WO2021161405A1 - 異常データ生成装置、異常データ生成モデル学習装置、異常データ生成方法、異常データ生成モデル学習方法、プログラム - Google Patents

異常データ生成装置、異常データ生成モデル学習装置、異常データ生成方法、異常データ生成モデル学習方法、プログラム Download PDF

Info

Publication number
WO2021161405A1
WO2021161405A1 PCT/JP2020/005248 JP2020005248W WO2021161405A1 WO 2021161405 A1 WO2021161405 A1 WO 2021161405A1 JP 2020005248 W JP2020005248 W JP 2020005248W WO 2021161405 A1 WO2021161405 A1 WO 2021161405A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
pseudo
anomalous
normal
abnormal
Prior art date
Application number
PCT/JP2020/005248
Other languages
English (en)
French (fr)
Inventor
悠馬 小泉
翔一郎 齊藤
尚 植松
村田 伸
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/005248 priority Critical patent/WO2021161405A1/ja
Priority to US17/798,849 priority patent/US20230086628A1/en
Priority to JP2021577751A priority patent/JPWO2021161405A1/ja
Publication of WO2021161405A1 publication Critical patent/WO2021161405A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/217Validation; Performance evaluation; Active pattern learning techniques
    • G06F18/2193Validation; Performance evaluation; Active pattern learning techniques based on specific statistical tests
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/2433Single-class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/28Determining representative reference patterns, e.g. by averaging or distorting; Generating dictionaries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • G06N3/0455Auto-encoder networks; Encoder-decoder networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/094Adversarial learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/772Determining representative reference patterns, e.g. averaging or distorting patterns; Generating dictionaries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks

Definitions

  • the present invention relates to an anomaly data generation device that generates anomaly data in anomaly detection, an anomaly data generation model learning device that learns a model for anomaly data generation, an anomaly data generation method, an anomaly data generation model learning method, and a program.
  • Anomaly detection is a technique for determining whether the observed signal X ⁇ R H ⁇ W is normal or abnormal (Non-Patent Documents 1 and 2).
  • X is, for example, an amplitude spectrogram obtained by converting an image or an audio signal into a time frequency. If X is an image, then H and W are the number of vertical and horizontal pixels, respectively, and if X is an amplitude spectrogram, then H and W are the number of frequency bins and the number of time frames, respectively.
  • the abnormality detection if the degree of abnormality calculated from X is larger than the predetermined threshold value ⁇ , it is determined that the monitoring target is abnormal, and if it is smaller, it is determined to be normal.
  • A: R T ⁇ ⁇ ⁇ R is an anomaly calculator with the parameter ⁇ a.
  • One of the difficulties in learning anomaly detection is that it is difficult to collect anomaly data. When no abnormal data can be obtained, a learning method that applies outlier detection is often adopted. In other words, the idea is that only normal data is used as training data, the statistical model is trained to be normal (for example, a normal data generation model), and if the observed signal is not normal, it is regarded as abnormal.
  • AE autoencoder
  • ⁇ F is the Frobenius norm.
  • ⁇ a is trained so as to minimize the average reconstruction error of the normal data.
  • N is the mini-batch size of normal data and X - n is the nth normal data in the mini-batch.
  • anomaly data may be obtained when operating an anomaly detection system. In order to improve the detection accuracy, we would like to learn using this abnormal data as well. For that purpose, it is necessary to change the cost function of Eq. (2). For example, the following can be considered as a cost function that lowers the degree of abnormality of normal data and raises the degree of abnormality of abnormal data.
  • One of the problems in learning anomaly detectors using anomaly data is the number of anomaly data samples. Since abnormal data rarely occurs, a sufficient amount of training data cannot be prepared. In this case, there is a method of inflating a small number of obtained anomalous data to increase the number of samples. The method includes, for example, a method of adding a normal random number to an abnormal sample and a method of rotating an image.
  • the method of adding a normal random number to an abnormal sample assumes that the abnormal sound generation distribution is a normal distribution having the observed abnormal data as the average value, but that assumption is not satisfied in many cases.
  • an object of the present invention is to provide an anomaly data generator capable of generating anomalous data with high accuracy.
  • the abnormality data generation device of the present invention includes an abnormality data generation unit.
  • the anomalous data generation unit has a normal distribution, which is a normal data generation model, and an anomalous distribution expressed as a complement of the normal distribution, in the same latent space, and is observed from latent variables sampled from the anomalous distribution. Generates pseudo-generated data of abnormal data optimized so that it cannot be discriminated from actual abnormal data.
  • the anomaly data generator of the present invention it is possible to generate anomalous data with high accuracy.
  • FIG. The block diagram which shows the structure of the abnormality data generation model learning apparatus of Example 1.
  • FIG. The flowchart which shows the operation of the abnormality data generation model learning apparatus of Example 1.
  • FIG. The figure which shows the generation example 1 of anomalous data.
  • FIG. The flowchart which shows the operation of the abnormality data generation apparatus of Example 1.
  • FIG. The figure which shows the functional structure example of a computer.
  • an apparatus and a method for explicitly learning the generation distribution of abnormal data and pseudo-generating abnormal data from the learning will be disclosed.
  • anomalous data is modeled using a "complementary-set variational autoencoder (CVAE)". Since the complement variational autoencoder was not supposed to generate abnormal data in a pseudo manner and use the generated data for training, the accuracy of generating complex data such as images has not yet been discussed. It can be seen that details cannot be generated by actually using the set variation autoencoder.
  • CVAE complementary-set variational autoencoder
  • a hostile complement variant autoencoder (CVAE-GAN) that introduces a cost function of a generative adversarial network (GAN) into the learning of CVAE is disclosed.
  • the point of this invention is (i) Use CVAE to generate anomalous data (use CVAE for anomalous data padding problem), (ii) Combining GAN with CVAE learning (ingenuity to obtain high-definition generated data), Is.
  • CVAE-GAN generative adversarial network
  • an abnormal sound generation model is provided in the form of developing the complement variational autoencoder (Non-Patent Document 5) proposed as a statistical model for supervised anomaly detection.
  • variational autoencoder variational autoencoder
  • CVAE complementary-setVAE
  • hostile generation which are the technologies that are the basis of the operation of the abnormality data generation model learning device of this embodiment.
  • the network GAN: generative adversarial network
  • CVAE-GAN hostile complement set variational autoencoder
  • VAE ⁇ Variational Auto-Encoder>
  • X) of X (however, the front X is the bold italic X and the back X is the bold italic X. It is a method to learn X) of script typeface.
  • the latent variable z n ⁇ R D is generated from the prior distribution p (z) as the generation process of X
  • the observation data X n is generated from the conditional distribution p (X
  • p (z) is the prior distribution of z
  • N is the batch size
  • K is the number of samplings for approximating the expected value operation by sampling
  • z (k) is z (k) to q ⁇ (z
  • the decoder is a network that restores X from z (k) as ⁇ X (k).
  • Various likelihood functions can be used at this time, but a typical one is point-wise Gaussian. If X is an image, this can be interpreted as the average of the squared errors for each pixel, and is calculated as follows.
  • Non-Patent Document 4 Since this corresponds to the degree of abnormality in AE expressed by Eq. (2), VAE is often used as an abnormality degree calculator in abnormality detection (Non-Patent Document 4).
  • CVAE Non-Patent Document 5
  • VAE supervised anomaly detection
  • anomalies are a normal complement. That is, anomalies are defined as "unusual.” Therefore, the anomaly generation distribution needs to have a low likelihood in a region having a high probability of being normal, and a higher likelihood than a normal distribution in a region having a low probability of being normal.
  • Kawachi et al. Proposed the following complement distribution as a general form of probability distribution that satisfies such a constraint.
  • p n (x) is the normal distribution
  • p w (x) is the distribution of the entire set.
  • Kawachi et al.'S implementation uses a complement distribution with p n (x) as the standard Gaussian distribution, p w (x) as the mean 0, and the variance s 2 as the Gaussian distribution.
  • the complement distribution is as follows.
  • C is a constant term that has nothing to do with ⁇ and ⁇ .
  • CVAE Since CVAE is a generative model, abnormal data can be generated by generating random numbers from the complement distribution and restoring the observation signal with a trained decoder. However, it is known that the image generation by the VAE decoder causes the generated image to be blurred. CVAE did not assume that abnormal data would be simulated and used for learning, so the accuracy of generating complex X such as images has not been discussed (when actually used, details are generated. I know I can't).
  • GAN generative adversarial network
  • CVAE-GAN a hostile complement set variational autoencoder
  • the cost function of CVAE-GAN is the sum of the cost function of CVAE and the cost function of GAN.
  • network D is used to distinguish whether the input data is genuine or generated pseudo data.
  • D is defined as a network having the parameter ⁇ , and if 0 ⁇ D ⁇ (X) ⁇ 1 is small, X is defined as true data, and if it is large, X is defined as generated data.
  • GAN GAN cost function
  • Anything may be used as the cost function of GAN in the present invention, and for example, a cost function of the form Wasserstein GAN (WGAN) can be used.
  • WGAN Wasserstein GAN
  • the encoder and decoder should be trained so as to minimize the following cost function.
  • the pseudo-generated data is distinguished from the real abnormal data while guaranteeing that it is generated from the probability distribution C N (x; s) of the latent variable of the abnormal data. It will be possible to generate abnormal data that cannot be used.
  • the latent variables are randomly generated with ⁇ z + m, d ⁇ CN (x; s) as in the training, and the encoder uses the pseudo-generated abnormal data ⁇ X + m.
  • the abnormality data generation model learning device 1 of this embodiment includes a parameter storage unit 801, an abnormality data storage unit 802, a normal data storage unit 803, an abnormality data padding unit 102, and an initialization unit. It includes 201, a reconstruction unit 202, a pseudo generation unit 203, a determination unit 204, a parameter update unit 205, a convergence determination unit 206, and a parameter output unit 301.
  • a parameter storage unit 801 that stores initial values of parameters in advance, an abnormality data storage unit 802 that stores abnormal data (observation data) used for learning in advance, and normal data (observation data) used for learning are stored in advance.
  • the normal data storage unit 803 to be stored is shown, these storage areas may be included in the abnormal data generation model learning device 1 or may be included in another device.
  • the description will proceed assuming that the parameter storage unit 801 and the abnormal data storage unit 802 and the normal data storage unit 803 are included in the external device.
  • Initial values of parameters, observed normal data, and observed abnormal data are input to the abnormal data generation model learning device 1 from the parameter storage unit 801, the abnormal data storage unit 802, and the normal data storage unit 803.
