WO2021161448A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2021161448A1
WO2021161448A1 PCT/JP2020/005553 JP2020005553W WO2021161448A1 WO 2021161448 A1 WO2021161448 A1 WO 2021161448A1 JP 2020005553 W JP2020005553 W JP 2020005553W WO 2021161448 A1 WO2021161448 A1 WO 2021161448A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
channel
cambium
channel cambium
semiconductor device
Prior art date
Application number
PCT/JP2020/005553
Other languages
French (fr)
Japanese (ja)
Inventor
櫛田 知義
喜隆 長里
直高 岩田
裕之 榊
Original Assignee
株式会社デンソー
学校法人トヨタ学園
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 学校法人トヨタ学園 filed Critical 株式会社デンソー
Priority to PCT/JP2020/005553 priority Critical patent/WO2021161448A1/en
Priority to JP2021577787A priority patent/JP7274156B2/en
Publication of WO2021161448A1 publication Critical patent/WO2021161448A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66848Unipolar field-effect transistors with a Schottky gate, i.e. MESFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes

Definitions

  • the technology disclosed herein relates to a semiconductor device having a plurality of heterointerfaces.
  • Patent Document 1 discloses a semiconductor device having a plurality of heterointerfaces.
  • a plurality of heterointerfaces are formed by alternately laminating two types of semiconductor materials, and two-dimensional electron gas and two-dimensional hole gas are alternately laminated at these heterointerfaces. Generated. According to such a configuration, it is possible to exhibit excellent withstand voltage when not energized while reducing resistance when energized.
  • the two-dimensional electron gas and the two-dimensional hole gas may be collectively referred to as a two-dimensional carrier gas.
  • the resistance at the time of energization can be further reduced by increasing the number of heterointerfaces, that is, the number of two-dimensional electron gas and two-dimensional hole gas.
  • the thickness of the semiconductor substrate is increased due to the need for further multi-layering of the semiconductor substrate.
  • the present specification provides a technique capable of reducing resistance during energization while suppressing an increase in the thickness of a semiconductor substrate in a semiconductor device having a plurality of heterointerfaces.
  • This semiconductor device includes a semiconductor substrate and a source electrode, a drain electrode, and a gate electrode provided on the semiconductor substrate.
  • the semiconductor substrate includes an upper layer, a middle layer and a lower layer made of a first semiconductor material, a first channel forming layer located between the upper layer and the middle layer, and a second channel forming layer located between the middle layer and the lower layer.
  • Each of the first channel cambium and the second channel cambium has one or more dissimilar material layers composed of a second semiconductor material having a bandgap different from that of the first semiconductor material, and one or more of them. The thickness of each of the dissimilar material layers is smaller than the thickness of the middle layer.
  • the first polar two-dimensional carrier gas that is, the two-dimensional hole gas and the two-dimensional electron gas
  • the second channel forming layer a pair of heterointerfaces formed on both sides of one or more dissimilar material layers are of a second polar two-dimensional carrier gas (that is, a two-dimensional hole gas and a two-dimensional electron gas). The other) is generated.
  • the source electrode and the drain electrode are in contact with one of the first channel cambium and the second channel cambium.
  • the gate electrode is in contact with or adjacent to the other of the first channel cambium and the second channel cambium.
  • the first channel forming layer and the second channel forming layer are depleted, or two-dimensional carrier gas (that is, two-dimensional hole gas or two-dimensional hole gas or two-dimensional hole gas) or two-dimensional carrier gas (that is, two-dimensional hole gas) or two-dimensional carrier gas (that is, two-dimensional hole gas) or two-dimensional carrier gas (that is, two-dimensional hole gas or two).
  • two-dimensional carrier gas that is, two-dimensional hole gas or two-dimensional hole gas
  • two-dimensional carrier gas that is, two-dimensional hole gas
  • two-dimensional carrier gas that is, two-dimensional carrier gas or two-dimensional carrier gas
  • each of the first channel cambium and the second channel cambium has at least a pair (that is, two or more even numbers) of heterointerfaces, and a two-dimensional carrier gas is generated along each heterointerface. Will be done.
  • the source electrode and the drain electrode are electrically connected with a relatively low resistance.
  • This semiconductor device includes a semiconductor substrate and a first electrode and a second electrode provided on the semiconductor substrate.
  • the semiconductor substrate includes an upper layer, a middle layer and a lower layer made of a first semiconductor material, a first channel forming layer located between the upper layer and the middle layer, and a second channel forming layer located between the middle layer and the lower layer.
  • Each of the first channel cambium and the second channel cambium has one or more dissimilar material layers composed of a second semiconductor material having a bandgap different from that of the first semiconductor material, and one or more of them. The thickness of each of the dissimilar material layers is smaller than the thickness of the middle layer.
  • the first polar two-dimensional carrier gas that is, the two-dimensional hole gas and the two-dimensional electron gas
  • the second channel forming layer a pair of heterointerfaces formed on both sides of one or more dissimilar material layers are of a second polar two-dimensional carrier gas (that is, a two-dimensional hole gas and a two-dimensional electron gas). The other) is generated.
  • the first electrode is in contact with one of the first channel cambium and the second channel cambium.
  • the second electrode is in contact with the other of the first channel cambium and the second channel cambium.
  • one of the first electrode and the second electrode serves as an anode
  • the other of the first electrode and the second electrode serves as a cathode, which can function as a diode.
  • the first electrode functions as an anode and the second electrode is a cathode.
  • the first electrode functions as a cathode and the second electrode is an anode. Functions as.
  • the distance between adjacent two-dimensional carrier gases is relatively small. can do. Therefore, the thickness of the first channel cambium and the second channel cambium can be made relatively small with respect to the number of two-dimensional carrier gases produced.
  • a relatively thick middle layer exists between the first channel cambium and the second channel cambium, a sufficient distance should be provided between the two-dimensional carrier gases having different polarities. Can be done. As a result, it is possible to realize a semiconductor device in which resistance during energization is reduced while suppressing an increase in the thickness of the semiconductor substrate.
  • FIG. 1 is a cross-sectional view taken along the line II-II in FIG. 1, schematically showing a cross-sectional structure of the semiconductor device 10A of the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 3, schematically showing a cross-sectional structure of the semiconductor device 10B of the second embodiment.
  • FIG. FIG. 5 is a cross-sectional view taken along the line VI-VI in FIG. 5, which is a plan view schematically showing a cross-sectional structure of the semiconductor device 10C of the third embodiment.
  • FIG. 5 is a cross-sectional view taken along the line VII-VII in FIG. 5, schematically showing a cross-sectional structure of the semiconductor device 10C of the third embodiment.
  • FIG. 8 is a cross-sectional view taken along the line IX-IX in FIG. 8 and schematically shows a cross-sectional structure of the semiconductor device 10D of the fourth embodiment.
  • FIG. 10 is a cross-sectional view taken along the line XI-XI in FIG. 10, and schematically shows a cross-sectional structure of the semiconductor device 10E of the fifth embodiment.
  • FIG. 10 is a cross-sectional view taken along the line XII-XII in FIG.
  • FIG. 10 schematically showing a cross-sectional structure of the semiconductor device 10E of the fifth embodiment.
  • FIG. 15 is a cross-sectional view taken along the line XVI-XVI in FIG. 15, schematically showing a cross-sectional structure of the semiconductor device 10G of the seventh embodiment.
  • FIG. 17 is a cross-sectional view taken along the line XVIII-XVIII in FIG.
  • FIG. 17 which is a plan view schematically showing a cross-sectional structure of the semiconductor device 10H of the eighth embodiment.
  • FIG. 5 is a plan view schematically showing the semiconductor device 10I of the ninth embodiment.
  • FIG. 19 is a cross-sectional view taken along the line XX-XX in FIG. 19, which schematically shows a cross-sectional structure of the semiconductor device 10I of the ninth embodiment.
  • FIG. 21 is a cross-sectional view taken along the line XXII-XXII in FIG. 21, schematically showing a cross-sectional structure of the semiconductor device 10J of the tenth embodiment.
  • FIG. 5 is a plan view schematically showing the semiconductor device 10K of the eleventh embodiment.
  • FIG. 2 is a cross-sectional view taken along the line XXIV-XXIV in FIG. 23, schematically showing a cross-sectional structure of the semiconductor device 10K of the eleventh embodiment.
  • FIG. 5 is a cross-sectional view taken along the line XXVI-XXVI in FIG. 25, schematically showing a cross-sectional structure of the semiconductor device 10L of the twelfth embodiment.
  • FIG. 5 is a cross-sectional view taken along the line XXVII-XXVII in FIG. 25, schematically showing a cross-sectional structure of the semiconductor device 10L of Example 12.
  • FIG. 28 is a cross-sectional view taken along the line XXIX-XXIX in FIG. 28, schematically showing a cross-sectional structure of the semiconductor device 10M of the thirteenth embodiment.
  • the band diagram which shows the energy band in the thickness direction of the semiconductor substrate 12 in Example 13.
  • the line Ec shows the lowest energy in the conduction band
  • the line Ev shows the maximum energy in the valence band
  • the line Ef shows the energy at the Fermi level.
  • FIG. 3 is a cross-sectional view taken along the line XXXII-XXXII in FIG. 31, schematically showing a cross-sectional structure of the semiconductor device 10N of Example 14.
  • FIG. 3 is a cross-sectional view taken along the line XXXIV-XXXIV in FIG. 33, schematically showing a cross-sectional structure of the semiconductor device 10P of Example 15.
  • FIG. 3 is a cross-sectional view taken along the line XXXVI-XXXVI in FIG. 35, schematically showing a cross-sectional structure of the semiconductor device 10Q of Example 16.
  • FIG. 3 is a cross-sectional view taken along the line XXXVII-XXXVII in FIG. 35, schematically showing a cross-sectional structure of the semiconductor device 10Q of Example 16.
  • FIG. 38 It is a cross-sectional view of XXXX-XXXIX in FIG. 38, and schematically shows the cross-sectional structure of the semiconductor device 10R of Example 17.
  • FIG. 42 is a cross-sectional view taken along the line XLIII-XLIII in FIG. 42, schematically showing a cross-sectional structure of the semiconductor device 10T of Example 19.
  • FIG. 4 is a cross-sectional view taken along the line XLV-XLV in FIG. 44, schematically showing a cross-sectional structure of the semiconductor device 10U of the 20th embodiment.
  • the first conductive type that is, either p-type or n-type
  • impurities of the second conductive type that is, the other of the p-type or the n-type
  • carriers (holes or electrons) for generating a two-dimensional carrier gas can be supplied to the first channel cambium and / the second channel cambium.
  • the bandgap of the first semiconductor material may be narrower than the bandgap of the second semiconductor material.
  • the first polar two-dimensional carrier gas is generated outside the dissimilar material layer in the first channel cambium, the first conductive type impurities are introduced into the dissimilar material layer, although not particularly limited. It is good.
  • the second polar two-dimensional carrier gas is formed outside the dissimilar material layer, so it is preferable that the second conductive type impurities are introduced into the dissimilar material layer. With such a configuration, it is possible to prevent the movement of carriers in the two-dimensional carrier gas from being hindered by impurities.
  • the first semiconductor material may be gallium arsenide (GaAs), and the second semiconductor material may be aluminum gallium arsenide (AlGaAs). Since the crystal growth of gallium arsenide is relatively easy, gallium arsenide can be preferably used as the first semiconductor material constituting the upper layer, the middle layer and the lower layer.
  • the first semiconductor material may be gallium nitride (GaN) and the second semiconductor material may be aluminum gallium nitride (AlGaN).
  • the bandgap of the first semiconductor material may be wider than the bandgap of the second semiconductor material.
  • the first polar two-dimensional carrier gas is generated in the dissimilar material layer in the first channel cambium
  • the first conductive type impurities are introduced outside the dissimilar material layer, although not particularly limited. It is good.
  • the second polar two-dimensional carrier gas is formed in the dissimilar material layer
  • the second conductive type impurities are introduced outside the dissimilar material layer, although not particularly limited. It is good. With such a configuration, it is possible to prevent the movement of carriers in the two-dimensional carrier gas from being hindered by impurities.
  • the first semiconductor material may be gallium arsenide (GaAs), and the second semiconductor material may be indium gallium arsenide (InGaAs).
  • the first semiconductor material may be aluminum arsenide gallium (AlGaAs) and the second semiconductor material may be indium gallium arsenide (InGaAs).
  • the first semiconductor material is indium aluminum gallium arsenate represented by the composition formula of In x Al y Ga 1-xy As (0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.5).
  • the second semiconductor material may be indium aluminum gallium arsenium represented by the composition formula of In a Al b Ga 1-ab As (a> x, y> b).
  • a plurality of different material layers may be provided in each of the first channel cambium and the second channel cambium.
  • a layer made of the first semiconductor material may be interposed between the plurality of dissimilar material layers. As the number of dissimilar material layers increases, more two-dimensional carrier gases are generated, which further reduces the resistance when energized.
  • the distance between two heterointerfaces adjacent to each other may be 3 nm or more and 20 nm or less. According to such a structure, adjacent two-dimensional carrier gases can be superposed at least partially to increase the carrier concentration in the two-dimensional carrier gas. As a result, the thickness of the first channel cambium and the second channel cambium can be reduced while maintaining the total number of carriers.
  • a plurality of first-polarity two-dimensional carrier gases may be generated in the first channel cambium.
  • the two-dimensional carrier gas having a shorter distance to the second channel cambium may have a larger carrier concentration.
  • a plurality of second polar two-dimensional carrier gases may be generated in the second channel cambium.
  • the two-dimensional carrier gas having a shorter distance to the first channel cambium may have a larger carrier concentration.
  • the source electrode and the drain electrode may be in contact with the second channel cambium.
  • the gate electrode may be in contact with the first channel cambium.
  • the gate electrode may be provided in the upper layer and isolated from the first channel cambium via a part of the upper layer. According to the latter configuration, the gate electrode can be made relatively small and can be easily formed.
  • the gate electrode when the source electrode and the drain electrode are in contact with the second channel cambium, the gate electrode may extend from the upper layer through the first channel cambium to the middle layer. Then, the distance from the gate electrode to the second channel cambium may be shorter than the distance from the first channel cambium to the second channel cambium.
  • the carrier concentration in the two-dimensional carrier gas can be reduced at a position close to the gate electrode, for example, in a recess gate structure in a high electron mobility transistor (HEMT).
  • HEMT high electron mobility transistor
  • a plurality of second-polarity two-dimensional carrier gases may be generated in the second channel cambium.
  • the two-dimensional carrier gas having a shorter distance to the gate electrode may have a larger carrier concentration. According to such a configuration, the carrier concentration of each of the plurality of two-dimensional carrier gases can be evenly reduced at a position close to the gate electrode, and the threshold voltage can be further increased.
  • the one or more two-dimensional carrier gases generated in the second channel cambium may be one or more two-dimensional electron gases.
  • the gate electrode may be made of a semiconductor material into which a first conductive type impurity is introduced. According to such a configuration, a built-in electric field is formed between the p-type gate electrode and the n-type second channel cambium, and the threshold voltage can be further increased by the built-in electric field.
  • each of the source electrode and the drain electrode can be electrically connected to the second channel cambium while being electrically insulated from the first channel cambium by a relatively simple structure. can.
  • the source electrode and the drain electrode may be in contact with the first channel cambium.
  • the gate electrode may extend from the upper layer through the first channel forming layer and the middle layer to the second channel forming layer, and may face the first channel forming layer in the upper layer.
  • the first channel cambium connecting between the source electrode and the drain electrode passes between the gate electrode having the recess gate structure and the second channel cambium connected to the gate electrode. do.
  • the carrier concentration of the first channel cambium is significantly reduced at the position where the first channel cambium passes, so that by increasing the threshold voltage, a normally-off type operation or an operation close to the normal off type can be realized.
  • a plurality of first-polarity two-dimensional carrier gases may be generated in the first channel cambium.
  • each two-dimensional carrier gas located on both the upper and lower sides may have a larger carrier concentration than at least one two-dimensional carrier gas located between them. .. According to such a configuration, the carrier concentration of each of the plurality of two-dimensional carrier gases can be reduced evenly, and the threshold voltage can be made higher.
  • a recess that passes through the upper layer and reaches the middle layer may be provided on the upper surface of the semiconductor substrate. ..
  • the gate electrode may extend from the bottom surface of the recess toward the second channel cambium. According to such a configuration, the gate electrode can be brought into contact with or close to the second channel cambium while being electrically insulated from the first channel cambium by a relatively simple structure.
  • the semiconductor substrate is located above the upper layer and has an insulating property, and is located between the upper buffer layer and the upper layer, and is 1 ⁇ 10 12 / cm 2 or more.
  • An upper potential fixation layer having an interface state concentration may be further provided.
  • the semiconductor substrate has the upper potential fixed layer, the potential (electric field strength) in the upper layer can be fixed regardless of the structure above the upper potential fixed layer, and the channel concentration of the first channel forming layer ( Or the potential) is stable. Therefore, an additional structure such as a protective film can be freely provided above the upper potential fixing layer, and it is necessary to consider the influence on the first channel cambium 30 and the second channel cambium at that time. There is no.
  • the upper potential fixed layer may be composed of a group III-V compound semiconductor into which carbon (C), oxygen (O) or iron (Fe) has been introduced.
  • the upper potential fixing layer may have a thickness of 1 nm to 10 ⁇ m.
  • the thickness of the upper potential fixed layer may be, for example, a thickness of several atomic layers or less, and an arbitrary crystal defect may be provided therein.
  • the semiconductor substrate is located below the lower layer and has an insulating property, and is located between the lower buffer layer and the lower layer, and 1 ⁇ 10.
  • a lower potential fixing layer having an interface state concentration of 12 / cm 2 or more may be further provided. According to such a configuration, the potential (electric field strength) in the upper layer can be fixed regardless of the structure below the lower potential fixing layer, and the channel concentration (or potential) of the second channel cambium is stabilized. Can be done. Therefore, an additional structure such as a support substrate can be freely provided below the lower potential fixed layer, and it is necessary to consider the influence on the first channel cambium and the second channel cambium at that time. No.
  • the lower potential fixed layer may also be composed of a group III-V compound semiconductor into which carbon (C), oxygen (O) or iron (Fe) has been introduced.
  • the lower potential fixing layer may have a thickness of 1 nm to 10 ⁇ m, although not particularly limited.
  • the thickness of the upper potential fixed layer may be, for example, a thickness of one atomic layer or less, or an arbitrary crystal defect may be provided therein.
  • the semiconductor device 10A of the first embodiment will be described with reference to FIGS. 1 and 2.
  • the semiconductor device 10A of this embodiment includes a semiconductor substrate 12, a source electrode 14, a drain electrode 16, and a gate electrode 18 provided on the semiconductor substrate 12.
  • the source electrode 14, the drain electrode 16, and the gate electrode 18 are not particularly limited, but are provided in a trench formed on the upper surface 12a of the semiconductor substrate 12.
  • the source electrode 14, the drain electrode 16, and the gate electrode 18 are made of a conductive material.
  • the source electrode 14 and the drain electrode 16 may be made of an n-type semiconductor (for example, n-GaAs), and the gate electrode 18 may be made of a p-type semiconductor (for example, p-GaAs). ..
  • the semiconductor substrate 12 is formed between the upper layer 20, the middle layer 22 and the lower layer 24, which are i-type semiconductor layers, the first channel cambium 30 located between the upper layer 20 and the middle layer 22, and the middle layer 22 and the lower layer 24. It includes a second channel cambium 40 located.
  • the upper layer 20, the middle layer 22, and the lower layer 24 are made of the first semiconductor material.
  • the thicknesses of the upper layer 20, the middle layer 22, and the lower layer 24 are not particularly limited, but may be several tens of nm to 1 ⁇ m.
  • the first semiconductor material may be a group III-V compound semiconductor or other semiconductor material.
  • a protective film 2 covering the upper surface 12a of the semiconductor substrate 12 is provided above the upper layer 20, and a support substrate 4 composed of a semi-insulating substrate is provided below the lower layer 24.
  • the first channel cambium 30 has one dissimilar material layer 32.
  • the dissimilar material layer 32 is composed of a second semiconductor material having a bandgap different from that of the first semiconductor material.
  • the thickness of the dissimilar material layer 32 is, for example, 3 nm to 50 nm, which is sufficiently smaller than the thickness of each of the upper layer 20, the middle layer 22, and the lower layer 24.
  • the dissimilar material layer 32 is in contact with each of the upper layer 20 and the middle layer 22, and a pair of hetero interfaces 34 are formed on both sides of the dissimilar material layer 32. Then, two-dimensional hole gas 2DHG is generated along each hetero interface 34.
  • the second semiconductor material is not particularly limited, but may be a group III-V compound semiconductor or other semiconductor material.
  • the second channel cambium 40 has one dissimilar material layer 42.
  • the dissimilar material layer 42 is made of a second semiconductor material, like the first channel cambium 30 described above.
  • the thickness of the dissimilar material layer 42 is, for example, 3 nm to 50 nm, which is smaller than the thickness of each of the upper layer 20, the middle layer 22, and the lower layer 24.
  • the dissimilar material layer 42 is in contact with each of the middle layer 22 and the lower layer 24, and a pair of hetero interfaces 44 are formed on both sides of the dissimilar material layer 42. Then, a two-dimensional electron gas 2DEG is generated along each hetero interface 44.
  • an n-type impurity is introduced into the dissimilar material layer 42 of the second channel forming layer 40, and electrons are supplied from the dissimilar material layer 42 to the two-dimensional electron gas 2DEG.
  • gallium arsenide GaAs
  • AlGaAs Aluminum gallium arsenide
  • the band gap of the first semiconductor material GaAs
  • the second semiconductor material AlGaAs
  • the first semiconductor material and the second semiconductor material are not limited to these semiconductor materials.
  • the first semiconductor material may be gallium nitride (GaN) and the second semiconductor material may be aluminum gallium nitride (AlGaN). Even in this case, the band gap of the first semiconductor material is narrower than the band gap of the second semiconductor material.
  • the two-dimensional hole gas 2DHG is formed on the outside of the dissimilar material layer 32 in the first channel cambium 30. Therefore, in the first channel cambium 30, p-type impurities are introduced inside the dissimilar material layer 32 so that the movement of holes is not hindered by the presence of impurities.
  • the two-dimensional electron gas 2DEG is generated outside the dissimilar material layer 42. Therefore, in the second channel cambium 40, n-type impurities are introduced inside the dissimilar material layer 42 so that the movement of electrons is not hindered by the presence of impurities.
  • p-type impurities are introduced along each hetero interface 34, and p-type impurities may be introduced outside the dissimilar material layer 32.
  • n-type impurities may be introduced along each hetero interface 44, and n-type impurities may be introduced outside the dissimilar material layer 42.
  • Each of the source electrode 14 and the drain electrode 16 extends from the upper surface 12a of the semiconductor substrate 12 to the second channel cambium 40 and is in contact with the second channel cambium 40. As a result, the source electrode 14 and the drain electrode 16 are electrically connected to each other via the two-dimensional electron gas 2DEG of the second channel forming layer 40.
  • the gate electrode 18 extends from the upper surface 12a of the semiconductor substrate 12 to the first channel cambium 30 and is in contact with the first channel cambium 30. As a result, the gate electrode 18 is electrically connected to the two-dimensional hole gas 2DHG of the first channel cambium 30.
  • two recesses 12b are provided on the upper surface 12a of the semiconductor substrate 12. Each recess 12b passes through the upper layer 20 and reaches the middle layer 22.
  • the source electrode 14 extends from the bottom surface of one of the two recesses 12b to the second channel cambium 40.
  • the drain electrode 16 extends from the other bottom surface of the two recesses 12b to the second channel cambium 40. According to such a configuration, the source electrode 14 and the drain electrode 16 are electrically insulated from the first channel cambium 30 and electrically to the second channel cambium 40 by a relatively simple structure. Can be connected.
  • the semiconductor device 10A of the present embodiment by adjusting the voltage applied to the gate electrode 18, the first channel forming layer 30 and the second channel forming layer 40 are depleted, or they are two-dimensionally positive. It is possible to generate a hole gas 2DHG and a two-dimensional electron gas 2DEG.
  • the source electrode 14 and the drain electrode 16 are electrically connected via the second channel cambium 40.
  • the second channel cambium 40 has a pair (ie, two) heterointerfaces 44, and two-dimensional electron gas 2DEG is generated along each heterointerface 44.
  • the source electrode 14 and the drain electrode 16 are electrically connected with a relatively low resistance.
  • the source electrode 14 and the drain electrode 16 are electrically insulated from each other.
  • the direction in which the first channel forming layer 30 and the second channel forming layer 40 face each other (vertical direction in FIG. 2) is relative to the direction connecting the source electrode 14 and the drain electrode 16 (horizontal direction in FIG. 2).
  • the electric field caused by the depletion is also generated in the direction orthogonal to the direction in which the source electrode 14 and the drain electrode 16 are aligned.
  • the semiconductor device 10A can realize a high off withstand voltage.
  • each of the first channel cambium 30 and the second channel cambium 40 only a two-dimensional carrier gas having the same polarity (that is, a two-dimensional hole gas 2DHG or a two-dimensional electron gas 2DEG) is generated. Therefore, in each of the first channel cambium 30 and the second channel cambium 40, it is not necessary to provide a space between adjacent two-dimensional carrier gases. Therefore, the thicknesses of the dissimilar material layers 32 and 42 can be sufficiently reduced. Thereby, the resistance at the time of energization can be reduced by generating a large amount of two-dimensional carrier gas (2DHG or 2DEG) while suppressing the thickness of the semiconductor substrate 12.
  • a two-dimensional carrier gas having the same polarity that is, a two-dimensional hole gas 2DHG or a two-dimensional electron gas 2DEG
  • the upper layer 20, the middle layer 22, and the lower layer 24 are made of gallium arsenide (GaAs), and the dissimilar material layers 32 and 42 are made of aluminum gallium arsenide (GaAlAs).
  • GaAs gallium arsenide
  • AlAs aluminum gallium arsenide
  • aluminum gallium arsenide has a problem that the impurity concentration at the time of crystal growth is relatively high as compared with gallium arsenide.
  • the dissimilar material layers 32 and 42 made of aluminum gallium arsenide are sufficiently thinner than the upper layer 20, the middle layer 22 and the lower layer 24 made of gallium arsenide, the influence of such impurities can be suppressed. Can be done. As a result, for example, fluctuations in carrier concentration in the first channel cambium 30 and the second channel cambium 40 are suppressed.
  • the dissimilar material layers 32 and 42 made of aluminum gallium arsenide are sufficiently thinner than the upper layer 20, the middle layer 22 and the lower layer 24 made of gallium arsenide. .. According to such a configuration, even when two types of semiconductor materials are alternately crystal-grown, the accumulation of strain due to the difference in lattice constant is suppressed, so that the semiconductor substrate 12 having a multilayer structure is relatively easy. Can be manufactured in.
  • Example 2 The semiconductor device 10B of the second embodiment will be described with reference to FIGS. 3 and 4.
  • the configurations of the first channel forming layer 30 and the second channel forming layer 40 are changed as compared with the semiconductor device 10A of the first embodiment.
  • the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
  • the first channel cambium 30 has two dissimilar material layers 32.
  • Each dissimilar material layer 32 is made of aluminum gallium arsenide and has p-type impurities introduced, as in the semiconductor device 10A of Example 1.
  • a layer made of a first semiconductor material (that is, gallium arsenide) is interposed between the two dissimilar material layers 32. That is, the first channel cambium 30 has a structure in which the first semiconductor material and the second semiconductor material are alternately laminated.
  • the distance between the two dissimilar material layers 32 may be about the same as the thickness of the dissimilar material layer 32, for example, 3 nm to 50 nm.
  • a pair of heterointerfaces 34 are formed on both sides thereof.
  • the first channel cambium 30 has four heterointerfaces 34. Then, two-dimensional hole gas 2DHG is generated along each hetero interface 34.
  • the two dissimilar material layers 32 that is, between the two adjacent hetero interfaces 34
  • the two two-dimensional hole gas 2DHGs are at least partially superposed, thereby apparently one two. Dimensional hole gas 2DHG may be generated.
  • the second channel cambium 40 has two dissimilar material layers 42.
  • Each dissimilar material layer 42 is made of aluminum gallium arsenide and has n-type impurities introduced, as in the semiconductor device 10A of Example 1.
  • a layer made of a first semiconductor material that is, gallium arsenide
  • the distance between the two dissimilar material layers 32 having a structure in which the first semiconductor material and the second semiconductor material are alternately laminated is the same as the thickness of the dissimilar material layer 42. It may be about, for example, 3 nm to 50 nm.
  • a pair of hetero interfaces 44 are formed on both sides thereof.
  • the second channel cambium 40 also has four heterointerfaces 44. Then, a two-dimensional electron gas 2DEG is generated along each hetero interface 44.
  • the two dissimilar material layers 42 that is, the two adjacent heterointerfaces 44
  • the two two-dimensional electron gases 2DEG are at least partially superposed, so that they are apparently one two-dimensional.
  • An electron gas 2DEG may be generated.
  • each of the first channel forming layer 30 and the second channel forming layer 40 has two dissimilar material layers 32 and 42, whereby many different material layers 32 and 42 are provided. Two-dimensional hole gas 2DHG or two-dimensional electron gas 2DEG is generated. According to such a configuration, since the source electrode 14 and the drain electrode 16 are connected via a large number of two-dimensional electron gas 2DEGs, the resistance at the time of energization is further reduced.
  • the first channel cambium 30 and the second channel cambium 40 may each have three or more dissimilar material layers 32 and 42.
  • Example 3 The semiconductor device 10C of the third embodiment will be described with reference to FIGS. 5 to 7.
  • the semiconductor device 10C of this embodiment is different from the semiconductor device 10A of the first embodiment in the positions where the two-dimensional hole gas 2DHG and the two-dimensional electron gas 2DEG are generated.
  • the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
  • n-type impurities are introduced into the dissimilar material layer 32, which is different from Example 1. Therefore, in the first channel cambium 30, two-dimensional electron gas 2DEG is generated along each hetero interface 34.
  • p-type impurities are introduced into the dissimilar material layer 42. Therefore, in the second channel cambium 40, two-dimensional hole gas 2DHG is generated along each hetero interface 44.
  • Each of the source electrode 14 and the drain electrode 16 extends from the upper surface 12a of the semiconductor substrate 12 to the first channel cambium 30 and is in contact with the first channel cambium 30.
  • the source electrode 14 and the drain electrode 16 are electrically connected to each other via the two-dimensional electron gas 2DEG of the first channel forming layer 30.
  • the gate electrode 18 extends from the upper surface 12a of the semiconductor substrate 12 through the first channel forming layer 30 to the second channel forming layer 40, and is in contact with the second channel forming layer 40.
  • the gate electrode 18 is electrically connected to the two-dimensional hole gas 2DHG of the second channel cambium 40.
  • the gate electrode 18 is electrically insulated from the first channel cambium 30 by, for example, an insulating region 19.
  • the gate electrode 18 in this embodiment has a recess gate portion 18A and a pillar portion 18B.
  • the recess gate portion 18A is provided in the upper layer 20 and extends parallel to the first channel cambium 30.
  • the pillar portion 18B extends from the recess gate portion 18A to the second channel cambium 40 and is in contact with the second channel cambium 40. That is, the gate electrode 18 extends from the upper layer 20 through the first channel forming layer 30 and the middle layer 22 to the second channel forming layer 40, and faces the first channel forming layer 30 in the upper layer 20. There is.
  • the first channel forming layer 30 connecting between the source electrode 14 and the drain electrode 16 is connected to the recess gate portion 18A of the gate electrode 18 and the second channel forming layer 40 connected to the gate electrode 18. Pass between and. Since the carrier concentration of the first channel cambium 30 drops significantly at the position where it passes, the threshold voltage of the semiconductor device 10C becomes high. As a result, the semiconductor device 10C can realize a normally-off type operation or an operation close to the normal off type.
  • Example 4 The semiconductor device 10D of the fourth embodiment will be described with reference to FIGS. 8 and 9.
  • the second semiconductor material constituting the dissimilar material layers 32 and 42 is changed as compared with the semiconductor device 10A of the first embodiment.
  • the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
  • i-type indium gallium arsenide i-InGaAs
  • the first semiconductor material constituting the upper layer 20, the middle layer 22, and the lower layer 24 i-type gallium arsenide (i-GaAs) is adopted as in the first embodiment. Therefore, in the semiconductor device 10D of the present embodiment, the band gap of the first semiconductor material (GaAs) is wider than the band gap of the second semiconductor material (InGaAs).
