCHをスケジュールするDCIを受信するスロットであってもよい。
なお、CORESET-IDは、RRC情報要素「ControlResourceSet」によって設定されるID(CORESETの識別のためのID、controlResourceSetId)であってもよい。
CCに対してCORESETが1つも設定されない場合、デフォルトTCI状態は、当該CCのアクティブDL BWP内のPDSCHに適用可能であって最低IDを有するアクティベートされたTCI状態であってもよい。
Rel.16以降において、PDSCHと、それをスケジュールするPDCCHとが、異なるcomponent carrier(CC)内にある場合(クロスキャリアスケジューリング)において、もしPDCCHからPDSCHまでの遅延(PDCCH-to-PDSCH delay)がQCL用時間長よりも短い場合、又は、もしTCI状態が当該スケジューリングのためのDCIに無い場合、UEは、当該スケジュールされたセルのアクティブBWP内のPDSCHに適用可能であり最低IDを有するアクティブTCI状態からのスケジュールされたPDSCH用のQCL想定を取得してもよい。
<PUCCHのための空間関係>
UEは、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング)によって、PUCCH送信に用いられるパラメータ(PUCCH設定情報、PUCCH-Config)を設定されてもよい。PUCCH設定情報は、キャリア(セル、コンポーネントキャリア(Component Carrier(CC))ともいう)内の部分的な帯域(例えば、上り帯域幅部分(Bandwidth Part(BWP)))毎に設定されてもよい。
UEは、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング)によって、PUCCH送信に用いられるパラメータ(PUCCH設定情報、PUCCH-Config)を設定されてもよい。PUCCH設定情報は、キャリア(セル、コンポーネントキャリア(Component Carrier(CC))ともいう)内の部分的な帯域(例えば、上り帯域幅部分(Bandwidth Part(BWP)))毎に設定されてもよい。
PUCCH設定情報は、PUCCHリソースセット情報(例えば、PUCCH-ResourceSet)のリストと、PUCCH空間関係情報(例えば、PUCCH-SpatialRelationInfo)のリストと、を含んでもよい。
PUCCHリソースセット情報は、PUCCHリソースインデックス(ID、例えば、PUCCH-ResourceId)のリスト(例えば、resourceList)を含んでもよい。
また、UEがPUCCH設定情報内のPUCCHリソースセット情報によって提供される個別PUCCHリソース設定情報(例えば、個別PUCCHリソース構成(dedicated PUCCH resource configuration))を持たない場合(RRCセットアップ前)、UEは、システム情報(例えば、System Information Block Type1(SIB1)又はRemaining Minimum System Information(RMSI))内のパラメータ(例えば、pucch-ResourceCommon)に基づいて、PUCCHリソースセットを決定してもよい。当該PUCCHリソースセットは、16個のPUCCHリソースを含んでもよい。
一方、UEが上記個別PUCCHリソース設定情報(UE個別の上り制御チャネル構成、個別PUCCHリソース構成)を持つ場合(RRCセットアップ後)、UEは、UCI情報ビットの数に従ってPUCCHリソースセットを決定してもよい。
UEは、下り制御情報(Downlink Control Information(DCI))(例えば、PDSCHのスケジューリングに用いられるDCIフォーマット1_0又は1_1)内のフィールド(例えば、PUCCHリソース指示(PUCCH resource indicator)フィールド)の値と、当該DCIを運ぶPDCCH受信用の制御リソースセット(COntrol REsource SET(CORESET))内のCCE数(NCCE)と、当該PDCCH受信の先頭(最初の)CCEのインデックス(nCCE,0)と、の少なくとも一つに基づいて、上記PUCCHリソースセット(例えば、セル固有又はUE個別に決定されるPUCCHリソースセット)内の一つのPUCCHリソース(インデックス)を決定してもよい。
PUCCH空間関係情報(例えば、RRC情報要素の「PUCCH-spatialRelationInfo」)は、PUCCH送信のための複数の候補ビーム(空間ドメインフィルタ)を示してもよい。PUCCH空間関係情報は、RS(Reference signal)とPUCCHの間の空間的な関係付けを示してもよい。
PUCCH空間関係情報のリストは、幾つかの要素(PUCCH空間関係情報IE(Information Element))を含んでもよい。各PUCCH空間関係情報は、例えば、PUCCH空間関係情報のインデックス(ID、例えば、pucch-SpatialRelationInfoId)、サービングセルのインデックス(ID、例えば、servingCellId)、PUCCHと空間関係となるRS(リファレンスRS)に関する情報の少なくとも一つを含んでもよい。
例えば、当該RSに関する情報は、SSBインデックス、CSI-RSインデックス(例えば、NZP-CSI-RSリソース構成ID)、又は、SRSリソースID及びBWPのIDであってもよい。SSBインデックス、CSI-RSインデックス及びSRSリソースIDは、対応するRSの測定によって選択されたビーム、リソース、ポートの少なくとも1つに関連付けられてもよい。
UEは、PUCCHに関する空間関係情報が1つより多く設定される場合には、PUCCH空間関係アクティベーション/ディアクティベーションMAC CE(PUCCH spatial relation Activation/Deactivation MAC CE)に基づいて、ある時間において1つのPUCCHリソースに対して1つのPUCCH空間関係情報がアクティブになるように制御してもよい。
Rel-15 NRのPUCCH空間関係アクティベーション/ディアクティベーションMAC CEは、オクテット(Octet、Oct)1-3の計3オクテット(8ビット×3=24ビット)で表現される。
当該MAC CEは、適用対象のサービングセルID(”Serving Cell ID”フィールド)、BWP ID(”BWP ID”フィールド)、PUCCHリソースID(”PUCCH Resource ID”フィールド)などの情報を含んでもよい。
また、当該MAC CEは、「Si」(i=0-7)のフィールドを含む。UEは、あるSiのフィールドが1を示す場合、空間関係情報ID#iの空間関係情報をアクティベートする。UEは、あるSiのフィールドが0を示す場合、空間関係情報ID#iの空間関係情報をディアクティベートする。
UEは、PUCCH空間関係情報をアクティベートするMAC CEに対する肯定応答(ACK)を送信してから3ms後に、当該MAC CEにより指定されるPUCCH関係情報をアクティベートしてもよい。
<SRS、PUSCHのための空間関係>
UEは、測定用参照信号(例えば、サウンディング参照信号(Sounding Reference Signal(SRS)))の送信に用いられる情報(SRS設定情報、例えば、RRC制御要素の「SRS-Config」内のパラメータ)を受信してもよい。
UEは、測定用参照信号(例えば、サウンディング参照信号(Sounding Reference Signal(SRS)))の送信に用いられる情報(SRS設定情報、例えば、RRC制御要素の「SRS-Config」内のパラメータ)を受信してもよい。
具体的には、UEは、一つ又は複数のSRSリソースセットに関する情報(SRSリソースセット情報、例えば、RRC制御要素の「SRS-ResourceSet」)と、一つ又は複数のSRSリソースに関する情報(SRSリソース情報、例えば、RRC制御要素の「SRS-Resource」)との少なくとも一つを受信してもよい。
1つのSRSリソースセットは、幾つかのSRSリソースに関連してもよい(幾つかのSRSリソースをグループ化してもよい)。各SRSリソースは、SRSリソース識別子(SRS Resource Indicator(SRI))又はSRSリソースID(Identifier)によって特定されてもよい。
SRSリソースセット情報は、SRSリソースセットID(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ、SRSの用途(usage)の情報を含んでもよい。
ここで、SRSリソースタイプは、周期的SRS(Periodic SRS(P-SRS))、セミパーシステントSRS(Semi-Persistent SRS(SP-SRS))、非周期的SRS(Aperiodic SRS(A-SRS、AP-SRS))のいずれかを示してもよい。なお、UEは、P-SRS及びSP-SRSを周期的(又はアクティベート後、周期的)に送信し、A-SRSをDCIのSRSリクエストに基づいて送信してもよい。
また、用途(RRCパラメータの「usage」、L1(Layer-1)パラメータの「SRS-SetUse」)は、例えば、ビーム管理(beamManagement)、コードブックベース送信(codebook:CB)、ノンコードブックベース送信(nonCodebook:NCB)、アンテナスイッチング(antennaSwitching)などであってもよい。コードブックベース送信又はノンコードブックベース送信の用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースのPUSCH送信のプリコーダの決定に用いられてもよい。
例えば、UEは、コードブックベース送信の場合、SRI、送信ランクインジケータ(Transmitted Rank Indicator:TRI)及び送信プリコーディング行列インジケータ(Transmitted Precoding Matrix Indicator:TPMI)に基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、ノンコードブックベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。
SRSリソース情報は、SRSリソースID(SRS-ResourceId)、SRSポート数、SRSポート番号、送信Comb、SRSリソースマッピング(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、繰り返し数、SRSシンボル数、SRS帯域幅など)、ホッピング関連情報、SRSリソースタイプ、系列ID、SRSの空間関係情報などを含んでもよい。