  • the abnormal data padding unit 102 inflates the abnormal data (S102). If the original number of abnormal data is sufficient, the abnormal data padding unit 102 and step S102 can be omitted.
  • the abnormality data inflating unit 102 inflates the abnormality data by using rotation in the case of an image and expansion / contraction in the time frequency direction in the case of sound.
  • the observed normal data, the observed abnormal data, and the abnormal data inflated in step S102 are all collectively referred to as observation data.
  • the initialization unit 201 initializes random numbers and the like of various networks (S201).
  • the reconstruction unit 202 acquires the observed data including the observed normal data and the observed abnormal data, encodes and decodes it with the autoencoder type DNN, and acquires the reconstructed data of the normal data and the abnormal data. (S202).
  • the reconstruction unit 202 performs a VAE on a mini-batch of randomly selected normal data and abnormal data (for example, a mini-batch defined by the number of batches represented by N and M in equation (11)). Use to reconstruct and get the reconstructed data of normal data and abnormal data.
  • the pseudo-generation unit 203 acquires pseudo-generation data of normal data and pseudo-generation data of abnormal data based on the complement set variational autoencoder (S203). More specifically, the pseudo-generation unit 203 acquires pseudo-generated data of normal data based on the latent variable randomly generated from the probability distribution of the latent variable learned so that the difference from the standard Gaussian distribution becomes small, and is normal. Pseudo-generated data of abnormal data is acquired based on the latent variable generated by random numbers from the probability distribution of the latent variable learned so that the difference from the complementary set distribution of the data becomes small.
  • the determination unit 204 inputs the observation data, the reconstruction data, and the pseudo-generated data into the classifier D that identifies whether or not the input data is the observation data, and acquires the determination result (S204).
  • the parameter update unit 205 is a classifier that identifies whether or not the input data is observation data based on the hostile complement variation auto-encoder that is a combination of the complement variation auto-encoder and the hostile generation network. And the parameters of the encoder and decoder for reconstruction and pseudo-generation (S205).
  • ⁇ Convergence determination unit 206> The convergence test unit 206 determines whether or not the learning in steps S202 to S205 has converged (S206). If the determination result in step S206 is "convergence", the learning is ended and the process proceeds to step S301. In other cases, the process returns to step S202.
  • the parameter output unit 301 outputs the learned parameters (S301).
  • ⁇ Example of execution result> In order to confirm the effectiveness of this example, a pseudo-generation experiment of anomaly data was performed using an open data set MVTec-AD (Non-Patent Document 6) for detecting anomalies in images. As an operation check, the data of "bottle” and “leather” from this data set was used. Each image was converted to grayscale and resized to 128 x 128 for use. The abnormal data was expanded to a total of 1800 samples by using 5 sheets of both "bottle” (the shape of the mouthpiece of the bottle) and “leather” (the surface of the leather product) and rotating them by 1 °. Figures 3 and 4 show the generated abnormal samples. It can be seen that it is possible to generate data that is similar to the original anomaly data and that the anomaly location appears in a different location.
  • the abnormality data generation device 2 of this embodiment includes an abnormality data generation unit 502.
  • the figure shows a parameter storage unit 501 that stores in advance the parameters learned and output by the abnormality data generation model learning device 1, this storage area may be in the abnormality data generation device 2. , May be included in other devices.
  • the parameter storage unit 501 will be described as being included in the external device.
  • the operation of the abnormality data generation unit 502 will be described with reference to FIG.
  • the anomaly data generation unit 502 has a normal distribution, which is a normal data generation model, and an anomalous distribution expressed as a complement of the normal distribution in the same latent space, and observes from latent variables sampled from the anomalous distribution. Pseudo-generated data of abnormal data optimized so as not to be discriminated from the actual abnormal data that has been generated is generated (S502).
  • the anomaly data generation unit 502 encodes and decodes the observation data including the observed anomaly data by the autoencoder type DNN, so that the anomaly data optimized so as not to be discriminated from the observed actual anomaly data can be obtained. Reconstruction data is generated (S502).
  • the abnormality data generation unit 502 is a decoder for generating pseudo-generated data, and the classifier D that identifies whether or not the input abnormality data is the observed abnormality data makes a correct determination.
  • a decoder learned by updating its parameters is used so that the cost function becomes larger as it becomes smaller (S502).
  • the device of the present invention is, for example, as a single hardware entity, an input unit to which a keyboard or the like can be connected, an output unit to which a liquid crystal display or the like can be connected, and a communication device (for example, a communication cable) capable of communicating outside the hardware entity.
  • Communication unit to which can be connected CPU (Central Processing Unit, cache memory, registers, etc.), RAM and ROM as memory, external storage device as hard hardware, and input, output, and communication units of these , CPU, RAM, ROM, and has a connecting bus so that data can be exchanged between external storage devices.
  • a device (drive) or the like capable of reading and writing a recording medium such as a CD-ROM may be provided in the hardware entity.
  • a physical entity equipped with such hardware resources includes a general-purpose computer and the like.
  • the external storage device of the hardware entity stores the program required to realize the above-mentioned functions and the data required for processing this program (not limited to the external storage device, for example, reading a program). It may be stored in a ROM, which is a dedicated storage device). Further, the data obtained by the processing of these programs is appropriately stored in a RAM, an external storage device, or the like.
  • each program stored in the external storage device (or ROM, etc.) and the data necessary for processing each program are read into the memory as needed, and are appropriately interpreted, executed, and processed by the CPU. ..
  • the CPU realizes a predetermined function (each configuration requirement represented by the above, ... Department, ... means, etc.).
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified without departing from the spirit of the present invention. Further, the processes described in the above-described embodiment are not only executed in chronological order according to the order described, but may also be executed in parallel or individually depending on the processing capacity of the device that executes the processes or if necessary. ..
  • the processing function in the hardware entity (device of the present invention) described in the above embodiment is realized by a computer
  • the processing content of the function that the hardware entity should have is described by a program.
  • the processing function in the above hardware entity is realized on the computer.
  • the various processes described above can be performed by causing the recording unit 10020 of the computer shown in FIG. 7 to read a program for executing each step of the above method and operating the control unit 10010, the input unit 10030, the output unit 10040, and the like. ..
  • the program that describes this processing content can be recorded on a computer-readable recording medium.
  • the computer-readable recording medium may be, for example, a magnetic recording device, an optical disk, a photomagnetic recording medium, a semiconductor memory, or the like.
  • a hard disk device, a flexible disk, a magnetic tape, or the like as a magnetic recording device is used as an optical disk
  • a DVD (Digital Versatile Disc), a DVD-RAM (Random Access Memory), or a CD-ROM (Compact Disc Read Only) is used as an optical disk.
  • Memory CD-R (Recordable) / RW (ReWritable), etc.
  • MO Magnetto-Optical disc
  • magneto-optical recording media EEPROM (Electrically Erasable and Programmable-Read Only Memory), etc. as semiconductor memory Can be used.
  • the distribution of this program is carried out, for example, by selling, transferring, renting, etc., a portable recording medium such as a DVD or CD-ROM on which the program is recorded. Further, the program may be stored in the storage device of the server computer, and the program may be distributed by transferring the program from the server computer to another computer via a network.
  • a computer that executes such a program first stores, for example, a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. Then, when the process is executed, the computer reads the program stored in its own recording medium and executes the process according to the read program. Further, as another execution form of this program, a computer may read the program directly from a portable recording medium and execute processing according to the program, and further, the program is transferred from the server computer to this computer. Each time, the processing according to the received program may be executed sequentially. In addition, the above processing is executed by a so-called ASP (Application Service Provider) type service that realizes the processing function only by the execution instruction and result acquisition without transferring the program from the server computer to this computer. May be.
  • the program in this embodiment includes information to be used for processing by a computer and equivalent to the program (data that is not a direct command to the computer but has a property of defining the processing of the computer, etc.).
  • the hardware entity is configured by executing a predetermined program on the computer, but at least a part of these processing contents may be realized in terms of hardware.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Databases & Information Systems (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

