WO2021161412A1 - Inverter - Google Patents

Inverter Download PDF

Info

Publication number
WO2021161412A1
WO2021161412A1 PCT/JP2020/005322 JP2020005322W WO2021161412A1 WO 2021161412 A1 WO2021161412 A1 WO 2021161412A1 JP 2020005322 W JP2020005322 W JP 2020005322W WO 2021161412 A1 WO2021161412 A1 WO 2021161412A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
output
switching element
wiring
vector
Prior art date
Application number
PCT/JP2020/005322
Other languages
French (fr)
Japanese (ja)
Inventor
健 利行
炯竣 羅
歩生 小石
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to PCT/JP2020/005322 priority Critical patent/WO2021161412A1/en
Publication of WO2021161412A1 publication Critical patent/WO2021161412A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels

Definitions

  • the technology disclosed in this specification relates to an inverter.
  • An inverter is disclosed in Japanese Patent Application Laid-Open No. 2017-093039.
  • This inverter has a high-potential wiring, a low-potential wiring, a medium-potential wiring, and a switching circuit.
  • the switching circuit includes an output wiring, a first switching element, a second switching element, a third switching element, a fourth switching element, a first intermediate diode, and a second intermediate diode.
  • the first switching element is connected between the high potential wiring and the output wiring.
  • the second switching element is connected between the medium potential wiring and the output wiring.
  • the third switching element is connected in series with respect to the third switching element between the medium potential wiring and the output wiring.
  • the fourth switching element is connected between the output wiring and the low potential wiring.
  • the first intermediate diode is connected in parallel to the second switching element with the cathode facing the medium potential wiring side.
  • the second intermediate diode is connected in parallel to the third switching element with the cathode facing the output wiring side.
  • the first inverter disclosed in the present specification applies a high potential wiring to which a high potential is applied, a low potential wiring to which a low potential is applied, and a medium potential lower than the high potential and higher than the low potential. It has a medium potential wiring to be used, a switching circuit, a detector for detecting the current flowing in the inverter or the temperature of the inverter, and a control circuit.
  • the switching circuit includes an output wiring, a first switching element connected between the high potential wiring and the output wiring, and a second switching element connected between the medium potential wiring and the output wiring.
  • a third switching element connected in series with the second switching element between the medium potential wiring and the output wiring, and a fourth switching connected between the output wiring and the low potential wiring.
  • the current capacities of the second switching element and the third switching element are lower than the current capacities of the first switching element and the fourth switching element.
  • the control circuit is configured to control the potentials of the gates of the first switching element, the second switching element, the third switching element, and the fourth switching element.
  • the control circuit turns on the switching circuit in a high potential output state in which the first switching element is turned on and the high potential is applied to the output wiring, and the second switching element and the third switching element are turned on.
  • the control circuit is configured to change between the medium potential output state in which the medium potential is applied to the output wiring and the low potential output state in which the fourth switching element is turned on and the low potential is applied to the output wiring.
  • the control circuit is configured to generate an alternating current in the output wiring by changing the switching circuit between the high potential output state, the medium potential output state, and the low potential output state.
  • the control circuit lowers the ratio of the period for controlling the switching circuit to the medium potential output state as compared with the case where the detection value is smaller than the reference value.
  • the current capacities of the second switching element and the third switching element are lower than the current capacities of the first switching element and the fourth switching element. Therefore, the second switching element and the third switching element can be miniaturized. As a result, the inverter can be miniaturized.
  • the switching circuit when the value detected by the detector (that is, the current flowing in the inverter or the temperature of the inverter) is smaller than the reference value, the switching circuit has a medium potential than when the detected value is larger than the reference value.
  • the ratio of the period for controlling the output state is high. That is, the ratio of the period during which the second switching element and the third switching element are turned on is high.
  • the value detected by the detector is low, the operating conditions of each switching element are not so strict. Therefore, even if the ratio of the period during which the second switching element and the third switching element are turned on is increased, so high stress is not applied to the second switching element and the third switching element.
  • the ratio of the period for controlling the medium potential output state in this way, the ripple current generated in the output current is suppressed, and the loss generated in the load connected to the inverter is reduced.
  • the switching circuit when the value detected by the detector (that is, the current flowing in the inverter or the temperature of the inverter) is higher than the reference value, the switching circuit is placed at a medium potential than when the detected value is lower than the reference value.
  • the ratio of the period for controlling the output state is low. That is, the ratio of the period during which the second switching element and the third switching element are turned on is low. In this case, the period for controlling the switching circuit to the medium potential output state may be zero.
  • the control circuit reduces the ratio of the period during which the second switching element and the third switching element are turned on, thereby reducing the stress applied to the second switching element and the third switching element.
  • this inverter increases the ratio of the period during which the second switching element and the third switching element are turned on to suppress the ripple current and reduce the loss. Further, when the operating environment is severe, this inverter protects the second switching element and the third switching element by lowering the ratio of the period during which the second switching element and the third switching element are turned on. Therefore, the stress applied to the second switching element and the third switching element is reduced. Therefore, even if the current capacities of the second switching element and the third switching element are lowered, the inverter can operate when the operating environment is severe. By lowering the current capacities of the second switching element and the third switching element, the inverter can be miniaturized.
  • the inverter may have three switching circuits.
  • the control circuit is configured to control the potentials of the gates of the first switching element, the second switching element, the third switching element, and the fourth switching element of each of the three switching circuits. You may.
  • the control circuit changes the three switching circuits between the high potential output state, the medium potential output state, and the low potential output state, so that the three phases are between the output wirings of the three switching circuits. It may be configured to generate an AC current.
  • the control circuit controls the medium potential output state more than when the detection value is smaller than the reference value. The ratio may be lowered.
  • a three-phase inverter can be configured.
  • the first inverter may have feature 3.
  • the control circuit changes the switching circuit between the high potential output state and the low potential output state, and in this case, the high potential When changing from the output state to the low potential output state, the high potential output state is changed to the low potential output state via the medium potential output state, and the low potential output state is changed to the high potential output state. Occasionally, the low potential output state may be changed to the high potential output state via the medium potential output state.
  • the control circuit controls the ratio of the period for controlling the medium potential output state to the high potential output state and the ratio for controlling the low potential output state. It may be lower than the ratio of.
  • the ripple current can be suppressed to some extent by turning on the second switching element and the third switching element for a short time even when the operating conditions are severe.
  • the first switching element may be made of a silicon semiconductor.
  • the second switching element may be made of a compound semiconductor.
  • the third switching element may be made of a compound semiconductor.
  • the fourth switching element may be made of a silicon semiconductor.
  • Cost can be suppressed by configuring the first switching element and the fourth switching element, which have a large current capacity and are large, with an inexpensive silicon semiconductor. Even if the second switching element and the third switching element, which have a small current capacity and are small in size, are made of an expensive compound semiconductor, the cost is not so high. Further, by forming the second switching element and the third switching element with the compound semiconductor, the loss generated can be effectively reduced.
  • the first intermediate diode may be made of a compound semiconductor.
  • the second intermediate diode may be composed of a compound semiconductor.
  • a three-phase inverter can be configured by providing three phases of switching circuits in which the second switching element and the third switching element are connected in series between the medium potential wiring and the output wiring as in Patent Document 1.
  • the second switching element and the third switching element may be short-circuited and failed.
  • the switching circuit having the short-circuit fault element cannot output a specific potential to the output wiring.
  • the switching circuit cannot output a high potential to the output wiring.
  • the third switching element fails due to a short circuit
  • the fourth switching element is turned on, a line short circuit occurs between the medium potential wiring and the low potential wiring. Therefore, in this case, the switching circuit cannot output a low potential to the output wiring.
  • the inverter cannot continuously generate the three-phase alternating current. That is, in this operation, since the electric charge stored in the lower capacitor is continuously used, the electric charge of the lower capacitor becomes extremely small after a certain period of time, and the medium potential becomes extremely low. When the medium potential becomes extremely low in this way, it is not possible to properly generate a three-phase alternating current.
  • the inverter cannot continuously generate the three-phase alternating current. That is, in this operation, since the electric charge stored in the upper capacitor is continuously used, the electric charge of the upper capacitor becomes extremely small and the medium potential becomes extremely high after a certain period of time has elapsed. When the medium potential becomes extremely high in this way, it is not possible to properly generate a three-phase alternating current.
  • the second inverter disclosed in the present specification includes a high-potential wiring to which a high potential is applied, a low-potential wiring to which a low potential is applied, a medium-potential wiring, and between the high-potential wiring and the medium-potential wiring.
  • the upper capacitor connected to, the lower capacitor connected between the medium-potential wiring and the low-potential wiring, and three switching circuits of a U-phase switching circuit, a V-phase switching circuit, and a W-phase switching circuit. , Has a control circuit.
  • Each of the three switching circuits is connected between the output wiring, the first switching element connected between the high potential wiring and the output wiring, and the medium potential wiring and the output wiring.
  • the two switching elements the third switching element connected in series with respect to the second switching element between the medium potential wiring and the output wiring, and connected between the output wiring and the low potential wiring.
  • the fourth switching element the first intermediate diode connected in parallel to the second switching element with the cathode facing the medium potential wiring side, and the first intermediate diode with the cathode facing the output wiring side. It has a second intermediate diode connected in parallel to the three switching elements.
  • the control circuit is configured to control the potentials of the gates of the first switching element, the second switching element, the third switching element, and the fourth switching element of the three switching circuits.
  • the control circuit is in a high potential output state in which the three switching circuits are turned on and the high potential is applied to the corresponding output wiring, the second switching element and the third switching element. Is turned on to apply the medium potential, which is the potential of the medium potential wiring, to the corresponding output wiring, and the fourth switching element is turned on to apply the low potential to the corresponding output wiring. It is configured to vary between low potential output states.
  • the control circuit is the U-phase output wiring which is the output wiring of the U-phase switching circuit, the V-phase output wiring which is the output wiring of the V-phase switching circuit, and the output wiring of the W-phase switching circuit.
  • the control circuit can execute an emergency operation when any one of the second switching element and the third switching element of the three switching circuits fails in a short circuit.
  • the short-circuit-failed element is called a short-circuit-failed element.
  • the output wiring of one of the three switching circuits including the short-circuit fault element is referred to as a limited output wiring.
  • the output wirings of the two switching circuits that do not include the short-circuit fault element of the three switching circuits are referred to as normal output wirings, respectively.
  • the control circuit changes the potential of the limited output wiring between the two potentials other than the prohibited potential among the high potential, the medium potential, and the low potential, and the normal output. Each potential of the wiring is changed between the three potentials of the high potential, the medium potential, and the low potential.
  • the short-circuit failure element is the second switching element
  • the prohibited potential is the low potential.
  • the short-circuit failure element is the third switching element
  • the prohibited potential is the high potential.
  • the output wiring (limited output wiring) of the switching circuit including the short-circuit fault element is changed between the two potentials excluding the prohibited potential, while the normal output wiring is changed between the three potentials.
  • the limited output wiring is controlled at two levels, while the normal output wiring is controlled at three levels. In this way, when the normal output wiring is controlled at three levels, either the upper capacitor or the lower capacitor is not discharged unilaterally, thus preventing an excessive rise or fall of the medium potential. can do. Therefore, according to this inverter, even if the second switching element or the third switching element fails due to a short circuit, the three-phase alternating current can be continuously generated.
  • the voltage vector is a vector represented by the parameters Vu, Vv, Vw.
  • the parameter Vu is a value indicating whether the potential of the U-phase output wiring is the high potential, the medium potential, or the low potential.
  • the parameter Vv is a value indicating whether the potential of the V-phase output wiring is the high potential, the medium potential, or the low potential.
  • the parameter Vw is a value indicating whether the potential of the W-phase output wiring is the high potential, the medium potential, or the low potential.
  • the voltage vector at which the limited output wiring has the prohibited potential is the prohibited vector
  • the angle range including the prohibited vector in the angle range of the voltage vector is the restricted angle range.
  • the angle range outside the limit angle range of the angle range of the voltage vector is the normal angle range.
  • the control circuit when the angle indicated by the command value is within the limiting angle range, the control circuit has the angle indicated by the command value and the three said according to an allowable vector which is not the prohibited vector.
  • the potential of the output wiring may be controlled.
  • the control circuit selects a specific voltage vector from a plurality of voltage vectors having the angle indicated by the command value.
  • the potentials of the three output wirings may be controlled according to the selected specific voltage vector.
  • the control circuit may select the voltage vector that raises the medium potential as the specific voltage vector when the medium potential is lower than the reference value.
  • the control circuit may select the voltage vector for lowering the medium potential as the specific voltage vector when the medium potential is higher than the reference value.
  • the output voltage may be represented by a voltage vector.
  • the voltage vectors (Vu, Vv, Vw) having an angle of 60 degrees with respect to the U phase include (2,2,0), (2,2,1), and (1,1,0).
  • the numerical value "2" means a high potential
  • the numerical value "1” means a medium potential
  • the numerical value "0” means a low potential.
  • the control circuit controls the potential of the output wiring according to the allowable vector (voltage vector other than the prohibition vector) among the plurality of voltage vectors having that angle.
  • the allowable vector voltage vector other than the prohibition vector
  • the control circuit controls the potential of each output wiring according to (1,1,0).
  • the control circuit prohibits the use of the prohibited potential by controlling according to the permissible vector.
  • the control circuit selects a specific voltage vector from a plurality of voltage vectors having that angle, and sets the potential of the output wiring according to the selected specific voltage vector. Control.
  • the control circuit selects a voltage vector that raises the medium potential when the medium potential is lower than the reference value as a specific voltage vector, and selects a voltage vector that lowers the medium potential when the medium potential is higher than the reference value. Select as a specific voltage vector. For example, if the angles (ie, 60 degrees) of (2,2,0), (2,2,1), (1,1,0) described above are within the normal angle range, the control circuit A specific voltage vector is selected from these voltage vectors.
  • (2,2,1) and (1,1,0) are voltage vectors that change the medium potential.
  • the control circuit operates so as to bring the medium potential closer to the reference value by selecting either (2,2,1) or (1,1,0) according to the operating state of the inverter. In this way, when the angle range indicated by the command value is within the normal angle range, there are multiple voltage vectors that can be used. Therefore, by selecting an appropriate voltage vector from among them, the medium potential can be set to an appropriate value. Can be controlled to. Therefore, the three-phase alternating current can be continuously generated.
  • the three output wirings may be configured to be connected to a load.
  • the voltage vector in which the high potential and the medium potential are applied to the load and the low potential is not applied is referred to as an upper vector.
  • the voltage vector in which the medium potential and the low potential are applied to the load and the high potential is not applied is referred to as a lower vector.
  • the control circuit may select the specific voltage vector according to the following conditions A to D.
  • A. When the medium potential is lower than the reference value and the current flowing through the load is in the forward direction with respect to the voltage applied to the load, the upper vector is selected as the specific voltage vector.
  • the lower vector is selected as the specific voltage vector. .. C.
  • the lower vector is selected as the specific voltage vector when the medium potential is higher than the reference value and the current flowing through the load is in the forward direction with respect to the voltage applied to the load. .. D.
  • the upper vector is selected as the specific voltage vector.
  • the middle potential is higher than the upper limit value higher than the reference value, the angle indicated by the command value is within the limit angle range, and the allowable vector sets the middle potential.
  • the three output wirings may be controlled to have the same potential regardless of the angle indicated by the command value.
  • the medium potential can be quickly returned to a value close to the reference value by setting the output wiring to the same potential under the above conditions.
  • the medium potential is lower than the lower limit value lower than the reference value
  • the angle indicated by the command value is within the limit angle range
  • the allowable vector is the medium potential.
  • the three output wirings may be controlled to have the same potential regardless of the angle indicated by the command value.
  • the medium potential can be quickly returned to a value close to the reference value by setting the output wiring to the same potential under the above conditions.
  • the second inverter may have feature 5.
  • a command circuit that generates a command value of an angle of the voltage vector so that the voltage vector rotates and inputs the command value to the control circuit may be further provided.
  • the voltage vector is a vector represented by the parameters Vu, Vv, Vw.
  • the parameter Vu is a value indicating whether the potential of the U-phase output wiring is the high potential, the medium potential, or the low potential.
  • the parameter Vv is a value indicating whether the potential of the V-phase output wiring is the high potential, the medium potential, or the low potential.
  • the parameter Vw is a value indicating whether the potential of the W-phase output wiring is the high potential, the medium potential, or the low potential.
  • the voltage vector at which the limited output wiring has the prohibited potential is the prohibited vector
  • the angle range including the prohibited vector in the angle range of the voltage vector is the restricted angle range.
  • the angle range outside the limit angle range of the angle range of the voltage vector is the normal angle range.
  • the control circuit when the angle indicated by the command value is within the limiting angle range, the control circuit has the angle indicated by the command value and the three said according to an allowable vector which is not the prohibited vector.
  • the potential of the output wiring may be controlled.
  • the control circuit selects a specific voltage vector from a plurality of voltage vectors having the angle indicated by the command value.
  • the potentials of the three output wirings may be controlled according to the selected specific voltage vector.
  • the three output wires may be configured to be connected to the load.
  • the specific voltage vector is composed of a first group composed of a group of voltage vectors in which the high potential and the medium potential are applied to the load and the low potential is not applied to the load, and the medium potential and the low potential are applied to the load. May be selected from any of the second groups composed of the group of voltage vectors in which the high potential is applied and the high potential is not applied.
  • the control circuit may store the control target value of the medium potential. In the control circuit, when the deviation between the medium potential and the control target value increases after the previous control phase, the voltage vector selected in the previous control phase between the first group and the second group can be used.
  • the specific voltage vector may be selected from a group different from the group to which the specific voltage vector belongs.
  • the control circuit is configured to detect currents flowing through the first switching element, the second switching element, the third switching element, and the fourth switching element of the three switching circuits. You may be.
  • the control circuit may be capable of performing a short-circuit element determination operation on a selective switching circuit selected from the three switching circuits. In the short-circuit element determination operation, the control circuit turns on the selection switching circuit in the first state in which the first switching element and the second switching element are turned on, and in the third state and the fourth switching element. It may be changed over time between the second states.
  • the control circuit determines that the second switching element is a short-circuit fault element when a short-circuit current flows through the third switching element in the second state with respect to the selective switching circuit, and in the first state. When a short-circuit current flows through the second switching element, it may be determined that the third switching element is a short-circuit failure element.
  • the number of selective switching circuits may be one, two, or three. That is, the short-circuit element determination operation may be executed for two or three selective switching circuits at the same time.
  • the short-circuit failure element can be specified.
  • the circuit diagram of the inverter of Examples 1 to 4. A table showing a high potential output state, a medium potential output state, and a low potential output state.
  • the figure which shows the voltage vector E2, E3. The graph which shows the potential V60u in three-level operation.
  • the graph which shows the potential V60u in two-level operation. The graph which shows the potential V60u, V60v, V60w in the three-level operation.
  • the graph which shows the potential V60u in the quasi-two-level operation The graph which shows the potential V60u, V60v, V60w in the quasi-two-level operation.
  • a circuit diagram showing a single-phase inverter A graph showing the angle of the output voltage vector and the three-phase alternating current.
  • the circuit diagram which shows the current path when (0,0,2) is output.
  • the circuit diagram which shows the current path when (1, 1, 2) is output.
  • the circuit diagram which shows the current path when (0,0,1) is output.
  • the flowchart which shows the short-circuit element determination operation A table showing the first state, the second state, and the third state.
  • the flowchart which shows the emergency operation when the forbidden potential is a low potential VL.
  • the flowchart which shows the emergency operation when the prohibition potential is a high potential VH.
  • Example 1 The inverter of the first embodiment will be described below. Examples 1 and 2 are examples of the first inverter described above.
  • FIG. 1 shows a circuit diagram of the inverter 10 of the first embodiment.
  • the inverter 10 is mounted on the vehicle. Further, the vehicle is equipped with a battery 18 and a motor 90.
  • the motor 90 is a three-phase motor and drives the wheels of the vehicle.
  • the inverter 10 is connected to the battery 18 and the motor 90.
  • the inverter 10 converts the DC power supplied from the battery 18 into three-phase AC power, and supplies the three-phase AC power to the motor 90. As a result, the motor 90 is driven and the vehicle travels.
  • the inverter 10 has a high potential wiring 12, a medium potential wiring 14, a low potential wiring 16, an upper capacitor 20, and a lower capacitor 22.
  • the high potential wiring 12 is connected to the positive electrode of the battery 18.
  • the low potential wiring 16 is connected to the negative electrode of the battery 18.
  • a DC voltage is applied between the high-potential wiring 12 and the low-potential wiring 16 by the battery 18. Therefore, the potential VH of the high-potential wiring 12 is higher than the potential VL (that is, 0V) of the low-potential wiring 16.
  • the upper capacitor 20 is connected between the high-potential wiring 12 and the medium-potential wiring 14.
  • the lower capacitor 22 is connected between the medium potential wiring 14 and the low potential wiring 16.
  • the potential VM of the medium-potential wiring 14 is higher than the potential VL of the low-potential wiring 16 and lower than the potential VH of the high-potential wiring 12.
  • the potential VM is about 50% of the potential VH (ie, VH / 2).
  • the inverter 10 has three switching circuits 30 of a U-phase switching circuit 30u, a V-phase switching circuit 30v, and a W-phase switching circuit 30w.
  • Each of the switching circuits 30 is connected between the high-potential wiring 12, the low-potential wiring 16, and the medium-potential wiring 14.
  • Each of the switching circuits 30 includes a first switching element 41, a second switching element 42, a third switching element 43, a fourth switching element 44, a first diode 51, a second diode 52, a third diode 53, and a third. It has 4 diodes 54 and an output wiring 60. Since the configurations of the three switching circuits 30 are equal to each other, the configuration of one switching circuit 30 will be described below.
  • the first switching element 41 is an IGBT (insulated gate bipolar transistor).
  • the first switching element 41 is connected between the high potential wiring 12 and the output wiring 60.
  • the collector of the first switching element 41 is connected to the high potential wiring 12, and the emitter of the first switching element 41 is connected to the output wiring 60.
  • the first diode 51 is connected in parallel to the first switching element 41.
  • the anode of the first diode 51 is connected to the emitter of the first switching element 41, and the cathode of the first diode 51 is connected to the collector of the first switching element 41.
  • the fourth switching element 44 is an IGBT.
  • the fourth switching element 44 is connected between the output wiring 60 and the low potential wiring 16.
  • the collector of the fourth switching element 44 is connected to the output wiring 60, and the emitter of the fourth switching element 44 is connected to the low potential wiring 16.
  • the fourth diode 54 is connected in parallel to the fourth switching element 44.
  • the anode of the fourth diode 54 is connected to the emitter of the fourth switching element 44, and the cathode of the fourth diode 54 is connected to the collector of the fourth switching element 44.
  • the second switching element 42 and the third switching element 43 are FETs (field effect transistors).
  • the second switching element 42 and the third switching element 43 are connected in series between the output wiring 60 and the medium potential wiring 14.
  • the drain of the second switching element 42 is connected to the medium potential wiring 14.
  • the source of the second switching element 42 is connected to the source of the third switching element 43.
  • the drain of the third switching element 43 is connected to the output wiring 60.
  • the second diode 52 is connected in parallel to the second switching element 42.
  • the anode of the second diode 52 is connected to the source of the second switching element 42, and the cathode of the second diode 52 is connected to the drain of the second switching element 42. That is, the second diode 52 is connected in parallel to the second switching element 42 with the cathode facing the medium potential wiring 14 side.
  • the third diode 53 is connected in parallel to the third switching element 43.
  • the anode of the third diode 53 is connected to the source of the third switching element 43, and the cathode of the third diode 53 is connected to the drain of the third switching element 43. That is, the third diode 53 is connected in parallel to the third switching element 43 with the cathode facing the output wiring 60 side.
  • the switching elements 41 and 44 are made of a silicon semiconductor.
  • the switching elements 42 and 43 are composed of compound semiconductors (for example, silicon carbide semiconductors, gallium nitride semiconductors, etc.). Compound semiconductors have a wider bandgap than silicon semiconductors.
  • the switching elements 42 and 43 made of compound semiconductors are less likely to cause loss than the switching elements 41 and 44 made of silicon semiconductors.
  • the current capacity of the switching elements 42 and 43 is smaller than the current capacity of the switching elements 41 and 44. That is, the maximum value of the current that can be passed through the switching elements 42 and 43 is smaller than the maximum value of the current that can be passed through the switching elements 41 and 44.
  • the temperature of the switching elements 42 and 43 is more likely to rise than that of the switching elements 41 and 44. Further, the switching elements 42 and 43 are smaller than the switching elements 41 and 44.
  • the diodes 51 to 54 may be pn diodes or Schottky barrier diodes.
  • the diodes 51 and 54 are made of a silicon semiconductor.
  • the first diode 51 may be formed on a semiconductor substrate common to the first switching element 41 (that is, even if the first switching element 41 and the first diode 51 are formed in one semiconductor substrate). good).
  • the fourth diode 54 may be formed on a semiconductor substrate common to the fourth switching element 44.
  • the diodes 52 and 53 are made of a compound semiconductor.
  • the second diode 52 may be formed on a semiconductor substrate common to the second switching element 42.
  • the second diode 52 may be a parasitic diode incorporated in the second switching element 42 (that is, FET).
  • the third diode 53 may be formed on a semiconductor substrate common to the third switching element 43.
  • the third diode 53 may be a parasitic diode incorporated in the third switching element 43 (that is, FET).
  • the diodes 52 and 53 made of compound semiconductors are less likely to cause loss than the diodes 51 and 54 made of silicon semiconductors.
  • the current capacity of the diodes 52 and 53 is smaller than the current capacity of the diodes 51 and 54. Therefore, when a current of the same magnitude flows through the diodes 52 and 53 and the diodes 51 and 54, the temperature of the diodes 52 and 53 is more likely to rise than that of the diodes 51 and 54. Further, the diodes 52 and 53 are smaller than the diodes 51 and 54.
  • the output wiring 60 of the U-phase switching circuit 30u is referred to as a U-phase output wiring 60u
  • the output wiring 60 of the V-phase switching circuit 30v is referred to as a V-phase output wiring 60v
  • the output wiring 60 of the W-phase switching circuit 30w is referred to as W. It is called phase output wiring 60w.
  • Each of the U-phase output wiring 60u, the V-phase output wiring 60v, and the W-phase output wiring 60w is connected to the motor 90.
  • the inverter 10 has a control circuit 70 and a command circuit 72.
  • the command circuit 72 generates a command value according to the operating state of the motor 90, and inputs the generated command value to the control circuit 70.
  • the control circuit 70 is connected to the gates of the switching elements 41 to 44 of each of the U-phase switching circuit 30u, the V-phase switching circuit 30v, and the W-phase switching circuit 30w. That is, the control circuit 70 is connected to the gates of the 12 switching elements shown in FIG.
  • the control circuit 70 turns each switching element on and off based on the command value input from the command circuit 72. As a result, a three-phase alternating current is generated between the three output wirings 60. By supplying the three-phase alternating current to the motor 90, the motor 90 is driven and the vehicle travels.
  • the inverter 10 has a current sensor 74 that detects the main current flowing in the inverter 10.
  • the current detected by the current sensor 74 may be an input current supplied from the battery 18 to the inverter 10 (that is, a current flowing through the high potential wiring 12 or the low potential wiring 16), or is supplied from the inverter 10 to the motor 90.
  • the current to be generated that is, the current flowing through one or more of the output wirings 60u, 60v, 60w) or the main current flowing through any of the switching elements (for example, the collector of the switching elements 41, 44).
  • -Emitor-to-emitter current, drain-source current of switching elements 42 and 43 may be used.
  • the detected value of the current sensor 74 is input to the control circuit 70.
  • the control circuit 70 controls each switching circuit 30 to one of the high potential output state, the medium potential output state, and the low potential output state shown in FIG.
  • the first switching element 41 is controlled to be on, the second switching element 42 to be off, the third switching element 43 to be off, and the fourth switching element 44 to be off.
  • the output wiring 60 is connected to the high potential wiring 12 via the first switching element 41. Therefore, in the high potential output state, the potential of the output wiring 60 is the same potential VH as that of the high potential wiring 12.
  • the first switching element 41 is turned off, the second switching element 42 is turned on, the third switching element 43 is turned on, and the fourth switching element 44 is turned off.
  • the output wiring 60 is connected to the medium potential wiring 14 via the second switching element 42 and the third switching element 43. Therefore, in the medium potential output state, the potential of the output wiring 60 is the same medium potential VM as the medium potential wiring 14.
  • the first switching element 41 is turned off, the second switching element 42 is turned off, the third switching element 43 is turned off, and the fourth switching element 44 is turned on.
  • the output wiring 60 is connected to the low potential wiring 16 via the fourth switching element 44. Therefore, in the low potential output state, the potential of the output wiring 60 is the same low potential VL as that of the low potential wiring 16.
  • each switching circuit 30 By changing the state of each switching circuit 30 between the high potential output state, the medium potential output state, and the low potential output state, the potential of each output wiring 60 is among the high potential VH, the medium potential VM, and the low potential VL. Change.
  • the control circuit 70 generates a three-phase alternating current in the output wiring 60 by controlling the potential of each output wiring 60.
  • FIG. 3 is a space vector diagram showing a voltage vector showing a potential applied to each of the output wirings 60.
  • the voltage vector E1 is illustrated.
  • the voltage vector is represented by three parameters (Vu, Vv, Vw).
  • the parameter Vu is a value indicating the potential of the U-phase output wiring 60u.
  • the parameter Vv is a value indicating the potential of the V-phase output wiring 60v.
  • the parameter Vw is a value indicating the potential of the W-phase output wiring 60w.
  • the parameters Vu, Vv, Vw are numerical values between 0 and 2.
  • the numerical value "0" indicates that the low potential VL is applied to the corresponding output wiring 60
  • the numerical value "1” indicates that the medium potential VM is applied to the corresponding output wiring 60
  • the numerical value "2" corresponds. It is shown that the high potential VH is applied to the output wiring 60 to be processed. For example, since the voltage vector E1 illustrated in FIG. 3 is (2,2,0), a high potential VH is applied to the U-phase output wiring 60u, and a high potential VH is applied to the V-phase output wiring 60v. This means that a low potential VL is applied to the W-phase output wiring 60w.
  • the command circuit 72 generates command values of potentials to be applied to the three output wirings 60.
  • the command circuit 72 generates a command value by a voltage vector (that is, three parameters (Vu, Vv, Vw)).
  • the command value generated by the command circuit 72 is input to the control circuit 70.
  • the command value (voltage vector) input from the command circuit 72 to the control circuit 70 is referred to as a command value vector.
  • the control circuit 70 controls the inverter 10 according to the command value vector. For example, when the parameter Vu of the command value vector is "0", the control circuit 70 controls the U-phase switching circuit 30u to the low-potential output state and applies the low-potential VL to the U-phase output wiring 60u. When the parameter Vu of the command value vector is "1”, the control circuit 70 controls the U-phase switching circuit 30u to the medium-potential output state and applies the medium-potential VM to the U-phase output wiring 60u. When the parameter Vu of the command value vector is "2", the control circuit 70 controls the U-phase switching circuit 30u to the high-potential output state and applies the high-potential VH to the U-phase output wiring 60u.
  • the control circuit 70 controls the V-phase switching circuit 30v to the low-potential output state and applies the low-potential VL to the V-phase output wiring 60v.
  • the control circuit 70 controls the V-phase switching circuit 30v to the medium-potential output state and applies the medium-potential VM to the V-phase output wiring 60v.
  • the control circuit 70 controls the V-phase switching circuit 30v to the high-potential output state and applies the high-potential VH to the V-phase output wiring 60v.
  • the control circuit 70 controls the W-phase switching circuit 30w to the low-potential output state and applies the low-potential VL to the W-phase output wiring 60w.
  • the control circuit 70 controls the W-phase switching circuit 30w to the medium-potential output state and applies the medium-potential VM to the W-phase output wiring 60w.
  • the control circuit 70 controls the W-phase switching circuit 30w to the high-potential output state and applies the high-potential VH to the W-phase output wiring 60w. In this way, the control circuit 70 controls the potentials of the three output wirings 60 according to the command value vector. In the following, controlling the potentials of the three output wirings 60 by the control circuit 70 may be referred to as “outputting a voltage vector”.
  • the command circuit 72 may generate a command value vector including a decimal as the parameters Vu, Vv, and Vw.
  • the voltage vector E2 in FIG. 4 may be generated as a command value vector.
  • the control circuit 70 synthesizes these voltage vectors by outputting a plurality of voltage vectors (voltage vectors whose parameters are integers) close to the command value vector with a time lag. ..
  • the control circuit 70 controls the output voltage vector so that the combined voltage vector matches the command value vector.
  • the command circuit 72 sequentially generates a command value vector so that the command value vector rotates as shown by an arrow 102 in FIG. 3, and inputs the command value vector to the control circuit 70.
  • the control circuit 70 outputs a voltage vector according to the input command value vector. Therefore, the output voltage vector rotates as shown by the arrow 102.
  • a three-phase alternating current is generated between the three output wirings 60, and the magnetic field generated inside the motor 90 rotates.
  • the rotor of the motor 90 rotates.
  • the current value detected by the current sensor 74 is input to the control circuit 70.
  • the control circuit 70 switches the operation of the inverter 10 between the two-level operation and the three-level operation based on the input current value.
  • the control circuit 70 executes a three-level operation.
  • the control circuit 70 controls the potential of each output wiring 60 at three levels of high potential VH, medium potential VM, and low potential VL.
  • FIG. 5 illustrates a change in the potential V60u of the U-phase output wiring 60u in a three-level operation. As shown in FIG.
  • the potential V60u changes among the three potentials VH, VM, and VL according to the target potential.
  • the potential V60v of the V-phase output wiring 60v and the potential V60w of the W-phase output wiring 60w also change between the three potentials VH, VM, and VL according to the target potential.
  • the control circuit 70 executes a two-level operation. In the two-level operation, the control circuit 70 controls the potential of each output wiring 60 at two levels of high potential VH and low potential VL. That is, in the two-level operation, the control circuit 70 does not output the medium potential VM to each output wiring 60.
  • FIG. 6 shows a change in the potential V60u of the U-phase output wiring 60u in the two-level operation.
  • the potential V60u changes between the high potential VH and the low potential VL according to the target potential. That is, in the two-level operation, the U-phase switching circuit 30u does not enter the medium potential output state.
  • the potential V60v of the V-phase output wiring 60v and the potential V60w of the W-phase output wiring 60w also change between the high potential VH and the low potential VL according to the target potential.
  • the three-level operation and the two-level operation will be described in detail below.
  • the three-level operation will be described by taking the voltage vectors E2 and E3 of FIG. 4 as an example.
  • the control circuit 70 shifts the three voltage vectors (0,0,0), (1,0,0), and (1,1,0) closest to the voltage vector E2 in time. And output.
  • FIG. 7 shows the changes in the potentials V60u, V60v, and V60w in this case.
  • the potential V60u and the potential V60v become medium potentials. It varies between VM and low potential VL.
  • the potential V60w is maintained at the low potential VL.
  • FIG. 8 shows the changes in the potentials V60u, V60v, and V60w in this case.
  • (2,2,1), (2,2,0), and (1,2,0) are output with a time lag
  • the potential V60u becomes a high potential VH and a medium potential.
  • the potential V60v is maintained at high potential VH
  • the potential V60w changes between medium potential VM and low potential VL.
  • the potentials V60u, V60v, and V60w can be the three potentials VH, VM, and VL. Therefore, as shown in FIG. 5, the potential V60u changes among the three potentials VH, VM, and VL. As shown in FIG. 5, in the three-level operation, the potential V60u changes between the high potential VH and the medium potential VM, or between the medium potential VM and the low potential VL. In other words, in the three-level operation, the potential V60u does not directly change from the high potential VH to the low potential VL, and does not directly change from the low potential VL to the high potential VH. Similarly, the potentials V60v and V60w also change among the three potentials VH, VM and VL.
  • the two-level operation will be described by taking the voltage vectors E2 and E3 of FIG. 4 as an example.
  • the control circuit 70 does not control each switching circuit 30 to the medium potential output state. Therefore, in the two-level operation, the control circuit 70 is the three voltage vectors closest to the voltage vector E2 from the voltage vectors that do not include the parameter “1” (0,0,0), (2,0,0). ), (2,2,0) are selected, and these three voltage vectors are output with a time lag.
  • FIG. 9 shows the changes in the potentials V60u, V60v, and V60w in this case. As shown in FIG.
  • the control circuit 70 is the three voltage vectors closest to the voltage vector E3 among the voltage vectors not including the parameter “1” (0,0,0), (2,2,0). (0,2,0) is selected, and these three voltage vectors are output with a time lag.
  • FIG. 10 shows the changes in the potentials V60u, V60v, and V60w in this case.
  • the potentials V60u, V60v, and V60w can be the two potentials VH and VL, but are not controlled by the medium potential VM. Therefore, as shown in FIG. 6, the potential V60u changes between the two potentials VH and VL. As shown in FIG. 6, in the two-level operation, the potential V60u directly changes from the high potential VH to the low potential VL, and directly changes from the low potential VL to the high potential VH. Similarly, the potentials V60v and V60w also change between the two potentials VH and VL.
  • FIG. 11 shows a current I (current flowing through any one of the output wirings 60u, 60v, and 60w) supplied from the output wiring 60 to the motor 90.
  • I current flowing through any one of the output wirings 60u, 60v, and 60w supplied from the output wiring 60 to the motor 90.
  • the current I draws a sine curve
  • the current I is superposed with a ripple current that changes minutely at high frequencies.
  • the ripple current is generated due to a change in the potential of the output wiring 60.
  • the potential of each output wiring 60 changes directly between the high potential VH and the low potential VL. Therefore, the amount of change ⁇ V when the potential of each output wiring 60 changes is large.
  • the potential of each output wiring 60 does not change directly between the high potential VH and the low potential VL.
  • the potential of each output wiring 60 changes between the high potential VH and the medium potential VM, or between the medium potential VM and the low potential VL.
  • the amount of change ⁇ V when the potential of the output wiring 60 changes is smaller than that in the two-level operation. Therefore, in the three-level operation, the amplitude W of the ripple current (see FIG. 11) can be made smaller than that in the two-level operation.
  • the ripple current is suppressed in this way, the loss generated in the motor 90 is suppressed. That is, the loss generated in the motor 90 can be suppressed in the three-level operation as compared with the two-level operation.
  • the amount of change ⁇ V of the potential in each output wiring 60 is small, the amount of change in the voltage applied to each of the switching elements 41 to 44 during switching of each of the switching elements 41 to 44 is small. Therefore, in the three-level operation, the switching loss generated in each of the switching elements 41 to 44 is smaller than in the two-level operation. Further, when the amount of change in the voltage applied to each of the switching elements 41 to 44 is small, the amount of change in the voltage applied to each of the diodes 51 to 54 is also small. Therefore, in the three-level operation, the loss (recovery loss) generated when each diode 51 to 54 is in the recovery operation is smaller than that in the two-level operation.
  • the switching elements 42 and 43 are made of compound semiconductors, while the switching elements 41 and 44 are made of silicon semiconductors. Therefore, the loss that occurs when a current flows through the switching elements 42 and 43 is smaller than the loss that occurs when a current flows through the switching elements 41 and 44. Therefore, the three-level operation of switching the switching elements 42 and 43 is less likely to cause a loss than the two-level operation of keeping the switching elements 42 and 43 off.
  • the diodes 52 and 53 are made of compound semiconductors, while the diodes 51 and 54 are made of silicon semiconductors. Therefore, the loss that occurs when a current flows through the diodes 52 and 53 is smaller than the loss that occurs when a current flows through the diodes 51 and 54. Therefore, the three-level operation in which the current flows through the diodes 51 and 54 is less likely to cause a loss than the two-level operation in which the current does not flow through the diodes 51 and 54.
  • the loss generated in the inverter 10 and the motor 90 can be reduced in the three-level operation as compared with the two-level operation.
  • the current does not flow through the switching elements 42 and 43 and the diodes 52 and 53 in the two-level operation, while the current flows through the switching elements 42 and 43 and the diodes 52 and 53 in the three-level operation.
  • the switching elements 42 and 43 have a smaller current capacity than the switching elements 41 and 44, and the diodes 52 and 53 have a smaller current capacity than the diodes 51 and 54. Therefore, the two-level operation can operate with a larger current than the three-level operation. That is, in the two-level operation, a larger current can be supplied to the motor 90 than in the three-level operation, and the motor 90 can be operated with a higher torque.
  • the loss can be reduced as compared with the 2-level operation, while in the 2-level operation, a larger current can be supplied to the motor 90 than in the 3-level operation.
  • the control circuit 70 executes a three-level operation when the current value detected by the current sensor 74 is smaller than the reference value. Therefore, when the current value is smaller than the reference value, the loss can be reduced by the three-level operation.
  • the control circuit 70 executes a two-level operation when the current value detected by the current sensor 74 is larger than the reference value. This prevents a large current from flowing through the switching elements 42, 43 and the diodes 52, 53, which have a small current capacity. Further, according to the two-level operation, a large current can be supplied to the motor 90 by the switching elements 41 and 44 and the diodes 51 and 54 having a large current capacity. Therefore, the inverter 10 can operate even at a large current.
  • the current capacities of the switching elements 42 and 43 and the diodes 52 and 53 are increased according to the maximum current flowing through the inverter 10, it is possible to perform three-level operation at a large current. However, in that case, the switching elements 42 and 43 and the diodes 52 and 53 become large, and the inverter 10 becomes large.
  • the current capacities of the switching elements 42, 43 and the diodes 52, 53 are reduced, and the switching elements 42, 43 and the diodes 52, 53 are operated by executing the two-level operation at the time of a large current. It is possible to operate the inverter 10 with a large current while protecting it from a large current. Further, this makes it possible to reduce the size of the inverter 10.
  • the frequency of operating the motor 90 with high torque is not so high, and the current flowing through the inverter 10 is not so high in the standard operating state. That is, in a standard operating state, the inverter 10 executes three-level operation, and the inverter 10 is operated only in a limited situation where a high torque is required by the motor 90 (for example, a situation where the tire of the vehicle is locked). Performs a two-level operation. Therefore, the effect of the loss increase due to the two-level operation is limited, and in most situations, the benefit of the loss reduction due to the three-level operation can be obtained. Therefore, according to the configuration of the inverter 10, the inverter 10 can be miniaturized with almost no increase in loss as compared with the conventional case.
  • the switching elements 42 and 43 and the diodes 52 and 53 are composed of the compound semiconductor as described above, the loss in the three-level operation can be further reduced.
  • the three-level operation is executed in the standard operating state, it is executed more frequently than the two-level operation. Therefore, the switching elements 42 and 43 and the diodes 52 and 53 made of the compound semiconductor can be used with high frequency, and the loss can be efficiently reduced.
  • compound semiconductors are generally expensive.
  • the switching elements 42 and 43 and the diodes 52 and 53 have a small current capacity and are small in size, even if an element composed of a compound semiconductor is adopted as the switching elements 42 and 43 and the diodes 52 and 53, the cost is so high. It doesn't become.
  • the loss can be reduced at low cost.
  • Example 2 Next, the inverter of the second embodiment will be described.
  • the two-level operation is executed.
  • the quasi-two level operation is executed.
  • the configuration of the inverter of the second embodiment is the same as the configuration of the inverter of the first embodiment. The quasi-two-level operation will be described below.
  • the potential of each output wiring 60 is directly changed between the high potential VH and the low potential VL without controlling each switching circuit 30 to the medium potential output state. ..
  • the switching circuit 30 is instantaneously controlled to the medium potential output state while the potential of each output wiring 60 is changed from the low potential VL to the high potential VH. And output the medium potential VM.
  • the switching circuit 30 is instantaneously controlled to the medium potential output state to output the medium potential VM.
  • the control circuit 70 is the three voltage vectors closest to the voltage vector E2 from among the voltage vectors not including the parameter "1" (0,0,0). (2,0,0) and (2,2,0) are selected, and these three voltage vectors are output with a time lag.
  • the voltage vector intermediate between the two voltage vectors before and after the change is instantaneously output. That is, as shown in FIG. 13, the control circuit 70 momentarily uses an intermediate voltage vector between them while changing the output voltage vector from (0,0,0) to (2,0,0).
  • the control circuit 70 is the three voltage vectors closest to the voltage vector E3 among the voltage vectors not including the parameter “1” (0,0,0). (2,2,0) and (0,2,0) are selected, and these three voltage vectors are output with a time lag.
  • the voltage vector intermediate between the two voltage vectors before and after the change is instantaneously output. That is, as shown in FIG. 14, the control circuit 70 momentarily uses an intermediate voltage vector between them while changing the output voltage vector from (0,0,0) to (2,2,0).
  • the control circuit 70 momentarily has an intermediate voltage vector (1,2,0) while changing the output voltage vector from (2,2,0) to (0,2,0). ) Is output. Further, the control circuit 70 momentarily has an intermediate voltage vector (0,1,0) while changing the output voltage vector from (0,2,0) to (0,0,0). ) Is output.
  • the medium potential VM is instantaneously output while the potential of each output wiring 60 is changing between the high potential VH and the low potential VL.
  • the potential of the output wiring 60 is momentarily medium potential while changing between the high potential VH and the low potential VL. VM is output.
  • the medium potential VM is output to the output wiring 60 while the potential of each output wiring 60 is changing between the high potential VH and the low potential VL. Therefore, in the quasi-two-level operation, the rate of change when the potential of the output wiring 60 changes between the high potential VH and the low potential VL is slower than in the two-level operation. Therefore, in the quasi-two-level operation, the ripple current can be suppressed and the loss generated in the motor 90 can be suppressed as compared with the two-level operation. Further, in the quasi-two-level operation, the loss generated in each of the switching elements 41 to 44 can be reduced and the recovery loss generated in each diode 51 to 54 can be reduced as compared with the two-level operation.
  • the loss generated in the inverter and the motor 90 can be reduced as compared with the two-level operation.
  • the switching elements 42 and 43 are turned on during the period of outputting the medium potential VM, and a high current flows through the switching elements 42 and 43.
  • the period for outputting the medium potential VM is extremely short.
  • the period for outputting the medium potential VM that is, the period during which the switching elements 42 and 43 are turned on
  • the period for outputting the medium potential VM is shorter in the quasi-two-level operation than in the three-level operation. Therefore, it is possible to perform quasi-two-level operation without applying so high stress to the switching elements 42 and 43.
  • the medium potential VM was held at a potential lower than the high potential VH and higher than the low potential VL by the capacitors 20 and 22.
  • the capacitors 20 and 22 may be omitted.
  • the first battery may be connected between the high-potential wiring 12 and the medium-potential wiring 14, and the second battery may be connected between the medium-potential wiring 14 and the low-potential wiring 16.
  • the three-level operation and the two-level operation are switched based on the current detected by the current sensor 74 (that is, the current flowing in the inverter 10). And executed.
  • a temperature sensor for detecting the temperature of the inverter 10 is provided, a three-level operation is executed when the temperature detected by the temperature sensor is lower than the reference value, and the temperature detected by the temperature sensor is higher than the reference value.
  • Two-level operation (or quasi-two-level operation) may be performed. When a current is passed through the switching elements 42 and 43 while the temperature of the switching elements 42 and 43 is high, a high stress is applied to the switching elements 42 and 43.
  • the temperature of the inverter 10 When the temperature of the inverter 10 is high, the current flowing through the switching elements 42 and 43 can be suppressed and the stress on the switching elements 42 and 43 can be suppressed by performing the two-level operation (or the quasi-two-level operation). .. Further, the temperature of the inverter 10 becomes high when a large current is flowing through the inverter 10, which is a limited situation in which a high torque is required for the motor 90. In the standard operating state, the temperature of the inverter 10 is not so high, and three-level operation is executed. Therefore, in most situations, you can benefit from the loss reduction of the three-level operation.
  • the temperature sensor may detect the temperature at any position of the inverter 10, but if the temperature of the switching elements 42 and 43 is detected, the stress on the switching elements 42 and 43 can be suppressed more reliably. ..
  • the switching elements 41 and 44 were IGBTs composed of silicon semiconductors.
  • the switching elements 41 and 42 may be composed of FETs composed of compound semiconductors, similarly to the switching elements 42 and 43. Even in this case, the size of the inverter 10 can be reduced by making the current capacities of the switching elements 42 and 43 smaller than the current capacities of the switching elements 41 and 44.
  • the switching elements 42 and 43 were FETs composed of compound semiconductors.
  • the switching elements 42 and 43 may be switching elements (for example, IGBTs, FETs, etc.) made of silicon semiconductors. Even in this case, the inverter 10 can be miniaturized by making the current capacities of the switching elements 42 and 43 smaller than the current capacities of the switching elements 41 and 44.
  • Example 3 The inverter of the third embodiment will be described below.
  • Example 3 is an Example of the above-mentioned second inverter.
  • the inverter of the third embodiment has the configuration of FIG. 1 as in the first and second embodiments.
  • the inverter of the third embodiment is characterized by an emergency operation executed when the second switching element 42 or the third switching element 43 fails in a short circuit.
  • the operation of the inverter of the third embodiment is the same as the operation of the inverters of the first and second embodiments. It may be different or it may be different.
  • the inverter of the third embodiment does not have to have the current sensor 74.
  • the upper capacitor 20 is connected between the high potential wiring 12 and the medium potential wiring 14, and the lower capacitor 22 is the medium potential wiring 14 and the low potential wiring 16. It is connected in between. Therefore, the medium potential VM is higher than the low potential VL and lower than the high potential VH.
  • the medium potential VM varies depending on the amount of electric charge stored in the upper capacitor 20 and the amount of electric charge stored in the lower capacitor 22.
  • control circuit 70 and the command circuit 72 are connected to the medium potential wiring 14.
  • the control circuit 70 and the command circuit 72 can detect the medium potential VM.
  • the inverter 10 has a current sensor that detects the current flowing through each output wiring 60. The detected value of each current sensor is input to the control circuit 70.
  • the command circuit 72 generates a command value vector.
  • the command circuit 72 sequentially generates a command value vector so that the command value vector rotates as shown by an arrow 102 in FIG. 3, and inputs the command value vector to the control circuit 70.
  • the control circuit 70 outputs a voltage vector according to a command value vector.
  • the angle of the voltage vector is shown by the angle ⁇ with respect to the Vu axis.
  • the angle ⁇ of (2,2,0) is 60 °. Since the command value vector is represented by (Vu, Vv, Vw), the command value vector contains information on the angle ⁇ .
  • the command circuit 72 detects the medium potential VM, and (2,2,1) or (1,1,0) so that the medium potential VM becomes a target value (for example, a value halved of the high potential VH). Select one of the above and use it as the command value vector. As described above, at the angle ⁇ where a plurality of voltage vectors exist, the command circuit 72 selects one voltage vector from the plurality of voltage vectors and uses it as the command value vector.
  • the command circuit 72 may be configured to generate a command value vector including a decimal as the parameters Vu, Vv, and Vw.
  • the voltage vector E2 of FIG. 4 may be generated as a command value vector.
  • the control circuit 70 outputs a voltage vector close to the voltage vector E2 with a time lag.
  • the three voltage vectors (2,2,2), (1,1,1) and (0,0,0) are so-called zero vectors, and the three output wirings 60 have the same potential. means.
  • FIG. 16 shows the relationship between the currents Iu, Iv, and Iw flowing through the three output wirings 60u, 60v, and 60w and the angle ⁇ of the output voltage vector.
  • the phase of the angle ⁇ of the voltage vector is shifted by about 90 ° with respect to the phase of the current Iu.
  • the phase difference between the angle ⁇ and the current Iu may further change from FIG. 16 due to the influence of the parasitic resistance of the circuit or the like.
  • the phase difference between the angle ⁇ and the current Iu may change.
  • the fluctuation of the medium potential VM will be described.
  • the medium potential VM is not applied to any of the three output wirings 60.
  • the fluctuation of the medium potential VM does not occur.
  • the output wirings 60u and 60v are connected to the low potential wiring 16 and the output wiring 60w is connected to the high potential wiring 12 as shown in FIG.
  • a current flows in the same direction as the voltage applied to the motor 90 (hereinafter referred to as the forward direction) and a direction opposite to the voltage applied to the motor 90 (hereinafter referred to as the reverse direction). ) May flow current.
  • a current flows in the forward direction, as shown by an arrow 200 in FIG. 17, a current flows from the high potential wiring 12 to the motor 90 via the output wiring 60w.
  • the current flowing into the motor 90 flows to the low potential wiring 16 via the output wirings 60u and 60v.
  • the current flows in the opposite direction of the arrow 200.
  • the output wirings 60u and 60v are connected to the medium potential wiring 14 and the output wiring 60w is connected to the high potential wiring 12 as shown in FIG.
  • a current flows in the forward direction as shown by an arrow 202 in FIG. 18, a current flows from the high potential wiring 12 to the motor 90 via the output wiring 60w.
  • the current flowing into the motor 90 flows to the medium potential wiring 14 via the output wirings 60u and 60v.
  • the medium potential VM rises.
  • the current flows in the opposite direction of the arrow 202. In this case, since the upper capacitor 20 is charged, the medium potential VM is lowered.
  • the medium potential VM increases when the current is in the forward direction, and decreases when the current is in the reverse direction.
  • (2,1,1), (2,2,1), (1,2,1), (1,2,2), (2,1,2) are output as voltage vectors. Then, when the current is in the forward direction, the medium potential VM rises, and when the current is in the reverse direction, the medium potential VM decreases.
  • the output wirings 60u and 60v are connected to the low potential wiring 16 and the output wiring 60w is connected to the medium potential wiring 14 as shown in FIG. NS.
  • a current flows in the forward direction, as shown by arrow 204 in FIG. 19, a current flows from the medium potential wiring 14 to the motor 90 via the output wiring 60w.
  • the current flowing into the motor 90 flows to the low potential wiring 16 via the output wirings 60u and 60v.
  • the medium potential VM is lowered.
  • the current flows in the opposite direction of the arrow 204. In this case, since the lower capacitor 22 is charged, the medium potential VM rises.
  • the medium potential VM decreases when the current is in the forward direction, and increases when the current is in the reverse direction.
  • (1,0,0), (1,1,0), (0,1,0), (0,1,1), (1,0,1) are output as voltage vectors.
  • the medium potential VM decreases, and when the current is in the reverse direction, the medium potential VM increases.
  • the command circuit 72 changes the command value vector according to the medium potential VM when the torque required by the motor 90 is low. For example, when the medium potential VM is lower than the control target value, a command value vector for raising the medium potential VM is generated. Further, for example, when the medium potential VM is higher than the control target value, a command value vector for lowering the medium potential VM is generated.
  • the control circuit 70 controls the potentials of the three output wirings 60 according to the command value vector. Therefore, the three-phase alternating current can be supplied to the motor 90 while controlling the medium potential VM to a value close to the target value.
  • the control circuit 70 periodically executes a short-circuit element determination operation when the vehicle is not traveling. In the short-circuit element determination operation, it is determined whether or not the switching elements 41 to 44 are short-circuited or not for each of the switching circuits 30u, 30v, and 30w.
  • the short-circuit failure means a failure mode in which the switching element is turned on regardless of the potential of the gate of the switching element.
  • the control circuit 70 selects one of the three switching circuits 30u, 30v, and 30w, and executes a short-circuit element determination operation for the selected switching circuit 30.
  • the control circuit 70 may select all three switching circuits 30 and execute the short-circuit element determination operation for all the selected switching circuits 30 at the same time. Since the short-circuit element determination operation for the switching circuits 30u, 30v, and 30w is the same, the short-circuit element determination operation for one switching circuit 30 will be described below.
  • Each of the switching elements 41 to 44 is provided with a current detection terminal.
  • the control circuit 70 is connected to the current detection terminals of the switching elements 41 to 44.
  • the control circuit 70 can detect the main current (collector-emitter current or drain-source current) of the switching elements 41 to 44 from the potential of the current detection terminal.
  • FIG. 20 is a flowchart of the short-circuit element determination operation.
  • the control circuit 70 controls the inverter to the first state, the second state, and the third state in steps S2 to S6.
  • FIG. 21 shows a first state, a second state, and a third state.
  • the first state is a state in which the first switching element 41 and the second switching element 42 are on, and the third switching element 43 and the fourth switching element 44 are off.
  • the second state is a state in which the third switching element 43 and the fourth switching element 44 are on, and the first switching element 41 and the second switching element 42 are off.
  • the third state is a state in which the second switching element 42 and the third switching element 43 are on, and the first switching element 41 and the fourth switching element 44 are off.
  • step S2 the control circuit 70 controls the switching circuit 30 to the first state, and detects the main current and the medium potential VM of the switching elements 41 to 44.
  • step S2 that is, the first state
  • the fourth switching element 44 has a short-circuit failure
  • a line short-circuit occurs between the high-potential wiring 12 and the low-potential wiring 16 as shown by the arrow 300 in FIG. ..
  • the short-circuit current is detected by the first switching element 41.
  • step S2 that is, in the first state
  • step S2 if the third switching element 43 is short-circuited, a short-circuit between the high-potential wiring 12 and the medium-potential wiring 14 is performed as shown by an arrow 302 in FIG. Occurs.
  • the short-circuit current is detected in the first switching element 41 and the second switching element 42, and the increase in the medium potential VM is detected.
  • step S4 the control circuit 70 controls the switching circuit 30 to the second state, and detects the main current and the medium potential VM of the switching elements 41 to 44.
  • step S4 that is, the second state
  • if the first switching element 41 has a short-circuit failure a line short-circuit occurs between the high-potential wiring 12 and the low-potential wiring 16 as shown by the arrow 304 in FIG. ..
  • the short-circuit current is detected by the fourth switching element 44.
  • step S4 that is, in the second state
  • the second switching element 42 has a short-circuit failure
  • a short-circuit between the lines is short-circuited between the medium-potential wiring 14 and the low-potential wiring 16 as shown by the arrow 306 in FIG. Occurs.
  • the short-circuit current is detected in the third switching element 43 and the fourth switching element 44, and the decrease in the medium potential VM is detected.
  • step S6 the control circuit 70 controls the switching circuit 30 to the third state, and detects the main current and the medium potential VM of the switching elements 41 to 44.
  • step S6 that is, the third state
  • the first switching element 41 has a short-circuit failure
  • a line short-circuit occurs between the high-potential wiring 12 and the medium-potential wiring 14 as shown by arrow 308 in FIG. ..
  • the short-circuit current is detected in the second switching element 42 and the third switching element 43, and the increase in the medium potential VM is detected.
  • step S6 that is, in the third state
  • a short-circuit is performed between the medium-potential wiring 14 and the low-potential wiring 16 as shown by the arrow 310 in FIG. Occurs.
  • the short-circuit current is detected in the second switching element 42 and the third switching element 43, and the decrease in the medium potential VM is detected.
  • the control circuit 70 identifies a switching element that has a short-circuit failure based on the results of steps S2 to S6. If no short-circuit current is detected in any of the switching elements in steps S2 to S6, the control circuit 70 determines that all of the switching elements 41 to 44 are normal.
  • a short-circuit current is detected in the second switching element 42 and the third switching element 43 in step S6, an increase in the medium potential VM is detected, and a short-circuit current is detected in the fourth switching element 44 in step S4.
  • control circuit 70 determines that the second switching element 42 has a short-circuit failure.
  • control circuit 70 determines that the third switching element 43 has a short-circuit failure.
  • the short-circuit current is detected in the first switching element 41 in step S2
  • the short-circuit current is detected in the second switching element 42 and the third switching element 43 in step S6, and the medium potential VM is lowered.
  • the fourth switching element 44 has a short-circuit failure.
  • the inverter 10 can perform an emergency operation when the second switching element 42 or the third switching element 43 has a short-circuit failure. If the first switching element 41 or the fourth switching element 44 has a short-circuit failure, the inverter 10 cannot perform an emergency operation.
  • the control circuit 70 executes an emergency operation when it is necessary to drive the motor 90 in a state where the second switching element 42 or the third switching element 43 has a short-circuit failure.
  • the switching circuit 30 having a short-circuit fault element will be referred to as a limiting switching circuit 30x.
  • the output wiring 60 of the limiting switching circuit 30x is referred to as a limiting output wiring 60x.
  • the switching circuit 30 other than the limiting switching circuit 30x is referred to as a normal switching circuit 30y.
  • the output wiring 60 of the normal switching circuit 30y is referred to as a normal output wiring 60y.
  • the emergency operation is executed when there is one limiting switching circuit 30x and the short-circuit failure element is the second switching element 42 or the third switching element 43.
  • the limiting switching circuit 30x is controlled so that the prohibited potential is not applied to the limiting output wiring 60x. First, the prohibited potential will be described.
  • the prohibited potential means a voltage that cannot be applied to the limited output wiring 60x because a line short circuit occurs in the limited switching circuit 30x.
  • the prohibited potential differs depending on the type of short-circuit fault element in the limiting switching circuit 30x.
  • the second switching element 42 When the second switching element 42 is short-circuited and failed, when the fourth switching element 44 is turned on, the low potential is low from the medium potential wiring 14 via the second switching element 42, the third diode 53, and the fourth switching element 44. A short-circuit current flows through the wiring 16. Therefore, when the second switching element 42 has a short-circuit failure, the fourth switching element 44 cannot be turned on. Therefore, when the second switching element 42 has a short-circuit failure, the prohibited potential is the low potential VL.
  • the third switching element 43 When the third switching element 43 is short-circuited and failed, when the first switching element 41 is turned on, the high potential wiring 12 passes through the first switching element 41, the third switching element 43, and the second diode 52 to generate a medium potential. A short-circuit current flows through the wiring 14. Therefore, when the third switching element 43 has a short-circuit failure, the first switching element 41 cannot be turned on. Therefore, when the third switching element 43 has a short-circuit failure, the prohibited potential is a high potential VH.
  • the control circuit 70 selects one voltage vector satisfying a specific condition from a plurality of voltage vectors having the same angle ⁇ as the command value vector input from the command circuit 72, and the selected voltage vector. Is output.
  • the voltage vector selected by the control circuit 70 may be referred to as a specific voltage vector.
  • the command value vector and the specific voltage vector may be the same or different.
  • the rule that the control circuit 70 selects a specific voltage vector changes according to the prohibited potential.
  • the control circuit 70 changes the rule for selecting the specific voltage vector according to the medium potential VM.
  • the control circuit 70 stores the upper limit value Vt1, the reference value Vt2, and the lower limit value Vt3 as reference values for controlling the medium potential VM.
  • the reference value Vt2 is a control target value of the medium potential VM.
  • the reference value Vt2 can be halved of the high potential VH.
  • the upper limit value Vt1 is higher than the reference value Vt2, and the lower limit value Vt3 is lower than the reference value Vt2.
  • the control circuit 70 changes the rule for selecting the specific voltage vector between the first rule and the fourth rule according to the flowchart shown in FIG.
  • the control circuit 70 executes the flowchart shown in FIG. 25 each time a command value vector is received from the command circuit 72.
  • step S10 of FIG. 25 the control circuit 70 detects the medium potential VM and determines the detected medium potential VM.
  • the control circuit 70 adopts the first rule when the medium potential VM is equal to or higher than the upper limit value Vt1, and adopts the second rule when the medium potential VM is lower than the upper limit value Vt1 and is equal to or higher than the reference value Vt2.
  • the third rule is adopted when the medium potential VM is lower than the reference value Vt2 and is equal to or higher than the lower limit value Vt3, and the fourth rule is adopted when the medium potential VM is lower than the lower limit value Vt3.
  • the second and third rules are adopted when the medium potential VM is close to the reference value Vt2 (control target value), and the first and fourth rules are the rules in which the medium potential VM is the reference value Vt2. It is a rule adopted when it deviates greatly from.
  • the control circuit 70 determines whether the angle ⁇ of the received command value vector is within the limit angle range or the normal angle range. Therefore, the limiting angle range and the normal angle range will be described below.
  • the prohibited potential cannot be applied to the limited output wiring 60x, so that a part of the voltage vector cannot be output.
  • a voltage vector that cannot be output in this way that is, a voltage vector in which the limited output wiring 60x has a prohibited potential
  • the limiting angle range means an angle range including a prohibition vector.
  • FIG. 26 shows the limit angle range by reference numeral 400 in the space vector diagram. Note that FIG.
  • FIG. 26 shows, as an example, the limiting angle range when the W-phase output wiring 60w is the limiting output wiring 60x and the prohibited potential is the low potential VL.
  • the voltage vector in which Vw is “0” that is, (0,0,0), (1,0,0), (1,1,0), (0,1,0), (2,0) 0,0), (2,1,0), (2,2,0), (1,2,0) and (0,2,0)
  • the range of the angle ⁇ in which these prohibition vectors exist is the limit angle range.
  • the angle range of 0 ° ⁇ ⁇ 120 ° is the limiting angle range. Even within the limiting angle range, a voltage vector whose Vw is not "0" can be output.
  • the voltage vector that can be output within the limit angle range is referred to as an allowable vector.
  • an allowable vector For example, in FIG. 26, (1,1,1), (2,2,2), (2,1,1), (2,2,1) and (1,2,1) are permissible vectors. ..
  • the angle range outside the limiting angle range is the normal angle range.
  • reference number 402 indicates the normal angle range. All voltage vectors within the normal angle range can be output.
  • the control circuit 70 determines whether the current flowing in the traveling motor is in the forward direction or the reverse direction based on the current flowing in the limited output wiring 60x.
  • the forward direction means that the current flows in the same direction as the voltage applied to the motor 90
  • the reverse direction means that the current flows in the direction opposite to the voltage applied to the motor 90. means.
  • a voltage vector composed of only the numerical values "2" and the numerical value "1” is referred to as an upper vector
  • a voltage vector composed of only the numerical values "1” and the numerical value "0” is referred to as a lower vector.
  • the upper vectors are (2,1,1), (2,2,1), (1,2,1), (1,2,2), (1,1,2).
  • the lower vectors are (1,0,0), (1,1,0), (0,1,0), (0,1,1), ( 0,0,1), (1,0,1).
  • control circuit 70 selects a specific voltage vector according to Table 2 of FIG. 27 according to the angle ⁇ of the received command value vector and the direction of the current flowing through the limited output wiring 60x.
  • the control circuit 70 sets the allowable vector to a specific voltage regardless of the direction of the current flowing through the limit output wiring 60x. Select as a vector.
  • the control circuit 70 selects an allowable vector having the same angle ⁇ as the angle ⁇ of the command value vector as the specific voltage vector. For example, in FIG. 26, when the command value vector is (2,2,0), (2,2,1) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (1,1,0), (2,2,1) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (2,2,1), the same (2,2,1) is selected as the specific voltage vector.
  • control circuit 70 controls the potentials of the three output wirings 60 according to the specific voltage vector.
  • the angle ⁇ of the command value vector is within the limit angle range, an allowable vector having the same angle ⁇ as the command value vector is output. This makes it possible to output a voltage vector having the same angle ⁇ as the command value vector while preventing the output of the prohibition vector.
  • the permissible vector is always the upper vector. If the allowable vector (upper vector) is output when the current flowing through the motor 90 is in the forward direction, the upper capacitor 20 is discharged and the medium potential VM rises. If the allowable vector (upper vector) is output when the current flowing through the motor 90 is in the opposite direction, the upper capacitor 20 is charged and the medium potential VM is lowered.
  • the control circuit 70 is in the direction of the current flowing through the limited output wiring 60x (that is, the current flowing through the motor 90) when the angle ⁇ of the command value vector is within the normal angle range.
  • Select a specific voltage vector according to.
  • the control circuit 70 selects a lower vector having the same angle ⁇ as the angle ⁇ of the command value vector as the specific voltage vector. For example, in FIG. 26, when the command value vector is (0,0,2), (0,0,1) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (1, 1, 2), (0, 0, 1) is selected as the specific voltage vector. Further, in FIG.
  • the control circuit 70 selects an upper vector having the same angle ⁇ as the angle ⁇ of the command value vector as the specific voltage vector. For example, in FIG. 26, when the command value vector is (0,0,2), (1,1,2) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (0, 0, 1), (1, 1, 2) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (1,1,2), the same (1,1,2) is selected as the specific voltage vector. The control circuit 70 controls the potentials of the three output wirings 60 according to the specific voltage vector.
  • the lower vector is output when the current is in the forward direction
  • the upper vector is output when the current is in the reverse direction.
  • the lower capacitor 22 is discharged and the medium potential VM is lowered.
  • the upper capacitor 20 is charged and the medium potential VM is lowered.
  • the control circuit 70 outputs an allowable vector in the limit angle range. As described above, when the permissible vector is output, the medium potential VM may increase or decrease. Further, according to the second rule, the control circuit 70 outputs a voltage vector that lowers the medium potential VM in the normal angle range. Therefore, the medium potential VM tends to decrease as a whole during the period in which the second rule is adopted. As described above, the second rule is adopted when the medium potential VM is higher than the reference value Vt2 (control target value). By adopting the second rule, the medium potential VM higher than the reference value Vt2 can be pulled back to a value close to the reference value Vt2.
  • Vt2 control target value
  • control circuit 70 selects a specific voltage vector according to Table 3 of FIG. 27 according to the angle ⁇ of the received command value vector and the direction of the current flowing through the limited output wiring 60x.
  • the control circuit 70 sets the allowable vector to a specific voltage regardless of the direction of the current flowing through the limit output wiring 60x. Select as a vector.
  • the control circuit 70 selects an allowable vector having the same angle ⁇ as the angle ⁇ of the command value vector as the specific voltage vector. That is, the third rule in the limiting angle range is equal to the second rule in the limiting angle range.
  • an allowable vector having the same angle ⁇ as the command value vector is output. This makes it possible to output a voltage vector having the same angle ⁇ as the command value vector while preventing the output of the prohibition vector.
  • the permissible vector is always the upper vector. If the allowable vector (upper vector) is output when the current flowing through the limited output wiring 60x is in the forward direction, the upper capacitor 20 is discharged and the medium potential VM rises. If the allowable vector (upper vector) is output when the current flowing through the limited output wiring 60x is in the opposite direction, the upper capacitor 20 is charged and the medium potential VM is lowered.
  • the control circuit 70 selects a specific voltage vector according to the direction of the current flowing through the limited output wiring 60x. ..
  • the control circuit 70 selects an upper vector having the same angle ⁇ as the angle ⁇ of the command value vector as the specific voltage vector. For example, in FIG. 26, when the command value vector is (0,0,2), (1,1,2) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (0, 0, 1), (1, 1, 2) is selected as the specific voltage vector. Further, in FIG.
  • the control circuit 70 selects a lower vector having the same angle ⁇ as the angle ⁇ of the command value vector as the specific voltage vector. For example, in FIG. 26, when the command value vector is (0,0,2), (0,0,1) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (1, 1, 2), (0, 0, 1) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (0,0,1), the same (0,0,1) is selected as the specific voltage vector. The control circuit 70 controls the potentials of the three output wirings 60 according to the specific voltage vector.
  • the upper vector is output when the current is in the forward direction
  • the lower vector is output when the current is in the reverse direction.
  • the upper capacitor 20 is discharged and the medium potential VM rises.
  • the lower capacitor 22 is charged and the medium potential VM rises.
  • the control circuit 70 outputs an allowable vector in the limit angle range. As described above, when the permissible vector is output, the medium potential VM may increase or decrease. Further, according to the third rule, the control circuit 70 outputs a voltage vector that raises the medium potential VM in the normal angle range. Therefore, the medium potential VM tends to increase as a whole during the period in which the third rule is adopted. As described above, the third rule is adopted when the medium potential VM is lower than the reference value Vt2 (control target value). By adopting the third rule, the medium potential VM lower than the reference value Vt2 can be pulled back to a value close to the reference value Vt2.
  • control circuit 70 selects a specific voltage vector according to Table 1 of FIG. 27 according to the angle ⁇ of the command value vector and the direction of the current flowing through the limited output wiring 60x.
  • the first rule is when the current flowing through the limited output wiring 60x is in the forward direction and the angle ⁇ of the command value vector is within the limited angle range. (Table 1) is different from the second rule (Table 2). In other cases, the first rule (Table 1) is equal to the second rule (Table 2).
  • the control circuit 70 selects a zero vector as the specific voltage vector.
  • the zero vector is a voltage vector in which the potentials of the three output wirings 60 are the same potential.
  • the cello vector includes (0,0,0), (1,1,1), (2,2,2).
  • the control circuit 70 selects a zero vector (that is, (1,1,1) or (2,2,2)) that does not include the prohibited potential (low potential VL) as the specific voltage vector.
  • the control circuit 70 outputs a specific voltage vector (that is, a zero vector).
  • the control circuit 70 stops the output of the permissible vector at the timing when the medium potential VM rises when the permissible vector is output (that is, the timing when the current is in the forward direction) and outputs the zero vector.
  • the medium potential VM can be lowered faster than in the second rule, and the medium potential VM can be pulled back to a value closer to the reference value Vt2.
  • the medium potential VM is controlled to an appropriate value by giving priority to lowering the medium potential VM over the power supply to the motor 90. do.
  • control circuit 70 selects a specific voltage vector according to Table 4 of FIG. 27 according to the angle ⁇ of the command value vector and the direction of the current flowing through the limited output wiring 60x.
  • the fourth rule is when the current flowing through the limited output wiring 60x is in the opposite direction and the angle ⁇ of the command value vector is within the limited angle range. (Table 4) is different from the third rule (Table 3). In other cases, Rule 4 (Table 4) is equal to Rule 3 (Table 3).
  • the control circuit 70 selects a zero vector as the specific voltage vector.
  • the control circuit 70 selects a zero vector (that is, (1,1,1) or (2,2,2)) that does not include the prohibited potential (low potential VL) as the specific voltage vector.
  • the control circuit 70 outputs a specific voltage vector (that is, a zero vector).
  • the control circuit 70 stops the output of the permissible vector at the timing when the medium potential VM decreases when the permissible vector is output (that is, the timing when the current is in the opposite direction) and outputs the zero vector.
  • the medium potential VM can be raised faster than in the third rule, and the medium potential VM can be pulled back to a value closer to the reference value Vt2.
  • the medium potential VM is controlled to an appropriate value by giving priority to raising the medium potential VM over the power supply to the motor 90. do.
  • the medium potential VM is controlled to a value near the reference value Vt2 by adopting the first to fourth rules according to the medium potential VM.
  • the voltage vector is output so as to rotate. Therefore, the three-phase alternating current can be continuously generated to drive the motor 90 continuously.
  • the potential of the limiting output wiring 60x is set to two levels of the high potential VH and the medium potential VM by selecting the specific voltage vector according to the first to fourth rules. Controlled, the potentials of the two normal output wirings 60y are controlled at three levels: high potential VH, medium potential VM, and low potential VL.
  • the control circuit 70 has a plurality of specific voltage vectors around the command value vector according to the first to fourth rules. Is selected, and a plurality of selected specific voltage vectors are output with a time lag, so that these specific voltage vectors may be combined and a voltage vector having the same angle ⁇ as the command value vector may be output.
  • FIG. 28 shows an example of an emergency operation when the prohibited potential is a low potential VL.
  • the limited output wiring 60x is the W phase output wiring 60w.
  • the graph of FIG. 28 shows the sine (sin ⁇ ) of the angle ⁇ of the command value vector. 0 ° ⁇ ⁇ ⁇ 120 ° is the limiting angle range. Further, the voltage vector (specific voltage vector) output by each of the first rule, the second rule, the third rule, and the fourth rule is shown in the table at the bottom of FIG. 28.
  • the angle ⁇ is within the limit angle range, and the motor current (current flowing through the limit output wiring 60x) is in the forward direction, so that it is a zero vector (1,1,1). 1) (or (2,2,2)) is output.
  • the allowable vector (2, 2, 1) is output.
  • the angle ⁇ 120 °, the angle ⁇ is within the limit angle range and the motor current is in the opposite direction, so that the allowable vector (1, 2, 1) is output.
  • the upper vector (1, 2, 2) is output.
  • the lower vector (0, 0, 1) is output.
  • the lower vector (1, 0, 1) is output.
  • the angle ⁇ is within the limit angle range and the motor current is in the forward direction, so that the allowable vector (2,1,1) is output.
  • the allowable vector (2, 2, 1) is output.
  • the lower vector (0,1,1) is output.
  • the angle ⁇ is within the limit angle range and the motor current is in the forward direction, so that the allowable vector (2,1,1) is output.
  • a zero vector (1,1,1) is output.
  • a zero vector (1,1,1) is output.
  • a zero vector (1,1,1) is output.
  • the medium potential VM is controlled to a value close to the reference value Vt2 by selecting and outputting the specific voltage vector according to the rules.
  • the control circuit 70 changes the rule for selecting the specific voltage vector according to the medium potential VM.
  • the control circuit 70 changes the rule for selecting the specific voltage vector between the fifth rule and the eighth rule according to the flowchart shown in FIG.
  • the control circuit 70 executes the flowchart shown in FIG. 29 each time a command value vector is received from the command circuit 72.
  • step S20 of FIG. 29 the control circuit 70 detects the medium potential VM and determines the detected medium potential VM.
  • the control circuit 70 adopts the fifth rule when the medium potential VM is the upper limit value Vt1 or more, and adopts the sixth rule when the medium potential VM is lower than the upper limit value Vt1 and is the reference value Vt2 or more.
  • the seventh rule is adopted when the medium potential VM is lower than the reference value Vt2 and is equal to or higher than the lower limit value Vt3, and the eighth rule is adopted when the medium potential VM is lower than the lower limit value Vt3.
  • the sixth and seventh rules are adopted when the medium potential VM is close to the reference value Vt2 (control target value), and the fifth and eighth rules are the rules in which the medium potential VM is the reference value Vt2. It is a rule adopted when it deviates greatly from.
  • the control circuit 70 determines whether the angle ⁇ of the received command value vector is within the limit angle range or the normal angle range.
  • FIG. 30 shows the limiting angle range 406 and the normal angle range 408 when the prohibited potential is the high potential VH. Note that FIG. 30 shows, as an example, a case where the W-phase output wiring 60w is the limited output wiring 60x.
  • the voltage vector in which Vw is “2” that is, (2,2,2), (1,2,2), (1,1,2), (2,1,2), (0, 2,2), (0,1,2), (0,0,2), (1,0,2) and (2,0,2)) are prohibited vectors.
  • the range of the angle ⁇ in which these prohibition vectors exist is the limit angle range 406.
  • the angle range of 180 ° ⁇ ⁇ ⁇ 300 ° is the limiting angle range 406.
  • the permissible vectors are (1,1,1), (0,0,0), (0,1,1), (0,0,1) and (1,0,1).
  • control circuit 70 determines whether the current flowing through the limited output wiring 60x is in the forward direction or the reverse direction.
  • control circuit 70 selects a specific voltage vector according to Table 6 of FIG. 31 according to the angle ⁇ of the received command value vector and the direction of the current flowing through the limited output wiring 60x.
  • the control circuit 70 sets the allowable vector to a specific voltage regardless of the direction of the current flowing through the limit output wiring 60x. Select as a vector.
  • the control circuit 70 selects an allowable vector having the same angle ⁇ as the angle ⁇ of the command value vector as the specific voltage vector. Then, the control circuit 70 controls the potentials of the three output wirings 60 according to the specific voltage vector.
  • an allowable vector having the same angle ⁇ as the command value vector is output. This makes it possible to output a voltage vector having the same angle ⁇ as the command value vector while preventing the output of the prohibition vector.
  • the permissible vector is always the lower vector. If the allowable vector (lower vector) is output when the current flowing through the limited output wiring 60x is in the forward direction, the lower capacitor 22 is discharged and the medium potential VM is lowered. If the allowable vector (lower vector) is output when the current flowing through the limited output wiring 60x is in the opposite direction, the lower capacitor 22 is charged and the medium potential VM rises.
  • the control circuit 70 selects a specific voltage vector according to the direction of the current flowing through the limited output wiring 60x. ..
  • the control circuit 70 selects a lower vector having the same angle ⁇ as the angle ⁇ of the command value vector as the specific voltage vector.
  • the control circuit 70 selects an upper vector having the same angle ⁇ as the angle ⁇ of the command value vector as the specific voltage vector.
  • the control circuit 70 controls the potentials of the three output wirings 60 according to the specific voltage vector.
  • the lower vector is output when the current is in the forward direction
  • the upper vector is output when the current is in the reverse direction.
  • the lower capacitor 22 is discharged and the medium potential VM is lowered.
  • the upper capacitor 20 is charged and the medium potential VM is lowered.
  • the control circuit 70 outputs an allowable vector in the limit angle range. As described above, when the permissible vector is output, the medium potential VM may increase or decrease. Further, according to the sixth rule, the control circuit 70 outputs a voltage vector that lowers the medium potential VM in the normal angle range. Therefore, the medium potential VM tends to decrease as a whole during the period in which the sixth rule is adopted. As described above, the sixth rule is adopted when the medium potential VM is higher than the reference value Vt2 (control target value). By adopting the sixth rule, the medium potential VM higher than the reference value Vt2 can be pulled back to a value close to the reference value Vt2.
  • control circuit 70 selects a specific voltage vector according to Table 7 of FIG. 31 according to the angle ⁇ of the received command value vector and the direction of the current flowing through the limited output wiring 60x.
  • the control circuit 70 sets the allowable vector to a specific voltage regardless of the direction of the current flowing through the limit output wiring 60x. Select as a vector.
  • the control circuit 70 selects an allowable vector having the same angle ⁇ as the angle ⁇ of the command value vector as the specific voltage vector. That is, the seventh rule in the limiting angle range is equal to the sixth rule in the limiting angle range.
  • an allowable vector having the same angle ⁇ as the command value vector is output. This makes it possible to output a voltage vector having the same angle as the command value vector while preventing the output of the prohibition vector.
  • the lower capacitor 22 is discharged and the medium potential VM is lowered. If the allowable vector (lower vector) is output when the current flowing through the limited output wiring 60x is in the opposite direction, the lower capacitor 22 is charged and the medium potential VM rises.
  • the control circuit 70 selects a specific voltage vector according to the direction of the current flowing through the limited output wiring 60x. ..
  • the control circuit 70 selects an upper vector having the same angle ⁇ as the angle ⁇ of the command value vector as the specific voltage vector.
  • the control circuit 70 selects a lower vector having the same angle ⁇ as the angle ⁇ of the command value vector as the specific voltage vector.
  • the control circuit 70 controls the potentials of the three output wirings 60 according to the specific voltage vector.
  • the upper vector is output when the current is in the forward direction
  • the lower vector is output when the current is in the reverse direction.
  • the upper capacitor 20 is discharged and the medium potential VM rises.
  • the lower capacitor 22 is charged and the medium potential VM rises.
  • the control circuit 70 outputs an allowable vector in the limit angle range. As described above, when the permissible vector is output, the medium potential VM may increase or decrease. Further, according to the seventh rule, the control circuit 70 outputs a voltage vector that raises the medium potential VM in the normal angle range. Therefore, the medium potential VM tends to increase as a whole during the period in which the seventh rule is adopted. As described above, the seventh rule is adopted when the medium potential VM is lower than the reference value Vt2 (control target value). By adopting the seventh rule, the medium potential VM lower than the reference value Vt2 can be pulled back to a value close to the reference value Vt2.
  • control circuit 70 selects a specific voltage vector according to Table 5 of FIG. 31 according to the angle ⁇ of the command value vector and the direction of the current flowing through the limited output wiring 60x.
  • the control circuit 70 selects a zero vector as the specific voltage vector.
  • the control circuit 70 selects a zero vector (that is, (0,0,0) or (1,1,1)) that does not include the prohibited potential (high potential VH) as the specific voltage vector.
  • the control circuit 70 outputs a specific voltage vector (that is, a zero vector).
  • the control circuit 70 stops the output of the permissible vector at the timing when the medium potential VM rises when the permissible vector is output (that is, the timing when the current is in the opposite direction) and outputs the zero vector.
  • the medium potential VM can be lowered faster than in the sixth rule, and the medium potential VM can be pulled back to a value closer to the reference value Vt2.
  • the medium potential VM is controlled to an appropriate value by giving priority to lowering the medium potential VM over the power supply to the motor 90. do.
  • control circuit 70 selects a specific voltage vector according to Table 8 of FIG. 31 according to the angle ⁇ of the command value vector and the direction of the current flowing through the limited output wiring 60x.
  • the eighth rule is when the current flowing through the limited output wiring 60x is in the forward direction and the angle ⁇ of the command value vector is within the limited angle range. (Table 8) is different from the seventh rule (Table 7). In other cases, Rule 8 (Table 8) is equivalent to Rule 7 (Table 7).
  • the control circuit 70 selects a zero vector as the specific voltage vector.
  • the control circuit 70 selects a zero vector (that is, (0,0,0) or (1,1,1)) that does not include the prohibited potential (high potential VH) as the specific voltage vector.
  • the control circuit 70 outputs a specific voltage vector (that is, a zero vector).
  • the control circuit 70 stops the output of the permissible vector at the timing when the medium potential VM decreases when the permissible vector is output (that is, the timing when the current is in the forward direction) and outputs the zero vector.
  • the medium potential VM can be raised faster than in the seventh rule, and the medium potential VM can be pulled back to a value closer to the reference value Vt2.
  • the medium potential VM is controlled to an appropriate value by giving priority to raising the medium potential VM over the power supply to the motor 90. do.
  • the medium potential VM is controlled to a value near the reference value Vt2 by adopting the fifth to eighth rules according to the medium potential VM.
  • the voltage vector is output so as to rotate. Therefore, the three-phase alternating current can be continuously generated to drive the motor 90 continuously.
  • the potential of the limiting output wiring 60x is set to two levels of the medium potential VM and the low potential VL by selecting the specific voltage vector according to the fifth to eighth rules. Controlled, the potentials of the two normal output wirings 60y are controlled at three levels: high potential VH, medium potential VM, and low potential VL.
  • the control circuit 70 has a plurality of specific voltage vectors around the command value vector according to the fifth to eighth rules. Is selected, and a plurality of selected specific voltage vectors are output with a time lag, so that these specific voltage vectors may be combined and a voltage vector having the same angle ⁇ as the command value vector may be output.
  • the control circuit 70 appropriately selects either a voltage vector that raises the medium potential VM or a voltage vector that lowers the medium potential VM according to the direction and magnitude of the current flowing through each output wiring 60. And output, and the medium potential VM can be controlled to a value close to the reference value Vt2.
  • Example 4 In the inverter of the fourth embodiment, the emergency operation is different from that of the second embodiment. More specifically, in the inverter of the fourth embodiment, the operation of the control circuit 70 when the angle ⁇ of the command value vector is within the normal range is different from that of the third embodiment. The operation of the control circuit 70 when the angle ⁇ of the command value vector is within the limit range is the same in the fourth embodiment and the third embodiment.
  • the operation of the control circuit 70 when the angle ⁇ of the command value vector is within the normal range is common to the first to eighth rules.
  • the control circuit 70 selects one of the upper vector group and the lower vector group, and selects and outputs a voltage vector having the same command value vector and angle ⁇ in the selected group. do.
  • FIG. 32 shows the operation of the control circuit 70 when the angle ⁇ of the command value vector is within the normal range in the fourth embodiment.
  • the control circuit 70 repeatedly executes the process shown in FIG. 32.
  • step S40 the control circuit 70 detects the medium potential VM and calculates the difference ⁇ VM between the medium potential VM and the reference value Vt2 (control target value).
  • the difference ⁇ VM is calculated as an absolute value.
  • the control circuit 70 stores the calculated difference ⁇ VM. After the difference ⁇ VM is calculated, steps S42 to S48 are executed. As a result of executing steps S42 to S48, the medium potential VM fluctuates. In step S40 of the next control phase, the difference ⁇ VM is calculated again.
  • the difference ⁇ VM calculated in the current control phase is referred to as a difference ⁇ VM1
  • the difference ⁇ VM calculated in the previous control phase is referred to as a difference ⁇ VM2.
  • the control circuit 70 determines whether or not the difference ⁇ VM1 calculated in the current control phase is within the permissible value ⁇ .
  • step S42 the control circuit 70 is in the same group as the voltage vector output in the previous control phase in step S48 (that is, either the upper vector group or the lower vector group). Selects a voltage vector having the same angle ⁇ as the command value vector as a specific voltage vector and outputs it. If NO in step S42, in step S44, the control circuit 70 determines whether or not the difference ⁇ VM1 calculated in the current control phase is equal to or less than the difference ⁇ VM2 calculated in the previous control phase. That is, the control circuit 70 determines whether or not the medium potential VM is closer to the reference value Vt2 (control target value) than the previous control phase. If YES in step S44, step S48 is executed.
  • step S46 the control circuit 70 is in a group different from the voltage vector output in the previous control phase (that is, either the upper vector group or the lower vector group). Among them, a voltage vector having the same angle ⁇ as the command value vector is selected as a specific voltage vector and output.
  • Example 4 when the medium potential VM deviates from the reference value Vt2 to the allowable value ⁇ or more, the voltage vector is selected so that the difference ⁇ VM is reduced. As a result, it is possible to prevent the medium potential VM from deviating significantly from the reference value Vt2. Further, according to the fourth embodiment, the voltage vector can be appropriately output regardless of the detected value of the current of the output wiring 60. Even when the current detection speed is not sufficient with respect to the control speed, the medium potential VM can be controlled to an appropriate value according to the configuration of the fourth embodiment.
  • a three-phase alternating current may be generated while controlling the medium potential VM during an emergency operation.
  • the potential of the limited output wiring at two levels excluding the prohibited potential and controlling the potential of the normal output wiring at three levels of high potential VH, medium potential VM, and low potential VL, other than Examples 1 and 2.
  • the voltage vector is output according to the rule of, it is possible to appropriately control the medium potential VM.
  • a voltage vector consisting of only the numerical values "0" and the numerical value "2" and a voltage vector including all the numerical values "0", the numerical value "1", and the numerical value "2" are output. You may.
  • the command circuit 72 inputs the command value vector to the control circuit 70, but the command circuit 72 may input only the command value of the angle ⁇ of the voltage vector to the control circuit 70. ..
  • the positions of the second switching element 42 and the second diode 52 may be replaced with the positions of the third switching element 43 and the third diode 53.
  • the second diode 52 of Examples 1 to 4 described above is an example of the first intermediate diode of the claim.
  • the third diode 53 of Examples 1 to 4 described above is an example of the second intermediate diode of the claim.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

An inverter having a switching circuit, a control circuit, and a detector that detects the current flowing inside the inverter or the temperature of the inverter. The switching circuit has a first switching element connected between high-potential wiring and output wiring, a second switching element connected between intermediate-potential wiring and the output wiring, a third switching element connected in series to the second switching element between the intermediate-potential wiring and the output wiring, and a fourth switching element connected between the output wiring and low-potential wiring. The inverter reduces the proportion of the periods in which the control circuit controls the switching circuit to the intermediate-potential output state to a greater extent when the detection value of the detector is higher than a reference value than when the detection value is lower than the reference value.