  • a two-dimensional hole gas 2DHG is formed inside the dissimilar material layer 32. Therefore, in the first channel cambium 30, p-type impurities are introduced to the outside of the dissimilar material layer 32 so that the movement of holes is not hindered by the presence of impurities. Therefore, hole supply layers 36 made of p-type gallium arsenide (p-GaAs) are formed on both sides of the dissimilar material layer 32. Similarly, in the second channel cambium 40, the two-dimensional electron gas 2DEG is generated inside the dissimilar material layer 42.
  • p-GaAs p-type gallium arsenide
  • n-type impurities are introduced to the outside of the dissimilar material layer 42 so that the movement of electrons is not hindered by the presence of impurities. Therefore, electron supply layers 46 made of n-type gallium arsenide (n-GaAs) are formed on both sides of the dissimilar material layer 42.
  • n-GaAs n-type gallium arsenide
  • the first semiconductor material and the second semiconductor material are not limited to the above combinations.
  • the first semiconductor material may be aluminum arsenide gallium (AlGaAs), and the second semiconductor material may be indium gallium arsenide (InGaAs).
  • the first semiconductor material is indium aluminum gallium arsenate represented by the composition formula of In x Al y Ga 1-xy As (0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.5).
  • the second semiconductor material may be indium aluminum gallium arsenium represented by the composition formula of In a Al b Ga 1-ab As (a> x, y> b). Even with these combinations, the bandgap of the first semiconductor material is wider than the bandgap of the second semiconductor material.
  • the semiconductor device 10D of the present embodiment in each of the first channel forming layer 30 and the second channel forming layer 40, two or more different material layers 32 and 42 are laminated via the first semiconductor material. May be good. Further, as in the semiconductor device 10C of the third embodiment, the two-dimensional electron gas 2DEG is generated in the first channel forming layer 30, and the two-dimensional hole gas 2DHG is generated in the second channel forming layer 40. You may. Further, in addition to or in place of the hole supply layer 36 and the electron supply layer 46 described above, p-type impurities or n-type impurities may be introduced into the dissimilar material layers 32 and 42.
  • the semiconductor device 10E of the fifth embodiment will be described with reference to FIGS. 10-12.
  • the semiconductor device 10E of the present embodiment has a structure in which the structure of the semiconductor device 10A of the first embodiment, particularly the laminated structure from the upper layer 20 to the lower layer 24, is repeated along the thickness direction of the semiconductor substrate 12.
  • the semiconductor device 10E may include a plurality of combinations of the first channel cambium 30 and the second channel cambium 40.
  • each of the source electrode 14 and the drain electrode 16 is in contact with the respective second channel cambium 40 and is electrically insulated from the respective first channel cambium 30 by, for example, the insulating regions 15 and 17. It is good.
  • the gate electrode 18 may be in contact with each first channel cambium 30 and may be electrically insulated from each second channel cambium 40 by, for example, an insulating region 19.
  • the specific structures of the first channel forming layer 30 and the second channel forming layer 40 are not particularly limited. Various structures disclosed in the present specification can be appropriately adopted for the first channel cambium 30 and the second channel cambium 40.
  • Example 6 The semiconductor device 10F of the sixth embodiment will be described with reference to FIGS. 13 and 14.
  • the configurations of the first channel forming layer 30 and the second channel forming layer 40 are changed as compared with the semiconductor device 10A of the first embodiment.
  • the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
  • the first channel cambium 30 has one dissimilar material layer 32.
  • aluminum gallium arsenide is used as the second semiconductor material constituting the dissimilar material layer 32.
  • the p-type impurities are not introduced inside the dissimilar material layer 32, and the p-type impurities are introduced outside the dissimilar material layer 32. Therefore, the dissimilar material layer 32 is made of i-type aluminum gallium arsenide (i-AlGaAs), and both sides of the dissimilar material layer 32 are made of p-type gallium arsenide (p-GaAs).
  • the hole supply layer 36 is formed.
  • the p-type impurity is introduced to the outside of the dissimilar material layer 32, and the two-dimensional hole gas 2DHG is generated to the outside of the dissimilar material layer 32.
  • the first channel cambium 30 may have two or more dissimilar material layers 32.
  • the second channel cambium 40 has one dissimilar material layer 42.
  • the dissimilar material layer 42 is composed of i-type aluminum gallium arsenide (i-AlGaAs), and electrons composed of n-type gallium arsenide (n-GaAs) on both sides of the dissimilar material layer 42.
  • the supply layer 46 is formed. That is, also in the second channel cambium 40, the n-type impurities are introduced to the outside of the dissimilar material layer 42, and the two-dimensional electron gas 2DEG is generated to the outside of the dissimilar material layer 32.
  • the second channel cambium 40 may also have two or more dissimilar material layers 42.
  • Example 7 The semiconductor device 10G of the seventh embodiment will be described with reference to FIGS. 15 and 16.
  • the configurations of the first channel forming layer 30 and the second channel forming layer 40 are changed as compared with the semiconductor device 10A of the first embodiment.
  • the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
  • the first channel cambium 30 has two dissimilar material layers 32.
  • Each dissimilar material layer 32 is made of aluminum gallium arsenide and has p-type impurities introduced, as in the semiconductor device 10A of Example 1.
  • a layer made of a first semiconductor material that is, gallium arsenide
  • a pair of heterointerfaces 34 are formed on both sides of each dissimilar material layer 32, and four heterointerfaces 34 are present in the first channel cambium 30. Then, two-dimensional hole gas 2DHG is generated along each hetero interface 34.
  • the distance between two adjacent hetero interfaces 34 is 3 nm to 20 nm, which is relatively small.
  • the carrier concentration that is, the hole density
  • Two-dimensional hole gas 2DHG with high density is generated.
  • the thickness of the first channel cambium 30 can be reduced while maintaining the excellent conductivity (that is, low resistance) of the first channel cambium 30.
  • the distribution of the carrier concentration in the thickness direction is made uniform, so that the maximum electric field strength that can occur in the first channel cambium 30 is reduced.
  • the first channel cambium 30 may have three or more dissimilar material layers 32.
  • the second channel cambium 40 has two dissimilar material layers 42.
  • Each dissimilar material layer 42 is made of aluminum gallium arsenide and has n-type impurities introduced, as in the semiconductor device 10A of Example 1.
  • a layer made of a first semiconductor material that is, gallium arsenide
  • a pair of heterointerfaces 44 are formed on both sides of each dissimilar material layer 42, and four heterointerfaces 44 are present in the second channel cambium 40. Then, a two-dimensional electron gas 2DEG is generated along each hetero interface 44.
  • the distance between two adjacent hetero interfaces 44 is 3 nm to 20 nm, which is relatively small.
  • the carrier concentration that is, the electron density
  • the carrier concentration is high by at least partially superimposing the two two-dimensional electron gases 2DEG between the two dissimilar material layers 42 (Y in the figure). Two-dimensional electron gas 2DEG is generated.
  • the thickness of the second channel cambium 40 can be reduced while maintaining the excellent conductivity (that is, low resistance) of the second channel cambium 40.
  • the distribution of the carrier concentration in the thickness direction is uniform between the two dissimilar material layers 42 (Y), the maximum electric field strength that can occur in the second channel cambium 40 is reduced.
  • the second channel cambium 40 may also have three or more dissimilar material layers 32.
  • Example 8 The semiconductor device 10H of the eighth embodiment will be described with reference to FIGS. 17 and 18.
  • the configurations of the first channel forming layer 30 and the second channel forming layer 40 are changed as compared with the semiconductor device 10A of the first embodiment.
  • the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
  • the first channel cambium 30 has two dissimilar material layers 32.
  • Each dissimilar material layer 32 is composed of i-type indium gallium arsenide (i-InGaAs).
  • a layer made of a first semiconductor material that is, gallium arsenide
  • a pair of heterointerfaces 34 are formed on both sides of each dissimilar material layer 32, and four heterointerfaces 34 are present in the first channel cambium 30. Then, two-dimensional hole gas 2DHG is generated along each hetero interface 34.
  • the bandgap of indium gallium arsenide constituting the dissimilar material layer 32 is narrower than the bandgap of the first semiconductor material (that is, gallium arsenide) constituting the upper layer 20, the middle layer 22, the lower layer 24, and the like. Therefore, the two-dimensional hole gas 2DHG is generated inside the dissimilar material layer 32.
  • a hole supply layer 36 made of p-type gallium arsenide (p-GaAs) is formed on both sides of each of the dissimilar material layers 32.
  • the first channel cambium 30 may have three or more dissimilar material layers 32.
  • each dissimilar material layer 32 that is, the distance between two adjacent hetero interfaces 34 is 3 nm to 20 nm, which is relatively small.
  • two two-dimensional hole gas 2DHGs have a high carrier concentration (that is, hole density) by at least partially superimposing inside the dissimilar material layer 32. Is generated.
  • the thickness of the first channel cambium 30 can be reduced while maintaining the excellent conductivity (that is, low resistance) of the first channel cambium 30.
  • the carrier concentration is uniformly increased in all the two-dimensional hole gas 2DHG, the maximum electric field strength that can be generated in the first channel cambium 30 can be further reduced. As a result, the withstand voltage of the semiconductor device 10H is improved.
  • the second channel cambium 40 has two dissimilar material layers 42.
  • Each dissimilar material layer 42 is composed of i-type indium gallium arsenide (i-InGaAs).
  • a layer made of a first semiconductor material that is, gallium arsenide
  • a pair of heterointerfaces 44 are formed on both sides of each dissimilar material layer 42, and four heterointerfaces 44 are present in the second channel cambium 40.
  • a two-dimensional electron gas 2DEG is generated along each hetero interface 44. These two-dimensional electron gas 2DEGs are generated inside the dissimilar material layer 42.
  • An electron supply layer 46 made of n-type gallium arsenide (n-GaAs) is formed on both sides of each dissimilar material layer 42.
  • the thickness of each dissimilar material layer 32 that is, the distance between two adjacent hetero interfaces 44 is 3 nm to 20 nm, which is relatively small.
  • two two-dimensional electron gas 2DEGs are at least partially overlapped inside the dissimilar material layer 42 to generate a two-dimensional electron gas 2DEG having a high carrier concentration (that is, electron density).
  • NS the thickness of the second channel cambium 40 can be reduced while maintaining the excellent conductivity (that is, low resistance) of the second channel cambium 40.
  • the carrier concentration is uniformly increased in all the two-dimensional electron gas 2DEG, the maximum electric field strength that can occur in the second channel cambium 40 can be further reduced. As a result, the withstand voltage of the semiconductor device 10H is improved.
  • the first semiconductor material and the second semiconductor material are not limited to the above combinations.
  • the first semiconductor material is aluminum gallium arsenide (AlGaAs) represented by the composition formula of Al x Ga 1-x As (0 ⁇ x ⁇ 1)
  • the second semiconductor material is In y Ga. It may be indium gallium arsenide represented by the composition formula of 1-y As (0 ⁇ y ⁇ 0.5).
  • the first semiconductor material is indium aluminum gallium arsenate represented by the composition formula of In x Al y Ga 1-xy As (0 ⁇ x ⁇ 0.3, 0 ⁇ y ⁇ 0.5).
  • the second semiconductor material may be indium aluminum gallium arsenium represented by the composition formula of In a Al b Ga 1-ab As (a> x, y> b). Even with these combinations, the bandgap of the first semiconductor material is wider than the bandgap of the second semiconductor material.
  • Example 9 The semiconductor device 10I of the ninth embodiment will be described with reference to FIGS. 19 and 20.
  • the configuration of the gate electrode 18 is changed as compared with the semiconductor device 10H of the eighth embodiment.
  • the differences from the eighth embodiment will be mainly described, and the configurations common to the eighth embodiment will be designated by the same reference numerals and duplicated description will be omitted.
  • the gate electrode 18 is provided in the upper layer 20 and is isolated from the first channel cambium 30 via a part of the upper layer 20. As described above, the gate electrode 18 does not necessarily have to be in contact with the first channel cambium 30 (or the second channel cambium 40). Even if the gate electrode 18 is separated from the first channel cambium 30, the gate electrode 18 and the first channel cambium 30 are electrically coupled by applying a voltage to the gate electrode 18, and the first channel cambium 30 is formed. 30 and the second channel cambium 40 can be depleted. Such a configuration of the gate electrode 18 can be adopted in all the examples described herein.
  • Example 10 The semiconductor device 10J of the tenth embodiment will be described with reference to FIGS. 21 and 22.
  • the configurations of the first channel forming layer 30 and the second channel forming layer 40 are changed as compared with the semiconductor device 10A of the first embodiment.
  • the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
  • the first channel cambium 30 has four dissimilar material layers 32.
  • Each dissimilar material layer 32 is composed of i-type indium gallium arsenide (i-InGaAs).
  • a layer made of a first semiconductor material that is, gallium arsenide
  • a pair of heterointerfaces 34 are formed on both sides of each dissimilar material layer 32, and eight heterointerfaces 34 are present in the first channel cambium 30. Then, two-dimensional hole gas 2DHG is generated along each hetero interface 34.
  • the bandgap of indium gallium arsenide constituting the dissimilar material layer 32 is narrower than the bandgap of the first semiconductor material (that is, gallium arsenide) constituting the upper layer 20, the middle layer 22, the lower layer 24, and the like. Therefore, the two-dimensional hole gas 2DHG is generated inside the dissimilar material layer 32.
  • a hole supply layer 36 made of p-type gallium arsenide (p-GaAs) is formed on both sides of each of the dissimilar material layers 32.
  • the two-dimensional hole gas 2DHG having a shorter distance to the second channel cambium 40 has a larger carrier concentration. That is, in the four two-dimensional hole gas 2DHGs shown in FIG. 22, the two-dimensional hole gas 2DHG located below has a larger carrier concentration. In order to form such a carrier concentration distribution, it is advisable to give a difference in impurity concentration to the plurality of hole supply layers 36.
  • the hole supply layer 36 having a shorter distance to the second channel cambium 40 has a higher impurity concentration. It is good to do.
  • the second channel cambium 40 has four dissimilar material layers 42.
  • Each dissimilar material layer 42 is composed of i-type indium gallium arsenide (i-InGaAs).
  • a layer made of a first semiconductor material that is, gallium arsenide
  • a pair of heterointerfaces 44 are formed on both sides of each dissimilar material layer 42, and eight heterointerfaces 44 are present in the second channel cambium 40.
  • a two-dimensional electron gas 2DEG is generated along each hetero interface 44. These two-dimensional electron gas 2DEGs are generated inside the dissimilar material layer 42.
  • An electron supply layer 46 made of n-type gallium arsenide (n-GaAs) is formed on both sides of each dissimilar material layer 42.
  • the two-dimensional electron gas 2DEG located above has a larger carrier concentration.
  • the carrier concentration of the two-dimensional electron gas 2DEG depends on the impurity concentration of the electron supply layer 46 adjacent thereto, it is preferable that the electron supply layer 46 having a shorter distance to the first channel cambium 30 has a higher impurity concentration. ..
  • a difference in carrier concentration is provided between the plurality of two-dimensional hole gas 2DHG and the plurality of two-dimensional electron gas 2DEG. According to such a configuration, it is possible to suppress or eliminate the time difference when the plurality of two-dimensional carrier gases are depleted in each of the first channel forming layer 30 and the second channel forming layer 40. Therefore, the switching speed (time required for switching) of the semiconductor device 10J can be improved.
  • Example 11 The semiconductor device 10K of the eleventh embodiment will be described with reference to FIGS. 23 and 24.
  • the semiconductor device 10K of this embodiment is modified in some respects as compared with the semiconductor device 10A of Example 1.
  • the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
  • i-type aluminum gallium arsenide (i-AlGaAs) is used as the first semiconductor material
  • i-type gallium arsenide (i-) is used as the second semiconductor material.
  • GaAs is adopted. That is, the upper layer 20, the middle layer 22, and the lower layer 24 are composed of i-type gallium arsenide, and the dissimilar material layers 32 and 42 of the first channel forming layer 30 and the second channel forming layer 40 are i-type arsenide. It is composed of aluminum gallium arsenide (i-GaAs).
  • a pair of hole supply layers 36 are formed along both sides of the dissimilar material layer 32.
  • Each hole supply layer 36 is composed of a first semiconductor material (that is, p-AlGaAs) into which p-type impurities have been introduced.
  • each electron supply layer 46 is composed of a first semiconductor material (that is, n-AlGaAs) into which an n-type impurity has been introduced.
  • n-AlGaAs a first semiconductor material
  • the concentrations of n-type impurities are different from each other. Specifically, the electron supply layer 46 closer to the gate electrode 18 (that is, the upper side in FIG. 24) is n than the electron supply layer 46 farther from the gate electrode 18 (that is, the lower side in FIG. 24). Type impurities are high.
  • the band gap of the first semiconductor material is larger than the band gap of the second semiconductor material. Is also widening. Therefore, in the first channel cambium 30, the two-dimensional hole gas 2DHG is formed inside the dissimilar material layer 32 along the hetero interface 34 formed on both sides of the dissimilar material layer 32. Similarly, in the second channel cambium 40, the two-dimensional electron gas 2DEG is formed inside the dissimilar material layer 42 along the hetero interface 44 formed on both sides of the dissimilar material layer 42.
  • Each of the first channel forming layer 30 and the second channel forming layer 40 has two or more different material layers 32 and 42, and is a hole supply layer 36 or an electron supply layer made of the first semiconductor material. It may have a structure in which 46 and dissimilar material layers 32 and 42 composed of a second semiconductor material are alternately laminated.
  • the gate electrode 18 passes from the upper layer 20 through the first channel cambium 30 and extends to the middle layer 22. As a result, the distance from the gate electrode 18 to the second channel cambium 40 is shorter than the distance from the first channel cambium 30 to the second channel cambium 40.
  • the two-dimensional electron gas 2DEG The carrier concentration can be reduced. As a result, the threshold voltage (gate voltage required to cut off the current) becomes high, so that the semiconductor device 10K can realize a normal-off type operation or an operation close to it.
  • the pair of electron supply layers 46 are provided with a difference in the concentration of n-type impurities, and the electron supply is close to the gate electrode 18.
  • the layer 46 has a higher impurity concentration.
  • two two-dimensional electron gas 2DEGs are generated so that the shorter the distance to the gate electrode 18 is, the larger the carrier concentration is.
  • the carrier concentration of each of the plurality of two-dimensional electron gases 2DEG can be uniformly reduced, and the threshold voltage can be further increased.
  • the semiconductor device 10L of the twelfth embodiment will be described with reference to FIGS. 25 to 27.
  • the semiconductor device 10L of the present embodiment differs from the semiconductor device 10A of the first embodiment in some points. In the following, the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
  • i-type indium gallium arsenide i-InGaAs
  • the first semiconductor material constituting the upper layer 20, the middle layer 22, and the lower layer 24 i-type gallium arsenide (i-GaAs) is adopted as in the first embodiment. Therefore, in the semiconductor device 10D of the present embodiment, the band gap of the first semiconductor material (GaAs) is wider than the band gap of the second semiconductor material (InGaAs).
  • the first channel cambium 30 has a plurality of dissimilar material layers 32.
  • a layer made of a first semiconductor material that is, gallium arsenide
  • gallium arsenide is interposed between two adjacent dissimilar material layers 32.
  • electron supply layers 36 into which n-type impurities have been introduced are formed. That is, the electron supply layer 36 is made of n-type gallium arsenide (n-GaAs) and is in contact with the dissimilar material layer 32 made of i-type indium arsenide aluminum gallium (i-InGaAs). ..
  • each dissimilar material layer 32 a pair of heterointerfaces 34 are formed on both sides thereof, and a two-dimensional electron gas 2DEG is generated along each heterointerface 34.
  • the bandgap of indium gallium arsenide is narrower than the bandgap of gallium arsenide, so that the two-dimensional electron gas 2DEG is generated inside the dissimilar material layer 32.
  • the second channel cambium 40 has a plurality of dissimilar material layers 42.
  • a layer made of a first semiconductor material that is, gallium arsenide
  • gallium arsenide is interposed between two adjacent dissimilar material layers 42.
  • Hole supply layers 46 into which p-type impurities have been introduced are formed on both sides of each dissimilar material layer 42. That is, the hole supply layer 46 is made of p-type gallium arsenide (p-GaAs) and is in contact with the dissimilar material layer 42 made of i-type indium aluminum gallium arsenide (i-InGaAs). There is.
  • each dissimilar material layer 42 a pair of heterointerfaces 44 are formed on both sides thereof, and two-dimensional hole gas 2DHG is generated along each heterointerface 44. This two-dimensional hole gas 2DHG is also generated inside the dissimilar material layer 42.
  • Each of the source electrode 14 and the drain electrode 16 extends from the upper surface 12a of the semiconductor substrate 12 to the first channel cambium 30 and is in contact with the first channel cambium 30. As a result, the source electrode 14 and the drain electrode 16 are electrically connected to each other via the two-dimensional electron gas 2DEG of the first channel forming layer 30.
  • the gate electrode 18 extends from the upper surface 12a of the semiconductor substrate 12 to the second channel cambium 40 and is in contact with the second channel cambium 40. As a result, the gate electrode 18 is electrically connected to the two-dimensional hole gas 2DHG of the second channel cambium 40.
  • the gate electrode 18 is electrically insulated from the first channel cambium 30 by, for example, an insulating region 19.
  • the gate electrode 18 in this embodiment has a recess gate portion 18A and a pillar portion 18B.
  • the recess gate portion 18A is provided in the upper layer 20 and extends parallel to the first channel cambium 30.
  • the pillar portion 18B extends from the recess gate portion 18A to the second channel cambium 40 and is in contact with the second channel cambium 40. That is, the gate electrode 18 extends from the upper layer 20 through the first channel forming layer 30 and the middle layer 22 to the second channel forming layer 40, and faces the first channel forming layer 30 in the upper layer 20. There is.
  • the first channel forming layer 30 connecting between the source electrode 14 and the drain electrode 16 is connected to the recess gate portion 18A of the gate electrode 18 and the second channel forming layer 40 connected to the gate electrode 18. Pass between and. Since the carrier concentration of the first channel cambium 30 drops significantly at the position where it passes, the threshold voltage of the semiconductor device 10L becomes high. As a result, the semiconductor device 10L can realize a normal-off type operation or an operation close to the normal-off type.
  • a difference may be provided in the carrier concentration in the plurality of two-dimensional electron gases 2DEG.
  • each two-dimensional electron gas 2DEG located on both the upper and lower sides may have a larger carrier concentration than at least one two-dimensional electron gas 2DEG located between them. That is, a two-dimensional electron gas 2DEG having a shorter distance to the gate electrode 18 or the second channel cambium 40 may have a larger carrier concentration. According to such a configuration, the carrier concentration of each of the plurality of two-dimensional electron gas 2DEGs can be reduced evenly, and the threshold voltage can be made higher.
  • the semiconductor device 10M of the thirteenth embodiment will be described with reference to FIGS. 28 to 30.
  • the semiconductor device 10M of this embodiment further includes an upper buffer layer 50, an upper potential fixing layer 52, a lower buffer layer 60, and a lower potential fixing layer 62 as compared with the semiconductor device 10A of the first embodiment.
  • the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
  • the upper buffer layer 50 is located above the upper layer 20 in the semiconductor substrate 12, and is interposed between the upper layer 20 and the protective film 2.
  • the upper buffer layer 50 is made of an insulating or semi-insulating material.
  • the material constituting the upper buffer layer 50 is not particularly limited, but may be, for example, type i gallium arsenide (that is, the first semiconductor material).
  • the upper potential fixing layer 52 is located between the upper buffer layer 50 and the upper layer 20, and has an interface state concentration of 1 ⁇ 10 12 / cm 2 or more.
  • the thickness of the upper potential fixing layer 52 may be, for example, about 1 nm to 10 um, or may be a thickness of several atomic layers or less.
  • the potential (electric field strength) in the upper layer 20 can be fixed regardless of the structure above the upper potential fixing layer 52.
  • the channel concentration in the first channel cambium 30 can be stabilized at a desired value. Therefore, an additional structure such as a protective film 2 can be freely provided above the upper potential fixing layer 52, and at that time, the influence on the first channel forming layer 30 and the second channel forming layer 40 can be exerted. No need to consider.
  • the lower buffer layer 60 is located below the lower layer 24 in the semiconductor substrate 12, and is interposed between the lower layer 24 and the support substrate 4.
  • the lower buffer layer 60 is made of an insulating or semi-insulating material.
  • the material constituting the lower buffer layer 60 is not particularly limited, but may be, for example, type i gallium arsenide (that is, the first semiconductor material).
  • the lower potential fixing layer 62 is located between the lower buffer layer 60 and the lower layer 24, and has an interface state concentration of 1 ⁇ 10 12 / cm 2 or more.
  • the thickness of the lower potential fixing layer 62 may be, for example, about 1 nm to 10 um, or may be a thickness of several atomic layers or less.
  • the potential (electric field strength) in the lower layer 24 is increased regardless of the structure below the lower potential fixing layer 62. It can be fixed (see FIG. 30). Thereby, the channel concentration in the second channel cambium 40 can be stabilized at a desired value. Further, by combining with the upper potential fixing layer 52, the channel concentration can be balanced between the first channel cambium 30 and the second channel cambium 40. Therefore, an additional structure such as a support substrate 4 can be freely provided below the lower potential fixing layer 62, and at that time, the influence on the first channel forming layer 30 and the second channel forming layer 40 can be exerted. No need to consider.
  • the specific configuration of the upper potential fixing layer 52 and the lower potential fixing layer 62 is not particularly limited.
  • each of the upper potential fixing layer 52 and the lower potential fixing layer 62 is composed of a group III-V compound semiconductor into which impurities such as carbon (C), oxygen (O) or iron (Fe) have been introduced. good.
  • the group III-V compound semiconductor may be gallium nitride (GaN), aluminum gallium nitride (AlGaN), or a superlattice layer of gallium nitride and aluminum gallium nitride.
  • the thickness of the upper potential fixing layer 52 and the lower potential fixing layer 62 can be about 1 nm to 10 um.
  • each of the upper potential fixing layer 52 and the lower potential fixing layer 62 may be delta-doped with impurities such as carbon, oxygen or iron. Alternatively, it may be a disorder of the crystal lattice of several atomic layers or less, such as unevenness of the interface.
  • the configurations of the upper potential fixing layer 52 and the lower potential fixing layer 62 are not particularly limited, and for example, the protective film 2 made of silicon oxide (SiO 2) and the like. It may be the interface of.
  • the interface state concentration of the upper potential fixing layer 52 and the lower potential fixing layer 62 can also be adjusted from the outside after the production of the semiconductor substrate 12 is completed. For example, in order to increase the interface state concentration, the semiconductor substrate 12 may be irradiated with ultraviolet rays or plasma. Alternatively, in order to reduce the interface state concentration, heat treatment such as lamp annealing or laser annealing may be performed.
  • Example 14 The semiconductor device 10N of the 14th embodiment will be described with reference to FIGS. 31 and 32.
  • the configurations of the first channel forming layer 30 and the second channel forming layer 40 are changed as compared with the semiconductor device 10M of the thirteenth embodiment.
  • the differences from the thirteenth embodiment will be mainly described, and the same reference numerals will be given to the configurations common to the thirteenth embodiment to omit duplicated description.
  • indium gallium arsenide (InGaAs) is adopted as the second semiconductor material constituting the dissimilar material layers 32 and 42.
  • i-type gallium arsenide (i-GaAs) is adopted as in Example 13. Therefore, in the semiconductor device 10N of this embodiment, the band gap of the first semiconductor material (GaAs) is wider than the band gap of the second semiconductor material (InGaAs).
  • a p-type impurity is introduced into the dissimilar material layer 32 of the first channel cambium 30, and the p-type indium gallium arsenide (p-InGaAs) serves as a hole supply layer for supplying holes. Also works. Further, n-type impurities are introduced into the dissimilar material layer 42 of the second channel cambium 40, and the n-type indium gallium arsenide (n-InGaAs) also functions as an electron supply layer for supplying electrons. do.
  • two-dimensional hole gas 2DHG is generated inside the dissimilar material layer 32 along the pair of heterointerfaces 34.
  • the two two-dimensional hole gas 2DHG generated along the two hetero interfaces 34 are apparently superimposed at least partially.
  • two-dimensional electron gas 2DEG is generated inside the dissimilar material layer 42 along the pair of heterointerfaces 44.
  • the thickness of the dissimilar material layer 42 is about 3 to 20 nm
  • the two two-dimensional electron gas 2DEG formed along the two hetero interfaces 44 are apparently one by superimposing at least partially. Generates two two-dimensional electron gas 2DEG.
  • Example 15 The semiconductor device 10P of the 15th embodiment will be described with reference to FIGS. 33 and 34.
  • the semiconductor device 10P of this embodiment differs from the semiconductor device 10M of the thirteenth embodiment in some respects. In the following, the differences from the thirteenth embodiment will be mainly described, and the same reference numerals will be given to the configurations common to the thirteenth embodiment to omit duplicated description.
  • the first channel cambium 30 has one dissimilar material layer 32.
  • aluminum gallium arsenide is used as the second semiconductor material constituting the dissimilar material layer 32.
  • an n-type impurity is introduced into the dissimilar material layer 32, and a two-dimensional electron gas 2DEG is generated along each hetero interface 34.
  • the gate electrode 18 is in contact with the first channel cambium 30 and is electrically connected to the two-dimensional electron gas 2DEG. Therefore, the gate electrode 18 is not particularly limited, but is composed of an n-type semiconductor such as n-type gallium arsenide (n-GaAs). Further, the gate electrode 18 is electrically insulated from the first channel cambium 30 by, for example, an insulating region 19.
  • the first channel cambium 30 may have two or more dissimilar material layers 32.
  • the second channel cambium 40 has one dissimilar material layer 42.
  • Aluminum gallium arsenide is also used as the second semiconductor material constituting the dissimilar material layer 42.
  • p-type impurities are introduced into the dissimilar material layer 42, and a two-dimensional hole gas 2DHG is generated along each hetero interface 44.
  • the source electrode 14 and the drain electrode 16 are in contact with the first channel cambium 30 and are connected to each other via the two-dimensional hole gas 2DHG. Therefore, the source electrode 14 and the drain electrode 16 are not particularly limited, but are made of a p-type semiconductor such as p-type gallium arsenide (p-GaAs).
  • the second channel cambium 40 may also have two or more dissimilar material layers 42.
  • the source electrode 14 and the drain electrode 16 are electrically connected to each other via the two-dimensional electron gas 2DEG of the first channel forming layer 30.
  • the gate electrode 18 is electrically connected to the two-dimensional hole gas 2DHG of the second channel cambium 40. Even with such a configuration, by adjusting the voltage applied to the gate electrode 18, the first channel forming layer 30 and the second channel forming layer 40 can be depleted, or the two-dimensional electron gas 2DEG and the two-dimensional can be made into them. Hole gas 2DHG can be generated. As a result, the source electrode 14 and the drain electrode 16 can be electrically connected or cut off.
  • the configuration in which the source electrode 14 and the drain electrode 16 are connected to each other via one or a plurality of two-dimensional hole gas 2DHGs is similarly adopted in the other embodiments disclosed in the present specification. can do.
  • the semiconductor device 10Q of the 16th embodiment will be described with reference to FIGS. 35-37.
  • the semiconductor device 10Q of this embodiment further includes an upper buffer layer 50, an upper potential fixing layer 52, a lower buffer layer 60, and a lower potential fixing layer 62 as compared with the semiconductor device 10L of the twelfth embodiment.
  • the upper potential fixing layer 52 and the lower potential fixing layer 62 can be added in any of the examples disclosed in the present specification.
  • each of the first channel forming layer 30 and the second channel forming layer 40 has a plurality of different material layers 32 and 42.
  • each of the first channel cambium 30 and the second channel cambium 40 may have at least one dissimilar material layer 32, 42.
  • Example 17 The semiconductor device 10R of the 17th embodiment will be described with reference to FIGS. 38 and 39.
  • the positions of the source electrode 14, the drain electrode 16 and the gate electrode 18 are changed as compared with the semiconductor device 10M of the thirteenth embodiment.
  • the first channel cambium 30 is configured to generate a two-dimensional electron gas 2DEG
  • the second channel cambium 40 is configured to generate a two-dimensional hole gas 2DHG.
  • Example 13 It is different from the semiconductor device 10M of.
  • the differences from the thirteenth embodiment will be mainly described, and the same reference numerals will be given to the configurations common to the thirteenth embodiment to omit duplicated description.
  • the first semiconductor material constituting the upper layer 20, the middle layer 22, and the lower layer 24 is gallium arsenide (GaAs), and the second semiconductor material constituting the dissimilar material layers 32 and 42.
  • the semiconductor material is aluminum gallium arsenide (AlGaAs).
  • Each of the source electrode 14 and the drain electrode 16 extends from the upper surface 12a of the semiconductor substrate 12 to the first channel cambium 30 and is in contact with the first channel cambium 30. As a result, the source electrode 14 and the drain electrode 16 are electrically connected to each other via the two-dimensional electron gas 2DEG of the first channel forming layer 30.