精度が高い異常データを生成することができる異常データ生成装置を提供する。正常データの生成モデルである正常分布と、前記正常分布の補集合として表現される異常分布と、を同じ潜在空間に有し、前記異常分布からサンプリングされた潜在変数から、観測された実際の異常データと判別できないように最適化された異常データの疑似生成データを生成する異常データ生成部を含む。

Description

異常データ生成装置、異常データ生成モデル学習装置、異常データ生成方法、異常データ生成モデル学習方法、プログラム
 本発明は、異常検知における異常データを生成する異常データ生成装置、異常データ生成のためのモデルを学習する異常データ生成モデル学習装置、異常データ生成方法、異常データ生成モデル学習方法、プログラムに関する。
<異常検知の問題設定>
 異常検知は、観測信号X∈RH×Wが、正常か異常を判定する技術である(非特許文献1、2)。ここでXの形式に制約はないが、Xを例えば画像や音声信号を時間周波数変換した振幅スペクトログラムだとして説明を進める。Xが画像であればHとWはそれぞれ縦と横のピクセル数であり、Xが振幅スペクトログラムであればHとWはそれぞれ周波数ビン数と時間フレーム数である。異常検知では、Xから計算された異常度が、事前に定義された閾値φより大きければ、監視対象が異常、小さければ正常と判定する。
Figure JPOXMLDOC01-appb-M000001
 ここでA:RT×Ω→Rはパラメータθaをもつ異常度計算器である。異常検知の学習の難しさの一つに、異常データの収集が困難という点が挙げられる。異常データが一切得られない場合、外れ値検知を応用した学習方法が採用されることが多い。つまり、正常データのみを学習データとし、統計モデルに正常らしさ(例えば正常データの生成モデルなど)を学習させ、観測信号が正常らしくなければ異常とする、という考え方である。外れ値検知に基づく深層学習を利用した異常度計算法として、自己符号化器(AE:autoencoder)を利用した方法が知られている(非特許文献2、3)。AEを利用した異常度の計算方法は以下である。
Figure JPOXMLDOC01-appb-M000002
 ここで∥∥Fはフロベニウスノルムである。正常データのみを学習データとし、正常データの異常度を小さくするようθaを学習するために、θaは、正常データの平均再構成誤差を最小化するように学習される。
Figure JPOXMLDOC01-appb-M000003
 ここでNは正常データのミニバッチサイズであり、X- nはミニバッチ内のn番目の正常データである。<教師あり異常検知と異常データの水増し>
 異常検知システムを運用していると、まれに異常データが得られることがある。検知精度を高めるために、この異常データも利用して学習を行いたい。そのためには、式(2)のコスト関数を変更する必要がある。正常データの異常度を下げ、異常データの異常度を上げるコスト関数には、例えば以下のようなものが考えられる。
Figure JPOXMLDOC01-appb-M000004
 ここでclip[x]β=β・tanh(x/β)であり、{X+ m}M m=1は異常データのミニバッチである。異常データを利用した異常検知器の学習の問題の一つに、異常データのサンプル数が挙げられる。異常データはまれにしか発生しないため、十分な量の学習データを用意できない。この場合、得られた少数の異常データを水増しして、サンプル数を増やす方法がある。その方法には例えば、正規乱数を異常サンプルに足しこむ方法や、画像を回転させる方法がある。
 しかし、例えば正規乱数を異常サンプルに足しこむ方法は、異常音の生成分布を、観測した異常データを平均値に持つ正規分布であると仮定するが、多くの場合その仮定は満たされない。
V. Chandola, A. Banerjee, and V. Kumar "Anomaly detection: A survey," ACM Computing Surveys, 2009. R. Chalapathy and S. Chawla, "Deep Learning for Anomaly Detection: A Survey," arXiv preprint, arXiv:1901.03407, 2019. Y. Koizumi, S. Saito, H. Uematsu, Y. Kawachi, and N. Harada, "Unsupervised Detection of Anomalous Sound based on Deep Learning and the Neyman-Pearson Lemma," IEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol.27-1, pp.212-224, 2019. J. An and S. Cho, "Variational Autoencoder based Anomaly Detection using Reconstruction Probability," 2015. Y. Kawachi, Y. Koizumi, and N. Harada, "Complementary Set Variational AutoEncoder for Supervised Anomaly Detection," Proc. of International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018. P. Bergmann, M. Fauser, D. Sattlegger, C. Steger, "MVTec AD-A Comprehensive Real World Dataset for Unsupervised Anomaly Detection," Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
 上述したように、異常データはまれにしか発生しないため、十分な量の学習データを用意するためには異常データの水増しが必要になる。しかし異常データを精度よく生成する方法は知られていなかった。
 そこで本発明では、精度が高い異常データを生成することができる異常データ生成装置を提供することを目的とする。
 本発明の異常データ生成装置は、異常データ生成部を含む。異常データ生成部は、正常データの生成モデルである正常分布と、正常分布の補集合として表現される異常分布と、を同じ潜在空間に有し、異常分布からサンプリングされた潜在変数から、観測された実際の異常データと判別できないように最適化された異常データの疑似生成データを生成する。
 本発明の異常データ生成装置によれば、精度が高い異常データを生成することができる。
実施例1の異常データ生成モデル学習装置の構成を示すブロック図。 実施例1の異常データ生成モデル学習装置の動作を示すフローチャート。 異常データの生成例1を示す図。 異常データの生成例2を示す図。 実施例1の異常データ生成装置の構成を示すブロック図。 実施例1の異常データ生成装置の動作を示すフローチャート。 コンピュータの機能構成例を示す図。
 以下、本発明の実施の形態について、詳細に説明する。なお、同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。
<概要>
 異常検知の精度を向上させるためには、正常と異常の両方のデータを大量に収集し、それを利用して学習する、教師あり学習の導入が不可欠である。しかし、異常データの発生頻度は極めて小さく、十分な量の学習データを集めることはほとんどの場合不可能である。そこで、得られた僅かな異常データを水増し(data augmentation)し、異常データの量を確保する方法が必要である。これまでは、ガウス乱数などを足しこんで異常データとしたり、回転や伸縮を利用して異常データを水増する方法が利用されてきたが、これらが異常データと同じ確率分布から生成されたという保証はない。本実施例では、異常データの生成分布を明示的に学習し、そこから異常データを擬似生成する装置、方法を開示する。基本要素として、「補集合変分オートエンコーダ(CVAE:complementary-set variational autoencoder)」を利用して異常データをモデリングする。補集合変分オートエンコーダでは、異常データを擬似生成し、生成されたデータを学習に利用することは想定されていなかったため、画像などの複雑なデータの生成精度は未だ議論されておらず、補集合変分オートエンコーダを実際に利用すると、細部の生成はできないことがわかる。
 本実施例では、その問題を解決するために、CVAEの学習に敵対的生成ネットワーク(GAN:generative adversarial network)のコスト関数を導入した、敵対的補集合変分オートエンコーダ(CVAE-GAN)を開示する。この発明のポイントは、
(i)CVAEを利用して異常データを生成すること(異常データ水増し問題にCVAEを利用すること)、
(ii)CVAEの学習にGANを組み合わせること(高精細な生成データを得るための工夫)、
である。実験では、異常画像のオープンデータセットを利用し、学習データセットになく、かつ自然な異常画像を生成できることを示す。