Description

インバータInverter
 本明細書に開示の技術は、インバータに関する。 The technology disclosed in this specification relates to an inverter.
 特開2017-093039号公報には、インバータが開示されている。このインバータは、高電位配線と、低電位配線と、中電位配線と、スイッチング回路を有している。スイッチング回路が、出力配線と、第1スイッチング素子と、第2スイッチング素子と、第3スイッチング素子と、第4スイッチング素子と、第1中間ダイオードと、第2中間ダイオード、を有している。第1スイッチング素子は、高電位配線と出力配線の間に接続されている。第2スイッチング素子は、中電位配線と出力配線の間に接続されている。第3スイッチング素子は、中電位配線と出力配線の間に第3スイッチング素子に対して直列に接続されている。第4スイッチング素子は、出力配線と低電位配線の間に接続されている。第1中間ダイオードは、カソードが中電位配線側を向く向きで第2スイッチング素子に対して並列に接続されている。第2中間ダイオードは、カソードが出力配線側を向く向きで第3スイッチング素子に対して並列に接続されている。第1スイッチング素子がオンすると、出力配線に高電位が印加される。第2スイッチング素子と第3スイッチング素子がオンすると、出力配線に中電位が印加される。第4スイッチング素子がオンすると、出力配線に低電位が印加される。すなわち、このインバータは、出力配線の電位を、高電位、中電位、低電位の3レベルで制御することができる。 An inverter is disclosed in Japanese Patent Application Laid-Open No. 2017-093039. This inverter has a high-potential wiring, a low-potential wiring, a medium-potential wiring, and a switching circuit. The switching circuit includes an output wiring, a first switching element, a second switching element, a third switching element, a fourth switching element, a first intermediate diode, and a second intermediate diode. The first switching element is connected between the high potential wiring and the output wiring. The second switching element is connected between the medium potential wiring and the output wiring. The third switching element is connected in series with respect to the third switching element between the medium potential wiring and the output wiring. The fourth switching element is connected between the output wiring and the low potential wiring. The first intermediate diode is connected in parallel to the second switching element with the cathode facing the medium potential wiring side. The second intermediate diode is connected in parallel to the third switching element with the cathode facing the output wiring side. When the first switching element is turned on, a high potential is applied to the output wiring. When the second switching element and the third switching element are turned on, a medium potential is applied to the output wiring. When the fourth switching element is turned on, a low potential is applied to the output wiring. That is, this inverter can control the potential of the output wiring at three levels of high potential, medium potential, and low potential.
 特許文献1のインバータのように、出力配線の電位を3レベルで制御すると、出力電流に含まれるリプル電流が小さくなり、インバータに接続された負荷(例えば、モータ)で生じる損失を抑制することができる。 When the potential of the output wiring is controlled at three levels as in the inverter of Patent Document 1, the ripple current included in the output current becomes small, and the loss caused by the load (for example, the motor) connected to the inverter can be suppressed. can.
 特許文献1のように出力配線の電位を3レベルで制御するインバータは、スイッチング回路が4つのスイッチング素子(第1~第4スイッチング素子)を有している。このため、インバータが大型化する。本明細書では、出力配線の電位を3レベルで制御するインバータを小型化する技術を提案する。 In the inverter that controls the potential of the output wiring at three levels as in Patent Document 1, the switching circuit has four switching elements (first to fourth switching elements). Therefore, the size of the inverter becomes large. This specification proposes a technique for miniaturizing an inverter that controls the potential of the output wiring at three levels.
 本明細書が開示する第1のインバータは、高電位が印加される高電位配線と、低電位が印加される低電位配線と、前記高電位よりも低く前記低電位よりも高い中電位が印加される中電位配線と、スイッチング回路と、前記インバータ内を流れる電流または前記インバータの温度を検出する検出器と、制御回路、を有している。前記スイッチング回路が、出力配線と、前記高電位配線と前記出力配線の間に接続されている第1スイッチング素子と、前記中電位配線と前記出力配線の間に接続されている第2スイッチング素子と、前記中電位配線と前記出力配線の間に前記第2スイッチング素子に対して直列に接続されている第3スイッチング素子と、前記出力配線と前記低電位配線の間に接続されている第4スイッチング素子と、カソードが前記中電位配線側を向く向きで前記第2スイッチング素子に対して並列に接続されている第1中間ダイオードと、カソードが前記出力配線側を向く向きで前記第3スイッチング素子に対して並列に接続されている第2中間ダイオード、を有している。前記第2スイッチング素子及び前記第3スイッチング素子の電流容量が、前記第1スイッチング素子及び前記第4スイッチング素子の電流容量よりも低い。前記制御回路が、前記第1スイッチング素子、前記第2スイッチング素子、前記第3スイッチング素子、及び、前記第4スイッチング素子のゲートの電位を制御するように構成されている。前記制御回路が、前記スイッチング回路を、前記第1スイッチング素子がオンして前記出力配線に前記高電位が印加される高電位出力状態、前記第2スイッチング素子と前記第3スイッチング素子がオンして前記出力配線に前記中電位が印加される中電位出力状態、前記第4スイッチング素子がオンして前記出力配線に前記低電位が印加される低電位出力状態の間で変化させるように構成されている。前記制御回路が、前記スイッチング回路を前記高電位出力状態、前記中電位出力状態、前記低電位出力状態の間で変化させることで、前記出力配線に交流電流を発生させるように構成されている。前記制御回路が、前記検出器の検出値が基準値より大きい場合には前記検出値が前記基準値より小さい場合よりも前記スイッチング回路を前記中電位出力状態に制御する期間の比率を低くする。 The first inverter disclosed in the present specification applies a high potential wiring to which a high potential is applied, a low potential wiring to which a low potential is applied, and a medium potential lower than the high potential and higher than the low potential. It has a medium potential wiring to be used, a switching circuit, a detector for detecting the current flowing in the inverter or the temperature of the inverter, and a control circuit. The switching circuit includes an output wiring, a first switching element connected between the high potential wiring and the output wiring, and a second switching element connected between the medium potential wiring and the output wiring. A third switching element connected in series with the second switching element between the medium potential wiring and the output wiring, and a fourth switching connected between the output wiring and the low potential wiring. The element, the first intermediate diode connected in parallel to the second switching element with the cathode facing the medium potential wiring side, and the third switching element with the cathode facing the output wiring side. It has a second intermediate diode, which is connected in parallel to the other. The current capacities of the second switching element and the third switching element are lower than the current capacities of the first switching element and the fourth switching element. The control circuit is configured to control the potentials of the gates of the first switching element, the second switching element, the third switching element, and the fourth switching element. The control circuit turns on the switching circuit in a high potential output state in which the first switching element is turned on and the high potential is applied to the output wiring, and the second switching element and the third switching element are turned on. It is configured to change between the medium potential output state in which the medium potential is applied to the output wiring and the low potential output state in which the fourth switching element is turned on and the low potential is applied to the output wiring. There is. The control circuit is configured to generate an alternating current in the output wiring by changing the switching circuit between the high potential output state, the medium potential output state, and the low potential output state. When the detection value of the detector is larger than the reference value, the control circuit lowers the ratio of the period for controlling the switching circuit to the medium potential output state as compared with the case where the detection value is smaller than the reference value.
 このインバータでは、第2スイッチング素子と第3スイッチング素子の電流容量が、第1スイッチング素子と第4スイッチング素子の電流容量よりも低い。このため、第2スイッチング素子と第3スイッチング素子を小型化することができる。これによって、インバータを小型化することができる。 In this inverter, the current capacities of the second switching element and the third switching element are lower than the current capacities of the first switching element and the fourth switching element. Therefore, the second switching element and the third switching element can be miniaturized. As a result, the inverter can be miniaturized.
 また、このインバータでは、検出器による検出値(すなわち、インバータ内を流れる電流またはインバータの温度)が基準値よりも小さい場合には、検出値が基準値より大きい場合よりも、スイッチング回路を中電位出力状態に制御する期間の比率が高い。すなわち、第2スイッチング素子と第3スイッチング素子がオンする期間の比率が高い。検出器による検出値が低い場合には、各スイッチング素子の動作条件はそれほど厳しくない。したがって、第2スイッチング素子と第3スイッチング素子がオンする期間の比率を高くしても第2スイッチング素子と第3スイッチング素子にそれほど高いストレスは加わらない。また、このように中電位出力状態に制御する期間の比率を高くすることで、出力電流に生じるリプル電流が抑制され、インバータに接続された負荷で発生する損失が低減される。 Further, in this inverter, when the value detected by the detector (that is, the current flowing in the inverter or the temperature of the inverter) is smaller than the reference value, the switching circuit has a medium potential than when the detected value is larger than the reference value. The ratio of the period for controlling the output state is high. That is, the ratio of the period during which the second switching element and the third switching element are turned on is high. When the value detected by the detector is low, the operating conditions of each switching element are not so strict. Therefore, even if the ratio of the period during which the second switching element and the third switching element are turned on is increased, so high stress is not applied to the second switching element and the third switching element. Further, by increasing the ratio of the period for controlling the medium potential output state in this way, the ripple current generated in the output current is suppressed, and the loss generated in the load connected to the inverter is reduced.
 また、このインバータでは、検出器による検出値(すなわち、インバータ内を流れる電流またはインバータの温度)が基準値よりも高い場合には、検出値が基準値より低い場合よりも、スイッチング回路を中電位出力状態に制御する期間の比率が低い。すなわち、第2スイッチング素子と第3スイッチング素子がオンする期間の比率が低い。なお、この場合、スイッチング回路を中電位出力状態に制御する期間がゼロであってもよい。検出器による検出値が高い場合には、各スイッチング素子に対する動作環境が厳しい。特に、電流容量が低い第2スイッチング素子と第3スイッチング素子とって、動作環境が厳しい。この場合、制御回路が、第2スイッチング素子と第3スイッチング素子がオンする期間の比率を低くすることで、第2スイッチング素子と第3スイッチング素子に加わるストレスを軽減する。 Further, in this inverter, when the value detected by the detector (that is, the current flowing in the inverter or the temperature of the inverter) is higher than the reference value, the switching circuit is placed at a medium potential than when the detected value is lower than the reference value. The ratio of the period for controlling the output state is low. That is, the ratio of the period during which the second switching element and the third switching element are turned on is low. In this case, the period for controlling the switching circuit to the medium potential output state may be zero. When the value detected by the detector is high, the operating environment for each switching element is severe. In particular, the operating environment is severe for the second switching element and the third switching element having a low current capacity. In this case, the control circuit reduces the ratio of the period during which the second switching element and the third switching element are turned on, thereby reducing the stress applied to the second switching element and the third switching element.
 以上のように、このインバータは、動作環境がそれほど厳しくない場合には、第2スイッチング素子と第3スイッチング素子がオンする期間の比率を高くして、リプル電流を抑制し、損失を低減する。また、このインバータは、動作環境が厳しい場合には、第2スイッチング素子と第3スイッチング素子がオンする期間の比率を低くして、第2スイッチング素子と第3スイッチング素子を保護する。したがって、第2スイッチング素子と第3スイッチング素子に加わるストレスが軽減される。このため、第2スイッチング素子と第3スイッチング素子の電流容量を低くしても、動作環境が厳しい場合に、インバータが動作することができる。第2スイッチング素子と第3スイッチング素子の電流容量を低くすることで、インバータを小型化することができる。なお、第2スイッチング素子と第3スイッチング素子がオンする期間の比率を低くする場合、リプル電流が大きくなり、発生する損失が大きくなる。しかしながら、厳しい動作条件下でインバータが動作する頻度はそれほど高くないので、リプル電流による損失増大の影響はそれほど大きくない。このため、このインバータの構成によれば、従来と略同等の低損失での動作を可能としながら、インバータを小型化することができる。 As described above, when the operating environment is not so severe, this inverter increases the ratio of the period during which the second switching element and the third switching element are turned on to suppress the ripple current and reduce the loss. Further, when the operating environment is severe, this inverter protects the second switching element and the third switching element by lowering the ratio of the period during which the second switching element and the third switching element are turned on. Therefore, the stress applied to the second switching element and the third switching element is reduced. Therefore, even if the current capacities of the second switching element and the third switching element are lowered, the inverter can operate when the operating environment is severe. By lowering the current capacities of the second switching element and the third switching element, the inverter can be miniaturized. When the ratio of the period during which the second switching element and the third switching element are turned on is lowered, the ripple current becomes large and the loss generated becomes large. However, since the frequency of operation of the inverter under severe operating conditions is not so high, the effect of the increase in loss due to the ripple current is not so large. Therefore, according to the configuration of this inverter, it is possible to miniaturize the inverter while enabling operation with substantially the same low loss as the conventional one.
 上記第1のインバータの付加的な特徴について、以下に列記する。なお、以下に列記された各特徴は、それぞれ独立して有用なものである。 The additional features of the first inverter are listed below. In addition, each feature listed below is useful independently.
 (特徴1)前記インバータは、前記スイッチング回路を3つ有していてもよい。前記制御回路が、3つの前記スイッチング回路のそれぞれの前記第1スイッチング素子、前記第2スイッチング素子、前記第3スイッチング素子、及び、前記第4スイッチング素子のゲートの電位を制御するように構成されていてもよい。前記制御回路が、3つの前記スイッチング回路を前記高電位出力状態、前記中電位出力状態、前記低電位出力状態の間で変化させることで、3つの前記スイッチング回路の前記出力配線の間に三相交流電流を発生させるように構成されていてもよい。前記制御回路が、3つの前記スイッチング回路のそれぞれについて、前記検出器の検出値が基準値より大きい場合には前記検出値が前記基準値より小さい場合よりも前記中電位出力状態に制御する期間の比率を低くしてもよい。 (Feature 1) The inverter may have three switching circuits. The control circuit is configured to control the potentials of the gates of the first switching element, the second switching element, the third switching element, and the fourth switching element of each of the three switching circuits. You may. The control circuit changes the three switching circuits between the high potential output state, the medium potential output state, and the low potential output state, so that the three phases are between the output wirings of the three switching circuits. It may be configured to generate an AC current. For each of the three switching circuits, when the detection value of the detector is larger than the reference value, the control circuit controls the medium potential output state more than when the detection value is smaller than the reference value. The ratio may be lowered.
 この構成によれば、三相インバータを構成することができる。 According to this configuration, a three-phase inverter can be configured.
 (特徴2)前記制御回路が、前記検出値が前記基準値より大きい場合に、前記スイッチング回路を、前記中電位出力状態とすることなく前記高電位出力状態と前記低電位出力状態の間で変化させてもよい。 (Feature 2) When the detected value is larger than the reference value, the control circuit changes between the high potential output state and the low potential output state without setting the switching circuit in the medium potential output state. You may let me.
 この構成によれば、動作条件が厳しい場合に第2スイッチング素子と第3スイッチング素子に加わるストレスをほとんど無くすことができる。 According to this configuration, stress applied to the second switching element and the third switching element can be almost eliminated when the operating conditions are severe.
 特徴2に代えて、第1のインバータが特徴3を有していてもよい。 Instead of feature 2, the first inverter may have feature 3.
 (特徴3)前記制御回路が、前記検出値が前記基準値より大きい場合に、前記スイッチング回路を、前記高電位出力状態と前記低電位出力状態の間で変化させ、この場合において、前記高電位出力状態から前記低電位出力状態に変化させるときには前記高電位出力状態から前記中電位出力状態を経由して前記低電位出力状態に変化させ、前記低電位出力状態から前記高電位出力状態に変化させるときには前記低電位出力状態から前記中電位出力状態を経由して前記高電位出力状態に変化させてもよい。前記制御回路が、前記検出値が前記基準値より大きい場合に、前記中電位出力状態に制御する期間の比率を前記高電位出力状態に制御する期間の比率及び前記低電位出力状態に制御する期間の比率よりも低くしてもよい。 (Feature 3) When the detected value is larger than the reference value, the control circuit changes the switching circuit between the high potential output state and the low potential output state, and in this case, the high potential When changing from the output state to the low potential output state, the high potential output state is changed to the low potential output state via the medium potential output state, and the low potential output state is changed to the high potential output state. Occasionally, the low potential output state may be changed to the high potential output state via the medium potential output state. When the detected value is larger than the reference value, the control circuit controls the ratio of the period for controlling the medium potential output state to the high potential output state and the ratio for controlling the low potential output state. It may be lower than the ratio of.
 この構成によれば、動作条件が厳しい場合にでも、第2スイッチング素子と第3スイッチング素子を短時間オンさせることでリプル電流をある程度抑制することができる。 According to this configuration, the ripple current can be suppressed to some extent by turning on the second switching element and the third switching element for a short time even when the operating conditions are severe.
 (特徴4)前記第1スイッチング素子が、シリコン半導体によって構成されていてもよい。前記第2スイッチング素子が、化合物半導体によって構成されていてもよい。前記第3スイッチング素子が、化合物半導体によって構成されていてもよい。前記第4スイッチング素子が、シリコン半導体によって構成されていてもよい。 (Feature 4) The first switching element may be made of a silicon semiconductor. The second switching element may be made of a compound semiconductor. The third switching element may be made of a compound semiconductor. The fourth switching element may be made of a silicon semiconductor.
 電流容量が大きく大型な第1スイッチング素子と第4スイッチング素子を安価なシリコン半導体によって構成することで、コストを抑制することができる。電流容量が小さく小型な第2スイッチング素子と第3スイッチング素子を高価な化合物半導体によって構成しても、コストはそれほど高くならない。また、第2スイッチング素子と第3スイッチング素子を化合物半導体によって構成することで、発生する損失を効果的に低減することができる。 Cost can be suppressed by configuring the first switching element and the fourth switching element, which have a large current capacity and are large, with an inexpensive silicon semiconductor. Even if the second switching element and the third switching element, which have a small current capacity and are small in size, are made of an expensive compound semiconductor, the cost is not so high. Further, by forming the second switching element and the third switching element with the compound semiconductor, the loss generated can be effectively reduced.
(特徴5)前記第1中間ダイオードが、化合物半導体によって構成されていてもよい。前記第2中間ダイオードが、化合物半導体によって構成されていてもよい。 (Feature 5) The first intermediate diode may be made of a compound semiconductor. The second intermediate diode may be composed of a compound semiconductor.
 この構成によれば、発生する損失をより効果的に低減することができる。 According to this configuration, the loss that occurs can be reduced more effectively.
 本明細書が開示する第2のインバータについて、以下に説明する。 The second inverter disclosed in the present specification will be described below.
 特許文献1のように中電位配線と出力配線の間に第2スイッチング素子と第3スイッチング素子が直列に接続されたスイッチング回路を三相設けることで、3相のインバータを構成することができる。このようなインバータにおいて、第2スイッチング素子と第3スイッチング素子が短絡故障する場合がある。この場合、短絡故障素子を有するスイッチング回路では、出力配線に特定の電位を出力できなくなる。例えば、第2スイッチング素子が短絡故障した場合には、第1スイッチング素子がオンすると、高電位配線と中電位配線の間で線間短絡が生じる。このため、この場合には、スイッチング回路は、出力配線に高電位を出力できない。また、第3スイッチング素子が短絡故障した場合には、第4スイッチング素子がオンすると、中電位配線と低電位配線の間で線間短絡が生じる。このため、この場合には、スイッチング回路は、出力配線に低電位を出力できない。 A three-phase inverter can be configured by providing three phases of switching circuits in which the second switching element and the third switching element are connected in series between the medium potential wiring and the output wiring as in Patent Document 1. In such an inverter, the second switching element and the third switching element may be short-circuited and failed. In this case, the switching circuit having the short-circuit fault element cannot output a specific potential to the output wiring. For example, when the second switching element is short-circuited and the first switching element is turned on, a line short circuit occurs between the high-potential wiring and the medium-potential wiring. Therefore, in this case, the switching circuit cannot output a high potential to the output wiring. Further, when the third switching element fails due to a short circuit, when the fourth switching element is turned on, a line short circuit occurs between the medium potential wiring and the low potential wiring. Therefore, in this case, the switching circuit cannot output a low potential to the output wiring.
 短絡故障素子が発生した場合でも、インバータによって三相交流電流を発生させたい場合がある。このような場合、出力できない電位を禁止して、残りの2つの電位で各出力配線の電位を変化させることが考えられる。 Even if a short-circuit faulty element occurs, there are cases where you want to generate a three-phase alternating current with the inverter. In such a case, it is conceivable to prohibit the potential that cannot be output and change the potential of each output wiring with the remaining two potentials.
 上述したように、第2スイッチング素子が短絡故障すると、出力配線に高電位を出力できない。この場合には、3つの出力配線の電位を中電位と低電位の間で変化させて、三相交流電流を発生させることができる。しかしながら、この場合には、インバータは、継続的に三相交流電流を発生させることができない。すなわち、この動作では、下側コンデンサに蓄えられた電荷が継続的に使用されるため、一定時間経過後に下側コンデンサの電荷が極端に少なくなって中電位が極端に低くなる。このように中電位が極端に低くなると、適切に三相交流電流を発生させることができない。 As described above, if the second switching element fails due to a short circuit, a high potential cannot be output to the output wiring. In this case, the potentials of the three output wirings can be changed between the medium potential and the low potential to generate a three-phase alternating current. However, in this case, the inverter cannot continuously generate the three-phase alternating current. That is, in this operation, since the electric charge stored in the lower capacitor is continuously used, the electric charge of the lower capacitor becomes extremely small after a certain period of time, and the medium potential becomes extremely low. When the medium potential becomes extremely low in this way, it is not possible to properly generate a three-phase alternating current.
 上述したように、第3スイッチング素子が短絡故障すると、出力配線に低電位を出力できない。この場合には、3つの出力配線の電位を高電位と中電位の間で変化させて、三相交流電流を発生させることができる。しかしながら、この場合には、インバータは、継続的に三相交流電流を発生させることができない。すなわち、この動作では、上側コンデンサに蓄えられた電荷が継続的に使用されるため、一定時間経過後に上側コンデンサの電荷が極端に少なくなって中電位が極端に高くなる。このように中電位が極端に高くなると、適切に三相交流電流を発生させることができない。 As described above, if the third switching element fails due to a short circuit, a low potential cannot be output to the output wiring. In this case, the potentials of the three output wirings can be changed between the high potential and the medium potential to generate a three-phase alternating current. However, in this case, the inverter cannot continuously generate the three-phase alternating current. That is, in this operation, since the electric charge stored in the upper capacitor is continuously used, the electric charge of the upper capacitor becomes extremely small and the medium potential becomes extremely high after a certain period of time has elapsed. When the medium potential becomes extremely high in this way, it is not possible to properly generate a three-phase alternating current.
 以上に説明したように、上述した技術では、第2スイッチング素子または第3スイッチング素子が短絡故障した場合に、継続的に三相交流電流を発生させることができない。本明細書では、このような場合に継続的に三相交流電流を発生させることができるインバータを、第2のインバータとして提案する。 As described above, with the above-mentioned technique, when the second switching element or the third switching element has a short-circuit failure, it is not possible to continuously generate a three-phase alternating current. In the present specification, an inverter capable of continuously generating a three-phase alternating current in such a case is proposed as a second inverter.
 本明細書が開示する第2のインバータは、高電位が印加される高電位配線と、低電位が印加される低電位配線と、中電位配線と、前記高電位配線と前記中電位配線の間に接続された上側コンデンサと、前記中電位配線と前記低電位配線の間に接続された下側コンデンサと、U相スイッチング回路、V相スイッチング回路、及び、W相スイッチング回路の3つのスイッチング回路と、制御回路を有する。3つの前記スイッチング回路のそれぞれが、出力配線と、前記高電位配線と前記出力配線の間に接続されている第1スイッチング素子と、前記中電位配線と前記出力配線の間に接続されている第2スイッチング素子と、前記中電位配線と前記出力配線の間に前記第2スイッチング素子に対して直列に接続されている第3スイッチング素子と、前記出力配線と前記低電位配線の間に接続されている第4スイッチング素子と、カソードが前記中電位配線側を向く向きで前記第2スイッチング素子に対して並列に接続されている第1中間ダイオードと、カソードが前記出力配線側を向く向きで前記第3スイッチング素子に対して並列に接続されている第2中間ダイオードを有する。前記制御回路が、3つの前記スイッチング回路の前記第1スイッチング素子、前記第2スイッチング素子、前記第3スイッチング素子、及び、前記第4スイッチング素子のゲートの電位を制御するように構成されている。前記制御回路が、3つの前記スイッチング回路を、前記第1スイッチング素子がオンして対応する前記出力配線に前記高電位が印加される高電位出力状態、前記第2スイッチング素子と前記第3スイッチング素子がオンして対応する前記出力配線に前記中電位配線の電位である中電位が印加される中電位出力状態、前記第4スイッチング素子がオンして対応する前記出力配線に前記低電位が印加される低電位出力状態の間で変化させるように構成されている。前記制御回路が、前記U相スイッチング回路の前記出力配線であるU相出力配線、前記V相スイッチング回路の前記出力配線であるV相出力配線、及び、前記W相スイッチング回路の前記出力配線であるW相出力配線のそれぞれの電位を前記高電位、前記中電位、及び、前記低電位の間で変化させることによって、前記U相出力配線、前記V相出力配線、及び、前記W相出力配線の間に三相交流電流を発生させるように構成されている。前記制御回路は、3つの前記スイッチング回路が有する前記第2スイッチング素子と前記第3スイッチング素子のうちのいずれかの素子が短絡故障した場合に、非常動作を実行可能である。前記短絡故障した素子を短絡故障素子という。3つの前記スイッチング回路のうちの前記短絡故障素子を含む1つの前記スイッチング回路の前記出力配線を制限出力配線という。3つの前記スイッチング回路のうちの前記短絡故障素子を含まない2つの前記スイッチング回路の前記出力配線をそれぞれ正常出力配線という。前記非常動作では、前記制御回路は、前記制限出力配線の電位を前記高電位、前記中電位、及び、前記低電位のうちの禁止電位を除く2つの電位の間で変化させるとともに、前記正常出力配線のそれぞれの電位を前記高電位、前記中電位、及び、前記低電位の3つの電位の間で変化させる。前記短絡故障素子が前記第2スイッチング素子である場合には前記禁止電位が前記低電位である。前記短絡故障素子が前記第3スイッチング素子である場合には前記禁止電位が前記高電位である。 The second inverter disclosed in the present specification includes a high-potential wiring to which a high potential is applied, a low-potential wiring to which a low potential is applied, a medium-potential wiring, and between the high-potential wiring and the medium-potential wiring. The upper capacitor connected to, the lower capacitor connected between the medium-potential wiring and the low-potential wiring, and three switching circuits of a U-phase switching circuit, a V-phase switching circuit, and a W-phase switching circuit. , Has a control circuit. Each of the three switching circuits is connected between the output wiring, the first switching element connected between the high potential wiring and the output wiring, and the medium potential wiring and the output wiring. The two switching elements, the third switching element connected in series with respect to the second switching element between the medium potential wiring and the output wiring, and connected between the output wiring and the low potential wiring. The fourth switching element, the first intermediate diode connected in parallel to the second switching element with the cathode facing the medium potential wiring side, and the first intermediate diode with the cathode facing the output wiring side. It has a second intermediate diode connected in parallel to the three switching elements. The control circuit is configured to control the potentials of the gates of the first switching element, the second switching element, the third switching element, and the fourth switching element of the three switching circuits. The control circuit is in a high potential output state in which the three switching circuits are turned on and the high potential is applied to the corresponding output wiring, the second switching element and the third switching element. Is turned on to apply the medium potential, which is the potential of the medium potential wiring, to the corresponding output wiring, and the fourth switching element is turned on to apply the low potential to the corresponding output wiring. It is configured to vary between low potential output states. The control circuit is the U-phase output wiring which is the output wiring of the U-phase switching circuit, the V-phase output wiring which is the output wiring of the V-phase switching circuit, and the output wiring of the W-phase switching circuit. By changing the respective potentials of the W-phase output wiring between the high potential, the medium potential, and the low potential, the U-phase output wiring, the V-phase output wiring, and the W-phase output wiring It is configured to generate a three-phase AC current between them. The control circuit can execute an emergency operation when any one of the second switching element and the third switching element of the three switching circuits fails in a short circuit. The short-circuit-failed element is called a short-circuit-failed element. The output wiring of one of the three switching circuits including the short-circuit fault element is referred to as a limited output wiring. The output wirings of the two switching circuits that do not include the short-circuit fault element of the three switching circuits are referred to as normal output wirings, respectively. In the emergency operation, the control circuit changes the potential of the limited output wiring between the two potentials other than the prohibited potential among the high potential, the medium potential, and the low potential, and the normal output. Each potential of the wiring is changed between the three potentials of the high potential, the medium potential, and the low potential. When the short-circuit failure element is the second switching element, the prohibited potential is the low potential. When the short-circuit failure element is the third switching element, the prohibited potential is the high potential.
 このインバータでは、非常動作時に、短絡故障素子を含むスイッチング回路の出力配線(制限出力配線)を禁止電位を除く2つの電位の間で変化させる一方で、正常出力配線を3つの電位の間で変化させる。すなわち、制限出力配線を2レベルで制御する一方で、正常出力配線は3レベルで制御する。このように、正常出力配線を3レベルで制御する場合には、上側コンデンサと下側コンデンサのいずれかが一方的に放電されることがないので、中電位の過度な上昇または過度な低下を防止することができる。したがって、このインバータによれば、第2スイッチング素子または第3スイッチング素子が短絡故障した場合でも、継続的に三相交流電流を発生させることができる。 In this inverter, during emergency operation, the output wiring (limited output wiring) of the switching circuit including the short-circuit fault element is changed between the two potentials excluding the prohibited potential, while the normal output wiring is changed between the three potentials. Let me. That is, the limited output wiring is controlled at two levels, while the normal output wiring is controlled at three levels. In this way, when the normal output wiring is controlled at three levels, either the upper capacitor or the lower capacitor is not discharged unilaterally, thus preventing an excessive rise or fall of the medium potential. can do. Therefore, according to this inverter, even if the second switching element or the third switching element fails due to a short circuit, the three-phase alternating current can be continuously generated.
 上記第2のインバータの付加的な特徴について、以下に列記する。なお、以下に列記された各特徴は、それぞれ独立して有用なものである。 The additional features of the second inverter mentioned above are listed below. In addition, each feature listed below is useful independently.
(特徴1)電圧ベクトルが回転するように前記電圧ベクトルの角度の指令値を生成して前記制御回路に入力する指令回路をさらに有していてもよい。前記電圧ベクトルは、パラメータVu、Vv、Vwにより示されるベクトルである。前記パラメータVuは、前記U相出力配線の電位が、前記高電位、前記中電位、及び、前記低電位のいずれであるかを示す値である。前記パラメータVvは、前記V相出力配線の電位が、前記高電位、前記中電位、及び、前記低電位のいずれであるかを示す値である。前記パラメータVwは、前記W相出力配線の電位が、前記高電位、前記中電位、及び、前記低電位のいずれであるかを示す値である。前記非常動作においては、前記制限出力配線が前記禁止電位となる前記電圧ベクトルが禁止ベクトルであり、前記電圧ベクトルの角度範囲のうちの前記禁止ベクトルが含まれる角度範囲が制限角度範囲であり、前記電圧ベクトルの前記角度範囲のうちの前記制限角度範囲外の角度範囲が正常角度範囲である。前記制御回路は、前記非常動作において、前記指令値が示す前記角度が前記制限角度範囲内にある場合には、前記指令値が示す前記角度を有するとともに前記禁止ベクトルではない許容ベクトルに従って3つの前記出力配線の電位を制御してもよい。前記制御回路は、前記非常動作において、前記指令値が示す前記角度が前記正常角度範囲内にある場合には、前記指令値が示す前記角度を有する複数の前記電圧ベクトルから特定電圧ベクトルを選択し、選択した前記特定電圧ベクトルに従って3つの前記出力配線の電位を制御してもよい。前記制御回路は、前記中電位が基準値よりも低い場合に、前記中電位を上昇させる前記電圧ベクトルを前記特定電圧ベクトルとして選択してもよい。前記制御回路は、前記中電位が前記基準値よりも高い場合に、前記中電位を低下させる前記電圧ベクトルを前記特定電圧ベクトルとして選択してもよい。 (Feature 1) It may further have a command circuit that generates a command value of an angle of the voltage vector so that the voltage vector rotates and inputs it to the control circuit. The voltage vector is a vector represented by the parameters Vu, Vv, Vw. The parameter Vu is a value indicating whether the potential of the U-phase output wiring is the high potential, the medium potential, or the low potential. The parameter Vv is a value indicating whether the potential of the V-phase output wiring is the high potential, the medium potential, or the low potential. The parameter Vw is a value indicating whether the potential of the W-phase output wiring is the high potential, the medium potential, or the low potential. In the emergency operation, the voltage vector at which the limited output wiring has the prohibited potential is the prohibited vector, and the angle range including the prohibited vector in the angle range of the voltage vector is the restricted angle range. The angle range outside the limit angle range of the angle range of the voltage vector is the normal angle range. In the emergency operation, when the angle indicated by the command value is within the limiting angle range, the control circuit has the angle indicated by the command value and the three said according to an allowable vector which is not the prohibited vector. The potential of the output wiring may be controlled. In the emergency operation, when the angle indicated by the command value is within the normal angle range, the control circuit selects a specific voltage vector from a plurality of voltage vectors having the angle indicated by the command value. , The potentials of the three output wirings may be controlled according to the selected specific voltage vector. The control circuit may select the voltage vector that raises the medium potential as the specific voltage vector when the medium potential is lower than the reference value. The control circuit may select the voltage vector for lowering the medium potential as the specific voltage vector when the medium potential is higher than the reference value.
 3レベルのインバータにおいては、出力電圧が電圧ベクトルで表される場合がある。この場合、同じ角度を有する電圧ベクトルが複数存在する。例えば、U相に対して60度の角度を有する電圧ベクトル(Vu,Vv,Vw)としては、(2,2,0)、(2,2,1)、(1,1,0)の3つが存在する。ここで、パラメータVu、Vv、Vwとして、数値「2」は高電位を意味し、数値「1」は中電位を意味し、数値「0」は低電位を意味するものとする。 In a 3-level inverter, the output voltage may be represented by a voltage vector. In this case, there are a plurality of voltage vectors having the same angle. For example, the voltage vectors (Vu, Vv, Vw) having an angle of 60 degrees with respect to the U phase include (2,2,0), (2,2,1), and (1,1,0). There is one. Here, as parameters Vu, Vv, and Vw, the numerical value "2" means a high potential, the numerical value "1" means a medium potential, and the numerical value "0" means a low potential.
 指令値が示す角度が制限角度範囲内にある場合には、制御回路は、その角度を有する複数の電圧ベクトルのうちの許容ベクトル(禁止ベクトル以外の電圧ベクトル)に従って出力配線の電位を制御する。例えば、高電位が禁止電位である場合には、上述した(2,2,0)、(2,2,1)、(1,1,0)のうちの(2,2,0)、(2,2,1)は禁止ベクトルである。この場合、(1,1,0)が許容ベクトル(使用可能な電圧ベクトル)であるので、制御回路は(1,1,0)に従って各出力配線の電位を制御する。このように、指令値が示す角度が制限角度範囲である場合には、制御回路は、許容ベクトルに従って制御することで、禁止電位の使用を禁止する。 When the angle indicated by the command value is within the limit angle range, the control circuit controls the potential of the output wiring according to the allowable vector (voltage vector other than the prohibition vector) among the plurality of voltage vectors having that angle. For example, when the high potential is the prohibited potential, (2,2,0), (2,2,0) among (2,2,0), (2,2,1), (1,1,0) described above 2,2,1) are prohibited vectors. In this case, since (1,1,0) is an allowable vector (usable voltage vector), the control circuit controls the potential of each output wiring according to (1,1,0). As described above, when the angle indicated by the command value is within the limit angle range, the control circuit prohibits the use of the prohibited potential by controlling according to the permissible vector.
 また、指令値が示す角度範囲が正常角度範囲内にある場合には、制御回路は、その角度を有する複数の電圧ベクトルから特定電圧ベクトルを選択し、選択した特定電圧ベクトルに従って出力配線の電位を制御する。ここで、制御回路は、中電位が基準値よりも低い場合に中電位を上昇させる電圧ベクトルを特定電圧ベクトルとして選択し、中電位が基準値よりも高い場合に中電位を低下させる電圧ベクトルを特定電圧ベクトルとして選択する。例えば、上述した(2,2,0)、(2,2,1)、(1,1,0)の角度(すなわち、60度)が正常角度範囲内にある場合には、制御回路は、これらの電圧ベクトルから特定電圧ベクトルを選択する。これらの電圧ベクトルのうち、(2,2,1)、(1,1,0)は、中電位を変化させる電圧ベクトルである。制御回路は、インバータの動作状態に応じて(2,2,1)、(1,1,0)のいずれか選択して、中電位を基準値に近づけるように動作する。このように、指令値が示す角度範囲が正常角度範囲内にある場合には、使用可能な電圧ベクトルが複数存在するので、その中から適切な電圧ベクトルを選択することで、中電位を適正値に制御することができる。したがって、三相交流電流を継続的に発生させることができる。 When the angle range indicated by the command value is within the normal angle range, the control circuit selects a specific voltage vector from a plurality of voltage vectors having that angle, and sets the potential of the output wiring according to the selected specific voltage vector. Control. Here, the control circuit selects a voltage vector that raises the medium potential when the medium potential is lower than the reference value as a specific voltage vector, and selects a voltage vector that lowers the medium potential when the medium potential is higher than the reference value. Select as a specific voltage vector. For example, if the angles (ie, 60 degrees) of (2,2,0), (2,2,1), (1,1,0) described above are within the normal angle range, the control circuit A specific voltage vector is selected from these voltage vectors. Of these voltage vectors, (2,2,1) and (1,1,0) are voltage vectors that change the medium potential. The control circuit operates so as to bring the medium potential closer to the reference value by selecting either (2,2,1) or (1,1,0) according to the operating state of the inverter. In this way, when the angle range indicated by the command value is within the normal angle range, there are multiple voltage vectors that can be used. Therefore, by selecting an appropriate voltage vector from among them, the medium potential can be set to an appropriate value. Can be controlled to. Therefore, the three-phase alternating current can be continuously generated.
(特徴2)3つの前記出力配線が、負荷に接続されるように構成されていてもよい。前記負荷に前記高電位と前記中電位を印加して前記低電位を印加しない前記電圧ベクトルを上側ベクトルという。前記負荷に前記中電位と前記低電位を印加して前記高電位を印加しない前記電圧ベクトルを下側ベクトルという。前記制御回路は、前記指令値が示す前記角度が前記正常角度範囲内にある場合には、以下のA~Dの条件に従って前記特定電圧ベクトルを選択してもよい。A.前記中電位が前記基準値よりも低く、かつ、前記負荷に流れる電流が前記負荷に印加される電圧に対して順方向である場合に、前記上側ベクトルを前記特定電圧ベクトルとして選択する。B.前記中電位が前記基準値よりも低く、かつ、前記負荷に流れる前記電流が前記負荷に印加される前記電圧に対して逆方向である場合に、前記下側ベクトルを前記特定電圧ベクトルとして選択する。C.前記中電位が前記基準値よりも高く、かつ、前記負荷に流れる前記電流が前記負荷に印加される前記電圧に対して順方向である場合に、前記下側ベクトルを前記特定電圧ベクトルとして選択する。D.前記中電位が前記基準値よりも高く、かつ、前記負荷に流れる前記電流が前記負荷に印加される前記電圧に対して逆方向である場合に、前記上側ベクトルを前記特定電圧ベクトルとして選択する。 (Feature 2) The three output wirings may be configured to be connected to a load. The voltage vector in which the high potential and the medium potential are applied to the load and the low potential is not applied is referred to as an upper vector. The voltage vector in which the medium potential and the low potential are applied to the load and the high potential is not applied is referred to as a lower vector. When the angle indicated by the command value is within the normal angle range, the control circuit may select the specific voltage vector according to the following conditions A to D. A. When the medium potential is lower than the reference value and the current flowing through the load is in the forward direction with respect to the voltage applied to the load, the upper vector is selected as the specific voltage vector. B. When the medium potential is lower than the reference value and the current flowing through the load is in the opposite direction to the voltage applied to the load, the lower vector is selected as the specific voltage vector. .. C. The lower vector is selected as the specific voltage vector when the medium potential is higher than the reference value and the current flowing through the load is in the forward direction with respect to the voltage applied to the load. .. D. When the medium potential is higher than the reference value and the current flowing through the load is in the opposite direction to the voltage applied to the load, the upper vector is selected as the specific voltage vector.
 この構成によれば、中電位の変動をより抑制することができる。 According to this configuration, fluctuations in the medium potential can be further suppressed.
(特徴3)前記制御回路は、前記中電位が前記基準値よりも高い上側制限値よりも高く、前記指令値が示す前記角度が前記制限角度範囲内にあり、前記許容ベクトルが前記中電位を上昇させる前記電圧ベクトルである場合には、前記指令値が示す前記角度にかかわらず、3つの前記出力配線を同電位に制御してもよい。 (Feature 3) In the control circuit, the middle potential is higher than the upper limit value higher than the reference value, the angle indicated by the command value is within the limit angle range, and the allowable vector sets the middle potential. In the case of the voltage vector to be raised, the three output wirings may be controlled to have the same potential regardless of the angle indicated by the command value.
 このように、中電位と基準値の差が大きい場合には、上記のような条件で出力配線を同電位とすることで、中電位を基準値に近い値により素早く戻すことができる。 In this way, when the difference between the medium potential and the reference value is large, the medium potential can be quickly returned to a value close to the reference value by setting the output wiring to the same potential under the above conditions.
(特徴4)前記制御回路は、前記中電位が前記基準値よりも低い下側制限値よりも低く、前記指令値が示す前記角度が前記制限角度範囲内にあり、前記許容ベクトルが前記中電位を低下させる前記電圧ベクトルである場合には、前記指令値が示す前記角度にかかわらず、3つの前記出力配線を同電位に制御してもよい。 (Feature 4) In the control circuit, the medium potential is lower than the lower limit value lower than the reference value, the angle indicated by the command value is within the limit angle range, and the allowable vector is the medium potential. In the case of the voltage vector that lowers the voltage, the three output wirings may be controlled to have the same potential regardless of the angle indicated by the command value.
 このように、中電位と基準値の差が大きい場合には、上記のような条件で出力配線を同電位とすることで、中電位を基準値に近い値により素早く戻すことができる。 In this way, when the difference between the medium potential and the reference value is large, the medium potential can be quickly returned to a value close to the reference value by setting the output wiring to the same potential under the above conditions.
 特徴1~4に代えて、第2のインバータが特徴5を有していてもよい。 Instead of features 1 to 4, the second inverter may have feature 5.