  • the gate electrode 18 is located on the recess 12b provided on the upper surface 12a of the semiconductor substrate 12, and extends from the bottom surface of the recess 12b to the second channel cambium 40. As a result, the gate electrode 18 is electrically connected to the two-dimensional hole gas 2DHG of the second channel cambium 40.
  • the recess 12b extends from the upper layer 20 to the middle layer 22 and exposes the middle layer 22. By providing the gate electrode 18 in the recess 12b, the gate electrode 18 can be easily insulated from the first channel cambium 30.
  • the structure in which the gate electrode 18 is provided on the recess 12b can be similarly adopted in some other examples disclosed in the present specification. Further, the number of recesses 12b and gate electrodes 18 is not limited to one, and a plurality of them may be provided. Further, in the semiconductor device 10R of this embodiment, the upper buffer layer 50, the upper potential fixing layer 52, the lower buffer layer 60, and the lower potential fixing layer 62 are not always required.
  • Example 18 The semiconductor device 10S of the 18th embodiment will be described with reference to FIGS. 40 and 41.
  • the second semiconductor material constituting the dissimilar material layers 32 and 42 is changed as compared with the semiconductor device 10M of the thirteenth embodiment.
  • the differences from the thirteenth embodiment will be mainly described, and the same reference numerals will be given to the configurations common to the thirteenth embodiment to omit duplicated description.
  • i-type indium gallium arsenide i-InGaAs
  • i-GaAs i-type indium gallium arsenide
  • Example 13 i-type gallium arsenide
  • a two-dimensional hole gas 2DHG is formed inside the dissimilar material layer 32. Therefore, in the first channel cambium 30, p-type impurities are introduced to the outside of the dissimilar material layer 32 so that the movement of holes is not hindered by the presence of impurities. Therefore, hole supply layers 36 made of p-type gallium arsenide (p-GaAs) are formed on both sides of the dissimilar material layer 32. Similarly, in the second channel cambium 40, the two-dimensional electron gas 2DEG is generated inside the dissimilar material layer 42.
  • p-GaAs p-type gallium arsenide
  • n-type impurities are introduced to the outside of the dissimilar material layer 42 so that the movement of electrons is not hindered by the presence of impurities. Therefore, electron supply layers 46 made of n-type gallium arsenide (n-GaAs) are formed on both sides of the dissimilar material layer 42.
  • n-GaAs n-type gallium arsenide
  • the semiconductor device 10S of the present embodiment is also a semiconductor device 10D of the fourth embodiment to which the upper buffer layer 50, the upper potential fixing layer 52, the lower buffer layer 60, and the lower potential fixing layer 62 are added. ..
  • the first semiconductor material and the second semiconductor material are not limited to the above-mentioned combination.
  • the semiconductor device 10T of the 19th embodiment will be described with reference to FIGS. 42 and 43.
  • the semiconductor device 10T of this embodiment includes a first semiconductor material constituting the upper layer 20, the middle layer 22, and the lower layer 24, and a second material layer 32, 42.
  • the semiconductor materials of are changed respectively.
  • the differences from the thirteenth embodiment will be mainly described, and the same reference numerals will be given to the configurations common to the thirteenth embodiment to omit duplicated description.
  • each of the upper layer 20, the middle layer 22, and the lower layer 24 is composed of i-type gallium nitride (i-GaN).
  • i-GaN i-type gallium nitride
  • AlGaN aluminum gallium nitride
  • the bandgap of gallium nitride is narrower than the bandgap of aluminum gallium nitride. Therefore, in the first channel cambium 30, two-dimensional hole gas 2DHG is generated outside the dissimilar material layer 32, so that p-type impurities are introduced inside the dissimilar material layer 32.
  • the support substrate 4 is not particularly limited, but a silicon carbide (SiC) substrate having insulating properties is adopted. However, the support substrate 4 is not limited to a silicon carbide (SiC) substrate, and may be a silicon (Si) or gallium nitride (GaN) substrate.
  • Example 20 The semiconductor device 10T of the 19th embodiment will be described with reference to FIGS. 44 and 45.
  • the semiconductor device 10T of this embodiment functions as a tie, and is different from the semiconductor device 10A-10S of the above-described embodiment in this respect.
  • the semiconductor device 10T includes a semiconductor substrate 12 and an anode electrode 14'and a cathode electrode 16'provided on the semiconductor substrate 12.
  • the anode electrode 14'and the cathode electrode 16' are not particularly limited, but are provided in a trench formed on the upper surface 12a of the semiconductor substrate 12.
  • the anode electrode 14'and the cathode electrode 16' are made of a conductive material.
  • the anode electrode 14' may be composed of a p-type semiconductor (for example, p-GaAs), and the cathode electrode 16'may be composed of an n-type semiconductor (for example, n-GaAs).
  • the semiconductor substrate 12 includes an upper layer 20, a middle layer 22, and a lower layer 24 made of a first semiconductor material, a first channel cambium 30 located between the upper layer 20 and the middle layer 22, and a middle layer 22 and a lower layer 24. It includes a second channel cambium 40 located between them.
  • the upper layer 20, the middle layer 22, and the lower layer 24 are made of i-type gallium nitride (i-GaN).
  • i-GaN i-type gallium nitride
  • Each of the first channel cambium 30 and the second channel cambium 40 may have one or more dissimilar material layers 32 and 42.
  • the dissimilar material layers 32 and 42 are made of, for example, aluminum gallium nitride (AlGaN).
  • AlGaN aluminum gallium nitride
  • various semiconductor materials can be adopted as understood from the various examples described above.
  • the thickness of each of the one or more dissimilar material layers 32, 42 is sufficiently smaller than the thickness of the upper layer 20, the middle layer 22, and the lower layer 24.
  • a pair of heterointerfaces 34 are formed on both sides of each of the one or more dissimilar material layers 32, and two-dimensional hole gas 2DHG is generated along each heterointerface 34.
  • NS In the second channel cambium 40, a pair of hetero interfaces 44 are formed on both sides of each of the one or more dissimilar material layers 42, and a two-dimensional electron gas 2DEG is generated along each hetero interface 44. ..
  • the anode electrode 14' is in contact with the first channel cambium 30 and is electrically connected to the two-dimensional hole gas 2DHG in the first channel cambium 30.
  • the cathode electrode 16' is in contact with the second channel cambium 40 and is electrically connected to the two-dimensional electron gas 2DEG in the second channel cambium 40.
  • the cathode electrode 16' is located in the recess 12b formed on the upper surface 12a of the semiconductor substrate 12, and extends from the bottom surface of the recess 12b to the second channel cambium 40.
  • a structure similar to a PIN diode (p-intrinsic-n diode) is formed between the anode electrode 14'and the cathode electrode 16'. Therefore, when a positive voltage is applied to the anode electrode 14'with respect to the cathode electrode 16', the anode electrode 14'and the cathode electrode 16' are electrically connected. At this time, holes move at high speed in the two-dimensional hole gas 2DHG in the first channel cambium 30, and electrons move at high speed in the two-dimensional electron gas 2DEG in the second channel forming layer 40. Is significantly suppressed.
  • the first channel forming layer 30 and the second channel forming layer 40 are depleted, so that the cathode electrode 16'and the anode electrode are depleted. It is electrically insulated from 14'.
  • the direction in which the first channel forming layer 30 and the second channel forming layer 40 face each other is the direction connecting the anode electrode 14'and the cathode electrode 16' (horizontal direction in FIG. 45). Is approximately orthogonal to.
  • the electric field caused by the depletion is also in a direction substantially orthogonal to the direction in which the anode electrode 14'and the cathode electrode 16'are aligned. appear.
  • the semiconductor device 10U can realize a high withstand voltage.
  • the configuration of the semiconductor device 10U can be changed in various ways.
  • the anode electrode 14' may be configured to be in contact with the second channel cambium 40
  • the cathode electrode 16' may be configured to be in contact with the first channel cambium 30.
  • the first channel cambium 30 may be configured to generate two-dimensional electron gas 2DEG
  • the second channel cambium 40 may be configured to generate two-dimensional hole gas 2DHG.
  • the first channel cambium 30 and the second channel cambium 40 may have two or more dissimilar material layers 32 and 42.
  • the configuration of the semiconductor substrate 12 in the above-mentioned Examples 1-19 can be adopted alone or in various combinations.
  • Protective film 4 Support substrate 10A-10U: Semiconductor device 12: Semiconductor substrate 14: Source electrode 14': Electrode electrode 16: Drain electrode 16': Cathode electrode 18: Gate electrode 20: Upper layer 22: Middle layer 24: Lower layer 30 : 1st channel forming layer 32: Dissimilar material layer of 1st channel forming layer 34: Hetero interface 36 of 1st channel forming layer: Hole supply layer or electron supply layer of 1st channel forming layer 40: 2nd channel forming layer 42: Dissimilar material layer of the second channel forming layer 44: Hetero interface of the second channel forming layer 46: Hole supply layer or electron supply layer of the second channel forming layer 50: Upper buffer layer 52: Upper potential fixing layer 60: Lower buffer layer 62: Lower potential fixed layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

This semiconductor device includes a semiconductor substrate, a source electrode, a drain electrode, and a gate electrode. The semiconductor substrate includes an upper layer, a middle layer, and a lower layer that are formed from a first semiconductor material, a first channel forming layer that is located between the upper layer and the middle layer, and a second channel forming layer that is located between the middle layer and the lower layer. The first and second channel forming layers each have one or a plurality of dissimilar material layers formed from a second semiconductor material having a bandgap which differs from that of the first semiconductor material. In the first channel forming layer, a two-dimensional carrier gas of a first conductivity type is generated at the pair of heterointerfaces formed on opposing sides of each dissimilar material layer. In the second channel forming layer, a two-dimensional carrier gas of a second conductivity type is generated at the pair of heterointerfaces formed on opposing sides of each dissimilar material layer. The source electrode and the drain electrode are in contact with one channel forming layer, and the gate electrode is in contact with or adjacent to the other channel forming layer.

Description

半導体装置Semiconductor device
 本明細書が開示する技術は、複数のヘテロ界面を有する半導体装置に関する。 The technology disclosed herein relates to a semiconductor device having a plurality of heterointerfaces.
 特許文献1に、複数のヘテロ界面を有する半導体装置が開示されている。この半導体装置では、二種類の半導体材料が交互に積層されることで、複数のヘテロ界面が形成されており、それらのヘテロ界面には、二次元電子ガスと二次元正孔ガスとが交互に生成される。このような構成によると、通電時における抵抗を低減しつつ、非通電時には優れた耐圧を発揮することができる。なお、本明細書では、二次元電子ガスと二次元正孔ガスとを総称して、二次元キャリアガスと表現することがある。 Patent Document 1 discloses a semiconductor device having a plurality of heterointerfaces. In this semiconductor device, a plurality of heterointerfaces are formed by alternately laminating two types of semiconductor materials, and two-dimensional electron gas and two-dimensional hole gas are alternately laminated at these heterointerfaces. Generated. According to such a configuration, it is possible to exhibit excellent withstand voltage when not energized while reducing resistance when energized. In the present specification, the two-dimensional electron gas and the two-dimensional hole gas may be collectively referred to as a two-dimensional carrier gas.
特開2019-57589号公報Japanese Unexamined Patent Publication No. 2019-57589
 上記した半導体装置では、ヘテロ界面の数、即ち、二次元電子ガスと二次元正孔ガスとの数を増加させることで、通電時における抵抗のさらなる低減を図ることができる。しかしながら、半導体基板のさらなる多層化が必要となることで、半導体基板の厚みが増大するという課題がある。特に、極性の異なる二次元正孔ガスと二次元電子ガスとの間には、ある程度の距離を与える必要がある。従って、二次元正孔ガスと二次元電子ガスとが交互に生成される構造であると、それぞれの層を比較的に厚く形成する必要があり、多層化によって半導体基板の厚みが比較的に大きく増大してしまう。 In the above-mentioned semiconductor device, the resistance at the time of energization can be further reduced by increasing the number of heterointerfaces, that is, the number of two-dimensional electron gas and two-dimensional hole gas. However, there is a problem that the thickness of the semiconductor substrate is increased due to the need for further multi-layering of the semiconductor substrate. In particular, it is necessary to provide a certain distance between the two-dimensional hole gas and the two-dimensional electron gas having different polarities. Therefore, in a structure in which two-dimensional hole gas and two-dimensional electron gas are alternately generated, it is necessary to form each layer relatively thick, and the thickness of the semiconductor substrate is relatively large due to the multi-layering. It will increase.
 上記を鑑み、本明細書は、複数のヘテロ界面を有する半導体装置において、半導体基板の厚みの増大を抑制しつつ、通電時の抵抗を低減し得る技術を提供する。 In view of the above, the present specification provides a technique capable of reducing resistance during energization while suppressing an increase in the thickness of a semiconductor substrate in a semiconductor device having a plurality of heterointerfaces.
 本明細書が開示する技術は、次の半導体装置に具現化される。この半導体装置は、半導体基板と、半導体基板に設けられたソース電極、ドレイン電極及びゲート電極とを備える。半導体基板は、第1の半導体材料で構成された上層、中層及び下層と、上層と中層との間に位置する第1チャネル形成層と、中層と下層との間に位置する第2チャネル形成層とを備える。第1チャネル形成層と第2チャネル形成層との各々は、第1の半導体材料とバンドギャップが異なる第2の半導体材料で構成された一又は複数の異種材料層を有し、その一又は複数の異種材料層の各々の厚みは、中層の厚みよりも小さい。第1チャネル形成層では、一又は複数の異種材料層の各々の両側に形成された一対のヘテロ界面に、第1極性の二次元キャリアガス(即ち、二次元正孔ガスと二次元電子ガスの一方)が生成される。第2チャネル形成層では、一又は複数の異種材料層の各々の両側に形成された一対のヘテロ界面に、第2極性の二次元キャリアガス(即ち、二次元正孔ガスと二次元電子ガスの他方)が生成される。ソース電極及びドレイン電極は、第1チャネル形成層と第2チャネル形成層との一方に接触している。そして、ゲート電極は、第1チャネル形成層と第2チャネル形成層との他方に接触又は隣接している。 The technology disclosed in this specification is embodied in the following semiconductor devices. This semiconductor device includes a semiconductor substrate and a source electrode, a drain electrode, and a gate electrode provided on the semiconductor substrate. The semiconductor substrate includes an upper layer, a middle layer and a lower layer made of a first semiconductor material, a first channel forming layer located between the upper layer and the middle layer, and a second channel forming layer located between the middle layer and the lower layer. And. Each of the first channel cambium and the second channel cambium has one or more dissimilar material layers composed of a second semiconductor material having a bandgap different from that of the first semiconductor material, and one or more of them. The thickness of each of the dissimilar material layers is smaller than the thickness of the middle layer. In the first channel forming layer, the first polar two-dimensional carrier gas (that is, the two-dimensional hole gas and the two-dimensional electron gas) are formed at a pair of heterointerfaces formed on both sides of one or more dissimilar material layers. On the other hand) is generated. In the second channel forming layer, a pair of heterointerfaces formed on both sides of one or more dissimilar material layers are of a second polar two-dimensional carrier gas (that is, a two-dimensional hole gas and a two-dimensional electron gas). The other) is generated. The source electrode and the drain electrode are in contact with one of the first channel cambium and the second channel cambium. The gate electrode is in contact with or adjacent to the other of the first channel cambium and the second channel cambium.
 上記した半導体装置では、ゲート電極に与える電圧を調節することで、第1チャネル形成層及び第2チャネル形成層を空乏化させたり、それらに二次元キャリアガス(即ち、二次元正孔ガス又は二次元電子ガス)を生成させたりすることができる。第1チャネル形成層及び第2チャネル形成層に二次元キャリアガスが生成されると、ソース電極とドレイン電極との間が、第1チャネル形成層又は第2チャネル形成層を介して電気的に接続される。特に、第1チャネル形成層と第2チャネル形成層とのそれぞれは、少なくとも一対(即ち、二以上の偶数)のヘテロ界面を有しており、それぞれのヘテロ界面に沿って二次元キャリアガスが生成される。これにより、ソース電極とドレイン電極との間は、比較的に低い抵抗で電気的に接続される。 In the above-mentioned semiconductor device, by adjusting the voltage applied to the gate electrode, the first channel forming layer and the second channel forming layer are depleted, or two-dimensional carrier gas (that is, two-dimensional hole gas or two-dimensional hole gas or two-dimensional hole gas) or two-dimensional carrier gas (that is, two-dimensional hole gas) or two-dimensional carrier gas (that is, two-dimensional hole gas) or two-dimensional carrier gas (that is, two-dimensional hole gas or two). Dimensional electron gas) can be generated. When two-dimensional carrier gas is generated in the first channel cambium and the second channel cambium, the source electrode and the drain electrode are electrically connected via the first channel cambium or the second channel cambium. Will be done. In particular, each of the first channel cambium and the second channel cambium has at least a pair (that is, two or more even numbers) of heterointerfaces, and a two-dimensional carrier gas is generated along each heterointerface. Will be done. As a result, the source electrode and the drain electrode are electrically connected with a relatively low resistance.
 ここで、第1チャネル形成層と第2チャネル形成層とのそれぞれでは、同一極性の二次元キャリアガスのみが生成されることから、隣り合う二次元キャリアガスの間に間隔を設ける必要がない。従って、半導体基板の厚みの増大を抑制しつつ、多くの二次元キャリアガスを生成させることによって、通電時の抵抗を小さくすることができる。その一方で、第1チャネル形成層と第2チャネル形成層との間には、比較的に厚い中層が存在することから、極性の異なる二次元キャリアガスの間には、十分な距離を与えることができる。これにより、半導体基板の厚みの増大を抑制しつつ、通電時の抵抗が低減された半導体装置を実現することができる。 Here, since only two-dimensional carrier gases having the same polarity are generated in each of the first channel cambium and the second channel cambium, it is not necessary to provide an interval between adjacent two-dimensional carrier gases. Therefore, it is possible to reduce the resistance at the time of energization by generating a large amount of two-dimensional carrier gas while suppressing an increase in the thickness of the semiconductor substrate. On the other hand, since a relatively thick middle layer exists between the first channel cambium and the second channel cambium, a sufficient distance should be provided between the two-dimensional carrier gases having different polarities. Can be done. As a result, it is possible to realize a semiconductor device in which resistance during energization is reduced while suppressing an increase in the thickness of the semiconductor substrate.
 本明細書が開示する技術は、次の半導体装置にも具現化される。この半導体装置は、半導体基板と、半導体基板に設けられた第1電極及び第2電極とを備える。半導体基板は、第1の半導体材料で構成された上層、中層及び下層と、上層と中層との間に位置する第1チャネル形成層と、中層と下層との間に位置する第2チャネル形成層とを備える。第1チャネル形成層と第2チャネル形成層との各々は、第1の半導体材料とバンドギャップが異なる第2の半導体材料で構成された一又は複数の異種材料層を有し、その一又は複数の異種材料層の各々の厚みは、中層の厚みよりも小さい。第1チャネル形成層では、一又は複数の異種材料層の各々の両側に形成された一対のヘテロ界面に、第1極性の二次元キャリアガス(即ち、二次元正孔ガスと二次元電子ガスの一方)が生成される。第2チャネル形成層では、一又は複数の異種材料層の各々の両側に形成された一対のヘテロ界面に、第2極性の二次元キャリアガス(即ち、二次元正孔ガスと二次元電子ガスの他方)が生成される。第1電極は、第1チャネル形成層と第2チャネル形成層との一方に接触している。そして、第2電極は、第1チャネル形成層と第2チャネル形成層との他方に接触している。 The technology disclosed in this specification is also embodied in the following semiconductor devices. This semiconductor device includes a semiconductor substrate and a first electrode and a second electrode provided on the semiconductor substrate. The semiconductor substrate includes an upper layer, a middle layer and a lower layer made of a first semiconductor material, a first channel forming layer located between the upper layer and the middle layer, and a second channel forming layer located between the middle layer and the lower layer. And. Each of the first channel cambium and the second channel cambium has one or more dissimilar material layers composed of a second semiconductor material having a bandgap different from that of the first semiconductor material, and one or more of them. The thickness of each of the dissimilar material layers is smaller than the thickness of the middle layer. In the first channel forming layer, the first polar two-dimensional carrier gas (that is, the two-dimensional hole gas and the two-dimensional electron gas) are formed at a pair of heterointerfaces formed on both sides of one or more dissimilar material layers. On the other hand) is generated. In the second channel forming layer, a pair of heterointerfaces formed on both sides of one or more dissimilar material layers are of a second polar two-dimensional carrier gas (that is, a two-dimensional hole gas and a two-dimensional electron gas). The other) is generated. The first electrode is in contact with one of the first channel cambium and the second channel cambium. The second electrode is in contact with the other of the first channel cambium and the second channel cambium.
 上記した半導体装置では、第1電極と第2電極との一方をアノードとし、第1電極と第2電極との他方をカソードとして、ダイオードとして機能することができる。例えば、第1チャネル形成層に二次元正孔ガスが生成され、第2チャネル形成層に二次元電子ガスが生成される構成であれば、第1電極はアノードとして機能し、第2電極はカソードとして機能する。一方、第1チャネル形成層に二次元電子ガスが生成され、第2チャネル形成層に二次元正孔ガスが生成される構成であれば、第1電極はカソードとして機能し、第2電極はアノードとして機能する。 In the above-mentioned semiconductor device, one of the first electrode and the second electrode serves as an anode, and the other of the first electrode and the second electrode serves as a cathode, which can function as a diode. For example, in a configuration in which a two-dimensional hole gas is generated in the first channel cambium and a two-dimensional electron gas is generated in the second channel cambium, the first electrode functions as an anode and the second electrode is a cathode. Functions as. On the other hand, if the configuration is such that two-dimensional electron gas is generated in the first channel cambium and two-dimensional hole gas is generated in the second channel cambium, the first electrode functions as a cathode and the second electrode is an anode. Functions as.
 この半導体装置においても、第1チャネル形成層と第2チャネル形成層とのそれぞれでは、同一極性の二次元キャリアガスのみが生成されることから、隣り合う二次元キャリアガスの間隔を比較的に小さくすることができる。従って、生成される二次元キャリアガスの数に対して、第1チャネル形成層及び第2チャネル形成層の厚みを、比較的に小さくすることができる。その一方で、第1チャネル形成層と第2チャネル形成層との間には、比較的に厚い中層が存在することから、極性の異なる二次元キャリアガスの間には、十分な距離を与えることができる。これにより、半導体基板の厚みの増大を抑制しつつ、通電時の抵抗が低減された半導体装置を実現することができる。 Also in this semiconductor device, since only two-dimensional carrier gases having the same polarity are generated in each of the first channel cambium and the second channel cambium, the distance between adjacent two-dimensional carrier gases is relatively small. can do. Therefore, the thickness of the first channel cambium and the second channel cambium can be made relatively small with respect to the number of two-dimensional carrier gases produced. On the other hand, since a relatively thick middle layer exists between the first channel cambium and the second channel cambium, a sufficient distance should be provided between the two-dimensional carrier gases having different polarities. Can be done. As a result, it is possible to realize a semiconductor device in which resistance during energization is reduced while suppressing an increase in the thickness of the semiconductor substrate.
実施例1の半導体装置10Aを模式的に示す平面図。The plan view which shows typically the semiconductor device 10A of Example 1. FIG. 図1中のII-II線断面図であって、実施例1の半導体装置10Aの断面構造を模式的に示す。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, schematically showing a cross-sectional structure of the semiconductor device 10A of the first embodiment. 実施例2の半導体装置10Bを模式的に示す平面図。The plan view which shows typically the semiconductor device 10B of Example 2. FIG. 図3中のII-II線断面図であって、実施例2の半導体装置10Bの断面構造を模式的に示す。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 3, schematically showing a cross-sectional structure of the semiconductor device 10B of the second embodiment. 実施例3の半導体装置10Cを模式的に示す平面図。The plan view which shows typically the semiconductor device 10C of Example 3. FIG. 図5中のVI-VI線断面図であって、実施例3の半導体装置10Cの断面構造を模式的に示す平面図。FIG. 5 is a cross-sectional view taken along the line VI-VI in FIG. 5, which is a plan view schematically showing a cross-sectional structure of the semiconductor device 10C of the third embodiment. 図5中のVII-VII線断面図であって、実施例3の半導体装置10Cの断面構造を模式的に示す。FIG. 5 is a cross-sectional view taken along the line VII-VII in FIG. 5, schematically showing a cross-sectional structure of the semiconductor device 10C of the third embodiment. 実施例4の半導体装置10Dを模式的に示す平面図。The plan view which shows typically the semiconductor device 10D of Example 4. FIG. 図8中のIX-IX線断面図であって、実施例4の半導体装置10Dの断面構造を模式的に示す。FIG. 8 is a cross-sectional view taken along the line IX-IX in FIG. 8 and schematically shows a cross-sectional structure of the semiconductor device 10D of the fourth embodiment. 実施例5の半導体装置10Eを模式的に示す平面図。The plan view which shows typically the semiconductor device 10E of Example 5. 図10中のXI-XI線断面図であって、実施例5の半導体装置10Eの断面構造を模式的に示す。FIG. 10 is a cross-sectional view taken along the line XI-XI in FIG. 10, and schematically shows a cross-sectional structure of the semiconductor device 10E of the fifth embodiment. 図10中のXII-XII線断面図であって、実施例5の半導体装置10Eの断面構造を模式的に示す。FIG. 10 is a cross-sectional view taken along the line XII-XII in FIG. 10, schematically showing a cross-sectional structure of the semiconductor device 10E of the fifth embodiment. 実施例6の半導体装置10Fを模式的に示す平面図。The plan view which shows typically the semiconductor device 10F of Example 6. 図13中のXIV-XIV線断面図であって、実施例6の半導体装置10Fの断面構造を模式的に示す。It is a cross-sectional view of XIV-XIV in FIG. 13, and shows schematically the cross-sectional structure of the semiconductor device 10F of Example 6. 実施例7の半導体装置10Gを模式的に示す平面図。The plan view which shows typically the semiconductor device 10G of Example 7. 図15中のXVI-XVI線断面図であって、実施例7の半導体装置10Gの断面構造を模式的に示す。FIG. 15 is a cross-sectional view taken along the line XVI-XVI in FIG. 15, schematically showing a cross-sectional structure of the semiconductor device 10G of the seventh embodiment. 実施例8の半導体装置10Hを模式的に示す平面図。The plan view which shows typically the semiconductor device 10H of Example 8. 図17中のXVIII-XVIII線断面図であって、実施例8の半導体装置10Hの断面構造を模式的に示す平面図。FIG. 17 is a cross-sectional view taken along the line XVIII-XVIII in FIG. 17, which is a plan view schematically showing a cross-sectional structure of the semiconductor device 10H of the eighth embodiment. 実施例9の半導体装置10Iを模式的に示す平面図。FIG. 5 is a plan view schematically showing the semiconductor device 10I of the ninth embodiment. 図19中のXX-XX線断面図であって、実施例9の半導体装置10Iの断面構造を模式的に示す。FIG. 19 is a cross-sectional view taken along the line XX-XX in FIG. 19, which schematically shows a cross-sectional structure of the semiconductor device 10I of the ninth embodiment. 実施例10の半導体装置10Jを模式的に示す平面図。The plan view which shows typically the semiconductor device 10J of Example 10. 図21中のXXII-XXII線断面図であって、実施例10の半導体装置10Jの断面構造を模式的に示す。FIG. 21 is a cross-sectional view taken along the line XXII-XXII in FIG. 21, schematically showing a cross-sectional structure of the semiconductor device 10J of the tenth embodiment. 実施例11の半導体装置10Kを模式的に示す平面図。FIG. 5 is a plan view schematically showing the semiconductor device 10K of the eleventh embodiment. 図23中のXXIV-XXIV線断面図であって、実施例11の半導体装置10Kの断面構造を模式的に示す。FIG. 2 is a cross-sectional view taken along the line XXIV-XXIV in FIG. 23, schematically showing a cross-sectional structure of the semiconductor device 10K of the eleventh embodiment. 実施例12の半導体装置10Lを模式的に示す平面図。The plan view which shows typically the semiconductor device 10L of Example 12. 図25中のXXVI-XXVI線断面図であって、実施例12の半導体装置10Lの断面構造を模式的に示す。FIG. 5 is a cross-sectional view taken along the line XXVI-XXVI in FIG. 25, schematically showing a cross-sectional structure of the semiconductor device 10L of the twelfth embodiment. 図25中のXXVII-XXVII線断面図であって、実施例12の半導体装置10Lの断面構造を模式的に示す。FIG. 5 is a cross-sectional view taken along the line XXVII-XXVII in FIG. 25, schematically showing a cross-sectional structure of the semiconductor device 10L of Example 12. 実施例13の半導体装置10Mを模式的に示す平面図。The plan view which shows typically the semiconductor device 10M of Example 13. 図28中のXXIX-XXIX線断面図であって、実施例13の半導体装置10Mの断面構造を模式的に示す。FIG. 28 is a cross-sectional view taken along the line XXIX-XXIX in FIG. 28, schematically showing a cross-sectional structure of the semiconductor device 10M of the thirteenth embodiment. 実施例13において半導体基板12の厚み方向におけるエネルギーバンドを示すバンド図。線Ecは伝導帯の最低エネルギーを示し、線Evは価電子帯の最大エネルギーを示し、線Efはフェルミ準位のエネルギーを示す。The band diagram which shows the energy band in the thickness direction of the semiconductor substrate 12 in Example 13. The line Ec shows the lowest energy in the conduction band, the line Ev shows the maximum energy in the valence band, and the line Ef shows the energy at the Fermi level. 実施例14の半導体装置10Nを模式的に示す平面図。The plan view which shows typically the semiconductor device 10N of Example 14. 図31中のXXXII-XXXII線断面図であって、実施例14の半導体装置10Nの断面構造を模式的に示す。FIG. 3 is a cross-sectional view taken along the line XXXII-XXXII in FIG. 31, schematically showing a cross-sectional structure of the semiconductor device 10N of Example 14. 実施例15の半導体装置10Pを模式的に示す平面図。The plan view which shows typically the semiconductor device 10P of Example 15. 図33中のXXXIV-XXXIV線断面図であって、実施例15の半導体装置10Pの断面構造を模式的に示す。FIG. 3 is a cross-sectional view taken along the line XXXIV-XXXIV in FIG. 33, schematically showing a cross-sectional structure of the semiconductor device 10P of Example 15. 実施例16の半導体装置10Qを模式的に示す平面図。The plan view which shows typically the semiconductor device 10Q of Example 16. 図35中のXXXVI-XXXVI線断面図であって、実施例16の半導体装置10Qの断面構造を模式的に示す。FIG. 3 is a cross-sectional view taken along the line XXXVI-XXXVI in FIG. 35, schematically showing a cross-sectional structure of the semiconductor device 10Q of Example 16. 図35中のXXXVII-XXXVII線断面図であって、実施例16の半導体装置10Qの断面構造を模式的に示す。FIG. 3 is a cross-sectional view taken along the line XXXVII-XXXVII in FIG. 35, schematically showing a cross-sectional structure of the semiconductor device 10Q of Example 16. 実施例17の半導体装置10Rを模式的に示す平面図。The plan view which shows typically the semiconductor device 10R of Example 17. 図38中のXXXIX-XXXIX線断面図であって、実施例17の半導体装置10Rの断面構造を模式的に示す。It is a cross-sectional view of XXXX-XXXIX in FIG. 38, and schematically shows the cross-sectional structure of the semiconductor device 10R of Example 17. 実施例18の半導体装置10Sを模式的に示す平面図。The plan view which shows typically the semiconductor device 10S of Example 18. 図40中のXLI-XLI線断面図であって、実施例18の半導体装置10Sの断面構造を模式的に示す。It is a cross-sectional view of XLI-XLI in FIG. 40, and schematically shows the cross-sectional structure of the semiconductor device 10S of Example 18. 実施例19の半導体装置10Tを模式的に示す平面図。The plan view which shows typically the semiconductor device 10T of Example 19. 図42中のXLIII-XLIII線断面図であって、実施例19の半導体装置10Tの断面構造を模式的に示す。FIG. 42 is a cross-sectional view taken along the line XLIII-XLIII in FIG. 42, schematically showing a cross-sectional structure of the semiconductor device 10T of Example 19. 実施例20の半導体装置10Uを模式的に示す平面図。The plan view which shows typically the semiconductor device 10U of Example 20. 図44中のXLV-XLV線断面図であって、実施例20の半導体装置10Uの断面構造を模式的に示す。FIG. 4 is a cross-sectional view taken along the line XLV-XLV in FIG. 44, schematically showing a cross-sectional structure of the semiconductor device 10U of the 20th embodiment.