 本実施例では、観測された少数の(1~10サンプル程度の)異常データを利用して異常データの生成モデルを推定し、異常データを擬似生成する装置、方法を開示する。本実施例では、教師あり異常検知のための統計モデルとして提案された補集合変分オートエンコーダ(非特許文献5)を発展させた形で、異常音の生成モデルを提供する。
 以下、本実施例の異常データ生成モデル学習装置の動作の基礎となる技術である、変分オートエンコーダ(VAE: variational autoencoder)、補集合変分オートエンコーダ(CVAE: complementary-setVAE)、敵対的生成ネットワーク(GAN:generative adversarial network)、敵対的補集合変分オートエンコーダ(CVAE-GAN)について説明する。
<変分オートエンコーダ>
 VAEは、Jサンプルの学習データX={Xj}J j=1が得られたもとで、Xの生成モデルp(X|X)(ただし、前のXは太字斜体のX,後ろのXはスクリプト書体のX)を学習する方式である。VAEでは、Xの生成過程として(i)潜在変数zn∈RDが事前分布p(z)から生成され、(ii)観測データXnが条件付き分布p(X|zn)から生成される、というものを想定する。これらの分布をそれぞれqφ(z|X)とpθ(X|z)のパラメトライズされた分布で考え、それぞれをニューラルネットワークでモデル化する。つまり前者が観測変数から隠れ変数の分布を推定するエンコーダであり、後者が隠れ変数から観測変数の分布を推定するデコーダとなる。
 これらの2つのネットワークを用いて、Xの生成モデルを以下のように記述する。
Figure JPOXMLDOC01-appb-M000005
 そして、pθ,φ(X)をXに対する尤度最大化基準で学習する代わりに、変分下限(ELBO:evidence lower bound)を最大化するように学習する。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-I000007
 ただし、p(z)はzの事前分布、Nはバッチサイズ、Kは期待値演算をサンプリングによって近似するためのサンプリング数であり、z(k)はz(k)~qφ(z|X)としてサンプリングされた変数である。
 VAEでは、エンコーダとデコーダを表すDNNを以下のように利用する。p(z)を標準ガウス分布N(z;0,I)で設計する場合、エンコーダはXを生成したであろうガウス分布の平均μ=(μ1,...,μD)と分散σ=(σ1,...,σD)を推定する。この場合、式(7)の第二項は以下のように計算できる。
Figure JPOXMLDOC01-appb-M000008
 また、デコーダはz(k)からXを^X(k)として復元するネットワークである。この際の尤度関数には様々なものが利用できるが、代表的なものは、point-wise Gaussianである。これは、Xが画像であれば、各ピクセル毎の二乗誤差の平均として解釈でき、以下のように計算される。
Figure JPOXMLDOC01-appb-M000009
 これが、式(2)で表されるAEにおける異常度と対応しているため、VAEは異常検知における異常度計算器として利用されることも多い(非特許文献4)。
<補集合変分オートエンコーダ>
 CVAE(非特許文献5)は、VAEを教師あり異常検知(正常データと異常データの両方を学習に用いる)向けに拡張したものである。CVAEの根底にある思想は、異常は正常の補集合であるという考えである。つま、異常は「正常ではないもの」と定義される。ゆえに異常の生成分布は、正常である確率が高い領域では尤度が低く、正常である確率が低い領域では、正常分布よりも尤度が高い必要がある。河内らは、そのような制約を満たす確率分布の一般形として、以下の補集合分布を提案した。
Figure JPOXMLDOC01-appb-M000010
 ここでpn(x)が正常の分布、pw(x)が全集合の分布である。これを用いたVAEの学習方法として、正常データの潜在変数は通常のVAEと同様に標準ガウス分布N(z;0,I)とのKL情報量を最小化し、異常データの潜在変数は補集合分布C(x)とのKL情報量を最小化するように学習する、CVAEを開示する。CVAEの学習に用いるコスト関数は以下である。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-I000012
 河内らの実装では、pn(x)を標準ガウス分布、pw(x)を平均0、分散s2をもガウス分布とした補集合分布を利用している。この場合、補集合分布は以下となる。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-I000014
 また、KL[qφ(z|X)∥CN(z)]は、ln(x+1/(2π))=-ln2π+2πxの近似を利用することで、以下のように近似計算できる。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-I000016
 ここでCはμとσに関係のない定数項である。
 CVAEは生成モデルであるため、補集合分布から乱数生成し、学習済みのデコーダで観測信号を復元すれば、異常データを生成できる。ところが、VAEのデコーダによる画像生成は、生成画像がぼやけてしまうという問題が知られている。CVAEでは、異常データを擬似生成し、生成されたデータを学習に利用することは想定していなかったため、画像などの複雑なXの生成精度は議論されていない(実際に利用すると、細部の生成はできないことがわかる)。
<敵対的生成ネットワーク>
 一方、敵対的生成ネットワーク(GAN:generative adversarial network)は高精細な画像を出力できることが知られている。
<敵対的補集合変分オートエンコーダ>
 先行研究にのっとり、CVAEによる異常データ生成の問題を克服するために、本実施例では敵対的補集合変分オートエンコーダ(CVAE-GAN)を開示する。CVAE-GANのコスト関数は、CVAEのコスト関数にGANのコスト関数を加算したものになっている。GANでは、データ生成のネットワークの他に、入力されたデータが本物か、生成された擬似データかを見分けるネットワークDを利用する。本発明では、Dをパラメータψを持つネットワークとし、0≦Dψ(X)≦1が小さければXは真のデータ、大きければXは生成されたデータと定義する。
 GANのコスト関数には様々な派生形が提案されている。本発明においてGANのコスト関数には何を用いてもよいが、例えば、Wasserstein GAN(WGAN)の形式のコスト関数を利用できる。WGANのコストを利用する場合、以下のコスト関数を最小化するように、エンコーダとデコーダを学習すればよい。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
 だたし、{~X- n}N n=1と{~X+ m}M m=1はそれぞれ、{~z- n}N n=1と{~z+ m}M m=1からデコーダを利用して生成されたデータであり、~z- nと~z+ mの各次元は、~z- n,d~N(z;0,1)および~z+ m,d~CN(x;s)で生成された乱数である。また、DのパラメータψはLWGANを最小化するように学習する。このように学習を行うことで、従来技術とは異なり、擬似生成データは異常データの潜在変数の確率分布CN(x;s)から生成されることを保証しつつ、本物の異常データと見分けのつかないような異常データを生成できるようになる。
 ひとたび、エンコーダとデコーダの学習が終了すれば、学習時と同様に~z+ m,d~CN(x;s)で潜在変数を乱数生成し、エンコーダで擬似生成異常データ{~X+ m}M m=1を生成し、式(4)などのコスト関数を利用して異常度計算器Aを学習すればよい。
<異常データ生成モデル学習装置1>
 図1に示すように、本実施例の異常データ生成モデル学習装置1は、パラメータ記憶部801と、異常データ記憶部802と、正常データ記憶部803と、異常データ水増し部102と、初期化部201と、再構成部202と、疑似生成部203と、判定部204と、パラメータ更新部205と、収束判定部206と、パラメータ出力部301を含む。なお、同図にはパラメータの初期値などを予め記憶するパラメータ記憶部801、学習に用いる異常データ(観測データ)を予め記憶する異常データ記憶部802、学習に用いる正常データ(観測データ)を予め記憶する正常データ記憶部803を示したが、これらの記憶領域は、異常データ生成モデル学習装置1内にあってもよいし、他の装置内に含まれていてもよい。本実施例では、パラメータ記憶部801、異常データ記憶部802、正常データ記憶部803が外部装置に含まれるものとして説明を進める。異常データ生成モデル学習装置1には、パラメータ記憶部801、異常データ記憶部802、正常データ記憶部803から、パラメータの初期値、観測された正常データ、観測された異常データが入力される。各種パラメータはN=M=50、s=5程度に設定すればいい。以下、図2を参照して各構成要件の動作を説明する。
<異常データ水増し部102>
 異常データ水増し部102は、異常データを水増しする(S102)。もともとの異常データの数が十分である場合、異常データ水増し部102、ステップS102は省略できる。例えば異常データ水増し部102は、画像であれば回転、音であれば時間周波数方向への伸縮などを利用して、異常データを水増しする。なお、以下観測された正常データ、観測された異常データ、ステップS102で水増しされた異常データをすべてまとめて、観測データと呼ぶことにする。
<初期化部201>
 初期化部201は、各種ネットワークの乱数などを初期化する(S201)。
<再構成部202>
 再構成部202は、観測された正常データと観測された異常データを含む観測データを取得して、オートエンコーダ型のDNNによりエンコード、デコードすることにより、正常データと異常データの再構成データを取得する(S202)。
 より具体的には、再構成部202は、ランダムに選択された正常データと異常データのミニバッチ(例えば式(11)のN,Mで表されるバッチ数により規定されるミニバッチ)を、VAEを使って再構成して、正常データと異常データの再構成データを取得する。
<疑似生成部203>
 疑似生成部203は、補集合変分オートエンコーダに基づいて正常データの疑似生成データと異常データの疑似生成データを取得する(S203)。より詳細には、疑似生成部203は、標準ガウス分布との差異が小さくなるように学習された潜在変数の確率分布から乱数生成した潜在変数に基づいて正常データの疑似生成データを取得し、正常データの補集合分布との差異が小さくなるように学習された潜在変数の確率分布から乱数生成した潜在変数に基づいて異常データの疑似生成データを取得する。
<判定部204>
 判定部204は、観測データと再構成データと疑似生成データを、入力されたデータが観測データであるか否かを識別する識別器Dに入力して、判定結果を取得する(S204)。
<パラメータ更新部205>
 パラメータ更新部205は、補集合変分オートエンコーダと敵対的生成ネットワークを組み合わせてなる敵対的補集合変分オートエンコーダに基づいて、入力されたデータが観測データであるか否かを識別する識別器のパラメータと、再構成用および疑似生成用のエンコーダおよびデコーダのパラメータを更新する(S205)。
 より詳細には、パラメータ更新部205は、識別器が正しい判定をするほど小さくなるコスト関数(式(17),LWGAN=Vtrue-Vgen)が小さくなるように識別器Dのパラメータψを更新し、式(16)のコスト関数が小さくなるように、すなわち式(16)のコスト関数LCVAEが小さくなり、コスト関数LWGANが大きくなるように再構成用および疑似生成用のエンコーダおよびデコーダのパラメータを更新する(S205)。
<収束判定部206>
 収束判定部206は、ステップS202~S205の学習が収束しているか否かを判定する(S206)。ステップS206の判定結果が「収束」であれば、学習を終了してステップS301に移行し、それ以外の場合にはステップS202へ戻る。
<パラメータ出力部301>
 パラメータ出力部301は、学習済みのパラメータを出力する(S301)。
<実行結果例>
 本実施例の有効性を確認するために、画像の異常検知のオープンデータセットMVTec-AD(非特許文献6)を利用して、異常データの擬似生成実験を行った。動作確認として、本データセットの中から“bottle”と“leather”のデータを利用した。各画像はグレースケールに変換し、サイズを128×128へリサイズして利用した。異常データは、“bottle”(ビンの飲み口部分の形状)と“leather”(革製品の表面)共に5枚利用し、1°ずつ回転させることで計1800サンプルへデータ拡張した。図3、4に生成された異常サンプルを示す。元の異常データと類似した異常であり、かつ異常個所が異なる場所に現れているデータを生成できていることがわかる。
[異常データ生成装置2]
 以下、図5を参照して、学習したパラメータを利用して異常データを生成する異常データ生成装置2の構成を説明する。同図に示すように、本実施例の異常データ生成装置2は、異常データ生成部502を含む。なお、同図には異常データ生成モデル学習装置1が学習して出力したパラメータを予め記憶するパラメータ記憶部501を示したが、この記憶領域は、異常データ生成装置2内にあってもよいし、他の装置内に含まれていてもよい。本実施例では、パラメータ記憶部501は外部装置に含まれるものとして説明を進める。以下、図6を参照して、異常データ生成部502の動作を説明する。
<異常データ生成部502>
 異常データ生成部502は、正常データの生成モデルである正常分布と、正常分布の補集合として表現される異常分布と、を同じ潜在空間に有し、異常分布からサンプリングされた潜在変数から、観測された実際の異常データと判別できないように最適化された異常データの疑似生成データを生成する(S502)。
 異常データ生成部502は、観測された異常データを含む観測データを、オートエンコーダ型のDNNによりエンコード、デコードすることにより、観測された実際の異常データと判別できないように最適化された異常データの再構成データを生成する(S502)。
 このとき、異常データ生成部502は、疑似生成データを生成するためのデコーダであって、入力された異常データが観測された異常データであるか否かを識別する識別器Dが正しい判定をするほど小さくなるコスト関数が大きくなるように、そのパラメータを更新して学習されたデコーダを用いる(S502)。
<補記>
 本発明の装置は、例えば単一のハードウェアエンティティとして、キーボードなどが接続可能な入力部、液晶ディスプレイなどが接続可能な出力部、ハードウェアエンティティの外部に通信可能な通信装置(例えば通信ケーブル)が接続可能な通信部、CPU(Central Processing Unit、キャッシュメモリやレジスタなどを備えていてもよい)、メモリであるRAMやROM、ハードディスクである外部記憶装置並びにこれらの入力部、出力部、通信部、CPU、RAM、ROM、外部記憶装置の間のデータのやり取りが可能なように接続するバスを有している。また必要に応じて、ハードウェアエンティティに、CD-ROMなどの記録媒体を読み書きできる装置(ドライブ)などを設けることとしてもよい。このようなハードウェア資源を備えた物理的実体としては、汎用コンピュータなどがある。
 ハードウェアエンティティの外部記憶装置には、上述の機能を実現するために必要となるプログラムおよびこのプログラムの処理において必要となるデータなどが記憶されている(外部記憶装置に限らず、例えばプログラムを読み出し専用記憶装置であるROMに記憶させておくこととしてもよい)。また、これらのプログラムの処理によって得られるデータなどは、RAMや外部記憶装置などに適宜に記憶される。
 ハードウェアエンティティでは、外部記憶装置(あるいはROMなど)に記憶された各プログラムとこの各プログラムの処理に必要なデータが必要に応じてメモリに読み込まれて、適宜にCPUで解釈実行・処理される。その結果、CPUが所定の機能(上記、…部、…手段などと表した各構成要件)を実現する。
 本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。また、上記実施形態において説明した処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されるとしてもよい。
 既述のように、上記実施形態において説明したハードウェアエンティティ(本発明の装置)における処理機能をコンピュータによって実現する場合、ハードウェアエンティティが有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、上記ハードウェアエンティティにおける処理機能がコンピュータ上で実現される。
 上述の各種の処理は、図7に示すコンピュータの記録部10020に、上記方法の各ステップを実行させるプログラムを読み込ませ、制御部10010、入力部10030、出力部10040などに動作させることで実施できる。
 この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。具体的には、例えば、磁気記録装置として、ハードディスク装置、フレキシブルディスク、磁気テープ等を、光ディスクとして、DVD(Digital Versatile Disc)、DVD-RAM(Random Access Memory)、CD-ROM(Compact Disc Read Only Memory)、CD-R(Recordable)/RW(ReWritable)等を、光磁気記録媒体として、MO(Magneto-Optical disc)等を、半導体メモリとしてEEP-ROM(Electrically Erasable and Programmable-Read Only Memory)等を用いることができる。
 また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD-ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。
 このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記録媒体に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。
 また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、ハードウェアエンティティを構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。