(特徴5)電圧ベクトルが回転するように前記電圧ベクトルの角度の指令値を生成して前記制御回路に入力する指令回路をさらに有していてもよい。前記電圧ベクトルは、パラメータVu、Vv、Vwにより示されるベクトルである。前記パラメータVuは、前記U相出力配線の電位が、前記高電位、前記中電位、及び、前記低電位のいずれであるかを示す値である。前記パラメータVvは、前記V相出力配線の電位が、前記高電位、前記中電位、及び、前記低電位のいずれであるかを示す値である。前記パラメータVwは、前記W相出力配線の電位が、前記高電位、前記中電位、及び、前記低電位のいずれであるかを示す値である。前記非常動作においては、前記制限出力配線が前記禁止電位となる前記電圧ベクトルが禁止ベクトルであり、前記電圧ベクトルの角度範囲のうちの前記禁止ベクトルが含まれる角度範囲が制限角度範囲であり、前記電圧ベクトルの前記角度範囲のうちの前記制限角度範囲外の角度範囲が正常角度範囲である。前記制御回路は、前記非常動作において、前記指令値が示す前記角度が前記制限角度範囲内にある場合には、前記指令値が示す前記角度を有するとともに前記禁止ベクトルではない許容ベクトルに従って3つの前記出力配線の電位を制御してもよい。前記制御回路は、前記非常動作において、前記指令値が示す前記角度が前記正常角度範囲内にある場合には、前記指令値が示す前記角度を有する複数の前記電圧ベクトルから特定電圧ベクトルを選択し、選択した前記特定電圧ベクトルに従って3つの前記出力配線の電位を制御してもよい。3つの前記出力配線が、負荷に接続されるように構成されていてもよい。前記特定電圧ベクトルが、前記負荷に前記高電位と前記中電位を印加して前記低電位を印加しない前記電圧ベクトルの群により構成された第1グループと、前記負荷に前記中電位と前記低電位を印加して前記高電位を印加しない前記電圧ベクトルの群により構成された第2グループのいずれかから選択されてもよい。前記制御回路が、前記中電位の制御目標値を記憶していてもよい。前記制御回路は、前回の制御フェーズ以後に前記中電位と前記制御目標値のずれが拡大した場合に、前記第1グループと前記第2グループのうちの前回の制御フェーズで選択した前記電圧ベクトルが属するグループとは異なるグループから前記特定電圧ベクトルを選択してもよい。 (Feature 5) A command circuit that generates a command value of an angle of the voltage vector so that the voltage vector rotates and inputs the command value to the control circuit may be further provided. The voltage vector is a vector represented by the parameters Vu, Vv, Vw. The parameter Vu is a value indicating whether the potential of the U-phase output wiring is the high potential, the medium potential, or the low potential. The parameter Vv is a value indicating whether the potential of the V-phase output wiring is the high potential, the medium potential, or the low potential. The parameter Vw is a value indicating whether the potential of the W-phase output wiring is the high potential, the medium potential, or the low potential. In the emergency operation, the voltage vector at which the limited output wiring has the prohibited potential is the prohibited vector, and the angle range including the prohibited vector in the angle range of the voltage vector is the restricted angle range. The angle range outside the limit angle range of the angle range of the voltage vector is the normal angle range. In the emergency operation, when the angle indicated by the command value is within the limiting angle range, the control circuit has the angle indicated by the command value and the three said according to an allowable vector which is not the prohibited vector. The potential of the output wiring may be controlled. In the emergency operation, when the angle indicated by the command value is within the normal angle range, the control circuit selects a specific voltage vector from a plurality of voltage vectors having the angle indicated by the command value. , The potentials of the three output wirings may be controlled according to the selected specific voltage vector. The three output wires may be configured to be connected to the load. The specific voltage vector is composed of a first group composed of a group of voltage vectors in which the high potential and the medium potential are applied to the load and the low potential is not applied to the load, and the medium potential and the low potential are applied to the load. May be selected from any of the second groups composed of the group of voltage vectors in which the high potential is applied and the high potential is not applied. The control circuit may store the control target value of the medium potential. In the control circuit, when the deviation between the medium potential and the control target value increases after the previous control phase, the voltage vector selected in the previous control phase between the first group and the second group can be used. The specific voltage vector may be selected from a group different from the group to which the specific voltage vector belongs.
 この構成でも、中電位を適正値に制御しながら三相交流電流を継続的に発生させることができる。 Even with this configuration, it is possible to continuously generate three-phase alternating current while controlling the medium potential to an appropriate value.
(特徴6)前記制御回路が、3つの前記スイッチング回路の前記第1スイッチング素子、前記第2スイッチング素子、前記第3スイッチング素子、及び、前記第4スイッチング素子に流れる電流を検出するように構成されていてもよい。前記制御回路が、3つの前記スイッチング回路から選択した選択スイッチング回路に対して、短絡素子判定動作を実行可能であってもよい。前記短絡素子判定動作では、前記制御回路が、前記選択スイッチング回路を、前記第1スイッチング素子と前記第2スイッチング素子をオンさせる第1状態と前記第3スイッチング素子と前記第4スイッチング素子をオンさせる第2状態の間で経時的に変化させてもよい。前記制御回路が、前記選択スイッチング回路に対して、前記第2状態で前記第3スイッチング素子に短絡電流が流れる場合に前記第2スイッチング素子が短絡故障素子であると判定し、前記第1状態で前記第2スイッチング素子に短絡電流が流れる場合に前記第3スイッチング素子が短絡故障素子であると判定してもよい。 (Feature 6) The control circuit is configured to detect currents flowing through the first switching element, the second switching element, the third switching element, and the fourth switching element of the three switching circuits. You may be. The control circuit may be capable of performing a short-circuit element determination operation on a selective switching circuit selected from the three switching circuits. In the short-circuit element determination operation, the control circuit turns on the selection switching circuit in the first state in which the first switching element and the second switching element are turned on, and in the third state and the fourth switching element. It may be changed over time between the second states. The control circuit determines that the second switching element is a short-circuit fault element when a short-circuit current flows through the third switching element in the second state with respect to the selective switching circuit, and in the first state. When a short-circuit current flows through the second switching element, it may be determined that the third switching element is a short-circuit failure element.
 なお、選択スイッチング回路は、1つであっても2つであっても3つであってもよい。すなわち、2つまたは3つの選択スイッチング回路に対して同時に短絡素子判定動作を実行してもよい。 The number of selective switching circuits may be one, two, or three. That is, the short-circuit element determination operation may be executed for two or three selective switching circuits at the same time.
 この構成によれば、短絡故障素子を特定することができる。 According to this configuration, the short-circuit failure element can be specified.
実施例1~4のインバータの回路図。The circuit diagram of the inverter of Examples 1 to 4. 高電位出力状態、中電位出力状態、及び、低電位出力状態を示す表。A table showing a high potential output state, a medium potential output state, and a low potential output state. 電圧ベクトルを示す空間ベクトル図。A space vector diagram showing a voltage vector. 電圧ベクトルE2、E3を示す図。The figure which shows the voltage vector E2, E3. 3レベル動作における電位V60uを示すグラフ。The graph which shows the potential V60u in three-level operation. 2レベル動作における電位V60uを示すグラフ。The graph which shows the potential V60u in two-level operation. 3レベル動作における電位V60u、V60v、V60wを示すグラフ。The graph which shows the potential V60u, V60v, V60w in the three-level operation. 3レベル動作における電位V60u、V60v、V60wを示すグラフ。The graph which shows the potential V60u, V60v, V60w in the three-level operation. 2レベル動作における電位V60u、V60v、V60wを示すグラフ。The graph which shows the potential V60u, V60v, V60w in the two-level operation. 2レベル動作における電位V60u、V60v、V60wを示すグラフ。The graph which shows the potential V60u, V60v, V60w in the two-level operation. リプル電流を示すグラフ。Graph showing ripple current. 準2レベル動作における電位V60uを示すグラフ。The graph which shows the potential V60u in the quasi-two-level operation. 準2レベル動作における電位V60u、V60v、V60wを示すグラフ。The graph which shows the potential V60u, V60v, V60w in the quasi-two-level operation. 準2レベル動作における電位V60u、V60v、V60wを示すグラフ。The graph which shows the potential V60u, V60v, V60w in the quasi-two-level operation. 単相のインバータを示す回路図。A circuit diagram showing a single-phase inverter. 出力された電圧ベクトルの角度と三相交流電流を示すグラフ。A graph showing the angle of the output voltage vector and the three-phase alternating current. (0,0,2)が出力されたときの電流経路を示す回路図。The circuit diagram which shows the current path when (0,0,2) is output. (1,1,2)が出力されたときの電流経路を示す回路図。The circuit diagram which shows the current path when (1, 1, 2) is output. (0,0,1)が出力されたときの電流経路を示す回路図。The circuit diagram which shows the current path when (0,0,1) is output. 短絡素子判定動作を示すフローチャート。The flowchart which shows the short-circuit element determination operation. 第1状態、第2状態及び第3状態を示す表。A table showing the first state, the second state, and the third state. 第1状態における短絡電流の経路を示す回路図。The circuit diagram which shows the path of the short circuit current in the 1st state. 第2状態における短絡電流の経路を示す回路図。The circuit diagram which shows the path of the short circuit current in the 2nd state. 第3状態における短絡電流の経路を示す回路図。The circuit diagram which shows the path of the short circuit current in the 3rd state. 禁止電位が低電位VLの場合の非常動作を示すフローチャート。The flowchart which shows the emergency operation when the forbidden potential is a low potential VL. 禁止電位が低電位VLの場合の制限角度範囲の一例を示す空間ベクトル図。A space vector diagram showing an example of a limiting angle range when the forbidden potential is a low potential VL. 第1~第4規則を示す表。A table showing the first to fourth rules. 第1~第4規則で出力される電圧ベクトルの一例を示す図。The figure which shows an example of the voltage vector which is output by 1st to 4th rule. 禁止電位が高電位VHの場合の非常動作を示すフローチャート。The flowchart which shows the emergency operation when the prohibition potential is a high potential VH. 禁止電位が高電位VHの場合の制限角度範囲の一例を示す空間ベクトル図。A space vector diagram showing an example of a limiting angle range when the forbidden potential is a high potential VH. 第5~第8規則を示す表。A table showing the 5th to 8th rules. 実施例4のインバータが実行する処理を示すフローチャート。The flowchart which shows the process which the inverter of Example 4 executes. 実施例1~4の変形例を示す回路図。The circuit diagram which shows the modification of Examples 1 to 4.
(実施例1)実施例1のインバータについて、以下に説明する。なお、実施例1及び2は、上述した第1のインバータの実施例である。 (Example 1) The inverter of the first embodiment will be described below. Examples 1 and 2 are examples of the first inverter described above.
(インバータの構成)
 図1は、実施例1のインバータ10の回路図を示している。インバータ10は、車両に搭載されている。また、車両には、バッテリ18とモータ90が搭載されている。モータ90は、三相モータであり、車両の車輪を駆動する。インバータ10は、バッテリ18とモータ90に接続されている。インバータ10は、バッテリ18から供給される直流電力を三相交流電力に変換し、三相交流電力をモータ90に供給する。これによって、モータ90が駆動し、車両が走行する。
(Inverter configuration)
FIG. 1 shows a circuit diagram of the inverter 10 of the first embodiment. The inverter 10 is mounted on the vehicle. Further, the vehicle is equipped with a battery 18 and a motor 90. The motor 90 is a three-phase motor and drives the wheels of the vehicle. The inverter 10 is connected to the battery 18 and the motor 90. The inverter 10 converts the DC power supplied from the battery 18 into three-phase AC power, and supplies the three-phase AC power to the motor 90. As a result, the motor 90 is driven and the vehicle travels.
 インバータ10は、高電位配線12、中電位配線14、低電位配線16、上側コンデンサ20、及び、下側コンデンサ22を有している。高電位配線12は、バッテリ18の正極に接続されている。低電位配線16は、バッテリ18の負極に接続されている。バッテリ18によって、高電位配線12と低電位配線16の間に直流電圧が印加されている。したがって、高電位配線12の電位VHは、低電位配線16の電位VL(すなわち、0V)よりも高い。上側コンデンサ20は、高電位配線12と中電位配線14の間に接続されている。下側コンデンサ22は、中電位配線14と低電位配線16の間に接続されている。このため、中電位配線14の電位VMは、低電位配線16の電位VLよりも高く、高電位配線12の電位VHよりも低い。本実施例では、電位VMは、電位VHの約50%(すなわち、VH/2)である。 The inverter 10 has a high potential wiring 12, a medium potential wiring 14, a low potential wiring 16, an upper capacitor 20, and a lower capacitor 22. The high potential wiring 12 is connected to the positive electrode of the battery 18. The low potential wiring 16 is connected to the negative electrode of the battery 18. A DC voltage is applied between the high-potential wiring 12 and the low-potential wiring 16 by the battery 18. Therefore, the potential VH of the high-potential wiring 12 is higher than the potential VL (that is, 0V) of the low-potential wiring 16. The upper capacitor 20 is connected between the high-potential wiring 12 and the medium-potential wiring 14. The lower capacitor 22 is connected between the medium potential wiring 14 and the low potential wiring 16. Therefore, the potential VM of the medium-potential wiring 14 is higher than the potential VL of the low-potential wiring 16 and lower than the potential VH of the high-potential wiring 12. In this example, the potential VM is about 50% of the potential VH (ie, VH / 2).
 インバータ10は、U相スイッチング回路30u、V相スイッチング回路30v、及び、W相スイッチング回路30wの3つのスイッチング回路30を有している。スイッチング回路30のそれぞれは、高電位配線12と低電位配線16と中電位配線14の間に接続されている。スイッチング回路30のぞれぞれは、第1スイッチング素子41、第2スイッチング素子42、第3スイッチング素子43、第4スイッチング素子44、第1ダイオード51、第2ダイオード52、第3ダイオード53、第4ダイオード54、及び、出力配線60を有している。3つのスイッチング回路30の構成は互いに等しいので、以下では1つのスイッチング回路30の構成について説明する。 The inverter 10 has three switching circuits 30 of a U-phase switching circuit 30u, a V-phase switching circuit 30v, and a W-phase switching circuit 30w. Each of the switching circuits 30 is connected between the high-potential wiring 12, the low-potential wiring 16, and the medium-potential wiring 14. Each of the switching circuits 30 includes a first switching element 41, a second switching element 42, a third switching element 43, a fourth switching element 44, a first diode 51, a second diode 52, a third diode 53, and a third. It has 4 diodes 54 and an output wiring 60. Since the configurations of the three switching circuits 30 are equal to each other, the configuration of one switching circuit 30 will be described below.
 第1スイッチング素子41は、IGBT(insulated gate bipolar transistor)である。第1スイッチング素子41は、高電位配線12と出力配線60の間に接続されている。第1スイッチング素子41のコレクタが高電位配線12に接続されており、第1スイッチング素子41のエミッタが出力配線60に接続されている。 The first switching element 41 is an IGBT (insulated gate bipolar transistor). The first switching element 41 is connected between the high potential wiring 12 and the output wiring 60. The collector of the first switching element 41 is connected to the high potential wiring 12, and the emitter of the first switching element 41 is connected to the output wiring 60.
 第1ダイオード51は、第1スイッチング素子41に対して並列に接続されている。第1ダイオード51のアノードが第1スイッチング素子41のエミッタに接続されており、第1ダイオード51のカソードが第1スイッチング素子41のコレクタに接続されている。 The first diode 51 is connected in parallel to the first switching element 41. The anode of the first diode 51 is connected to the emitter of the first switching element 41, and the cathode of the first diode 51 is connected to the collector of the first switching element 41.
 第4スイッチング素子44は、IGBTである。第4スイッチング素子44は、出力配線60と低電位配線16の間に接続されている。第4スイッチング素子44のコレクタが出力配線60に接続されており、第4スイッチング素子44のエミッタが低電位配線16に接続されている。 The fourth switching element 44 is an IGBT. The fourth switching element 44 is connected between the output wiring 60 and the low potential wiring 16. The collector of the fourth switching element 44 is connected to the output wiring 60, and the emitter of the fourth switching element 44 is connected to the low potential wiring 16.
 第4ダイオード54は、第4スイッチング素子44に対して並列に接続されている。第4ダイオード54のアノードが第4スイッチング素子44のエミッタに接続されており、第4ダイオード54のカソードが第4スイッチング素子44のコレクタに接続されている。 The fourth diode 54 is connected in parallel to the fourth switching element 44. The anode of the fourth diode 54 is connected to the emitter of the fourth switching element 44, and the cathode of the fourth diode 54 is connected to the collector of the fourth switching element 44.
 第2スイッチング素子42と第3スイッチング素子43は、FET(field effect transistor)である。第2スイッチング素子42と第3スイッチング素子43は、出力配線60と中電位配線14の間に直列に接続されている。第2スイッチング素子42のドレインは、中電位配線14に接続されている。第2スイッチング素子42のソースは、第3スイッチング素子43のソースに接続されている。第3スイッチング素子43のドレインは、出力配線60に接続されている。 The second switching element 42 and the third switching element 43 are FETs (field effect transistors). The second switching element 42 and the third switching element 43 are connected in series between the output wiring 60 and the medium potential wiring 14. The drain of the second switching element 42 is connected to the medium potential wiring 14. The source of the second switching element 42 is connected to the source of the third switching element 43. The drain of the third switching element 43 is connected to the output wiring 60.
 第2ダイオード52は、第2スイッチング素子42に対して並列に接続されている。第2ダイオード52のアノードが第2スイッチング素子42のソースに接続されており、第2ダイオード52のカソードが第2スイッチング素子42のドレインに接続されている。すなわち、第2ダイオード52は、カソードが中電位配線14側を向く向きで第2スイッチング素子42に対して並列に接続されている。 The second diode 52 is connected in parallel to the second switching element 42. The anode of the second diode 52 is connected to the source of the second switching element 42, and the cathode of the second diode 52 is connected to the drain of the second switching element 42. That is, the second diode 52 is connected in parallel to the second switching element 42 with the cathode facing the medium potential wiring 14 side.
 第3ダイオード53は、第3スイッチング素子43に対して並列に接続されている。第3ダイオード53のアノードが第3スイッチング素子43のソースに接続されており、第3ダイオード53のカソードが第3スイッチング素子43のドレインに接続されている。すなわち、第3ダイオード53は、カソードが出力配線60側を向く向きで第3スイッチング素子43に対して並列に接続されている。 The third diode 53 is connected in parallel to the third switching element 43. The anode of the third diode 53 is connected to the source of the third switching element 43, and the cathode of the third diode 53 is connected to the drain of the third switching element 43. That is, the third diode 53 is connected in parallel to the third switching element 43 with the cathode facing the output wiring 60 side.
 スイッチング素子41、44は、シリコン半導体により構成されている。スイッチング素子42、43は、化合物半導体(例えば、炭化シリコン半導体、窒化ガリウム半導体等)により構成されている。化合物半導体はシリコン半導体よりも広いバンドギャップを有している。化合物半導体により構成されたスイッチング素子42、43では、シリコン半導体により構成されたスイッチング素子41、44よりも損失が生じ難い。また、スイッチング素子42、43の電流容量は、スイッチング素子41、44の電流容量よりも小さい。すなわち、スイッチング素子42、43に流すことが可能な電流の最大値は、スイッチング素子41、44に流すことが可能な電流の最大値よりも小さい。このため、スイッチング素子42、43とスイッチング素子41、44に同じ大きさの電流が流れた場合には、スイッチング素子42、43の方がスイッチング素子41、44よりも温度上昇し易い。また、スイッチング素子42、43は、スイッチング素子41、44よりも小型である。 The switching elements 41 and 44 are made of a silicon semiconductor. The switching elements 42 and 43 are composed of compound semiconductors (for example, silicon carbide semiconductors, gallium nitride semiconductors, etc.). Compound semiconductors have a wider bandgap than silicon semiconductors. The switching elements 42 and 43 made of compound semiconductors are less likely to cause loss than the switching elements 41 and 44 made of silicon semiconductors. Further, the current capacity of the switching elements 42 and 43 is smaller than the current capacity of the switching elements 41 and 44. That is, the maximum value of the current that can be passed through the switching elements 42 and 43 is smaller than the maximum value of the current that can be passed through the switching elements 41 and 44. Therefore, when a current of the same magnitude flows through the switching elements 42 and 43 and the switching elements 41 and 44, the temperature of the switching elements 42 and 43 is more likely to rise than that of the switching elements 41 and 44. Further, the switching elements 42 and 43 are smaller than the switching elements 41 and 44.
 ダイオード51~54は、pnダイオードであってもよいし、ショットキーバリアダイオードであってもよい。ダイオード51、54は、シリコン半導体により構成されている。例えば、第1ダイオード51が、第1スイッチング素子41と共通の半導体基板に形成されていてもよい(すなわち、1つの半導体基板内に第1スイッチング素子41と第1ダイオード51が形成されていてもよい)。また、第4ダイオード54が、第4スイッチング素子44と共通の半導体基板に形成されていてもよい。ダイオード52、53は、化合物半導体により構成されている。例えば、第2ダイオード52が、第2スイッチング素子42と共通の半導体基板に形成されていてもよい。第2ダイオード52は、第2スイッチング素子42(すなわち、FET)が内蔵する寄生ダイオードであってもよい。また、第3ダイオード53が、第3スイッチング素子43と共通の半導体基板に形成されていてもよい。第3ダイオード53は、第3スイッチング素子43(すなわち、FET)が内蔵する寄生ダイオードであってもよい。化合物半導体によって構成されたダイオード52、53では、シリコン半導体によって構成されたダイオード51、54よりも損失が生じ難い。ダイオード52、53の電流容量は、ダイオード51、54の電流容量よりも小さい。このため、ダイオード52、53とダイオード51、54に同じ大きさの電流が流れた場合には、ダイオード52、53の方がダイオード51、54よりも温度上昇し易い。また、ダイオード52、53は、ダイオード51、54よりも小型である。 The diodes 51 to 54 may be pn diodes or Schottky barrier diodes. The diodes 51 and 54 are made of a silicon semiconductor. For example, the first diode 51 may be formed on a semiconductor substrate common to the first switching element 41 (that is, even if the first switching element 41 and the first diode 51 are formed in one semiconductor substrate). good). Further, the fourth diode 54 may be formed on a semiconductor substrate common to the fourth switching element 44. The diodes 52 and 53 are made of a compound semiconductor. For example, the second diode 52 may be formed on a semiconductor substrate common to the second switching element 42. The second diode 52 may be a parasitic diode incorporated in the second switching element 42 (that is, FET). Further, the third diode 53 may be formed on a semiconductor substrate common to the third switching element 43. The third diode 53 may be a parasitic diode incorporated in the third switching element 43 (that is, FET). The diodes 52 and 53 made of compound semiconductors are less likely to cause loss than the diodes 51 and 54 made of silicon semiconductors. The current capacity of the diodes 52 and 53 is smaller than the current capacity of the diodes 51 and 54. Therefore, when a current of the same magnitude flows through the diodes 52 and 53 and the diodes 51 and 54, the temperature of the diodes 52 and 53 is more likely to rise than that of the diodes 51 and 54. Further, the diodes 52 and 53 are smaller than the diodes 51 and 54.
 以下では、U相スイッチング回路30uの出力配線60をU相出力配線60uといい、V相スイッチング回路30vの出力配線60をV相出力配線60vといい、W相スイッチング回路30wの出力配線60をW相出力配線60wという。U相出力配線60u、V相出力配線60v、W相出力配線60wのそれぞれは、モータ90に接続されている。 In the following, the output wiring 60 of the U-phase switching circuit 30u is referred to as a U-phase output wiring 60u, the output wiring 60 of the V-phase switching circuit 30v is referred to as a V-phase output wiring 60v, and the output wiring 60 of the W-phase switching circuit 30w is referred to as W. It is called phase output wiring 60w. Each of the U-phase output wiring 60u, the V-phase output wiring 60v, and the W-phase output wiring 60w is connected to the motor 90.
 インバータ10は、制御回路70と指令回路72を有している。指令回路72は、モータ90の動作状態に応じて指令値を生成し、生成した指令値を制御回路70に入力する。制御回路70は、図示していないが、U相スイッチング回路30u、V相スイッチング回路30v、及び、W相スイッチング回路30wのそれぞれが有するスイッチング素子41~44のゲートに接続されている。すなわち、制御回路70は、図1に示す12個のスイッチング素子のゲートに接続されている。制御回路70は、指令回路72から入力される指令値に基づいて、各スイッチング素子をオン-オフさせる。これによって、3つの出力配線60の間に三相交流電流が生成される。三相交流電流がモータ90に供給されることで、モータ90が駆動し、車両が走行する。 The inverter 10 has a control circuit 70 and a command circuit 72. The command circuit 72 generates a command value according to the operating state of the motor 90, and inputs the generated command value to the control circuit 70. Although not shown, the control circuit 70 is connected to the gates of the switching elements 41 to 44 of each of the U-phase switching circuit 30u, the V-phase switching circuit 30v, and the W-phase switching circuit 30w. That is, the control circuit 70 is connected to the gates of the 12 switching elements shown in FIG. The control circuit 70 turns each switching element on and off based on the command value input from the command circuit 72. As a result, a three-phase alternating current is generated between the three output wirings 60. By supplying the three-phase alternating current to the motor 90, the motor 90 is driven and the vehicle travels.
 また、インバータ10は、インバータ10内を流れる主電流を検出する電流センサ74を有している。電流センサ74が検出する電流は、バッテリ18からインバータ10に供給される入力電流(すなわち、高電位配線12または低電位配線16に流れる電流)であってもよいし、インバータ10からモータ90に供給される電流(すなわち、出力配線60u、60v、60wのうちの1つまたは複数に流れる電流)であってもよいし、いずれかのスイッチング素子に流れる主電流(例えば、スイッチング素子41、44のコレクタ-エミッタ間電流、スイッチング素子42、43のドレイン-ソース間電流)であってもよい。電流センサ74の検出値は、制御回路70に入力される。 Further, the inverter 10 has a current sensor 74 that detects the main current flowing in the inverter 10. The current detected by the current sensor 74 may be an input current supplied from the battery 18 to the inverter 10 (that is, a current flowing through the high potential wiring 12 or the low potential wiring 16), or is supplied from the inverter 10 to the motor 90. The current to be generated (that is, the current flowing through one or more of the output wirings 60u, 60v, 60w) or the main current flowing through any of the switching elements (for example, the collector of the switching elements 41, 44). -Emitor-to-emitter current, drain-source current of switching elements 42 and 43) may be used. The detected value of the current sensor 74 is input to the control circuit 70.
(出力配線の電位)
 次に、各出力配線60に印加される電位について説明する。制御回路70は、各スイッチング回路30を、図2に示す高電位出力状態、中電位出力状態、低電位出力状態のいずれかに制御する。
(Electric potential of output wiring)
Next, the potential applied to each output wiring 60 will be described. The control circuit 70 controls each switching circuit 30 to one of the high potential output state, the medium potential output state, and the low potential output state shown in FIG.
 高電位出力状態では、第1スイッチング素子41がオン、第2スイッチング素子42がオフ、第3スイッチング素子43がオフ、第4スイッチング素子44がオフに制御される。高電位出力状態では、出力配線60が、第1スイッチング素子41を介して高電位配線12に接続される。したがって、高電位出力状態では、出力配線60の電位は、高電位配線12と同じ電位VHとなる。 In the high potential output state, the first switching element 41 is controlled to be on, the second switching element 42 to be off, the third switching element 43 to be off, and the fourth switching element 44 to be off. In the high potential output state, the output wiring 60 is connected to the high potential wiring 12 via the first switching element 41. Therefore, in the high potential output state, the potential of the output wiring 60 is the same potential VH as that of the high potential wiring 12.
 中電位出力状態では、第1スイッチング素子41がオフ、第2スイッチング素子42がオン、第3スイッチング素子43がオン、第4スイッチング素子44がオフに制御される。中電位出力状態では、出力配線60が、第2スイッチング素子42と第3スイッチング素子43を介して中電位配線14に接続される。したがって、中電位出力状態では、出力配線60の電位は、中電位配線14と同じ中電位VMとなる。 In the medium potential output state, the first switching element 41 is turned off, the second switching element 42 is turned on, the third switching element 43 is turned on, and the fourth switching element 44 is turned off. In the medium potential output state, the output wiring 60 is connected to the medium potential wiring 14 via the second switching element 42 and the third switching element 43. Therefore, in the medium potential output state, the potential of the output wiring 60 is the same medium potential VM as the medium potential wiring 14.
 低電位出力状態では、第1スイッチング素子41がオフ、第2スイッチング素子42がオフ、第3スイッチング素子43がオフ、第4スイッチング素子44がオンに制御される。低電位出力状態では、出力配線60が、第4スイッチング素子44を介して低電位配線16に接続される。したがって、低電位出力状態では、出力配線60の電位は、低電位配線16と同じ低電位VLとなる。 In the low potential output state, the first switching element 41 is turned off, the second switching element 42 is turned off, the third switching element 43 is turned off, and the fourth switching element 44 is turned on. In the low potential output state, the output wiring 60 is connected to the low potential wiring 16 via the fourth switching element 44. Therefore, in the low potential output state, the potential of the output wiring 60 is the same low potential VL as that of the low potential wiring 16.
 各スイッチング回路30の状態が高電位出力状態、中電位出力状態、低電位出力状態の間で変化することで、各出力配線60の電位が高電位VH、中電位VM、低電位VLの間で変化する。制御回路70は、各出力配線60の電位を制御することによって、出力配線60に三相交流電流を発生させる。 By changing the state of each switching circuit 30 between the high potential output state, the medium potential output state, and the low potential output state, the potential of each output wiring 60 is among the high potential VH, the medium potential VM, and the low potential VL. Change. The control circuit 70 generates a three-phase alternating current in the output wiring 60 by controlling the potential of each output wiring 60.
(電圧ベクトル)
 図3は、出力配線60のそれぞれに印加される電位を示す電圧ベクトルを示す空間ベクトル図である。図3では、電圧ベクトルE1が例示されている。電圧ベクトルは、3つのパラメータ(Vu、Vv、Vw)によって表される。パラメータVuは、U相出力配線60uの電位示す値である。パラメータVvは、V相出力配線60vの電位を示す値である。パラメータVwは、W相出力配線60wの電位を示す値である。パラメータVu、Vv、Vwは、0から2の間の数値である。数値「0」は対応する出力配線60に低電位VLが印加されることを示し、数値「1」は対応する出力配線60に中電位VMが印加されることを示し、数値「2」は対応する出力配線60に高電位VHが印加されることを示す。例えば、図3に例示された電圧ベクトルE1は、(2,2,0)であるので、U相出力配線60uに高電位VHが印加され、V相出力配線60vに高電位VHが印加され、W相出力配線60wに低電位VLが印加されることを意味する。
(Voltage vector)
FIG. 3 is a space vector diagram showing a voltage vector showing a potential applied to each of the output wirings 60. In FIG. 3, the voltage vector E1 is illustrated. The voltage vector is represented by three parameters (Vu, Vv, Vw). The parameter Vu is a value indicating the potential of the U-phase output wiring 60u. The parameter Vv is a value indicating the potential of the V-phase output wiring 60v. The parameter Vw is a value indicating the potential of the W-phase output wiring 60w. The parameters Vu, Vv, Vw are numerical values between 0 and 2. The numerical value "0" indicates that the low potential VL is applied to the corresponding output wiring 60, the numerical value "1" indicates that the medium potential VM is applied to the corresponding output wiring 60, and the numerical value "2" corresponds. It is shown that the high potential VH is applied to the output wiring 60 to be processed. For example, since the voltage vector E1 illustrated in FIG. 3 is (2,2,0), a high potential VH is applied to the U-phase output wiring 60u, and a high potential VH is applied to the V-phase output wiring 60v. This means that a low potential VL is applied to the W-phase output wiring 60w.
 指令回路72は、3つの出力配線60に印加すべき電位の指令値を生成する。指令回路72は、電圧ベクトル(すなわち、3つのパラメータ(Vu,Vv,Vw))によって指令値を生成する。指令回路72が生成した指令値は、制御回路70に入力される。以下では、指令回路72から制御回路70に入力される指令値(電圧ベクトル)を、指令値ベクトルという。 The command circuit 72 generates command values of potentials to be applied to the three output wirings 60. The command circuit 72 generates a command value by a voltage vector (that is, three parameters (Vu, Vv, Vw)). The command value generated by the command circuit 72 is input to the control circuit 70. Hereinafter, the command value (voltage vector) input from the command circuit 72 to the control circuit 70 is referred to as a command value vector.
 制御回路70は、指令値ベクトルに従ってインバータ10を制御する。例えば、指令値ベクトルのパラメータVuが「0」の場合には、制御回路70は、U相スイッチング回路30uを低電位出力状態に制御してU相出力配線60uに低電位VLを印加する。指令値ベクトルのパラメータVuが「1」の場合には、制御回路70は、U相スイッチング回路30uを中電位出力状態に制御してU相出力配線60uに中電位VMを印加する。指令値ベクトルのパラメータVuが「2」の場合には、制御回路70は、U相スイッチング回路30uを高電位出力状態に制御してU相出力配線60uに高電位VHを印加する。指令値ベクトルのパラメータVvが「0」の場合には、制御回路70は、V相スイッチング回路30vを低電位出力状態に制御してV相出力配線60vに低電位VLを印加する。指令値ベクトルのパラメータVvが「1」の場合には、制御回路70は、V相スイッチング回路30vを中電位出力状態に制御してV相出力配線60vに中電位VMを印加する。指令値ベクトルのパラメータVvが「2」の場合には、制御回路70は、V相スイッチング回路30vを高電位出力状態に制御してV相出力配線60vに高電位VHを印加する。指令値ベクトルのパラメータVwが「0」の場合には、制御回路70は、W相スイッチング回路30wを低電位出力状態に制御してW相出力配線60wに低電位VLを印加する。指令値ベクトルのパラメータVwが「1」の場合には、制御回路70は、W相スイッチング回路30wを中電位出力状態に制御してW相出力配線60wに中電位VMを印加する。指令値ベクトルのパラメータVwが「2」の場合には、制御回路70は、W相スイッチング回路30wを高電位出力状態に制御してW相出力配線60wに高電位VHを印加する。このように、制御回路70は、指令値ベクトルに従って3つの出力配線60の電位を制御する。以下では、制御回路70が3つの出力配線60の電位を制御することを、「電圧ベクトルを出力する」という場合がある。 The control circuit 70 controls the inverter 10 according to the command value vector. For example, when the parameter Vu of the command value vector is "0", the control circuit 70 controls the U-phase switching circuit 30u to the low-potential output state and applies the low-potential VL to the U-phase output wiring 60u. When the parameter Vu of the command value vector is "1", the control circuit 70 controls the U-phase switching circuit 30u to the medium-potential output state and applies the medium-potential VM to the U-phase output wiring 60u. When the parameter Vu of the command value vector is "2", the control circuit 70 controls the U-phase switching circuit 30u to the high-potential output state and applies the high-potential VH to the U-phase output wiring 60u. When the parameter Vv of the command value vector is "0", the control circuit 70 controls the V-phase switching circuit 30v to the low-potential output state and applies the low-potential VL to the V-phase output wiring 60v. When the parameter Vv of the command value vector is "1", the control circuit 70 controls the V-phase switching circuit 30v to the medium-potential output state and applies the medium-potential VM to the V-phase output wiring 60v. When the parameter Vv of the command value vector is "2", the control circuit 70 controls the V-phase switching circuit 30v to the high-potential output state and applies the high-potential VH to the V-phase output wiring 60v. When the parameter Vw of the command value vector is "0", the control circuit 70 controls the W-phase switching circuit 30w to the low-potential output state and applies the low-potential VL to the W-phase output wiring 60w. When the parameter Vw of the command value vector is "1", the control circuit 70 controls the W-phase switching circuit 30w to the medium-potential output state and applies the medium-potential VM to the W-phase output wiring 60w. When the parameter Vw of the command value vector is "2", the control circuit 70 controls the W-phase switching circuit 30w to the high-potential output state and applies the high-potential VH to the W-phase output wiring 60w. In this way, the control circuit 70 controls the potentials of the three output wirings 60 according to the command value vector. In the following, controlling the potentials of the three output wirings 60 by the control circuit 70 may be referred to as “outputting a voltage vector”.
 また、指令回路72は、パラメータVu、Vv、Vwとして小数を含む指令値ベクトルを生成する場合がある。例えば、図4の電圧ベクトルE2が指令値ベクトルとして生成される場合がある。指令値ベクトルのパラメータが小数を含む場合、制御回路70は、指令値ベクトルに近い複数の電圧ベクトル(パラメータが整数の電圧ベクトル)を時間的にずらして出力することでこれらの電圧ベクトルを合成する。制御回路70は、合成された電圧ベクトルが指令値ベクトルと一致するように、出力する電圧ベクトルを制御する。 Further, the command circuit 72 may generate a command value vector including a decimal as the parameters Vu, Vv, and Vw. For example, the voltage vector E2 in FIG. 4 may be generated as a command value vector. When the parameters of the command value vector include a decimal number, the control circuit 70 synthesizes these voltage vectors by outputting a plurality of voltage vectors (voltage vectors whose parameters are integers) close to the command value vector with a time lag. .. The control circuit 70 controls the output voltage vector so that the combined voltage vector matches the command value vector.
 指令回路72は、図3の矢印102に示すように指令値ベクトルが回転するように指令値ベクトルを順次生成して制御回路70に入力する。制御回路70は、入力された指令値ベクトルに従って電圧ベクトルを出力する。したがって、出力される電圧ベクトルが、矢印102のように回転する。これによって、3つの出力配線60の間に三相交流電流が生成され、モータ90の内部に生じる磁界が回転する。その結果、モータ90のロータが回転する。 The command circuit 72 sequentially generates a command value vector so that the command value vector rotates as shown by an arrow 102 in FIG. 3, and inputs the command value vector to the control circuit 70. The control circuit 70 outputs a voltage vector according to the input command value vector. Therefore, the output voltage vector rotates as shown by the arrow 102. As a result, a three-phase alternating current is generated between the three output wirings 60, and the magnetic field generated inside the motor 90 rotates. As a result, the rotor of the motor 90 rotates.
(2レベル動作と3レベル動作の切り換え)
 上述したように、制御回路70には、電流センサ74が検出した電流値が入力される。制御回路70は、入力された電流値に基づいて、インバータ10の動作を2レベル動作と3レベル動作の間で切り換える。制御回路70は、電流センサ74が検出する電流値が基準値よりも小さい場合には、3レベル動作を実行する。3レベル動作では、制御回路70は、各出力配線60の電位を、高電位VHと中電位VMと低電位VLの3レベルで制御する。例えば、図5は、3レベル動作におけるU相出力配線60uの電位V60uの変化を例示している。図5に示すように、3レベル動作では、電位V60uが、目標電位に応じて3つの電位VH、VM、VLの間で変化する。同様にして、3レベル動作では、V相出力配線60vの電位V60vとW相出力配線60wの電位V60wも、目標電位に応じて3つの電位VH、VM、VLの間で変化する。また、制御回路70は、電流センサ74が検出する電流値が基準値よりも大きい場合には、2レベル動作を実行する。2レベル動作では、制御回路70は、各出力配線60の電位を、高電位VHと低電位VLの2レベルで制御する。すなわち、2レベル動作では、制御回路70は、各出力配線60に中電位VMを出力しない。例えば、図6は、2レベル動作におけるU相出力配線60uの電位V60uの変化を示している。図6に示すように、2レベル動作では、電位V60uが、目標電位に応じて高電位VHと低電位VLの間で変化する。すなわち、2レベル動作では、U相スイッチング回路30uが中電位出力状態にならない。同様にして、2レベル動作では、V相出力配線60vの電位V60vとW相出力配線60wの電位V60wも、目標電位に応じて高電位VHと低電位VLの間で変化する。以下に、3レベル動作と2レベル動作について、詳細に説明する。
(Switching between 2-level operation and 3-level operation)
As described above, the current value detected by the current sensor 74 is input to the control circuit 70. The control circuit 70 switches the operation of the inverter 10 between the two-level operation and the three-level operation based on the input current value. When the current value detected by the current sensor 74 is smaller than the reference value, the control circuit 70 executes a three-level operation. In the three-level operation, the control circuit 70 controls the potential of each output wiring 60 at three levels of high potential VH, medium potential VM, and low potential VL. For example, FIG. 5 illustrates a change in the potential V60u of the U-phase output wiring 60u in a three-level operation. As shown in FIG. 5, in the three-level operation, the potential V60u changes among the three potentials VH, VM, and VL according to the target potential. Similarly, in the three-level operation, the potential V60v of the V-phase output wiring 60v and the potential V60w of the W-phase output wiring 60w also change between the three potentials VH, VM, and VL according to the target potential. Further, when the current value detected by the current sensor 74 is larger than the reference value, the control circuit 70 executes a two-level operation. In the two-level operation, the control circuit 70 controls the potential of each output wiring 60 at two levels of high potential VH and low potential VL. That is, in the two-level operation, the control circuit 70 does not output the medium potential VM to each output wiring 60. For example, FIG. 6 shows a change in the potential V60u of the U-phase output wiring 60u in the two-level operation. As shown in FIG. 6, in the two-level operation, the potential V60u changes between the high potential VH and the low potential VL according to the target potential. That is, in the two-level operation, the U-phase switching circuit 30u does not enter the medium potential output state. Similarly, in the two-level operation, the potential V60v of the V-phase output wiring 60v and the potential V60w of the W-phase output wiring 60w also change between the high potential VH and the low potential VL according to the target potential. The three-level operation and the two-level operation will be described in detail below.
(3レベル動作)
 3レベル動作について、図4の電圧ベクトルE2、E3を例として説明する。例えば、指令値ベクトルが図4の電圧ベクトルE2である場合を考える。3レベル動作では、制御回路70は、電圧ベクトルE2に最も近い3つの電圧ベクトルである(0,0,0)、(1,0,0)、(1,1,0)を時間的にずらして出力する。図7は、この場合の電位V60u、V60v、V60wの変化を示している。図7に示すように、(0,0,0)、(1,0,0)、(1,1,0)が時間的にずらして出力されると、電位V60uと電位V60vは、中電位VMと低電位VLの間で変化する。電位V60wは、低電位VLに維持される。
(3 level operation)
The three-level operation will be described by taking the voltage vectors E2 and E3 of FIG. 4 as an example. For example, consider the case where the command value vector is the voltage vector E2 in FIG. In the three-level operation, the control circuit 70 shifts the three voltage vectors (0,0,0), (1,0,0), and (1,1,0) closest to the voltage vector E2 in time. And output. FIG. 7 shows the changes in the potentials V60u, V60v, and V60w in this case. As shown in FIG. 7, when (0,0,0), (1,0,0), and (1,1,0) are output with a time lag, the potential V60u and the potential V60v become medium potentials. It varies between VM and low potential VL. The potential V60w is maintained at the low potential VL.
 また、例えば、指令値ベクトルが図4の電圧ベクトルE3である場合を考える。3レベル動作では、制御回路70は、電圧ベクトルE3に最も近い3つの電圧ベクトルである(2,2,1)、(2,2,0)、(1,2,0)を時間的にずらして出力する。図8は、この場合の電位V60u、V60v、V60wの変化を示している。図8に示すように、(2,2,1)、(2,2,0)、(1,2,0)が時間的にずらして出力されると、電位V60uは高電位VHと中電位VMの間で変化し、電位V60vは高電位VHに維持され、電位V60wは中電位VMと低電位VLの間で変化する。 Further, for example, consider the case where the command value vector is the voltage vector E3 in FIG. In the three-level operation, the control circuit 70 temporally shifts the three voltage vectors (2,2,1), (2,2,0), and (1,2,0) closest to the voltage vector E3. And output. FIG. 8 shows the changes in the potentials V60u, V60v, and V60w in this case. As shown in FIG. 8, when (2,2,1), (2,2,0), and (1,2,0) are output with a time lag, the potential V60u becomes a high potential VH and a medium potential. It changes between VMs, the potential V60v is maintained at high potential VH, and the potential V60w changes between medium potential VM and low potential VL.
 このように、3レベル動作では、電位V60u、V60v、V60wが3つの電位VH、VM、VLとなり得る。したがって、図5のように電位V60uが3つの電位VH、VM、VLの間で変化する。図5に示すように、3レベル動作では、電位V60uが、高電位VHと中電位VMの間、または、中電位VMと低電位VLの間で変化する。言い換えると、3レベル動作では、電位V60uが、高電位VHから低電位VLへ直接変化することがなく、低電位VLから高電位VHへ直接変化することがない。同様に、電位V60v、V60wも3つの電位VH、VM、VLの間で変化する。 As described above, in the three-level operation, the potentials V60u, V60v, and V60w can be the three potentials VH, VM, and VL. Therefore, as shown in FIG. 5, the potential V60u changes among the three potentials VH, VM, and VL. As shown in FIG. 5, in the three-level operation, the potential V60u changes between the high potential VH and the medium potential VM, or between the medium potential VM and the low potential VL. In other words, in the three-level operation, the potential V60u does not directly change from the high potential VH to the low potential VL, and does not directly change from the low potential VL to the high potential VH. Similarly, the potentials V60v and V60w also change among the three potentials VH, VM and VL.
(2レベル動作)
 2レベル動作について、図4の電圧ベクトルE2、E3を例として説明する。例えば、指令値ベクトルが図4の電圧ベクトルE2である場合を考える。2レベル動作では、制御回路70は、各スイッチング回路30を中電位出力状態に制御しない。したがって、2レベル動作では、制御回路70は、パラメータ「1」を含まない電圧ベクトルの中から電圧ベクトルE2に最も近い3つの電圧ベクトルである(0,0,0)、(2,0,0)、(2,2,0)を選択し、これら3つの電圧ベクトルを時間的にずらして出力する。図9は、この場合の電位V60u、V60v、V60wの変化を示している。図9に示すように、(0,0,0)、(2,0,0)、(2,2,0)が時間的にずらして出力されると、電位V60uと電位V60vは、高電位VHと低電位VLの間で変化する。電位V60wは、低電位VLに維持される。
(2 level operation)
The two-level operation will be described by taking the voltage vectors E2 and E3 of FIG. 4 as an example. For example, consider the case where the command value vector is the voltage vector E2 in FIG. In the two-level operation, the control circuit 70 does not control each switching circuit 30 to the medium potential output state. Therefore, in the two-level operation, the control circuit 70 is the three voltage vectors closest to the voltage vector E2 from the voltage vectors that do not include the parameter “1” (0,0,0), (2,0,0). ), (2,2,0) are selected, and these three voltage vectors are output with a time lag. FIG. 9 shows the changes in the potentials V60u, V60v, and V60w in this case. As shown in FIG. 9, when (0,0,0), (2,0,0), and (2,20) are output with a time lag, the potential V60u and the potential V60v become high potentials. It varies between VH and low potential VL. The potential V60w is maintained at the low potential VL.
 また、例えば、指令値ベクトルが図4の電圧ベクトルE3である場合を考える。2レベル動作では、制御回路70は、パラメータ「1」を含まない電圧ベクトルの中から電圧ベクトルE3に最も近い3つの電圧ベクトルである(0,0,0)、(2,2,0)、(0,2,0)を選択し、これら3つの電圧ベクトルを時間的にずらして出力する。図10は、この場合の電位V60u、V60v、V60wの変化を示している。図10に示すように、電圧ベクトルである(0,0,0)、(2,2,0)、(0,2,0)が時間的にずらして出力されると、電位V60uと電位V60vは高電位VHと低電位VLの間で変化し、電位V60wは低電位VLに維持される。 Further, for example, consider the case where the command value vector is the voltage vector E3 in FIG. In the two-level operation, the control circuit 70 is the three voltage vectors closest to the voltage vector E3 among the voltage vectors not including the parameter “1” (0,0,0), (2,2,0). (0,2,0) is selected, and these three voltage vectors are output with a time lag. FIG. 10 shows the changes in the potentials V60u, V60v, and V60w in this case. As shown in FIG. 10, when the voltage vectors (0,0,0), (2,2,0), and (0,2,0) are output with a time lag, the potential V60u and the potential V60v Varies between high potential VH and low potential VL, and potential V60w is maintained at low potential VL.