SRSの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)は、ある参照信号とSRSとの間の空間関係情報を示してもよい。当該参照信号は、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel:SS/PBCH)ブロック、チャネル状態情報参照信号(Channel State Information Reference Signal:CSI-RS)及びSRS(例えば別のSRS)の少なくとも1つであってもよい。SS/PBCHブロックは、同期信号ブロック(SSB)と呼ばれてもよい。
SRSの空間関係情報は、上記参照信号のインデックスとして、SSBインデックス、CSI-RSリソースID、SRSリソースIDの少なくとも1つを含んでもよい。
なお、本開示において、SSBインデックス、SSBリソースID及びSSBRI(SSB Resource Indicator)は互いに読み替えられてもよい。また、CSI-RSインデックス、CSI-RSリソースID及びCRI(CSI-RS Resource Indicator)は互いに読み替えられてもよい。また、SRSインデックス、SRSリソースID及びSRIは互いに読み替えられてもよい。
SRSの空間関係情報は、上記参照信号に対応するサービングセルインデックス、BWPインデックス(BWP ID)などを含んでもよい。
NRでは、上り信号の送信は、ビームコレスポンデンス(Beam Correspondence(BC))の有無に基づいて制御されてもよい。BCとは、例えば、あるノード(例えば、基地局又はUE)が、信号の受信に用いるビーム(受信ビーム、Rxビーム)に基づいて、信号の送信に用いるビーム(送信ビーム、Txビーム)を決定する能力であってもよい。
なお、BCは、送信/受信ビームコレスポンデンス(Tx/Rx beam correspondence)、ビームレシプロシティ(beam reciprocity)、ビームキャリブレーション(beam calibration)、較正済/未較正(Calibrated/Non-calibrated)、レシプロシティ較正済/未較正(reciprocity calibrated/non-calibrated)、対応度、一致度などと呼ばれてもよい。
例えば、BC無しの場合、UEは、一以上のSRS(又はSRSリソース)の測定結果に基づいて基地局から指示されるSRS(又はSRSリソース)と同一のビーム(空間ドメイン送信フィルタ)を用いて、上り信号(例えば、PUSCH、PUCCH、SRS等)を送信してもよい。
一方、BC有りの場合、UEは、SSB又はCSI-RS(又はCSI-RSリソース)の受信に用いるビーム(空間ドメイン受信フィルタ)と同一の又は対応するビーム(空間ドメイン送信フィルタ)を用いて、上り信号(例えば、PUSCH、PUCCH、SRS等)を送信してもよい。
UEは、あるSRSリソースについて、SSB又はCSI-RSと、SRSとに関する空間関係情報を設定される場合(例えば、BC有りの場合)には、当該SSB又はCSI-RSの受信のための空間ドメインフィルタ(空間ドメイン受信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いて当該SRSリソースを送信してもよい。この場合、UEはSSB又はCSI-RSのUE受信ビームとSRSのUE送信ビームとが同じであると想定してもよい。
UEは、あるSRS(ターゲットSRS)リソースについて、別のSRS(参照SRS)と当該SRS(ターゲットSRS)とに関する空間関係情報を設定される場合(例えば、BC無しの場合)には、当該参照SRSの送信のための空間ドメインフィルタ(空間ドメイン送信フィルタ)と同じ空間ドメインフィルタ(空間ドメイン送信フィルタ)を用いてターゲットSRSリソースを送信してもよい。つまり、この場合、UEは参照SRSのUE送信ビームとターゲットSRSのUE送信ビームとが同じであると想定してもよい。
UEは、DCI(例えば、DCIフォーマット0_1)内のフィールド(例えば、SRSリソース識別子(SRI)フィールド)の値に基づいて、当該DCIによりスケジュールされるPUSCHの空間関係を決定してもよい。具体的には、UEは、当該フィールドの値(例えば、SRI)に基づいて決定されるSRSリソースの空間関係情報(例えば、RRC情報要素の「spatialRelationInfo」)をPUSCH送信に用いてもよい。
PUSCHに対し、コードブックベース送信を用いる場合、UEは、2個のSRSリソースをRRCによって設定され、2個のSRSリソースの1つをDCI(1ビットのフィールド)によって指示されてもよい。PUSCHに対し、ノンコードブックベース送信を用いる場合、UEは、4個のSRSリソースをRRCによって設定され、4個のSRSリソースの1つをDCI(2ビットのフィールド)によって指示されてもよい。RRCによって設定された2個又は4個の空間関係以外の空間関係を用いるためには、RRC再設定が必要となる。
なお、PUSCHに用いられるSRSリソースの空間関係に対し、DL-RSを設定することができる。例えば、SP-SRSに対し、UEは、複数(例えば、16個まで)のSRSリソースの空間関係をRRCによって設定され、複数のSRSリソースの1つをMAC CEによって指示されることができる。
(パスロスRS)
PUSCH、PUCCH、SRSのそれぞれの送信電力制御におけるパスロスPLb,f,c(qd)[dB]は、サービングセルcのキャリアfのアクティブUL BWP bに関連付けられる下りBWP用の参照信号(RS、パスロス参照RS(PathlossReferenceRS))のインデックスqdを用いてUEによって計算される。本開示において、パスロス参照RS、pathloss(PL)-RS、インデックスqd、パスロス計算に用いられるRS、パスロス計算に用いられるRSリソース、は互いに読み替えられてもよい。本開示において、計算、推定、測定、追跡(track)、は互いに読み替えられてもよい。
PUSCH、PUCCH、SRSのそれぞれの送信電力制御におけるパスロスPLb,f,c(qd)[dB]は、サービングセルcのキャリアfのアクティブUL BWP bに関連付けられる下りBWP用の参照信号(RS、パスロス参照RS(PathlossReferenceRS))のインデックスqdを用いてUEによって計算される。本開示において、パスロス参照RS、pathloss(PL)-RS、インデックスqd、パスロス計算に用いられるRS、パスロス計算に用いられるRSリソース、は互いに読み替えられてもよい。本開示において、計算、推定、測定、追跡(track)、は互いに読み替えられてもよい。
パスロスRSがMAC CEによって更新される場合、パスロス測定のための、上位レイヤフィルタRSRP(higher layer filtered RSRP)の既存の機構を変更するか否かが検討されている。
パスロスRSがMAC CEによって更新される場合、L1-RSRPに基づくパスロス測定が適用されてもよい。パスロスRSの更新のためのMAC CEの後の利用可能なタイミングにおいて、上位レイヤフィルタRSRPがパスロス測定に用いられ、上位レイヤフィルタRSRPが適用される前にL1-RSRPがパスロス測定に用いられてもよい。パスロスRSの更新のためのMAC CEの後の利用可能なタイミングにおいて、上位レイヤフィルタRSRPがパスロス測定に用いられ、そのタイミングの前にその前のパスロスRSの上位レイヤフィルタRSRPが用いられてもよい。Rel.15の動作と同様に、上位レイヤフィルタRSRPがパスロス測定に用いられ、UEは、RRCによって設定された全てのパスロスRS候補を追跡(track)してもよい。RRCによって設定可能なパスロスRSの最大数はUE能力に依存してもよい。RRCによって設定可能なパスロスRSの最大数がXである場合、X以下のパスロスRS候補がRRCによって設定され、設定されたパスロスRS候補の中からMAC CEによってパスロスRSが選択されてもよい。RRCによって設定可能なパスロスRSの最大数は4、8、16、64などであってもよい。
本開示において、上位レイヤフィルタRSRP、フィルタされたRSRP、レイヤ3フィルタRSRP(layer 3 filtered RSRP)、は互いに読み替えられてもよい。
(測定遅延要件)
レイヤ3(L3)モビリティ用の無線リソース管理(radio resource management(RRM))測定に対し、周波数内(intra-frequency)測定用の測定遅延の要件が規定されている。図1に示すように、セル検出、RSRP測定、SSBインデックス検出のそれぞれに対して、測定遅延要件が規定されている。
レイヤ3(L3)モビリティ用の無線リソース管理(radio resource management(RRM))測定に対し、周波数内(intra-frequency)測定用の測定遅延の要件が規定されている。図1に示すように、セル検出、RSRP測定、SSBインデックス検出のそれぞれに対して、測定遅延要件が規定されている。
ここで、Mpss/sss_sync_w/o_gapsは、FR2パワークラス1をサポートするUEに対して40であり、パワークラス2をサポートするUEに対して24であり、FR2パワークラス3をサポートするUEに対して24であり、FR2パワークラス4をサポートするUEに対して24である。Mmeas_period_w/o_gapsは、パワークラス1をサポートするUEに対して40であり、FR2パワークラス2をサポートするUEに対して24であり、パワークラス3をサポートするUEに対して24であり、パワークラス4をサポートするUEに対して24である。周波数内(intra-frequency)SSB測定タイミング設定(SSB measurement timing configuration(SMTC))が測定ギャップ(measurement gap(MG))と完全にオーバラップしていない場合、又は、周波数内SMTCがMGと完全にオーバラップしている場合、Kp=1である。周波数内SMTCがMGと部分的にオーバラップしている場合、測定ギャップ繰り返し期間(measurement gap repetition period(MGRP))を用いて、Kp=1/(1-(SMTC期間/MGRP))であり、SMTC期間<MGRPである。KRLM(Klayer1_measurement)は、MG外の、無線リンクモニタリング(radio link monitoring(RLM))、ビーム障害検出(beam failure detection(BFD))、候補ビーム検出(candidate beam detection(CBD))、又はビーム報告用L1-RSRPに対して設定される全ての参照信号と、周波数内SMTCオケージョンと、の関係によって、1又は1.5である。CSSFintraは、キャリア固有スケーリングファクタ(carrier-specific scaling factor)である。
DRXあり且つDRXサイクルが320ms以下である場合、DRXオン継続期間(duration)とSMTCウィンドウのミスアラインメントを考慮し、ceil関数内が1.5倍される。
LTEにおいては、CRSによって常に測定が可能であるため、測定遅延要件は、セル検出及び同期の600ms+RSRP測定の200ms=固定値800msである。NRにおいては、UEの消費電力提言の観点から、不要に高頻度な測定を避けるために、LTEのセル検出の600msと、LTEのRSRP測定の200msと、が下限値として規定されている。NRにおいては、SMTC周期が設定可能であるため、SMTC周期に応じた測定遅延要件が適用される。