Claims (8)

  1.  正常データの生成モデルである正常分布と、前記正常分布の補集合として表現される異常分布と、を同じ潜在空間に有し、前記異常分布からサンプリングされた潜在変数から、観測された実際の異常データと判別できないように最適化された異常データの疑似生成データを生成する異常データ生成部を含む
     異常データ生成装置。
  2.  請求項1に記載の異常データ生成装置であって、
     前記異常データ生成部は、
     観測された異常データを含む観測データを、オートエンコーダ型のDNNによりエンコード、デコードすることにより、観測された実際の異常データと判別できないように最適化された異常データの再構成データを生成する
     異常データ生成装置。
  3.  請求項1または2に記載の異常データ生成装置であって、
     前記異常データ生成部は、
     前記疑似生成データを生成するためのデコーダであって、入力された異常データが観測された異常データであるか否かを識別する識別器が正しい判定をするほど小さくなるコスト関数が大きくなるように、そのパラメータを更新して学習されたデコーダを用いる
     異常データ生成装置。
  4.  観測された正常データと観測された異常データを含む観測データを取得して、オートエンコーダ型のDNNによりエンコード、デコードすることにより、正常データと異常データの再構成データを取得する再構成部と、
     補集合変分オートエンコーダに基づいて正常データの疑似生成データと異常データの疑似生成データを取得する疑似生成部と、
     補集合変分オートエンコーダと敵対的生成ネットワークを組み合わせてなる敵対的補集合変分オートエンコーダに基づいて、入力されたデータが前記観測データであるか否かを識別する識別器のパラメータと、再構成用および疑似生成用のエンコーダおよびデコーダのパラメータを更新するパラメータ更新部を含む
     異常データ生成モデル学習装置。
  5.  請求項4に記載の異常データ生成モデル学習装置であって、
     前記疑似生成部は、
     標準ガウス分布との差異が小さくなるように学習された潜在変数の確率分布から乱数生成した潜在変数に基づいて正常データの疑似生成データを取得し、正常データの補集合分布との差異が小さくなるように学習された潜在変数の確率分布から乱数生成した潜在変数に基づいて異常データの疑似生成データを取得し、
     前記観測データと前記再構成データと前記疑似生成データを、入力されたデータが前記観測データであるか否かを識別する識別器に入力して、判定結果を取得する判定部を含み、
     前記パラメータ更新部は、
     前記識別器が正しい判定をするほど小さくなるコスト関数が小さくなるように前記識別器のパラメータを更新し、前記コスト関数が大きくなるように再構成用および疑似生成用のエンコーダおよびデコーダのパラメータを更新する
     異常データ生成モデル学習装置。
  6.  異常データ生成装置が実行する異常データ生成方法であって、
     正常データの生成モデルである正常分布と、前記正常分布の補集合として表現される異常分布と、を同じ潜在空間に有し、前記異常分布からサンプリングされた潜在変数から、観測された実際の異常データと判別できないように最適化された異常データの疑似生成データを生成する異常データ生成ステップを含む
     異常データ生成方法。
  7.  異常データ生成モデル学習装置が実行する異常データ生成モデル学習方法であって、
     観測された正常データと観測された異常データを含む観測データを取得して、オートエンコーダ型のDNNによりエンコード、デコードすることにより、正常データと異常データの再構成データを取得する再構成ステップと、
     補集合変分オートエンコーダに基づいて正常データの疑似生成データと異常データの疑似生成データを取得する疑似生成ステップと、
     補集合変分オートエンコーダと敵対的生成ネットワークを組み合わせてなる敵対的補集合変分オートエンコーダに基づいて、入力されたデータが前記観測データであるか否かを識別する識別器のパラメータと、再構成用および疑似生成用のエンコーダおよびデコーダのパラメータを更新するパラメータ更新ステップを含む
     異常データ生成モデル学習方法。
  8.  コンピュータを請求項1から5の何れかに記載の装置として機能させるプログラム。
PCT/JP2020/005248 2020-02-12 2020-02-12 異常データ生成装置、異常データ生成モデル学習装置、異常データ生成方法、異常データ生成モデル学習方法、プログラム WO2021161405A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/005248 WO2021161405A1 (ja) 2020-02-12 2020-02-12 異常データ生成装置、異常データ生成モデル学習装置、異常データ生成方法、異常データ生成モデル学習方法、プログラム
US17/798,849 US20230086628A1 (en) 2020-02-12 2020-02-12 Abnormal data generation device, abnormal data generation model learning device, abnormal data generation method, abnormal data generation model learning method, and program
JP2021577751A JPWO2021161405A1 (ja) 2020-02-12 2020-02-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005248 WO2021161405A1 (ja) 2020-02-12 2020-02-12 異常データ生成装置、異常データ生成モデル学習装置、異常データ生成方法、異常データ生成モデル学習方法、プログラム