 このように、2レベル動作では、電位V60u、V60v、V60wが2つの電位VH、VLとなり得るが、中電位VMに制御されることがない。したがって、図6のように電位V60uが2つの電位VH、VLの間で変化する。図6に示すように、2レベル動作では、電位V60uが、高電位VHから低電位VLへ直接変化し、低電位VLから高電位VHへ直接変化する。同様に、電位V60v、V60wも2つの電位VH、VLの間で変化する。 As described above, in the two-level operation, the potentials V60u, V60v, and V60w can be the two potentials VH and VL, but are not controlled by the medium potential VM. Therefore, as shown in FIG. 6, the potential V60u changes between the two potentials VH and VL. As shown in FIG. 6, in the two-level operation, the potential V60u directly changes from the high potential VH to the low potential VL, and directly changes from the low potential VL to the high potential VH. Similarly, the potentials V60v and V60w also change between the two potentials VH and VL.
(実施例1のインバータの利点)
 図11は、出力配線60からモータ90に供給される電流I(出力配線60u、60v、60wのいずれか1つに流れる電流)を示している。図11に示すように、電流Iはサインカーブを描く一方で、電流Iには高周波で微小に変化するリプル電流が重畳する。リプル電流は、出力配線60の電位の変化に起因して発生する。図6を用いて上述したように、2レベル動作では、各出力配線60の電位が、高電位VHと低電位VLの間で直接変化する。このため、各出力配線60の電位が変化するときの変化量ΔVが大きい。これに対し、3レベル動作では、各出力配線60の電位が、高電位VHと低電位VLの間で直接変化することがない。図5に示すように、3レベル動作では、各出力配線60の電位は、高電位VHと中電位VMの間、または、中電位VMと低電位VLの間で変化する。3レベル動作では、出力配線60の電位が変化するときの変化量ΔVが、2レベル動作よりも小さい。したがって、3レベル動作では、2レベル動作よりも、リプル電流の振幅W(図11参照)を小さくすることができる。このようにリプル電流が抑制されると、モータ90で生じる損失が抑制される。すなわち、3レベル動作では、2レベル動作よりも、モータ90で生じる損失を抑制することができる。
(Advantages of Inverter of Example 1)
FIG. 11 shows a current I (current flowing through any one of the output wirings 60u, 60v, and 60w) supplied from the output wiring 60 to the motor 90. As shown in FIG. 11, while the current I draws a sine curve, the current I is superposed with a ripple current that changes minutely at high frequencies. The ripple current is generated due to a change in the potential of the output wiring 60. As described above with reference to FIG. 6, in the two-level operation, the potential of each output wiring 60 changes directly between the high potential VH and the low potential VL. Therefore, the amount of change ΔV when the potential of each output wiring 60 changes is large. On the other hand, in the three-level operation, the potential of each output wiring 60 does not change directly between the high potential VH and the low potential VL. As shown in FIG. 5, in the three-level operation, the potential of each output wiring 60 changes between the high potential VH and the medium potential VM, or between the medium potential VM and the low potential VL. In the three-level operation, the amount of change ΔV when the potential of the output wiring 60 changes is smaller than that in the two-level operation. Therefore, in the three-level operation, the amplitude W of the ripple current (see FIG. 11) can be made smaller than that in the two-level operation. When the ripple current is suppressed in this way, the loss generated in the motor 90 is suppressed. That is, the loss generated in the motor 90 can be suppressed in the three-level operation as compared with the two-level operation.
 また、3レベル動作では、各出力配線60における電位の変化量ΔVが小さいので、各スイッチング素子41~44のスイッチング時に各スイッチング素子41~44に印加される電圧の変化量が小さい。このため、3レベル動作では、2レベル動作よりも、各スイッチング素子41~44で生じるスイッチング損失が小さい。また、各スイッチング素子41~44に印加される電圧の変化量が小さいと、各ダイオード51~54に印加される電圧の変化量も小さい。このため、3レベル動作では、2レベル動作よりも、各ダイオード51~54がリカバリ動作するときに発生する損失(リカバリ損失)も小さい。 Further, in the three-level operation, since the amount of change ΔV of the potential in each output wiring 60 is small, the amount of change in the voltage applied to each of the switching elements 41 to 44 during switching of each of the switching elements 41 to 44 is small. Therefore, in the three-level operation, the switching loss generated in each of the switching elements 41 to 44 is smaller than in the two-level operation. Further, when the amount of change in the voltage applied to each of the switching elements 41 to 44 is small, the amount of change in the voltage applied to each of the diodes 51 to 54 is also small. Therefore, in the three-level operation, the loss (recovery loss) generated when each diode 51 to 54 is in the recovery operation is smaller than that in the two-level operation.
 また、3レベル動作では、各出力配線60に中電位VMを出力するので、スイッチング素子42、43に電流が流れる。2レベル動作では、各出力配線60に中電位VMを出力しないので、スイッチング素子42、43がオフに維持され、スイッチング素子42、43に電流が流れない。スイッチング素子42、43は化合物半導体によって構成されている一方でスイッチング素子41、44はシリコン半導体によって構成されている。このため、スイッチング素子42、43に電流が流れるときに生じる損失は、スイッチング素子41、44に電流が流れるときに生じる損失よりも小さい。このため、スイッチング素子42、43をスイッチングさせる3レベル動作では、スイッチング素子42、43をオフに維持する2レベル動作よりも、損失が生じ難い。同様に、ダイオード52、53は化合物半導体によって構成されている一方でダイオード51、54はシリコン半導体によって構成されている。このため、ダイオード52、53に電流が流れるときに生じる損失は、ダイオード51、54に電流が流れるときに生じる損失よりも小さい。このため、ダイオード51、54に電流が流れる3レベル動作では、ダイオード51、54に電流が流れない2レベル動作よりも、損失が生じ難い。 Further, in the three-level operation, since the medium potential VM is output to each output wiring 60, a current flows through the switching elements 42 and 43. In the two-level operation, since the medium potential VM is not output to each output wiring 60, the switching elements 42 and 43 are kept off, and no current flows through the switching elements 42 and 43. The switching elements 42 and 43 are made of compound semiconductors, while the switching elements 41 and 44 are made of silicon semiconductors. Therefore, the loss that occurs when a current flows through the switching elements 42 and 43 is smaller than the loss that occurs when a current flows through the switching elements 41 and 44. Therefore, the three-level operation of switching the switching elements 42 and 43 is less likely to cause a loss than the two-level operation of keeping the switching elements 42 and 43 off. Similarly, the diodes 52 and 53 are made of compound semiconductors, while the diodes 51 and 54 are made of silicon semiconductors. Therefore, the loss that occurs when a current flows through the diodes 52 and 53 is smaller than the loss that occurs when a current flows through the diodes 51 and 54. Therefore, the three-level operation in which the current flows through the diodes 51 and 54 is less likely to cause a loss than the two-level operation in which the current does not flow through the diodes 51 and 54.
 以上の通り、3レベル動作では、2レベル動作よりも、インバータ10及びモータ90で発生する損失を低減することができる。 As described above, the loss generated in the inverter 10 and the motor 90 can be reduced in the three-level operation as compared with the two-level operation.
 また、上述したように、2レベル動作ではスイッチング素子42、43及びダイオード52、53に電流が流れない一方で、3レベル動作ではスイッチング素子42、43及びダイオード52、53に電流が流れる。スイッチング素子42、43は、スイッチング素子41、44よりも電流容量が小さく、ダイオード52、53はダイオード51、54よりも電流容量が小さい。したがって、2レベル動作では、3レベル動作よりも、大電流で動作することができる。すなわち、2レベル動作では、3レベル動作よりも、モータ90に大電流を供給することができ、モータ90を高トルクで動作させることができる。 Further, as described above, the current does not flow through the switching elements 42 and 43 and the diodes 52 and 53 in the two-level operation, while the current flows through the switching elements 42 and 43 and the diodes 52 and 53 in the three-level operation. The switching elements 42 and 43 have a smaller current capacity than the switching elements 41 and 44, and the diodes 52 and 53 have a smaller current capacity than the diodes 51 and 54. Therefore, the two-level operation can operate with a larger current than the three-level operation. That is, in the two-level operation, a larger current can be supplied to the motor 90 than in the three-level operation, and the motor 90 can be operated with a higher torque.
 以上のように、3レベル動作では2レベル動作よりも損失を低減できる一方で、2レベル動作では3レベル動作よりもモータ90に大電流を供給することができる。制御回路70は、電流センサ74により検出される電流値が基準値よりも小さいときに3レベル動作を実行する。したがって、電流値が基準値よりも小さいときには、3レベル動作によって損失を低減することができる。また、制御回路70は、電流センサ74により検出される電流値が基準値よりも大きいときに2レベル動作を実行する。これによって、電流容量が小さいスイッチング素子42、43及びダイオード52、53に大電流が流れることが防止される。また、2レベル動作によれば、電流容量が大きいスイッチング素子41、44及びダイオード51、54によってモータ90に大電流を供給することができる。このため、インバータ10は、大電流時にも動作することができる。 As described above, in the 3-level operation, the loss can be reduced as compared with the 2-level operation, while in the 2-level operation, a larger current can be supplied to the motor 90 than in the 3-level operation. The control circuit 70 executes a three-level operation when the current value detected by the current sensor 74 is smaller than the reference value. Therefore, when the current value is smaller than the reference value, the loss can be reduced by the three-level operation. Further, the control circuit 70 executes a two-level operation when the current value detected by the current sensor 74 is larger than the reference value. This prevents a large current from flowing through the switching elements 42, 43 and the diodes 52, 53, which have a small current capacity. Further, according to the two-level operation, a large current can be supplied to the motor 90 by the switching elements 41 and 44 and the diodes 51 and 54 having a large current capacity. Therefore, the inverter 10 can operate even at a large current.
 なお、スイッチング素子42、43及びダイオード52、53の電流容量を、インバータ10に流れる最大電流に合わせて大きくすれば、大電流時に3レベル動作を行うことは可能である。しかしながら、その場合には、スイッチング素子42、43及びダイオード52、53が大型となり、インバータ10が大型化する。これに対し、実施例1のようにスイッチング素子42、43及びダイオード52、53の電流容量を小さくし、大電流時には2レベル動作を実行することで、スイッチング素子42、43及びダイオード52、53を大電流から保護しながら、インバータ10を大電流で動作させることが可能となる。また、これによって、インバータ10を小型化することができる。また、モータ90を高トルクで動作させる頻度はそれほど高くなく、標準的な動作状態ではインバータ10に流れる電流はそれほど高くならない。すなわち、標準的な動作状態ではインバータ10は3レベル動作を実行し、モータ90で高トルクが必要とされる限定的な状況(例えば、車両のタイヤがロックしている状況等)においてのみインバータ10は2レベル動作を実行する。したがって、2レベル動作による損失増大の影響は限定的であり、ほとんどの状況では、3レベル動作による損失低減の利益を受けることができる。したがって、インバータ10の構成によれば、従来に比べて損失をほとんど増大させることなく、インバータ10を小型化することができる。 If the current capacities of the switching elements 42 and 43 and the diodes 52 and 53 are increased according to the maximum current flowing through the inverter 10, it is possible to perform three-level operation at a large current. However, in that case, the switching elements 42 and 43 and the diodes 52 and 53 become large, and the inverter 10 becomes large. On the other hand, as in the first embodiment, the current capacities of the switching elements 42, 43 and the diodes 52, 53 are reduced, and the switching elements 42, 43 and the diodes 52, 53 are operated by executing the two-level operation at the time of a large current. It is possible to operate the inverter 10 with a large current while protecting it from a large current. Further, this makes it possible to reduce the size of the inverter 10. Further, the frequency of operating the motor 90 with high torque is not so high, and the current flowing through the inverter 10 is not so high in the standard operating state. That is, in a standard operating state, the inverter 10 executes three-level operation, and the inverter 10 is operated only in a limited situation where a high torque is required by the motor 90 (for example, a situation where the tire of the vehicle is locked). Performs a two-level operation. Therefore, the effect of the loss increase due to the two-level operation is limited, and in most situations, the benefit of the loss reduction due to the three-level operation can be obtained. Therefore, according to the configuration of the inverter 10, the inverter 10 can be miniaturized with almost no increase in loss as compared with the conventional case.
 また、上記のようにスイッチング素子42、43及びダイオード52、53が化合物半導体によって構成されていることで、3レベル動作における損失をより低減することができる。特に、3レベル動作は標準的な動作状態で実行されるので、2レベル動作よりも高い頻度で実行される。このため、化合物半導体によって構成されたスイッチング素子42、43及びダイオード52、53を高い頻度で使用することができ、効率的に損失を低減することができる。また、一般に、化合物半導体は高価である。しかしながら、スイッチング素子42、43及びダイオード52、53は電流容量が小さく小型であるので、スイッチング素子42、43及びダイオード52、53として化合物半導体によって構成された素子を採用しても、それほどコストは高くならない。このように、スイッチング素子42、43及びダイオード52、53として化合物半導体によって構成された素子を採用することで、低コストで損失を低減することができる。 Further, since the switching elements 42 and 43 and the diodes 52 and 53 are composed of the compound semiconductor as described above, the loss in the three-level operation can be further reduced. In particular, since the three-level operation is executed in the standard operating state, it is executed more frequently than the two-level operation. Therefore, the switching elements 42 and 43 and the diodes 52 and 53 made of the compound semiconductor can be used with high frequency, and the loss can be efficiently reduced. Also, compound semiconductors are generally expensive. However, since the switching elements 42 and 43 and the diodes 52 and 53 have a small current capacity and are small in size, even if an element composed of a compound semiconductor is adopted as the switching elements 42 and 43 and the diodes 52 and 53, the cost is so high. It doesn't become. As described above, by adopting an element composed of a compound semiconductor as the switching elements 42 and 43 and the diodes 52 and 53, the loss can be reduced at low cost.
(実施例2)
 次に、実施例2のインバータについて説明する。上述した実施例1のインバータでは、電流センサ74で検出される電流値が基準値よりも大きい場合に、2レベル動作を実行した。これに対し、実施例2のインバータでは、電流センサ74で検出される電流値が基準値よりも大きい場合に、準2レベル動作を実行する。その他の点では、実施例2のインバータの構成は、実施例1のインバータの構成と等しい。以下に、準2レベル動作について説明する。
(Example 2)
Next, the inverter of the second embodiment will be described. In the above-described inverter of the first embodiment, when the current value detected by the current sensor 74 is larger than the reference value, the two-level operation is executed. On the other hand, in the inverter of the second embodiment, when the current value detected by the current sensor 74 is larger than the reference value, the quasi-two level operation is executed. In other respects, the configuration of the inverter of the second embodiment is the same as the configuration of the inverter of the first embodiment. The quasi-two-level operation will be described below.
 上述した2レベル動作では、図6に示すように、各スイッチング回路30を中電位出力状態に制御することなく、各出力配線60の電位を高電位VHと低電位VLの間で直接変化させた。これに対し、準2レベル動作では、図12に示すように、各出力配線60の電位を低電位VLから高電位VHに変化させる途中で、瞬間的にスイッチング回路30を中電位出力状態に制御して中電位VMを出力する。同様に、準2レベル動作では、各出力配線60の電位を高電位VHから低電位VLに変化させる途中で、瞬間的にスイッチング回路30を中電位出力状態に制御して中電位VMを出力する。 In the above-mentioned two-level operation, as shown in FIG. 6, the potential of each output wiring 60 is directly changed between the high potential VH and the low potential VL without controlling each switching circuit 30 to the medium potential output state. .. On the other hand, in the quasi-two-level operation, as shown in FIG. 12, the switching circuit 30 is instantaneously controlled to the medium potential output state while the potential of each output wiring 60 is changed from the low potential VL to the high potential VH. And output the medium potential VM. Similarly, in the quasi-two-level operation, while changing the potential of each output wiring 60 from the high potential VH to the low potential VL, the switching circuit 30 is instantaneously controlled to the medium potential output state to output the medium potential VM. ..
 例えば、指令値ベクトルが図4の電圧ベクトルE2である場合を考える。準2レベル動作では、2レベル動作と同様に、制御回路70は、パラメータ「1」を含まない電圧ベクトルの中から電圧ベクトルE2に最も近い3つの電圧ベクトルである(0,0,0)、(2,0,0)、(2,2,0)を選択し、これら3つの電圧ベクトルを時間的にずらして出力する。但し、準2レベル動作では、出力電圧ベクトルを変化させる途中で、変化の前後の2つの電圧ベクトルの中間の電圧ベクトルを瞬間的に出力する。すなわち、図13に示すように、制御回路70は、出力する電圧ベクトルを(0,0,0)から(2,0,0)に変化させる途中で、瞬間的にこれらの中間の電圧ベクトルである(1,0,0)を出力する。すなわち、出力する電圧ベクトルを、(0,0,0)、(1,0,0)、(2,0,0)の順で変化させる。(1,0,0)を出力する期間は、(0,0,0)、(2,0,0)を出力する期間に比べて極めて短い。同様にして、制御回路70は、出力する電圧ベクトルを(2,0,0)から(2,2,0)に変化させる途中で、瞬間的にこれらの中間の電圧ベクトルである(2,1,0)を出力する。(2,1,0)を出力する期間は、(2,0,0)、(2,2,0)を出力する期間に比べて極めて短い。同様にして、制御回路70は、出力する電圧ベクトルを(2,2,0)から(0,0,0)に変化させる途中で、瞬間的にこれらの中間の電圧ベクトルである(1,1,0)を出力する。(1,1,0)を出力する期間は、(2,2,0)、(0,0,0)を出力する期間に比べて極めて短い。このように電圧ベクトルが変化すると、図13に示すように、各出力配線60の電位が高電位VHと低電位VLの間で変化する途中で、瞬間的に中電位VMが出力される。 For example, consider the case where the command value vector is the voltage vector E2 in FIG. In the quasi-two-level operation, as in the two-level operation, the control circuit 70 is the three voltage vectors closest to the voltage vector E2 from among the voltage vectors not including the parameter "1" (0,0,0). (2,0,0) and (2,2,0) are selected, and these three voltage vectors are output with a time lag. However, in the quasi-two-level operation, while changing the output voltage vector, the voltage vector intermediate between the two voltage vectors before and after the change is instantaneously output. That is, as shown in FIG. 13, the control circuit 70 momentarily uses an intermediate voltage vector between them while changing the output voltage vector from (0,0,0) to (2,0,0). Output a certain (1,0,0). That is, the output voltage vector is changed in the order of (0,0,0), (1,0,0), (2,0,0). The period for outputting (1,0,0) is extremely shorter than the period for outputting (0,0,0) and (2,0,0). Similarly, the control circuit 70 momentarily has an intermediate voltage vector (2,1) while changing the output voltage vector from (2,0,0) to (2,2,0). , 0) is output. The period for outputting (2,1,0) is extremely shorter than the period for outputting (2,0,0) and (2,2,0). Similarly, the control circuit 70 is momentarily an intermediate voltage vector (1,1) while changing the output voltage vector from (2,2,0) to (0,0,0). , 0) is output. The period for outputting (1,1,0) is extremely shorter than the period for outputting (2,2,0) and (0,0,0). When the voltage vector changes in this way, as shown in FIG. 13, the medium potential VM is instantaneously output while the potential of each output wiring 60 is changing between the high potential VH and the low potential VL.
 また、例えば、指令値ベクトルが図4の電圧ベクトルE3である場合を考える。準2レベル動作では、2レベル動作と同様に、制御回路70は、パラメータ「1」を含まない電圧ベクトルの中から電圧ベクトルE3に最も近い3つの電圧ベクトルである(0,0,0)、(2,2,0)、(0,2,0)を選択し、これら3つの電圧ベクトルを時間的にずらして出力する。但し、準2レベル動作では、出力電圧ベクトルを変化させる途中で、変化の前後の2つの電圧ベクトルの中間の電圧ベクトルを瞬間的に出力する。すなわち、図14に示すように、制御回路70は、出力する電圧ベクトルを(0,0,0)から(2,2,0)に変化させる途中で、瞬間的にこれらの中間の電圧ベクトルである(1,1,0)を出力する。また、制御回路70は、出力する電圧ベクトルを(2,2,0)から(0,2,0)に変化させる途中で、瞬間的にこれらの中間の電圧ベクトルである(1,2,0)を出力する。また、制御回路70は、出力する電圧ベクトルを(0,2,0)から(0,0,0)に変化させる途中で、瞬間的にこれらの中間の電圧ベクトルである(0,1,0)を出力する。このように電圧ベクトルが変化すると、図14に示すように、各出力配線60の電位が高電位VHと低電位VLの間で変化する途中で、瞬間的に中電位VMが出力される。 Further, for example, consider the case where the command value vector is the voltage vector E3 in FIG. In the quasi-two-level operation, as in the two-level operation, the control circuit 70 is the three voltage vectors closest to the voltage vector E3 among the voltage vectors not including the parameter “1” (0,0,0). (2,2,0) and (0,2,0) are selected, and these three voltage vectors are output with a time lag. However, in the quasi-two-level operation, while changing the output voltage vector, the voltage vector intermediate between the two voltage vectors before and after the change is instantaneously output. That is, as shown in FIG. 14, the control circuit 70 momentarily uses an intermediate voltage vector between them while changing the output voltage vector from (0,0,0) to (2,2,0). Output a certain (1,1,0). Further, the control circuit 70 momentarily has an intermediate voltage vector (1,2,0) while changing the output voltage vector from (2,2,0) to (0,2,0). ) Is output. Further, the control circuit 70 momentarily has an intermediate voltage vector (0,1,0) while changing the output voltage vector from (0,2,0) to (0,0,0). ) Is output. When the voltage vector changes in this way, as shown in FIG. 14, the medium potential VM is instantaneously output while the potential of each output wiring 60 is changing between the high potential VH and the low potential VL.
 このように電圧ベクトルが出力されるため、図12に示すように、準2レベル動作では、出力配線60の電位が高電位VHと低電位VLの間で変化する途中で、瞬間的に中電位VMが出力される。 Since the voltage vector is output in this way, as shown in FIG. 12, in the quasi-two-level operation, the potential of the output wiring 60 is momentarily medium potential while changing between the high potential VH and the low potential VL. VM is output.
 上記の通り、準2レベル動作では、各出力配線60の電位が高電位VHと低電位VLの間で変化する途中で、出力配線60に中電位VMが出力される。したがって、準2レベル動作では、2レベル動作よりも、高電位VHと低電位VLの間で出力配線60の電位が変化するときの変化速度が遅い。したがって、準2レベル動作では、2レベル動作よりも、リプル電流を抑制でき、モータ90で生じる損失を抑制できる。また、準2レベル動作では、2レベル動作よりも、各スイッチング素子41~44で生じる損失を低減でき、各ダイオード51~54で生じるリカバリ損失を低減できる。すなわち、準2レベル動作では、2レベル動作よりも、インバータ及びモータ90で生じる損失を低減できる。また、準2レベル動作では、中電位VMを出力する期間中にスイッチング素子42、43がオンしてスイッチング素子42、43に高い電流が流れる。しかしながら、準2レベル動作では、中電位VMを出力する期間は極めて短い。図5と図12を比較することで明らかなように、準2レベル動作では、3レベル動作よりも、中電位VMを出力する期間(すなわち、スイッチング素子42、43がオンする期間)が短い。このため、スイッチング素子42、43にそれほど高いストレスを加えることなく、準2レベル動作を行うことが可能である。 As described above, in the quasi-two-level operation, the medium potential VM is output to the output wiring 60 while the potential of each output wiring 60 is changing between the high potential VH and the low potential VL. Therefore, in the quasi-two-level operation, the rate of change when the potential of the output wiring 60 changes between the high potential VH and the low potential VL is slower than in the two-level operation. Therefore, in the quasi-two-level operation, the ripple current can be suppressed and the loss generated in the motor 90 can be suppressed as compared with the two-level operation. Further, in the quasi-two-level operation, the loss generated in each of the switching elements 41 to 44 can be reduced and the recovery loss generated in each diode 51 to 54 can be reduced as compared with the two-level operation. That is, in the quasi-two-level operation, the loss generated in the inverter and the motor 90 can be reduced as compared with the two-level operation. Further, in the quasi-two-level operation, the switching elements 42 and 43 are turned on during the period of outputting the medium potential VM, and a high current flows through the switching elements 42 and 43. However, in the quasi-two-level operation, the period for outputting the medium potential VM is extremely short. As is clear from comparing FIGS. 5 and 12, the period for outputting the medium potential VM (that is, the period during which the switching elements 42 and 43 are turned on) is shorter in the quasi-two-level operation than in the three-level operation. Therefore, it is possible to perform quasi-two-level operation without applying so high stress to the switching elements 42 and 43.
 なお、上述した実施例1、2では、コンデンサ20、22によって中電位VMが高電位VHより低く低電位VLよりも高い電位に保持されていた。しかしながら、別の構成によって中電位配線14の電位を制御できる場合には、コンデンサ20、22は無くてもよい。例えば、高電位配線12と中電位配線14の間に第1のバッテリが接続されており、中電位配線14と低電位配線16の間に第2のバッテリが接続されていてもよい。 In Examples 1 and 2 described above, the medium potential VM was held at a potential lower than the high potential VH and higher than the low potential VL by the capacitors 20 and 22. However, if the potential of the medium potential wiring 14 can be controlled by another configuration, the capacitors 20 and 22 may be omitted. For example, the first battery may be connected between the high-potential wiring 12 and the medium-potential wiring 14, and the second battery may be connected between the medium-potential wiring 14 and the low-potential wiring 16.
 なお、上述した実施例1、2では、電流センサ74で検出される電流(すなわち、インバータ10内を流れる電流)に基づいて、3レベル動作と2レベル動作(または準2レベル動作)とを切り換えて実行した。しかしながら、インバータ10の温度を検出する温度センサを設け、温度センサで検出される温度が基準値よりも低い場合に3レベル動作を実行し、温度センサで検出される温度が基準値よりも高い場合に2レベル動作(または準2レベル動作)を実行してもよい。スイッチング素子42、43の温度が高い状態でスイッチング素子42、43に電流を流すと、スイッチング素子42、43に高いストレスが加わる。インバータ10の温度が高い状態では、2レベル動作(または準2レベル動作)を行うことによって、スイッチング素子42、43に流れる電流を抑制し、スイッチング素子42、43へのストレスを抑制することができる。また、インバータ10の温度が高くなるのは、インバータ10に大電流が流れているときであり、モータ90で高トルクが必要とされる限定的な状況である。標準的な動作状態ではインバータ10の温度はそれほど高くならず、3レベル動作が実行される。したがって、ほとんどの状況では、3レベル動作による損失低減の利益を受けることができる。なお、温度センサは、インバータ10のいずれの位置の温度を検出してもよいが、スイッチング素子42、43の温度を検出すればより確実にスイッチング素子42、43へのストレスを抑制することができる。 In Examples 1 and 2 described above, the three-level operation and the two-level operation (or the quasi-two-level operation) are switched based on the current detected by the current sensor 74 (that is, the current flowing in the inverter 10). And executed. However, when a temperature sensor for detecting the temperature of the inverter 10 is provided, a three-level operation is executed when the temperature detected by the temperature sensor is lower than the reference value, and the temperature detected by the temperature sensor is higher than the reference value. Two-level operation (or quasi-two-level operation) may be performed. When a current is passed through the switching elements 42 and 43 while the temperature of the switching elements 42 and 43 is high, a high stress is applied to the switching elements 42 and 43. When the temperature of the inverter 10 is high, the current flowing through the switching elements 42 and 43 can be suppressed and the stress on the switching elements 42 and 43 can be suppressed by performing the two-level operation (or the quasi-two-level operation). .. Further, the temperature of the inverter 10 becomes high when a large current is flowing through the inverter 10, which is a limited situation in which a high torque is required for the motor 90. In the standard operating state, the temperature of the inverter 10 is not so high, and three-level operation is executed. Therefore, in most situations, you can benefit from the loss reduction of the three-level operation. The temperature sensor may detect the temperature at any position of the inverter 10, but if the temperature of the switching elements 42 and 43 is detected, the stress on the switching elements 42 and 43 can be suppressed more reliably. ..
 また、上述した実施例1、2では、スイッチング素子41、44がシリコン半導体によって構成されたIGBTであった。しかしながら、スイッチング素子41、42が、スイッチング素子42、43と同様に、化合物半導体によって構成されたFETによって構成されていてもよい。この場合でも、スイッチング素子42、43の電流容量をスイッチング素子41、44の電流容量よりも小さくすることで、インバータ10の小型化を実現することができる。 Further, in Examples 1 and 2 described above, the switching elements 41 and 44 were IGBTs composed of silicon semiconductors. However, the switching elements 41 and 42 may be composed of FETs composed of compound semiconductors, similarly to the switching elements 42 and 43. Even in this case, the size of the inverter 10 can be reduced by making the current capacities of the switching elements 42 and 43 smaller than the current capacities of the switching elements 41 and 44.
 また、上述した実施例1、2では、スイッチング素子42、43が化合物半導体によって構成されたFETであった。しかしながら、スイッチング素子42、43が、シリコン半導体によって構成されたスイッチング素子(例えば、IGBT、FET等)であってもよい。この場合でも、スイッチング素子42、43の電流容量をスイッチング素子41、44の電流容量よりも小さくすることで、インバータ10を小型化することができる。 Further, in Examples 1 and 2 described above, the switching elements 42 and 43 were FETs composed of compound semiconductors. However, the switching elements 42 and 43 may be switching elements (for example, IGBTs, FETs, etc.) made of silicon semiconductors. Even in this case, the inverter 10 can be miniaturized by making the current capacities of the switching elements 42 and 43 smaller than the current capacities of the switching elements 41 and 44.
 また、上述した実施例1、2では、3相インバータについて説明したが、例えば図15に示す単層インバータに実施例1、2の技術を適用してもよい。 Further, although the three-phase inverter has been described in Examples 1 and 2 described above, the techniques of Examples 1 and 2 may be applied to the single-layer inverter shown in FIG. 15, for example.
(実施例3)実施例3のインバータについて、以下に説明する。なお、実施例3は、上述した第2のインバータの実施例である。 (Example 3) The inverter of the third embodiment will be described below. In addition, Example 3 is an Example of the above-mentioned second inverter.
(インバータの構成)実施例3のインバータは、実施例1、2と同様に、図1の構成を有している。実施例3のインバータは、第2スイッチング素子42または第3スイッチング素子43が短絡故障したときに実行される非常動作に特徴を有する。通常時(すなわち、第2スイッチング素子42と第3スイッチング素子43が短絡故障していないとき)に関しては、実施例3のインバータの動作は、実施例1、2のインバータの動作と同じであってもよいし、異なっていてもよい。実施例3のインバータは、電流センサ74を有していなくてもよい。 (Structure of Inverter) The inverter of the third embodiment has the configuration of FIG. 1 as in the first and second embodiments. The inverter of the third embodiment is characterized by an emergency operation executed when the second switching element 42 or the third switching element 43 fails in a short circuit. In the normal state (that is, when the second switching element 42 and the third switching element 43 are not short-circuited), the operation of the inverter of the third embodiment is the same as the operation of the inverters of the first and second embodiments. It may be different or it may be different. The inverter of the third embodiment does not have to have the current sensor 74.
 実施例3でも、実施例1、2と同様に、上側コンデンサ20が高電位配線12と中電位配線14の間に接続されており、下側コンデンサ22が中電位配線14と低電位配線16の間に接続されている。このため、中電位VMは、低電位VLよりも高く、高電位VHよりも低い。中電位VMは、上側コンデンサ20に蓄えられる電荷量と下側コンデンサ22に蓄えられる電荷量に応じて変動する。上側コンデンサ20が放電されるか、下側コンデンサ22が充電されると、中電位VMは上昇する。上側コンデンサ20が充電されるか、下側コンデンサ22が放電されると、中電位VMは低下する。 In the third embodiment, similarly to the first and second embodiments, the upper capacitor 20 is connected between the high potential wiring 12 and the medium potential wiring 14, and the lower capacitor 22 is the medium potential wiring 14 and the low potential wiring 16. It is connected in between. Therefore, the medium potential VM is higher than the low potential VL and lower than the high potential VH. The medium potential VM varies depending on the amount of electric charge stored in the upper capacitor 20 and the amount of electric charge stored in the lower capacitor 22. When the upper capacitor 20 is discharged or the lower capacitor 22 is charged, the medium potential VM rises. When the upper capacitor 20 is charged or the lower capacitor 22 is discharged, the medium potential VM is lowered.
 なお、図示していないが、実施例3では、制御回路70と指令回路72は、中電位配線14に接続されている。制御回路70と指令回路72は、中電位VMを検出することができる。 Although not shown, in the third embodiment, the control circuit 70 and the command circuit 72 are connected to the medium potential wiring 14. The control circuit 70 and the command circuit 72 can detect the medium potential VM.
 また、図示していないが、インバータ10は、各出力配線60に流れる電流を検出する電流センサを有している。各電流センサの検出値は、制御回路70に入力される。 Although not shown, the inverter 10 has a current sensor that detects the current flowing through each output wiring 60. The detected value of each current sensor is input to the control circuit 70.
 実施例3でも、指令回路72が指令値ベクトルを生成する。指令回路72は、図3の矢印102に示すように指令値ベクトルが回転するように指令値ベクトルを順次生成して制御回路70に入力する。通常動作では、制御回路70は、指令値ベクトルに従って電圧ベクトルを出力する。なお、以下では、図3に示すように、電圧ベクトルの角度を、Vu軸に対する角度θにより示す。例えば、(2,2,0)の角度θは、60°である。指令値ベクトルは、(Vu、Vv、Vw)によって表されるので、指令値ベクトルは角度θの情報を含んでいる。 Also in the third embodiment, the command circuit 72 generates a command value vector. The command circuit 72 sequentially generates a command value vector so that the command value vector rotates as shown by an arrow 102 in FIG. 3, and inputs the command value vector to the control circuit 70. In normal operation, the control circuit 70 outputs a voltage vector according to a command value vector. In the following, as shown in FIG. 3, the angle of the voltage vector is shown by the angle θ with respect to the Vu axis. For example, the angle θ of (2,2,0) is 60 °. Since the command value vector is represented by (Vu, Vv, Vw), the command value vector contains information on the angle θ.
 なお、特定の角度θでは複数の電圧ベクトルが存在する。例えば、図3に示すように、角度θが60°の場合、(2,2,0)、(2,2,1)、(1,1,0)の3つの電圧ベクトルが存在する。(2,2,0)を出力すると、(2,2,1)、(1,1,0)を出力する場合よりも、モータ90を高いトルクで動作させることができる。指令回路72は、モータ90で必要なトルクが高い場合に、(2,2,0)を指令値ベクトルとする。また、指令回路72は、モータ90で必要なトルクが低い場合に、(2,2,1)または(1,1,0)を指令値ベクトルとする。また、(2,2,1)を出力する場合には、上側コンデンサ20が充電または放電される。また、(1,1,0)を出力する場合には、下側コンデンサ22が充電または放電される。このため、(2,2,1)または(1,1,0)を出力すると、中電位VMが変動する。なお、中電位VMの変動については、後に詳述する。指令回路72は、中電位VMを検出し、中電位VMが目標値(例えば、高電位VHの1/2の値)となるように(2,2,1)または(1,1,0)のいずれか選択して指令値ベクトルとする。このように、複数の電圧ベクトルが存在する角度θにおいては、指令回路72は、それらの複数の電圧ベクトルから1つの電圧ベクトルを選択して指令値ベクトルとする。 Note that there are multiple voltage vectors at a specific angle θ. For example, as shown in FIG. 3, when the angle θ is 60 °, there are three voltage vectors (2,2,0), (2,2,1), and (1,1,0). When (2,2,0) is output, the motor 90 can be operated with a higher torque than when (2,2,1) and (1,1,0) are output. The command circuit 72 sets (2,2,0) as a command value vector when the torque required by the motor 90 is high. Further, the command circuit 72 sets (2,2,1) or (1,1,0) as a command value vector when the torque required by the motor 90 is low. Further, when (2,2,1) is output, the upper capacitor 20 is charged or discharged. Further, when (1,1,0) is output, the lower capacitor 22 is charged or discharged. Therefore, when (2,2,1) or (1,1,0) is output, the medium potential VM fluctuates. The fluctuation of the medium potential VM will be described in detail later. The command circuit 72 detects the medium potential VM, and (2,2,1) or (1,1,0) so that the medium potential VM becomes a target value (for example, a value halved of the high potential VH). Select one of the above and use it as the command value vector. As described above, at the angle θ where a plurality of voltage vectors exist, the command circuit 72 selects one voltage vector from the plurality of voltage vectors and uses it as the command value vector.
 また、指令回路72は、パラメータVu、Vv、Vwとして小数を含む指令値ベクトルを生成するように構成されていてもよい。例えば、図4の電圧ベクトルE2が指令値ベクトルとして生成されてもよい。この場合、制御回路70は、電圧ベクトルE2に近い電圧ベクトルを時間的にずらして出力する。また、(2,2,2)、(1,1,1)及び(0,0,0)の3つの電圧ベクトルは、いわゆるゼロベクトルであり、3つの出力配線60を同電位とすることを意味する。 Further, the command circuit 72 may be configured to generate a command value vector including a decimal as the parameters Vu, Vv, and Vw. For example, the voltage vector E2 of FIG. 4 may be generated as a command value vector. In this case, the control circuit 70 outputs a voltage vector close to the voltage vector E2 with a time lag. Further, the three voltage vectors (2,2,2), (1,1,1) and (0,0,0) are so-called zero vectors, and the three output wirings 60 have the same potential. means.
 以上に説明したように、通常動作においては、指令回路72が指令値ベクトルを回転させ、その指令値ベクトルに従って制御回路70が各スイッチング回路30u、30v、30wを制御するので、3つの出力配線60に三相交流電流が生成される。図16は、3つの出力配線60u、60v、60wに流れる電流Iu、Iv、Iwと、出力される電圧ベクトルの角度θの関係を示している。図16に示すように、電圧ベクトルの角度θの位相は、電流Iuの位相に対して約90°ずれる。但し、回路の寄生抵抗等の影響によって、角度θと電流Iuの位相差が図16からさらに変化する場合がある。また、三相交流電流の周波数を変更する場合には、角度θと電流Iuの位相差が変化する場合がある。 As described above, in the normal operation, the command circuit 72 rotates the command value vector, and the control circuit 70 controls the switching circuits 30u, 30v, and 30w according to the command value vector. Therefore, the three output wirings 60 A three-phase alternating current is generated in. FIG. 16 shows the relationship between the currents Iu, Iv, and Iw flowing through the three output wirings 60u, 60v, and 60w and the angle θ of the output voltage vector. As shown in FIG. 16, the phase of the angle θ of the voltage vector is shifted by about 90 ° with respect to the phase of the current Iu. However, the phase difference between the angle θ and the current Iu may further change from FIG. 16 due to the influence of the parasitic resistance of the circuit or the like. Further, when the frequency of the three-phase alternating current is changed, the phase difference between the angle θ and the current Iu may change.
(中電位VMの変動)
 次に、中電位VMの変動について説明する。図3に示す電圧ベクトルのうち、数値「1」を含まない電圧ベクトルでは、3つの出力配線60のいずれにも中電位VMが印加されない。この場合、中電位VMの変動は生じない。例えば、(0,0,2)が出力される場合には、図17のように、出力配線60u、60vが低電位配線16に接続され、出力配線60wが高電位配線12に接続される。なお、モータ90の動作状態によって、モータ90に印加される電圧と同じ方向(以下、順方向という)に電流が流れる場合と、モータ90に印加される電圧と逆の方向(以下、逆方向という)に電流が流れる場合とがある。順方向に電流が流れる場合には、図17の矢印200に示すように、高電位配線12から出力配線60wを介してモータ90に電流が流れる。モータ90に流入した電流は、出力配線60u、60vを介して低電位配線16へ流れる。また、逆方向に電流が流れる場合には、矢印200の逆向きに電流が流れる。これらのいずれの場合でも、中電位配線14に対する電荷の流入、及び、中電位配線14からの電荷の流出は生じない。したがって、この場合には、中電位VMの変動は生じない。電圧ベクトルとして(2,0,0)、(2,2,0)、(0,2,0)、(0,2,2)、(2,0,2)が出力される場合も、同様にして、中電位VMの変動は生じない。
(Variation of medium potential VM)
Next, the fluctuation of the medium potential VM will be described. Among the voltage vectors shown in FIG. 3, in the voltage vector not including the numerical value "1", the medium potential VM is not applied to any of the three output wirings 60. In this case, the fluctuation of the medium potential VM does not occur. For example, when (0, 0, 2) is output, the output wirings 60u and 60v are connected to the low potential wiring 16 and the output wiring 60w is connected to the high potential wiring 12 as shown in FIG. Depending on the operating state of the motor 90, a current flows in the same direction as the voltage applied to the motor 90 (hereinafter referred to as the forward direction) and a direction opposite to the voltage applied to the motor 90 (hereinafter referred to as the reverse direction). ) May flow current. When a current flows in the forward direction, as shown by an arrow 200 in FIG. 17, a current flows from the high potential wiring 12 to the motor 90 via the output wiring 60w. The current flowing into the motor 90 flows to the low potential wiring 16 via the output wirings 60u and 60v. When the current flows in the opposite direction, the current flows in the opposite direction of the arrow 200. In any of these cases, the inflow of electric charge to the medium-potential wiring 14 and the outflow of electric charge from the medium-potential wiring 14 do not occur. Therefore, in this case, the fluctuation of the medium potential VM does not occur. The same applies when (2,0,0), (2,2,0), (0,2,0), (0,2,2), (2,0,2) are output as voltage vectors. Therefore, the fluctuation of the medium potential VM does not occur.
 図3に示す電圧ベクトルのうち、数値「1」を含む電圧ベクトルを出力する場合には、3つの出力配線60の少なくとも1つに中電位配線14が接続されるので、中電位VMの変動が生じる。 When outputting a voltage vector including the numerical value "1" among the voltage vectors shown in FIG. 3, since the medium potential wiring 14 is connected to at least one of the three output wirings 60, the fluctuation of the medium potential VM changes. Occurs.
 例えば、(1,1,2)が出力される場合には、図18のように、出力配線60u、60vが中電位配線14に接続され、出力配線60wが高電位配線12に接続される。順方向に電流が流れる場合には、図18の矢印202に示すように、高電位配線12から出力配線60wを介してモータ90に電流が流れる。モータ90に流入した電流は、出力配線60u、60vを介して中電位配線14へ流れる。この場合、上側コンデンサ20が放電されるので、中電位VMが上昇する。また、逆方向に電流が流れる場合には、矢印202の逆向きに電流が流れる。この場合、上側コンデンサ20が充電されるので、中電位VMが低下する。このように、(1,1,2)が出力される場合には、電流が順方向の場合に中電位VMが上昇し、電流が逆方向の場合に中電位VMが低下する。電圧ベクトルとして(2,1,1)、(2,2,1)、(1,2,1)、(1,2,2)、(2,1,2)が出力される場合も、同様にして、電流が順方向の場合に中電位VMが上昇し、電流が逆方向の場合に中電位VMが低下する。 For example, when (1, 1, 2) is output, the output wirings 60u and 60v are connected to the medium potential wiring 14 and the output wiring 60w is connected to the high potential wiring 12 as shown in FIG. When a current flows in the forward direction, as shown by an arrow 202 in FIG. 18, a current flows from the high potential wiring 12 to the motor 90 via the output wiring 60w. The current flowing into the motor 90 flows to the medium potential wiring 14 via the output wirings 60u and 60v. In this case, since the upper capacitor 20 is discharged, the medium potential VM rises. When the current flows in the opposite direction, the current flows in the opposite direction of the arrow 202. In this case, since the upper capacitor 20 is charged, the medium potential VM is lowered. As described above, when (1, 1, 2) is output, the medium potential VM increases when the current is in the forward direction, and decreases when the current is in the reverse direction. The same applies when (2,1,1), (2,2,1), (1,2,1), (1,2,2), (2,1,2) are output as voltage vectors. Then, when the current is in the forward direction, the medium potential VM rises, and when the current is in the reverse direction, the medium potential VM decreases.
 また、例えば、(0,0,1)が出力される場合には、図19のように、出力配線60u、60vが低電位配線16に接続され、出力配線60wが中電位配線14に接続される。順方向に電流が流れる場合には、図19の矢印204に示すように、中電位配線14から出力配線60wを介してモータ90に電流が流れる。モータ90に流入した電流は、出力配線60u、60vを介して低電位配線16へ流れる。この場合、下側コンデンサ22が放電されるので、中電位VMが低下する。また、逆方向に電流が流れる場合には、矢印204の逆向きに電流が流れる。この場合、下側コンデンサ22が充電されるので、中電位VMが上昇する。このように、(0,0,1)が出力される場合には、電流が順方向の場合に中電位VMが低下し、電流が逆方向の場合に中電位VMが上昇する。電圧ベクトルとして(1,0,0)、(1,1,0)、(0,1,0)、(0,1,1)、(1,0,1)が出力される場合も、同様にして、電流が順方向の場合に中電位VMが低下し、電流が逆方向の場合に中電位VMが上昇する。 Further, for example, when (0, 0, 1) is output, the output wirings 60u and 60v are connected to the low potential wiring 16 and the output wiring 60w is connected to the medium potential wiring 14 as shown in FIG. NS. When a current flows in the forward direction, as shown by arrow 204 in FIG. 19, a current flows from the medium potential wiring 14 to the motor 90 via the output wiring 60w. The current flowing into the motor 90 flows to the low potential wiring 16 via the output wirings 60u and 60v. In this case, since the lower capacitor 22 is discharged, the medium potential VM is lowered. When the current flows in the opposite direction, the current flows in the opposite direction of the arrow 204. In this case, since the lower capacitor 22 is charged, the medium potential VM rises. In this way, when (0, 0, 1) is output, the medium potential VM decreases when the current is in the forward direction, and increases when the current is in the reverse direction. The same applies when (1,0,0), (1,1,0), (0,1,0), (0,1,1), (1,0,1) are output as voltage vectors. Then, when the current is in the forward direction, the medium potential VM decreases, and when the current is in the reverse direction, the medium potential VM increases.
 また、図3に示す電圧ベクトルのうち、(2,1,0)、(1,2,0)、(0,2,1)、(0,1,2)、(1,0,2)、(2,0,1)が出力される場合でも、中電位配線14に対する電荷の流入または流出が生じるので、中電位VMの変動が生じる。 Further, among the voltage vectors shown in FIG. 3, (2,1,0), (1,2,0), (0,2,1), (0,1,2), (1,0,2) , (2, 0, 1) is also output, so that the charge flows in and out of the medium potential wiring 14, so that the medium potential VM fluctuates.
 上述したように、指令回路72は、モータ90で必要なトルクが低い場合には、中電位VMに応じて指令値ベクトルを変更する。例えば、中電位VMが制御目標値よりも低い場合には、中電位VMを上昇させる指令値ベクトルを生成する。また、例えば、中電位VMが制御目標値よりも高い場合には、中電位VMを低下させる指令値ベクトルを生成する。上述したように、通常動作では、制御回路70が、指令値ベクトルに従って3つの出力配線60の電位を制御する。したがって、中電位VMを目標値に近い値に制御しながら、モータ90に三相交流電流を供給することができる。 As described above, the command circuit 72 changes the command value vector according to the medium potential VM when the torque required by the motor 90 is low. For example, when the medium potential VM is lower than the control target value, a command value vector for raising the medium potential VM is generated. Further, for example, when the medium potential VM is higher than the control target value, a command value vector for lowering the medium potential VM is generated. As described above, in the normal operation, the control circuit 70 controls the potentials of the three output wirings 60 according to the command value vector. Therefore, the three-phase alternating current can be supplied to the motor 90 while controlling the medium potential VM to a value close to the target value.