 本技術の一実施形態において、第1チャネル形成層では、ヘテロ界面に沿って第1導電型(即ち、p型又はn型の一方)の不純物が導入されていてもよい。加えて、第2チャネル形成層では、ヘテロ界面に沿って第2導電型(即ち、p型又はn型の他方)の不純物が導入されていてもよい。これにより、第1チャネル形成層及び/第2チャネル形成層に対して、二次元キャリアガスを生成するためのキャリア(正孔又は電子)を供給することができる。 In one embodiment of the present technology, the first conductive type (that is, either p-type or n-type) impurities may be introduced into the first channel cambium along the hetero interface. In addition, in the second channel cambium, impurities of the second conductive type (that is, the other of the p-type or the n-type) may be introduced along the hetero interface. As a result, carriers (holes or electrons) for generating a two-dimensional carrier gas can be supplied to the first channel cambium and / the second channel cambium.
 本技術の一実施形態において、第1の半導体材料のバンドギャップは、第2の半導体材料のバンドギャップよりも狭くてもよい。この場合、第1チャネル形成層では、異種材料層外に第1極性の二次元キャリアガスが生成されるので、特に限定されないが、異種材料層内に第1導電型の不純物が導入されているとよい。同様に、第2チャネル形成層では、異種材料層外に第2極性の二次元キャリアガスが形成されるので、異種材料層内に第2導電型の不純物が導入されているとよい。このような構成によると、二次元キャリアガスにおけるキャリアの移動が、不純物によって阻害されることを避けることができる。 In one embodiment of the present technology, the bandgap of the first semiconductor material may be narrower than the bandgap of the second semiconductor material. In this case, since the first polar two-dimensional carrier gas is generated outside the dissimilar material layer in the first channel cambium, the first conductive type impurities are introduced into the dissimilar material layer, although not particularly limited. It is good. Similarly, in the second channel cambium, the second polar two-dimensional carrier gas is formed outside the dissimilar material layer, so it is preferable that the second conductive type impurities are introduced into the dissimilar material layer. With such a configuration, it is possible to prevent the movement of carriers in the two-dimensional carrier gas from being hindered by impurities.
 上記した実施形態において、第1の半導体材料は、ヒ化ガリウム(GaAs)であり、第2の半導体材料は、ヒ化アルミニウムガリウム(AlGaAs)であってもよい。ヒ化ガリウムの結晶成長は比較的に容易なので、上層、中層及び下層を構成する第1の半導体材料には、ヒ化ガリウムを好適に採用することができる。但し、他の実施形態として、第1の半導体材料は、窒化ガリウム(GaN)であり、第2の半導体材料は、窒化アルミニウムガリウム(AlGaN)であってもよい。 In the above-described embodiment, the first semiconductor material may be gallium arsenide (GaAs), and the second semiconductor material may be aluminum gallium arsenide (AlGaAs). Since the crystal growth of gallium arsenide is relatively easy, gallium arsenide can be preferably used as the first semiconductor material constituting the upper layer, the middle layer and the lower layer. However, as another embodiment, the first semiconductor material may be gallium nitride (GaN) and the second semiconductor material may be aluminum gallium nitride (AlGaN).
 本技術の一実施形態において、第1の半導体材料のバンドギャップは、第2の半導体材料のバンドギャップよりも広くてもよい。この場合、第1チャネル形成層では、異種材料層内に第1極性の二次元キャリアガスが生成されるので、特に限定されないが、異種材料層外に第1導電型の不純物が導入されているとよい。同様に、第2チャネル形成層では、異種材料層内に第2極性の二次元キャリアガスが形成されるので、特に限定されないが、異種材料層外に第2導電型の不純物が導入されているとよい。このような構成によると、二次元キャリアガスにおけるキャリアの移動が、不純物によって阻害されることを避けることができる。 In one embodiment of the present technology, the bandgap of the first semiconductor material may be wider than the bandgap of the second semiconductor material. In this case, since the first polar two-dimensional carrier gas is generated in the dissimilar material layer in the first channel cambium, the first conductive type impurities are introduced outside the dissimilar material layer, although not particularly limited. It is good. Similarly, in the second channel cambium, since the second polar two-dimensional carrier gas is formed in the dissimilar material layer, the second conductive type impurities are introduced outside the dissimilar material layer, although not particularly limited. It is good. With such a configuration, it is possible to prevent the movement of carriers in the two-dimensional carrier gas from being hindered by impurities.
 上記した実施形態において、第1の半導体材料は、ヒ化ガリウム(GaAs)であり、第2の半導体材料は、ヒ化インジウムガリウム(InGaAs)であってもよい。あるいは、第1の半導体材料は、ヒ化アルミニウムガリウム(AlGaAs)であり、第2の半導体材料は、ヒ化インジウムガリウム(InGaAs)であってもよい。あるいは、第1の半導体材料は、InAlGa1-x-yAs(0<x<0.3,0<y<0.5)の組成式で表されるヒ化インジウムアルミニウムガリウムであり、第2の半導体材料は、InAlGa1-a-bAs(a>x,y>b)の組成式で表されるヒ化インジウムアルミニウムガリウムであってもよい。 In the above-described embodiment, the first semiconductor material may be gallium arsenide (GaAs), and the second semiconductor material may be indium gallium arsenide (InGaAs). Alternatively, the first semiconductor material may be aluminum arsenide gallium (AlGaAs) and the second semiconductor material may be indium gallium arsenide (InGaAs). Alternatively, the first semiconductor material is indium aluminum gallium arsenate represented by the composition formula of In x Al y Ga 1-xy As (0 <x <0.3, 0 <y <0.5). The second semiconductor material may be indium aluminum gallium arsenium represented by the composition formula of In a Al b Ga 1-ab As (a> x, y> b).
 本技術の一実施形態において、第1チャネル形成層及び第2チャネル形成層の各々には、複数の異種材料層が設けられていてもよい。この場合、複数の異種材料層の間には、第1の半導体材料で構成された層が介在してもよい。異種材料層の数が多くなるほど、多くの二次元キャリアガスが生成され、それによって通電時の抵抗はより低減される。 In one embodiment of the present technology, a plurality of different material layers may be provided in each of the first channel cambium and the second channel cambium. In this case, a layer made of the first semiconductor material may be interposed between the plurality of dissimilar material layers. As the number of dissimilar material layers increases, more two-dimensional carrier gases are generated, which further reduces the resistance when energized.
 本技術の一実施形態において、第1チャネル形成層及び第2チャネル形成層の各々では、互いに隣接する二つのヘテロ界面の距離が3nm以上20nm以下であってもよい。このような構造によると、隣接する二次元キャリアガスを少なくとも部分的に重畳させて、二次元キャリアガスにおけるキャリア濃度を高めることができる。これにより、キャリアの総数を維持しながら、第1チャネル形成層や第2チャネル形成層の厚みを小さくすることができる。 In one embodiment of the present technology, in each of the first channel cambium and the second channel cambium, the distance between two heterointerfaces adjacent to each other may be 3 nm or more and 20 nm or less. According to such a structure, adjacent two-dimensional carrier gases can be superposed at least partially to increase the carrier concentration in the two-dimensional carrier gas. As a result, the thickness of the first channel cambium and the second channel cambium can be reduced while maintaining the total number of carriers.
 本技術の一実施形態において、第1チャネル形成層では、第1極性の二次元キャリアガスが複数生成されてもよい。この場合、その複数の二次元キャリアガスでは、第2チャネル形成層までの距離が短い二次元キャリアガスほど、大きなキャリア濃度を有してもよい。同様に、第2チャネル形成層では、第2極性の二次元キャリアガスが複数生成されてもよい。この場合、その複数の二次元キャリアガスでは、第1チャネル形成層までの距離が短い二次元キャリアガスほど、大きなキャリア濃度を有してもよい。このような構成によると、第1チャネル形成層及び第2チャネル形成層の各々において、複数の二次元キャリアガスが空乏化されるときの時間差を抑制又は排除することができる。従って、半導体装置のスイッチング速度(スイッチングに要する時間)を向上することができる。 In one embodiment of the present technology, a plurality of first-polarity two-dimensional carrier gases may be generated in the first channel cambium. In this case, in the plurality of two-dimensional carrier gases, the two-dimensional carrier gas having a shorter distance to the second channel cambium may have a larger carrier concentration. Similarly, in the second channel cambium, a plurality of second polar two-dimensional carrier gases may be generated. In this case, in the plurality of two-dimensional carrier gases, the two-dimensional carrier gas having a shorter distance to the first channel cambium may have a larger carrier concentration. According to such a configuration, it is possible to suppress or eliminate the time difference when the plurality of two-dimensional carrier gases are depleted in each of the first channel forming layer and the second channel forming layer. Therefore, the switching speed (time required for switching) of the semiconductor device can be improved.
 本技術の一実施形態において、ソース電極及びドレイン電極は、第2チャネル形成層に接触していてもよい。この場合、ゲート電極は、第1チャネル形成層に接触していてもよい。あるいは、ゲート電極は、上層内に設けられており、上層の一部を介して第1チャネル形成層から隔離されていてもよい。後者の構成によると、ゲート電極を比較的に小型化することができ、その形成を容易に行うことができる。 In one embodiment of the present technology, the source electrode and the drain electrode may be in contact with the second channel cambium. In this case, the gate electrode may be in contact with the first channel cambium. Alternatively, the gate electrode may be provided in the upper layer and isolated from the first channel cambium via a part of the upper layer. According to the latter configuration, the gate electrode can be made relatively small and can be easily formed.
 本技術の一実施形態において、ソース電極及びドレイン電極が、第2チャネル形成層に接触している場合、ゲート電極は、上層から第1チャネル形成層を通過して中層まで延びていてもよい。そして、ゲート電極から第2チャネル形成層までの距離が、第1チャネル形成層から第2チャネル形成層までの距離よりも短くてもよい。このような構成によると、例えば高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)におけるリセスゲート構造のように、ゲート電極に近接する位置では、二次元キャリアガスにおけるキャリア濃度を低下させることができる。これにより、しきい値電圧(電流を遮断するために必要なゲート電圧)を高くすることができ、ノーマリオフ型又はそれに近い半導体装置を実現することができる。 In one embodiment of the present technology, when the source electrode and the drain electrode are in contact with the second channel cambium, the gate electrode may extend from the upper layer through the first channel cambium to the middle layer. Then, the distance from the gate electrode to the second channel cambium may be shorter than the distance from the first channel cambium to the second channel cambium. According to such a configuration, the carrier concentration in the two-dimensional carrier gas can be reduced at a position close to the gate electrode, for example, in a recess gate structure in a high electron mobility transistor (HEMT). As a result, the threshold voltage (gate voltage required to cut off the current) can be increased, and a normally-off type or a semiconductor device close to the normal off type can be realized.
 上記した実施形態において、第2チャネル形成層では、第2極性の二次元キャリアガスが複数生成されてもよい。この場合、その複数の二次元キャリアガスでは、ゲート電極までの距離が短い二次元キャリアガスほど、大きなキャリア濃度を有してもよい。このような構成によると、ゲート電極に近接する位置において、複数の二次元キャリアガスの各キャリア濃度を均等に低下させることができ、しきい値電圧をより高くすることができる。 In the above-described embodiment, a plurality of second-polarity two-dimensional carrier gases may be generated in the second channel cambium. In this case, in the plurality of two-dimensional carrier gases, the two-dimensional carrier gas having a shorter distance to the gate electrode may have a larger carrier concentration. According to such a configuration, the carrier concentration of each of the plurality of two-dimensional carrier gases can be evenly reduced at a position close to the gate electrode, and the threshold voltage can be further increased.
 上記した実施形態において、第2チャネル形成層に生成される一又は複数の二次元キャリアガスは、一又は複数の二次元電子ガスであってもよい。この場合、特に限定されないが、ゲート電極は、第1導電型の不純物が導入された半導体材料で構成されていてもよい。このような構成によると、p型であるゲート電極とn型である第2チャネル形成層との間で内蔵電界が形成され、その内蔵電界によってしきい値電圧をより高くすることができる。 In the above embodiment, the one or more two-dimensional carrier gases generated in the second channel cambium may be one or more two-dimensional electron gases. In this case, although not particularly limited, the gate electrode may be made of a semiconductor material into which a first conductive type impurity is introduced. According to such a configuration, a built-in electric field is formed between the p-type gate electrode and the n-type second channel cambium, and the threshold voltage can be further increased by the built-in electric field.
 上記したいくつかの実施形態、特に、ソース電極及びドレイン電極が第2チャネル形成層に接触する実施形態では、半導体基板の上面に、上層を通過して中層に達する二つのリセスが設けられていてもよい。この場合、ソース電極は、二つのリセスの一方の底面から、第2チャネル形成層まで延びていてもよい。また、ドレイン電極は、二つのリセスの他方の底面から、第2チャネル形成層まで延びていてもよい。このような構成によると、比較的に簡素な構造によって、ソース電極及びドレイン電極のそれぞれを、第1チャネル形成層から電気的に絶縁しながら、第2チャネル形成層に電気的に接続させることができる。 In some of the above-described embodiments, in particular, in the embodiment in which the source electrode and the drain electrode contact the second channel cambium, two recesses are provided on the upper surface of the semiconductor substrate to pass through the upper layer and reach the middle layer. May be good. In this case, the source electrode may extend from the bottom surface of one of the two recesses to the second channel cambium. The drain electrode may also extend from the other bottom surface of the two recesses to the second channel cambium. According to such a configuration, each of the source electrode and the drain electrode can be electrically connected to the second channel cambium while being electrically insulated from the first channel cambium by a relatively simple structure. can.
 本技術の一実施形態において、ソース電極及びドレイン電極は、第1チャネル形成層に接触していてもよい。この場合、ゲート電極は、上層から第1チャネル形成層及び中層を通過して第2チャネル形成層まで延びているとともに、上層内で第1チャネル形成層と対向していてもよい。このような構成によると、ソース電極とドレイン電極との間を接続する第1チャネル形成層は、リセスゲート構造を有するゲート電極と、そのゲート電極に接続された第2チャネル形成層との間を通過する。これにより、第1チャネル形成層のキャリア濃度は、その通過する位置において有意に低下するので、しきい値電圧を高くすることによって、ノーマリオフ型又はそれに近い動作を実現することができる。 In one embodiment of the present technology, the source electrode and the drain electrode may be in contact with the first channel cambium. In this case, the gate electrode may extend from the upper layer through the first channel forming layer and the middle layer to the second channel forming layer, and may face the first channel forming layer in the upper layer. According to such a configuration, the first channel cambium connecting between the source electrode and the drain electrode passes between the gate electrode having the recess gate structure and the second channel cambium connected to the gate electrode. do. As a result, the carrier concentration of the first channel cambium is significantly reduced at the position where the first channel cambium passes, so that by increasing the threshold voltage, a normally-off type operation or an operation close to the normal off type can be realized.
 上記した実施形態において、第1チャネル形成層では、第1極性の二次元キャリアガスが複数生成されてもよい。この場合、その複数の二次元キャリアガスでは、上下の両側に位置する各二次元キャリアガスが、それらの間に位置する少なくとも一つの二次元キャリアガスよりも、大きなキャリア濃度を有してもよい。このような構成によると、複数の二次元キャリアガスの各キャリア濃度を均等に低下させることができ、しきい値電圧をより高くすることができる。 In the above-described embodiment, a plurality of first-polarity two-dimensional carrier gases may be generated in the first channel cambium. In this case, in the plurality of two-dimensional carrier gases, each two-dimensional carrier gas located on both the upper and lower sides may have a larger carrier concentration than at least one two-dimensional carrier gas located between them. .. According to such a configuration, the carrier concentration of each of the plurality of two-dimensional carrier gases can be reduced evenly, and the threshold voltage can be made higher.
 上記したいくつかの実施形態、特に、ソース電極及びドレイン電極が第1チャネル形成層に接触する実施形態では、半導体基板の上面に、上層を通過して中層に達するリセスが設けられていてもよい。この場合、ゲート電極は、リセスの底面から第2チャネル形成層に向けて延びていてもよい。このような構成によると、比較的に簡素な構造によって、ゲート電極を、第1チャネル形成層から電気的に絶縁しながら、第2チャネル形成層に接触又は近接させることができる。 In some of the above-described embodiments, in particular, in the embodiment in which the source electrode and the drain electrode come into contact with the first channel cambium, a recess that passes through the upper layer and reaches the middle layer may be provided on the upper surface of the semiconductor substrate. .. In this case, the gate electrode may extend from the bottom surface of the recess toward the second channel cambium. According to such a configuration, the gate electrode can be brought into contact with or close to the second channel cambium while being electrically insulated from the first channel cambium by a relatively simple structure.
 本技術の一実施形態において、半導体基板は、上層の上に位置するとともに絶縁性を有する上部バッファ層と、上部バッファ層と上層との間に位置するとともに、1×1012/cm以上の界面準位濃度を有する上部電位固定層をさらに備えてもよい。半導体基板が上部電位固定層を有していると、上部電位固定層よりも上方の構造にかかわらず、上層における電位(電界強度)を固定することができ、第1チャネル形成層のチャネル濃度(あるいは電位)が安定する。従って、上部電位固定層よりも上方には、例えば保護膜といった付加的な構造を自由に設けることができ、その際に第1チャネル形成層30及び第2チャネル形成層への影響を考慮する必要がない。 In one embodiment of the present technology, the semiconductor substrate is located above the upper layer and has an insulating property, and is located between the upper buffer layer and the upper layer, and is 1 × 10 12 / cm 2 or more. An upper potential fixation layer having an interface state concentration may be further provided. When the semiconductor substrate has the upper potential fixed layer, the potential (electric field strength) in the upper layer can be fixed regardless of the structure above the upper potential fixed layer, and the channel concentration of the first channel forming layer ( Or the potential) is stable. Therefore, an additional structure such as a protective film can be freely provided above the upper potential fixing layer, and it is necessary to consider the influence on the first channel cambium 30 and the second channel cambium at that time. There is no.
 上記した実施形態において、上部電位固定層は、炭素(C)、酸素(O)又は鉄(Fe)が導入されたIII-V族化合物半導体で構成されていてもよい。この場合、特に限定されないが、上部電位固定層は、1nm~10μmの厚みを有してもよい。但し、他の実施形態として、上部電位固定層の厚みは、例えば数原子層以下の厚みであってもよく、そこに任意の結晶欠陥が設けられてものであってもよい。 In the above-described embodiment, the upper potential fixed layer may be composed of a group III-V compound semiconductor into which carbon (C), oxygen (O) or iron (Fe) has been introduced. In this case, although not particularly limited, the upper potential fixing layer may have a thickness of 1 nm to 10 μm. However, as another embodiment, the thickness of the upper potential fixed layer may be, for example, a thickness of several atomic layers or less, and an arbitrary crystal defect may be provided therein.
 上記した上部電位固定層に加えて、又は代えて、半導体基板は、下層の下に位置するとともに絶縁性を有する下部バッファ層と、下部バッファ層と下層との間に位置するとともに、1×1012/cm以上の界面準位濃度を有する下部電位固定層をさらに備えてもよい。このような構成によると、下部電位固定層よりも下方の構造にかかわらず、上層における電位(電界強度)を固定することができ、第2チャネル形成層のチャネル濃度(あるいは電位)が安定させることができる。従って、下部電位固定層よりも下方には、例えば支持基板といった付加的な構造を自由に設けることができ、その際に第1チャネル形成層及び第2チャネル形成層への影響を考慮する必要がない。 In addition to or in place of the above-mentioned upper potential fixing layer, the semiconductor substrate is located below the lower layer and has an insulating property, and is located between the lower buffer layer and the lower layer, and 1 × 10. Further, a lower potential fixing layer having an interface state concentration of 12 / cm 2 or more may be further provided. According to such a configuration, the potential (electric field strength) in the upper layer can be fixed regardless of the structure below the lower potential fixing layer, and the channel concentration (or potential) of the second channel cambium is stabilized. Can be done. Therefore, an additional structure such as a support substrate can be freely provided below the lower potential fixed layer, and it is necessary to consider the influence on the first channel cambium and the second channel cambium at that time. No.
 下部電位固定層もまた、炭素(C)、酸素(O)又は鉄(Fe)が導入されたIII-V族化合物半導体で構成されていてもよい。この場合、特に限定されないが、下部電位固定層は、1nm~10μmの厚みを有してもよい。但し、他の実施形態として、上部電位固定層の厚みは、例えば一原子層以下の厚みであってもよく、そこに任意の結晶欠陥が設けられたものであってもよい。 The lower potential fixed layer may also be composed of a group III-V compound semiconductor into which carbon (C), oxygen (O) or iron (Fe) has been introduced. In this case, the lower potential fixing layer may have a thickness of 1 nm to 10 μm, although not particularly limited. However, as another embodiment, the thickness of the upper potential fixed layer may be, for example, a thickness of one atomic layer or less, or an arbitrary crystal defect may be provided therein.
(実施例1)図1、図2を参照して、実施例1の半導体装置10Aについて説明する。本実施例の半導体装置10Aは、半導体基板12と、半導体基板12に設けられたソース電極14、ドレイン電極16及びゲート電極18とを備える。ソース電極14、ドレイン電極16及びゲート電極18は、特に限定されないが、半導体基板12の上面12aに形成されたトレンチ内に設けられている。ソース電極14、ドレイン電極16及びゲート電極18は、導電性を有する材料で形成されている。一例ではあるが、ソース電極14及びドレイン電極16は、n型半導体(例えばn-GaAs)で構成されてもよく、ゲート電極18は、p型半導体(例えばp-GaAs)で構成されてもよい。 (Example 1) The semiconductor device 10A of the first embodiment will be described with reference to FIGS. 1 and 2. The semiconductor device 10A of this embodiment includes a semiconductor substrate 12, a source electrode 14, a drain electrode 16, and a gate electrode 18 provided on the semiconductor substrate 12. The source electrode 14, the drain electrode 16, and the gate electrode 18 are not particularly limited, but are provided in a trench formed on the upper surface 12a of the semiconductor substrate 12. The source electrode 14, the drain electrode 16, and the gate electrode 18 are made of a conductive material. As an example, the source electrode 14 and the drain electrode 16 may be made of an n-type semiconductor (for example, n-GaAs), and the gate electrode 18 may be made of a p-type semiconductor (for example, p-GaAs). ..
 半導体基板12は、i型の半導体層である上層20、中層22及び下層24と、上層20と中層22との間に位置する第1チャネル形成層30と、中層22と下層24との間に位置する第2チャネル形成層40とを備える。上層20、中層22及び下層24は、第1の半導体材料で構成されている。上層20、中層22及び下層24の各厚みは、特に限定されないが、数10nm~1μmであってよい。また、第1の半導体材料は、III-V族化合物半導体又はその他の半導体材料であってよい。上層20の上方には、半導体基板12の上面12aを覆う保護膜2が設けられており、下層24の下方には、半絶縁性基板で構成された支持基板4が設けられている。 The semiconductor substrate 12 is formed between the upper layer 20, the middle layer 22 and the lower layer 24, which are i-type semiconductor layers, the first channel cambium 30 located between the upper layer 20 and the middle layer 22, and the middle layer 22 and the lower layer 24. It includes a second channel cambium 40 located. The upper layer 20, the middle layer 22, and the lower layer 24 are made of the first semiconductor material. The thicknesses of the upper layer 20, the middle layer 22, and the lower layer 24 are not particularly limited, but may be several tens of nm to 1 μm. The first semiconductor material may be a group III-V compound semiconductor or other semiconductor material. A protective film 2 covering the upper surface 12a of the semiconductor substrate 12 is provided above the upper layer 20, and a support substrate 4 composed of a semi-insulating substrate is provided below the lower layer 24.
 第1チャネル形成層30は、一つの異種材料層32を有する。異種材料層32は、第1の半導体材料とバンドギャップが異なる第2の半導体材料で構成されている。異種材料層32の厚みは、例えば3nm~50nmであって、上層20、中層22及び下層24の各厚みよりも十分に小さい。異種材料層32は、上層20及び中層22のそれぞれに接しており、異種材料層32の両側に一対のヘテロ界面34が形成されている。そして、各々のヘテロ界面34に沿って、二次元正孔ガス2DHGが生成されている。ここで、第1チャネル形成層30の異種材料層32には、p型の不純物が導入されており、異種材料層32から二次元正孔ガス2DHGへ正孔が供給される。第2の半導体材料は、特に限定されないが、III-V族化合物半導体又はその他の半導体材料であってよい。 The first channel cambium 30 has one dissimilar material layer 32. The dissimilar material layer 32 is composed of a second semiconductor material having a bandgap different from that of the first semiconductor material. The thickness of the dissimilar material layer 32 is, for example, 3 nm to 50 nm, which is sufficiently smaller than the thickness of each of the upper layer 20, the middle layer 22, and the lower layer 24. The dissimilar material layer 32 is in contact with each of the upper layer 20 and the middle layer 22, and a pair of hetero interfaces 34 are formed on both sides of the dissimilar material layer 32. Then, two-dimensional hole gas 2DHG is generated along each hetero interface 34. Here, p-type impurities are introduced into the dissimilar material layer 32 of the first channel cambium 30, and holes are supplied from the dissimilar material layer 32 to the two-dimensional hole gas 2DHG. The second semiconductor material is not particularly limited, but may be a group III-V compound semiconductor or other semiconductor material.
 第2チャネル形成層40は、一つの異種材料層42を有する。異種材料層42は、前述した第1チャネル形成層30と同じく、第2の半導体材料で構成されている。異種材料層42の厚みは、例えば3nm~50nmであって、上層20、中層22及び下層24の各厚みよりも小さい。異種材料層42は、中層22及び下層24のそれぞれに接しており、異種材料層42の両側に一対のヘテロ界面44が形成されている。そして、各々のヘテロ界面44に沿って、二次元電子ガス2DEGが生成されている。ここで、第2チャネル形成層40の異種材料層42にはn型の不純物が導入されており、異種材料層42から二次元電子ガス2DEGへ電子が供給される。 The second channel cambium 40 has one dissimilar material layer 42. The dissimilar material layer 42 is made of a second semiconductor material, like the first channel cambium 30 described above. The thickness of the dissimilar material layer 42 is, for example, 3 nm to 50 nm, which is smaller than the thickness of each of the upper layer 20, the middle layer 22, and the lower layer 24. The dissimilar material layer 42 is in contact with each of the middle layer 22 and the lower layer 24, and a pair of hetero interfaces 44 are formed on both sides of the dissimilar material layer 42. Then, a two-dimensional electron gas 2DEG is generated along each hetero interface 44. Here, an n-type impurity is introduced into the dissimilar material layer 42 of the second channel forming layer 40, and electrons are supplied from the dissimilar material layer 42 to the two-dimensional electron gas 2DEG.
 一例ではあるが、本実施例の半導体装置10Aでは、上層20、中層22及び下層24を構成する第1の半導体材料に、ヒ化ガリウム(GaAs)が採用されており、異種材料層32、42を構成する第2の半導体材料に、ヒ化アルミニウムガリウム(AlGaAs)が採用されている。従って、本実施例の半導体装置10Aでは、第1の半導体材料(GaAs)のバンドギャップは、第2の半導体材料(AlGaAs)のバンドギャップよりも狭くなっている。なお、第1の半導体材料及び第2の半導体材料は、これらの半導体材料に限定されない。例えば、第1の半導体材料が窒化ガリウム(GaN)であって、第2の半導体材料が窒化アルミニウムガリウム(AlGaN)であってもよい。この場合でも、第1の半導体材料のバンドギャップは、第2の半導体材料のバンドギャップよりも狭くなる。 As an example, in the semiconductor device 10A of this embodiment, gallium arsenide (GaAs) is adopted as the first semiconductor material constituting the upper layer 20, the middle layer 22, and the lower layer 24, and the dissimilar material layers 32 and 42. Aluminum gallium arsenide (AlGaAs) is used as the second semiconductor material constituting the above. Therefore, in the semiconductor device 10A of the present embodiment, the band gap of the first semiconductor material (GaAs) is narrower than the band gap of the second semiconductor material (AlGaAs). The first semiconductor material and the second semiconductor material are not limited to these semiconductor materials. For example, the first semiconductor material may be gallium nitride (GaN) and the second semiconductor material may be aluminum gallium nitride (AlGaN). Even in this case, the band gap of the first semiconductor material is narrower than the band gap of the second semiconductor material.
 上記したバンドギャップの大小関係により、第1チャネル形成層30では、異種材料層32の外側に、二次元正孔ガス2DHGが形成される。そのことから、第1チャネル形成層30では、不純物の存在によって正孔の移動が阻害されないように、異種材料層32の内側にp型の不純物が導入されている。同様に、第2チャネル形成層40でも、異種材料層42の外側に、二次元電子ガス2DEGが生成される。そのことから、第2チャネル形成層40では、不純物の存在によって電子の移動が阻害されないように、異種材料層42の内側にn型の不純物が導入されている。但し、第1チャネル形成層30では、各々のヘテロ界面34に沿ってp型の不純物が導入されていればよく、異種材料層32の外側にp型の不純物が導入されていてもよい。第2チャネル形成層40でも、各々のヘテロ界面44に沿ってn型の不純物が導入されていればよく、異種材料層42の外側にn型の不純物が導入されていてもよい。 Due to the magnitude relationship of the band gap described above, the two-dimensional hole gas 2DHG is formed on the outside of the dissimilar material layer 32 in the first channel cambium 30. Therefore, in the first channel cambium 30, p-type impurities are introduced inside the dissimilar material layer 32 so that the movement of holes is not hindered by the presence of impurities. Similarly, in the second channel cambium 40, the two-dimensional electron gas 2DEG is generated outside the dissimilar material layer 42. Therefore, in the second channel cambium 40, n-type impurities are introduced inside the dissimilar material layer 42 so that the movement of electrons is not hindered by the presence of impurities. However, in the first channel cambium 30, it is sufficient that p-type impurities are introduced along each hetero interface 34, and p-type impurities may be introduced outside the dissimilar material layer 32. In the second channel cambium 40 as well, n-type impurities may be introduced along each hetero interface 44, and n-type impurities may be introduced outside the dissimilar material layer 42.
 ソース電極14及びドレイン電極16の各々は、半導体基板12の上面12aから第2チャネル形成層40まで延びており、第2チャネル形成層40に接している。これにより、ソース電極14及びドレイン電極16は、第2チャネル形成層40の二次元電子ガス2DEGを介して、互いに電気的に接続される。一方、ゲート電極18は、半導体基板12の上面12aから第1チャネル形成層30まで延びており、第1チャネル形成層30に接している。これにより、ゲート電極18は、第1チャネル形成層30の二次元正孔ガス2DHGと電気的に接続される。 Each of the source electrode 14 and the drain electrode 16 extends from the upper surface 12a of the semiconductor substrate 12 to the second channel cambium 40 and is in contact with the second channel cambium 40. As a result, the source electrode 14 and the drain electrode 16 are electrically connected to each other via the two-dimensional electron gas 2DEG of the second channel forming layer 40. On the other hand, the gate electrode 18 extends from the upper surface 12a of the semiconductor substrate 12 to the first channel cambium 30 and is in contact with the first channel cambium 30. As a result, the gate electrode 18 is electrically connected to the two-dimensional hole gas 2DHG of the first channel cambium 30.
 ここで、半導体基板12の上面12aには、二つのリセス12bが設けられている。各々のリセス12bは、上層20を通過して中層22に達している。ソース電極14は、二つのリセス12bの一方の底面から、第2チャネル形成層40まで延びている。ドレイン電極16は、二つのリセス12bの他方の底面から、第2チャネル形成層40まで延びている。このような構成によると、比較的に簡素な構造によって、ソース電極14及びドレイン電極16のそれぞれを、第1チャネル形成層30から電気的に絶縁しながら、第2チャネル形成層40に電気的に接続させることができる。 Here, two recesses 12b are provided on the upper surface 12a of the semiconductor substrate 12. Each recess 12b passes through the upper layer 20 and reaches the middle layer 22. The source electrode 14 extends from the bottom surface of one of the two recesses 12b to the second channel cambium 40. The drain electrode 16 extends from the other bottom surface of the two recesses 12b to the second channel cambium 40. According to such a configuration, the source electrode 14 and the drain electrode 16 are electrically insulated from the first channel cambium 30 and electrically to the second channel cambium 40 by a relatively simple structure. Can be connected.