Publications (1)

Publication Number Publication Date
WO2021161405A1 true WO2021161405A1 (ja) 2021-08-19

Family

ID=77292118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005248 WO2021161405A1 (ja) 2020-02-12 2020-02-12 異常データ生成装置、異常データ生成モデル学習装置、異常データ生成方法、異常データ生成モデル学習方法、プログラム

Country Status (3)

Country Link
US (1) US20230086628A1 (ja)
JP (1) JPWO2021161405A1 (ja)
WO (1) WO2021161405A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188017A1 (ja) * 2022-03-29 2023-10-05 日本電信電話株式会社 学習用データ生成装置、学習用データ生成方法及びプログラム
JP7510979B2 (ja) 2022-09-22 2024-07-04 株式会社日立製作所 異常音のデータを生成する装置及び方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230044470A1 (en) * 2021-08-09 2023-02-09 Anurag Singla Systems and Methods for Detecting Novel Behaviors Using Model Sharing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAWACHI, YUTA ET AL.: "Complementary Set Variational Autoencoder for Supervised Anomaly Detection", 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP, September 2018 (2018-09-01), pages 2366 - 2370, XP033401498, Retrieved from the Internet <URL:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462181> [retrieved on 20200303] *
KIMURA, DAIKI ET AL.: "Anomaly Detection with VAEGAN and Attention", THE 33RD ANNUAL CONFERENCE OF THE JAPANESE SOCIETY FOR ARTIFICIAL INTELLIGENCE, 1 June 2019 (2019-06-01), pages 1 - 2, XP055847144, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/pjsai/JSAI2019/0/JSAI2019_4P3J1002/_pdf/-char/ja> [retrieved on 20200303] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023188017A1 (ja) * 2022-03-29 2023-10-05 日本電信電話株式会社 学習用データ生成装置、学習用データ生成方法及びプログラム
JP7510979B2 (ja) 2022-09-22 2024-07-04 株式会社日立製作所 異常音のデータを生成する装置及び方法

Also Published As

Publication number Publication date
JPWO2021161405A1 (ja) 2021-08-19
US20230086628A1 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
WO2021161405A1 (ja) 異常データ生成装置、異常データ生成モデル学習装置、異常データ生成方法、異常データ生成モデル学習方法、プログラム
EP3486838A1 (en) System and method for semi-supervised conditional generative modeling using adversarial networks
CN110210513B (zh) 数据分类方法、装置及终端设备
JP2023512140A (ja) 異常検出器、異常検出の方法、及び異常検出器を訓練する方法
JP2019200551A (ja) データから潜在因子を発見するニューラルネットワーク
WO2021062133A1 (en) Unsupervised and weakly-supervised anomaly detection and localization in images
Dao et al. Knowledge distillation as semiparametric inference
US20220318623A1 (en) Transformation of data samples to normal data
WO2019160003A1 (ja) モデル学習装置、モデル学習方法、プログラム
Chen et al. Variational Bayesian methods for multimedia problems
US20210350181A1 (en) Label reduction in maintaining test sets
US11663840B2 (en) Method and system for removing noise in documents for image processing
CN112309497B (zh) 一种基于Cycle-GAN的蛋白质结构预测方法及装置
CN111783873A (zh) 基于增量朴素贝叶斯模型的用户画像方法及装置
CN101715097A (zh) 图像处理设备和系数学习设备
WO2019138897A1 (ja) 学習装置および方法、並びにプログラム
CN112651467A (zh) 卷积神经网络的训练方法和系统以及预测方法和系统
Graham et al. Unsupervised 3d out-of-distribution detection with latent diffusion models
Xu et al. Greedy layer-wise training of long short term memory networks
CN116433977B (zh) 未知类别图像分类方法、装置、计算机设备及存储介质
Nakano Hybrid algorithm of ensemble transform and importance sampling for assimilation of non-Gaussian observations
CN112346126B (zh) 低级序断层的识别方法、装置、设备及可读存储介质
KR20200048002A (ko) 비대칭 tanh 활성 함수를 이용한 예측 성능의 개선
WO2020255299A1 (ja) 異常度推定装置、異常度推定方法、プログラム
Swarnkar et al. A paradigm shift for computational excellence from traditional machine learning to modern deep learning-based image steganalysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577751

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919184

Country of ref document: EP

Kind code of ref document: A1