(L1-RSRP測定/報告)
UEは、RRCによって設定される各RS(各基地局送信ビーム)に対して、レイヤ1(L1)-RSRPの値を測定する。
UEは、RRCによって設定される各RS(各基地局送信ビーム)に対して、レイヤ1(L1)-RSRPの値を測定する。
L1-RSRPの各報告に対し、直前の何サンプル以内にL1-RSRP測定を完了する必要があるかを示す測定期間が規定されている。1つのL1-RSRP報告のためのRSRP測定に用いられるサンプル数をM、SMTC又は測定ギャップ(measurement gap(MG))との重複を考慮したスケーリングファクタをP、UE受信ビームの切り替えを考慮したスケーリングファクタをN、SSB又はCSI-RSの送信周期をRS送信周期、とすると、FR1における測定期間TはM×P×RS送信周期と表され、FR2における測定期間TはM×N×P×RS送信周期と表される。
ここで、図2Aに示すように、チャネル(信号)測定用の時間ドメイン測定制限(timeRestrictionForChannelMeasurements)が設定された場合、又は、L1-RSRP測定用RSが非周期CSI-RSである場合、M=1であり、そうでない場合、M=3である。図2Bに示すように、L1-RSRP報告がCSI-RSに基づく場合、N=1であり、L1-RSRP報告がSSBに基づく場合、N=8であり、L1-RSRP報告が繰り返しを伴うCSI-RSに基づき、且つCSI-RSリソース数が受信ビーム最大数(maxNumberRxBeam)より小さい場合、N=ceil(maxNumberRxBeam/CSI-RSリソース数)である。
1サンプル測定に基づくL1-RSRPの測定精度が規定されている。L1におけるRSRPの平均化の有無はUE実装(implementation)に依存してもよい。もしチャネル測定用の時間ドメイン測定制限が設定された場合、UEは、平均化を用いずに1サンプルのRSRPをL1-RSRP測定結果として報告する。
図3Aは、FR1用のSSBに基づくL1-RSRP測定期間TL1-RSRP_Measurement_Period_SSBを示す。図3Bは、FR2用のSSBに基づくL1-RSRP測定期間TL1-RSRP_Measurement_Period_SSBを示す。ここで、TSSB=ssb-periodicityServingCellは、L1-RSRP測定に対して設定されるSSBインデックスの周期である。TDRXは、DRXサイクル長である。TReportは、報告用に設定される周期である。
図4Aは、FR1用のCSI-RSに基づくL1-RSRP測定期間TL1-RSRP_Measurement_Period_CSI-RSを示す。図4Bは、FR2用のCSI-RSに基づくL1-RSRP測定期間TL1-RSRP_Measurement_Period_CSI-RSを示す。TCSI-RSは、L1-RSRP測定に対して設定されるCSI-RSの周期である。この要件は、L1-RSRP測定に対して設定されるCSI-RSがDensity=3で送信されるケースに適用可能である。
(デフォルト空間関係及びデフォルトPL-RS)
Rel.15においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の個々のMAC CEが必要である。PUSCH空間関係は、SRS空間関係に従う。
Rel.15においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の個々のMAC CEが必要である。PUSCH空間関係は、SRS空間関係に従う。
Rel.16においては、PUCCH空間関係のアクティベーション/ディアクティベーション用のMAC CEと、SRS空間関係のアクティベーション/ディアクティベーション用のMAC CEと、の少なくとも1つが用いられなくてもよい。
もしFR2において、PUCCHに対する空間関係とPL-RSの両方が設定されない場合、PUCCHに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。もしFR2において、SRSに対する空間関係とPL-RSの両方が設定されない場合、DCIフォーマット0_1によってスケジュールされるPUSCHとSRSとに対して空間関係及びPL-RSのデフォルト想定(デフォルト空間関係及びデフォルトPL-RS)が適用される。
もしCC上のアクティブDL BWPにCORESETが設定される場合、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内の最低CORESET IDを有するCORESETのTCI状態又はQCL想定であってもよい。もしCC上のアクティブDL BWPにCORESETが設定されない場合、デフォルト空間関係及びデフォルトPL-RSは、当該アクティブDL BWP内のPDSCHの最低IDを有するアクティブTCI状態であってもよい。
Rel.15において、DCIフォーマット0_0によってスケジュールされるPUSCHの空間関係は、同じCC上のPUCCHのアクティブ空間関係のうち、最低PUCCHリソースIDを有するPUCCHリソースの空間関係に従う。ネットワークは、SCell上でPUCCHが送信されない場合であっても、全てのSCell上のPUCCH空間関係を更新する必要がある。
Rel.16においては、DCIフォーマット0_0によってスケジュールされるPUSCHのための、PUCCH設定は必要ない。DCIフォーマット0_0によってスケジュールされるPUSCHに対し、デフォルト空間関係及びデフォルトPL-RSが適用される。
送信電力制御のための正確なパスロス測定のために、Rel.15のUEは、4個までのPL-RSがRRCシグナリングによって設定される。図5に示すように、UL送信ビーム(空間関係)がMAC CEによって更新される場合であっても、PL-RSはMAC CEによって更新されることはできない。
Rel.16のUEは、図6に示すように、64個までのPL-RSがRRCシグナリングによって設定され、MAC CEによって1つのPL-RSを指示(アクティベート)される。UEは、全てのULチャネル(SRS及びPUCCH及びPUSCH)に対し、4個までのアクティブPL-RSを追跡(track)することを必要とされる。PL-RSを追跡することは、PL-RSの測定に基づくパスロスを計算し、パスロスの保持(記憶)することであってもよい。
パスロス計算に対し、上位レイヤフィルタRSRP(複数回のRSRP測定の平均)が用いられる。図6に示すように、PL-RSがMAC CEによって更新される場合(RRCによって設定されるPL-RSリストのうち、パスロス計算に用いられているPL-RS(前のPL-RS)と異なるPL-RS#1がMAC CEによって指示される場合)、当該MAC CEに対するACKの送信の3ms後の最初のRSRP測定インスタンスを1番目のRSRP測定サンプルとして、5番目のRSRP測定サンプルの後のスロット境界にPL-RS#1が適用されてもよい(パスロス計算に用いられてもよい)。
本開示において、RSRP測定、RSRP測定サンプル、RSRP測定リソース、RSRP測定タイミング、RSRP測定インスタンス、PL-RS測定サンプル、PL-RS測定リソース、PL-RS測定、PL-RS測定タイミング、PL-RS測定インスタンス、は互いに読み替えられてもよい。
PDCCH又はPDSCHのためのTCI状態がMAC CEによって更新される場合、PL-RSも当該TCI状態に更新される。UEがデフォルト空間関係及びデフォルトPL-RSを適用する場合、更新されたPL-RSをどのように適用するかが明らかでない。上位レイヤフィルタRSRPのための測定に時間を要するため、TCI状態の更新直後に、更新されたPL-RSを適用することはできない。
(DL受信ビーム管理)
UEは、サービングセル上に1以上のTCI状態を設定されてもよい。UEは、遅延時間内にアクティブTCI状態の切り替え(switching)を完了する。アクティブTCI状態がMAC CEによって更新される場合、更新されたTCI状態(ターゲットTCI状態)がいつから適用されるか(遅延時間がどのような長さを有するか)は、ターゲットTCI状態が既知(known、測定済み)であるか否かに依存する。ターゲットTCIが未知(unknown、未測定)である場合、UEは、ターゲットTCIが既知になる時間の後に、ターゲットTCI状態を適用してもよい。
UEは、サービングセル上に1以上のTCI状態を設定されてもよい。UEは、遅延時間内にアクティブTCI状態の切り替え(switching)を完了する。アクティブTCI状態がMAC CEによって更新される場合、更新されたTCI状態(ターゲットTCI状態)がいつから適用されるか(遅延時間がどのような長さを有するか)は、ターゲットTCI状態が既知(known、測定済み)であるか否かに依存する。ターゲットTCIが未知(unknown、未測定)である場合、UEは、ターゲットTCIが既知になる時間の後に、ターゲットTCI状態を適用してもよい。
もし次の複数のTCI状態用既知条件(known conditions for TCI state、TCI状態が既知と見なされるための条件)が満たされる場合、ターゲットTCI状態は既知である。
・ターゲットTCI状態に対するL1-RSRP測定報告に用いられるRSリソースの最後の送信から、アクティブTCI状態切り替えの完了までの、期間(TCI切り替え期間、TCI switching period)中において、L1-RSRP測定用の当該RSリソースは、ターゲットTCI状態内のRS、又はターゲットTCI状態にQCLされたRSである。
・TCI切り替え期間中において、TCI状態切り替えコマンドが、ビームの報告又は測定のための当該RSリソースの最後の送信から、1280ms以内に受信される。
・TCI切り替え期間中において、TCI状態切り替えコマンドの前に、UEが、ターゲットTCI状態に対する少なくとも1つのL1-RSRP報告を送信した。
・TCI切り替え期間中において、ターゲットTCI状態が検出可能状態(detectable)にある。
・TCI切り替え期間中において、ターゲットTCI状態に関連付けられたSSBが検出可能な状態にある。
・TCI切り替え期間中において、ターゲットTCI状態のsignal-to-noise ratio(SNR)が-3dB以上である。
・ターゲットTCI状態に対するL1-RSRP測定報告に用いられるRSリソースの最後の送信から、アクティブTCI状態切り替えの完了までの、期間(TCI切り替え期間、TCI switching period)中において、L1-RSRP測定用の当該RSリソースは、ターゲットTCI状態内のRS、又はターゲットTCI状態にQCLされたRSである。
・TCI切り替え期間中において、TCI状態切り替えコマンドが、ビームの報告又は測定のための当該RSリソースの最後の送信から、1280ms以内に受信される。