(短絡素子判定動作)
 次に、短絡素子判定動作について説明する。制御回路70は、車両が走行していないときに、定期的に短絡素子判定動作を実行する。短絡素子判定動作では、スイッチング回路30u、30v、30wのそれぞれについて、スイッチング素子41~44が短絡故障しているか否かを判定する。なお、短絡故障は、スイッチング素子のゲートの電位にかかわらずスイッチング素子がオン状態となる故障モードを意味する。制御回路70は、3つのスイッチング回路30u、30v、30wのいずれかを選択し、選択したスイッチング回路30に対して短絡素子判定動作を実行する。なお、制御回路70は、3つのスイッチング回路30のすべてを選択し、選択したすべてのスイッチング回路30に対して同時に短絡素子判定動作を実行してもよい。スイッチング回路30u、30v、30wに対する短絡素子判定動作は同じであるので、以下では、1つのスイッチング回路30に対する短絡素子判定動作について説明する。
(Short-circuit element judgment operation)
Next, the short-circuit element determination operation will be described. The control circuit 70 periodically executes a short-circuit element determination operation when the vehicle is not traveling. In the short-circuit element determination operation, it is determined whether or not the switching elements 41 to 44 are short-circuited or not for each of the switching circuits 30u, 30v, and 30w. The short-circuit failure means a failure mode in which the switching element is turned on regardless of the potential of the gate of the switching element. The control circuit 70 selects one of the three switching circuits 30u, 30v, and 30w, and executes a short-circuit element determination operation for the selected switching circuit 30. The control circuit 70 may select all three switching circuits 30 and execute the short-circuit element determination operation for all the selected switching circuits 30 at the same time. Since the short-circuit element determination operation for the switching circuits 30u, 30v, and 30w is the same, the short-circuit element determination operation for one switching circuit 30 will be described below.
 なお、スイッチング素子41~44のそれぞれは、電流検出端子を備えている。制御回路70は、スイッチング素子41~44の電流検出端子に接続されている。制御回路70は、電流検出端子の電位から、スイッチング素子41~44の主電流(コレクタ-エミッタ間電流、または、ドレイン-ソース間電流)を検出することができる。 Each of the switching elements 41 to 44 is provided with a current detection terminal. The control circuit 70 is connected to the current detection terminals of the switching elements 41 to 44. The control circuit 70 can detect the main current (collector-emitter current or drain-source current) of the switching elements 41 to 44 from the potential of the current detection terminal.
 図20は、短絡素子判定動作のフローチャートである。図20に示すように、短絡素子判定動作を開始すると、制御回路70は、ステップS2~S6において、インバータを第1状態、第2状態、第3状態に制御する。図21は、第1状態、第2状態、第3状態を示している。第1状態は、第1スイッチング素子41と第2スイッチング素子42がオンしており、第3スイッチング素子43と第4スイッチング素子44がオフしている状態である。第2状態は、第3スイッチング素子43と第4スイッチング素子44がオンしており、第1スイッチング素子41と第2スイッチング素子42がオフしている状態である。第3状態は、第2スイッチング素子42と第3スイッチング素子43がオンしており、第1スイッチング素子41と第4スイッチング素子44がオフしている状態である。 FIG. 20 is a flowchart of the short-circuit element determination operation. As shown in FIG. 20, when the short-circuit element determination operation is started, the control circuit 70 controls the inverter to the first state, the second state, and the third state in steps S2 to S6. FIG. 21 shows a first state, a second state, and a third state. The first state is a state in which the first switching element 41 and the second switching element 42 are on, and the third switching element 43 and the fourth switching element 44 are off. The second state is a state in which the third switching element 43 and the fourth switching element 44 are on, and the first switching element 41 and the second switching element 42 are off. The third state is a state in which the second switching element 42 and the third switching element 43 are on, and the first switching element 41 and the fourth switching element 44 are off.
 ステップS2で、制御回路70は、スイッチング回路30を第1状態に制御し、スイッチング素子41~44の主電流と中電位VMを検出する。ステップS2(すなわち、第1状態)では、第4スイッチング素子44が短絡故障していると、図22の矢印300に示すように高電位配線12と低電位配線16の間で線間短絡が生じる。この場合、第1スイッチング素子41で短絡電流(過電流)が検出される。また、ステップS2(すなわち、第1状態)では、第3スイッチング素子43が短絡故障していると、図22の矢印302に示すように高電位配線12と中電位配線14の間で線間短絡が生じる。この場合、第1スイッチング素子41と第2スイッチング素子42で短絡電流が検出されるとともに中電位VMの上昇が検出される。 In step S2, the control circuit 70 controls the switching circuit 30 to the first state, and detects the main current and the medium potential VM of the switching elements 41 to 44. In step S2 (that is, the first state), if the fourth switching element 44 has a short-circuit failure, a line short-circuit occurs between the high-potential wiring 12 and the low-potential wiring 16 as shown by the arrow 300 in FIG. .. In this case, the short-circuit current (overcurrent) is detected by the first switching element 41. Further, in step S2 (that is, in the first state), if the third switching element 43 is short-circuited, a short-circuit between the high-potential wiring 12 and the medium-potential wiring 14 is performed as shown by an arrow 302 in FIG. Occurs. In this case, the short-circuit current is detected in the first switching element 41 and the second switching element 42, and the increase in the medium potential VM is detected.
 ステップS4で、制御回路70は、スイッチング回路30を第2状態に制御し、スイッチング素子41~44の主電流と中電位VMを検出する。ステップS4(すなわち、第2状態)では、第1スイッチング素子41が短絡故障していると、図23の矢印304に示すように高電位配線12と低電位配線16の間で線間短絡が生じる。この場合、第4スイッチング素子44で短絡電流が検出される。また、ステップS4(すなわち、第2状態)では、第2スイッチング素子42が短絡故障していると、図23の矢印306に示すように中電位配線14と低電位配線16の間で線間短絡が生じる。この場合、第3スイッチング素子43と第4スイッチング素子44で短絡電流が検出されるとともに中電位VMの低下が検出される。 In step S4, the control circuit 70 controls the switching circuit 30 to the second state, and detects the main current and the medium potential VM of the switching elements 41 to 44. In step S4 (that is, the second state), if the first switching element 41 has a short-circuit failure, a line short-circuit occurs between the high-potential wiring 12 and the low-potential wiring 16 as shown by the arrow 304 in FIG. .. In this case, the short-circuit current is detected by the fourth switching element 44. Further, in step S4 (that is, in the second state), if the second switching element 42 has a short-circuit failure, a short-circuit between the lines is short-circuited between the medium-potential wiring 14 and the low-potential wiring 16 as shown by the arrow 306 in FIG. Occurs. In this case, the short-circuit current is detected in the third switching element 43 and the fourth switching element 44, and the decrease in the medium potential VM is detected.
 ステップS6で、制御回路70は、スイッチング回路30を第3状態に制御し、スイッチング素子41~44の主電流と中電位VMを検出する。ステップS6(すなわち、第3状態)では、第1スイッチング素子41が短絡故障していると、図24の矢印308に示すように高電位配線12と中電位配線14の間で線間短絡が生じる。この場合、第2スイッチング素子42と第3スイッチング素子43で短絡電流が検出されるとともに中電位VMの上昇が検出される。また、ステップS6(すなわち、第3状態)では、第4スイッチング素子44が短絡故障していると、図24の矢印310に示すように中電位配線14と低電位配線16の間で線間短絡が生じる。この場合、第2スイッチング素子42と第3スイッチング素子43で短絡電流が検出されるとともに中電位VMの低下が検出される。 In step S6, the control circuit 70 controls the switching circuit 30 to the third state, and detects the main current and the medium potential VM of the switching elements 41 to 44. In step S6 (that is, the third state), if the first switching element 41 has a short-circuit failure, a line short-circuit occurs between the high-potential wiring 12 and the medium-potential wiring 14 as shown by arrow 308 in FIG. .. In this case, the short-circuit current is detected in the second switching element 42 and the third switching element 43, and the increase in the medium potential VM is detected. Further, in step S6 (that is, in the third state), if the fourth switching element 44 is short-circuited, a short-circuit is performed between the medium-potential wiring 14 and the low-potential wiring 16 as shown by the arrow 310 in FIG. Occurs. In this case, the short-circuit current is detected in the second switching element 42 and the third switching element 43, and the decrease in the medium potential VM is detected.
 制御回路70は、ステップS2~S6の結果によって、短絡故障しているスイッチング素子を特定する。ステップS2~S6でいずれのスイッチング素子でも短絡電流が検出されない場合には、制御回路70は、スイッチング素子41~44のすべてが正常であると判定する。 The control circuit 70 identifies a switching element that has a short-circuit failure based on the results of steps S2 to S6. If no short-circuit current is detected in any of the switching elements in steps S2 to S6, the control circuit 70 determines that all of the switching elements 41 to 44 are normal.
 制御回路70は、ステップS6で第2スイッチング素子42と第3スイッチング素子43で短絡電流が検出されるとともに中電位VMの上昇が検出され、かつ、ステップS4で第4スイッチング素子44で短絡電流が検出された場合に、第1スイッチング素子41が短絡故障していると判定する。 In the control circuit 70, a short-circuit current is detected in the second switching element 42 and the third switching element 43 in step S6, an increase in the medium potential VM is detected, and a short-circuit current is detected in the fourth switching element 44 in step S4. When it is detected, it is determined that the first switching element 41 has a short-circuit failure.
 制御回路70は、ステップS4で第3スイッチング素子43で短絡電流が検出された場合に、第2スイッチング素子42が短絡故障していると判定する。 When the short-circuit current is detected in the third switching element 43 in step S4, the control circuit 70 determines that the second switching element 42 has a short-circuit failure.
 制御回路70は、ステップS2で第2スイッチング素子42で短絡電流が検出された場合に、第3スイッチング素子43が短絡故障していると判定する。 When the short-circuit current is detected in the second switching element 42 in step S2, the control circuit 70 determines that the third switching element 43 has a short-circuit failure.
 制御回路70は、ステップS2で第1スイッチング素子41で短絡電流が検出され、かつ、ステップS6で第2スイッチング素子42と第3スイッチング素子43で短絡電流が検出されるとともに中電位VMの低下が検出された場合に、第4スイッチング素子44が短絡故障していると判定する。 In the control circuit 70, the short-circuit current is detected in the first switching element 41 in step S2, the short-circuit current is detected in the second switching element 42 and the third switching element 43 in step S6, and the medium potential VM is lowered. When it is detected, it is determined that the fourth switching element 44 has a short-circuit failure.
(禁止電位)
 インバータ10は、第2スイッチング素子42または第3スイッチング素子43が短絡故障しているときに、非常動作を実行することができる。なお、第1スイッチング素子41または第4スイッチング素子44が短絡故障している場合には、インバータ10は非常動作を実行することができない。制御回路70は、第2スイッチング素子42または第3スイッチング素子43が短絡故障している状態でモータ90を駆動する必要があるときに、非常動作を実行する。なお、以下では、短絡故障素子を有するスイッチング回路30を、制限スイッチング回路30xという。また、制限スイッチング回路30xの出力配線60を、制限出力配線60xという。また、制限スイッチング回路30x以外のスイッチング回路30を、正常スイッチング回路30yという。また、正常スイッチング回路30yの出力配線60を、正常出力配線60yという。非常動作は、制限スイッチング回路30xが1つであり、短絡故障素子が第2スイッチング素子42または第3スイッチング素子43である場合に実行される。非常動作では、制限出力配線60xに禁止電位が印加されないように、制限スイッチング回路30xが制御される。最初に、禁止電位について説明する。
(Prohibited potential)
The inverter 10 can perform an emergency operation when the second switching element 42 or the third switching element 43 has a short-circuit failure. If the first switching element 41 or the fourth switching element 44 has a short-circuit failure, the inverter 10 cannot perform an emergency operation. The control circuit 70 executes an emergency operation when it is necessary to drive the motor 90 in a state where the second switching element 42 or the third switching element 43 has a short-circuit failure. In the following, the switching circuit 30 having a short-circuit fault element will be referred to as a limiting switching circuit 30x. Further, the output wiring 60 of the limiting switching circuit 30x is referred to as a limiting output wiring 60x. Further, the switching circuit 30 other than the limiting switching circuit 30x is referred to as a normal switching circuit 30y. Further, the output wiring 60 of the normal switching circuit 30y is referred to as a normal output wiring 60y. The emergency operation is executed when there is one limiting switching circuit 30x and the short-circuit failure element is the second switching element 42 or the third switching element 43. In the emergency operation, the limiting switching circuit 30x is controlled so that the prohibited potential is not applied to the limiting output wiring 60x. First, the prohibited potential will be described.
 禁止電位は、制限スイッチング回路30x内で線間短絡が生じるため、制限出力配線60xに印加できない電圧を意味する。制限スイッチング回路30x内の短絡故障素子の種類によって、禁止電位が異なる。 The prohibited potential means a voltage that cannot be applied to the limited output wiring 60x because a line short circuit occurs in the limited switching circuit 30x. The prohibited potential differs depending on the type of short-circuit fault element in the limiting switching circuit 30x.
 第2スイッチング素子42が短絡故障している場合には、第4スイッチング素子44がオンすると、中電位配線14から第2スイッチング素子42、第3ダイオード53及び第4スイッチング素子44を介して低電位配線16へ短絡電流が流れる。したがって、第2スイッチング素子42が短絡故障している場合には、第4スイッチング素子44をオンすることができない。したがって、第2スイッチング素子42が短絡故障している場合には、禁止電位は低電位VLである。 When the second switching element 42 is short-circuited and failed, when the fourth switching element 44 is turned on, the low potential is low from the medium potential wiring 14 via the second switching element 42, the third diode 53, and the fourth switching element 44. A short-circuit current flows through the wiring 16. Therefore, when the second switching element 42 has a short-circuit failure, the fourth switching element 44 cannot be turned on. Therefore, when the second switching element 42 has a short-circuit failure, the prohibited potential is the low potential VL.
 第3スイッチング素子43が短絡故障している場合には、第1スイッチング素子41がオンすると、高電位配線12から第1スイッチング素子41、第3スイッチング素子43及び第2ダイオード52を介して中電位配線14へ短絡電流が流れる。したがって、第3スイッチング素子43が短絡故障している場合には、第1スイッチング素子41をオンすることができない。したがって、第3スイッチング素子43が短絡故障している場合には、禁止電位は高電位VHである。 When the third switching element 43 is short-circuited and failed, when the first switching element 41 is turned on, the high potential wiring 12 passes through the first switching element 41, the third switching element 43, and the second diode 52 to generate a medium potential. A short-circuit current flows through the wiring 14. Therefore, when the third switching element 43 has a short-circuit failure, the first switching element 41 cannot be turned on. Therefore, when the third switching element 43 has a short-circuit failure, the prohibited potential is a high potential VH.
(非常動作)
 非常動作では、制御回路70は、指令回路72から入力される指令値ベクトルと角度θが同じである複数の電圧ベクトルの中から特定の条件を満たす1つの電圧ベクトルを選択し、選択した電圧ベクトルを出力する。以下では、制御回路70が選択した電圧ベクトルを、特定電圧ベクトルという場合がある。指令値ベクトルと特定電圧ベクトルは、同じである場合もあるし、異なる場合もある。制御回路70が特定電圧ベクトルを選択する規則は、禁止電位に応じて変化する。
(Emergency operation)
In the emergency operation, the control circuit 70 selects one voltage vector satisfying a specific condition from a plurality of voltage vectors having the same angle θ as the command value vector input from the command circuit 72, and the selected voltage vector. Is output. In the following, the voltage vector selected by the control circuit 70 may be referred to as a specific voltage vector. The command value vector and the specific voltage vector may be the same or different. The rule that the control circuit 70 selects a specific voltage vector changes according to the prohibited potential.
(A.禁止電位が低電位VLの場合の非常動作)
 禁止電位が低電位VLの場合(すなわち、短絡故障素子が第2スイッチング素子42である場合)には、制御回路70は、中電位VMに応じて特定電圧ベクトルを選択する規則を変更する。制御回路70は、中電位VMを制御するための参照値として、上側制限値Vt1、基準値Vt2、下側制限値Vt3を記憶している。基準値Vt2は、中電位VMの制御目標値である。例えば、基準値Vt2を、高電位VHの1/2とすることができる。上側制限値Vt1は基準値Vt2よりも高く、下側制限値Vt3は基準値Vt2よりも低い。制御回路70は、図25に示すフローチャートに従って、特定電圧ベクトルを選択する規則を、第1規則~第4規則の間で変更する。制御回路70は、指令回路72から指令値ベクトルを受信する毎に、図25に示すフローチャートを実行する。
(A. Emergency operation when the prohibited potential is low potential VL)
When the prohibited potential is the low potential VL (that is, when the short-circuit fault element is the second switching element 42), the control circuit 70 changes the rule for selecting the specific voltage vector according to the medium potential VM. The control circuit 70 stores the upper limit value Vt1, the reference value Vt2, and the lower limit value Vt3 as reference values for controlling the medium potential VM. The reference value Vt2 is a control target value of the medium potential VM. For example, the reference value Vt2 can be halved of the high potential VH. The upper limit value Vt1 is higher than the reference value Vt2, and the lower limit value Vt3 is lower than the reference value Vt2. The control circuit 70 changes the rule for selecting the specific voltage vector between the first rule and the fourth rule according to the flowchart shown in FIG. The control circuit 70 executes the flowchart shown in FIG. 25 each time a command value vector is received from the command circuit 72.
 図25のステップS10では、制御回路70は、中電位VMを検出し、検出した中電位VMについて判定する。制御回路70は、中電位VMが上側制限値Vt1以上の場合に第1規則を採用し、中電位VMが上側制限値Vt1より低く、かつ、基準値Vt2以上の場合に第2規則を採用し、中電位VMが基準値Vt2より低く、かつ、下側制限値Vt3以上の場合に第3規則を採用し、中電位VMが下側制限値Vt3より低い場合に第4規則を採用する。なお、第2規則と第3規則は、中電位VMが基準値Vt2(制御目標値)に近い場合に採用される規則であり、第1規則と第4規則は、中電位VMが基準値Vt2から大きく外れている場合に採用される規則である。 In step S10 of FIG. 25, the control circuit 70 detects the medium potential VM and determines the detected medium potential VM. The control circuit 70 adopts the first rule when the medium potential VM is equal to or higher than the upper limit value Vt1, and adopts the second rule when the medium potential VM is lower than the upper limit value Vt1 and is equal to or higher than the reference value Vt2. The third rule is adopted when the medium potential VM is lower than the reference value Vt2 and is equal to or higher than the lower limit value Vt3, and the fourth rule is adopted when the medium potential VM is lower than the lower limit value Vt3. The second and third rules are adopted when the medium potential VM is close to the reference value Vt2 (control target value), and the first and fourth rules are the rules in which the medium potential VM is the reference value Vt2. It is a rule adopted when it deviates greatly from.
 第1規則~第4規則のいずれでも、制御回路70は、受信した指令値ベクトルの角度θが、制限角度範囲内にあるか正常角度範囲内にあるかを判定する。したがって、以下に、制限角度範囲と正常角度範囲について説明する。上述したように、非常動作では、制限出力配線60xに禁止電位を印加できないため、一部の電圧ベクトルを出力することができない。以下では、このように出力できない電圧ベクトル(すなわち、制限出力配線60xが禁止電位となる電圧ベクトル)を、禁止ベクトルという。制限角度範囲は、禁止ベクトルを含む角度範囲を意味する。例えば、図26は、空間ベクトル図において、制限角度範囲を参照符号400により示している。なお、図26では、例として、W相出力配線60wが制限出力配線60xであり、禁止電位が低電位VLである場合における制限角度範囲を示している。図26において、Vwが「0」の電圧ベクトル(すなわち、(0,0,0)、(1,0,0)、(1,1,0)、(0,1,0)、(2,0,0)、(2,1,0)、(2,2,0)、(1,2,0)及び(0,2,0))が、禁止ベクトルである。これらの禁止ベクトルが存在する角度θの範囲が、制限角度範囲である。図26においては、0°≦θ≦120°の角度範囲が制限角度範囲である。なお、制限角度範囲内であっても、Vwが「0」ではない電圧ベクトルは、出力可能である。以下では、制限角度範囲内の出力可能な電圧ベクトルを、許容ベクトルという。例えば、図26では、(1,1,1)、(2,2,2)、(2,1,1)、(2,2,1)及び(1,2,1)が許容ベクトルである。また、制限角度範囲外の角度範囲が、正常角度範囲である。図26では、参照番号402により正常角度範囲が示されている。正常角度範囲内のすべての電圧ベクトルは、出力可能である。 In any of the first rule to the fourth rule, the control circuit 70 determines whether the angle θ of the received command value vector is within the limit angle range or the normal angle range. Therefore, the limiting angle range and the normal angle range will be described below. As described above, in the emergency operation, the prohibited potential cannot be applied to the limited output wiring 60x, so that a part of the voltage vector cannot be output. In the following, a voltage vector that cannot be output in this way (that is, a voltage vector in which the limited output wiring 60x has a prohibited potential) is referred to as a prohibited vector. The limiting angle range means an angle range including a prohibition vector. For example, FIG. 26 shows the limit angle range by reference numeral 400 in the space vector diagram. Note that FIG. 26 shows, as an example, the limiting angle range when the W-phase output wiring 60w is the limiting output wiring 60x and the prohibited potential is the low potential VL. In FIG. 26, the voltage vector in which Vw is “0” (that is, (0,0,0), (1,0,0), (1,1,0), (0,1,0), (2,0) 0,0), (2,1,0), (2,2,0), (1,2,0) and (0,2,0)) are prohibited vectors. The range of the angle θ in which these prohibition vectors exist is the limit angle range. In FIG. 26, the angle range of 0 ° ≦ θ ≦ 120 ° is the limiting angle range. Even within the limiting angle range, a voltage vector whose Vw is not "0" can be output. In the following, the voltage vector that can be output within the limit angle range is referred to as an allowable vector. For example, in FIG. 26, (1,1,1), (2,2,2), (2,1,1), (2,2,1) and (1,2,1) are permissible vectors. .. Further, the angle range outside the limiting angle range is the normal angle range. In FIG. 26, reference number 402 indicates the normal angle range. All voltage vectors within the normal angle range can be output.
 さらに、第1規則~第4規則のいずれでも、制御回路70は、制限出力配線60xに流れる電流に基づいて、走行用モータに流れる電流が順方向か逆方向かを判定する。なお、上述したとおり、順方向は、モータ90に印加される電圧と同じ方向に電流が流れることを意味し、逆方向は、モータ90に印加される電圧と反対の方向に電流が流れることを意味する。 Further, in any of the first rule to the fourth rule, the control circuit 70 determines whether the current flowing in the traveling motor is in the forward direction or the reverse direction based on the current flowing in the limited output wiring 60x. As described above, the forward direction means that the current flows in the same direction as the voltage applied to the motor 90, and the reverse direction means that the current flows in the direction opposite to the voltage applied to the motor 90. means.
 また、以下では、数値「2」と数値「1」のみにより構成されている電圧ベクトルを上側ベクトルといい、数値「1」と数値「0」のみにより構成されている電圧ベクトルを下側ベクトルという。図26に示されるように、上側ベクトルは、(2,1,1)、(2,2,1)、(1,2,1)、(1,2,2)、(1,1,2)、(2,1,2)であり、下側ベクトルは、(1,0,0)、(1,1,0)、(0,1,0)、(0,1,1)、(0,0,1)、(1,0,1)である。上側ベクトルが出力されると、モータ90に対して高電位配線12と中電位配線14が接続されるので、上側コンデンサ20が充電または放電される。例えば、上側ベクトルである(1,1,2)が出力されると、図18の矢印202に沿って電流が流れて上側コンデンサ20が放電される場合と、矢印202の逆向きに電流が流れて上側コンデンサ20が充電される場合がある。また、例えば、下側ベクトルである(0,0,1)が出力されると、図19の矢印204に沿って電流が流れて下側コンデンサ22が放電される場合と、矢印204の逆向きに電流が流れて下側コンデンサ22が充電される場合がある。正常角度範囲内には、上側ベクトルと下側ベクトルがペアとして存在している。例えば、図26に示すように、θ=180°には(1,2,2)と(0,1,1)がペアとして存在し、θ=240°には(1,1,2)と(0,0,1)がペアとして存在し、θ=300°には(2,1,2)と(1,0,1)がペアとして存在する。 Further, in the following, a voltage vector composed of only the numerical values "2" and the numerical value "1" is referred to as an upper vector, and a voltage vector composed of only the numerical values "1" and the numerical value "0" is referred to as a lower vector. .. As shown in FIG. 26, the upper vectors are (2,1,1), (2,2,1), (1,2,1), (1,2,2), (1,1,2). ), (2,1,2), and the lower vectors are (1,0,0), (1,1,0), (0,1,0), (0,1,1), ( 0,0,1), (1,0,1). When the upper vector is output, the high potential wiring 12 and the medium potential wiring 14 are connected to the motor 90, so that the upper capacitor 20 is charged or discharged. For example, when the upper vector (1, 1, 2) is output, a current flows along the arrow 202 in FIG. 18 to discharge the upper capacitor 20, and a current flows in the opposite direction of the arrow 202. The upper capacitor 20 may be charged. Further, for example, when the lower vector (0, 0, 1) is output, a current flows along the arrow 204 in FIG. 19 to discharge the lower capacitor 22, and the opposite direction of the arrow 204. A current may flow through the capacitor 22 to charge the lower capacitor 22. Within the normal angle range, the upper vector and the lower vector exist as a pair. For example, as shown in FIG. 26, (1,2,2) and (0,1,1) exist as a pair at θ = 180 °, and (1,1,2) at θ = 240 °. (0,0,1) exists as a pair, and (2,1,2) and (1,0,1) exist as a pair at θ = 300 °.
(A-1.第2規則)
 第2規則では、制御回路70は、受信した指令値ベクトルの角度θと、制限出力配線60xに流れる電流の向きに応じて、図27の表2に従って特定電圧ベクトルを選択する。
(A-1. Second rule)
In the second rule, the control circuit 70 selects a specific voltage vector according to Table 2 of FIG. 27 according to the angle θ of the received command value vector and the direction of the current flowing through the limited output wiring 60x.
 図27の表2に示すように、制御回路70は、指令値ベクトルの角度θが制限角度範囲内にある場合には、制限出力配線60xに流れる電流の向きにかかわらず、許容ベクトルを特定電圧ベクトルとして選択する。ここでは、制御回路70は、指令値ベクトルの角度θと同じ角度θを有する許容ベクトルを、特定電圧ベクトルとして選択する。例えば、図26において、指令値ベクトルが(2,2,0)である場合には、特定電圧ベクトルとして(2,2,1)を選択する。また、図26において、指令値ベクトルが(1,1,0)である場合には、特定電圧ベクトルとして(2,2,1)を選択する。また、図26において、指令値ベクトルが(2,2,1)である場合には、同じ(2,2,1)を特定電圧ベクトルとして選択する。そして、制御回路70は、特定電圧ベクトルの通りに、3つの出力配線60の電位を制御する。このように、指令値ベクトルの角度θが制限角度範囲内にある場合には、指令値ベクトルと同じ角度θを有する許容ベクトルが出力される。これによって、禁止ベクトルの出力を防止しながら、指令値ベクトルと同じ角度θを有する電圧ベクトルを出力することが可能となる。 As shown in Table 2 of FIG. 27, when the angle θ of the command value vector is within the limit angle range, the control circuit 70 sets the allowable vector to a specific voltage regardless of the direction of the current flowing through the limit output wiring 60x. Select as a vector. Here, the control circuit 70 selects an allowable vector having the same angle θ as the angle θ of the command value vector as the specific voltage vector. For example, in FIG. 26, when the command value vector is (2,2,0), (2,2,1) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (1,1,0), (2,2,1) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (2,2,1), the same (2,2,1) is selected as the specific voltage vector. Then, the control circuit 70 controls the potentials of the three output wirings 60 according to the specific voltage vector. As described above, when the angle θ of the command value vector is within the limit angle range, an allowable vector having the same angle θ as the command value vector is output. This makes it possible to output a voltage vector having the same angle θ as the command value vector while preventing the output of the prohibition vector.
 なお、禁止電位が低電位VLの場合には、許容ベクトルは必ず上側ベクトルである。モータ90に流れる電流が順方向のときに許容ベクトル(上側ベクトル)が出力されると、上側コンデンサ20が放電されて、中電位VMが上昇する。モータ90に流れる電流が逆方向のときに許容ベクトル(上側ベクトル)が出力されると、上側コンデンサ20が充電されて、中電位VMが低下する。 When the prohibited potential is low potential VL, the permissible vector is always the upper vector. If the allowable vector (upper vector) is output when the current flowing through the motor 90 is in the forward direction, the upper capacitor 20 is discharged and the medium potential VM rises. If the allowable vector (upper vector) is output when the current flowing through the motor 90 is in the opposite direction, the upper capacitor 20 is charged and the medium potential VM is lowered.
 図27の表2に示すように、制御回路70は、指令値ベクトルの角度θが正常角度範囲内にある場合には、制限出力配線60xに流れる電流(すなわち、モータ90に流れる電流)の方向に応じて特定電圧ベクトルを選択する。制御回路70は、制限出力配線60xに流れる電流の向きが順方向の場合には、指令値ベクトルの角度θと同じ角度θを有する下側ベクトルを、特定電圧ベクトルとして選択する。例えば、図26において、指令値ベクトルが(0,0,2)である場合には、特定電圧ベクトルとして(0,0,1)を選択する。また、図26において、指令値ベクトルが(1,1,2)である場合には、特定電圧ベクトルとして(0,0,1)を選択する。また、図26において、指令値ベクトルが(0,0,1)である場合には、同じ(0,0,1)を特定電圧ベクトルとして選択する。また、制御回路70は、制限出力配線60xに流れる電流の向きが逆方向の場合には、指令値ベクトルの角度θと同じ角度θを有する上側ベクトルを、特定電圧ベクトルとして選択する。例えば、図26において、指令値ベクトルが(0,0,2)である場合には、特定電圧ベクトルとして(1,1,2)を選択する。また、図26において、指令値ベクトルが(0,0,1)である場合には、特定電圧ベクトルとして(1,1,2)を選択する。また、図26において、指令値ベクトルが(1,1,2)である場合には、同じ(1,1,2)を特定電圧ベクトルとして選択する。制御回路70は、特定電圧ベクトルの通りに、3つの出力配線60の電位を制御する。 As shown in Table 2 of FIG. 27, the control circuit 70 is in the direction of the current flowing through the limited output wiring 60x (that is, the current flowing through the motor 90) when the angle θ of the command value vector is within the normal angle range. Select a specific voltage vector according to. When the direction of the current flowing through the limited output wiring 60x is in the forward direction, the control circuit 70 selects a lower vector having the same angle θ as the angle θ of the command value vector as the specific voltage vector. For example, in FIG. 26, when the command value vector is (0,0,2), (0,0,1) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (1, 1, 2), (0, 0, 1) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (0,0,1), the same (0,0,1) is selected as the specific voltage vector. Further, when the direction of the current flowing through the limited output wiring 60x is opposite, the control circuit 70 selects an upper vector having the same angle θ as the angle θ of the command value vector as the specific voltage vector. For example, in FIG. 26, when the command value vector is (0,0,2), (1,1,2) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (0, 0, 1), (1, 1, 2) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (1,1,2), the same (1,1,2) is selected as the specific voltage vector. The control circuit 70 controls the potentials of the three output wirings 60 according to the specific voltage vector.
 このように、正常角度範囲においては、電流が順方向の場合に下側ベクトルが出力され、電流が逆方向の場合に上側ベクトルが出力される。電流が順方向の場合に下側ベクトルが出力されると、下側コンデンサ22が放電されて中電位VMが低下する。また、電流が逆方向の場合に上側ベクトルが出力されると、上側コンデンサ20が充電されて中電位VMが低下する。このように、第2規則では、正常角度範囲において、中電位VMが低下する電圧ベクトルが選択される。 In this way, in the normal angle range, the lower vector is output when the current is in the forward direction, and the upper vector is output when the current is in the reverse direction. When the lower vector is output when the current is in the forward direction, the lower capacitor 22 is discharged and the medium potential VM is lowered. Further, when the upper vector is output when the current is in the opposite direction, the upper capacitor 20 is charged and the medium potential VM is lowered. Thus, in the second rule, the voltage vector at which the medium potential VM decreases is selected in the normal angle range.
 以上に説明したように、第2規則では、制御回路70は、制限角度範囲では、許容ベクトルを出力する。上述したように、許容ベクトルを出力する場合には、中電位VMが上昇する場合と低下する場合がある。また、第2規則では、制御回路70は、正常角度範囲では、中電位VMを低下させる電圧ベクトルを出力する。このため、第2規則を採用している期間全体としては、中電位VMが低下する傾向となる。上述したように、第2規則は、中電位VMが基準値Vt2(制御目標値)よりも高いときに採用される。第2規則を採用することで、基準値Vt2よりも高い中電位VMを、基準値Vt2に近い値に引き戻すことができる。 As explained above, in the second rule, the control circuit 70 outputs an allowable vector in the limit angle range. As described above, when the permissible vector is output, the medium potential VM may increase or decrease. Further, according to the second rule, the control circuit 70 outputs a voltage vector that lowers the medium potential VM in the normal angle range. Therefore, the medium potential VM tends to decrease as a whole during the period in which the second rule is adopted. As described above, the second rule is adopted when the medium potential VM is higher than the reference value Vt2 (control target value). By adopting the second rule, the medium potential VM higher than the reference value Vt2 can be pulled back to a value close to the reference value Vt2.
(A-2.第3規則)
 第3規則では、制御回路70は、受信した指令値ベクトルの角度θと、制限出力配線60xに流れる電流の向きに応じて、図27の表3に従って特定電圧ベクトルを選択する。
(A-2. Third rule)
In the third rule, the control circuit 70 selects a specific voltage vector according to Table 3 of FIG. 27 according to the angle θ of the received command value vector and the direction of the current flowing through the limited output wiring 60x.
 図27の表3に示すように、制御回路70は、指令値ベクトルの角度θが制限角度範囲内にある場合には、制限出力配線60xに流れる電流の向きにかかわらず、許容ベクトルを特定電圧ベクトルとして選択する。ここでは、制御回路70は、指令値ベクトルの角度θと同じ角度θを有する許容ベクトルを、特定電圧ベクトルとして選択する。すなわち、制限角度範囲における第3規則は、制限角度範囲における第2規則と等しい。このように、指令値ベクトルの角度θが制限角度範囲内にある場合には、指令値ベクトルと同じ角度θを有する許容ベクトルが出力される。これによって、禁止ベクトルの出力を防止しながら、指令値ベクトルと同じ角度θを有する電圧ベクトルを出力することが可能となる。 As shown in Table 3 of FIG. 27, when the angle θ of the command value vector is within the limit angle range, the control circuit 70 sets the allowable vector to a specific voltage regardless of the direction of the current flowing through the limit output wiring 60x. Select as a vector. Here, the control circuit 70 selects an allowable vector having the same angle θ as the angle θ of the command value vector as the specific voltage vector. That is, the third rule in the limiting angle range is equal to the second rule in the limiting angle range. As described above, when the angle θ of the command value vector is within the limit angle range, an allowable vector having the same angle θ as the command value vector is output. This makes it possible to output a voltage vector having the same angle θ as the command value vector while preventing the output of the prohibition vector.
 なお、禁止電位が低電位VLの場合には、許容ベクトルは必ず上側ベクトルである。制限出力配線60xに流れる電流が順方向のときに許容ベクトル(上側ベクトル)が出力されると、上側コンデンサ20が放電されて、中電位VMが上昇する。制限出力配線60xに流れる電流が逆方向のときに許容ベクトル(上側ベクトル)が出力されると、上側コンデンサ20が充電されて、中電位VMが低下する。 When the prohibited potential is low potential VL, the permissible vector is always the upper vector. If the allowable vector (upper vector) is output when the current flowing through the limited output wiring 60x is in the forward direction, the upper capacitor 20 is discharged and the medium potential VM rises. If the allowable vector (upper vector) is output when the current flowing through the limited output wiring 60x is in the opposite direction, the upper capacitor 20 is charged and the medium potential VM is lowered.
 図27の表3に示すように、制御回路70は、指令値ベクトルの角度θが正常角度範囲内にある場合には、制限出力配線60xに流れる電流の向きに応じて特定電圧ベクトルを選択する。制御回路70は、制限出力配線60xに流れる電流の向きが順方向の場合には、指令値ベクトルの角度θと同じ角度θを有する上側ベクトルを、特定電圧ベクトルとして選択する。例えば、図26において、指令値ベクトルが(0,0,2)である場合には、特定電圧ベクトルとして(1,1,2)を選択する。また、図26において、指令値ベクトルが(0,0,1)である場合には、特定電圧ベクトルとして(1,1,2)を選択する。また、図26において、指令値ベクトルが(1,1,2)である場合には、同じ(1,1,2)を特定電圧ベクトルとして選択する。また、制御回路70は、制限出力配線60xに流れる電流の向きが逆方向の場合には、指令値ベクトルの角度θと同じ角度θを有する下側ベクトルを、特定電圧ベクトルとして選択する。例えば、図26において、指令値ベクトルが(0,0,2)である場合には、特定電圧ベクトルとして(0,0,1)を選択する。また、図26において、指令値ベクトルが(1,1,2)である場合には、特定電圧ベクトルとして(0,0,1)を選択する。また、図26において、指令値ベクトルが(0,0,1)である場合には、同じ(0,0,1)を特定電圧ベクトルとして選択する。制御回路70は、特定電圧ベクトルの通りに、3つの出力配線60の電位を制御する。 As shown in Table 3 of FIG. 27, when the angle θ of the command value vector is within the normal angle range, the control circuit 70 selects a specific voltage vector according to the direction of the current flowing through the limited output wiring 60x. .. When the direction of the current flowing through the limited output wiring 60x is in the forward direction, the control circuit 70 selects an upper vector having the same angle θ as the angle θ of the command value vector as the specific voltage vector. For example, in FIG. 26, when the command value vector is (0,0,2), (1,1,2) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (0, 0, 1), (1, 1, 2) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (1,1,2), the same (1,1,2) is selected as the specific voltage vector. Further, when the direction of the current flowing through the limited output wiring 60x is opposite, the control circuit 70 selects a lower vector having the same angle θ as the angle θ of the command value vector as the specific voltage vector. For example, in FIG. 26, when the command value vector is (0,0,2), (0,0,1) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (1, 1, 2), (0, 0, 1) is selected as the specific voltage vector. Further, in FIG. 26, when the command value vector is (0,0,1), the same (0,0,1) is selected as the specific voltage vector. The control circuit 70 controls the potentials of the three output wirings 60 according to the specific voltage vector.
 このように、正常角度範囲においては、電流が順方向の場合に上側ベクトルが出力され、電流が逆方向の場合に下側ベクトルが出力される。電流が順方向の場合に上側ベクトルが出力されると、上側コンデンサ20が放電されて中電位VMが上昇する。また、電流が逆方向の場合に下側ベクトルが出力されると、下側コンデンサ22が充電されて中電位VMが上昇する。このように、第3規則では、正常角度範囲において、中電位VMが上昇する電圧ベクトルが選択される。 In this way, in the normal angle range, the upper vector is output when the current is in the forward direction, and the lower vector is output when the current is in the reverse direction. When the upper vector is output when the current is in the forward direction, the upper capacitor 20 is discharged and the medium potential VM rises. Further, when the lower vector is output when the current is in the opposite direction, the lower capacitor 22 is charged and the medium potential VM rises. Thus, in the third rule, the voltage vector in which the medium potential VM rises is selected in the normal angle range.
 以上に説明したように、第3規則では、制御回路70は、制限角度範囲では、許容ベクトルを出力する。上述したように、許容ベクトルを出力する場合には、中電位VMが上昇する場合と低下する場合がある。また、第3規則では、制御回路70は、正常角度範囲では、中電位VMを上昇させる電圧ベクトルを出力する。このため、第3規則を採用している期間全体としては、中電位VMが上昇する傾向となる。上述したように、第3規則は、中電位VMが基準値Vt2(制御目標値)よりも低いときに採用される。第3規則を採用することで、基準値Vt2よりも低い中電位VMを、基準値Vt2に近い値に引き戻すことができる。 As explained above, in the third rule, the control circuit 70 outputs an allowable vector in the limit angle range. As described above, when the permissible vector is output, the medium potential VM may increase or decrease. Further, according to the third rule, the control circuit 70 outputs a voltage vector that raises the medium potential VM in the normal angle range. Therefore, the medium potential VM tends to increase as a whole during the period in which the third rule is adopted. As described above, the third rule is adopted when the medium potential VM is lower than the reference value Vt2 (control target value). By adopting the third rule, the medium potential VM lower than the reference value Vt2 can be pulled back to a value close to the reference value Vt2.
(A-3.第1規則)
 第1規則では、制御回路70は、指令値ベクトルの角度θと、制限出力配線60xに流れる電流の向きに応じて、図27の表1に従って特定電圧ベクトルを選択する。
(A-3. First rule)
In the first rule, the control circuit 70 selects a specific voltage vector according to Table 1 of FIG. 27 according to the angle θ of the command value vector and the direction of the current flowing through the limited output wiring 60x.
 図27の表1と表2を比較することで明らかなように、制限出力配線60xに流れる電流が順方向であり、指令値ベクトルの角度θが制限角度範囲内にあるときに、第1規則(表1)は第2規則(表2)と異なる。その他の場合には、第1規則(表1)は第2規則(表2)と等しい。 As is clear from comparing Table 1 and Table 2 of FIG. 27, the first rule is when the current flowing through the limited output wiring 60x is in the forward direction and the angle θ of the command value vector is within the limited angle range. (Table 1) is different from the second rule (Table 2). In other cases, the first rule (Table 1) is equal to the second rule (Table 2).
 第1規則では、制限出力配線60xに流れる電流が順方向であり、指令値ベクトルの角度θが制限角度範囲内にあるときに、制御回路70は、特定電圧ベクトルとしてゼロベクトルを選択する。なお、ゼロベクトルとは、3つの出力配線60の電位が同電位となる電圧ベクトルである。セロベクトルには、(0,0,0)、(1,1,1)、(2,2,2)が含まれる。ここでは、制御回路70は、禁止電位(低電位VL)を含まないゼロベクトル(すなわち、(1,1,1)または(2,2,2))を特定電圧ベクトルとして選択する。制御回路70は、特定電圧ベクトル(すなわち、ゼロベクトル)を出力する。 In the first rule, when the current flowing through the limit output wiring 60x is in the forward direction and the angle θ of the command value vector is within the limit angle range, the control circuit 70 selects a zero vector as the specific voltage vector. The zero vector is a voltage vector in which the potentials of the three output wirings 60 are the same potential. The cello vector includes (0,0,0), (1,1,1), (2,2,2). Here, the control circuit 70 selects a zero vector (that is, (1,1,1) or (2,2,2)) that does not include the prohibited potential (low potential VL) as the specific voltage vector. The control circuit 70 outputs a specific voltage vector (that is, a zero vector).
 第2規則に関して上述したように、禁止電位が低電位VLの場合には、電流が順方向のときに許容ベクトルを出力すると中電位VMが上昇する。第1規則は、中電位VMが極端に高いとき(すなわち、中電位VMが上側制限値Vt1よりも高いとき)に採用される。このように、中電位VMが極端に高いときには、中電位VMをなるべく速く低下させることが好ましい。したがって、制御回路70は、許容ベクトルを出力すると中電位VMが上昇するタイミング(すなわち、電流が順方向のタイミング)では許容ベクトルの出力を中止して、ゼロベクトルを出力する。このため、第1規則では、第2規則よりも中電位VMを速く低下させることができ、中電位VMを基準値Vt2に近い値により速く引き戻すことができる。このように、中電位VMが極端に上昇した場合に採用される第1規則では、モータ90への電力供給よりも中電位VMを低下させることを優先させて、中電位VMを適正値に制御する。 As described above with respect to the second rule, when the forbidden potential is the low potential VL, the medium potential VM rises when the permissible vector is output when the current is in the forward direction. The first rule is adopted when the medium potential VM is extremely high (that is, when the medium potential VM is higher than the upper limit value Vt1). As described above, when the medium potential VM is extremely high, it is preferable to reduce the medium potential VM as quickly as possible. Therefore, the control circuit 70 stops the output of the permissible vector at the timing when the medium potential VM rises when the permissible vector is output (that is, the timing when the current is in the forward direction) and outputs the zero vector. Therefore, in the first rule, the medium potential VM can be lowered faster than in the second rule, and the medium potential VM can be pulled back to a value closer to the reference value Vt2. In this way, in the first rule adopted when the medium potential VM rises extremely, the medium potential VM is controlled to an appropriate value by giving priority to lowering the medium potential VM over the power supply to the motor 90. do.
(A-4.第4規則)
 第4規則では、制御回路70は、指令値ベクトルの角度θと、制限出力配線60xに流れる電流の向きに応じて、図27の表4に従って特定電圧ベクトルを選択する。
(A-4. Fourth rule)
In the fourth rule, the control circuit 70 selects a specific voltage vector according to Table 4 of FIG. 27 according to the angle θ of the command value vector and the direction of the current flowing through the limited output wiring 60x.
 図27の表4と表3を比較することで明らかなように、制限出力配線60xに流れる電流が逆方向であり、指令値ベクトルの角度θが制限角度範囲内にあるときに、第4規則(表4)は第3規則(表3)と異なる。その他の場合には、第4規則(表4)は第3規則(表3)と等しい。 As is clear from comparing Tables 4 and 3 of FIG. 27, the fourth rule is when the current flowing through the limited output wiring 60x is in the opposite direction and the angle θ of the command value vector is within the limited angle range. (Table 4) is different from the third rule (Table 3). In other cases, Rule 4 (Table 4) is equal to Rule 3 (Table 3).
 第4規則では、制限出力配線60xに流れる電流が逆方向であり、指令値ベクトルの角度θが制限角度範囲内にあるときに、制御回路70は、特定電圧ベクトルとしてゼロベクトルを選択する。ここでは、制御回路70は、禁止電位(低電位VL)を含まないゼロベクトル(すなわち、(1,1,1)または(2,2,2))を特定電圧ベクトルとして選択する。制御回路70は、特定電圧ベクトル(すなわち、ゼロベクトル)を出力する。 In the fourth rule, when the current flowing through the limit output wiring 60x is in the opposite direction and the angle θ of the command value vector is within the limit angle range, the control circuit 70 selects a zero vector as the specific voltage vector. Here, the control circuit 70 selects a zero vector (that is, (1,1,1) or (2,2,2)) that does not include the prohibited potential (low potential VL) as the specific voltage vector. The control circuit 70 outputs a specific voltage vector (that is, a zero vector).