 以上の構成により、本実施例の半導体装置10Aでは、ゲート電極18に与える電圧を調節することで、第1チャネル形成層30及び第2チャネル形成層40を空乏化させたり、それらに二次元正孔ガス2DHG及び二次元電子ガス2DEGを生成させたりすることができる。第2チャネル形成層40に二次元電子ガス2DEGが生成されると、ソース電極14とドレイン電極16との間が、第2チャネル形成層40を介して電気的に接続される。特に、第2チャネル形成層40は、一対(即ち、二つ)のヘテロ界面44を有しており、それぞれのヘテロ界面44に沿って二次元電子ガス2DEGが生成される。これにより、ソース電極14とドレイン電極16との間は、比較的に低い抵抗で電気的に接続される。 With the above configuration, in the semiconductor device 10A of the present embodiment, by adjusting the voltage applied to the gate electrode 18, the first channel forming layer 30 and the second channel forming layer 40 are depleted, or they are two-dimensionally positive. It is possible to generate a hole gas 2DHG and a two-dimensional electron gas 2DEG. When the two-dimensional electron gas 2DEG is generated in the second channel cambium 40, the source electrode 14 and the drain electrode 16 are electrically connected via the second channel cambium 40. In particular, the second channel cambium 40 has a pair (ie, two) heterointerfaces 44, and two-dimensional electron gas 2DEG is generated along each heterointerface 44. As a result, the source electrode 14 and the drain electrode 16 are electrically connected with a relatively low resistance.
 一方、第1チャネル形成層30及び第2チャネル形成層40が空乏化されると、ソース電極14とドレイン電極16との間が電気的に絶縁される。ここで、第1チャネル形成層30と第2チャネル形成層40とが対向する方向(図2における上下方向)は、ソース電極14とドレイン電極16とを結ぶ方向(図2における左右方向)に対して直交している。従って、第1チャネル形成層30及び第2チャネル形成層40が空乏化されたときに、それに起因する電界も、ソース電極14とドレイン電極16とが並ぶ方向に対して直交する方向に発生する。この場合、いわゆるスーパージャンクション構造と同様に、ソース電極14とドレイン電極16との間で電界強度が一様となることから、この半導体装置10Aは、高いオフ耐圧を実現することができる。 On the other hand, when the first channel cambium 30 and the second channel cambium 40 are depleted, the source electrode 14 and the drain electrode 16 are electrically insulated from each other. Here, the direction in which the first channel forming layer 30 and the second channel forming layer 40 face each other (vertical direction in FIG. 2) is relative to the direction connecting the source electrode 14 and the drain electrode 16 (horizontal direction in FIG. 2). Are orthogonal to each other. Therefore, when the first channel cambium 30 and the second channel cambium 40 are depleted, the electric field caused by the depletion is also generated in the direction orthogonal to the direction in which the source electrode 14 and the drain electrode 16 are aligned. In this case, similarly to the so-called super junction structure, since the electric field strength becomes uniform between the source electrode 14 and the drain electrode 16, the semiconductor device 10A can realize a high off withstand voltage.
 ここで、第1チャネル形成層30と第2チャネル形成層40とのそれぞれでは、同一極性の二次元キャリアガス(即ち、二次元正孔ガス2DHG又は二次元電子ガス2DEG)のみが生成される。従って、第1チャネル形成層30と第2チャネル形成層40とのそれぞれでは、隣り合う二次元キャリアガスの間に間隔を設ける必要がない。そのことから、異種材料層32、42の厚みは、十分に小さくすることができる。これにより、半導体基板12の厚みを抑制しつつ、多くの二次元キャリアガス(2DHG又は2DEG)を生成させることによって、通電時の抵抗を低減することができる。 Here, in each of the first channel cambium 30 and the second channel cambium 40, only a two-dimensional carrier gas having the same polarity (that is, a two-dimensional hole gas 2DHG or a two-dimensional electron gas 2DEG) is generated. Therefore, in each of the first channel cambium 30 and the second channel cambium 40, it is not necessary to provide a space between adjacent two-dimensional carrier gases. Therefore, the thicknesses of the dissimilar material layers 32 and 42 can be sufficiently reduced. Thereby, the resistance at the time of energization can be reduced by generating a large amount of two-dimensional carrier gas (2DHG or 2DEG) while suppressing the thickness of the semiconductor substrate 12.
 本実施例の半導体装置10Aでは、上層20、中層22及び下層24がヒ化ガリウム(GaAs)で構成されており、異種材料層32、42がヒ化アルミニウムガリウム(GaAlAs)で構成されている。ここで、ヒ化アルミニウムガリウムは、ヒ化ガリウムと比較して、結晶成長させたときの不純物濃度が比較的に高いという問題がある。しかしながら、ヒ化アルミニウムガリウムで構成された異種材料層32、42が、ヒ化ガリウムで構成された上層20、中層22及び下層24よりも十分に薄いので、そのような不純物による影響を抑制することができる。これにより、例えば第1チャネル形成層30及び第2チャネル形成層40におけるキャリア濃度の変動が抑制される。 In the semiconductor device 10A of this embodiment, the upper layer 20, the middle layer 22, and the lower layer 24 are made of gallium arsenide (GaAs), and the dissimilar material layers 32 and 42 are made of aluminum gallium arsenide (GaAlAs). Here, aluminum gallium arsenide has a problem that the impurity concentration at the time of crystal growth is relatively high as compared with gallium arsenide. However, since the dissimilar material layers 32 and 42 made of aluminum gallium arsenide are sufficiently thinner than the upper layer 20, the middle layer 22 and the lower layer 24 made of gallium arsenide, the influence of such impurities can be suppressed. Can be done. As a result, for example, fluctuations in carrier concentration in the first channel cambium 30 and the second channel cambium 40 are suppressed.
 本実施例の半導体装置10Aでは、上述したように、ヒ化アルミニウムガリウムで構成された異種材料層32、42が、ヒ化ガリウムで構成された上層20、中層22及び下層24よりも十分に薄い。このような構成によると、二種類の半導体材料を交互に結晶成長させた場合でも、格子定数の違いに起因する歪の蓄積が抑制されるので、多層構造を有する半導体基板12を比較的に容易に製造することができる。 In the semiconductor device 10A of this embodiment, as described above, the dissimilar material layers 32 and 42 made of aluminum gallium arsenide are sufficiently thinner than the upper layer 20, the middle layer 22 and the lower layer 24 made of gallium arsenide. .. According to such a configuration, even when two types of semiconductor materials are alternately crystal-grown, the accumulation of strain due to the difference in lattice constant is suppressed, so that the semiconductor substrate 12 having a multilayer structure is relatively easy. Can be manufactured in.
(実施例2)図3、図4を参照して、実施例2の半導体装置10Bについて説明する。本実施例の半導体装置10Bは、実施例1の半導体装置10Aと比較して、第1チャネル形成層30及び第2チャネル形成層40の構成が変更されている。以下では、実施例1との相違点を主に説明し、実施例1と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 2) The semiconductor device 10B of the second embodiment will be described with reference to FIGS. 3 and 4. In the semiconductor device 10B of this embodiment, the configurations of the first channel forming layer 30 and the second channel forming layer 40 are changed as compared with the semiconductor device 10A of the first embodiment. In the following, the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
 第1チャネル形成層30は、二つの異種材料層32を有する。各々の異種材料層32は、実施例1の半導体装置10Aと同じく、ヒ化アルミニウムガリウムで構成されており、かつ、p型の不純物が導入されている。二つの異種材料層32の間には、第1の半導体材料(即ち、ヒ化ガリウム)で構成された層が介在している。即ち、第1チャネル形成層30は、第1の半導体材料と第2の半導体材料とが交互に積層された構造を有する。二つの異種材料層32の間隔は、異種材料層32の厚さと同程度であってよく、例えば3nm~50nmであってよい。各々の異種材料層32では、その両側に一対のヘテロ界面34が形成されている。従って、第1チャネル形成層30には、四つのヘテロ界面34が存在する。そして、各々のヘテロ界面34に沿って、二次元正孔ガス2DHGが生成される。ここで、二つの異種材料層32の間(即ち、隣接する二つのヘテロ界面34の間)では、二つの二次元正孔ガス2DHGが少なくとも部分的に重畳することで、見かけ上、一つの二次元正孔ガス2DHGが生成されてもよい。 The first channel cambium 30 has two dissimilar material layers 32. Each dissimilar material layer 32 is made of aluminum gallium arsenide and has p-type impurities introduced, as in the semiconductor device 10A of Example 1. A layer made of a first semiconductor material (that is, gallium arsenide) is interposed between the two dissimilar material layers 32. That is, the first channel cambium 30 has a structure in which the first semiconductor material and the second semiconductor material are alternately laminated. The distance between the two dissimilar material layers 32 may be about the same as the thickness of the dissimilar material layer 32, for example, 3 nm to 50 nm. In each dissimilar material layer 32, a pair of heterointerfaces 34 are formed on both sides thereof. Therefore, the first channel cambium 30 has four heterointerfaces 34. Then, two-dimensional hole gas 2DHG is generated along each hetero interface 34. Here, between the two dissimilar material layers 32 (that is, between the two adjacent hetero interfaces 34), the two two-dimensional hole gas 2DHGs are at least partially superposed, thereby apparently one two. Dimensional hole gas 2DHG may be generated.
 同様に、第2チャネル形成層40は、二つの異種材料層42を有する。各々の異種材料層42は、実施例1の半導体装置10Aと同じく、ヒ化アルミニウムガリウムで構成されており、かつ、n型の不純物が導入されている。二つの異種材料層42の間には、第1の半導体材料(即ち、ヒ化ガリウム)で構成された層が介在している。即ち、第2チャネル形成層40についても、第1の半導体材料と第2の半導体材料とが交互に積層された構造を有する二つの異種材料層32の間隔は、異種材料層42の厚さと同程度であってよく、例えば3nm~50nmであってよい。各々の異種材料層42では、その両側に一対のヘテロ界面44が形成されている。従って、第2チャネル形成層40にも、四つのヘテロ界面44が存在する。そして、各々のヘテロ界面44に沿って、二次元電子ガス2DEGが生成される。ここで、二つの異種材料層42の間(即ち、隣接する二つのヘテロ界面44)の間では、二つの二次元電子ガス2DEGが少なくとも部分的に重畳することで、見かけ上、一つの二次元電子ガス2DEGが生成されてもよい。 Similarly, the second channel cambium 40 has two dissimilar material layers 42. Each dissimilar material layer 42 is made of aluminum gallium arsenide and has n-type impurities introduced, as in the semiconductor device 10A of Example 1. A layer made of a first semiconductor material (that is, gallium arsenide) is interposed between the two dissimilar material layers 42. That is, also for the second channel cambium 40, the distance between the two dissimilar material layers 32 having a structure in which the first semiconductor material and the second semiconductor material are alternately laminated is the same as the thickness of the dissimilar material layer 42. It may be about, for example, 3 nm to 50 nm. In each dissimilar material layer 42, a pair of hetero interfaces 44 are formed on both sides thereof. Therefore, the second channel cambium 40 also has four heterointerfaces 44. Then, a two-dimensional electron gas 2DEG is generated along each hetero interface 44. Here, between the two dissimilar material layers 42 (that is, the two adjacent heterointerfaces 44), the two two-dimensional electron gases 2DEG are at least partially superposed, so that they are apparently one two-dimensional. An electron gas 2DEG may be generated.
 以上のように、本実施例の半導体装置10Bでは、第1チャネル形成層30と第2チャネル形成層40との各々が、二つの異種材料層32、42を有しており、それによって多くの二次元正孔ガス2DHG又は二次元電子ガス2DEGが生成される。このような構成によると、ソース電極14とドレイン電極16との間が、多数の二次元電子ガス2DEGを介して接続されるので、通電時の抵抗がより低減される。なお、第1チャネル形成層30と第2チャネル形成層40との各々は、三以上の異種材料層32、42を有してもよい。 As described above, in the semiconductor device 10B of the present embodiment, each of the first channel forming layer 30 and the second channel forming layer 40 has two dissimilar material layers 32 and 42, whereby many different material layers 32 and 42 are provided. Two-dimensional hole gas 2DHG or two-dimensional electron gas 2DEG is generated. According to such a configuration, since the source electrode 14 and the drain electrode 16 are connected via a large number of two-dimensional electron gas 2DEGs, the resistance at the time of energization is further reduced. The first channel cambium 30 and the second channel cambium 40 may each have three or more dissimilar material layers 32 and 42.
(実施例3)図5-図7を参照して、実施例3の半導体装置10Cについて説明する。本実施例の半導体装置10Cは、実施例1の半導体装置10Aと比較して、二次元正孔ガス2DHG及び二次元電子ガス2DEGの生成される位置が相違する。以下では、実施例1との相違点を主に説明し、実施例1と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 3) The semiconductor device 10C of the third embodiment will be described with reference to FIGS. 5 to 7. The semiconductor device 10C of this embodiment is different from the semiconductor device 10A of the first embodiment in the positions where the two-dimensional hole gas 2DHG and the two-dimensional electron gas 2DEG are generated. In the following, the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
 第1チャネル形成層30では、異種材料層32にn型不純物が導入されており、この点において実施例1と相違する。従って、第1チャネル形成層30では、各々のヘテロ界面34に沿って二次元電子ガス2DEGが生成される。一方、第2チャネル形成層40では、異種材料層42にp型不純物が導入されている。従って、第2チャネル形成層40では、各々のヘテロ界面44に沿って二次元正孔ガス2DHGが生成される。 In the first channel cambium 30, n-type impurities are introduced into the dissimilar material layer 32, which is different from Example 1. Therefore, in the first channel cambium 30, two-dimensional electron gas 2DEG is generated along each hetero interface 34. On the other hand, in the second channel cambium 40, p-type impurities are introduced into the dissimilar material layer 42. Therefore, in the second channel cambium 40, two-dimensional hole gas 2DHG is generated along each hetero interface 44.
 ソース電極14及びドレイン電極16の各々は、半導体基板12の上面12aから第1チャネル形成層30まで延びており、第1チャネル形成層30に接している。これにより、ソース電極14及びドレイン電極16は、第1チャネル形成層30の二次元電子ガス2DEGを介して、互いに電気的に接続される。一方、ゲート電極18は、半導体基板12の上面12aから第1チャネル形成層30を通過して第2チャネル形成層40まで延びており、第2チャネル形成層40に接している。これにより、ゲート電極18は、第2チャネル形成層40の二次元正孔ガス2DHGと電気的に接続される。なお、ゲート電極18は、例えば絶縁領域19によって、第1チャネル形成層30から電気的に絶縁されている。 Each of the source electrode 14 and the drain electrode 16 extends from the upper surface 12a of the semiconductor substrate 12 to the first channel cambium 30 and is in contact with the first channel cambium 30. As a result, the source electrode 14 and the drain electrode 16 are electrically connected to each other via the two-dimensional electron gas 2DEG of the first channel forming layer 30. On the other hand, the gate electrode 18 extends from the upper surface 12a of the semiconductor substrate 12 through the first channel forming layer 30 to the second channel forming layer 40, and is in contact with the second channel forming layer 40. As a result, the gate electrode 18 is electrically connected to the two-dimensional hole gas 2DHG of the second channel cambium 40. The gate electrode 18 is electrically insulated from the first channel cambium 30 by, for example, an insulating region 19.
 特に限定されないが、図6、図7に示すように、本実施例におけるゲート電極18は、リセスゲート部18Aと、ピラー部18Bとを有する。リセスゲート部18Aは、上層20内に設けられており、第1チャネル形成層30に対して平行に延びている。ピラー部18Bは、リセスゲート部18Aから第2チャネル形成層40まで延びており、第2チャネル形成層40と接している。即ち、ゲート電極18は、上層20から第1チャネル形成層30及び中層22を通過して第2チャネル形成層40まで延びており、かつ、上層20内で第1チャネル形成層30と対向している。このような構成によると、ソース電極14とドレイン電極16との間を接続する第1チャネル形成層30が、ゲート電極18のリセスゲート部18Aと、ゲート電極18に接続された第2チャネル形成層40との間を通過する。第1チャネル形成層30のキャリア濃度は、その通過する位置において有意に低下するので、半導体装置10Cのしきい値電圧が高くなる。これにより、半導体装置10Cは、ノーマリオフ型又はそれに近い動作を実現することができる。 Although not particularly limited, as shown in FIGS. 6 and 7, the gate electrode 18 in this embodiment has a recess gate portion 18A and a pillar portion 18B. The recess gate portion 18A is provided in the upper layer 20 and extends parallel to the first channel cambium 30. The pillar portion 18B extends from the recess gate portion 18A to the second channel cambium 40 and is in contact with the second channel cambium 40. That is, the gate electrode 18 extends from the upper layer 20 through the first channel forming layer 30 and the middle layer 22 to the second channel forming layer 40, and faces the first channel forming layer 30 in the upper layer 20. There is. According to such a configuration, the first channel forming layer 30 connecting between the source electrode 14 and the drain electrode 16 is connected to the recess gate portion 18A of the gate electrode 18 and the second channel forming layer 40 connected to the gate electrode 18. Pass between and. Since the carrier concentration of the first channel cambium 30 drops significantly at the position where it passes, the threshold voltage of the semiconductor device 10C becomes high. As a result, the semiconductor device 10C can realize a normally-off type operation or an operation close to the normal off type.
(実施例4)図8、図9を参照して、実施例4の半導体装置10Dについて説明する。本実施例の半導体装置10Dは、実施例1の半導体装置10Aと比較して、異種材料層32、42を構成する第2の半導体材料が変更されている。以下では、実施例1との相違点を主に説明し、実施例1と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 4) The semiconductor device 10D of the fourth embodiment will be described with reference to FIGS. 8 and 9. In the semiconductor device 10D of the present embodiment, the second semiconductor material constituting the dissimilar material layers 32 and 42 is changed as compared with the semiconductor device 10A of the first embodiment. In the following, the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
 本実施例の半導体装置10Dでは、異種材料層32、42を構成する第2の半導体材料に、i型のヒ化インジウムアルミニウムガリウム(i-InGaAs)が採用されている。一方、上層20、中層22及び下層24を構成する第1の半導体材料については、実施例1と同じく、i型のヒ化ガリウム(i-GaAs)が採用されている。従って、本実施例の半導体装置10Dでは、第1の半導体材料(GaAs)のバンドギャップが、第2の半導体材料(InGaAs)のバンドギャップよりも広くなっている。 In the semiconductor device 10D of this embodiment, i-type indium gallium arsenide (i-InGaAs) is adopted as the second semiconductor material constituting the dissimilar material layers 32 and 42. On the other hand, as for the first semiconductor material constituting the upper layer 20, the middle layer 22, and the lower layer 24, i-type gallium arsenide (i-GaAs) is adopted as in the first embodiment. Therefore, in the semiconductor device 10D of the present embodiment, the band gap of the first semiconductor material (GaAs) is wider than the band gap of the second semiconductor material (InGaAs).
 上記したバンドギャップの大小関係によると、第1チャネル形成層30では、異種材料層32の内側に、二次元正孔ガス2DHGが形成される。そのことから、第1チャネル形成層30では、不純物の存在によって正孔の移動が阻害されないように、異種材料層32の外側にp型の不純物が導入されている。従って、異種材料層32の両側には、p型のヒ化ガリウム(p-GaAs)で構成された正孔供給層36が形成されている。同様に、第2チャネル形成層40でも、異種材料層42の内側に、二次元電子ガス2DEGが生成される。そのことから、第2チャネル形成層40では、不純物の存在によって電子の移動が阻害されないように、異種材料層42の外側にn型の不純物が導入されている。従って、異種材料層42の両側には、n型のヒ化ガリウム(n-GaAs)で構成された電子供給層46が形成されている。 According to the magnitude relationship of the band gap described above, in the first channel cambium 30, a two-dimensional hole gas 2DHG is formed inside the dissimilar material layer 32. Therefore, in the first channel cambium 30, p-type impurities are introduced to the outside of the dissimilar material layer 32 so that the movement of holes is not hindered by the presence of impurities. Therefore, hole supply layers 36 made of p-type gallium arsenide (p-GaAs) are formed on both sides of the dissimilar material layer 32. Similarly, in the second channel cambium 40, the two-dimensional electron gas 2DEG is generated inside the dissimilar material layer 42. Therefore, in the second channel cambium 40, n-type impurities are introduced to the outside of the dissimilar material layer 42 so that the movement of electrons is not hindered by the presence of impurities. Therefore, electron supply layers 46 made of n-type gallium arsenide (n-GaAs) are formed on both sides of the dissimilar material layer 42.
 なお、第1の半導体材料及び第2の半導体材料は、上記の組み合わせに限定されない。例えば、第1の半導体材料は、ヒ化アルミニウムガリウム(AlGaAs)であり、第2の半導体材料は、ヒ化インジウムガリウム(InGaAs)であってもよい。あるいは、第1の半導体材料は、InAlGa1-x-yAs(0<x<0.3,0<y<0.5)の組成式で表されるヒ化インジウムアルミニウムガリウムであり、第2の半導体材料は、InAlGa1-a-bAs(a>x,y>b)の組成式で表されるヒ化インジウムアルミニウムガリウムであってもよい。これらの組み合わせでも、第1の半導体材料のバンドギャップは、第2の半導体材料のバンドギャップよりも広くなる。 The first semiconductor material and the second semiconductor material are not limited to the above combinations. For example, the first semiconductor material may be aluminum arsenide gallium (AlGaAs), and the second semiconductor material may be indium gallium arsenide (InGaAs). Alternatively, the first semiconductor material is indium aluminum gallium arsenate represented by the composition formula of In x Al y Ga 1-xy As (0 <x <0.3, 0 <y <0.5). The second semiconductor material may be indium aluminum gallium arsenium represented by the composition formula of In a Al b Ga 1-ab As (a> x, y> b). Even with these combinations, the bandgap of the first semiconductor material is wider than the bandgap of the second semiconductor material.
 本実施例の半導体装置10Dにおいても、第1チャネル形成層30と第2チャネル形成層40との各々では、二以上の異種材料層32、42が、第1の半導体材料を介して積層されてもよい。また、実施例3の半導体装置10Cのように、第1チャネル形成層30に二次元電子ガス2DEGが生成され、第2チャネル形成層40に二次元正孔ガス2DHGが生成されるように構成されてもよい。また、上述した正孔供給層36や電子供給層46に加えて、又は代えて、異種材料層32、42にp型不純物又はn型不純物が導入されていてもよい。 Also in the semiconductor device 10D of the present embodiment, in each of the first channel forming layer 30 and the second channel forming layer 40, two or more different material layers 32 and 42 are laminated via the first semiconductor material. May be good. Further, as in the semiconductor device 10C of the third embodiment, the two-dimensional electron gas 2DEG is generated in the first channel forming layer 30, and the two-dimensional hole gas 2DHG is generated in the second channel forming layer 40. You may. Further, in addition to or in place of the hole supply layer 36 and the electron supply layer 46 described above, p-type impurities or n-type impurities may be introduced into the dissimilar material layers 32 and 42.
(実施例5)図10-図12を参照して、実施例5の半導体装置10Eについて説明する。本実施例の半導体装置10Eは、実施例1の半導体装置10Aにおける構造、特に、上層20から下層24までの積層構造が、半導体基板12の厚み方向に沿って繰り返された構造を有する。このように、半導体装置10Eは、第1チャネル形成層30と第2チャネル形成層40との組み合わせを、複数備えてもよい。この場合、ソース電極14及びドレイン電極16のそれぞれは、各々の第2チャネル形成層40に接するとともに、例えば絶縁領域15、17によって、各々の第1チャネル形成層30からは電気的に絶縁されるとよい。また、ゲート電極18は、各々の第1チャネル形成層30に接するとともに、例えば絶縁領域19によって、各々の第2チャネル形成層40からは電気的に絶縁されるとよい。 (Example 5) The semiconductor device 10E of the fifth embodiment will be described with reference to FIGS. 10-12. The semiconductor device 10E of the present embodiment has a structure in which the structure of the semiconductor device 10A of the first embodiment, particularly the laminated structure from the upper layer 20 to the lower layer 24, is repeated along the thickness direction of the semiconductor substrate 12. As described above, the semiconductor device 10E may include a plurality of combinations of the first channel cambium 30 and the second channel cambium 40. In this case, each of the source electrode 14 and the drain electrode 16 is in contact with the respective second channel cambium 40 and is electrically insulated from the respective first channel cambium 30 by, for example, the insulating regions 15 and 17. It is good. Further, the gate electrode 18 may be in contact with each first channel cambium 30 and may be electrically insulated from each second channel cambium 40 by, for example, an insulating region 19.
 本実施例の半導体装置10Eにおいて、第1チャネル形成層30及び第2チャネル形成層40の具体的な構造は特に限定されない。第1チャネル形成層30及び第2チャネル形成層40には、本明細書で開示される様々は構造を適宜に採用することができる。 In the semiconductor device 10E of this embodiment, the specific structures of the first channel forming layer 30 and the second channel forming layer 40 are not particularly limited. Various structures disclosed in the present specification can be appropriately adopted for the first channel cambium 30 and the second channel cambium 40.
(実施例6)図13、図14を参照して、実施例6の半導体装置10Fについて説明する。本実施例の半導体装置10Fは、実施例1の半導体装置10Aと比較して、第1チャネル形成層30及び第2チャネル形成層40の構成が変更されている。以下では、実施例1との相違点を主に説明し、実施例1と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 6) The semiconductor device 10F of the sixth embodiment will be described with reference to FIGS. 13 and 14. In the semiconductor device 10F of this embodiment, the configurations of the first channel forming layer 30 and the second channel forming layer 40 are changed as compared with the semiconductor device 10A of the first embodiment. In the following, the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
 第1チャネル形成層30は、一つの異種材料層32を有する。異種材料層32を構成する第2の半導体材料には、実施例1と同じく、ヒ化アルミニウムガリウムが採用されている。しかしながら、本実施例では、異種材料層32の内側にp型不純物が導入されておらず、異種材料層32の外側にp型不純物が導入されている。従って、異種材料層32は、i型のヒ化アルミニウムガリウム(i-AlGaAs)で構成されており、異種材料層32の両側に、p型のヒ化ガリウム(p-GaAs)で構成された正孔供給層36が形成されている。即ち、本実施例の第1チャネル形成層30では、異種材料層32の外側にp型不純物が導入されているとともに、異種材料層32の外側に二次元正孔ガス2DHGが生成される。なお、第1チャネル形成層30は、二以上の異種材料層32を有してもよい。 The first channel cambium 30 has one dissimilar material layer 32. As in the first embodiment, aluminum gallium arsenide is used as the second semiconductor material constituting the dissimilar material layer 32. However, in this embodiment, the p-type impurities are not introduced inside the dissimilar material layer 32, and the p-type impurities are introduced outside the dissimilar material layer 32. Therefore, the dissimilar material layer 32 is made of i-type aluminum gallium arsenide (i-AlGaAs), and both sides of the dissimilar material layer 32 are made of p-type gallium arsenide (p-GaAs). The hole supply layer 36 is formed. That is, in the first channel cambium 30 of this embodiment, the p-type impurity is introduced to the outside of the dissimilar material layer 32, and the two-dimensional hole gas 2DHG is generated to the outside of the dissimilar material layer 32. The first channel cambium 30 may have two or more dissimilar material layers 32.
 同様に、第2チャネル形成層40は、一つの異種材料層42を有する。そして、異種材料層42は、i型のヒ化アルミニウムガリウム(i-AlGaAs)で構成されており、異種材料層42の両側に、n型のヒ化ガリウム(n-GaAs)で構成された電子供給層46が形成されている。即ち、第2チャネル形成層40においても、異種材料層42の外側にn型不純物が導入されているとともに、異種材料層32の外側に二次元電子ガス2DEGが生成される。第2チャネル形成層40についても、二以上の異種材料層42を有してもよい。 Similarly, the second channel cambium 40 has one dissimilar material layer 42. The dissimilar material layer 42 is composed of i-type aluminum gallium arsenide (i-AlGaAs), and electrons composed of n-type gallium arsenide (n-GaAs) on both sides of the dissimilar material layer 42. The supply layer 46 is formed. That is, also in the second channel cambium 40, the n-type impurities are introduced to the outside of the dissimilar material layer 42, and the two-dimensional electron gas 2DEG is generated to the outside of the dissimilar material layer 32. The second channel cambium 40 may also have two or more dissimilar material layers 42.
(実施例7)図15、図16を参照して、実施例7の半導体装置10Gについて説明する。本実施例の半導体装置10Gは、実施例1の半導体装置10Aと比較して、第1チャネル形成層30及び第2チャネル形成層40の構成が変更されている。以下では、実施例1との相違点を主に説明し、実施例1と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 7) The semiconductor device 10G of the seventh embodiment will be described with reference to FIGS. 15 and 16. In the semiconductor device 10G of this embodiment, the configurations of the first channel forming layer 30 and the second channel forming layer 40 are changed as compared with the semiconductor device 10A of the first embodiment. In the following, the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
 第1チャネル形成層30は、二つの異種材料層32を有する。各々の異種材料層32は、実施例1の半導体装置10Aと同じく、ヒ化アルミニウムガリウムで構成されており、かつ、p型の不純物が導入されている。隣接する二つの異種材料層32の間には、第1の半導体材料(即ち、ヒ化ガリウム)で構成された層が介在している。各々の異種材料層32では、その両側に一対のヘテロ界面34が形成されており、第1チャネル形成層30には、四つのヘテロ界面34が存在する。そして、各々のヘテロ界面34に沿って、二次元正孔ガス2DHGが生成される。 The first channel cambium 30 has two dissimilar material layers 32. Each dissimilar material layer 32 is made of aluminum gallium arsenide and has p-type impurities introduced, as in the semiconductor device 10A of Example 1. A layer made of a first semiconductor material (that is, gallium arsenide) is interposed between two adjacent dissimilar material layers 32. A pair of heterointerfaces 34 are formed on both sides of each dissimilar material layer 32, and four heterointerfaces 34 are present in the first channel cambium 30. Then, two-dimensional hole gas 2DHG is generated along each hetero interface 34.
 隣接する二つのヘテロ界面34の間隔は、3nm~20nmとなっており、比較的に小さい。このような構成によると、二つの異種材料層32の間(図中のX)では、二つの二次元正孔ガス2DHGが少なくとも部分的に重畳することで、キャリア濃度(即ち、正孔密度)の高い二次元正孔ガス2DHGが生成される。これにより、第1チャネル形成層30の優れた導電性(即ち、低抵抗)を維持しながら、第1チャネル形成層30の厚みを小さくすることができる。加えて、二つの異種材料層32の間(X)では、キャリア濃度の厚み方向における分布が均一化されるので、第1チャネル形成層30内に生じ得る最大電界強度が低減される。なお、第1チャネル形成層30は、三以上の異種材料層32を有してもよい。 The distance between two adjacent hetero interfaces 34 is 3 nm to 20 nm, which is relatively small. According to such a configuration, the carrier concentration (that is, the hole density) is obtained by at least partially superimposing the two two-dimensional hole gas 2DHG between the two dissimilar material layers 32 (X in the figure). Two-dimensional hole gas 2DHG with high density is generated. As a result, the thickness of the first channel cambium 30 can be reduced while maintaining the excellent conductivity (that is, low resistance) of the first channel cambium 30. In addition, between the two dissimilar material layers 32 (X), the distribution of the carrier concentration in the thickness direction is made uniform, so that the maximum electric field strength that can occur in the first channel cambium 30 is reduced. The first channel cambium 30 may have three or more dissimilar material layers 32.
 同様に、第2チャネル形成層40は、二つの異種材料層42を有する。各々の異種材料層42は、実施例1の半導体装置10Aと同じく、ヒ化アルミニウムガリウムで構成されており、かつ、n型の不純物が導入されている。隣接する二つの異種材料層42の間には、第1の半導体材料(即ち、ヒ化ガリウム)で構成された層が介在している。各々の異種材料層42では、その両側に一対のヘテロ界面44が形成されており、第2チャネル形成層40には、四つのヘテロ界面44が存在する。そして、各々のヘテロ界面44に沿って、二次元電子ガス2DEGが生成される。 Similarly, the second channel cambium 40 has two dissimilar material layers 42. Each dissimilar material layer 42 is made of aluminum gallium arsenide and has n-type impurities introduced, as in the semiconductor device 10A of Example 1. A layer made of a first semiconductor material (that is, gallium arsenide) is interposed between two adjacent dissimilar material layers 42. A pair of heterointerfaces 44 are formed on both sides of each dissimilar material layer 42, and four heterointerfaces 44 are present in the second channel cambium 40. Then, a two-dimensional electron gas 2DEG is generated along each hetero interface 44.