・TCI切り替え期間中において、TCI状態切り替えコマンドの前に、UEが、ターゲットTCI状態に対する少なくとも1つのL1-RSRP報告を送信した。
・TCI切り替え期間中において、ターゲットTCI状態が検出可能状態(detectable)にある。
・TCI切り替え期間中において、ターゲットTCI状態に関連付けられたSSBが検出可能な状態にある。
・TCI切り替え期間中において、ターゲットTCI状態のsignal-to-noise ratio(SNR)が-3dB以上である。
複数のTCI状態用既知条件が満たされない場合、ターゲットTCI状態は未知である。
もしターゲットTCI状態が既知である場合、UEは、スロットnにおけるMAC CEアクティベーションコマンドを運ぶPDSCHの受信に応じて、スロットn+THARQ+(3ms+TOk*(Tfirst-SSB+TSSB-proc))/NRスロット長の以前にTCI状態切り替えが起こるサービングセルの、ターゲットTCI状態を有するPDCCHを受信することができる。UEは、スロットn+THARQ+(3ms+TOk*(Tfirst-SSB))/NRスロット長まで、古い(更新前の)TCI状態を有するPDCCHを受信することができる。
ここで、THARQは、DLデータ送信と肯定応答(acknowledgement)の間の時間である。Tfirst-SSBは、MAC CEコマンドがUEによって復号されてから、最初のSSC送信までの時間である。TSSB-procは、2msである。TOkは、ターゲットTCI状態がPDSCH用のアクティブTCI状態リストにない場合に1であり、そうでない場合に0である。
もしターゲットTCI状態が未知である場合、スロットnにおけるMAC CEアクティベーションコマンドを運ぶPDSCHの受信に応じて、UEは、スロットn+THARQ+(3ms+TL1-RSRP+TOuk*(Tfirst-SSB+TSSB-proc))/NRスロット長の以前にTCI状態切り替えが起こるサービングセルの、ターゲットTCI状態を有するPDCCHを受信することができる。UEは、スロットn+THARQ+(3ms+TL1-RSRP+TOuk*(Tfirst-SSB))/NRスロット長まで古い(更新前の)TCI状態を有するPDCCHを受信することができる。
ここで、TL1-RSRPは、受信ビームの改善のためのL1-RSRP測定用の時間である。SSBに対するTL1-RSRPは、M=1、TReport=0とする場合のTL1-RSRP_Measurement_Period_SSBである。CSI-RSに対するTL1-RSRPは、周期的CSI-RSと、リソースセット内のリソース数が少なくともMaxNumberRxBeamに等しい場合の非周期的CSI-RSとに対してM=1、TReport=0とする場合のTL1-RSRP_Measurement_Period_CSI-RSである。TOukは、CSI-RSベースのL1-RSRP測定に対して1であり、TCI状態切り替えがQCLタイプDを含む場合のSSBベースのL1-RSRP測定に対して0である。また、TOukは、TCI状態切り替えが他のQCLタイプを含む場合に1である。TCI状態切り替えがQCLタイプA、QCLタイプB、又はQCLタイプCのみを含む場合、FR2におけるSSBに対し、TL1-RSRP_Measurement_Period_SSB=0であり、FR2におけるTL1-RSRP_Measurement_Period_CSI-RS=0である。TCI状態切り替えがQCLタイプDを含む場合、Tfirst-SSBは、L1-RSRP測定後の最初のSSB測定までの時間である。他のALCタイプに対し、Tfirst-SSBは、MAC CEコマンドがUEによって復号された後の最初のSSC送信までの時間である。ターゲットTCI状態に対して、SSBはQCLタイプA又はQCLタイプCである。
もしターゲットTCI状態が未知である場合のターゲットTCI状態への切り替えタイミングは、ターゲットTCI状態が既知である場合のターゲットTCI状態への切り替えタイミングにTL1-RSRPを追加したタイミングであってもよい。
PDCCH又はPDSCHのためのTCI状態がMAC CEによって更新される場合、デフォルト空間関係を適用するUEは、デフォルト空間関係を、更新されたTCI状態に合わせることが好ましい。しかしながら、デフォルト空間関係を切り替えるためのタイムラインが明らかでない。また、MAC CEによって更新されたTCI状態が未知である場合、どのようにデフォルト空間関係を切り替えるかが明らかでない。
そこで、本発明者らは、MAC CEに基づくTCI状態の更新に応じて、デフォルト空間関係を適切に切り替える方法を着想した。
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
本開示において、「A/B」、「A及びBの少なくとも一方」、は互いに読み替えられてもよい。本開示において、セル、CC、キャリア、BWP、バンド、は互いに読み替えられてもよい。本開示において、インデックス、ID、インジケータ、リソースID、は互いに読み替えられてもよい。本開示において、RRCパラメータ、上位レイヤパラメータ、RRC情報要素(IE)、RRCメッセージ、は互いに読み替えられてもよい。
本開示において、TCI状態、QCL想定、QCLパラメータ、空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ、UE受信ビーム、DL受信ビーム、DLプリコーディング、DLプリコーダ、DL-RS、TCI状態又はQCL想定のQCLタイプDのRS、TCI状態又はQCL想定のQCLタイプAのRS、は互いに読み替えられてもよい。本開示において、QCLタイプDのRS、QCLタイプDに関連付けられたDL-RS、QCLタイプDを有するDL-RS、DL-RSのソース、SSB、CSI-RS、は互いに読み替えられてもよい。
本開示において、空間関係、空間関係情報、空間関係想定、QCLパラメータ、空間ドメイン送信フィルタ、UE空間ドメイン送信フィルタ、UE送信ビーム、UL送信ビーム、ULプリコーディング、ULプリコーダ、空間関係のRS、DL-RS、QCL想定、SRI、SRIに基づく空間関係、UL TCI、は互いに読み替えられてもよい。
本開示において、TRS、トラッキング用CSI-RS、TRS情報(上位レイヤパラメータtrs-Info)を有するCSI-RS、TRS情報を有するNZP-CSI-RSリソースセット内のNZP-CSI-RSリソース、は互いに読み替えられてもよい。
本開示において、DCIフォーマット0_0、SRIを含まないDCI、空間関係の指示を含まないDCI、CIFを含まないDCI、は互いに読み替えられてもよい。本開示において、DCIフォーマット0_1、SRIを含むDCI、空間関係の指示を含むDCI、CIFを含むDCI、は互いに読み替えられてもよい。
本開示において、個別PUCCH、個別PUCCH設定(PUCCH-Config)に基づくPUCCH、は互いに読み替えられてもよい。本開示において、個別SRS、個別SRS設定(SRS-Config)に基づくSRS、は互いに読み替えられてもよい。
(無線通信方法)
本開示において、特定UL信号、特定種類のUL信号、は互いに読み替えられてもよい。特定UL信号は、PUCCH(個別PUCCH)と、SRS(個別SRS)と、DCIフォーマット0_1によってスケジュールされるPUSCHと、DCIフォーマット0_0によってスケジュールされるPUSCHと、の少なくとも1つであってもよい。
本開示において、特定UL信号、特定種類のUL信号、は互いに読み替えられてもよい。特定UL信号は、PUCCH(個別PUCCH)と、SRS(個別SRS)と、DCIフォーマット0_1によってスケジュールされるPUSCHと、DCIフォーマット0_0によってスケジュールされるPUSCHと、の少なくとも1つであってもよい。
本開示において、特定DL信号、特定種類のDL信号、特定DLチャネル、特定種類のDLチャネル、は互いに読み替えられてもよい。特定DL信号は、PDCCHと、PDSCHと、CORESETと、の少なくとも1つであってもよい。
本開示において、MAC CEによって更新されるTCI状態、MAC CEによってアクティベートされるTCI状態、MAC CEによって指示されるTCI状態、ターゲットTCI状態、MAC CEによってアクティベートされるPL-RSのTCI状態、特定UL信号のデフォルト空間関係及びデフォルトPL-RSの少なくとも1つによって参照されるTCI状態、は互いに読み替えられてもよい。本開示において、3msは、特定時間と読み替えられてもよい。特定時間は、3msでなくてもよい。特定時間は、仕様に規定されてもよいし、RRCパラメータによって設定されてもよいし、UE能力情報によって報告される値であってもよい。本開示において、測定サンプル数Nは、仕様に規定されてもよいし、RRCパラメータによって設定されてもよいし、UE能力情報によって報告される値であってもよい。Nは5であってもよいし、5でなくてもよい。
もし特定UL信号が適用条件を満たし、且つ特定DL信号のTCI状態がMAC CEによって更新される場合、特定タイムラインに従って、特定UL信号のデフォルト空間関係及びデフォルトPL-RSの少なくとも1つをターゲットTCI状態へ切り替えてもよい。
適用条件は、特定UL信号の周波数が特定周波数範囲(FR)内であることと、特定UL信号に対応する特定上位レイヤパラメータが設定されることと、特定UL信号に対応する特定UL信号条件が満たされることと、ターゲットTCI状態が既知であること、の少なくとも1つを必要としてもよい。
特定周波数範囲は、FR2であってもよいし、FR1以外であってもよい。
特定上位レイヤパラメータは、特定UL信号に対応してもよい。特定UL信号が、DCIフォーマット0_0によってスケジュールされるPUSCHである場合、対応する特定上位レイヤパラメータは、デフォルトビームパスロス有効化情報(enableDefaultBeamPlForPUSCH0_0)であってもよい。特定UL信号が、個別PUCCHである場合、である場合、対応する特定上位レイヤパラメータは、デフォルトビームパスロスの有効化情報(enableDefaultBeamPlForPUCCH)であってもよい。特定UL信号が、個別SRSと、DCIフォーマット0_1によってスケジュールされるPUSCHと、の少なくとも1つである場合、対応する特定上位レイヤパラメータは、デフォルトビームパスロスの有効化情報(enableDefaultBeamPlForSRS)であってもよい。
特定UL信号と、それに対する特定UL信号条件との組み合わせは、次の特定UL信号1~4の少なくとも1つであってもよい。
[特定UL信号1]
特定UL信号が個別PUCCHである。特定UL信号条件は、特定UL信号に対し、空間関係及びPL-RSの両方が設定されないことである。
特定UL信号が個別PUCCHである。特定UL信号条件は、特定UL信号に対し、空間関係及びPL-RSの両方が設定されないことである。
[特定UL信号2]
特定UL信号が個別SRSである。特定UL信号条件は、特定UL信号に対し、空間関係及びPL-RSの両方が設定されないことである。
特定UL信号が個別SRSである。特定UL信号条件は、特定UL信号に対し、空間関係及びPL-RSの両方が設定されないことである。
[特定UL信号3]
特定UL信号がDCIフォーマット0_0によってスケジュールされるPUSCHである。特定UL信号条件は、特定UL信号に対し、アクティブUL BWP上にPUCCHリソース設定がないこと、又は、アクティブUL BWP上のPUCCHリソース上のアクティブ空間関係がないことである。
特定UL信号がDCIフォーマット0_0によってスケジュールされるPUSCHである。特定UL信号条件は、特定UL信号に対し、アクティブUL BWP上にPUCCHリソース設定がないこと、又は、アクティブUL BWP上のPUCCHリソース上のアクティブ空間関係がないことである。
[特定UL信号4]
特定UL信号がDCIフォーマット0_1によってスケジュールされるPUSCHである。特定UL信号条件は、特定UL信号に対し、対応するSRSリソース(SRIによって指示されるSRSリソース)が空間関係及びPL-RSを含まないことである。
特定UL信号がDCIフォーマット0_1によってスケジュールされるPUSCHである。特定UL信号条件は、特定UL信号に対し、対応するSRSリソース(SRIによって指示されるSRSリソース)が空間関係及びPL-RSを含まないことである。
もし特定UL信号のCC上のアクティブDL BWPにCORESETが設定される場合、特定DL信号はPDCCHであってもよい。もし特定UL信号のCC上のアクティブDL BWPにCORESETが設定されない場合、特定DL信号はPDSCHであってもよい。
<実施形態1>
もし適用条件が満たされ、且つ特定DL信号のTCI状態がMAC CEによって更新される場合、特定タイムラインに従って、特定UL信号用のデフォルト空間関係及びデフォルトPL-RSの少なくとも1つを切り替えてもよい。特定タイムラインは、次のタイムライン1、2のいずれかに従ってもよい。
もし適用条件が満たされ、且つ特定DL信号のTCI状態がMAC CEによって更新される場合、特定タイムラインに従って、特定UL信号用のデフォルト空間関係及びデフォルトPL-RSの少なくとも1つを切り替えてもよい。特定タイムラインは、次のタイムライン1、2のいずれかに従ってもよい。
[タイムライン1]
デフォルト空間関係の切り替えのタイムラインは、デフォルトPL-RSの切り替えのタイムラインと同じであってもよい。言い換えれば、前の空間関係からターゲットTCI状態へ切り替えられるタイミングは、前のPL-RSからターゲットTCI状態へ切り替えられるタイミングと同じであってもよい。
デフォルト空間関係の切り替えのタイムラインは、デフォルトPL-RSの切り替えのタイムラインと同じであってもよい。言い換えれば、前の空間関係からターゲットTCI状態へ切り替えられるタイミングは、前のPL-RSからターゲットTCI状態へ切り替えられるタイミングと同じであってもよい。
UEは、デフォルトPL-RSの切り替え時間とデフォルト空間関係の切り替え時間とを計算し、計算された2つの切り替え時間のうち、より長い切り替え時間を、デフォルトPL-RS及びデフォルト空間関係の両方の切り替え時間としてもよい。切り替え時間は、TCI状態を更新するMAC CEの受信から、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つの切り替えまでの時間であってもよいし、当該MAC CEに対するACK送信から、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つの切り替えまでの時間であってもよいし、当該MAC CEに対するACK送信の3ms後から、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つの切り替えまでの時間であってもよい。
タイムライン1によれば、常にデフォルト空間関係とデフォルトPL-RSを同一にでき、UEは、送信電力を適切に計算できる。
[タイムライン2]
デフォルト空間関係の切り替えのタイムラインは、デフォルトPL-RSの切り替えのタイムラインと異なってもよい。デフォルト空間関係の切り替え時間は、デフォルトPL-RSの切り替え時間より短くてもよい。例えば、UEは、TCI状態を更新するMAC CEに対するACK送信の3ms後にデフォルト空間関係をターゲットTCI状態へ切り替え、それよりも後にデフォルトPL-RSをターゲットTCI状態へ切り替えてもよい。
デフォルト空間関係の切り替えのタイムラインは、デフォルトPL-RSの切り替えのタイムラインと異なってもよい。デフォルト空間関係の切り替え時間は、デフォルトPL-RSの切り替え時間より短くてもよい。例えば、UEは、TCI状態を更新するMAC CEに対するACK送信の3ms後にデフォルト空間関係をターゲットTCI状態へ切り替え、それよりも後にデフォルトPL-RSをターゲットTCI状態へ切り替えてもよい。
タイムライン2によれば、デフォルト空間関係(UL送信ビーム)の切り替え時間を短くすることができる。
<実施形態2>
もし適用条件が満たされ、且つ特定DL信号のTCI状態がMAC CEによって更新される場合、特定タイムラインに従って、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つを当該TCI状態へ切り替えてもよい。
もし適用条件が満たされ、且つ特定DL信号のTCI状態がMAC CEによって更新される場合、特定タイムラインに従って、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つを当該TCI状態へ切り替えてもよい。
MAC CE(アクティベーションコマンド)によって指示されるTCI状態(ターゲットTCI状態)が既知である場合、UEは、当該MAC CEを運ぶPDSCHに対するACK送信から3ms後(DL切り替えタイミング)において、特定DL信号の受信のためのTCI状態をターゲットTCI状態へ切り替えてもよい。特定タイムラインにおいて、UEは、当該ACK送信から、3ms+オフセットの後(UL切り替えタイミング)において、特定UL信号のデフォルト空間関係及びデフォルトPL-RSの少なくとも1つを、ターゲットTCI状態へ切り替えてもよい。本開示において、オフセット、時間オフセット、は互いに読み替えられてもよい。
例えば、図7に示すように、MAC CEがTCI状態#1をアクティベートし、且つTCI状態#1が既知である場合、UEは、当該MAC CEに対するACK送信から、3ms後のタイミングにおいて、特定DL信号のためのTCI状態をTCI状態#1へ切り替え、そのタイミングからオフセットの時間の後に、特定UL信号のデフォルト空間関係及びデフォルトPL-RSの少なくとも1つをTCI状態#1へ切り替える。
実施形態2によれば、TCI状態がMAC CEによって更新される場合であっても、UEはデフォルト空間関係及びデフォルトPL-RSの少なくとも1つを適切に切り替えられる。
<実施形態3>
実施形態2におけるオフセットは、RRCパラメータによって設定されてもよいし、仕様に規定されてもよいし、UE能力情報によって報告される値であってもよい。オフセットは、次のオフセット1~5のいずれかであってもよい。
実施形態2におけるオフセットは、RRCパラメータによって設定されてもよいし、仕様に規定されてもよいし、UE能力情報によって報告される値であってもよい。オフセットは、次のオフセット1~5のいずれかであってもよい。
[オフセット1]
0(ゼロ)。デフォルト空間関係及びデフォルトPL-RSの少なくとも1つの切り替えタイミングは、MAC CEに対するACK送信の3ms後であってもよい(ターゲットTCI状態が既知である場合のTCI状態の切り替えタイミングであってもよい)。UL切り替えタイミングは、DL切り替えタイミングと同じであってもよい。
0(ゼロ)。デフォルト空間関係及びデフォルトPL-RSの少なくとも1つの切り替えタイミングは、MAC CEに対するACK送信の3ms後であってもよい(ターゲットTCI状態が既知である場合のTCI状態の切り替えタイミングであってもよい)。UL切り替えタイミングは、DL切り替えタイミングと同じであってもよい。
[オフセット2]
x[ms]又はx[スロット]。xは、仕様によって規定されてもよいし、RRCパラメータによって設定されてもよい。xは、サブキャリア間隔(SCS)又はスロット長に依存してよい。
x[ms]又はx[スロット]。xは、仕様によって規定されてもよいし、RRCパラメータによって設定されてもよい。xは、サブキャリア間隔(SCS)又はスロット長に依存してよい。
[オフセット3]
MAC CEに基づいて空間関係を切り替えるためのオフセット。オフセットは、仕様に規定されてもよいし、RRCパラメータによって設定されてもよい。例えば、ターゲットTCI状態が既知である場合、オフセットは、TOk*(Tfirst-SSB+TSSB-proc)であってもよい。ターゲットTCI状態が未知である場合、オフセットは、TL1-RSRP+TOuk*(Tfirst-SSB+TSSB-proc)であってもよい。
MAC CEに基づいて空間関係を切り替えるためのオフセット。オフセットは、仕様に規定されてもよいし、RRCパラメータによって設定されてもよい。例えば、ターゲットTCI状態が既知である場合、オフセットは、TOk*(Tfirst-SSB+TSSB-proc)であってもよい。ターゲットTCI状態が未知である場合、オフセットは、TL1-RSRP+TOuk*(Tfirst-SSB+TSSB-proc)であってもよい。
[オフセット4]
ターゲットTCI状態が未知である場合のTCI状態切り替えに必要な時間。例えば、オフセットは、L1-RSRP測定用の時間TL1-RSRPに基づく時間であってもよいし、TL1-RSRP+TOuk*(Tfirst-SSB+TSSB-proc)であってもよい。例えば、オフセットは、L1-SINR測定用の時間TL1-SINRに基づく時間であってもよいし、TL1-SINR+TOuk*(Tfirst-SSB+TSSB-proc)であってもよい。
ターゲットTCI状態が未知である場合のTCI状態切り替えに必要な時間。例えば、オフセットは、L1-RSRP測定用の時間TL1-RSRPに基づく時間であってもよいし、TL1-RSRP+TOuk*(Tfirst-SSB+TSSB-proc)であってもよい。例えば、オフセットは、L1-SINR測定用の時間TL1-SINRに基づく時間であってもよいし、TL1-SINR+TOuk*(Tfirst-SSB+TSSB-proc)であってもよい。
[オフセット5]
ターゲットTCI状態が未知から既知になるまでの時間。例えば、オフセットは、L1-RSRP測定用の時間TL1-RSRPに基づく時間であってもよいし、TL1-RSRPであってもよい。例えば、オフセットは、L1-SINR測定用の時間TL1-SINRに基づく時間であってもよいし、TL1-SINRであってもよい。
ターゲットTCI状態が未知から既知になるまでの時間。例えば、オフセットは、L1-RSRP測定用の時間TL1-RSRPに基づく時間であってもよいし、TL1-RSRPであってもよい。例えば、オフセットは、L1-SINR測定用の時間TL1-SINRに基づく時間であってもよいし、TL1-SINRであってもよい。
実施形態3によれば、UEは、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つを適切なタイミングにおいて切り替えることができる。
<実施形態4>
実施形態3のオフセットは、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つによって参照されるパラメータ(参照パラメータ)の種類に依存してもよい。本開示において、参照パラメータ、TCI状態又はQCL想定、更新前の参照パラメータ、更新後の参照パラメータ、ターゲットTCI状態、は互いに読み替えられてもよい。
実施形態3のオフセットは、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つによって参照されるパラメータ(参照パラメータ)の種類に依存してもよい。本開示において、参照パラメータ、TCI状態又はQCL想定、更新前の参照パラメータ、更新後の参照パラメータ、ターゲットTCI状態、は互いに読み替えられてもよい。
オフセットは、参照パラメータの次の種類1、2の少なくとも1つに依存してもよい。
[種類1]
オフセットは、参照パラメータが、PDCCH(CORESET)用のTCI状態であるか、PDSCH用のTCI状態であるか、に依存する。参照パラメータがPDCCH用のTCI状態である場合のオフセットと、参照パラメータがPDSCH用のTCI状態である場合のオフセットとは、互いに異なってもよい。
オフセットは、参照パラメータが、PDCCH(CORESET)用のTCI状態であるか、PDSCH用のTCI状態であるか、に依存する。参照パラメータがPDCCH用のTCI状態である場合のオフセットと、参照パラメータがPDSCH用のTCI状態である場合のオフセットとは、互いに異なってもよい。
オフセットは、CC上のアクティブDL BWPにCORESETが設定されるか否かに依存してもよい。CC上のアクティブDL BWPにCORESETが設定される場合のオフセットと、CC上のアクティブDL BWPにCORESETが設定されない場合のオフセットとが、互いに異なってもよい。CC上のアクティブDL BWPにCORESETが設定される場合、参照パラメータはPDCCH用のTCI状態である。CC上のアクティブDL BWPにCORESETが設定されない場合、参照パラメータは、PDSCH用のTCI状態である。
[種類2]
参照パラメータがPDCCH(CORESET)用のTCI状態である場合(CC上のアクティブDL BWPにCORESETが設定される場合)、オフセットは、参照パラメータがTCI状態であるかQCL想定であるかに依存する。参照パラメータがPDCCH用のTCI状態である場合のオフセットと、参照パラメータがPDSCH用のTCI状態である場合のオフセットとが、互いに異なってもよい。CORESETに対してTCI状態が設定される場合、UEは、当該TCI状態をPDCCHの受信に用いる。CORESETに対してTCI状態が設定されない場合、UEは、ランダムアクセスチャネル(RACH)送信オケージョンに対応するSSB(初期アクセス手順中にUEによって識別されるSSB)が、PDCCH受信に関連付けられたDM-RSアンテナポートとQCLされると想定し、このQCL想定をPDCCH受信に用いる。
参照パラメータがPDCCH(CORESET)用のTCI状態である場合(CC上のアクティブDL BWPにCORESETが設定される場合)、オフセットは、参照パラメータがTCI状態であるかQCL想定であるかに依存する。参照パラメータがPDCCH用のTCI状態である場合のオフセットと、参照パラメータがPDSCH用のTCI状態である場合のオフセットとが、互いに異なってもよい。CORESETに対してTCI状態が設定される場合、UEは、当該TCI状態をPDCCHの受信に用いる。CORESETに対してTCI状態が設定されない場合、UEは、ランダムアクセスチャネル(RACH)送信オケージョンに対応するSSB(初期アクセス手順中にUEによって識別されるSSB)が、PDCCH受信に関連付けられたDM-RSアンテナポートとQCLされると想定し、このQCL想定をPDCCH受信に用いる。
実施形態4によれば、UEは、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つによって参照されるRSに応じて、適切なオフセットを用いることができる。
<実施形態5>
実施形態3のオフセットは、ターゲットTCI状態が既知(known)であるか未知(unknown)であるかに対して、次の関係1、2のいずれかを有していてもよい。
実施形態3のオフセットは、ターゲットTCI状態が既知(known)であるか未知(unknown)であるかに対して、次の関係1、2のいずれかを有していてもよい。
[関係1]
オフセットは、ターゲットTCI状態が既知であるか未知であるかに依存する。ターゲットTCI状態が既知である場合と、ターゲットTCI状態が未知である場合との間において、異なるオフセットが用いられてもよい。
オフセットは、ターゲットTCI状態が既知であるか未知であるかに依存する。ターゲットTCI状態が既知である場合と、ターゲットTCI状態が未知である場合との間において、異なるオフセットが用いられてもよい。
ターゲットTCI状態が既知である場合、異なる2つのオフセットのうち、短いオフセット(例えば、0)が用いられてもよい。ターゲットTCI状態が未知である場合、異なる2つのオフセットのうち、長いオフセット(例えば、0より大きい)が用いられてもよい。長いオフセットは、実施形態3のオフセット4であってもよいし、実施形態3のオフセット5であってもよい。
[関係2]
オフセットは、ターゲットTCI状態が既知であるか未知であるかに依存しない。ターゲットTCI状態が既知である場合と、ターゲットTCI状態が未知である場合との間において、同じオフセットが用いられてもよい。UEは、未知のTCI状態に基づいて受信ビーム/送信ビームを決定してもよい(QCLタイプDのRSを決定/測定してもよい)。
オフセットは、ターゲットTCI状態が既知であるか未知であるかに依存しない。ターゲットTCI状態が既知である場合と、ターゲットTCI状態が未知である場合との間において、同じオフセットが用いられてもよい。UEは、未知のTCI状態に基づいて受信ビーム/送信ビームを決定してもよい(QCLタイプDのRSを決定/測定してもよい)。
実施形態5によれば、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つによって参照されるRSが既知であっても未知であっても、UEは適切なオフセットを用いることができる。
<実施形態6>
UEは、実施形態2のオフセットに対応する期間において、次の動作1、2のいずれかを行ってもよい。オフセットに対応する期間は、MAC CEに対するACK送信の3ms後から開始し、オフセットの長さを有してもよい。
UEは、実施形態2のオフセットに対応する期間において、次の動作1、2のいずれかを行ってもよい。オフセットに対応する期間は、MAC CEに対するACK送信の3ms後から開始し、オフセットの長さを有してもよい。
[動作1]
UEは、更新前の空間関係を適用/想定して、特定UL信号を送信する。
UEは、更新前の空間関係を適用/想定して、特定UL信号を送信する。
[動作2]
UEは、更新後の空間関係を適用/想定して、特定UL信号を送信する。オフセットに対応する期間において、性能要件(performance requirement)が緩和されてもよい。例えば、性能要件は、所要SNR、所要誤り率、の少なくとも1つによって規定されてもよい。
UEは、更新後の空間関係を適用/想定して、特定UL信号を送信する。オフセットに対応する期間において、性能要件(performance requirement)が緩和されてもよい。例えば、性能要件は、所要SNR、所要誤り率、の少なくとも1つによって規定されてもよい。
実施形態6によれば、UEは、TCI状態の切り替えにおいて、適切に動作できる。
<実施形態7>
もしデフォルト空間関係及びデフォルトPL-RSの少なくとも1つによって参照されるTCI状態に対するMAC CEがターゲットTCI状態をアクティベート/アップデートし、且つターゲットTCI状態が既知である場合、UEは、当該MAC CEに対するACK送信の3ms後からL1-RSRP測定サンプルをカウントし、N番目のサンプルの次のスロットにおいて、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つを、ターゲットTCI状態へ切り替えてもよい。
もしデフォルト空間関係及びデフォルトPL-RSの少なくとも1つによって参照されるTCI状態に対するMAC CEがターゲットTCI状態をアクティベート/アップデートし、且つターゲットTCI状態が既知である場合、UEは、当該MAC CEに対するACK送信の3ms後からL1-RSRP測定サンプルをカウントし、N番目のサンプルの次のスロットにおいて、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つを、ターゲットTCI状態へ切り替えてもよい。
本開示において、Nは、仕様に規定されてもよいし、RRCパラメータによって設定されてもよいし、UE能力情報によって報告される値であってもよい。例えば、Nは5であってもよい。
例えば、図8に示すように、デフォルトPL-RSによって参照されるTCI状態に対するMAC CEがTCI状態#1をアクティベートし、且つTCI状態#1が既知である場合、UEは、当該MAC CEに対するACK送信の3ms後から5番目のL1-RSRP測定の次のスロットにおいて、TCI状態#1をPL-RSに用いてもよい。
もしデフォルト空間関係及びデフォルトPL-RSの少なくとも1つによって参照されるTCI状態に対するMAC CEがターゲットTCI状態をアクティベート/アップデートし、且つターゲットTCI状態が未知である場合、UEは、ターゲットTCI状態が既知になる(TCI用既知条件を満たす)タイミングからL1-RSRP測定サンプルをカウントし、N番目のサンプルの次のスロットにおいて、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つを、ターゲットTCI状態へ切り替えてもよい。
例えば、図9に示すように、デフォルトPL-RSによって参照されるTCI状態に対するMAC CEがTCI状態#1をアクティベートし、且つTCI状態#1が未知である場合、UEは、TCI状態#1が既知になるタイミングから5番目のL1-RSRP測定の次のスロットにおいて、TCI状態#1をPL-RSに用いてもよい。
もしデフォルト空間関係及びデフォルトPL-RSの少なくとも1つによって参照されるTCI状態に対するMAC CEがターゲットTCI状態をアクティベート/アップデートし、且つターゲットTCI状態が未知である場合、UEは、受信ビームを測定していないため、その測定のための時間を待ってから、ターゲットTCI状態に切り替えることが好ましい。
ターゲットTCI状態(アクティベート/アップデートされたTCI状態)が既知である場合に対する追加の制限として、ターゲットTCI状態が未知である場合、N個の測定サンプルの前にTL1-RSRPの追加適用時間が想定されてもよい。ターゲットTCI状態が既知である場合に対する追加の制限として、ターゲットTCI状態が未知である場合、N個の測定サンプルの後にTL1-RSRPの追加適用時間が想定されてもよい。
もしFR2において空間関係/PL-RSの両方が設定され、デフォルト空間関係/デフォルトPL-RSに用いられるTCI状態がMAC CEによってアクティベート/アップデートされる場合、当該MAC CE後のPUCCH/SRS/PUSCHのデフォルトPL-RSに対するパスロス測定の上位レイヤフィルタされたRSRPに対する適用タイミングが定義される。前のPL-RSに対するフィルタされたRSRP値が適用タイミングの前に用いられる。もしデフォルトPL-RSのTCI状態が既知である場合、適用タイミングは、5番目の測定サンプルの後の次のスロットである。ここで、1番目の測定サンプルは、当該MAC CEに対するACLの送信から3ms後の1番目のインスタンスに対応する。もしデフォルトPL-RSのTCI状態が未知である場合、5個の測定サンプルの前にTL1-RSRPの追加適用時間が想定されてもよい。
もしデフォルト空間関係及びデフォルトPL-RSの少なくとも1つによって参照されるTCI状態に対するMAC CEがターゲットTCI状態をアクティベート/アップデートし、且つターゲットTCI状態が未知である場合、UEは、当該MAC CEに対するACK送信の3ms後のTL1-RSRP後(ACK送信の3ms+TL1-RSRP後)から、L1-RSRP測定サンプルをカウントし、N番目のサンプルの次のスロットにおいて、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つを、ターゲットTCI状態へ切り替えてもよい。TL1-RSRPの代わりに、L1-SINR測定用の時間TL1-SINRが用いられてもよいし、実施形態3のオフセット1~5のいずれかが用いられてもよい。
例えば、図10に示すように、デフォルトPL-RSによって参照されるTCI状態に対するMAC CEがTCI状態#1をアクティベートし、且つTCI状態#1が未知である場合、UEは、当該MAC CEに対するACK送信の3ms+TL1-RSRP後から5番目のL1-RSRP測定の次のスロットにおいて、TCI状態#1をPL-RSに用いてもよい。
もしデフォルト空間関係及びデフォルトPL-RSの少なくとも1つによって参照されるTCI状態に対するMAC CEがターゲットTCI状態をアクティベート/アップデートし、且つターゲットTCI状態が未知である場合、UEは、当該MAC CEに対するACK送信の3ms後からL1-RSRP測定サンプルをカウントし、N番目のサンプルの測定からTL1-RSRP後の次のスロットにおいて、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つを、ターゲットTCI状態へ切り替えてもよい。TL1-RSRPの代わりに、L1-SINR測定用の時間TL1-SINRが用いられてもよいし、実施形態3のオフセット1~5のいずれかが用いられてもよい。
実施形態7によれば、UEは、デフォルトPL-RSを適切なタイミングにおいて切り替えることができる。
<実施形態8>
図6のように、PL-RSリストがRRCパラメータによって設定され、パスロス計算に用いられているPL-RS(前のPL-RS)と異なるPL-RS(ターゲットPL-RS)がMAC CEによってアクティベートされる場合、UEは、実施形態7と同様のタイムラインを用いて、PL-RSを切り替えてもよい。
図6のように、PL-RSリストがRRCパラメータによって設定され、パスロス計算に用いられているPL-RS(前のPL-RS)と異なるPL-RS(ターゲットPL-RS)がMAC CEによってアクティベートされる場合、UEは、実施形態7と同様のタイムラインを用いて、PL-RSを切り替えてもよい。
もし前のPL-RSと異なるPL-RSがMAC CEによってアクティベートされ、且つアクティベートされたPL-RSのTCI状態が既知である場合、UEは、当該MAC CEに対するACK送信の3ms後からL1-RSRP測定サンプルをカウントし、N番目のサンプルの次のスロットにおいて、前のPL-RSを、アクティベートされたPL-RSへ切り替えてもよい。
例えば、図11に示すように、MAC CEが前のPL-RSと異なるPL-RS#1をアクティベートし、且つPL-RS#1のTCI状態が既知である場合、UEは、当該MAC CEに対するACK送信の3ms後から5番目のL1-RSRP測定の次のスロットにおいて、前のPL-RSからPL-RS#1へ切り替えてもよい。
もし前のPL-RSと異なるターゲットPL-RSがMAC CEによってアクティベート/アップデートされ、且つターゲットPL-RSのTCI状態が未知である場合、UEは、ターゲットPL-RSのTCI状態が既知になる(TCI用既知条件を満たす)タイミングからL1-RSRP測定サンプルをカウントし、N番目のサンプルの次のスロットにおいて、前のPL-RSをターゲットPL-RSへ切り替えてもよい。
例えば、図12に示すように、MAC CEが前のPL-RSと異なるPL-RS#1をアクティベートし、且つPL-RS#1のTCI状態が未知である場合、UEは、PL-RS#1のTCI状態が既知になるタイミングから5番目のL1-RSRP測定の次のスロットにおいて、前のPL-RSからPL-RS#1へ切り替えてもよい。
もし前のPL-RSと異なるターゲットPL-RSがMAC CEによってアクティベート/アップデートされ、且つターゲットPL-RSのTCI状態が未知である場合、UEは、受信ビームを測定していないため、その測定のための時間を待ってから、PL-RSを切り替えることが好ましい。
ターゲットPL-RS(アクティベート/アップデートされたPL-RS)のTCI状態が既知である場合に対する追加の制限として、ターゲットPL-RSのTCI状態が未知である場合、N個の測定サンプルの前にTL1-RSRPの追加適用時間が想定されてもよい。ターゲットPL-RSのTCI状態が既知である場合に対する追加の制限として、ターゲットPL-RSのTCI状態が未知である場合、N個の測定サンプルの後にTL1-RSRPの追加適用時間が想定されてもよい。
もし前のPL-RSと異なるターゲットPL-RSがMAC CEによってアクティベート/アップデートされ、且つターゲットPL-RSのTCI状態が未知である場合、UEは、当該MAC CEに対するACK送信の3ms後のTL1-RSRP後(ACK送信の3ms+TL1-RSRP後)から、L1-RSRP測定サンプルをカウントし、N番目のサンプルの次のスロットにおいて、前のPL-RSをターゲットPL-RSへ切り替えてもよい。TL1-RSRPの代わりに、L1-SINR測定用の時間TL1-SINRが用いられてもよいし、実施形態3のオフセット1~5のいずれかが用いられてもよい。
例えば、図13に示すように、デフォルトPL-RSによって参照されるTCI状態に対するMAC CEがPL-RS#1をアクティベートし、且つPL-RS#1のTCI状態が未知である場合、UEは、当該MAC CEに対するACK送信の3ms+TL1-RSRP後から5番目のL1-RSRP測定の次のスロットにおいて、前のPL-RSからPL-RS#1へ切り替えてもよい。
もし前のPL-RSと異なるターゲットPL-RSがMAC CEによってアクティベート/アップデートされ、且つターゲットPL-RSのTCI状態が未知である場合、UEは、当該MAC CEに対するACK送信の3ms後から、L1-RSRP測定サンプルをカウントし、N番目のサンプルの測定からTL1-RSRP後の次のスロットにおいて、前のPL-RSをターゲットPL-RSへ切り替えてもよい。TL1-RSRPの代わりに、L1-SINR測定用の時間TL1-SINRが用いられてもよいし、実施形態3のオフセット1~5のいずれかが用いられてもよい。
実施形態8によれば、UEは、PL-RSを適切なタイミングにおいて切り替えることができる。
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図14は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
図15は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
図15は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
送受信部120は、送信設定指示(TCI)状態を指示する媒体アクセス制御-制御要素(MAC CE)を送信してもよい。もし特定上りリンク信号が適用条件を満たす場合、送受信部120は、前記MAC CEに対する肯定応答(ACK)送信よりも後のタイミング以後において、前記TCI状態を空間関係を用いて送信される前記特定上りリンク信号を受信してもよい。
送受信部120は、送信設定指示(TCI)状態又はパスロス参照信号(PL-RS)の参照信号を指示する媒体アクセス制御-制御要素(MAC CE)を送信してもよい。もし特定上りリンク信号が適用条件を満たす場合、送受信部120は、前記MAC CEに対する肯定応答(ACK)送信よりも後のタイミング以後において、パスロス計算に前記参照信号を用いて送信される前記特定上りリンク信号を受信してもよい。
(ユーザ端末)
図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
図16は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
送受信部220は、送信設定指示(TCI)状態を指示する媒体アクセス制御-制御要素(MAC CE)を受信してもよい。もし特定上りリンク信号が適用条件を満たす場合、制御部210は、前記MAC CEに対する肯定応答(ACK)送信よりも後のタイミング(例えば、UL切り替えタイミング)において、前記TCI状態を前記特定上りリンク信号の空間関係(例えば、デフォルト空間関係及びデフォルトPL-RSの少なくとも1つ)に用いてもよい。
前記タイミングは、前記ACK送信から、3ms+時間オフセットの後であってもよい。
前記TCI状態が物理下りリンク制御チャネルのために設定される場合の前記時間オフセットと、前記TCI状態が物理下りリンク共有チャネルのために設定される場合の前記時間オフセットとは、互いに異なってもよい。
前記TCI状態が既知と見なされるための条件を満たす場合の前記オフセットと、前記TCI状態が前記条件を満たさない場合の前記オフセットとは、互いに異なってもよい。
送受信部220は、送信設定指示(TCI)状態又はパスロス参照信号(PL-RS)の参照信号を指示する媒体アクセス制御-制御要素(MAC CE)を受信してもよい。もし特定上りリンク信号が適用条件を満たす場合、制御部210は、前記MAC CEに対する肯定応答(ACK)送信よりも後のタイミングにおいて、前記特定上りリンク信号のパスロス計算に前記参照信号を用いてもよい。
前記参照信号が未知である場合、前記タイミングは、前記ACK送信から、3ms及び測定のための時間の後のN(例えば、5)回の測定の後のスロットであってもよい。
前記測定は、レイヤ1参照信号受信電力(L1-RSRP)測定であってもよい。
前記測定は、レイヤ1信号対干渉雑音比(L1-SINR)測定であってもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
Claims (6)
- 送信設定指示(TCI)状態又はパスロス参照信号(PL-RS)の参照信号を指示する媒体アクセス制御-制御要素(MAC CE)を受信する受信部と、
もし特定上りリンク信号が適用条件を満たす場合、前記MAC CEに対する肯定応答(ACK)送信よりも後のタイミングにおいて、前記特定上りリンク信号のパスロス計算に前記参照信号を用いる制御部と、を有する端末。 - 前記参照信号が未知である場合、前記タイミングは、前記ACK送信から、3ms及び測定のための時間の後のN回の測定の後のスロットである、請求項1に記載の端末。
- 前記測定は、レイヤ1参照信号受信電力(L1-RSRP)測定である、請求項2に記載の端末。
- 前記測定は、レイヤ1信号対干渉雑音比(L1-SINR)測定である、請求項2に記載の端末。
- 送信設定指示(TCI)状態又はパスロス参照信号(PL-RS)の参照信号を指示する媒体アクセス制御-制御要素(MAC CE)を受信するステップと、
もし特定上りリンク信号が適用条件を満たす場合、前記MAC CEに対する肯定応答(ACK)送信よりも後のタイミングにおいて、前記特定上りリンク信号のパスロス計算に前記参照信号を用いるステップと、を有する、端末の無線通信方法。 - 送信設定指示(TCI)状態又はパスロス参照信号(PL-RS)の参照信号を指示する媒体アクセス制御-制御要素(MAC CE)を送信する送信部と、
もし特定上りリンク信号が適用条件を満たす場合、前記MAC CEに対する肯定応答(ACK)送信よりも後のタイミング以後において、パスロス計算に前記参照信号を用いて送信される前記特定上りリンク信号を受信する受信部と、を有する基地局。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080096340.2A CN115104355A (zh) | 2020-02-14 | 2020-02-14 | 终端、无线通信方法以及基站 |
US17/799,184 US20230072323A1 (en) | 2020-02-14 | 2020-02-14 | Terminal, radio communication method, and base station |
EP20918608.9A EP4106388A4 (en) | 2020-02-14 | 2020-02-14 | TERMINAL, WIRELESS COMMUNICATION METHOD AND BASE STATION |
JP2022500207A JPWO2021161544A5 (ja) | 2020-02-14 | 端末、無線通信方法、基地局及びシステム | |
PCT/JP2020/005914 WO2021161544A1 (ja) | 2020-02-14 | 2020-02-14 | 端末、無線通信方法及び基地局 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/005914 WO2021161544A1 (ja) | 2020-02-14 | 2020-02-14 | 端末、無線通信方法及び基地局 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021161544A1 true WO2021161544A1 (ja) | 2021-08-19 |
Family
ID=77293049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/005914 WO2021161544A1 (ja) | 2020-02-14 | 2020-02-14 | 端末、無線通信方法及び基地局 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230072323A1 (ja) |
EP (1) | EP4106388A4 (ja) |
CN (1) | CN115104355A (ja) |
WO (1) | WO2021161544A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023085353A1 (ja) * | 2021-11-12 | 2023-05-19 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12004026B2 (en) * | 2020-07-24 | 2024-06-04 | Asustek Computer Inc. | Method and apparatus for mobility procedure in a wireless communication system |
-
2020
- 2020-02-14 US US17/799,184 patent/US20230072323A1/en active Pending
- 2020-02-14 WO PCT/JP2020/005914 patent/WO2021161544A1/ja unknown
- 2020-02-14 CN CN202080096340.2A patent/CN115104355A/zh active Pending
- 2020-02-14 EP EP20918608.9A patent/EP4106388A4/en active Pending
Non-Patent Citations (3)
Title |
---|
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01) |
APPLE INC.: "Remaining Issues on Multi-beam operation", 3GPP TSG RAN WG1 #99 R1-1912824, 22 November 2019 (2019-11-22), XP051823624, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_99/Docs/R1-1912824.zip> * |
LG ELECTRONICS: "Discussion on multi-beam based operations and enhancements", 3GPP TSG RAN WG1 #99 R1-1912270, 22 November 2019 (2019-11-22), XP051823335, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_99/Docs/R1-1912270.zip> * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023085353A1 (ja) * | 2021-11-12 | 2023-05-19 | 株式会社Nttドコモ | 端末、無線通信方法及び基地局 |
Also Published As
Publication number | Publication date |
---|---|
EP4106388A1 (en) | 2022-12-21 |
CN115104355A (zh) | 2022-09-23 |
US20230072323A1 (en) | 2023-03-09 |
EP4106388A4 (en) | 2023-11-08 |
JPWO2021161544A1 (ja) | 2021-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020230839A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2021090369A1 (ja) | 端末及び無線通信方法 | |
WO2020255401A1 (ja) | 端末及び無線通信方法 | |
WO2021039423A1 (ja) | 端末及び無線通信方法 | |
WO2020250401A1 (ja) | 端末及び無線通信方法 | |
WO2021152796A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2020235456A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2020250402A1 (ja) | 端末及び無線通信方法 | |
WO2021100529A1 (ja) | 端末及び無線通信方法 | |
WO2021161472A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2020250404A1 (ja) | 端末及び無線通信方法 | |
WO2020250403A1 (ja) | 端末及び無線通信方法 | |
WO2021100530A1 (ja) | 端末及び無線通信方法 | |
WO2021095104A1 (ja) | 端末及び無線通信方法 | |
WO2021186700A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021038682A1 (ja) | 端末及び無線通信方法 | |
WO2021070391A1 (ja) | 端末及び無線通信方法 | |
WO2021100531A1 (ja) | 端末及び無線通信方法 | |
WO2021075521A1 (ja) | 端末及び無線通信方法 | |
WO2021161450A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021166245A1 (ja) | 端末、無線通信方法及び基地局 | |
WO2021090505A1 (ja) | 端末及び無線通信方法 | |
WO2021161544A1 (ja) | 端末、無線通信方法及び基地局 | |
JP7550842B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
WO2021210109A1 (ja) | 端末、無線通信方法及び基地局 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20918608 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022500207 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020918608 Country of ref document: EP Effective date: 20220914 |