 第3規則に関して上述したように、禁止電位が低電位VLの場合には、電流が逆方向のときに許容ベクトルを出力すると中電位VMが低下する。第4規則は、中電位VMが極端に低いとき(すなわち、中電位VMが下側制限値Vt3よりも低いとき)に採用される。このように、中電位VMが極端に低いときには、中電位VMをなるべく速く上昇させることが好ましい。したがって、制御回路70は、許容ベクトルを出力すると中電位VMが低下するタイミング(すなわち、電流が逆方向のタイミング)では許容ベクトルの出力を中止して、ゼロベクトルを出力する。このため、第4規則では、第3規則よりも中電位VMを速く上昇させることができ、中電位VMを基準値Vt2に近い値により速く引き戻すことができる。このように、中電位VMが極端に低下した場合に採用される第4規則では、モータ90への電力供給よりも中電位VMを上昇させることを優先させて、中電位VMを適正値に制御する。 As described above with respect to the third rule, when the forbidden potential is the low potential VL, the medium potential VM decreases when the allowable vector is output when the current is in the opposite direction. The fourth rule is adopted when the medium potential VM is extremely low (that is, when the medium potential VM is lower than the lower limit value Vt3). As described above, when the medium potential VM is extremely low, it is preferable to raise the medium potential VM as quickly as possible. Therefore, the control circuit 70 stops the output of the permissible vector at the timing when the medium potential VM decreases when the permissible vector is output (that is, the timing when the current is in the opposite direction) and outputs the zero vector. Therefore, in the fourth rule, the medium potential VM can be raised faster than in the third rule, and the medium potential VM can be pulled back to a value closer to the reference value Vt2. In this way, in the fourth rule adopted when the medium potential VM is extremely lowered, the medium potential VM is controlled to an appropriate value by giving priority to raising the medium potential VM over the power supply to the motor 90. do.
 以上に説明したように、禁止電位が低電位VLの場合には、中電位VMに応じて第1~第4規則が採用されることで、中電位VMが基準値Vt2近傍の値に制御されながら、電圧ベクトルが回転するように出力される。したがって、三相交流電流を継続的に生成して、モータ90を継続的に駆動させることができる。 As described above, when the prohibited potential is the low potential VL, the medium potential VM is controlled to a value near the reference value Vt2 by adopting the first to fourth rules according to the medium potential VM. However, the voltage vector is output so as to rotate. Therefore, the three-phase alternating current can be continuously generated to drive the motor 90 continuously.
 なお、禁止電位が低電位VLの場合の非常動作では、第1~第4規則に従って特定電圧ベクトルが選択されることで、制限出力配線60xの電位が高電位VHと中電位VMの2レベルで制御され、2つの正常出力配線60yの電位が高電位VH、中電位VM、及び、低電位VLの3レベルで制御される。 In the emergency operation when the prohibited potential is the low potential VL, the potential of the limiting output wiring 60x is set to two levels of the high potential VH and the medium potential VM by selecting the specific voltage vector according to the first to fourth rules. Controlled, the potentials of the two normal output wirings 60y are controlled at three levels: high potential VH, medium potential VM, and low potential VL.
 なお、図4の電圧ベクトルE2、E3のように、指令値ベクトルがパラメータとして小数を含む場合には、制御回路70は、第1~第4規則に従って指令値ベクトルの周辺で複数の特定電圧ベクトルを選択し、選択した複数の特定電圧ベクトルを時間的にずらして出力することでこれらの特定電圧ベクトルを合成して指令値ベクトルと同じ角度θを有する電圧ベクトルを出力してもよい。 When the command value vector includes a fraction as a parameter as in the voltage vectors E2 and E3 of FIG. 4, the control circuit 70 has a plurality of specific voltage vectors around the command value vector according to the first to fourth rules. Is selected, and a plurality of selected specific voltage vectors are output with a time lag, so that these specific voltage vectors may be combined and a voltage vector having the same angle θ as the command value vector may be output.
(A-5.制御の例)
 図28は、禁止電位が低電位VLの場合の非常動作の一例を示している。図28の例では、制限出力配線60xがW相出力配線60wである。図28のグラフは、指令値ベクトルの角度θの正弦(sinθ)を示している。0°≦θ≦120°が制限角度範囲である。また、図28の最下部の表に、第1規則、第2規則、第3規則、第4規則のそれぞれで出力される電圧ベクトル(特定電圧ベクトル)が示されている。
(A-5. Example of control)
FIG. 28 shows an example of an emergency operation when the prohibited potential is a low potential VL. In the example of FIG. 28, the limited output wiring 60x is the W phase output wiring 60w. The graph of FIG. 28 shows the sine (sin θ) of the angle θ of the command value vector. 0 ° ≤ θ ≤ 120 ° is the limiting angle range. Further, the voltage vector (specific voltage vector) output by each of the first rule, the second rule, the third rule, and the fourth rule is shown in the table at the bottom of FIG. 28.
 第1規則では、θ=0°のタイミングでは、角度θが制限角度範囲内であり、モータ電流(制限出力配線60xに流れる電流)が順方向であるので、ゼロベクトルである(1,1,1)(または、(2,2,2))が出力される。θ=60°のタイミングでは、角度θが制限角度範囲内であり、モータ電流が逆方向であるので、許容ベクトルである(2,2,1)が出力される。θ=120°のタイミングでは、角度θが制限角度範囲内であり、モータ電流が逆方向であるので、許容ベクトルである(1,2,1)が出力される。θ=180°のタイミングでは、角度θが正常角度範囲内であり、モータ電流が逆方向であるので、上側ベクトルである(1,2,2)が出力される。θ=240°のタイミングでは、角度θが正常角度範囲内であり、モータ電流が順方向であるので、下側ベクトルである(0,0,1)が出力される。θ=300°のタイミングでは、角度θが正常角度範囲内であり、モータ電流が順方向であるので、下側ベクトルである(1,0,1)が出力される。 In the first rule, at the timing of θ = 0 °, the angle θ is within the limit angle range, and the motor current (current flowing through the limit output wiring 60x) is in the forward direction, so that it is a zero vector (1,1,1). 1) (or (2,2,2)) is output. At the timing of θ = 60 °, since the angle θ is within the limiting angle range and the motor current is in the opposite direction, the allowable vector (2, 2, 1) is output. At the timing of θ = 120 °, the angle θ is within the limit angle range and the motor current is in the opposite direction, so that the allowable vector (1, 2, 1) is output. At the timing of θ = 180 °, since the angle θ is within the normal angle range and the motor current is in the opposite direction, the upper vector (1, 2, 2) is output. At the timing of θ = 240 °, since the angle θ is within the normal angle range and the motor current is in the forward direction, the lower vector (0, 0, 1) is output. At the timing of θ = 300 °, since the angle θ is within the normal angle range and the motor current is in the forward direction, the lower vector (1, 0, 1) is output.
 第2規則では、θ=0°のタイミングでは、角度θが制限角度範囲内であり、モータ電流が順方向であるので、許容ベクトルである(2,1,1)が出力される。θ=60°のタイミングでは、角度θが制限角度範囲内であり、モータ電流が逆方向であるので、許容ベクトルである(2,2,1)が出力される。θ=120°のタイミングでは、角度θが制限角度範囲内であり、モータ電流が逆方向であるので、許容ベクトルである(1,2,1)が出力される。θ=180°のタイミングでは、角度θが正常角度範囲内であり、モータ電流が逆方向であるので、上側ベクトルである(1,2,2)が出力される。θ=240°のタイミングでは、角度θが正常角度範囲内であり、モータ電流が順方向であるので、下側ベクトルである(0,0,1)が出力される。θ=300°のタイミングでは、角度θが正常角度範囲内であり、モータ電流が順方向であるので、下側ベクトルである(1,0,1)が出力される。 In the second rule, at the timing of θ = 0 °, the angle θ is within the limit angle range and the motor current is in the forward direction, so that the allowable vector (2,1,1) is output. At the timing of θ = 60 °, since the angle θ is within the limiting angle range and the motor current is in the opposite direction, the allowable vector (2, 2, 1) is output. At the timing of θ = 120 °, the angle θ is within the limit angle range and the motor current is in the opposite direction, so that the allowable vector (1, 2, 1) is output. At the timing of θ = 180 °, since the angle θ is within the normal angle range and the motor current is in the opposite direction, the upper vector (1, 2, 2) is output. At the timing of θ = 240 °, since the angle θ is within the normal angle range and the motor current is in the forward direction, the lower vector (0, 0, 1) is output. At the timing of θ = 300 °, since the angle θ is within the normal angle range and the motor current is in the forward direction, the lower vector (1, 0, 1) is output.
 第3規則では、θ=0°のタイミングでは、角度θが制限角度範囲内であり、モータ電流が順方向であるので、許容ベクトルである(2,1,1)が出力される。θ=60°のタイミングでは、角度θが制限角度範囲内であり、モータ電流が逆方向であるので、許容ベクトルである(2,2,1)が出力される。θ=120°のタイミングでは、角度θが制限角度範囲内であり、モータ電流が逆方向であるので、許容ベクトルである(1,2,1)が出力される。θ=180°のタイミングでは、角度θが正常角度範囲内であり、モータ電流が逆方向であるので、下側ベクトルである(0,1,1)が出力される。θ=240°のタイミングでは、角度θが正常角度範囲内であり、モータ電流が順方向であるので、上側ベクトルである(1,1,2)が出力される。θ=300°のタイミングでは、角度θが正常角度範囲内であり、モータ電流が順方向であるので、上側ベクトルである(2,1,2)が出力される。 According to the third rule, at the timing of θ = 0 °, the angle θ is within the limit angle range and the motor current is in the forward direction, so that the allowable vector (2,1,1) is output. At the timing of θ = 60 °, since the angle θ is within the limiting angle range and the motor current is in the opposite direction, the allowable vector (2, 2, 1) is output. At the timing of θ = 120 °, the angle θ is within the limit angle range and the motor current is in the opposite direction, so that the allowable vector (1, 2, 1) is output. At the timing of θ = 180 °, since the angle θ is within the normal angle range and the motor current is in the opposite direction, the lower vector (0,1,1) is output. At the timing of θ = 240 °, since the angle θ is within the normal angle range and the motor current is in the forward direction, the upper vector (1, 1, 2) is output. At the timing of θ = 300 °, since the angle θ is within the normal angle range and the motor current is in the forward direction, the upper vector (2, 1, 2) is output.
 第4規則では、θ=0°のタイミングでは、角度θが制限角度範囲内であり、モータ電流が順方向であるので、許容ベクトルである(2,1,1)が出力される。θ=60°のタイミングでは、角度θが制限角度範囲内であり、モータ電流が逆方向であるので、ゼロベクトルである(1,1,1)が出力される。θ=120°のタイミングでは、角度θが制限角度範囲内であり、モータ電流が逆方向であるので、ゼロベクトルである(1,1,1)が出力される。θ=180°のタイミングでは、角度θが正常角度範囲内であり、モータ電流が逆方向であるので、下側ベクトルである(0,1,1)が出力される。θ=240°のタイミングでは、角度θが正常角度範囲内であり、モータ電流が順方向であるので、上側ベクトルである(1,1,2)が出力される。θ=300°のタイミングでは、角度θが正常角度範囲内であり、モータ電流が順方向であるので、上側ベクトルである(2,1,2)が出力される。 According to the fourth rule, at the timing of θ = 0 °, the angle θ is within the limit angle range and the motor current is in the forward direction, so that the allowable vector (2,1,1) is output. At the timing of θ = 60 °, since the angle θ is within the limit angle range and the motor current is in the opposite direction, a zero vector (1,1,1) is output. At the timing of θ = 120 °, since the angle θ is within the limit angle range and the motor current is in the opposite direction, a zero vector (1,1,1) is output. At the timing of θ = 180 °, since the angle θ is within the normal angle range and the motor current is in the opposite direction, the lower vector (0,1,1) is output. At the timing of θ = 240 °, since the angle θ is within the normal angle range and the motor current is in the forward direction, the upper vector (1, 1, 2) is output. At the timing of θ = 300 °, since the angle θ is within the normal angle range and the motor current is in the forward direction, the upper vector (2, 1, 2) is output.
 以上に説明したように、規則に応じて特定電圧ベクトルが選択されて出力されることで、中電位VMが基準値Vt2に近い値に制御される。 As explained above, the medium potential VM is controlled to a value close to the reference value Vt2 by selecting and outputting the specific voltage vector according to the rules.
(B.禁止電位が高電位VHの場合の非常動作)
 禁止電位が高電位VHの場合(すなわち、短絡故障素子が第3スイッチング素子43である場合)には、制御回路70は、中電位VMに応じて特定電圧ベクトルを選択する規則を変更する。制御回路70は、図29に示すフローチャートに従って、特定電圧ベクトルを選択する規則を、第5規則~第8規則の間で変更する。制御回路70は、指令回路72から指令値ベクトルを受信する毎に、図29に示すフローチャートを実行する。
(B. Emergency operation when the prohibited potential is high potential VH)
When the prohibited potential is the high potential VH (that is, when the short-circuit fault element is the third switching element 43), the control circuit 70 changes the rule for selecting the specific voltage vector according to the medium potential VM. The control circuit 70 changes the rule for selecting the specific voltage vector between the fifth rule and the eighth rule according to the flowchart shown in FIG. The control circuit 70 executes the flowchart shown in FIG. 29 each time a command value vector is received from the command circuit 72.
 図29のステップS20では、制御回路70は、中電位VMを検出し、検出した中電位VMについて判定する。制御回路70は、中電位VMが上側制限値Vt1以上の場合に第5規則を採用し、中電位VMが上側制限値Vt1より低く、かつ、基準値Vt2以上の場合に第6規則を採用し、中電位VMが基準値Vt2より低く、かつ、下側制限値Vt3以上の場合に第7規則を採用し、中電位VMが下側制限値Vt3より低い場合に第8規則を採用する。なお、第6規則と第7規則は、中電位VMが基準値Vt2(制御目標値)に近い場合に採用される規則であり、第5規則と第8規則は、中電位VMが基準値Vt2から大きく外れている場合に採用される規則である。 In step S20 of FIG. 29, the control circuit 70 detects the medium potential VM and determines the detected medium potential VM. The control circuit 70 adopts the fifth rule when the medium potential VM is the upper limit value Vt1 or more, and adopts the sixth rule when the medium potential VM is lower than the upper limit value Vt1 and is the reference value Vt2 or more. The seventh rule is adopted when the medium potential VM is lower than the reference value Vt2 and is equal to or higher than the lower limit value Vt3, and the eighth rule is adopted when the medium potential VM is lower than the lower limit value Vt3. The sixth and seventh rules are adopted when the medium potential VM is close to the reference value Vt2 (control target value), and the fifth and eighth rules are the rules in which the medium potential VM is the reference value Vt2. It is a rule adopted when it deviates greatly from.
 第5規則~第8規則のいずれでも、制御回路70は、受信した指令値ベクトルの角度θが、制限角度範囲内にあるか正常角度範囲内にあるかを判定する。図30は、禁止電位が高電位VHである場合の制限角度範囲406と正常角度範囲408を示している。なお、図30では、例として、W相出力配線60wが制限出力配線60xである場合を示している。図30において、Vwが「2」の電圧ベクトル(すなわち、(2,2,2)、(1,2,2)、(1,1,2)、(2,1,2)、(0,2,2)、(0,1,2)、(0,0,2)、(1,0,2)及び(2,0,2))が、禁止ベクトルである。これらの禁止ベクトルが存在する角度θの範囲が、制限角度範囲406である。図30においては、180°≦θ≦300°の角度範囲が制限角度範囲406である。図30では、許容ベクトルは、(1,1,1)、(0,0,0)、(0,1,1)、(0,0,1)及び(1,0,1)である。 In any of the fifth to eighth rules, the control circuit 70 determines whether the angle θ of the received command value vector is within the limit angle range or the normal angle range. FIG. 30 shows the limiting angle range 406 and the normal angle range 408 when the prohibited potential is the high potential VH. Note that FIG. 30 shows, as an example, a case where the W-phase output wiring 60w is the limited output wiring 60x. In FIG. 30, the voltage vector in which Vw is “2” (that is, (2,2,2), (1,2,2), (1,1,2), (2,1,2), (0, 2,2), (0,1,2), (0,0,2), (1,0,2) and (2,0,2)) are prohibited vectors. The range of the angle θ in which these prohibition vectors exist is the limit angle range 406. In FIG. 30, the angle range of 180 ° ≦ θ ≦ 300 ° is the limiting angle range 406. In FIG. 30, the permissible vectors are (1,1,1), (0,0,0), (0,1,1), (0,0,1) and (1,0,1).
 さらに、第5規則~第8規則のいずれでも、制御回路70は、制限出力配線60xに流れる電流が順方向か逆方向かを判定する。 Further, in any of the fifth to eighth rules, the control circuit 70 determines whether the current flowing through the limited output wiring 60x is in the forward direction or the reverse direction.
(B-1.第6規則)
 第6規則では、制御回路70は、受信した指令値ベクトルの角度θと、制限出力配線60xに流れる電流の向きに応じて、図31の表6に従って特定電圧ベクトルを選択する。
(B-1. 6th rule)
In the sixth rule, the control circuit 70 selects a specific voltage vector according to Table 6 of FIG. 31 according to the angle θ of the received command value vector and the direction of the current flowing through the limited output wiring 60x.
 図31の表6に示すように、制御回路70は、指令値ベクトルの角度θが制限角度範囲内にある場合には、制限出力配線60xに流れる電流の向きにかかわらず、許容ベクトルを特定電圧ベクトルとして選択する。ここでは、制御回路70は、指令値ベクトルの角度θと同じ角度θを有する許容ベクトルを、特定電圧ベクトルとして選択する。そして、制御回路70は、特定電圧ベクトルの通りに、3つの出力配線60の電位を制御する。このように、指令値ベクトルの角度θが制限角度範囲内にある場合には、指令値ベクトルと同じ角度θを有する許容ベクトルが出力される。これによって、禁止ベクトルの出力を防止しながら、指令値ベクトルと同じ角度θを有する電圧ベクトルを出力することが可能となる。 As shown in Table 6 of FIG. 31, when the angle θ of the command value vector is within the limit angle range, the control circuit 70 sets the allowable vector to a specific voltage regardless of the direction of the current flowing through the limit output wiring 60x. Select as a vector. Here, the control circuit 70 selects an allowable vector having the same angle θ as the angle θ of the command value vector as the specific voltage vector. Then, the control circuit 70 controls the potentials of the three output wirings 60 according to the specific voltage vector. As described above, when the angle θ of the command value vector is within the limit angle range, an allowable vector having the same angle θ as the command value vector is output. This makes it possible to output a voltage vector having the same angle θ as the command value vector while preventing the output of the prohibition vector.
 なお、禁止電位が高電位VHの場合には、許容ベクトルは必ず下側ベクトルである。制限出力配線60xに流れる電流が順方向のときに許容ベクトル(下側ベクトル)が出力されると、下側コンデンサ22が放電されて、中電位VMが低下する。制限出力配線60xに流れる電流が逆方向のときに許容ベクトル(下側ベクトル)が出力されると、下側コンデンサ22が充電されて、中電位VMが上昇する。 When the prohibited potential is high potential VH, the permissible vector is always the lower vector. If the allowable vector (lower vector) is output when the current flowing through the limited output wiring 60x is in the forward direction, the lower capacitor 22 is discharged and the medium potential VM is lowered. If the allowable vector (lower vector) is output when the current flowing through the limited output wiring 60x is in the opposite direction, the lower capacitor 22 is charged and the medium potential VM rises.
 図31の表6に示すように、制御回路70は、指令値ベクトルの角度θが正常角度範囲内にある場合には、制限出力配線60xに流れる電流の向きに応じて特定電圧ベクトルを選択する。制御回路70は、制限出力配線60xに流れる電流の向きが順方向の場合には、指令値ベクトルの角度θと同じ角度θを有する下側ベクトルを、特定電圧ベクトルとして選択する。制御回路70は、制限出力配線60xに流れる電流の向きが逆方向の場合には、指令値ベクトルの角度θと同じ角度θを有する上側ベクトルを、特定電圧ベクトルとして選択する。制御回路70は、特定電圧ベクトルの通りに、3つの出力配線60の電位を制御する。 As shown in Table 6 of FIG. 31, when the angle θ of the command value vector is within the normal angle range, the control circuit 70 selects a specific voltage vector according to the direction of the current flowing through the limited output wiring 60x. .. When the direction of the current flowing through the limited output wiring 60x is in the forward direction, the control circuit 70 selects a lower vector having the same angle θ as the angle θ of the command value vector as the specific voltage vector. When the direction of the current flowing through the limited output wiring 60x is opposite, the control circuit 70 selects an upper vector having the same angle θ as the angle θ of the command value vector as the specific voltage vector. The control circuit 70 controls the potentials of the three output wirings 60 according to the specific voltage vector.
 このように、正常角度範囲においては、電流が順方向の場合に下側ベクトルが出力され、電流が逆方向の場合に上側ベクトルが出力される。電流が順方向の場合に下側ベクトルが出力されると、下側コンデンサ22が放電されて中電位VMが低下する。また、電流が逆方向の場合に上側ベクトルが出力されると、上側コンデンサ20が充電されて中電位VMが低下する。このように、第6規則では、正常角度範囲において、中電位VMが低下する電圧ベクトルが選択される。 In this way, in the normal angle range, the lower vector is output when the current is in the forward direction, and the upper vector is output when the current is in the reverse direction. When the lower vector is output when the current is in the forward direction, the lower capacitor 22 is discharged and the medium potential VM is lowered. Further, when the upper vector is output when the current is in the opposite direction, the upper capacitor 20 is charged and the medium potential VM is lowered. Thus, in the sixth rule, the voltage vector at which the medium potential VM decreases is selected in the normal angle range.
 以上に説明したように、第6規則では、制御回路70は、制限角度範囲では、許容ベクトルを出力する。上述したように、許容ベクトルを出力する場合には、中電位VMが上昇する場合と低下する場合がある。また、第6規則では、制御回路70は、正常角度範囲では、中電位VMを低下させる電圧ベクトルを出力する。このため、第6規則を採用している期間全体としては、中電位VMが低下する傾向となる。上述したように、第6規則は、中電位VMが基準値Vt2(制御目標値)よりも高いときに採用される。第6規則を採用することで、基準値Vt2よりも高い中電位VMを、基準値Vt2に近い値に引き戻すことができる。 As explained above, in the sixth rule, the control circuit 70 outputs an allowable vector in the limit angle range. As described above, when the permissible vector is output, the medium potential VM may increase or decrease. Further, according to the sixth rule, the control circuit 70 outputs a voltage vector that lowers the medium potential VM in the normal angle range. Therefore, the medium potential VM tends to decrease as a whole during the period in which the sixth rule is adopted. As described above, the sixth rule is adopted when the medium potential VM is higher than the reference value Vt2 (control target value). By adopting the sixth rule, the medium potential VM higher than the reference value Vt2 can be pulled back to a value close to the reference value Vt2.
(B-2.第7規則)
 第7規則では、制御回路70は、受信した指令値ベクトルの角度θと、制限出力配線60xに流れる電流の向きに応じて、図31の表7に従って特定電圧ベクトルを選択する。
(B-2. 7th rule)
In the seventh rule, the control circuit 70 selects a specific voltage vector according to Table 7 of FIG. 31 according to the angle θ of the received command value vector and the direction of the current flowing through the limited output wiring 60x.
 図31の表7に示すように、制御回路70は、指令値ベクトルの角度θが制限角度範囲内にある場合には、制限出力配線60xに流れる電流の向きにかかわらず、許容ベクトルを特定電圧ベクトルとして選択する。ここでは、制御回路70は、指令値ベクトルの角度θと同じ角度θを有する許容ベクトルを、特定電圧ベクトルとして選択する。すなわち、制限角度範囲における第7規則は、制限角度範囲における第6規則と等しい。このように、指令値ベクトルの角度θが制限角度範囲内にある場合には、指令値ベクトルと同じ角度θを有する許容ベクトルが出力される。これによって、禁止ベクトルの出力を防止しながら、指令値ベクトルと同じ角度を有する電圧ベクトルを出力することが可能となる。 As shown in Table 7 of FIG. 31, when the angle θ of the command value vector is within the limit angle range, the control circuit 70 sets the allowable vector to a specific voltage regardless of the direction of the current flowing through the limit output wiring 60x. Select as a vector. Here, the control circuit 70 selects an allowable vector having the same angle θ as the angle θ of the command value vector as the specific voltage vector. That is, the seventh rule in the limiting angle range is equal to the sixth rule in the limiting angle range. As described above, when the angle θ of the command value vector is within the limit angle range, an allowable vector having the same angle θ as the command value vector is output. This makes it possible to output a voltage vector having the same angle as the command value vector while preventing the output of the prohibition vector.
 なお、制限出力配線60xに流れる電流が順方向のときに許容ベクトル(下側ベクトル)が出力されると、下側コンデンサ22が放電されて、中電位VMが低下する。制限出力配線60xに流れる電流が逆方向のときに許容ベクトル(下側ベクトル)が出力されると、下側コンデンサ22が充電されて、中電位VMが上昇する。 If the allowable vector (lower vector) is output when the current flowing through the limited output wiring 60x is in the forward direction, the lower capacitor 22 is discharged and the medium potential VM is lowered. If the allowable vector (lower vector) is output when the current flowing through the limited output wiring 60x is in the opposite direction, the lower capacitor 22 is charged and the medium potential VM rises.
 図31の表7に示すように、制御回路70は、指令値ベクトルの角度θが正常角度範囲内にある場合には、制限出力配線60xに流れる電流の向きに応じて特定電圧ベクトルを選択する。制御回路70は、制限出力配線60xに流れる電流の向きが順方向の場合には、指令値ベクトルの角度θと同じ角度θを有する上側ベクトルを、特定電圧ベクトルとして選択する。また、制御回路70は、制限出力配線60xに流れる電流の向きが逆方向の場合には、指令値ベクトルの角度θと同じ角度θを有する下側ベクトルを、特定電圧ベクトルとして選択する。制御回路70は、特定電圧ベクトルの通りに、3つの出力配線60の電位を制御する。 As shown in Table 7 of FIG. 31, when the angle θ of the command value vector is within the normal angle range, the control circuit 70 selects a specific voltage vector according to the direction of the current flowing through the limited output wiring 60x. .. When the direction of the current flowing through the limited output wiring 60x is in the forward direction, the control circuit 70 selects an upper vector having the same angle θ as the angle θ of the command value vector as the specific voltage vector. Further, when the direction of the current flowing through the limited output wiring 60x is opposite, the control circuit 70 selects a lower vector having the same angle θ as the angle θ of the command value vector as the specific voltage vector. The control circuit 70 controls the potentials of the three output wirings 60 according to the specific voltage vector.
 このように、正常角度範囲においては、電流が順方向の場合に上側ベクトルが出力され、電流が逆方向の場合に下側ベクトルが出力される。電流が順方向の場合に上側ベクトルが出力されると、上側コンデンサ20が放電されて中電位VMが上昇する。また、電流が逆方向の場合に下側ベクトルが出力されると、下側コンデンサ22が充電されて中電位VMが上昇する。このように、第7規則では、正常角度範囲において、中電位VMが上昇する電圧ベクトルが選択される。 In this way, in the normal angle range, the upper vector is output when the current is in the forward direction, and the lower vector is output when the current is in the reverse direction. When the upper vector is output when the current is in the forward direction, the upper capacitor 20 is discharged and the medium potential VM rises. Further, when the lower vector is output when the current is in the opposite direction, the lower capacitor 22 is charged and the medium potential VM rises. Thus, in the seventh rule, the voltage vector in which the medium potential VM rises is selected in the normal angle range.
 以上に説明したように、第7規則では、制御回路70は、制限角度範囲では、許容ベクトルを出力する。上述したように、許容ベクトルを出力する場合には、中電位VMが上昇する場合と低下する場合がある。また、第7規則では、制御回路70は、正常角度範囲では、中電位VMを上昇させる電圧ベクトルを出力する。このため、第7規則を採用している期間全体としては、中電位VMが上昇する傾向となる。上述したように、第7規則は、中電位VMが基準値Vt2(制御目標値)よりも低いときに採用される。第7規則を採用することで、基準値Vt2よりも低い中電位VMを、基準値Vt2に近い値に引き戻すことができる。 As explained above, in the seventh rule, the control circuit 70 outputs an allowable vector in the limit angle range. As described above, when the permissible vector is output, the medium potential VM may increase or decrease. Further, according to the seventh rule, the control circuit 70 outputs a voltage vector that raises the medium potential VM in the normal angle range. Therefore, the medium potential VM tends to increase as a whole during the period in which the seventh rule is adopted. As described above, the seventh rule is adopted when the medium potential VM is lower than the reference value Vt2 (control target value). By adopting the seventh rule, the medium potential VM lower than the reference value Vt2 can be pulled back to a value close to the reference value Vt2.
(B-3.第5規則)
 第5規則では、制御回路70は、指令値ベクトルの角度θと、制限出力配線60xに流れる電流の向きに応じて、図31の表5に従って特定電圧ベクトルを選択する。
(B-3. Rule 5)
In the fifth rule, the control circuit 70 selects a specific voltage vector according to Table 5 of FIG. 31 according to the angle θ of the command value vector and the direction of the current flowing through the limited output wiring 60x.
 図31の表5と表6を比較することで明らかなように、制限出力配線60xに流れる電流が逆方向であり、指令値ベクトルの角度θが制限角度範囲内にあるときには、第5規則(表5)は第6規則(表6)と異なる。その他の場合には、第5規則(表5)は第6規則(表6)と等しい。 As is clear from comparing Tables 5 and 6 of FIG. 31, when the current flowing through the limited output wiring 60x is in the opposite direction and the angle θ of the command value vector is within the limited angle range, the fifth rule ( Table 5) is different from the sixth rule (Table 6). In other cases, Rule 5 (Table 5) is equal to Rule 6 (Table 6).
 第5規則では、制限出力配線60xに流れる電流が逆方向であり、指令値ベクトルの角度θが制限角度範囲内にあるときに、制御回路70は、特定電圧ベクトルとしてゼロベクトルを選択する。ここでは、制御回路70は、禁止電位(高電位VH)を含まないゼロベクトル(すなわち、(0,0,0)または(1,1,1))を特定電圧ベクトルとして選択する。制御回路70は、特定電圧ベクトル(すなわち、ゼロベクトル)を出力する。 In the fifth rule, when the current flowing through the limit output wiring 60x is in the opposite direction and the angle θ of the command value vector is within the limit angle range, the control circuit 70 selects a zero vector as the specific voltage vector. Here, the control circuit 70 selects a zero vector (that is, (0,0,0) or (1,1,1)) that does not include the prohibited potential (high potential VH) as the specific voltage vector. The control circuit 70 outputs a specific voltage vector (that is, a zero vector).
 第6規則に関して上述したように、制限角度範囲においては、電流が逆方向のときに許容ベクトルを出力すると中電位VMが上昇する。第5規則は、中電位VMが極端に高いとき(すなわち、中電位VMが上側制限値Vt1よりも高いとき)に採用される。このように、中電位VMが極端に高いときには、中電位VMをなるべく速く低下させることが好ましい。したがって、制御回路70は、許容ベクトルを出力すると中電位VMが上昇するタイミング(すなわち、電流が逆方向のタイミング)では許容ベクトルの出力を中止して、ゼロベクトルを出力する。このため、第5規則では、第6規則よりも中電位VMを速く低下させることができ、中電位VMを基準値Vt2に近い値により速く引き戻すことができる。このように、中電位VMが極端に上昇した場合に採用される第5規則では、モータ90への電力供給よりも中電位VMを低下させることを優先させて、中電位VMを適正値に制御する。 As described above with respect to the sixth rule, in the limiting angle range, if the allowable vector is output when the current is in the opposite direction, the medium potential VM rises. The fifth rule is adopted when the medium potential VM is extremely high (that is, when the medium potential VM is higher than the upper limit value Vt1). As described above, when the medium potential VM is extremely high, it is preferable to reduce the medium potential VM as quickly as possible. Therefore, the control circuit 70 stops the output of the permissible vector at the timing when the medium potential VM rises when the permissible vector is output (that is, the timing when the current is in the opposite direction) and outputs the zero vector. Therefore, in the fifth rule, the medium potential VM can be lowered faster than in the sixth rule, and the medium potential VM can be pulled back to a value closer to the reference value Vt2. In this way, in the fifth rule adopted when the medium potential VM rises extremely, the medium potential VM is controlled to an appropriate value by giving priority to lowering the medium potential VM over the power supply to the motor 90. do.
(B-4.第8規則)
 第8規則では、制御回路70は、指令値ベクトルの角度θと、制限出力配線60xに流れる電流の向きに応じて、図31の表8に従って特定電圧ベクトルを選択する。
(B-4. 8th rule)
In the eighth rule, the control circuit 70 selects a specific voltage vector according to Table 8 of FIG. 31 according to the angle θ of the command value vector and the direction of the current flowing through the limited output wiring 60x.
 図31の表8と表7を比較することで明らかなように、制限出力配線60xに流れる電流が順方向であり、指令値ベクトルの角度θが制限角度範囲内にあるときに、第8規則(表8)は、第7規則(表7)と異なる。その他の場合には、第8規則(表8)は、第7規則(表7)と等しい。 As is clear from comparing Tables 8 and 7 of FIG. 31, the eighth rule is when the current flowing through the limited output wiring 60x is in the forward direction and the angle θ of the command value vector is within the limited angle range. (Table 8) is different from the seventh rule (Table 7). In other cases, Rule 8 (Table 8) is equivalent to Rule 7 (Table 7).
 第8規則では、制限出力配線60xに流れる電流が順方向であり、指令値ベクトルの角度θが制限角度範囲内にあるときに、制御回路70は、特定電圧ベクトルとしてゼロベクトルを選択する。ここでは、制御回路70は、禁止電位(高電位VH)を含まないゼロベクトル(すなわち、(0,0,0)または(1,1,1))を特定電圧ベクトルとして選択する。制御回路70は、特定電圧ベクトル(すなわち、ゼロベクトル)を出力する。 In the eighth rule, when the current flowing through the limit output wiring 60x is in the forward direction and the angle θ of the command value vector is within the limit angle range, the control circuit 70 selects a zero vector as the specific voltage vector. Here, the control circuit 70 selects a zero vector (that is, (0,0,0) or (1,1,1)) that does not include the prohibited potential (high potential VH) as the specific voltage vector. The control circuit 70 outputs a specific voltage vector (that is, a zero vector).
 第7規則に関して上述したように、禁止電位が高電位VHの場合には、電流が順方向のときに許容ベクトルを出力すると中電位VMが低下する。第8規則は、中電位VMが極端に低いとき(すなわち、中電位VMが下側制限値Vt3よりも低いとき)に採用される。このように、中電位VMが極端に低いときには、中電位VMをなるべく速く上昇させることが好ましい。したがって、制御回路70は、許容ベクトルを出力すると中電位VMが低下するタイミング(すなわち、電流が順方向のタイミング)では許容ベクトルの出力を中止して、ゼロベクトルを出力する。このため、第8規則では、第7規則よりも中電位VMを速く上昇させることができ、中電位VMを基準値Vt2に近い値により速く引き戻すことができる。このように、中電位VMが極端に低下した場合に採用される第8規則では、モータ90への電力供給よりも中電位VMを上昇させることを優先させて、中電位VMを適正値に制御する。 As described above with respect to the seventh rule, when the prohibited potential is the high potential VH, the medium potential VM decreases when the allowable vector is output when the current is in the forward direction. The eighth rule is adopted when the medium potential VM is extremely low (that is, when the medium potential VM is lower than the lower limit value Vt3). As described above, when the medium potential VM is extremely low, it is preferable to raise the medium potential VM as quickly as possible. Therefore, the control circuit 70 stops the output of the permissible vector at the timing when the medium potential VM decreases when the permissible vector is output (that is, the timing when the current is in the forward direction) and outputs the zero vector. Therefore, in the eighth rule, the medium potential VM can be raised faster than in the seventh rule, and the medium potential VM can be pulled back to a value closer to the reference value Vt2. In this way, in the eighth rule adopted when the medium potential VM is extremely lowered, the medium potential VM is controlled to an appropriate value by giving priority to raising the medium potential VM over the power supply to the motor 90. do.
 以上に説明したように、禁止電位が高電位VHの場合には、中電位VMに応じて第5~第8規則が採用されることで、中電位VMが基準値Vt2近傍の値に制御されながら、電圧ベクトルが回転するように出力される。したがって、三相交流電流を継続的に生成して、モータ90を継続的に駆動させることができる。 As described above, when the prohibited potential is the high potential VH, the medium potential VM is controlled to a value near the reference value Vt2 by adopting the fifth to eighth rules according to the medium potential VM. However, the voltage vector is output so as to rotate. Therefore, the three-phase alternating current can be continuously generated to drive the motor 90 continuously.
 なお、禁止電位が高電位VHの場合の非常動作では、第5~第8規則に従って特定電圧ベクトルが選択されることで、制限出力配線60xの電位が中電位VMと低電位VLの2レベルで制御され、2つの正常出力配線60yの電位が高電位VH、中電位VM、及び、低電位VLの3レベルで制御される。 In the emergency operation when the prohibited potential is the high potential VH, the potential of the limiting output wiring 60x is set to two levels of the medium potential VM and the low potential VL by selecting the specific voltage vector according to the fifth to eighth rules. Controlled, the potentials of the two normal output wirings 60y are controlled at three levels: high potential VH, medium potential VM, and low potential VL.
 なお、図4の電圧ベクトルE2、E3のように、指令値ベクトルがパラメータとして小数を含む場合には、制御回路70は、第5~第8規則に従って指令値ベクトルの周辺で複数の特定電圧ベクトルを選択し、選択した複数の特定電圧ベクトルを時間的にずらして出力することでこれらの特定電圧ベクトルを合成して指令値ベクトルと同じ角度θを有する電圧ベクトルを出力してもよい。 When the command value vector includes a fraction as a parameter as in the voltage vectors E2 and E3 of FIG. 4, the control circuit 70 has a plurality of specific voltage vectors around the command value vector according to the fifth to eighth rules. Is selected, and a plurality of selected specific voltage vectors are output with a time lag, so that these specific voltage vectors may be combined and a voltage vector having the same angle θ as the command value vector may be output.
 なお、上述した実施例3では、制限出力配線60xに流れる電流が順方向と逆方向の場合について説明した。しかしながら、動作中に、一部の出力配線60に順方向に電流が流れ、残りの出力配線60に逆方向に電流が流れる場合がある。このような場合でも、制御回路70は、各出力配線60に流れる電流の向きと大きさに応じて、中電位VMを上昇させる電圧ベクトルと中電位VMを低下させる電圧ベクトルのいずれかを適宜選択して出力し、中電位VMを基準値Vt2に近い値に制御することができる。 In the third embodiment described above, the case where the current flowing through the limited output wiring 60x is in the forward direction and the reverse direction has been described. However, during operation, a current may flow in a forward direction to some of the output wirings 60, and a current may flow in a reverse direction to the remaining output wirings 60. Even in such a case, the control circuit 70 appropriately selects either a voltage vector that raises the medium potential VM or a voltage vector that lowers the medium potential VM according to the direction and magnitude of the current flowing through each output wiring 60. And output, and the medium potential VM can be controlled to a value close to the reference value Vt2.
(実施例4)
 実施例4のインバータでは、非常動作が実施例2とは異なる。より詳細には、実施例4のインバータでは、指令値ベクトルの角度θが正常範囲内にあるときの制御回路70の動作が実施例3と異なる。指令値ベクトルの角度θが制限範囲内にあるときの制御回路70の動作は、実施例4と実施例3とで等しい。
(Example 4)
In the inverter of the fourth embodiment, the emergency operation is different from that of the second embodiment. More specifically, in the inverter of the fourth embodiment, the operation of the control circuit 70 when the angle θ of the command value vector is within the normal range is different from that of the third embodiment. The operation of the control circuit 70 when the angle θ of the command value vector is within the limit range is the same in the fourth embodiment and the third embodiment.
 実施例4では、指令値ベクトルの角度θが正常範囲内にあるときの制御回路70の動作は、第1~第8規則で共通である。実施例4では、制御回路70は、上側ベクトルのグループと下側ベクトルのグループのうちのいずれかを選択し、選択したグループの中で指令値ベクトルと角度θが等しい電圧ベクトルを選択して出力する。図32は、実施例4において、指令値ベクトルの角度θが正常範囲内にあるときの制御回路70の動作を示している。制御回路70は、図32に示す処理を繰り返し実行する。制御回路70は、ステップS40で、中電位VMを検出し、中電位VMと基準値Vt2(制御目標値)の差ΔVMを算出する。なお、差ΔVMは、絶対値として算出される。制御回路70は、算出した差ΔVMを記憶する。差ΔVM算出した以降に、ステップS42~S48が実行される。ステップS42~S48が実行された結果、中電位VMが変動する。次の制御フェーズのステップS40で、再度、差ΔVMが算出される。以下では、今回の制御フェーズで算出された差ΔVMを差ΔVM1といい、前回の制御フェーズで算出された差ΔVMを差ΔVM2という。ステップS42では、制御回路70は、今回の制御フェーズで算出した差ΔVM1が、許容値α以内であるか否かを判定する。ステップS42でYESの場合には、制御回路70は、ステップS48で、前回の制御フェーズで出力した電圧ベクトルと同じグループ(すなわち、上側ベクトルのグループと下側ベクトルのグループのいずれか一方)の中で指令値ベクトルと同じ角度θを有する電圧ベクトルを特定電圧ベクトルとして選択し、出力する。また、ステップS42でNOの場合には、ステップS44で、制御回路70は、今回の制御フェーズで算出した差ΔVM1が、前回の制御フェーズで算出した差ΔVM2以下であるか否かを判定する。すなわち、制御回路70は、中電位VMが前回の制御フェーズよりも基準値Vt2(制御目標値)に近づいたか否かを判定する。ステップS44でYESの場合には、ステップS48が実行される。ステップS44でNOの場合には、ステップS46で、制御回路70は、前回の制御フェーズで出力した電圧ベクトルとは異なるグループ(すなわち、上側ベクトルのグループと下側ベクトルのグループのいずれか一方)の中で指令値ベクトルと同じ角度θを有する電圧ベクトルを特定電圧ベクトルとして選択し、出力する。 In the fourth embodiment, the operation of the control circuit 70 when the angle θ of the command value vector is within the normal range is common to the first to eighth rules. In the fourth embodiment, the control circuit 70 selects one of the upper vector group and the lower vector group, and selects and outputs a voltage vector having the same command value vector and angle θ in the selected group. do. FIG. 32 shows the operation of the control circuit 70 when the angle θ of the command value vector is within the normal range in the fourth embodiment. The control circuit 70 repeatedly executes the process shown in FIG. 32. In step S40, the control circuit 70 detects the medium potential VM and calculates the difference ΔVM between the medium potential VM and the reference value Vt2 (control target value). The difference ΔVM is calculated as an absolute value. The control circuit 70 stores the calculated difference ΔVM. After the difference ΔVM is calculated, steps S42 to S48 are executed. As a result of executing steps S42 to S48, the medium potential VM fluctuates. In step S40 of the next control phase, the difference ΔVM is calculated again. Hereinafter, the difference ΔVM calculated in the current control phase is referred to as a difference ΔVM1, and the difference ΔVM calculated in the previous control phase is referred to as a difference ΔVM2. In step S42, the control circuit 70 determines whether or not the difference ΔVM1 calculated in the current control phase is within the permissible value α. If YES in step S42, the control circuit 70 is in the same group as the voltage vector output in the previous control phase in step S48 (that is, either the upper vector group or the lower vector group). Selects a voltage vector having the same angle θ as the command value vector as a specific voltage vector and outputs it. If NO in step S42, in step S44, the control circuit 70 determines whether or not the difference ΔVM1 calculated in the current control phase is equal to or less than the difference ΔVM2 calculated in the previous control phase. That is, the control circuit 70 determines whether or not the medium potential VM is closer to the reference value Vt2 (control target value) than the previous control phase. If YES in step S44, step S48 is executed. If NO in step S44, in step S46, the control circuit 70 is in a group different from the voltage vector output in the previous control phase (that is, either the upper vector group or the lower vector group). Among them, a voltage vector having the same angle θ as the command value vector is selected as a specific voltage vector and output.
 実施例4では、中電位VMが基準値Vt2から許容値α以上に外れた場合には、差ΔVMが縮小するように電圧ベクトルが選択される。これによって、中電位VMが基準値Vt2から大きくずれることが抑制される。また、実施例4によれば、出力配線60の電流の検出値によらず、適切に電圧ベクトルを出力することができる。制御速度に対して電流の検出速度が十分でない場合でも、実施例4の構成によれば、中電位VMを適正値に制御することができる。 In Example 4, when the medium potential VM deviates from the reference value Vt2 to the allowable value α or more, the voltage vector is selected so that the difference ΔVM is reduced. As a result, it is possible to prevent the medium potential VM from deviating significantly from the reference value Vt2. Further, according to the fourth embodiment, the voltage vector can be appropriately output regardless of the detected value of the current of the output wiring 60. Even when the current detection speed is not sufficient with respect to the control speed, the medium potential VM can be controlled to an appropriate value according to the configuration of the fourth embodiment.
 なお、上述した実施例3、4以外の構成で、非常動作時に、中電位VMを制御しながら、三相交流電流を生成してもよい。制限出力配線の電位を禁止電位を除く2レベルで制御し、正常出力配線の電位を高電位VH、中電位VM、及び、低電位VLの3レベルで制御することで、実施例1、2以外の規則で電圧ベクトルを出力しても、中電位VMを適切に制御することが可能である。例えば、正常角度範囲の一部において、数値「0」と数値「2」のみによって構成される電圧ベクトルや、数値「0」、数値「1」、数値「2」のすべてを含む電圧ベクトルを出力してもよい。 Note that, in a configuration other than the above-mentioned Examples 3 and 4, a three-phase alternating current may be generated while controlling the medium potential VM during an emergency operation. By controlling the potential of the limited output wiring at two levels excluding the prohibited potential and controlling the potential of the normal output wiring at three levels of high potential VH, medium potential VM, and low potential VL, other than Examples 1 and 2. Even if the voltage vector is output according to the rule of, it is possible to appropriately control the medium potential VM. For example, in a part of the normal angle range, a voltage vector consisting of only the numerical values "0" and the numerical value "2" and a voltage vector including all the numerical values "0", the numerical value "1", and the numerical value "2" are output. You may.
 また、上述した実施例1、2では、指令回路72が指令値ベクトルを制御回路70に入力したが、指令回路72が電圧ベクトルの角度θの指令値のみを制御回路70に入力してもよい。 Further, in the above-described first and second embodiments, the command circuit 72 inputs the command value vector to the control circuit 70, but the command circuit 72 may input only the command value of the angle θ of the voltage vector to the control circuit 70. ..
 なお、上述した実施例1~4において、図33に示すように、第2スイッチング素子42と第2ダイオード52の位置を、第3スイッチング素子43と第3ダイオード53の位置と入れ換えてもよい。 Note that, in the above-described Examples 1 to 4, as shown in FIG. 33, the positions of the second switching element 42 and the second diode 52 may be replaced with the positions of the third switching element 43 and the third diode 53.
 なお、上述した実施例1~4の第2ダイオード52は、請求項の第1中間ダイオードの一例である。また、上述した実施例1~4の第3ダイオード53は、請求項の第2中間ダイオードの一例である。 The second diode 52 of Examples 1 to 4 described above is an example of the first intermediate diode of the claim. Further, the third diode 53 of Examples 1 to 4 described above is an example of the second intermediate diode of the claim.
 以上、実施形態について詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例をさまざまに変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独あるいは各種の組み合わせによって技術有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの1つの目的を達成すること自体で技術有用性を持つものである。 Although the embodiments have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above. The technical elements described in the present specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the techniques illustrated in the present specification or drawings achieve a plurality of objectives at the same time, and achieving one of the objectives itself has technical usefulness.