 隣接する二つのヘテロ界面44の間隔は、3nm~20nmとなっており、比較的に小さい。このような構成によると、二つの異種材料層42の間(図中のY)では、二つの二次元電子ガス2DEGが少なくとも部分的に重畳することで、キャリア濃度(即ち、電子密度)の高い二次元電子ガス2DEGが生成される。これにより、第2チャネル形成層40の優れた導電性(即ち、低抵抗)を維持しながら、第2チャネル形成層40の厚みを小さくすることができる。また、二つの異種材料層42の間(Y)では、キャリア濃度の厚み方向における分布が均一化されるので、第2チャネル形成層40内に生じ得る最大電界強度が低減される。第2チャネル形成層40もまた、三以上の異種材料層32を有してもよい。 The distance between two adjacent hetero interfaces 44 is 3 nm to 20 nm, which is relatively small. According to such a configuration, the carrier concentration (that is, the electron density) is high by at least partially superimposing the two two-dimensional electron gases 2DEG between the two dissimilar material layers 42 (Y in the figure). Two-dimensional electron gas 2DEG is generated. As a result, the thickness of the second channel cambium 40 can be reduced while maintaining the excellent conductivity (that is, low resistance) of the second channel cambium 40. Further, since the distribution of the carrier concentration in the thickness direction is uniform between the two dissimilar material layers 42 (Y), the maximum electric field strength that can occur in the second channel cambium 40 is reduced. The second channel cambium 40 may also have three or more dissimilar material layers 32.
(実施例8)図17、図18を参照して、実施例8の半導体装置10Hについて説明する。本実施例の半導体装置10Hは、実施例1の半導体装置10Aと比較して、第1チャネル形成層30及び第2チャネル形成層40の構成が変更されている。以下では、実施例1との相違点を主に説明し、実施例1と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 8) The semiconductor device 10H of the eighth embodiment will be described with reference to FIGS. 17 and 18. In the semiconductor device 10H of this embodiment, the configurations of the first channel forming layer 30 and the second channel forming layer 40 are changed as compared with the semiconductor device 10A of the first embodiment. In the following, the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
 第1チャネル形成層30は、二つの異種材料層32を有する。各々の異種材料層32は、i型のヒ化インジウムガリウム(i-InGaAs)で構成されている。隣接する二つの異種材料層32の間には、第1の半導体材料(即ち、ヒ化ガリウム)で構成された層が介在している。各々の異種材料層32では、その両側に一対のヘテロ界面34が形成されており、第1チャネル形成層30には、四つのヘテロ界面34が存在する。そして、各々のヘテロ界面34に沿って、二次元正孔ガス2DHGが生成される。ここで、異種材料層32を構成するヒ化インジウムガリウムのバンドギャップは、上層20、中層22及び下層24等を構成する第1の半導体材料(即ち、ヒ化ガリウム)のバンドギャップよりも狭い。従って、二次元正孔ガス2DHGは、異種材料層32の内側に生成される。なお、各々の異種材料層32の両側には、p型のヒ化ガリウム(p-GaAs)で構成された正孔供給層36が形成されている。なお、第1チャネル形成層30は、三以上の異種材料層32を有してもよい。 The first channel cambium 30 has two dissimilar material layers 32. Each dissimilar material layer 32 is composed of i-type indium gallium arsenide (i-InGaAs). A layer made of a first semiconductor material (that is, gallium arsenide) is interposed between two adjacent dissimilar material layers 32. A pair of heterointerfaces 34 are formed on both sides of each dissimilar material layer 32, and four heterointerfaces 34 are present in the first channel cambium 30. Then, two-dimensional hole gas 2DHG is generated along each hetero interface 34. Here, the bandgap of indium gallium arsenide constituting the dissimilar material layer 32 is narrower than the bandgap of the first semiconductor material (that is, gallium arsenide) constituting the upper layer 20, the middle layer 22, the lower layer 24, and the like. Therefore, the two-dimensional hole gas 2DHG is generated inside the dissimilar material layer 32. A hole supply layer 36 made of p-type gallium arsenide (p-GaAs) is formed on both sides of each of the dissimilar material layers 32. The first channel cambium 30 may have three or more dissimilar material layers 32.
 各々の異種材料層32の厚み、即ち、隣接する二つのヘテロ界面34の間隔は、3nm~20nmとなっており、比較的に小さい。このような構成によると、異種材料層32の内側では、二つの二次元正孔ガス2DHGが少なくとも部分的に重畳することで、キャリア濃度(即ち、正孔密度)の高い二次元正孔ガス2DHGが生成される。これにより、第1チャネル形成層30の優れた導電性(即ち、低抵抗)を維持しながら、第1チャネル形成層30の厚みを小さくすることができる。また、全ての二次元正孔ガス2DHGにおいて、キャリア濃度が一様に高められることになるので、第1チャネル形成層30内に生じ得る最大電界強度をより低減することができる。その結果、半導体装置10Hの耐圧性が向上する。 The thickness of each dissimilar material layer 32, that is, the distance between two adjacent hetero interfaces 34 is 3 nm to 20 nm, which is relatively small. According to such a configuration, two two-dimensional hole gas 2DHGs have a high carrier concentration (that is, hole density) by at least partially superimposing inside the dissimilar material layer 32. Is generated. As a result, the thickness of the first channel cambium 30 can be reduced while maintaining the excellent conductivity (that is, low resistance) of the first channel cambium 30. Further, since the carrier concentration is uniformly increased in all the two-dimensional hole gas 2DHG, the maximum electric field strength that can be generated in the first channel cambium 30 can be further reduced. As a result, the withstand voltage of the semiconductor device 10H is improved.
 同様に、第2チャネル形成層40は、二つの異種材料層42を有する。各々の異種材料層42は、i型のヒ化インジウムガリウム(i-InGaAs)で構成されている。隣接する二つの異種材料層42の間には、第1の半導体材料(即ち、ヒ化ガリウム)で構成された層が介在している。各々の異種材料層42では、その両側に一対のヘテロ界面44が形成されており、第2チャネル形成層40には、四つのヘテロ界面44が存在する。そして、各々のヘテロ界面44に沿って、二次元電子ガス2DEGが生成される。これらの二次元電子ガス2DEGは、異種材料層42の内側に生成される。なお、各々の異種材料層42の両側には、n型のヒ化ガリウム(n-GaAs)で構成された電子供給層46が形成されている。 Similarly, the second channel cambium 40 has two dissimilar material layers 42. Each dissimilar material layer 42 is composed of i-type indium gallium arsenide (i-InGaAs). A layer made of a first semiconductor material (that is, gallium arsenide) is interposed between two adjacent dissimilar material layers 42. A pair of heterointerfaces 44 are formed on both sides of each dissimilar material layer 42, and four heterointerfaces 44 are present in the second channel cambium 40. Then, a two-dimensional electron gas 2DEG is generated along each hetero interface 44. These two-dimensional electron gas 2DEGs are generated inside the dissimilar material layer 42. An electron supply layer 46 made of n-type gallium arsenide (n-GaAs) is formed on both sides of each dissimilar material layer 42.
 第2チャネル形成層40においても、各々の異種材料層32の厚み、即ち、隣接する二つのヘテロ界面44の間隔は、3nm~20nmとなっており、比較的に小さい。このような構成によると、異種材料層42の内側では、二つの二次元電子ガス2DEGが少なくとも部分的に重畳することで、キャリア濃度(即ち、電子密度)の高い二次元電子ガス2DEGが生成される。これにより、第2チャネル形成層40の優れた導電性(即ち、低抵抗)を維持しながら、第2チャネル形成層40の厚みを小さくすることができる。また、全ての二次元電子ガス2DEGにおいて、キャリア濃度が一様に高められることになるので、第2チャネル形成層40内に生じ得る最大電界強度をより低減することができる。その結果、半導体装置10Hの耐圧性が向上する。 Also in the second channel cambium 40, the thickness of each dissimilar material layer 32, that is, the distance between two adjacent hetero interfaces 44 is 3 nm to 20 nm, which is relatively small. According to such a configuration, two two-dimensional electron gas 2DEGs are at least partially overlapped inside the dissimilar material layer 42 to generate a two-dimensional electron gas 2DEG having a high carrier concentration (that is, electron density). NS. As a result, the thickness of the second channel cambium 40 can be reduced while maintaining the excellent conductivity (that is, low resistance) of the second channel cambium 40. Further, since the carrier concentration is uniformly increased in all the two-dimensional electron gas 2DEG, the maximum electric field strength that can occur in the second channel cambium 40 can be further reduced. As a result, the withstand voltage of the semiconductor device 10H is improved.
 本実施例の半導体装置10Hにおいて、第1の半導体材料及び第2の半導体材料は、上記の組み合わせに限定されない。例えば、第1の半導体材料は、AlGa1-xAs(0<x<1)の組成式で表されるヒ化アルミニウムガリウム(AlGaAs)であり、第2の半導体材料は、InGa1-yAs(0<y<0.5)の組成式で表されるヒ化インジウムガリウムであってもよい。あるいは、第1の半導体材料は、InAlGa1-x-yAs(0<x<0.3,0<y<0.5)の組成式で表されるヒ化インジウムアルミニウムガリウムであり、第2の半導体材料は、InAlGa1-a-bAs(a>x,y>b)の組成式で表されるヒ化インジウムアルミニウムガリウムであってもよい。これらの組み合わせでも、第1の半導体材料のバンドギャップは、第2の半導体材料のバンドギャップよりも広くなる。 In the semiconductor device 10H of this embodiment, the first semiconductor material and the second semiconductor material are not limited to the above combinations. For example, the first semiconductor material is aluminum gallium arsenide (AlGaAs) represented by the composition formula of Al x Ga 1-x As (0 <x <1), and the second semiconductor material is In y Ga. It may be indium gallium arsenide represented by the composition formula of 1-y As (0 <y <0.5). Alternatively, the first semiconductor material is indium aluminum gallium arsenate represented by the composition formula of In x Al y Ga 1-xy As (0 <x <0.3, 0 <y <0.5). The second semiconductor material may be indium aluminum gallium arsenium represented by the composition formula of In a Al b Ga 1-ab As (a> x, y> b). Even with these combinations, the bandgap of the first semiconductor material is wider than the bandgap of the second semiconductor material.
(実施例9)図19、図20を参照して、実施例9の半導体装置10Iについて説明する。本実施例の半導体装置10Iは、実施例8の半導体装置10Hと比較して、ゲート電極18の構成が変更されている。以下では、実施例8との相違点を主に説明し、実施例8と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 9) The semiconductor device 10I of the ninth embodiment will be described with reference to FIGS. 19 and 20. In the semiconductor device 10I of this embodiment, the configuration of the gate electrode 18 is changed as compared with the semiconductor device 10H of the eighth embodiment. In the following, the differences from the eighth embodiment will be mainly described, and the configurations common to the eighth embodiment will be designated by the same reference numerals and duplicated description will be omitted.
 図20に示すように、本実施例の半導体装置10Iでは、ゲート電極18が上層20内に設けられており、上層20の一部を介して第1チャネル形成層30から隔離されている。このように、ゲート電極18は、第1チャネル形成層30(又は、第2チャネル形成層40)に必ずしも接する必要はない。ゲート電極18が第1チャネル形成層30から離れていても、ゲート電極18に電圧が印加されることでゲート電極18と第1チャネル形成層30とが電気的に結合され、第1チャネル形成層30及び第2チャネル形成層40を空乏化することができる。このようなゲート電極18の構成は、本明細書に記載された全ての実施例において採用することができる。 As shown in FIG. 20, in the semiconductor device 10I of this embodiment, the gate electrode 18 is provided in the upper layer 20 and is isolated from the first channel cambium 30 via a part of the upper layer 20. As described above, the gate electrode 18 does not necessarily have to be in contact with the first channel cambium 30 (or the second channel cambium 40). Even if the gate electrode 18 is separated from the first channel cambium 30, the gate electrode 18 and the first channel cambium 30 are electrically coupled by applying a voltage to the gate electrode 18, and the first channel cambium 30 is formed. 30 and the second channel cambium 40 can be depleted. Such a configuration of the gate electrode 18 can be adopted in all the examples described herein.
(実施例10)図21、図22を参照して、実施例10の半導体装置10Jについて説明する。本実施例の半導体装置10Jは、実施例1の半導体装置10Aと比較して、第1チャネル形成層30及び第2チャネル形成層40の構成が変更されている。以下では、実施例1との相違点を主に説明し、実施例1と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 10) The semiconductor device 10J of the tenth embodiment will be described with reference to FIGS. 21 and 22. In the semiconductor device 10J of this embodiment, the configurations of the first channel forming layer 30 and the second channel forming layer 40 are changed as compared with the semiconductor device 10A of the first embodiment. In the following, the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
 第1チャネル形成層30は、四つの異種材料層32を有する。各々の異種材料層32は、i型のヒ化インジウムガリウム(i-InGaAs)で構成されている。隣接する二つの異種材料層32の間には、第1の半導体材料(即ち、ヒ化ガリウム)で構成された層が介在している。各々の異種材料層32では、その両側に一対のヘテロ界面34が形成されており、第1チャネル形成層30には、八つのヘテロ界面34が存在する。そして、各々のヘテロ界面34に沿って、二次元正孔ガス2DHGが生成される。ここで、異種材料層32を構成するヒ化インジウムガリウムのバンドギャップは、上層20、中層22及び下層24等を構成する第1の半導体材料(即ち、ヒ化ガリウム)のバンドギャップよりも狭い。従って、二次元正孔ガス2DHGは、異種材料層32の内側に生成される。なお、各々の異種材料層32の両側には、p型のヒ化ガリウム(p-GaAs)で構成された正孔供給層36が形成されている。 The first channel cambium 30 has four dissimilar material layers 32. Each dissimilar material layer 32 is composed of i-type indium gallium arsenide (i-InGaAs). A layer made of a first semiconductor material (that is, gallium arsenide) is interposed between two adjacent dissimilar material layers 32. A pair of heterointerfaces 34 are formed on both sides of each dissimilar material layer 32, and eight heterointerfaces 34 are present in the first channel cambium 30. Then, two-dimensional hole gas 2DHG is generated along each hetero interface 34. Here, the bandgap of indium gallium arsenide constituting the dissimilar material layer 32 is narrower than the bandgap of the first semiconductor material (that is, gallium arsenide) constituting the upper layer 20, the middle layer 22, the lower layer 24, and the like. Therefore, the two-dimensional hole gas 2DHG is generated inside the dissimilar material layer 32. A hole supply layer 36 made of p-type gallium arsenide (p-GaAs) is formed on both sides of each of the dissimilar material layers 32.
 第1チャネル形成層30には、四つの二次元正孔ガス2DHGが生成される。その四つの二次元正孔ガス2DHGでは、第2チャネル形成層40までの距離が短い二次元正孔ガス2DHGほど、大きなキャリア濃度を有する。即ち、図22に示された四つの二次元正孔ガス2DHGでは、下方に位置する二次元正孔ガス2DHGほど、大きなキャリア濃度を有する。このようなキャリア濃度の分布を形成するためには、複数の正孔供給層36に対して不純物濃度に差を与えるとよい。二次元正孔ガス2DHGのキャリア濃度は、それに近接する正孔供給層36の不純物濃度に依存するので、第2チャネル形成層40までの距離が短い正孔供給層36ほど、その不純物濃度を大きくするとよい。 Four two-dimensional hole gas 2DHGs are generated in the first channel cambium 30. Among the four two-dimensional hole gas 2DHGs, the two-dimensional hole gas 2DHG having a shorter distance to the second channel cambium 40 has a larger carrier concentration. That is, in the four two-dimensional hole gas 2DHGs shown in FIG. 22, the two-dimensional hole gas 2DHG located below has a larger carrier concentration. In order to form such a carrier concentration distribution, it is advisable to give a difference in impurity concentration to the plurality of hole supply layers 36. Since the carrier concentration of the two-dimensional hole gas 2DHG depends on the impurity concentration of the hole supply layer 36 adjacent thereto, the hole supply layer 36 having a shorter distance to the second channel cambium 40 has a higher impurity concentration. It is good to do.
 同様に、第2チャネル形成層40は、四つの異種材料層42を有する。各々の異種材料層42は、i型のヒ化インジウムガリウム(i-InGaAs)で構成されている。隣接する二つの異種材料層42の間には、第1の半導体材料(即ち、ヒ化ガリウム)で構成された層が介在している。各々の異種材料層42では、その両側に一対のヘテロ界面44が形成されており、第2チャネル形成層40には、八つのヘテロ界面44が存在する。そして、各々のヘテロ界面44に沿って、二次元電子ガス2DEGが生成される。これらの二次元電子ガス2DEGは、異種材料層42の内側に生成される。なお、各々の異種材料層42の両側には、n型のヒ化ガリウム(n-GaAs)で構成された電子供給層46が形成されている。 Similarly, the second channel cambium 40 has four dissimilar material layers 42. Each dissimilar material layer 42 is composed of i-type indium gallium arsenide (i-InGaAs). A layer made of a first semiconductor material (that is, gallium arsenide) is interposed between two adjacent dissimilar material layers 42. A pair of heterointerfaces 44 are formed on both sides of each dissimilar material layer 42, and eight heterointerfaces 44 are present in the second channel cambium 40. Then, a two-dimensional electron gas 2DEG is generated along each hetero interface 44. These two-dimensional electron gas 2DEGs are generated inside the dissimilar material layer 42. An electron supply layer 46 made of n-type gallium arsenide (n-GaAs) is formed on both sides of each dissimilar material layer 42.
 第2チャネル形成層40においても、四つの二次元電子ガス2DEGが生成される。その四つの二次元電子ガス2DEGでは、第1チャネル形成層30までの距離が短い二次元電子ガス2DEGほど、大きなキャリア濃度を有する。即ち、図22に示された四つの二次元電子ガス2DEGでは、上方に位置する二次元電子ガス2DEGほど、大きなキャリア濃度を有する。このようなキャリア濃度の分布を形成するためには、複数の電子供給層46に対して不純物濃度に差を与えるとよい。二次元電子ガス2DEGのキャリア濃度のついては、それに近接する電子供給層46の不純物濃度に依存するので、第1チャネル形成層30までの距離が短い電子供給層46ほど、その不純物濃度を大きくするとよい。 Four two-dimensional electron gas 2DEG is also generated in the second channel cambium 40. Among the four two-dimensional electron gas 2DEGs, the shorter the distance to the first channel cambium 30 is, the larger the carrier concentration is. That is, in the four two-dimensional electron gas 2DEG shown in FIG. 22, the two-dimensional electron gas 2DEG located above has a larger carrier concentration. In order to form such a carrier concentration distribution, it is advisable to give a difference in impurity concentration to the plurality of electron supply layers 46. Since the carrier concentration of the two-dimensional electron gas 2DEG depends on the impurity concentration of the electron supply layer 46 adjacent thereto, it is preferable that the electron supply layer 46 having a shorter distance to the first channel cambium 30 has a higher impurity concentration. ..
 以上のように、本実施例の半導体装置10Jでは、複数の二次元正孔ガス2DHGと複数の二次元電子ガス2DEGとのそれぞれで、キャリア濃度に差が設けられている。このような構成によると、第1チャネル形成層30及び第2チャネル形成層40の各々において、複数の二次元キャリアガスが空乏化されるときの時間差を抑制又は排除することができる。従って、半導体装置10Jのスイッチング速度(スイッチングに要する時間)を向上することができる。 As described above, in the semiconductor device 10J of the present embodiment, a difference in carrier concentration is provided between the plurality of two-dimensional hole gas 2DHG and the plurality of two-dimensional electron gas 2DEG. According to such a configuration, it is possible to suppress or eliminate the time difference when the plurality of two-dimensional carrier gases are depleted in each of the first channel forming layer 30 and the second channel forming layer 40. Therefore, the switching speed (time required for switching) of the semiconductor device 10J can be improved.
(実施例11)図23、図24を参照して、実施例11の半導体装置10Kについて説明する。本実施例の半導体装置10Kは、実施例1の半導体装置10Aと比較して、いくつかの点で変更されている。以下では、実施例1との相違点を主に説明し、実施例1と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 11) The semiconductor device 10K of the eleventh embodiment will be described with reference to FIGS. 23 and 24. The semiconductor device 10K of this embodiment is modified in some respects as compared with the semiconductor device 10A of Example 1. In the following, the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
 本実施例の半導体装置10Kでは、第1の半導体材料に、i型のヒ化アルミニウムガリウム(i-AlGaAs)が採用されており、第2の半導体材料に、i型のヒ化ガリウム(i-GaAs)が採用されている。即ち、上層20、中層22及び下層24は、i型のヒ化ガリウムで構成されており、第1チャネル形成層30及び第2チャネル形成層40の異種材料層32、42は、i型のヒ化アルミニウムガリウム(i-GaAs)で構成されている。第1チャネル形成層30では、異種材料層32の両側に沿って、一対の正孔供給層36が形成されている。各々の正孔供給層36は、p型不純物が導入された第1の半導体材料(即ち、p-AlGaAs)で構成されている。 In the semiconductor device 10K of this embodiment, i-type aluminum gallium arsenide (i-AlGaAs) is used as the first semiconductor material, and i-type gallium arsenide (i-) is used as the second semiconductor material. GaAs) is adopted. That is, the upper layer 20, the middle layer 22, and the lower layer 24 are composed of i-type gallium arsenide, and the dissimilar material layers 32 and 42 of the first channel forming layer 30 and the second channel forming layer 40 are i-type arsenide. It is composed of aluminum gallium arsenide (i-GaAs). In the first channel cambium 30, a pair of hole supply layers 36 are formed along both sides of the dissimilar material layer 32. Each hole supply layer 36 is composed of a first semiconductor material (that is, p-AlGaAs) into which p-type impurities have been introduced.
 第2チャネル形成層40では、異種材料層42の両側に沿って、一対の電子供給層46が形成されている。各々の電子供給層46は、n型不純物が導入された第1の半導体材料(即ち、n-AlGaAs)で構成されている。ここで、一対の電子供給層46では、n型不純物の濃度が互いに相違する。詳しくは、ゲート電極18に近い方(即ち、図24において上側)の電子供給層46の方が、ゲート電極18に遠い方(即ち、図24において下側)の電子供給層46よりも、n型不純物が高くなっている。 In the second channel cambium 40, a pair of electron supply layers 46 are formed along both sides of the dissimilar material layer 42. Each electron supply layer 46 is composed of a first semiconductor material (that is, n-AlGaAs) into which an n-type impurity has been introduced. Here, in the pair of electron supply layers 46, the concentrations of n-type impurities are different from each other. Specifically, the electron supply layer 46 closer to the gate electrode 18 (that is, the upper side in FIG. 24) is n than the electron supply layer 46 farther from the gate electrode 18 (that is, the lower side in FIG. 24). Type impurities are high.
 本実施例では、第1の半導体材料がヒ化アルミニウムガリウムであり、第2の半導体材料がヒ化ガリウムであるので、第1の半導体材料のバンドギャップが、第2の半導体材料のバンドギャップよりも広くなっている。従って、第1チャネル形成層30では、異種材料層32の両側に形成されたヘテロ界面34に沿って、二次元正孔ガス2DHGが異種材料層32の内側に形成される。同様に、第2チャネル形成層40では、異種材料層42の両側に形成されたヘテロ界面44に沿って、二次元電子ガス2DEGが異種材料層42の内側に形成される。なお、第1チャネル形成層30及び第2チャネル形成層40の各々は、二以上の異種材料層32、42を有し、第1の半導体材料で構成された正孔供給層36又は電子供給層46と、第2の半導体材料で構成された異種材料層32、42とが交互に積層された構造を有してもよい。 In this embodiment, since the first semiconductor material is aluminum gallium arsenide and the second semiconductor material is gallium arsenide, the band gap of the first semiconductor material is larger than the band gap of the second semiconductor material. Is also widening. Therefore, in the first channel cambium 30, the two-dimensional hole gas 2DHG is formed inside the dissimilar material layer 32 along the hetero interface 34 formed on both sides of the dissimilar material layer 32. Similarly, in the second channel cambium 40, the two-dimensional electron gas 2DEG is formed inside the dissimilar material layer 42 along the hetero interface 44 formed on both sides of the dissimilar material layer 42. Each of the first channel forming layer 30 and the second channel forming layer 40 has two or more different material layers 32 and 42, and is a hole supply layer 36 or an electron supply layer made of the first semiconductor material. It may have a structure in which 46 and dissimilar material layers 32 and 42 composed of a second semiconductor material are alternately laminated.
 ゲート電極18は、上層20から第1チャネル形成層30を通過して、中層22まで延びている。これにより、ゲート電極18から第2チャネル形成層40までの距離が、第1チャネル形成層30から第2チャネル形成層40までの距離よりも短くなっている。このような構成によると、例えば高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)におけるリセスゲート構造のように、ゲート電極18に近接する位置(図24中のZ)では、二次元電子ガス2DEGにおけるキャリア濃度を低下させることができる。これにより、しきい値電圧(電流を遮断するために必要なゲート電圧)が高くなるので、半導体装置10Kは、ノーマリオフ型又はそれに近い動作を実現することができる。 The gate electrode 18 passes from the upper layer 20 through the first channel cambium 30 and extends to the middle layer 22. As a result, the distance from the gate electrode 18 to the second channel cambium 40 is shorter than the distance from the first channel cambium 30 to the second channel cambium 40. According to such a configuration, at a position close to the gate electrode 18 (Z in FIG. 24), such as a recess gate structure in a high electron mobility transistor (HEMT), the two-dimensional electron gas 2DEG The carrier concentration can be reduced. As a result, the threshold voltage (gate voltage required to cut off the current) becomes high, so that the semiconductor device 10K can realize a normal-off type operation or an operation close to it.
 加えて、本実施例の第2チャネル形成層40では、前述したように、一対の電子供給層46においてn型不純物の濃度に差が設けられており、ゲート電極18までの距離が近い電子供給層46ほど、その不純物濃度が大きくなっている。このような構成によると、第2チャネル形成層40では、ゲート電極18までの距離が短い二次元電子ガス2DEGほど、大きなキャリア濃度を有するように、二つの二次元電子ガス2DEGが生成される。これにより、ゲート電極に近接する位置Zにおいて、複数の二次元電子ガス2DEGの各キャリア濃度を均等に低下させることができ、しきい値電圧をより高くすることができる。 In addition, in the second channel cambium 40 of this embodiment, as described above, the pair of electron supply layers 46 are provided with a difference in the concentration of n-type impurities, and the electron supply is close to the gate electrode 18. The layer 46 has a higher impurity concentration. According to such a configuration, in the second channel cambium 40, two two-dimensional electron gas 2DEGs are generated so that the shorter the distance to the gate electrode 18 is, the larger the carrier concentration is. As a result, at the position Z close to the gate electrode, the carrier concentration of each of the plurality of two-dimensional electron gases 2DEG can be uniformly reduced, and the threshold voltage can be further increased.
(実施例12)図25-図27を参照して、実施例12の半導体装置10Lについて説明する。本実施例の半導体装置10Lは、実施例1の半導体装置10Aと比較して、いくつかの点で相違する。以下では、実施例1との相違点を主に説明し、実施例1と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 12) The semiconductor device 10L of the twelfth embodiment will be described with reference to FIGS. 25 to 27. The semiconductor device 10L of the present embodiment differs from the semiconductor device 10A of the first embodiment in some points. In the following, the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
 本実施例の半導体装置10Lでは、異種材料層32、42を構成する第2の半導体材料に、i型のヒ化インジウムアルミニウムガリウム(i-InGaAs)が採用されている。一方、上層20、中層22及び下層24を構成する第1の半導体材料については、実施例1と同じく、i型のヒ化ガリウム(i-GaAs)が採用されている。従って、本実施例の半導体装置10Dでは、第1の半導体材料(GaAs)のバンドギャップは、第2の半導体材料(InGaAs)のバンドギャップよりも広くなっている。 In the semiconductor device 10L of this embodiment, i-type indium gallium arsenide (i-InGaAs) is adopted as the second semiconductor material constituting the dissimilar material layers 32 and 42. On the other hand, as for the first semiconductor material constituting the upper layer 20, the middle layer 22, and the lower layer 24, i-type gallium arsenide (i-GaAs) is adopted as in the first embodiment. Therefore, in the semiconductor device 10D of the present embodiment, the band gap of the first semiconductor material (GaAs) is wider than the band gap of the second semiconductor material (InGaAs).
 第1チャネル形成層30は、複数の異種材料層32を有する。隣接する二つの異種材料層32の間には、第1の半導体材料(即ち、ヒ化ガリウム)で構成された層が介在している。各々の異種材料層32の両側には、n型不純物が導入された電子供給層36が形成されている。即ち、電子供給層36は、n型のヒ化ガリウム(n-GaAs)で構成されており、i型のヒ化インジウムアルミニウムガリウム(i-InGaAs)で構成された異種材料層32に接している。従って、各々の異種材料層32では、その両側に一対のヘテロ界面34が形成され、各々のヘテロ界面34に沿って、二次元電子ガス2DEGが生成される。前述したように、ヒ化インジウムガリウムのバンドギャップは、ヒ化ガリウムのバンドギャップよりも狭いので、二次元電子ガス2DEGは異種材料層32の内側に生成される。 The first channel cambium 30 has a plurality of dissimilar material layers 32. A layer made of a first semiconductor material (that is, gallium arsenide) is interposed between two adjacent dissimilar material layers 32. On both sides of each of the dissimilar material layers 32, electron supply layers 36 into which n-type impurities have been introduced are formed. That is, the electron supply layer 36 is made of n-type gallium arsenide (n-GaAs) and is in contact with the dissimilar material layer 32 made of i-type indium arsenide aluminum gallium (i-InGaAs). .. Therefore, in each dissimilar material layer 32, a pair of heterointerfaces 34 are formed on both sides thereof, and a two-dimensional electron gas 2DEG is generated along each heterointerface 34. As described above, the bandgap of indium gallium arsenide is narrower than the bandgap of gallium arsenide, so that the two-dimensional electron gas 2DEG is generated inside the dissimilar material layer 32.
 同様に、第2チャネル形成層40は、複数の異種材料層42を有する。隣接する二つの異種材料層42の間には、第1の半導体材料(即ち、ヒ化ガリウム)で構成された層が介在している。各々の異種材料層42の両側には、p型不純物が導入された正孔供給層46が形成されている。即ち、正孔供給層46は、p型のヒ化ガリウム(p-GaAs)で構成されており、i型のヒ化インジウムアルミニウムガリウム(i-InGaAs)で構成された異種材料層42に接している。従って、各々の異種材料層42では、その両側に一対のヘテロ界面44が形成され、各々のヘテロ界面44に沿って、二次元正孔ガス2DHGが生成される。この二次元正孔ガス2DHGについても、異種材料層42の内側に生成される。 Similarly, the second channel cambium 40 has a plurality of dissimilar material layers 42. A layer made of a first semiconductor material (that is, gallium arsenide) is interposed between two adjacent dissimilar material layers 42. Hole supply layers 46 into which p-type impurities have been introduced are formed on both sides of each dissimilar material layer 42. That is, the hole supply layer 46 is made of p-type gallium arsenide (p-GaAs) and is in contact with the dissimilar material layer 42 made of i-type indium aluminum gallium arsenide (i-InGaAs). There is. Therefore, in each dissimilar material layer 42, a pair of heterointerfaces 44 are formed on both sides thereof, and two-dimensional hole gas 2DHG is generated along each heterointerface 44. This two-dimensional hole gas 2DHG is also generated inside the dissimilar material layer 42.
 ソース電極14及びドレイン電極16の各々は、半導体基板12の上面12aから第1チャネル形成層30まで延びており、第1チャネル形成層30に接している。これにより、ソース電極14及びドレイン電極16は、第1チャネル形成層30の二次元電子ガス2DEGを介して、互いに電気的に接続される。一方、ゲート電極18は、半導体基板12の上面12aから第2チャネル形成層40まで延びており、第2チャネル形成層40に接している。これにより、ゲート電極18は、第2チャネル形成層40の二次元正孔ガス2DHGと電気的に接続される。なお、ゲート電極18は、例えば絶縁領域19によって、第1チャネル形成層30から電気的に絶縁されている。 Each of the source electrode 14 and the drain electrode 16 extends from the upper surface 12a of the semiconductor substrate 12 to the first channel cambium 30 and is in contact with the first channel cambium 30. As a result, the source electrode 14 and the drain electrode 16 are electrically connected to each other via the two-dimensional electron gas 2DEG of the first channel forming layer 30. On the other hand, the gate electrode 18 extends from the upper surface 12a of the semiconductor substrate 12 to the second channel cambium 40 and is in contact with the second channel cambium 40. As a result, the gate electrode 18 is electrically connected to the two-dimensional hole gas 2DHG of the second channel cambium 40. The gate electrode 18 is electrically insulated from the first channel cambium 30 by, for example, an insulating region 19.
 ここで、本実施例におけるゲート電極18は、リセスゲート部18Aと、ピラー部18Bとを有する。リセスゲート部18Aは、上層20内に設けられており、第1チャネル形成層30に対して平行に延びている。ピラー部18Bは、リセスゲート部18Aから第2チャネル形成層40まで延びており、第2チャネル形成層40と接している。即ち、ゲート電極18は、上層20から第1チャネル形成層30及び中層22を通過して第2チャネル形成層40まで延びており、かつ、上層20内で第1チャネル形成層30と対向している。このような構成によると、ソース電極14とドレイン電極16との間を接続する第1チャネル形成層30が、ゲート電極18のリセスゲート部18Aと、ゲート電極18に接続された第2チャネル形成層40との間を通過する。第1チャネル形成層30のキャリア濃度は、その通過する位置において有意に低下するので、半導体装置10Lのしきい値電圧が高くなる。これにより、半導体装置10Lは、ノーマリオフ型又はそれに近い動作を実現することができる。 Here, the gate electrode 18 in this embodiment has a recess gate portion 18A and a pillar portion 18B. The recess gate portion 18A is provided in the upper layer 20 and extends parallel to the first channel cambium 30. The pillar portion 18B extends from the recess gate portion 18A to the second channel cambium 40 and is in contact with the second channel cambium 40. That is, the gate electrode 18 extends from the upper layer 20 through the first channel forming layer 30 and the middle layer 22 to the second channel forming layer 40, and faces the first channel forming layer 30 in the upper layer 20. There is. According to such a configuration, the first channel forming layer 30 connecting between the source electrode 14 and the drain electrode 16 is connected to the recess gate portion 18A of the gate electrode 18 and the second channel forming layer 40 connected to the gate electrode 18. Pass between and. Since the carrier concentration of the first channel cambium 30 drops significantly at the position where it passes, the threshold voltage of the semiconductor device 10L becomes high. As a result, the semiconductor device 10L can realize a normal-off type operation or an operation close to the normal-off type.
 加えて、第1チャネル形成層30では、複数の二次元電子ガス2DEGにおいて、キャリア濃度に差を設けてもよい。詳しくは、上下の両側に位置する各二次元電子ガス2DEGが、それらの間に位置する少なくとも一つの二次元電子ガス2DEGよりも、大きなキャリア濃度を有してもよい。即ち、ゲート電極18又は第2チャネル形成層40までの距離が短い二次元電子ガス2DEGほど、大きなキャリア濃度を有してもよい。このような構成によると、複数の二次元電子ガス2DEGの各キャリア濃度を均等に低下させることができ、しきい値電圧をより高くすることができる。 In addition, in the first channel cambium 30, a difference may be provided in the carrier concentration in the plurality of two-dimensional electron gases 2DEG. Specifically, each two-dimensional electron gas 2DEG located on both the upper and lower sides may have a larger carrier concentration than at least one two-dimensional electron gas 2DEG located between them. That is, a two-dimensional electron gas 2DEG having a shorter distance to the gate electrode 18 or the second channel cambium 40 may have a larger carrier concentration. According to such a configuration, the carrier concentration of each of the plurality of two-dimensional electron gas 2DEGs can be reduced evenly, and the threshold voltage can be made higher.
(実施例13)図28-図30を参照して、実施例13の半導体装置10Mについて説明する。本実施例の半導体装置10Mは、実施例1の半導体装置10Aと比較して、上部バッファ層50、上部電位固定層52、下部バッファ層60及び下部電位固定層62をさらに備える。以下では、実施例1との相違点を主に説明し、実施例1と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 13) The semiconductor device 10M of the thirteenth embodiment will be described with reference to FIGS. 28 to 30. The semiconductor device 10M of this embodiment further includes an upper buffer layer 50, an upper potential fixing layer 52, a lower buffer layer 60, and a lower potential fixing layer 62 as compared with the semiconductor device 10A of the first embodiment. In the following, the differences from the first embodiment will be mainly described, and the configurations common to the first embodiment will be designated by the same reference numerals, and duplicate description will be omitted.
 上部バッファ層50は、半導体基板12において上層20の上に位置しており、上層20と保護膜2との間に介在している。上部バッファ層50は、絶縁性又は半絶縁性を有する材料で構成されている。上部バッファ層50を構成する材料は、特に限定されないが、例えばi型のヒ化ガリウム(即ち、第1の半導体材料)であってよい。上部電位固定層52は、上部バッファ層50と上層20との間に位置するとともに、1×1012/cm以上の界面準位濃度を有する。なお、上部電位固定層52の厚みは、例えば1nm~10um程度の厚みであってもよく、あるいは、数原子層以下の厚みであってもよい。 The upper buffer layer 50 is located above the upper layer 20 in the semiconductor substrate 12, and is interposed between the upper layer 20 and the protective film 2. The upper buffer layer 50 is made of an insulating or semi-insulating material. The material constituting the upper buffer layer 50 is not particularly limited, but may be, for example, type i gallium arsenide (that is, the first semiconductor material). The upper potential fixing layer 52 is located between the upper buffer layer 50 and the upper layer 20, and has an interface state concentration of 1 × 10 12 / cm 2 or more. The thickness of the upper potential fixing layer 52 may be, for example, about 1 nm to 10 um, or may be a thickness of several atomic layers or less.
 半導体基板12が上部電位固定層52を有していると、上部電位固定層52よりも上方の構造にかかわらず、上層20における電位(電界強度)を固定することができる。これにより、第1チャネル形成層30におけるチャネル濃度を、所望の値で安定させることができる。従って、上部電位固定層52よりも上方には、例えば保護膜2といった付加的な構造を自由に設けることができ、その際に第1チャネル形成層30や第2チャネル形成層40への影響を考慮する必要がない。 When the semiconductor substrate 12 has the upper potential fixing layer 52, the potential (electric field strength) in the upper layer 20 can be fixed regardless of the structure above the upper potential fixing layer 52. Thereby, the channel concentration in the first channel cambium 30 can be stabilized at a desired value. Therefore, an additional structure such as a protective film 2 can be freely provided above the upper potential fixing layer 52, and at that time, the influence on the first channel forming layer 30 and the second channel forming layer 40 can be exerted. No need to consider.
 下部バッファ層60は、半導体基板12において下層24の下に位置しており、下層24と支持基板4との間に介在している。下部バッファ層60は、絶縁性又は半絶縁性を有する材料で構成されている。下部バッファ層60を構成する材料は、特に限定されないが、例えばi型のヒ化ガリウム(即ち、第1の半導体材料)であってよい。下部電位固定層62は、下部バッファ層60と下層24との間に位置するとともに、1×1012/cm以上の界面準位濃度を有する。なお、下部電位固定層62の厚みは、例えば1nm~10um程度の厚みであってもよく、あるいは、数原子層以下の厚みであってもよい。 The lower buffer layer 60 is located below the lower layer 24 in the semiconductor substrate 12, and is interposed between the lower layer 24 and the support substrate 4. The lower buffer layer 60 is made of an insulating or semi-insulating material. The material constituting the lower buffer layer 60 is not particularly limited, but may be, for example, type i gallium arsenide (that is, the first semiconductor material). The lower potential fixing layer 62 is located between the lower buffer layer 60 and the lower layer 24, and has an interface state concentration of 1 × 10 12 / cm 2 or more. The thickness of the lower potential fixing layer 62 may be, for example, about 1 nm to 10 um, or may be a thickness of several atomic layers or less.
 上述した上部電位固定層52と同様に、半導体基板12が下部電位固定層62を有していると、下部電位固定層62よりも下方の構造にかかわらず、下層24における電位(電界強度)を固定することができる(図30参照)。これにより、第2チャネル形成層40におけるチャネル濃度を、所望の値で安定させることができる。また、上部電位固定層52との組み合わせにより、第1チャネル形成層30と第2チャネル形成層40との間でチャネル濃度をバランスさせることができる。従って、下部電位固定層62よりも下には、例えば支持基板4といった付加的な構造を自由に設けることができ、その際に第1チャネル形成層30や第2チャネル形成層40への影響を考慮する必要がない。 Similar to the upper potential fixing layer 52 described above, when the semiconductor substrate 12 has the lower potential fixing layer 62, the potential (electric field strength) in the lower layer 24 is increased regardless of the structure below the lower potential fixing layer 62. It can be fixed (see FIG. 30). Thereby, the channel concentration in the second channel cambium 40 can be stabilized at a desired value. Further, by combining with the upper potential fixing layer 52, the channel concentration can be balanced between the first channel cambium 30 and the second channel cambium 40. Therefore, an additional structure such as a support substrate 4 can be freely provided below the lower potential fixing layer 62, and at that time, the influence on the first channel forming layer 30 and the second channel forming layer 40 can be exerted. No need to consider.
 上部電位固定層52及び下部電位固定層62の具体的な構成は、特に限定されない。例えば、上部電位固定層52及び下部電位固定層62の各々は、炭素(C)、酸素(O)又は鉄(Fe)等の不純物が導入されたIII-V族化合物半導体で構成されていてもよい。この場合、そのIII-V族化合物半導体としては、窒化ガリウム(GaN)、窒化アルミニウムガリウム(AlGaN)、又は窒化ガリウムと窒化アルミニウムガリウムとの超格子層であってもよい。この場合、上部電位固定層52及び下部電位固定層62の厚みは、1nm~10um程度とすることができる。 The specific configuration of the upper potential fixing layer 52 and the lower potential fixing layer 62 is not particularly limited. For example, even if each of the upper potential fixing layer 52 and the lower potential fixing layer 62 is composed of a group III-V compound semiconductor into which impurities such as carbon (C), oxygen (O) or iron (Fe) have been introduced. good. In this case, the group III-V compound semiconductor may be gallium nitride (GaN), aluminum gallium nitride (AlGaN), or a superlattice layer of gallium nitride and aluminum gallium nitride. In this case, the thickness of the upper potential fixing layer 52 and the lower potential fixing layer 62 can be about 1 nm to 10 um.
 他の例として、上部電位固定層52及び下部電位固定層62の各々は、炭素、酸素又は鉄といった不純物が、デルタドーピングされたものであってもよい。あるいは、界面の凹凸といった、数原子層以下の結晶格子の乱れであってもよい。上記した界面準位濃度の数値的要件が満たされる限り、上部電位固定層52及び下部電位固定層62の構成は特に限定されず、例えば、酸化シリコン(SiO)で構成された保護膜2との界面であってもよい。上部電位固定層52及び下部電位固定層62の界面準位濃度は、半導体基板12の製造が完成した後に、外部から調整することもできる。例えば、界面準位濃度を上昇させるためには、半導体基板12に対して紫外線又はプラズマを照射するとよい。あるいは、界面準位濃度を低下させるためには、ランプアニールやレーザーアニールといった熱処理を行うとよい。 As another example, each of the upper potential fixing layer 52 and the lower potential fixing layer 62 may be delta-doped with impurities such as carbon, oxygen or iron. Alternatively, it may be a disorder of the crystal lattice of several atomic layers or less, such as unevenness of the interface. As long as the above numerical requirements for the interface state concentration are satisfied, the configurations of the upper potential fixing layer 52 and the lower potential fixing layer 62 are not particularly limited, and for example, the protective film 2 made of silicon oxide (SiO 2) and the like. It may be the interface of. The interface state concentration of the upper potential fixing layer 52 and the lower potential fixing layer 62 can also be adjusted from the outside after the production of the semiconductor substrate 12 is completed. For example, in order to increase the interface state concentration, the semiconductor substrate 12 may be irradiated with ultraviolet rays or plasma. Alternatively, in order to reduce the interface state concentration, heat treatment such as lamp annealing or laser annealing may be performed.
(実施例14)図31、図32を参照して、実施例14の半導体装置10Nについて説明する。本実施例の半導体装置10Nは、実施例13の半導体装置10Mと比較して、第1チャネル形成層30及び第2チャネル形成層40の構成が変更されている。以下では、実施例13との相違点を主に説明し、実施例13と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 14) The semiconductor device 10N of the 14th embodiment will be described with reference to FIGS. 31 and 32. In the semiconductor device 10N of this embodiment, the configurations of the first channel forming layer 30 and the second channel forming layer 40 are changed as compared with the semiconductor device 10M of the thirteenth embodiment. In the following, the differences from the thirteenth embodiment will be mainly described, and the same reference numerals will be given to the configurations common to the thirteenth embodiment to omit duplicated description.
 本実施例の半導体装置10Nでは、本実施例の半導体装置10Nでは、異種材料層32、42を構成する第2の半導体材料に、ヒ化インジウムアルミニウムガリウム(InGaAs)が採用されている。一方、上層20、中層22及び下層24を構成する第1の半導体材料については、実施例13と同じく、i型のヒ化ガリウム(i-GaAs)が採用されている。従って、本実施例の半導体装置10Nでは、第1の半導体材料(GaAs)のバンドギャップが、第2の半導体材料(InGaAs)のバンドギャップよりも広くなっている。なお、第1チャネル形成層30の異種材料層32には、p型不純物が導入されており、p型のヒ化インジウムアルミニウムガリウム(p-InGaAs)は、正孔を供給する正孔供給層としても機能する。また、第2チャネル形成層40の異種材料層42には、n型不純物が導入されており、n型のヒ化インジウムアルミニウムガリウム(n-InGaAs)は、電子を供給する電子供給層としても機能する。 In the semiconductor device 10N of this embodiment, in the semiconductor device 10N of this embodiment, indium gallium arsenide (InGaAs) is adopted as the second semiconductor material constituting the dissimilar material layers 32 and 42. On the other hand, as for the first semiconductor material constituting the upper layer 20, the middle layer 22, and the lower layer 24, i-type gallium arsenide (i-GaAs) is adopted as in Example 13. Therefore, in the semiconductor device 10N of this embodiment, the band gap of the first semiconductor material (GaAs) is wider than the band gap of the second semiconductor material (InGaAs). A p-type impurity is introduced into the dissimilar material layer 32 of the first channel cambium 30, and the p-type indium gallium arsenide (p-InGaAs) serves as a hole supply layer for supplying holes. Also works. Further, n-type impurities are introduced into the dissimilar material layer 42 of the second channel cambium 40, and the n-type indium gallium arsenide (n-InGaAs) also functions as an electron supply layer for supplying electrons. do.
 上記した構成によると、第1チャネル形成層30では、一対のヘテロ界面34に沿って、二次元正孔ガス2DHGが異種材料層32の内側に生成される。このとき、異種材料層32の厚みが3~20nm程度であると、二つのヘテロ界面34に沿って生成された二つの二次元正孔ガス2DHGが、少なくとも部分的に重畳することによって、見かけ上、一つの二次元正孔ガス2DHGを形成する。同様に、第2チャネル形成層40では、一対のヘテロ界面44に沿って、二次元電子ガス2DEGが異種材料層42の内側に生成される。そして、異種材料層42の厚みが3~20nm程度であると、二つのヘテロ界面44に沿って形成された二つの二次元電子ガス2DEGが、少なくとも部分的に重畳することによって、見かけ上、一つの二次元電子ガス2DEGを生成する。 According to the above configuration, in the first channel cambium 30, two-dimensional hole gas 2DHG is generated inside the dissimilar material layer 32 along the pair of heterointerfaces 34. At this time, when the thickness of the dissimilar material layer 32 is about 3 to 20 nm, the two two-dimensional hole gas 2DHG generated along the two hetero interfaces 34 are apparently superimposed at least partially. , Form one two-dimensional hole gas 2DHG. Similarly, in the second channel cambium 40, two-dimensional electron gas 2DEG is generated inside the dissimilar material layer 42 along the pair of heterointerfaces 44. When the thickness of the dissimilar material layer 42 is about 3 to 20 nm, the two two-dimensional electron gas 2DEG formed along the two hetero interfaces 44 are apparently one by superimposing at least partially. Generates two two-dimensional electron gas 2DEG.
(実施例15)図33、図34を参照して、実施例15の半導体装置10Pについて説明する。本実施例の半導体装置10Pは、実施例13の半導体装置10Mと比較して、いくつかの点で相違する。以下では、実施例13との相違点を主に説明し、実施例13と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 15) The semiconductor device 10P of the 15th embodiment will be described with reference to FIGS. 33 and 34. The semiconductor device 10P of this embodiment differs from the semiconductor device 10M of the thirteenth embodiment in some respects. In the following, the differences from the thirteenth embodiment will be mainly described, and the same reference numerals will be given to the configurations common to the thirteenth embodiment to omit duplicated description.
 第1チャネル形成層30は、一つの異種材料層32を有する。異種材料層32を構成する第2の半導体材料には、実施例1と同じく、ヒ化アルミニウムガリウムが採用されている。但し、本実施例の第1チャネル形成層30では、異種材料層32にn型不純物が導入されており、各々のヘテロ界面34に沿って、二次元電子ガス2DEGが生成されるように構成されている。ゲート電極18は、第1チャネル形成層30に接しており、その二次元電子ガス2DEGと電気的に接続される。そのことから、ゲート電極18は、特に限定されないが、n型のヒ化ガリウム(n-GaAs)といった、n型半導体で構成されている。また、ゲート電極18は、例えば絶縁領域19によって、第1チャネル形成層30から電気的に絶縁されている。なお、第1チャネル形成層30は、二以上の異種材料層32を有してもよい。 The first channel cambium 30 has one dissimilar material layer 32. As in the first embodiment, aluminum gallium arsenide is used as the second semiconductor material constituting the dissimilar material layer 32. However, in the first channel cambium 30 of this embodiment, an n-type impurity is introduced into the dissimilar material layer 32, and a two-dimensional electron gas 2DEG is generated along each hetero interface 34. ing. The gate electrode 18 is in contact with the first channel cambium 30 and is electrically connected to the two-dimensional electron gas 2DEG. Therefore, the gate electrode 18 is not particularly limited, but is composed of an n-type semiconductor such as n-type gallium arsenide (n-GaAs). Further, the gate electrode 18 is electrically insulated from the first channel cambium 30 by, for example, an insulating region 19. The first channel cambium 30 may have two or more dissimilar material layers 32.
 同様に、第2チャネル形成層40は、一つの異種材料層42を有する。この異種材料層42を構成する第2の半導体材料にも、ヒ化アルミニウムガリウムが採用されている。但し、本実施例の第2チャネル形成層40では、異種材料層42にp型不純物が導入されており、各々のヘテロ界面44に沿って、二次元正孔ガス2DHGが生成されるように構成されている。ソース電極14及びドレイン電極16は、第1チャネル形成層30に接しており、その二次元正孔ガス2DHGを介して互いに接続されている。そのことから、ソース電極14及びドレイン電極16は、特に限定されないが、p型のヒ化ガリウム(p-GaAs)といった、p型半導体で構成されている。なお、第2チャネル形成層40についても、二以上の異種材料層42を有してもよい。 Similarly, the second channel cambium 40 has one dissimilar material layer 42. Aluminum gallium arsenide is also used as the second semiconductor material constituting the dissimilar material layer 42. However, in the second channel cambium 40 of this embodiment, p-type impurities are introduced into the dissimilar material layer 42, and a two-dimensional hole gas 2DHG is generated along each hetero interface 44. Has been done. The source electrode 14 and the drain electrode 16 are in contact with the first channel cambium 30 and are connected to each other via the two-dimensional hole gas 2DHG. Therefore, the source electrode 14 and the drain electrode 16 are not particularly limited, but are made of a p-type semiconductor such as p-type gallium arsenide (p-GaAs). The second channel cambium 40 may also have two or more dissimilar material layers 42.
 本実施例の半導体装置10Pでは、ソース電極14及びドレイン電極16が、第1チャネル形成層30の二次元電子ガス2DEGを介して、互いに電気的に接続される。一方、ゲート電極18は、第2チャネル形成層40の二次元正孔ガス2DHGと電気的に接続される。このような構成であっても、ゲート電極18に与える電圧を調節することで、第1チャネル形成層30及び第2チャネル形成層40を空乏化させたり、それらに二次元電子ガス2DEG及び二次元正孔ガス2DHGを生成させたりすることができる。これにより、ソース電極14とドレイン電極16との間を電気的に接続したり、遮断したりすることができる。なお、ソース電極14とドレイン電極16との間が、一又は複数の二次元正孔ガス2DHGを介して互いに接続される構成は、本明細書に開示された他の実施例においても同様に採用することができる。 In the semiconductor device 10P of this embodiment, the source electrode 14 and the drain electrode 16 are electrically connected to each other via the two-dimensional electron gas 2DEG of the first channel forming layer 30. On the other hand, the gate electrode 18 is electrically connected to the two-dimensional hole gas 2DHG of the second channel cambium 40. Even with such a configuration, by adjusting the voltage applied to the gate electrode 18, the first channel forming layer 30 and the second channel forming layer 40 can be depleted, or the two-dimensional electron gas 2DEG and the two-dimensional can be made into them. Hole gas 2DHG can be generated. As a result, the source electrode 14 and the drain electrode 16 can be electrically connected or cut off. The configuration in which the source electrode 14 and the drain electrode 16 are connected to each other via one or a plurality of two-dimensional hole gas 2DHGs is similarly adopted in the other embodiments disclosed in the present specification. can do.
(実施例16)図35-図37を参照して、実施例16の半導体装置10Qについて説明する。本実施例の半導体装置10Qは、実施例12の半導体装置10Lと比較して、上部バッファ層50、上部電位固定層52、下部バッファ層60及び下部電位固定層62をさらに備える。このように、上部電位固定層52及び下部電位固定層62は、本明細書に開示されたいずれの実施例においても付加することができる。なお、本実施例の半導体装置10Qでは、第1チャネル形成層30及び第2チャネル形成層40の各々が、複数の異種材料層32、42を有している。しかしながら、第1チャネル形成層30及び第2チャネル形成層40の各々は、少なくとも一つの異種材料層32、42を有すればよい。 (Example 16) The semiconductor device 10Q of the 16th embodiment will be described with reference to FIGS. 35-37. The semiconductor device 10Q of this embodiment further includes an upper buffer layer 50, an upper potential fixing layer 52, a lower buffer layer 60, and a lower potential fixing layer 62 as compared with the semiconductor device 10L of the twelfth embodiment. As described above, the upper potential fixing layer 52 and the lower potential fixing layer 62 can be added in any of the examples disclosed in the present specification. In the semiconductor device 10Q of this embodiment, each of the first channel forming layer 30 and the second channel forming layer 40 has a plurality of different material layers 32 and 42. However, each of the first channel cambium 30 and the second channel cambium 40 may have at least one dissimilar material layer 32, 42.
(実施例17)図38、図39を参照して、実施例17の半導体装置10Rについて説明する。本実施例の半導体装置10Rは、実施例13の半導体装置10Mと比較して、ソース電極14、ドレイン電極16及びゲート電極18の位置が変更されている。また、第1チャネル形成層30が、二次元電子ガス2DEGを生成し、第2チャネル形成層40が、二次元正孔ガス2DHGを生成するように構成されており、この点においても実施例13の半導体装置10Mと相違する。以下では、実施例13との相違点を主に説明し、実施例13と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 17) The semiconductor device 10R of the 17th embodiment will be described with reference to FIGS. 38 and 39. In the semiconductor device 10R of this embodiment, the positions of the source electrode 14, the drain electrode 16 and the gate electrode 18 are changed as compared with the semiconductor device 10M of the thirteenth embodiment. Further, the first channel cambium 30 is configured to generate a two-dimensional electron gas 2DEG, and the second channel cambium 40 is configured to generate a two-dimensional hole gas 2DHG. Also in this respect, Example 13 It is different from the semiconductor device 10M of. In the following, the differences from the thirteenth embodiment will be mainly described, and the same reference numerals will be given to the configurations common to the thirteenth embodiment to omit duplicated description.
 第1チャネル形成層30では、異種材料層32にn型不純物が導入されており、この点において実施例13と相違する。従って、第1チャネル形成層30では、各々のヘテロ界面34に沿って二次元電子ガス2DEGが生成される。一方、第2チャネル形成層40では、異種材料層42にp型不純物が導入されている。従って、第2チャネル形成層40では、各々のヘテロ界面34に沿って二次元正孔ガス2DHGが生成される。なお、実施例1で説明したように、上層20、中層22及び下層24を構成する第1の半導体材料は、ヒ化ガリウム(GaAs)であり、異種材料層32、42を構成する第2の半導体材料は、ヒ化アルミニウムガリウム(AlGaAs)である。 In the first channel cambium 30, n-type impurities are introduced into the dissimilar material layer 32, which is different from Example 13. Therefore, in the first channel cambium 30, two-dimensional electron gas 2DEG is generated along each hetero interface 34. On the other hand, in the second channel cambium 40, p-type impurities are introduced into the dissimilar material layer 42. Therefore, in the second channel cambium 40, two-dimensional hole gas 2DHG is generated along each hetero interface 34. As described in Example 1, the first semiconductor material constituting the upper layer 20, the middle layer 22, and the lower layer 24 is gallium arsenide (GaAs), and the second semiconductor material constituting the dissimilar material layers 32 and 42. The semiconductor material is aluminum gallium arsenide (AlGaAs).
 ソース電極14及びドレイン電極16の各々は、半導体基板12の上面12aから第1チャネル形成層30まで延びており、第1チャネル形成層30に接している。これにより、ソース電極14及びドレイン電極16は、第1チャネル形成層30の二次元電子ガス2DEGを介して、互いに電気的に接続される。一方、ゲート電極18は、半導体基板12の上面12aに設けられたリセス12bに位置しており、当該リセス12bの底面から第2チャネル形成層40まで延びている。これにより、ゲート電極18は、第2チャネル形成層40の二次元正孔ガス2DHGと電気的に接続される。リセス12bは、上層20から中層22まで延びており、中層22を露出している。ゲート電極18をリセス12bに設けることで、ゲート電極18を第1チャネル形成層30から容易に絶縁することができる。 Each of the source electrode 14 and the drain electrode 16 extends from the upper surface 12a of the semiconductor substrate 12 to the first channel cambium 30 and is in contact with the first channel cambium 30. As a result, the source electrode 14 and the drain electrode 16 are electrically connected to each other via the two-dimensional electron gas 2DEG of the first channel forming layer 30. On the other hand, the gate electrode 18 is located on the recess 12b provided on the upper surface 12a of the semiconductor substrate 12, and extends from the bottom surface of the recess 12b to the second channel cambium 40. As a result, the gate electrode 18 is electrically connected to the two-dimensional hole gas 2DHG of the second channel cambium 40. The recess 12b extends from the upper layer 20 to the middle layer 22 and exposes the middle layer 22. By providing the gate electrode 18 in the recess 12b, the gate electrode 18 can be easily insulated from the first channel cambium 30.
 なお、ゲート電極18をリセス12bに設ける構造は、本明細書に開示された他のいくつかの実施例においても、同様に採用することができる。また、リセス12b及びゲート電極18の数は、一つに限られず、それらが複数設けられてもよい。また、本実施例の半導体装置10Rにおいて、上部バッファ層50、上部電位固定層52、下部バッファ層60及び下部電位固定層62は必ずしも必要とされない。 The structure in which the gate electrode 18 is provided on the recess 12b can be similarly adopted in some other examples disclosed in the present specification. Further, the number of recesses 12b and gate electrodes 18 is not limited to one, and a plurality of them may be provided. Further, in the semiconductor device 10R of this embodiment, the upper buffer layer 50, the upper potential fixing layer 52, the lower buffer layer 60, and the lower potential fixing layer 62 are not always required.
(実施例18)図40、図41を参照して、実施例18の半導体装置10Sについて説明する。本実施例の半導体装置10Sは、実施例13の半導体装置10Mと比較して、異種材料層32、42を構成する第2の半導体材料が変更されている。以下では、実施例13との相違点を主に説明し、実施例13と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 18) The semiconductor device 10S of the 18th embodiment will be described with reference to FIGS. 40 and 41. In the semiconductor device 10S of this embodiment, the second semiconductor material constituting the dissimilar material layers 32 and 42 is changed as compared with the semiconductor device 10M of the thirteenth embodiment. In the following, the differences from the thirteenth embodiment will be mainly described, and the same reference numerals will be given to the configurations common to the thirteenth embodiment to omit duplicated description.
 本実施例の半導体装置10Sでは、異種材料層32、42を構成する第2の半導体材料に、i型のヒ化インジウムアルミニウムガリウム(i-InGaAs)が採用されている。一方、上層20、中層22及び下層24を構成する第1の半導体材料については、実施例13と同じく、i型のヒ化ガリウム(i-GaAs)が採用されている。従って、本実施例の半導体装置10Sでは、第1の半導体材料(GaAs)のバンドギャップが、第2の半導体材料(InGaAs)のバンドギャップよりも広くなっている。 In the semiconductor device 10S of this embodiment, i-type indium gallium arsenide (i-InGaAs) is adopted as the second semiconductor material constituting the dissimilar material layers 32 and 42. On the other hand, as for the first semiconductor material constituting the upper layer 20, the middle layer 22, and the lower layer 24, i-type gallium arsenide (i-GaAs) is adopted as in Example 13. Therefore, in the semiconductor device 10S of the present embodiment, the band gap of the first semiconductor material (GaAs) is wider than the band gap of the second semiconductor material (InGaAs).
 上記したバンドギャップの大小関係によると、第1チャネル形成層30では、異種材料層32の内側に、二次元正孔ガス2DHGが形成される。そのことから、第1チャネル形成層30では、不純物の存在によって正孔の移動が阻害されないように、異種材料層32の外側にp型の不純物が導入されている。従って、異種材料層32の両側には、p型のヒ化ガリウム(p-GaAs)で構成された正孔供給層36が形成されている。同様に、第2チャネル形成層40でも、異種材料層42の内側に、二次元電子ガス2DEGが生成される。そのことから、第2チャネル形成層40では、不純物の存在によって電子の移動が阻害されないように、異種材料層42の外側にn型の不純物が導入されている。従って、異種材料層42の両側には、n型のヒ化ガリウム(n-GaAs)で構成された電子供給層46が形成されている。 According to the magnitude relationship of the band gap described above, in the first channel cambium 30, a two-dimensional hole gas 2DHG is formed inside the dissimilar material layer 32. Therefore, in the first channel cambium 30, p-type impurities are introduced to the outside of the dissimilar material layer 32 so that the movement of holes is not hindered by the presence of impurities. Therefore, hole supply layers 36 made of p-type gallium arsenide (p-GaAs) are formed on both sides of the dissimilar material layer 32. Similarly, in the second channel cambium 40, the two-dimensional electron gas 2DEG is generated inside the dissimilar material layer 42. Therefore, in the second channel cambium 40, n-type impurities are introduced to the outside of the dissimilar material layer 42 so that the movement of electrons is not hindered by the presence of impurities. Therefore, electron supply layers 46 made of n-type gallium arsenide (n-GaAs) are formed on both sides of the dissimilar material layer 42.
 ここで、本実施例の半導体装置10Sは、実施例4の半導体装置10Dに対して、上部バッファ層50、上部電位固定層52、下部バッファ層60及び下部電位固定層62を付加したものでもある。実施例4で説明したように、本実施例の半導体装置10Sにおいても、第1の半導体材料及び第2の半導体材料は、上記した組み合わせに限定されない。 Here, the semiconductor device 10S of the present embodiment is also a semiconductor device 10D of the fourth embodiment to which the upper buffer layer 50, the upper potential fixing layer 52, the lower buffer layer 60, and the lower potential fixing layer 62 are added. .. As described in the fourth embodiment, also in the semiconductor device 10S of the present embodiment, the first semiconductor material and the second semiconductor material are not limited to the above-mentioned combination.
(実施例19)図42、図43を参照して、実施例19の半導体装置10Tについて説明する。本実施例の半導体装置10Tは、実施例13の半導体装置10Mと比較して、上層20、中層22及び下層24を構成する第1の半導体材料と、異種材料層32、42を構成する第2の半導体材料が、それぞれ変更されている。以下では、実施例13との相違点を主に説明し、実施例13と共通する構成については、同一の符号を付すことによって重複する説明を省略する。 (Example 19) The semiconductor device 10T of the 19th embodiment will be described with reference to FIGS. 42 and 43. Compared with the semiconductor device 10M of the thirteenth embodiment, the semiconductor device 10T of this embodiment includes a first semiconductor material constituting the upper layer 20, the middle layer 22, and the lower layer 24, and a second material layer 32, 42. The semiconductor materials of are changed respectively. In the following, the differences from the thirteenth embodiment will be mainly described, and the same reference numerals will be given to the configurations common to the thirteenth embodiment to omit duplicated description.
 本実施例の半導体装置10Tでは、上層20、中層22及び下層24のそれぞれが、i型の窒化ガリウム(i-GaN)で構成されている。一方、異種材料層32、42を構成する第2の半導体材料には、窒化アルミニウムガリウム(AlGaN)が採用されている。窒化ガリウムのバンドギャップは、窒化アルミニウムガリウムのバンドギャップよりも狭い。従って、第1チャネル形成層30では、異種材料層32の外側に二次元正孔ガス2DHGが生成されるので、異種材料層32の内部にp型の不純物が導入されている。同様に、第2チャネル形成層40では、異種材料層42の外側に二次元電子ガス2DEGが生成されるので、異種材料層42の内部にn型の不純物が導入されている。また、支持基板4については、特に限定されないが、絶縁性を有する炭化ケイ素(SiC)の基板が採用されている。但し、支持基板4は、炭化ケイ素(SiC)の基板に限られず、シリコン(Si)又は窒化ガリウム(GaN)の基板であってもよい。 In the semiconductor device 10T of this embodiment, each of the upper layer 20, the middle layer 22, and the lower layer 24 is composed of i-type gallium nitride (i-GaN). On the other hand, aluminum gallium nitride (AlGaN) is used as the second semiconductor material constituting the dissimilar material layers 32 and 42. The bandgap of gallium nitride is narrower than the bandgap of aluminum gallium nitride. Therefore, in the first channel cambium 30, two-dimensional hole gas 2DHG is generated outside the dissimilar material layer 32, so that p-type impurities are introduced inside the dissimilar material layer 32. Similarly, in the second channel cambium 40, since the two-dimensional electron gas 2DEG is generated outside the dissimilar material layer 42, n-type impurities are introduced inside the dissimilar material layer 42. Further, the support substrate 4 is not particularly limited, but a silicon carbide (SiC) substrate having insulating properties is adopted. However, the support substrate 4 is not limited to a silicon carbide (SiC) substrate, and may be a silicon (Si) or gallium nitride (GaN) substrate.
(実施例20)図44、図45を参照して、実施例19の半導体装置10Tについて説明する。本実施例の半導体装置10Tは、タイオードとして機能するものであり、この点において上述した実施例の半導体装置10A-10Sと相違する。 (Example 20) The semiconductor device 10T of the 19th embodiment will be described with reference to FIGS. 44 and 45. The semiconductor device 10T of this embodiment functions as a tie, and is different from the semiconductor device 10A-10S of the above-described embodiment in this respect.
 図42、図43に示すように、半導体装置10Tは、半導体基板12と、半導体基板12に設けられたアノード電極14’及びカソード電極16’とを備える。アノード電極14’及びカソード電極16’は、特に限定されないが、半導体基板12の上面12aに形成されたトレンチ内に設けられている。アノード電極14’及びカソード電極16’は、導電性を有する材料で形成されている。一例ではあるが、アノード電極14’は、p型半導体(例えばp-GaAs)で構成されてもよく、カソード電極16’は、n型半導体(例えばn-GaAs)で構成されてもよい。 As shown in FIGS. 42 and 43, the semiconductor device 10T includes a semiconductor substrate 12 and an anode electrode 14'and a cathode electrode 16'provided on the semiconductor substrate 12. The anode electrode 14'and the cathode electrode 16'are not particularly limited, but are provided in a trench formed on the upper surface 12a of the semiconductor substrate 12. The anode electrode 14'and the cathode electrode 16'are made of a conductive material. As an example, the anode electrode 14'may be composed of a p-type semiconductor (for example, p-GaAs), and the cathode electrode 16'may be composed of an n-type semiconductor (for example, n-GaAs).
 半導体基板12は、第1の半導体材料で構成された上層20、中層22及び下層24と、上層20と中層22との間に位置する第1チャネル形成層30と、中層22と下層24との間に位置する第2チャネル形成層40とを備える。上層20、中層22及び下層24は、i型の窒化ガリウム(i-GaN)で構成されている。なお、上層20、中層22及び下層24を構成する第1の半導体材料には、上述した様々な実施例から理解されるように、様々な半導体材料を採用することができる。 The semiconductor substrate 12 includes an upper layer 20, a middle layer 22, and a lower layer 24 made of a first semiconductor material, a first channel cambium 30 located between the upper layer 20 and the middle layer 22, and a middle layer 22 and a lower layer 24. It includes a second channel cambium 40 located between them. The upper layer 20, the middle layer 22, and the lower layer 24 are made of i-type gallium nitride (i-GaN). As the first semiconductor material constituting the upper layer 20, the middle layer 22, and the lower layer 24, various semiconductor materials can be adopted as understood from the various examples described above.
 第1チャネル形成層30と第2チャネル形成層40との各々は、一又は複数の異種材料層32、42を有してもよい。各々の異種材料層32、42は、例えば窒化アルミニウムガリウム(AlGaN)で構成されている。なお、異種材料層32、42を構成する第2の半導体材料についても、上述した様々な実施例から理解されるように、様々な半導体材料を採用することができる。一又は複数の異種材料層32、42の各々の厚みは、上層20、中層22及び下層24の厚みよりも十分に小さい。第1チャネル形成層30では、一又は複数の異種材料層32の各々の両側に、一対のヘテロ界面34が形成されており、各々のヘテロ界面34に沿って二次元正孔ガス2DHGが生成される。第2チャネル形成層40では、一又は複数の異種材料層42の各々の両側に、一対のヘテロ界面44が形成されており、各々のヘテロ界面44に沿って二次元電子ガス2DEGが生成される。 Each of the first channel cambium 30 and the second channel cambium 40 may have one or more dissimilar material layers 32 and 42. The dissimilar material layers 32 and 42 are made of, for example, aluminum gallium nitride (AlGaN). As for the second semiconductor material constituting the dissimilar material layers 32 and 42, various semiconductor materials can be adopted as understood from the various examples described above. The thickness of each of the one or more dissimilar material layers 32, 42 is sufficiently smaller than the thickness of the upper layer 20, the middle layer 22, and the lower layer 24. In the first channel cambium 30, a pair of heterointerfaces 34 are formed on both sides of each of the one or more dissimilar material layers 32, and two-dimensional hole gas 2DHG is generated along each heterointerface 34. NS. In the second channel cambium 40, a pair of hetero interfaces 44 are formed on both sides of each of the one or more dissimilar material layers 42, and a two-dimensional electron gas 2DEG is generated along each hetero interface 44. ..
 アノード電極14’は、第1チャネル形成層30に接触しており、第1チャネル形成層30内の二次元正孔ガス2DHGと電気的に接続される。カソード電極16’は、第2チャネル形成層40に接触しており、第2チャネル形成層40内の二次元電子ガス2DEGと電気的に接続される。ここで、カソード電極16’は、半導体基板12の上面12aに形成されたリセス12b内に位置しており、リセス12bの底面から第2チャネル形成層40まで延びている。 The anode electrode 14'is in contact with the first channel cambium 30 and is electrically connected to the two-dimensional hole gas 2DHG in the first channel cambium 30. The cathode electrode 16'is in contact with the second channel cambium 40 and is electrically connected to the two-dimensional electron gas 2DEG in the second channel cambium 40. Here, the cathode electrode 16'is located in the recess 12b formed on the upper surface 12a of the semiconductor substrate 12, and extends from the bottom surface of the recess 12b to the second channel cambium 40.
 以上の構成により、本実施例の半導体装置10Tでは、アノード電極14’とカソード電極16’との間に、PINダイオード(p-intrinsic-n diode)に類する構造が形成されている。従って、カソード電極16’に対してアノード電極14’に正電圧が印加されると、アノード電極14’とカソード電極16’との間が電気的に接続される。このとき、第1チャネル形成層30では二次元正孔ガス2DHGを正孔が高速で移動し、第2チャネル形成層40では二次元電子ガス2DEGを電子が高速で移動するので、通電時の抵抗が有意に抑制される。 With the above configuration, in the semiconductor device 10T of this embodiment, a structure similar to a PIN diode (p-intrinsic-n diode) is formed between the anode electrode 14'and the cathode electrode 16'. Therefore, when a positive voltage is applied to the anode electrode 14'with respect to the cathode electrode 16', the anode electrode 14'and the cathode electrode 16' are electrically connected. At this time, holes move at high speed in the two-dimensional hole gas 2DHG in the first channel cambium 30, and electrons move at high speed in the two-dimensional electron gas 2DEG in the second channel forming layer 40. Is significantly suppressed.
 一方、カソード電極16’に対してアノード電極14’に負電圧が印加されると、第1チャネル形成層30及び第2チャネル形成層40が空乏化されることによって、カソード電極16’とアノード電極14’との間が電気的に絶縁される。ここで、第1チャネル形成層30と第2チャネル形成層40とが対向する方向(図45における上下方向)は、アノード電極14’とカソード電極16’とを結ぶ方向(図45における左右方向)に対して略直交している。従って、第1チャネル形成層30及び第2チャネル形成層40が空乏化されたときに、それに起因する電界も、アノード電極14’とカソード電極16’とが並ぶ方向に対して略直交する方向に発生する。この場合、いわゆるスーパージャンクション構造と同様に、アノード電極14’とカソード電極16’との間で電界強度が一様となることから、この半導体装置10Uは、高い耐圧を実現することができる。 On the other hand, when a negative voltage is applied to the anode electrode 14'with respect to the cathode electrode 16', the first channel forming layer 30 and the second channel forming layer 40 are depleted, so that the cathode electrode 16'and the anode electrode are depleted. It is electrically insulated from 14'. Here, the direction in which the first channel forming layer 30 and the second channel forming layer 40 face each other (vertical direction in FIG. 45) is the direction connecting the anode electrode 14'and the cathode electrode 16' (horizontal direction in FIG. 45). Is approximately orthogonal to. Therefore, when the first channel cambium 30 and the second channel cambium 40 are depleted, the electric field caused by the depletion is also in a direction substantially orthogonal to the direction in which the anode electrode 14'and the cathode electrode 16'are aligned. appear. In this case, similarly to the so-called super junction structure, since the electric field strength becomes uniform between the anode electrode 14'and the cathode electrode 16', the semiconductor device 10U can realize a high withstand voltage.
 半導体装置10Uの構成は、様々に変更することができる。例えば、アノード電極14’が第2チャネル形成層40と接するとともに、カソード電極16’が第1チャネル形成層30と接するように構成されてもよい。この場合、第1チャネル形成層30は、二次元電子ガス2DEGが生成されるように構成するとよく、第2チャネル形成層40は、二次元正孔ガス2DHGが生成されるように構成するとよい。また、第1チャネル形成層30及び第2チャネル形成層40は、二以上の異種材料層32、42を有してもよい。本実施例における半導体基板12には、上述した実施例1-19における半導体基板12の構成を単独で、又は様々な組み合わせで採用することができる。 The configuration of the semiconductor device 10U can be changed in various ways. For example, the anode electrode 14'may be configured to be in contact with the second channel cambium 40, and the cathode electrode 16'may be configured to be in contact with the first channel cambium 30. In this case, the first channel cambium 30 may be configured to generate two-dimensional electron gas 2DEG, and the second channel cambium 40 may be configured to generate two-dimensional hole gas 2DHG. Further, the first channel cambium 30 and the second channel cambium 40 may have two or more dissimilar material layers 32 and 42. For the semiconductor substrate 12 in this embodiment, the configuration of the semiconductor substrate 12 in the above-mentioned Examples 1-19 can be adopted alone or in various combinations.
 以上、本明細書が開示する技術の具体例を詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書、又は、図面に説明した技術要素は、単独で、あるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。本明細書又は図面に例示した技術は、複数の目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The specific examples of the technology disclosed in the present specification have been described in detail above, but these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above. The technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. The techniques illustrated in the present specification or drawings can achieve a plurality of objectives at the same time, and achieving one of the objectives itself has technical usefulness.
2:保護膜
4:支持基板
10A-10U:半導体装置
12:半導体基板
14:ソース電極
14’:アノード電極
16:ドレイン電極
16’:カソード電極
18:ゲート電極
20:上層
22:中層
24:下層
30:第1チャネル形成層
32:第1チャネル形成層の異種材料層
34:第1チャネル形成層のヘテロ界面
36:第1チャネル形成層の正孔供給層又は電子供給層
40:第2チャネル形成層
42:第2チャネル形成層の異種材料層
44:第2チャネル形成層のヘテロ界面
46:第2チャネル形成層の正孔供給層又は電子供給層
50:上部バッファ層
52:上部電位固定層
60:下部バッファ層
62:下部電位固定層
2: Protective film 4: Support substrate 10A-10U: Semiconductor device 12: Semiconductor substrate 14: Source electrode 14': Electrode electrode 16: Drain electrode 16': Cathode electrode 18: Gate electrode 20: Upper layer 22: Middle layer 24: Lower layer 30 : 1st channel forming layer 32: Dissimilar material layer of 1st channel forming layer 34: Hetero interface 36 of 1st channel forming layer: Hole supply layer or electron supply layer of 1st channel forming layer 40: 2nd channel forming layer 42: Dissimilar material layer of the second channel forming layer 44: Hetero interface of the second channel forming layer 46: Hole supply layer or electron supply layer of the second channel forming layer 50: Upper buffer layer 52: Upper potential fixing layer 60: Lower buffer layer 62: Lower potential fixed layer

Claims (22)

  1.  半導体基板と、
     前記半導体基板に設けられたソース電極、ドレイン電極及びゲート電極と、を備え、
     前記半導体基板は、
     第1の半導体材料で構成された上層、中層及び下層と、
     前記上層と前記中層との間に位置する第1チャネル形成層と、
     前記中層と前記下層との間に位置する第2チャネル形成層と、を備え、
     前記第1チャネル形成層と前記第2チャネル形成層との各々は、前記第1の半導体材料とバンドギャップが異なる第2の半導体材料で構成された一又は複数の異種材料層を有し、
     前記一又は複数の異種材料層の各々の厚みは、前記中層の厚みよりも小さく、
     前記第1チャネル形成層では、前記一又は複数の異種材料層の各々の両側に形成された一対のヘテロ界面に、第1極性の二次元キャリアガスが生成され、
     前記第2チャネル形成層では、前記一又は複数の異種材料層の各々の両側に形成された一対のヘテロ界面に、第2極性の二次元キャリアガスが生成され、
     前記ソース電極及び前記ドレイン電極は、前記第1チャネル形成層と前記第2チャネル形成層との一方に接触しており、
     前記ゲート電極は、前記第1チャネル形成層と前記第2チャネル形成層との他方に接触又は隣接している、
     半導体装置。
    With a semiconductor substrate
    A source electrode, a drain electrode, and a gate electrode provided on the semiconductor substrate are provided.
    The semiconductor substrate is
    The upper layer, middle layer and lower layer composed of the first semiconductor material,
    A first channel cambium located between the upper layer and the middle layer,
    A second channel cambium located between the middle layer and the lower layer is provided.
    Each of the first channel cambium and the second channel cambium has one or more dissimilar material layers composed of a second semiconductor material having a bandgap different from that of the first semiconductor material.
    The thickness of each of the one or more dissimilar material layers is smaller than the thickness of the middle layer.
    In the first channel cambium, a first polar two-dimensional carrier gas is generated at a pair of heterointerfaces formed on both sides of each of the one or more dissimilar material layers.
    In the second channel cambium, a second polar two-dimensional carrier gas is generated at a pair of heterointerfaces formed on both sides of each of the one or more dissimilar material layers.
    The source electrode and the drain electrode are in contact with one of the first channel cambium and the second channel cambium.
    The gate electrode is in contact with or adjacent to the other of the first channel cambium and the second channel cambium.
    Semiconductor device.
  2.  前記第1チャネル形成層では、前記ヘテロ界面に沿って第1導電型の不純物が導入されており、
     前記第2チャネル形成層では、前記ヘテロ界面に沿って第2導電型の不純物が導入されている、請求項1に記載の半導体装置。
    In the first channel cambium, first conductive type impurities are introduced along the hetero interface.
    The semiconductor device according to claim 1, wherein a second conductive type impurity is introduced into the second channel cambium along the hetero interface.
  3.  前記第1の半導体材料のバンドギャップは、前記第2の半導体材料のバンドギャップよりも狭く、
     前記第1チャネル形成層では、前記異種材料層内に前記第1導電型の不純物が導入されているとともに、前記異種材料層外に前記第1極性の二次元キャリアガスが生成され、
     前記第2チャネル形成層では、前記異種材料層内に前記第2導電型の不純物が導入されているとともに、前記異種材料層外に前記第2極性の二次元キャリアガスが生成される、請求項2に記載の半導体装置。
    The bandgap of the first semiconductor material is narrower than the bandgap of the second semiconductor material.
    In the first channel cambium, the first conductive type impurities are introduced into the dissimilar material layer, and the first polar two-dimensional carrier gas is generated outside the dissimilar material layer.
    Claimed in the second channel cambium, the second conductive type impurity is introduced into the dissimilar material layer, and the second polar two-dimensional carrier gas is generated outside the dissimilar material layer. 2. The semiconductor device according to 2.
  4.  前記第1の半導体材料は、ヒ化ガリウム(GaAs)であり、前記第2の半導体材料は、ヒ化アルミニウムガリウム(AlGaAs)である、又は、
     前記第1の半導体材料は、窒化ガリウム(GaN)であり、前記第2の半導体材料は、窒化アルミニウムガリウム(AlGaN)である、請求項3に記載の半導体装置。
    The first semiconductor material is gallium arsenide (GaAs), and the second semiconductor material is aluminum gallium arsenide (AlGaAs), or
    The semiconductor device according to claim 3, wherein the first semiconductor material is gallium nitride (GaN), and the second semiconductor material is gallium nitride (AlGaN).
  5.  前記第1の半導体材料のバンドギャップは、前記第2の半導体材料のバンドギャップよりも広く、
     前記第1チャネル形成層では、前記異種材料層外に前記第1導電型の不純物が導入されているとともに、前記異種材料層内に前記第1極性の二次元キャリアガスが生成され、
     前記第2チャネル形成層では、前記異種材料層外に前記第2導電型の不純物が導入されているとともに、前記異種材料層内に前記第2極性の二次元キャリアガスが生成される、請求項2に記載の半導体装置。
    The bandgap of the first semiconductor material is wider than the bandgap of the second semiconductor material.
    In the first channel cambium, the first conductive type impurities are introduced outside the dissimilar material layer, and the first polar two-dimensional carrier gas is generated in the dissimilar material layer.
    Claimed that in the second channel cambium, the second conductive type impurities are introduced outside the dissimilar material layer, and the second polar two-dimensional carrier gas is generated in the dissimilar material layer. 2. The semiconductor device according to 2.
  6.  前記第1の半導体材料は、ヒ化ガリウム(GaAs)であり、前記第2の半導体材料は、ヒ化インジウムガリウム(InGaAs)である、又は、
     前記第1の半導体材料は、ヒ化アルミニウムガリウム(AlGaAs)であり、前記第2の半導体材料は、ヒ化インジウムガリウム(InGaAs)である、又は、
     前記第1の半導体材料は、InAlGa1-x-yAs(0<x<0.3,0<y<0.5)の組成式で表されるヒ化インジウムアルミニウムガリウムであり、前記第2の半導体材料は、InAlGa1-a-bAs(a>x,y>b)の組成式で表されるヒ化インジウムアルミニウムガリウムである、請求項5に記載の半導体装置。
    The first semiconductor material is gallium arsenide (GaAs), and the second semiconductor material is indium gallium arsenide (InGaAs), or
    The first semiconductor material is aluminum gallium arsenide (AlGaAs), and the second semiconductor material is indium gallium arsenide (InGaAs), or
    The first semiconductor material is indium aluminum gallium arsenium represented by the composition formula of In x Al y Ga 1-xy As (0 <x <0.3, 0 <y <0.5). The second semiconductor material is indium aluminum gallium arsenium represented by the composition formula of In a Al b Ga 1-ab As (a> x, y> b), according to claim 5. Semiconductor device.
  7.  前記第1チャネル形成層及び前記第2チャネル形成層の各々には、前記複数の異種材料層が設けられている、請求項1から6のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 6, wherein each of the first channel cambium and the second channel cambium is provided with the plurality of different material layers.
  8.  前記第1チャネル形成層及び前記第2チャネル形成層の各々では、互いに隣接する二つのヘテロ界面の距離が3nm以上20nm以下である、請求項1から7のいずれか一項に記載の半導体装置。 The semiconductor device according to any one of claims 1 to 7, wherein in each of the first channel cambium and the second channel cambium, the distance between two heterointerfaces adjacent to each other is 3 nm or more and 20 nm or less.
  9.  前記第1チャネル形成層では、前記第1極性の二次元キャリアガスが複数生成されるとともに、その複数の二次元キャリアガスでは、前記第2チャネル形成層までの距離が短い二次元キャリアガスほど大きなキャリア濃度を有し、
     前記第2チャネル形成層では、前記第2極性の二次元キャリアガスが複数生成され、その複数の二次元キャリアガスでは、前記第1チャネル形成層までの距離が短い二次元キャリアガスほど大きなキャリア濃度を有する、請求項1から8のいずれか一項に記載の半導体装置。
    In the first channel cambium, a plurality of the first polar two-dimensional carrier gases are generated, and in the plurality of two-dimensional carrier gases, the shorter the distance to the second channel cambium, the larger the two-dimensional carrier gas. Has a carrier concentration and
    In the second channel cambium, a plurality of the second polar two-dimensional carrier gases are generated, and in the plurality of two-dimensional carrier gases, the shorter the distance to the first channel cambium is, the higher the carrier concentration is. The semiconductor device according to any one of claims 1 to 8.
  10.  前記ソース電極及び前記ドレイン電極は、前記第2チャネル形成層に接触しており、
     前記ゲート電極は、前記第1チャネル形成層に接触している、請求項1から9のいずれか一項に記載の半導体装置。
    The source electrode and the drain electrode are in contact with the second channel cambium.
    The semiconductor device according to any one of claims 1 to 9, wherein the gate electrode is in contact with the first channel cambium.
  11.  前記ソース電極及び前記ドレイン電極は、前記第2チャネル形成層に接触しており、
     前記ゲート電極は、前記上層内に設けられており、前記上層の一部を介して前記第1チャネル形成層から隔離されている、請求項1から9のいずれか一項に記載の半導体装置。
    The source electrode and the drain electrode are in contact with the second channel cambium.
    The semiconductor device according to any one of claims 1 to 9, wherein the gate electrode is provided in the upper layer and is isolated from the first channel cambium via a part of the upper layer.
  12.  前記ソース電極及び前記ドレイン電極は、前記第2チャネル形成層に接触しており、
     前記ゲート電極は、前記上層から前記第1チャネル形成層を通過して前記中層まで延びており、
     前記ゲート電極から前記第2チャネル形成層までの距離は、前記第1チャネル形成層から前記第2チャネル形成層までの距離よりも短い、請求項1から9のいずれか一項に記載の半導体装置。
    The source electrode and the drain electrode are in contact with the second channel cambium.
    The gate electrode extends from the upper layer through the first channel cambium to the middle layer.
    The semiconductor device according to any one of claims 1 to 9, wherein the distance from the gate electrode to the second channel cambium is shorter than the distance from the first channel cambium to the second channel cambium. ..
  13.  前記第2チャネル形成層では、前記第2極性の二次元キャリアガスが複数生成されるとともに、その複数の二次元キャリアガスでは、前記ゲート電極までの距離が短い二次元キャリアガスほど大きなキャリア濃度を有する、請求項12に記載の半導体装置。 In the second channel cambium, a plurality of the two-dimensional carrier gases of the second polarity are generated, and in the plurality of two-dimensional carrier gases, the shorter the distance to the gate electrode, the higher the carrier concentration. The semiconductor device according to claim 12.
  14.  前記第2チャネル形成層に生成される前記一又は複数の二次元キャリアガスは、一又は複数の二次元電子ガスであり、
     前記ゲート電極は、第1導電型の不純物が導入された半導体材料で構成されている、請求項13に記載の半導体装置。
    The one or more two-dimensional carrier gases generated in the second channel cambium are one or more two-dimensional electron gases.
    The semiconductor device according to claim 13, wherein the gate electrode is made of a semiconductor material into which first conductive type impurities are introduced.
  15.  前記半導体基板の上面には、前記上層を通過して前記中層に達する二つのリセスが設けられており、
     前記ソース電極は、前記二つのリセスの一方の底面から、前記第2チャネル形成層まで延びており、
     前記ドレイン電極は、前記二つのリセスの他方の底面から、前記第2チャネル形成層まで延びている、請求項10から14のいずれか一項に記載の半導体装置。
    Two recesses that pass through the upper layer and reach the middle layer are provided on the upper surface of the semiconductor substrate.
    The source electrode extends from the bottom surface of one of the two recesses to the second channel cambium.
    The semiconductor device according to any one of claims 10 to 14, wherein the drain electrode extends from the other bottom surface of the two recesses to the second channel cambium.
  16.  前記ソース電極及び前記ドレイン電極は、前記第1チャネル形成層に接触しており、
     前記ゲート電極は、前記上層から前記第1チャネル形成層及び前記中層を通過して前記第2チャネル形成層まで延びているとともに、前記上層内で前記第1チャネル形成層と対向している、請求項1から8のいずれか一項に記載の半導体装置。
    The source electrode and the drain electrode are in contact with the first channel cambium.
    The gate electrode extends from the upper layer through the first channel forming layer and the middle layer to the second channel forming layer, and faces the first channel forming layer in the upper layer. Item 2. The semiconductor device according to any one of Items 1 to 8.
  17.  前記第1チャネル形成層では、前記第1極性の二次元キャリアガスが複数生成されるとともに、その複数の二次元キャリアガスでは、上下の両側に位置する各二次元キャリアガスが、それらの間に位置する少なくとも一つの二次元キャリアガスよりも、大きなキャリア濃度を有する、請求項16に記載の半導体装置。 In the first channel forming layer, a plurality of the first polar two-dimensional carrier gases are generated, and in the plurality of two-dimensional carrier gases, the two-dimensional carrier gases located on both the upper and lower sides are placed between them. The semiconductor device according to claim 16, which has a larger carrier concentration than at least one two-dimensional carrier gas located.
  18.  前記ソース電極及び前記ドレイン電極は、前記第1チャネル形成層に接触しており、
     前記半導体基板の上面には、前記上層を通過して前記中層に達するリセスが設けられており、
     前記ゲート電極は、前記リセスの底面から前記第2チャネル形成層に向けて延びている、請求項1から9のいずれか一項に記載の半導体装置。
    The source electrode and the drain electrode are in contact with the first channel cambium.
    A recess is provided on the upper surface of the semiconductor substrate to pass through the upper layer and reach the middle layer.
    The semiconductor device according to any one of claims 1 to 9, wherein the gate electrode extends from the bottom surface of the recess toward the second channel cambium.
  19.  前記半導体基板は、
     前記上層の上に位置するとともに絶縁性を有する上部バッファ層と、
     前記上部バッファ層と前記上層との間に位置するとともに、1×1012/cm以上の界面準位濃度を有する上部電位固定層をさらに備える、請求項1から18のいずれか一項に記載の半導体装置。
    The semiconductor substrate is
    An upper buffer layer located above the upper layer and having an insulating property,
    The invention according to any one of claims 1 to 18, further comprising an upper potential fixing layer located between the upper buffer layer and the upper layer and having an interface state concentration of 1 × 10 12 / cm 2 or more. Semiconductor device.
  20.  前記上部電位固定層は、炭素(C)、酸素(O)又は鉄(Fe)が導入されたIII-V族化合物半導体で構成されている、請求項19に記載の半導体装置。 The semiconductor device according to claim 19, wherein the upper potential fixed layer is composed of a group III-V compound semiconductor into which carbon (C), oxygen (O) or iron (Fe) is introduced.
  21.  前記半導体基板は、
     前記下層の下に位置するとともに絶縁性を有する下部バッファ層と、
     前記下部バッファ層と前記下層との間に位置するとともに、1×1012/cm以上の界面準位濃度を有する下部電位固定層をさらに備える、請求項1から20のいずれか一項に記載の半導体装置。
    The semiconductor substrate is
    A lower buffer layer that is located below the lower layer and has insulating properties,
    The invention according to any one of claims 1 to 20, further comprising a lower potential fixing layer located between the lower buffer layer and the lower layer and having an interface state concentration of 1 × 10 12 / cm 2 or more. Semiconductor device.
  22.  半導体基板と、
     前記半導体基板に設けられた第1電極及び第2電極と、を備え、
     前記半導体基板は、
     第1の半導体で構成された上層、中層及び下層と、
     前記上層と前記中層との間に位置する第1チャネル形成層と、
     前記中層と前記下層との間に位置する第2チャネル形成層と、を備え、
     前記第1チャネル形成層と前記第2チャネル形成層との各々は、第1の半導体材料とバンドギャップが異なる第2の半導体材料で構成された一又は複数の異種材料層を有し、
     前記一又は複数の異種材料層の各々の厚みは、前記中層の厚みよりも小さく、
     前記第1チャネル形成層では、前記一又は複数の異種材料層の各々の両側に形成された一対のヘテロ界面に、第1極性の二次元キャリアガスが生成され、
     前記第2チャネル形成層では、前記一又は複数の異種材料層の各々の両側に形成された一対のヘテロ界面に、第2極性の二次元キャリアガスが生成され、
     前記第1電極は、前記第1チャネル形成層に接触しており、
     前記第2電極は、前記第2チャネル形成層に接触している、
     半導体装置。
    With a semiconductor substrate
    A first electrode and a second electrode provided on the semiconductor substrate are provided.
    The semiconductor substrate is
    The upper layer, middle layer and lower layer composed of the first semiconductor,
    A first channel cambium located between the upper layer and the middle layer,
    A second channel cambium located between the middle layer and the lower layer is provided.
    Each of the first channel cambium and the second channel cambium has one or more dissimilar material layers composed of a second semiconductor material having a bandgap different from that of the first semiconductor material.
    The thickness of each of the one or more dissimilar material layers is smaller than the thickness of the middle layer.
    In the first channel cambium, a first polar two-dimensional carrier gas is generated at a pair of heterointerfaces formed on both sides of each of the one or more dissimilar material layers.
    In the second channel cambium, a second polar two-dimensional carrier gas is generated at a pair of heterointerfaces formed on both sides of each of the one or more dissimilar material layers.
    The first electrode is in contact with the first channel cambium and is in contact with the first channel cambium.
    The second electrode is in contact with the second channel cambium.
    Semiconductor device.
PCT/JP2020/005553 2020-02-13 2020-02-13 Semiconductor device WO2021161448A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/005553 WO2021161448A1 (en) 2020-02-13 2020-02-13 Semiconductor device
JP2021577787A JP7274156B2 (en) 2020-02-13 2020-02-13 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005553 WO2021161448A1 (en) 2020-02-13 2020-02-13 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2021161448A1 true WO2021161448A1 (en) 2021-08-19

Family

ID=77292208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005553 WO2021161448A1 (en) 2020-02-13 2020-02-13 Semiconductor device

Country Status (2)

Country Link
JP (1) JP7274156B2 (en)
WO (1) WO2021161448A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136430A (en) * 1991-11-08 1993-06-01 Nippon Telegr & Teleph Corp <Ntt> Electron-wave interference device
JP2015149359A (en) * 2014-02-05 2015-08-20 トヨタ自動車株式会社 compound semiconductor FET
JP2019057589A (en) * 2017-09-20 2019-04-11 トヨタ自動車株式会社 diode
JP2019117919A (en) * 2017-12-27 2019-07-18 トヨタ自動車株式会社 Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136430B2 (en) 2009-01-13 2013-02-06 コニカミノルタビジネステクノロジーズ株式会社 Post-processing apparatus and image forming system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05136430A (en) * 1991-11-08 1993-06-01 Nippon Telegr & Teleph Corp <Ntt> Electron-wave interference device
JP2015149359A (en) * 2014-02-05 2015-08-20 トヨタ自動車株式会社 compound semiconductor FET
JP2019057589A (en) * 2017-09-20 2019-04-11 トヨタ自動車株式会社 diode
JP2019117919A (en) * 2017-12-27 2019-07-18 トヨタ自動車株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP7274156B2 (en) 2023-05-16
JPWO2021161448A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
US7777252B2 (en) III-V hemt devices
US9911842B2 (en) Nitride semiconductor device, production method thereof, diode, and field effect transistor
JP4761319B2 (en) Nitride semiconductor device and power conversion device including the same
WO2010064362A1 (en) Field effect transistor
JP5793120B2 (en) Composite semiconductor device having SOI substrate with integrated diode
JP5147197B2 (en) Transistor
US8164117B2 (en) Nitride semiconductor device
US9171945B2 (en) Switching element utilizing recombination
US20140110759A1 (en) Semiconductor device
JP5654512B2 (en) Nitride semiconductor device
JP5645304B2 (en) diode
JP2013235873A (en) Semiconductor device and method of manufacturing the same
JP2013038409A (en) Composite semiconductor device with integrated diode
US8816399B2 (en) Semiconductor device
WO2006126726A1 (en) Semiconductor device and method for manufacturing same
JP2008034438A (en) Semiconductor device
JP5779284B2 (en) Switching element
JP2012114320A (en) Nitride semiconductor field effect transistor
US20060054929A1 (en) Semiconductor device
JP5341345B2 (en) Nitride semiconductor heterostructure field effect transistor
WO2010016213A1 (en) Field effect transistor
WO2018181237A1 (en) Semiconductor device
WO2021161448A1 (en) Semiconductor device
JP7203361B2 (en) bidirectional switch element
KR100860070B1 (en) Transistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577787

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919270

Country of ref document: EP

Kind code of ref document: A1