Claims (13)

  1.  インバータであって、
     高電位が印加される高電位配線と、
     低電位が印加される低電位配線と、
     前記高電位よりも低く前記低電位よりも高い中電位が印加される中電位配線と、
     スイッチング回路と、
     前記インバータ内を流れる電流、または、前記インバータの温度を検出する検出器と、
     制御回路、
     を有し、
     前記スイッチング回路が、
     出力配線と、
     前記高電位配線と前記出力配線の間に接続されている第1スイッチング素子と、
     前記中電位配線と前記出力配線の間に接続されている第2スイッチング素子と、
     前記中電位配線と前記出力配線の間に前記第2スイッチング素子に対して直列に接続されている第3スイッチング素子と、
     前記出力配線と前記低電位配線の間に接続されている第4スイッチング素子と、
     カソードが前記中電位配線側を向く向きで前記第2スイッチング素子に対して並列に接続されている第1中間ダイオードと、
     カソードが前記出力配線側を向く向きで前記第3スイッチング素子に対して並列に接続されている第2中間ダイオード、
     を有し、
     前記第2スイッチング素子及び前記第3スイッチング素子の電流容量が、前記第1スイッチング素子及び前記第4スイッチング素子の電流容量よりも低く、
     前記制御回路が、前記第1スイッチング素子、前記第2スイッチング素子、前記第3スイッチング素子、及び、前記第4スイッチング素子のゲートの電位を制御するように構成されており、
     前記制御回路が、前記スイッチング回路を、前記第1スイッチング素子がオンして前記出力配線に前記高電位が印加される高電位出力状態、前記第2スイッチング素子と前記第3スイッチング素子がオンして前記出力配線に前記中電位が印加される中電位出力状態、前記第4スイッチング素子がオンして前記出力配線に前記低電位が印加される低電位出力状態の間で変化させるように構成されており、
     前記制御回路が、前記スイッチング回路を前記高電位出力状態、前記中電位出力状態、前記低電位出力状態の間で変化させることで、前記出力配線に交流電流を発生させるように構成されており、
     前記制御回路が、前記検出器の検出値が基準値より大きい場合には前記検出値が前記基準値より小さい場合よりも前記スイッチング回路を前記中電位出力状態に制御する期間の比率を低くする、
     インバータ。
    It ’s an inverter,
    High potential wiring to which high potential is applied and
    Low potential wiring to which low potential is applied and
    A medium potential wiring to which a medium potential lower than the high potential and higher than the low potential is applied, and
    Switching circuit and
    A detector that detects the current flowing in the inverter or the temperature of the inverter,
    Control circuit,
    Have,
    The switching circuit
    Output wiring and
    A first switching element connected between the high-potential wiring and the output wiring,
    A second switching element connected between the medium potential wiring and the output wiring,
    A third switching element connected in series with the second switching element between the medium potential wiring and the output wiring,
    A fourth switching element connected between the output wiring and the low potential wiring,
    A first intermediate diode connected in parallel to the second switching element with the cathode facing the medium potential wiring side.
    A second intermediate diode, which is connected in parallel to the third switching element with the cathode facing the output wiring side.
    Have,
    The current capacities of the second switching element and the third switching element are lower than the current capacities of the first switching element and the fourth switching element.
    The control circuit is configured to control the potentials of the gates of the first switching element, the second switching element, the third switching element, and the fourth switching element.
    The control circuit turns on the switching circuit in a high potential output state in which the first switching element is turned on and the high potential is applied to the output wiring, and the second switching element and the third switching element are turned on. It is configured to change between the medium potential output state in which the medium potential is applied to the output wiring and the low potential output state in which the fourth switching element is turned on and the low potential is applied to the output wiring. Wiring,
    The control circuit is configured to generate an alternating current in the output wiring by changing the switching circuit between the high potential output state, the medium potential output state, and the low potential output state.
    When the detection value of the detector is larger than the reference value, the control circuit lowers the ratio of the period for controlling the switching circuit to the medium potential output state as compared with the case where the detection value is smaller than the reference value.
    Inverter.
  2.  前記スイッチング回路を3つ有し、
     前記制御回路が、3つの前記スイッチング回路のそれぞれの前記第1スイッチング素子、前記第2スイッチング素子、前記第3スイッチング素子、及び、前記第4スイッチング素子のゲートの電位を制御するように構成されており、
     前記制御回路が、3つの前記スイッチング回路を前記高電位出力状態、前記中電位出力状態、前記低電位出力状態の間で変化させることで、3つの前記スイッチング回路の前記出力配線の間に三相交流電流を発生させるように構成されており、
     前記制御回路が、3つの前記スイッチング回路のそれぞれについて、前記検出器の検出値が基準値より大きい場合には前記検出値が前記基準値より小さい場合よりも前記中電位出力状態に制御する期間の比率を低くする、
     請求項1のインバータ。
    It has three switching circuits.
    The control circuit is configured to control the potentials of the gates of the first switching element, the second switching element, the third switching element, and the fourth switching element of each of the three switching circuits. Ori,
    The control circuit changes the three switching circuits between the high potential output state, the medium potential output state, and the low potential output state, so that the three phases are between the output wirings of the three switching circuits. It is configured to generate an AC current and is configured to generate an AC current.
    For each of the three switching circuits, when the detection value of the detector is larger than the reference value, the control circuit controls the medium potential output state more than when the detection value is smaller than the reference value. Lower the ratio,
    The inverter of claim 1.
  3.  前記制御回路が、前記検出値が前記基準値より大きい場合に、前記スイッチング回路を、前記中電位出力状態とすることなく前記高電位出力状態と前記低電位出力状態の間で変化させる、請求項1または2のインバータ。 A claim that the control circuit changes the switching circuit between the high potential output state and the low potential output state without making the switching circuit into the medium potential output state when the detected value is larger than the reference value. 1 or 2 inverters.
  4.  前記制御回路が、前記検出値が前記基準値より大きい場合に、前記スイッチング回路を、前記高電位出力状態と前記低電位出力状態の間で変化させ、この場合において、前記高電位出力状態から前記低電位出力状態に変化させるときには前記高電位出力状態から前記中電位出力状態を経由して前記低電位出力状態に変化させ、前記低電位出力状態から前記高電位出力状態に変化させるときには前記低電位出力状態から前記中電位出力状態を経由して前記高電位出力状態に変化させ、
     前記制御回路が、前記検出値が前記基準値より大きい場合に、前記中電位出力状態に制御する期間の比率を前記高電位出力状態に制御する期間の比率及び前記低電位出力状態に制御する期間の比率よりも低くする、
     請求項1または2のインバータ。
    When the detected value is larger than the reference value, the control circuit changes the switching circuit between the high potential output state and the low potential output state, and in this case, the high potential output state is changed to the said. When changing to the low potential output state, the high potential output state is changed to the low potential output state via the medium potential output state, and when changing from the low potential output state to the high potential output state, the low potential is changed. The output state is changed to the high potential output state via the medium potential output state,
    When the detected value is larger than the reference value, the control circuit controls the ratio of the period for controlling the medium potential output state to the high potential output state and the ratio for controlling the low potential output state. Lower than the ratio of
    The inverter of claim 1 or 2.
  5.  前記第1スイッチング素子が、シリコン半導体によって構成されており、
     前記第2スイッチング素子が、化合物半導体によって構成されており、
     前記第3スイッチング素子が、化合物半導体によって構成されており、
     前記第4スイッチング素子が、シリコン半導体によって構成されている、
     請求項1~4のいずれか一項のインバータ。
    The first switching element is made of a silicon semiconductor.
    The second switching element is composed of a compound semiconductor.
    The third switching element is composed of a compound semiconductor.
    The fourth switching element is made of a silicon semiconductor.
    The inverter according to any one of claims 1 to 4.
  6.  前記第1中間ダイオードが、化合物半導体によって構成されており、
     前記第2中間ダイオードが、化合物半導体によって構成されている、
     請求項5のインバータ。
    The first intermediate diode is composed of a compound semiconductor.
    The second intermediate diode is composed of a compound semiconductor.
    The inverter of claim 5.
  7.  インバータであって、
     高電位が印加される高電位配線と、
     低電位が印加される低電位配線と、
     中電位配線と、
     前記高電位配線と前記中電位配線の間に接続された上側コンデンサと、
     前記中電位配線と前記低電位配線の間に接続された下側コンデンサと、
     U相スイッチング回路、V相スイッチング回路、及び、W相スイッチング回路の3つのスイッチング回路と、
     制御回路、
     を有し、
     3つの前記スイッチング回路のそれぞれが、
     出力配線と、
     前記高電位配線と前記出力配線の間に接続されている第1スイッチング素子と、
     前記中電位配線と前記出力配線の間に接続されている第2スイッチング素子と、
     前記中電位配線と前記出力配線の間に前記第2スイッチング素子に対して直列に接続されている第3スイッチング素子と、
     前記出力配線と前記低電位配線の間に接続されている第4スイッチング素子と、
     カソードが前記中電位配線側を向く向きで前記第2スイッチング素子に対して並列に接続されている第1中間ダイオードと、
     カソードが前記出力配線側を向く向きで前記第3スイッチング素子に対して並列に接続されている第2中間ダイオード、
     を有し、
     前記制御回路が、3つの前記スイッチング回路の前記第1スイッチング素子、前記第2スイッチング素子、前記第3スイッチング素子、及び、前記第4スイッチング素子のゲートの電位を制御するように構成されており、
     前記制御回路が、3つの前記スイッチング回路を、前記第1スイッチング素子がオンして対応する前記出力配線に前記高電位が印加される高電位出力状態、前記第2スイッチング素子と前記第3スイッチング素子がオンして対応する前記出力配線に前記中電位配線の電位である中電位が印加される中電位出力状態、前記第4スイッチング素子がオンして対応する前記出力配線に前記低電位が印加される低電位出力状態の間で変化させるように構成されており、
     前記制御回路が、前記U相スイッチング回路の前記出力配線であるU相出力配線、前記V相スイッチング回路の前記出力配線であるV相出力配線、及び、前記W相スイッチング回路の前記出力配線であるW相出力配線のそれぞれの電位を前記高電位、前記中電位、及び、前記低電位の間で変化させることによって、前記U相出力配線、前記V相出力配線、及び、前記W相出力配線の間に三相交流電流を発生させるように構成されており、
     前記制御回路は、3つの前記スイッチング回路が有する前記第2スイッチング素子と前記第3スイッチング素子のうちのいずれかの素子が短絡故障した場合に、非常動作を実行可能であり、
     前記短絡故障した素子を短絡故障素子といい、
     3つの前記スイッチング回路のうちの前記短絡故障素子を含む1つの前記スイッチング回路の前記出力配線を制限出力配線といい、
     3つの前記スイッチング回路のうちの前記短絡故障素子を含まない2つの前記スイッチング回路の前記出力配線をそれぞれ正常出力配線といい、
     前記非常動作では、前記制御回路は、前記制限出力配線の電位を前記高電位、前記中電位、及び、前記低電位のうちの禁止電位を除く2つの電位の間で変化させるとともに、前記正常出力配線のそれぞれの電位を前記高電位、前記中電位、及び、前記低電位の3つの電位の間で変化させ、
     前記短絡故障素子が前記第2スイッチング素子である場合には前記禁止電位が前記低電位であり、
     前記短絡故障素子が前記第3スイッチング素子である場合には前記禁止電位が前記高電位である、
     インバータ。
    It ’s an inverter,
    High potential wiring to which high potential is applied and
    Low potential wiring to which low potential is applied and
    Medium potential wiring and
    An upper capacitor connected between the high-potential wiring and the medium-potential wiring,
    The lower capacitor connected between the medium-potential wiring and the low-potential wiring,
    Three switching circuits, a U-phase switching circuit, a V-phase switching circuit, and a W-phase switching circuit,
    Control circuit,
    Have,
    Each of the three switching circuits
    Output wiring and
    A first switching element connected between the high-potential wiring and the output wiring,
    A second switching element connected between the medium potential wiring and the output wiring,
    A third switching element connected in series with the second switching element between the medium potential wiring and the output wiring,
    A fourth switching element connected between the output wiring and the low potential wiring,
    A first intermediate diode connected in parallel to the second switching element with the cathode facing the medium potential wiring side.
    A second intermediate diode, which is connected in parallel to the third switching element with the cathode facing the output wiring side.
    Have,
    The control circuit is configured to control the potentials of the gates of the first switching element, the second switching element, the third switching element, and the fourth switching element of the three switching circuits.
    The control circuit is in a high potential output state in which the three switching circuits are turned on and the high potential is applied to the corresponding output wiring, the second switching element and the third switching element. Is turned on to apply the medium potential, which is the potential of the medium potential wiring, to the corresponding output wiring, and the fourth switching element is turned on to apply the low potential to the corresponding output wiring. It is configured to vary between low potential output states.
    The control circuit is the U-phase output wiring which is the output wiring of the U-phase switching circuit, the V-phase output wiring which is the output wiring of the V-phase switching circuit, and the output wiring of the W-phase switching circuit. By changing the respective potentials of the W-phase output wiring between the high potential, the medium potential, and the low potential, the U-phase output wiring, the V-phase output wiring, and the W-phase output wiring It is configured to generate a three-phase AC current between them.
    The control circuit can execute an emergency operation when any of the second switching element and the third switching element of the three switching circuits has a short-circuit failure.
    The element with a short-circuit failure is called a short-circuit failure element.
    The output wiring of one of the three switching circuits including the short-circuit fault element is referred to as a limited output wiring.
    The output wiring of the two switching circuits that do not include the short-circuit fault element of the three switching circuits is referred to as a normal output wiring, respectively.
    In the emergency operation, the control circuit changes the potential of the limited output wiring between the two potentials other than the prohibited potential among the high potential, the medium potential, and the low potential, and the normal output. Each potential of the wiring is changed between the three potentials of the high potential, the medium potential, and the low potential.
    When the short-circuit failure element is the second switching element, the prohibited potential is the low potential.
    When the short-circuit failure element is the third switching element, the prohibited potential is the high potential.
    Inverter.
  8.  電圧ベクトルが回転するように前記電圧ベクトルの角度の指令値を生成して前記制御回路に入力する指令回路をさらに有し、
     前記電圧ベクトルは、パラメータVu、Vv、Vwにより示されるベクトルであり、
     前記パラメータVuは、前記U相出力配線の電位が、前記高電位、前記中電位、及び、前記低電位のいずれであるかを示す値であり、
     前記パラメータVvは、前記V相出力配線の電位が、前記高電位、前記中電位、及び、前記低電位のいずれであるかを示す値であり、
     前記パラメータVwは、前記W相出力配線の電位が、前記高電位、前記中電位、及び、前記低電位のいずれであるかを示す値であり、
     前記非常動作においては、前記制限出力配線が前記禁止電位となる前記電圧ベクトルが禁止ベクトルであり、前記電圧ベクトルの角度範囲のうちの前記禁止ベクトルが含まれる角度範囲が制限角度範囲であり、前記電圧ベクトルの前記角度範囲のうちの前記制限角度範囲外の角度範囲が正常角度範囲であり、
     前記制御回路は、前記非常動作において、前記指令値が示す前記角度が前記制限角度範囲内にある場合には、前記指令値が示す前記角度を有するとともに前記禁止ベクトルではない許容ベクトルに従って3つの前記出力配線の電位を制御し、
     前記制御回路は、前記非常動作において、前記指令値が示す前記角度が前記正常角度範囲内にある場合には、前記指令値が示す前記角度を有する複数の前記電圧ベクトルから特定電圧ベクトルを選択し、選択した前記特定電圧ベクトルに従って3つの前記出力配線の電位を制御し、
     前記制御回路は、前記中電位が基準値よりも低い場合に、前記中電位を上昇させる前記電圧ベクトルを前記特定電圧ベクトルとして選択し、
     前記制御回路は、前記中電位が前記基準値よりも高い場合に、前記中電位を低下させる前記電圧ベクトルを前記特定電圧ベクトルとして選択する、
     請求項7のインバータ。
    It also has a command circuit that generates a command value for the angle of the voltage vector so that the voltage vector rotates and inputs it to the control circuit.
    The voltage vector is a vector represented by the parameters Vu, Vv, and Vw.
    The parameter Vu is a value indicating whether the potential of the U-phase output wiring is the high potential, the medium potential, or the low potential.
    The parameter Vv is a value indicating whether the potential of the V-phase output wiring is the high potential, the medium potential, or the low potential.
    The parameter Vw is a value indicating whether the potential of the W-phase output wiring is the high potential, the medium potential, or the low potential.
    In the emergency operation, the voltage vector at which the limited output wiring has the prohibited potential is the prohibited vector, and the angle range including the prohibited vector in the angle range of the voltage vector is the restricted angle range. The angle range outside the limit angle range of the angle range of the voltage vector is the normal angle range.
    In the emergency operation, when the angle indicated by the command value is within the limiting angle range, the control circuit has the angle indicated by the command value and the three said according to an allowable vector which is not the prohibited vector. Control the potential of the output wiring,
    In the emergency operation, when the angle indicated by the command value is within the normal angle range, the control circuit selects a specific voltage vector from a plurality of voltage vectors having the angle indicated by the command value. , Control the potentials of the three output wirings according to the selected specific voltage vector,
    The control circuit selects the voltage vector that raises the medium potential as the specific voltage vector when the medium potential is lower than the reference value.
    The control circuit selects the voltage vector that lowers the medium potential as the specific voltage vector when the medium potential is higher than the reference value.
    The inverter of claim 7.
  9.  3つの前記出力配線が、負荷に接続されるように構成されており、
     前記負荷に前記高電位と前記中電位を印加して前記低電位を印加しない前記電圧ベクトルを上側ベクトルといい、
     前記負荷に前記中電位と前記低電位を印加して前記高電位を印加しない前記電圧ベクトルを下側ベクトルといい、
     前記制御回路は、前記指令値が示す前記角度が前記正常角度範囲内にある場合には、以下のA~Dの条件、すなわち、
    A.前記中電位が前記基準値よりも低く、かつ、前記負荷に流れる電流が前記負荷に印加される電圧に対して順方向である場合に、前記上側ベクトルを前記特定電圧ベクトルとして選択する、
    B.前記中電位が前記基準値よりも低く、かつ、前記負荷に流れる前記電流が前記負荷に印加される前記電圧に対して逆方向である場合に、前記下側ベクトルを前記特定電圧ベクトルとして選択する、
    C.前記中電位が前記基準値よりも高く、かつ、前記負荷に流れる前記電流が前記負荷に印加される前記電圧に対して順方向である場合に、前記下側ベクトルを前記特定電圧ベクトルとして選択する、
    D.前記中電位が前記基準値よりも高く、かつ、前記負荷に流れる前記電流が前記負荷に印加される前記電圧に対して逆方向である場合に、前記上側ベクトルを前記特定電圧ベクトルとして選択する、
     という条件に従って前記特定電圧ベクトルを選択する、請求項8のインバータ。
    The three output wires are configured to be connected to the load.
    The voltage vector in which the high potential and the medium potential are applied to the load and the low potential is not applied is referred to as an upper vector.
    The voltage vector in which the medium potential and the low potential are applied to the load and the high potential is not applied is referred to as a lower vector.
    When the angle indicated by the command value is within the normal angle range, the control circuit has the following conditions A to D, that is,
    A. When the medium potential is lower than the reference value and the current flowing through the load is in the forward direction with respect to the voltage applied to the load, the upper vector is selected as the specific voltage vector.
    B. When the medium potential is lower than the reference value and the current flowing through the load is in the opposite direction to the voltage applied to the load, the lower vector is selected as the specific voltage vector. ,
    C. The lower vector is selected as the specific voltage vector when the medium potential is higher than the reference value and the current flowing through the load is in the forward direction with respect to the voltage applied to the load. ,
    D. When the medium potential is higher than the reference value and the current flowing through the load is in the opposite direction to the voltage applied to the load, the upper vector is selected as the specific voltage vector.
    The inverter according to claim 8, wherein the specific voltage vector is selected according to the above condition.
  10.  前記制御回路は、前記中電位が前記基準値よりも高い上側制限値よりも高く、前記指令値が示す前記角度が前記制限角度範囲内にあり、前記許容ベクトルが前記中電位を上昇させる前記電圧ベクトルである場合には、前記指令値が示す前記角度にかかわらず、3つの前記出力配線を同電位に制御する、請求項9のインバータ。 In the control circuit, the voltage at which the medium potential is higher than the upper limit value higher than the reference value, the angle indicated by the command value is within the limit angle range, and the allowable vector raises the medium potential. In the case of a vector, the inverter according to claim 9, which controls the three output wirings to the same potential regardless of the angle indicated by the command value.
  11.  前記制御回路は、前記中電位が前記基準値よりも低い下側制限値よりも低く、前記指令値が示す前記角度が前記制限角度範囲内にあり、前記許容ベクトルが前記中電位を低下させる前記電圧ベクトルである場合には、前記指令値が示す前記角度にかかわらず、3つの前記出力配線を同電位に制御する、請求項9または10のインバータ。 In the control circuit, the medium potential is lower than the lower limit value lower than the reference value, the angle indicated by the command value is within the limit angle range, and the allowable vector lowers the medium potential. In the case of a voltage vector, the inverter according to claim 9 or 10, which controls the three output wirings to the same potential regardless of the angle indicated by the command value.
  12.  電圧ベクトルが回転するように前記電圧ベクトルの角度の指令値を生成して前記制御回路に入力する指令回路をさらに有し、
     前記電圧ベクトルは、パラメータVu、Vv、Vwにより示されるベクトルであり、
     前記パラメータVuは、前記U相出力配線の電位が、前記高電位、前記中電位、及び、前記低電位のいずれであるかを示す値であり、
     前記パラメータVvは、前記V相出力配線の電位が、前記高電位、前記中電位、及び、前記低電位のいずれであるかを示す値であり、
     前記パラメータVwは、前記W相出力配線の電位が、前記高電位、前記中電位、及び、前記低電位のいずれであるかを示す値であり、
     前記非常動作においては、前記制限出力配線が前記禁止電位となる前記電圧ベクトルが禁止ベクトルであり、前記電圧ベクトルの角度範囲のうちの前記禁止ベクトルが含まれる角度範囲が制限角度範囲であり、前記電圧ベクトルの前記角度範囲のうちの前記制限角度範囲外の角度範囲が正常角度範囲であり、
     前記制御回路は、前記非常動作において、前記指令値が示す前記角度が前記制限角度範囲内にある場合には、前記指令値が示す前記角度を有するとともに前記禁止ベクトルではない許容ベクトルに従って3つの前記出力配線の電位を制御し、
     前記制御回路は、前記非常動作において、前記指令値が示す前記角度が前記正常角度範囲内にある場合には、前記指令値が示す前記角度を有する複数の前記電圧ベクトルから特定電圧ベクトルを選択し、選択した前記特定電圧ベクトルに従って3つの前記出力配線の電位を制御し、
     3つの前記出力配線が、負荷に接続されるように構成されており、
     前記特定電圧ベクトルが、前記負荷に前記高電位と前記中電位を印加して前記低電位を印加しない前記電圧ベクトルの群により構成された第1グループと、前記負荷に前記中電位と前記低電位を印加して前記高電位を印加しない前記電圧ベクトルの群により構成された第2グループのいずれかから選択され、
     前記制御回路が、前記中電位の制御目標値を記憶しており、
     前記制御回路は、前回の制御フェーズ以後に前記中電位と前記制御目標値のずれが拡大した場合に、前記第1グループと前記第2グループのうちの前回の制御フェーズで選択した前記電圧ベクトルが属するグループとは異なるグループから前記特定電圧ベクトルを選択する、
     請求項7のインバータ。
    It also has a command circuit that generates a command value for the angle of the voltage vector so that the voltage vector rotates and inputs it to the control circuit.
    The voltage vector is a vector represented by the parameters Vu, Vv, and Vw.
    The parameter Vu is a value indicating whether the potential of the U-phase output wiring is the high potential, the medium potential, or the low potential.
    The parameter Vv is a value indicating whether the potential of the V-phase output wiring is the high potential, the medium potential, or the low potential.
    The parameter Vw is a value indicating whether the potential of the W-phase output wiring is the high potential, the medium potential, or the low potential.
    In the emergency operation, the voltage vector at which the limited output wiring has the prohibited potential is the prohibited vector, and the angle range including the prohibited vector in the angle range of the voltage vector is the restricted angle range. The angle range outside the limit angle range of the angle range of the voltage vector is the normal angle range.
    In the emergency operation, when the angle indicated by the command value is within the limiting angle range, the control circuit has the angle indicated by the command value and the three said according to an allowable vector which is not the prohibited vector. Control the potential of the output wiring,
    In the emergency operation, when the angle indicated by the command value is within the normal angle range, the control circuit selects a specific voltage vector from a plurality of voltage vectors having the angle indicated by the command value. , Control the potentials of the three output wirings according to the selected specific voltage vector,
    The three output wires are configured to be connected to the load.
    The specific voltage vector is composed of a first group composed of a group of voltage vectors in which the high potential and the medium potential are applied to the load and the low potential is not applied to the load, and the medium potential and the low potential are applied to the load. Is selected from one of the second groups composed of the group of voltage vectors in which the high potential is applied and the high potential is not applied.
    The control circuit stores the control target value of the medium potential, and
    In the control circuit, when the deviation between the medium potential and the control target value increases after the previous control phase, the voltage vector selected in the previous control phase between the first group and the second group can be used. Select the specific voltage vector from a group different from the group to which it belongs.
    The inverter of claim 7.
  13.  前記制御回路が、3つの前記スイッチング回路の前記第2スイッチング素子及び前記第3スイッチング素子に流れる電流を検出するように構成されており、
     前記制御回路が、3つの前記スイッチング回路から選択した選択スイッチング回路に対して、短絡素子判定動作を実行可能であり、
     前記短絡素子判定動作では、前記制御回路が、前記選択スイッチング回路を、前記第1スイッチング素子と前記第2スイッチング素子をオンさせる第1状態と前記第3スイッチング素子と前記第4スイッチング素子をオンさせる第2状態の間で経時的に変化させ、
     前記制御回路が、前記選択スイッチング回路に対して、
     前記第2状態で前記第3スイッチング素子に短絡電流が流れる場合に、前記第2スイッチング素子が短絡故障素子であると判定し、
     前記第1状態で前記第2スイッチング素子に短絡電流が流れる場合に、前記第3スイッチング素子が短絡故障素子であると判定する、
     請求項7~12のいずれか一項のインバータ。
    The control circuit is configured to detect currents flowing through the second switching element and the third switching element of the three switching circuits.
    The control circuit can execute a short-circuit element determination operation for a selection switching circuit selected from the three switching circuits.
    In the short-circuit element determination operation, the control circuit turns on the selection switching circuit in the first state in which the first switching element and the second switching element are turned on, and in the third state and the fourth switching element. Change over time between the second states
    The control circuit is relative to the selective switching circuit.
    When a short-circuit current flows through the third switching element in the second state, it is determined that the second switching element is a short-circuit failure element.
    When a short-circuit current flows through the second switching element in the first state, it is determined that the third switching element is a short-circuit failure element.
    The inverter according to any one of claims 7 to 12.
PCT/JP2020/005322 2020-02-12 2020-02-12 Inverter WO2021161412A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005322 WO2021161412A1 (en) 2020-02-12 2020-02-12 Inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005322 WO2021161412A1 (en) 2020-02-12 2020-02-12 Inverter

Publications (1)

Publication Number Publication Date
WO2021161412A1 true WO2021161412A1 (en) 2021-08-19

Family

ID=77291428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005322 WO2021161412A1 (en) 2020-02-12 2020-02-12 Inverter

Country Status (1)

Country Link
WO (1) WO2021161412A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078296A (en) * 2009-09-04 2011-04-14 Mitsubishi Electric Corp Power conversion circuit
WO2012025978A1 (en) * 2010-08-23 2012-03-01 東芝三菱電機産業システム株式会社 Electricity conversion device
JP2017093039A (en) * 2015-11-04 2017-05-25 株式会社日立製作所 Power converter and control method
JP2018191485A (en) * 2017-05-11 2018-11-29 田淵電機株式会社 Electric power conversion system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078296A (en) * 2009-09-04 2011-04-14 Mitsubishi Electric Corp Power conversion circuit
WO2012025978A1 (en) * 2010-08-23 2012-03-01 東芝三菱電機産業システム株式会社 Electricity conversion device
JP2017093039A (en) * 2015-11-04 2017-05-25 株式会社日立製作所 Power converter and control method
JP2018191485A (en) * 2017-05-11 2018-11-29 田淵電機株式会社 Electric power conversion system

Similar Documents

Publication Publication Date Title
JP5493532B2 (en) Load driving device and electric vehicle using the same
US10038392B2 (en) Inverter
JP5223610B2 (en) Power conversion circuit
WO2016207969A1 (en) Inverter with charging capability
US10727729B2 (en) Power converter
US20170244334A1 (en) Converter and power conversion device manufactured using the same
JP2014075896A (en) Motor control device and air conditioner
JP6577663B2 (en) Converter and power conversion device using the same
US11728802B2 (en) Drive circuit
JP7414071B2 (en) inverter
WO2021161412A1 (en) Inverter
JP5647558B2 (en) Inverter device
JP5302905B2 (en) Power converter
JP7476834B2 (en) Inverter
WO2023195041A1 (en) Power conversion device and flying object
JP6739865B2 (en) Semiconductor device
WO2016194487A1 (en) Power conversion device and motor device
WO2022244361A1 (en) Gate drive circuit and power conversion device
JP2021125996A (en) Inverter
JP2020072495A (en) Power conversion device
WO1998001940A1 (en) Power converter
US20230378887A1 (en) Electric-power conversion apparatus
JP7531716B2 (en) POWER CONVERSION DEVICE, AIRCRAFT, AND POWER CONVERSION METHOD
WO2024106284A1 (en) Power conversion device
US20110249478A1 (en) Power output stage for a pulse-controlled inverter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP