WO2021159968A1 - 关口站切换的方法和装置 - Google Patents
关口站切换的方法和装置 Download PDFInfo
- Publication number
- WO2021159968A1 WO2021159968A1 PCT/CN2021/074277 CN2021074277W WO2021159968A1 WO 2021159968 A1 WO2021159968 A1 WO 2021159968A1 CN 2021074277 W CN2021074277 W CN 2021074277W WO 2021159968 A1 WO2021159968 A1 WO 2021159968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ssb
- gateway station
- message
- gateway
- information
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0083—Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0061—Transmission or use of information for re-establishing the radio link of neighbour cell information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0083—Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
- H04W36/0085—Hand-off measurements
- H04W36/0094—Definition of hand-off measurement parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/24—Reselection being triggered by specific parameters
- H04W36/30—Reselection being triggered by specific parameters by measured or perceived connection quality data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0058—Transmission of hand-off measurement information, e.g. measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/06—Airborne or Satellite Networks
Definitions
- This application relates to the field of communications, and in particular to a method and device for gateway switching.
- Non-terrestrial network (NTN) systems refer to communication networks that use air or space platforms as relay nodes or base stations for transmission equipment.
- Aerial or space platforms include, but are not limited to, drones, hot air balloons, airplanes, satellites, etc.
- the existing hard handover has poor reliability, and soft handover requires additional hardware cost and bandwidth.
- the present application provides a gateway station switching method and device, which can ensure the reliability of the gateway station switching and save the hardware overhead of the high-altitude platform.
- a method for switching a gateway station which includes: a terminal device receives a synchronous broadcast block SSB through a service link, the SSB includes a first message and a second message, the first message includes the SSB of the source gateway station, and the first message includes the SSB of the source gateway station.
- the second message includes the SSB of at least one candidate target gateway; the terminal device obtains the measurement result according to the second message, and the measurement result includes the measurement value of the channel quality corresponding to the SSB of at least one candidate target gateway; the terminal device sends the measurement result; the terminal device receives
- the switching instruction includes the switching information of the gateway station determined by the source gateway station according to the measurement result; the terminal device determines whether to switch from the source gateway station to one of the at least one candidate target gateway station according to the switching instruction.
- the terminal device receives the SSB broadcast by the source gateway station and at least one candidate target gateway station in the same service link resource, thereby occupying less spectrum resources.
- the source gateway station and at least one candidate target gateway station use the same service link, and a service link only needs one set of transceiver devices, thereby reducing the overhead of hardware resources of the high-altitude platform.
- the SSB is an SSB in which the first message and the second message are transmitted in a time division multiplexing or frequency division multiplexing manner through a service link.
- the measurement result further includes the measurement value of the channel quality corresponding to the SSB of the source gateway obtained by the terminal device according to the first message.
- the second message further includes cell priority information, where the cell is the cell corresponding to the SSB in the broadcast second message and the cell is a cell covered by the service link ;
- the terminal device selects at least one of the candidate target gateway stations for gateway station handover according to the cell priority information.
- the priority information of the corresponding cell is carried in the SSB of the candidate target gateway, so that the UE can determine the target gateway to be handed over from the multiple candidate target gateways according to the priority information of the cell, thereby reducing
- the UE measures the downlink channel quality of other candidate target gateway stations.
- the method further includes: the terminal device receives synchronization information, The synchronization information is used to establish time synchronization between the terminal device and the target gateway.
- the terminal device can quickly and accurately establish time synchronization with the target gateway station according to the synchronization information, thereby improving the reliability of the gateway station switching.
- the synchronization information includes the feeder link delay difference between the source gateway station and the target gateway station to the network device and/or the source gateway station and The timing difference between the target gateways to send signals to the network equipment.
- the terminal device receives the synchronization information in a broadcast, multicast, or unicast manner.
- the terminal device receives measurement configuration information, and the measurement configuration information includes one or more of the following information: time-frequency information of the SSB of at least one candidate target gateway, The time domain period of the SSB of at least one candidate target gateway station, and the time-frequency resource for reporting the measurement result.
- a method for switching a gateway station including: a network device sends a synchronous broadcast block SSB through a service link, the SSB includes a first message and a second message, and the first message includes the SSB of the source gateway station The second message includes the SSB of at least one candidate target gateway; the network device receives the measurement result, and the measurement result includes the measurement of the channel quality corresponding to the SSB of the at least one candidate target gateway measured by the terminal device according to the second message Value; the network device sends the measurement result; the network device receives a switching instruction, the switching instruction includes the gateway station switching information determined by the source gateway station according to the measurement result, the switching instruction is used to indicate whether the terminal device is removed from the source The gateway station switches to one of the at least one candidate target gateway station; the network device sends the switching instruction.
- the network device transmits the first message and the second message in a time division multiplexing or frequency division multiplexing manner through a service link.
- the measurement result further includes the measurement value of the channel quality corresponding to the SSB of the source gateway obtained by the terminal device according to the first message.
- the second message includes cell priority information, where the cell is a cell corresponding to the SSB in the broadcast second message and the cell is a cell covered by the service link.
- the network device sends synchronization information, and the synchronization information is used to establish time synchronization between the terminal device and the target gateway.
- the synchronization information includes the feeder link delay difference between the source gateway station and the target gateway station and/or the source gateway station and the target gateway station The timing difference between the stations to send signals.
- the network device sends the synchronization information in a broadcast, multicast, or unicast manner.
- the network device sends measurement configuration information, and the measurement configuration information includes one or more of the following information: time-frequency information of the SSB of at least one candidate target gateway, The time domain period of the SSB of at least one candidate target gateway station, and the time-frequency resource for reporting the measurement result.
- a gateway station switching device in a third aspect, has the function of implementing the method in the first aspect and any one of the possible implementation manners in the first aspect.
- the function can be realized by hardware, or the corresponding software can be executed by hardware.
- the hardware or software includes one or more units corresponding to the above-mentioned functions.
- a gateway station switching device which includes a processor.
- the processor is coupled with the memory and can be used to execute instructions in the memory to implement the foregoing first aspect and the method in any one of the possible implementation manners of the first aspect.
- the device further includes a memory.
- the device further includes a communication interface, and the processor is coupled with the communication interface.
- the device is a terminal device.
- the communication interface can be a transceiver, or an input/output interface.
- the transceiver may be a transceiver circuit.
- the input/output interface may be an input/output circuit.
- the device is a chip or a chip system.
- the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
- the processor can also be embodied as a processing circuit or a logic circuit.
- the device is a chip or a chip system configured in a terminal device.
- a gateway station switching device has the function of implementing the method in the second aspect and any one of the possible implementation manners of the second aspect.
- the function can be realized by hardware, or the corresponding software can be executed by hardware.
- the hardware or software includes one or more units corresponding to the above-mentioned functions.
- a gateway station switching device including a processor.
- the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the foregoing second aspect and the method in any one of the possible implementation manners of the second aspect.
- the device further includes a memory.
- the device further includes a communication interface, and the processor is coupled with the communication interface.
- the device is a network device.
- the communication interface can be a transceiver, or an input/output interface.
- the transceiver may be a transceiver circuit.
- the input/output interface may be an input/output circuit.
- the device is a chip or a chip system.
- the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
- the processor can also be embodied as a processing circuit or a logic circuit.
- the device is a chip or a chip system configured in a terminal device.
- a computer program product includes: a computer program (also called code, or instruction), when the computer program is executed, the computer executes the first aspect and the first aspect. Any one of the possible implementation methods.
- a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes the computer to execute the second aspect and the second aspect Any one of the possible implementation methods.
- a computer program also called code, or instruction
- a computer-readable storage medium stores a computer program (also called code or instruction), which when running on a computer, causes the computer to execute the first aspect and The method in any possible implementation of the first aspect.
- a computer program also called code or instruction
- a computer-readable storage medium stores a computer program (also called code, or instruction), which when it runs on a computer, causes the computer to execute the second aspect and The method in any possible implementation of the second aspect.
- a computer program also called code, or instruction
- a communication system including the aforementioned network equipment and terminal equipment.
- Figure 1 is a schematic architecture diagram of NTN communications.
- Figure 2 is a schematic diagram of a gateway station hard handover.
- Figure 3 is a schematic diagram of the soft handover of the gateway station.
- Fig. 4 is a schematic architecture diagram of NTN communication applicable to an embodiment of the present application.
- Fig. 5 is a schematic interaction diagram of a gateway switching method applicable to an embodiment of the present application.
- Fig. 6 is a schematic interaction diagram of a gateway switching method applicable to an embodiment of the present application.
- Fig. 7 is the first schematic diagram of broadcasting the synchronous broadcast block pattern of the source gateway station and the target gateway station on the time domain resource of a service link.
- Figure 8 is an example figure 2 of the synchronous broadcast block pattern of the source gateway station and the target gateway station broadcast on the time domain resources of a service link.
- Figure 9 is a schematic diagram of a synchronous broadcast block pattern of a source gateway station and a target gateway station broadcast on the frequency domain resources of a service link.
- Figure 10 is a schematic diagram of the timing difference between the source gateway station and the target gateway station sending downlink signals.
- FIG. 11 is a schematic structural diagram of a communication device 1000 provided by this application.
- FIG. 12 is a schematic structural diagram of a communication device 2000 provided by this application.
- FIG. 13 is a schematic structural diagram of the communication device 10 provided by this application.
- FIG. 14 is a schematic structural diagram of the communication device 20 provided by this application.
- LTE long term evolution
- 5G fifth generation mobile communication
- device-to-device device-to-device
- device-to-device device-to-device
- device D2D
- M2M machine to machine
- NTN non-terrestrial network
- the 5G wireless air interface technology is called a new radio (NR)
- NR new radio
- the NTN system can also be called a satellite communication system.
- the non-ground communication system may also include a high altitude platform (HAPS) communication system.
- HAPS high altitude platform
- the NTN system refers to a communication network that uses air or space platforms as relay nodes or base stations for transmission equipment.
- Aerial or space platforms include, but are not limited to, drones, hot air balloons, airplanes, satellites, etc.
- FIG. 1 is a schematic architecture diagram of NTN communications.
- the gateway in the NTN system can provide functions similar to the gateway in the terrestrial communication system, such as establishing a connection with the UE and communicating with the server. In order to distinguish it from the terrestrial communication system, the gateway is called a gateway here.
- the gateway station also has functions such as satellite monitoring, fault query, packet exchange of communication data, and interface protocol conversion.
- the gateway station is connected to the core network.
- the link between the gateway station and the satellite is called the feeder link, and the link between the satellite and the user equipment is called the service link.
- the satellite works in a transparent mode, that is, the satellite acts as a relay, which can do radio frequency filtering, amplification, etc., to regenerate the signal.
- the UE may be various mobile terminals, such as a mobile satellite phone, or various fixed terminals, such as a communication ground station.
- the terminal can be a wireless terminal or a wired terminal.
- a wireless terminal may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
- a wireless terminal can communicate with one or more core networks via a radio access network (RAN).
- the wireless terminal can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
- the access network exchanges language and/or data. For example, personal communication service (PCS) phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants, PDA) and other equipment.
- PCS personal communication service
- SIP session initiation protocol
- WLL wireless local loop
- PDA personal digital assistants
- a wireless terminal can also be called a system, a subscriber unit (SU), a subscriber station (SS), a mobile station (MB), a mobile station (Mobile), a remote station (RS), Access point (access point, AP), remote terminal (remote terminal, RT), access terminal (access terminal, AT), user terminal (user terminal, UT), user agent (user agent, UA), terminal equipment ( user device, UD).
- Terminal equipment represented by satellite phones and vehicle-mounted satellite systems can communicate directly with satellites.
- the fixed terminal represented by the ground communication station needs to be relayed by the ground station before it can communicate with the satellite.
- the terminal device realizes the setting and acquisition of the communication state by installing a wireless transceiver antenna, and completes the communication.
- FIG. 1 exemplarily introduces an NTN communication scenario
- the network equipment in the embodiment of the present application uses a satellite as an example, but the network equipment in the embodiment of the present application is not limited to this.
- the network equipment in this application may also be a gateway station, high-altitude platform, unmanned aerial vehicle in NTN communication, or terminal equipment that assumes the function of a base station in D2D communication, etc.
- FIG 2 is a schematic diagram of a gateway station hard handover.
- the satellite works in transparent transmission mode.
- a beam or cell where one beam or multiple beams form a cell.
- both the feeder link and the service link of the satellite are supported by only one set of transceiver equipment.
- only one gateway can provide service for it at the same time.
- the satellite moves to the position of the black dotted line in Figure 2
- the satellite switches from the gateway station 1 to the gateway station 2, that is, the feeder link is switched from the gateway station 1 to the gateway station 2.
- the hard handover requires strict time and frequency synchronization, if the timing and frequency of the downlink signal sent by the gateway station 2 changes significantly, the user terminal will lose the time-frequency synchronization with the gateway station 2.
- the user terminal needs to reconnect to the network and establish a radio resource control (RRC) connection, which causes a long interruption delay.
- RRC radio resource control
- the disadvantage of hard handover is that the reliability of handover is poor, the UE needs to re-establish the RRC connection when the communication is interrupted, and the interruption time delay is large.
- FIG. 3 is a schematic diagram of the soft handover of the gateway station.
- the satellite When the satellite is near the dotted line position, the satellite establishes the feeder link connection with the gateway station 1 and the gateway station 2 at the same time. At the same time, the two gateway stations have different service links to provide communication services for user terminals in the same area.
- the user terminal shown in FIG. 3 establishes a connection with the gateway station 2 while maintaining the communication connection with the gateway station 1.
- the connection with the gateway station 1 is disconnected.
- the soft handover method is to first establish a new connection and then disconnect the old connection, which can ensure the reliability of the user terminal to switch the gateway.
- the establishment of a new connection by soft handover requires an additional set of feeder link and service link transceiver equipment, which increases the hardware cost of the satellite platform.
- the service links of the two gateway stations need to work in different frequency bands, so the service link of the gateway station 2 also needs to occupy additional bandwidth.
- this application proposes a method for optimizing the gateway switching mechanism in the satellite communication scenario, which can effectively improve the handover success rate and save service link spectrum resources and hardware resources.
- Fig. 4 is a schematic structural diagram of NTN communication applicable to an embodiment of the present application.
- the user terminal that is, an example of terminal equipment
- the gateway Station 2 that is, an example of the target gateway station.
- the gateway station 1 and the gateway station 2 use the same service link frequency domain resources to cover the same beam or cell within a period of time, and provide a handover time window for user terminals in the coverage area.
- FIG. 5 is a schematic interaction diagram of a gateway switching method applicable to an embodiment of the present application.
- the gateway station 1 sends measurement configuration information to the UE.
- the measurement configuration information includes the time-frequency information of the synchronization signal block (synchronization signal and PBCH block, SSB) broadcast by the gateway station 2, the SSB time domain period of the gateway station 2, and the uplink resource for the UE to report the measurement result.
- SSB is composed of primary synchronization signal (PSS), secondary synchronization signal (SSS) and physical broadcast channel (PBCH), etc. It provides UE with cell downlink synchronization and basic configuration information of the cell .
- the PBCH will carry the master information block (MIB) of the cell, and the MIB will indicate whether there is system information block type 1 (SIB1) and the location of SIB1.
- the synchronization signal block may also be referred to as a synchronization broadcast block, which is not limited in this application.
- gateway station 1 and the gateway station 2 and the UE involved in the embodiments of the present application all require satellites as relay devices for forwarding.
- the gateway station 2 broadcasts the SSB on the corresponding time-frequency resource.
- the satellite acts as a relay station. After receiving the SSB broadcast by the two gateway stations, it broadcasts the SSB of the gateway 2 and the SSB of the gateway 1 to the UE in a time division multiplexing or frequency division multiplexing manner through a service link.
- S503 The UE measures the corresponding channel quality according to the SSB broadcast by the gateway station 2, and reports it to the gateway station 1 via satellite.
- the measurement result of channel quality may include one or more of the following parameters: reference signal to noise power ratio (signal to noise ratio, SNR), bit energy to noise power spectral density ratio (E b /N 0 ), Reference signal received power (RSRP), channel quality indicator (CQI), signal to interference plus noise power ratio (SINR), reference signal received quality (reference signal received power) quality, RSRQ) or decoding performance (such as packet loss rate, etc.).
- SNR reference signal to noise power ratio
- E b /N 0 bit energy to noise power spectral density ratio
- RSRP Reference signal received power
- CQI channel quality indicator
- SINR signal to interference plus noise power ratio
- RSRQ reference signal received quality
- decoding performance such as packet loss rate, etc.
- the gateway station 1 determines whether the UE is handed over to the gateway station 2 according to the channel quality reported by the UE.
- the gateway 1 sends a switching command to the satellite according to the channel quality reported by the UE.
- the switching command includes the switching information of the gateway determined by the source gateway according to the measurement result.
- the switching command is used to indicate whether to switch the UE from the source gateway to the target gateway.
- the satellite sends the handover instruction to the UE. If it is determined to switch to the gateway station 2, the gateway station 1 applies to the gateway station 2 for handover access.
- the source gateway station may not directly switch the UE to the destination gateway station based on the measured channel quality between the candidate source gateway station and the UE.
- the UE when the gateway station is switched, the UE will obtain the corresponding gateway station 1 channel according to the SSB measurement broadcast by the gateway station 1 and the gateway station 2. The quality and the channel quality of the gateway station 2. The UE reports the measurement result to the gateway 1 via satellite.
- the source gateway station ie, gateway station 1
- the target gateway station can determine whether to switch to the target gateway station (gateway station 2) according to the measured channel quality. For example, if the channel quality of the target gateway station is better than the source gateway station, the handover will be executed, otherwise, it will not be executed. Switch.
- the gateway station 1 sends an RRC reconfiguration message to the UE.
- the configuration message includes the information required for the UE to switch to the gateway station 2, the target cell number (identity, ID), and the new cell radio network temporary identity (cell radio network temporary identity). , C-RNTI) (used in the target cell), the security algorithm of the target cell, the time-frequency resource for sending information A, etc.
- target cell here refers to the cell corresponding to the SSB of the broadcast gateway station 2.
- the UE uses the new C-RNTI on the scheduled time-frequency resource to send information A to the gateway station 2, and the information A includes an application for establishing an RRC connection in the target cell.
- the gateway station 2 sends a message B to the UE, and the message B includes a confirmation to establish an RRC connection.
- S508 The UE sends a hybrid automatic repeat request (HARQ) acknowledgement/negative acknowledgement (ACK/NACK) to the gateway station 2 to confirm that the message B is successfully received.
- HARQ hybrid automatic repeat request
- ACK/NACK acknowledgement/negative acknowledgement
- the gateway station 2 sends a handover complete message to the gateway station 1, confirming that the UE has been handed over to the gateway station 2.
- S510 The UE sends data to the gateway station 2, and the gateway station 2 may schedule the time-frequency resources used by the UE to send uplink data to the gateway station 1.
- the gateway station 2 sends data to the UE, and the gateway station 2 can use the time-frequency resource of the previous gateway station 1 to send downlink data to the UE.
- the service of the gateway station 1 for the coverage beam or cell can be turned off.
- different beams or cells can be distinguished according to the bandwidth part (BWP), transmission configuration indicator (TCI) or SSB in the protocol; or in other words, the beams can be distinguished according to BWP, TCI or SSB.
- BWP bandwidth part
- TCI transmission configuration indicator
- SSB SSB
- the switching of the BWP, TCI, or SSB may be used between the terminal device and the network device to instruct the switching of the beam, so for the terminal device and/or the network device, the actual switching of the BWP, TCI, or SSB may be performed.
- the beam involved in this application can also be replaced with BWP, TCI or SSB.
- FIG. 4 schematically shows a handover scenario where there is only one candidate target gateway station (gateway station 2) during satellite movement.
- gateway station 2 In the actual gateway station handover process, there may be at least one candidate target gateway station.
- the gateway station 1 is the source gateway station.
- Fig. 6 is a schematic interaction diagram of a gateway switching method applicable to an embodiment of the present application. In the following, in conjunction with FIG. 6, it will be described how to realize the handover of the gateway station when there are multiple (ie, two or more) candidate target gateway stations.
- the network device sends a synchronous broadcast block SSB to the terminal device through a service link, where the SSB includes the first message and the second message.
- the terminal device receives the SSB from the network device through a service link.
- the network device may be a satellite.
- the first message includes the SSB of the source gateway, and the second message includes the SSB of multiple candidate target gateways.
- the first message may also include the system information block (SIB) 1 and other system information (OSI) broadcast by the source gateway station, and the second message may also include multiple candidate target gateway stations.
- SIB1 and OSI This information can provide the UE with more network equipment and gateway related information (such as satellite orbit information, satellite movement speed, gateway location, etc.), so that the UE can establish time-frequency synchronization with the target gateway more quickly.
- S620 The network device receives the measurement result from the terminal device.
- the terminal device sends the measurement result to the network device.
- the measurement result includes the measurement value of the channel quality corresponding to each SSB of the multiple candidate target gateway stations by the terminal device according to the second message.
- the measurement result may also include a measurement value of the channel quality corresponding to the SSB of the source gateway station by the terminal device according to the first message.
- S630 The network device sends the measurement result to the source gateway station.
- S640 The network device receives the switching instruction from the receiving source gateway.
- the switching instruction includes gateway switching information determined by the source gateway station according to the measurement result, and the switching instruction is used to indicate whether to switch the terminal device from the source gateway station to a target gateway among the plurality of preselected candidate target gateway stations stand.
- the gateway station 1 is the source gateway station
- the gateway stations 2, 3, and 4 are multiple candidate target gateway stations.
- the UE measures the corresponding channel quality according to the SSB broadcast by the gateway stations 2, 3, and 4, and sends the measurement results to the satellite Forward to the gateway station 1, assuming that the measured value of the gateway station 3 is the best, the switching instruction instruction can instruct the terminal device to switch from the gateway station 1 to the gateway station 3.
- the measurement result of channel quality may include one or more of the following parameters: reference signal to noise power ratio (signal to noise ratio, SNR), bit energy to noise power spectral density ratio (E b /N 0 ), Reference signal received power (RSRP), channel quality indicator (CQI), signal to interference plus noise power ratio (SINR), reference signal received quality (reference signal received power) quality, RSRQ) or decoding performance (such as packet loss rate, etc.).
- SNR reference signal to noise power ratio
- E b /N 0 bit energy to noise power spectral density ratio
- RSRP Reference signal received power
- CQI channel quality indicator
- SINR signal to interference plus noise power ratio
- RSRQ reference signal received quality
- decoding performance such as packet loss rate, etc.
- the network device sends a switching instruction to the terminal device.
- the terminal device receives the switching instruction, and performs gateway station switching according to the information indicated in the switching instruction.
- S610-S650 are the core steps for the improvement of the gateway handover method of this application. For other steps, refer to the description of the embodiment corresponding to FIG. 5, which will not be repeated here.
- Fig. 7 and Fig. 8 are respectively schematic diagram 1 and example diagram 2 of broadcasting the synchronous broadcast block pattern of the source gateway station and the target gateway station on the time domain resource of a service link.
- the SSB filled with diagonal lines represents the SSB broadcast by gateway station 1 (an example of the source gateway station); the SSB filled with grid lines represents gateway station 2 (an example of the target gateway station) )
- the broadcast SSB, the SSB broadcast by the two gateway stations are separated in the time domain (that is, the SSB of the source gateway station and the SSB of the target gateway station are sent through time division multiplexing).
- the gateway station 1 and the gateway station 2 need to reserve resources for each other on the time domain resources respectively when broadcasting the SSB.
- the time domain period of the synchronization signal block set can be 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, and generally defaults to 20ms.
- the RRC reconfiguration message of S505 can carry the time-frequency resource where the SSB of the gateway station 2 is located, and the period of the SSB of the gateway station 2 or the period of the SSB set.
- the UE detects the gateway station 2’s SSB.
- Fig. 7 shows the case where the time interval between the SSB set of the gateway station 1 and the SSB set of the gateway station 2 is equal to the synchronization broadcast block aggregation period (the SSB aggregation period of the gateway station 1 is the same as the SSB aggregation period of the gateway station 2).
- Fig. 8 shows the case where the time interval between the SSB set of the gateway station 1 and the SSB set of the gateway station 2 is set to another value. Assuming that the SSB collection period 1 of the gateway station 1 is the same as the SSB collection period 2 of the gateway station 2, and the SSB collection interval of different gateway stations can be set to different values according to the system needs, it is only necessary to notify the UE to perform detection according to the interval time.
- the SSB patterns in FIG. 7 and FIG. 8 are schematic diagrams of a situation where there is only one candidate target gateway.
- the SSB pattern is composed of the SSBs of multiple candidate target gateways.
- multiple candidate target gateways broadcast the SSB, they need to be other candidate targets on the corresponding time domain resources.
- the SSBs of the gateway 1 and the gateway 2 are broadcast through the same service link resource, so that the service links of the two gateways can use the same frequency resource and occupy less Spectrum resources.
- the UE can detect the SSB broadcast by two gateway stations based on the time interval between the SSB set of gateway station 1 and the SSB set of gateway station 2 in the same service link frequency domain resource, and the service link only needs one A set of transceiver devices reduces the cost of hardware resources.
- Figure 9 is a schematic diagram of a synchronous broadcast block pattern of a source gateway station and a target gateway station broadcast on the frequency domain resources of a service link.
- the SSB filled with diagonal lines represents the SSB broadcast by the gateway station 1; the SSB filled with grid lines represents the SSB broadcast by the gateway station 2.
- the difference from Figure 7 and Figure 8 is shown in Figure 9.
- the SSBs broadcast by the two gateway stations are separated in the frequency domain (that is, different SSBs are transmitted through frequency division multiplexing).
- the RRC reconfiguration message of S505 can carry the time-frequency resource where the SSB of the gateway station 2 is located, and the period of the SSB of the gateway station 2 or the period of the SSB set.
- the UE detects the gateway station 2’s SSB.
- the SSB pattern in FIG. 9 is a schematic diagram of a situation where there is only one candidate target gateway. Similarly, when there are multiple candidate target gateways, the SSB pattern is composed of the SSBs of multiple candidate target gateways. When multiple candidate target gateways broadcast the SSB, they need to be other candidate targets on the corresponding frequency domain resources. SSB reserved resources broadcast by the gateway station.
- the SSBs of the gateway station 1 and the gateway station 2 are broadcast through the same service link resource, so that the service links of the two gateway stations can use the same frequency resources and occupy less spectrum resources.
- the UE can detect the SSB broadcast by the two gateway stations in the same service link frequency domain resources based on the frequency domain resources where the SSB of the gateway 1 and the SSB of the gateway 2 are located, and the service link only needs one set of transceivers. The device reduces the cost of hardware resources.
- this application proposes a method that can reduce the UE's measurement tasks and improve the handover efficiency and success rate at the same time.
- the second message may carry priority information and/or feeder link quality of the SSB corresponding cells of multiple candidate target gateway stations, giving The UE that needs to handover selects the cell as a reference.
- the corresponding cell is a cell broadcasting the candidate target gateway station SSB, and the cell corresponds to the SSB of the candidate target gateway station one-to-one.
- the UE may decide which candidate gateway station to access according to the priority information and/or the quality of the feeder link. And the UE may only report the channel quality measurement value corresponding to the gateway station to the source gateway station, so as to inform the source gateway station of the choice of the target gateway station.
- the subsequent handover steps refer to S503 and subsequent steps in FIG. 5, which will not be repeated here.
- the first message may also carry priority information of the cell corresponding to the SSB of the source gateway station, and the newly-accessed UE may correspond to the SSB of the candidate target gateway station based on the priority information of the cell corresponding to the SSB of the source gateway station
- the priority information of the cell selects the cell to be accessed, for example, a newly-accessed UE selects a beam or cell with a high priority for access.
- the reserved 1-bit parameter Spare in the PBCH is used to indicate the priority.
- 1 means high priority
- 0 means low priority
- 0 means high priority
- 1 means low priority.
- the cell identity 1 or cell identity 2 or physical cell identity obtained by the PSS and/or SSS is used to implicitly indicate the priority.
- a large cell identification number indicates high priority
- a small cell identification number indicates low priority.
- the cell ID 2 implicitly indicates the priority, for example, a large cell ID 2 indicates a high priority
- a small cell ID 2 indicates a low priority.
- the cell ID 1 implicitly indicates the priority, for example, a large cell ID 1 indicates a high priority, and a small cell ID 1 indicates a low priority:
- N ID (2) ⁇ 0,1,2 ⁇ from PSS
- N ID (1) ⁇ 0,1,...,355 ⁇ by SSS
- N ID 3*N ID (1) + N ID (2)
- the system frame number (SFN), subframe number, slot number, and orthogonal frequency division multiplexing (OFDM) symbol positions of the SSB are used to implicitly indicate the priority.
- the system frame number is a single-digit parity, fixed number, etc., and for example, the time slot number where the SSB is located is larger, which indicates a higher priority.
- the priority information of the cell is carried in the remaining minimum system information (RMSI) or other system information (other system information, OSI).
- SIB1 carries priority information of SSB or cell.
- the priority information of the corresponding cell is carried in the SSB of the candidate target gateway, so that the UE can determine the target gateway to be handed over from the multiple candidate target gateways according to the priority information of the cell, thereby reducing
- the UE measures the downlink channel quality of other candidate target gateway stations.
- the satellite In order for the UE to quickly and accurately establish uplink and downlink time synchronization with the target gateway, the satellite needs to send synchronization information to the UE. It should be understood that the synchronization information is actually sent to the satellite by the source gateway, and then forwarded to the UE by the satellite.
- the source gateway station can calculate the synchronization information required for the gateway station switching according to the position of the satellite and the positions of the two gateway stations.
- the synchronization information includes the propagation delay difference of the two feeder links and/or the two gateway stations send downlink Signal timing difference, etc., the source gateway station informs the UE of the synchronization information via satellite.
- the synchronization information can be sent to the UE in a manner of broadcast, multicast, or unicast.
- the propagation delay between the satellite and the gateway station 1 is delay1
- the propagation delay between the satellite and gateway station 2 is delay2
- the source gateway station sends the two gateway stations through the downlink (downlink, DL) to send the downlink signal timing difference DL_timing_diff also informs the UE through satellites, and the UE uses the transmission timing difference of the downlink signal and the propagation delay difference of the feeder link to derive the timing when the UE receives the downlink signal of the target gateway. For example, the UE may add or subtract delay_diff and DL_timing_diff according to the received timing of the downlink signal of the source gateway to obtain the timing of receiving the downlink signal of the target gateway.
- the UE can derive the TA value used at the target gateway station based on the propagation delay difference delay_diff and the timing advance (TA) value used for sending the uplink signal to the source gateway station. For example, 2*delay_diff can be added or subtracted from the original TA value.
- the solution in the embodiment of the present application can also be applied to handover between satellites, which is equivalent to changes in both the service link and the feeder link.
- the UE In order for the UE to quickly and accurately establish uplink and downlink time synchronization with the target gateway/satellite.
- synchronization information such as the delay difference between the service link and the feeder link of the two gateway stations, and the timing difference of the downlink signal, can be sent to the UE.
- the network device may carry synchronization information in at least one type of broadcast information such as SIB1, OSI, and MIB.
- the network device can use the RRC information, RRC reconfiguration information, downlink control information (DCI), group DCI, and media access control (media access control, MAC) elements.
- DCI downlink control information
- group DCI group DCI
- media access control media access control
- MAC media access control
- TAC timing advance command
- the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device
- the methods and operations implemented by the network device can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
- gateway station switching device provided by this application.
- FIG. 11 is a schematic block diagram of a communication device 1000 provided in this application.
- the communication device 1000 includes: a processing unit 1100 and a transceiving unit 1200.
- the transceiver unit 1200 is configured to receive a synchronous broadcast block SSB through a service link, the SSB includes a first message and a second message, the first message includes the SSB of the source gateway, and the second message includes the SSB of at least one candidate target gateway;
- the processing unit 1100 is configured to obtain the measurement result according to the second message, and the measurement result includes the measurement value of the channel quality corresponding to the SSB of at least one candidate target gateway; the transceiver unit 1200 is also configured to send the measurement result; the transceiver unit 1200 is to receive the handover
- the switching instruction includes the gateway switching information determined by the source gateway station according to the measurement result; the processing unit 1100 is further configured to determine whether to switch the terminal device equipped with the device from the source gateway station to at least one candidate target gateway according to the switching instruction A target gateway station in the station.
- the SSB is an SSB in which the first message and the second message are transmitted in a time division multiplexing or frequency division multiplexing manner through the service link.
- the measurement result further includes the measurement value of the channel quality corresponding to the SSB of the source gateway station obtained by the terminal device according to the first message.
- the second message further includes cell priority information, where the cell is the cell corresponding to the SSB in the broadcast second message and the cell is the cell covered by the service link; the terminal device selects at least A gateway station in a candidate target gateway station performs gateway station handover.
- the transceiver unit 1200 is also used to receive synchronization information, which is used to establish time synchronization between the device-equipped terminal device and the target gateway station .
- the synchronization information includes the feeder link delay difference between the source gateway station and the target gateway station and/or the timing difference between the source gateway station and the target gateway station to send signals to the network device.
- the transceiver unit 1200 is further configured to receive synchronization information in a broadcast, multicast, or unicast manner.
- the transceiver unit 1200 is further configured to receive measurement configuration information.
- the measurement configuration information includes one or more of the following information: time-frequency information of at least one candidate target gateway station's SSB, and at least one candidate target gateway station's SSB information Time domain period, time-frequency resource for reporting measurement results. .
- the transceiving unit 1200 may also be replaced by a sending unit or a receiving unit.
- the transceiving unit 1200 when the transceiving unit 1200 performs a sending action, it can be replaced by a sending unit.
- the transceiver unit 1200 when the transceiver unit 1200 performs a receiving action, it can be replaced by a receiving unit.
- the apparatus 1000 may be a terminal device, or a device or component in the terminal device that can implement the function of the terminal device in the foregoing method embodiment.
- the transceiving unit 1200 may be a transceiver.
- the transceiver can be replaced by a receiver or transmitter.
- the transceiver when the transceiver performs the sending action, it can be replaced by the transmitter.
- the transceiver performs the receiving action, it can be replaced by the receiver.
- the processing unit 1100 may be a processing device or a processor, which is not limited here.
- the apparatus 1000 may be a circuit system installed in a terminal device, for example, a chip or a system on chip (system on chip, SoC), etc.
- the processing unit 1100 and the transceiving unit 1200 may each be a module or unit of the circuit system, or a single module or unit may implement all their functions.
- the transceiver unit 1200 may be a communication interface.
- the transceiver unit 1200 may be an input/output interface or an input/output circuit.
- the input and output interface may include an input interface and an output interface.
- the input and output circuit may include an input circuit and an output circuit.
- the functions of the processing device in the foregoing device embodiments may be implemented by hardware, or may be implemented by hardware executing corresponding software.
- the processing device may include one or more memories and one or more processors, where the one or more memories are used to store computer programs, and the one or more processors read and execute the data stored in the one or more memories.
- the computer program enables the apparatus 1000 to perform operations and/or processing performed by the terminal device in each method embodiment.
- the processing device may only include a processor, and the memory for storing the computer program is located outside the processing device.
- the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
- the transceiver unit 1200 may be a radio frequency device.
- FIG. 12 is a schematic block diagram of a communication device 2000 provided by this application. As shown in FIG. 12, the communication device 2000 includes: a processing unit 2100 and a transceiver unit 2200.
- the transceiver unit 2200 is configured to send a synchronous broadcast block SSB through a service link.
- the SSB includes a first message and a second message.
- the first message includes the SSB of the source gateway, and the second message includes the SSB of at least one candidate target gateway.
- the transceiver unit 2200 is also used to receive the measurement result, the measurement result includes the measurement value of the channel quality corresponding to the SSB of at least one candidate target gateway station measured by the terminal device according to the second message; the transceiver unit 2200 is also used to send the measurement result
- the transceiver unit 2200 is also used to receive a switching instruction, the switching instruction includes the gateway station switching information determined by the source gateway station according to the measurement result, the switching instruction is used to indicate whether to switch the terminal device from the source gateway station to at least one candidate target gateway station One of the target gateways; the transceiver unit 2200 is also used to send switching instructions.
- the transceiver unit 2200 is specifically configured to send the first message and the second message in a time division multiplexing or frequency division multiplexing manner through a service link.
- the measurement result further includes the measurement value of the channel quality corresponding to the SSB of the source gateway station obtained by the terminal device according to the first message.
- the second message includes cell priority information, where the cell is a cell corresponding to the SSB in the broadcast second message and the cell is a cell covered by the service link.
- the transceiver unit 2200 is also used to send synchronization information, and the synchronization information is used to establish time synchronization between the terminal device and the target gateway.
- the synchronization information includes the feeder link delay difference between the source gateway station and the target gateway station and/or the signal transmission timing difference between the source gateway station and the target gateway station.
- the transceiver unit 2200 is specifically configured to send synchronization information in a broadcast, multicast, or unicast manner.
- the transceiver unit 2200 is further configured to send measurement configuration information.
- the measurement configuration information includes one or more of the following information: time-frequency information of at least one candidate target gateway station's SSB, and at least one candidate target gateway station's SSB information Time domain period, time-frequency resource for reporting measurement results.
- the transceiving unit 2200 may also be replaced by a sending unit or a receiving unit.
- the transceiving unit 1200 when the transceiving unit 1200 performs a sending action, it can be replaced by a sending unit.
- the transceiver unit 1200 when the transceiver unit 1200 performs a receiving action, it can be replaced by a receiving unit.
- the apparatus 2000 may be a network device, or a device or component in the network device that can implement the function of the terminal device in the foregoing method embodiment.
- the transceiver unit 2200 may be a transceiver.
- the transceiver can be replaced by a receiver or transmitter.
- the transceiver when the transceiver performs the sending action, it can be replaced by the transmitter.
- the transceiver performs the receiving action, it can be replaced by the receiver.
- the processing unit 2100 may be a processing device or a processor, which is not limited here.
- the apparatus 2000 may be a circuit system installed in a terminal device, for example, a chip or a system on chip (system on chip, SoC), etc.
- the processing unit 2100 and the transceiving unit 2200 may each be a module or unit of the circuit system, or a module or unit may implement all their functions.
- the transceiver unit 2200 may be a communication interface.
- the transceiver unit 2200 may be an input/output interface or an input/output circuit.
- the input and output interface may include an input interface and an output interface.
- the input and output circuit may include an input circuit and an output circuit.
- the functions of the processing device in the foregoing communication device embodiments may be implemented by hardware, or may be implemented by hardware executing corresponding software.
- the processing device may include one or more memories and one or more processors, where the one or more memories are used to store computer programs, and the one or more processors read and execute the data stored in the one or more memories.
- the computer program causes the apparatus 2000 to execute the operations and/or processing performed by the network device in each method embodiment.
- the processing device may only include a processor, and the memory for storing the computer program is located outside the processing device.
- the processor is connected to the memory through a circuit/wire to read and execute the computer program stored in the memory.
- the transceiver unit 2200 may be a radio frequency device.
- FIG. 13 is a schematic structural diagram of the communication device 10 provided by this application.
- the communication device 10 includes: one or more processors 11, one or more memories 12, and one or more communication interfaces 13.
- the processor 11 is used to control the communication interface 13 to send and receive signals
- the memory 12 is used to store computer programs
- the processor 11 is used to call and run the computer programs from the memory 12, so that the communication device 10 executes the various method embodiments of the present application.
- the processor 11 may integrate the functions of the processing unit 1100 in FIG. 11, and the communication interface 13 may have the functions of the transceiver unit 1200 shown in FIG.
- the processor 11 may integrate the functions of the processing unit 1100 in FIG. 11, and the communication interface 13 may have the functions of the transceiver unit 1200 shown in FIG.
- the communication interface 13 may have the functions of the transceiver unit 1200 shown in FIG.
- the processor 11 may be a baseband device installed in the terminal device, and the communication interface 13 may be a radio frequency device.
- the memory and the processor in the foregoing device embodiments may be physically independent units, or the memory and the processor may also be integrated.
- FIG. 14 is a schematic structural diagram of the communication device 20 provided by this application.
- the communication device 20 includes: one or more processors 21, one or more memories 22, and one or more communication interfaces 23.
- the processor 21 is used to control the communication interface 23 to send and receive signals
- the memory 22 is used to store computer programs
- the processor 21 is used to call and run the computer programs from the memory 22, so that the communication device 20 executes the various method embodiments of the present application. Processing and/or operations performed by network devices.
- the processor 21 may integrate the functions of the processing unit 2100 in FIG. 12, and the communication interface 23 may have the functions of the transceiver unit 2200 shown in FIG.
- the processor 21 may integrate the functions of the processing unit 2100 in FIG. 12, and the communication interface 23 may have the functions of the transceiver unit 2200 shown in FIG.
- the communication interface 23 may have the functions of the transceiver unit 2200 shown in FIG.
- the processor 21 may be a baseband device installed in the network device, and the communication interface 23 may be a radio frequency device.
- the memory and the processor in the foregoing device embodiments may be physically independent units, or the memory and the processor may also be integrated.
- this application also provides a computer-readable storage medium.
- the computer-readable storage medium stores computer instructions.
- the computer executes the gateway switching method provided by this application by the terminal device. Operations and/or processing performed.
- This application also provides a computer-readable storage medium.
- the computer-readable storage medium stores computer instructions.
- the computer instructions run on the computer, the computer executes the network device execution in the gateway switching method provided in this application. Operation and/or processing.
- the computer program product includes computer program code.
- the computer program code runs on a computer, the computer executes the operations performed by the terminal device and/or in the gateway switching method provided in this application. deal with.
- the computer program product includes computer program code.
- the computer program code runs on a computer, the computer executes the operations and/or operations performed by the network device in the gateway switching method provided in this application. deal with.
- the present application also provides a communication device, including a processor and an interface circuit, the interface circuit is used to receive computer code or instructions, and transmit to the processor, the processor is used to run the computer code or instructions to Perform the operations and/or processing performed by the terminal equipment in the gateway switching method provided in this application.
- the present application also provides a communication device, including a processor and an interface circuit, the interface circuit is used to receive computer code or instructions, and transmit to the processor, the processor is used to run the computer code or instructions to Perform the operations and/or processing performed by the network device in the gateway switching method provided in this application.
- the application also provides a chip including one or more processors.
- the one or more processors are used to execute a computer program stored in the memory to execute operations and/or processing performed by the terminal device in any method embodiment.
- the memory used for storing the computer program is provided independently of the chip.
- the chip may also include one or more communication interfaces.
- the one or more communication interfaces may be input/output interfaces, input/output circuits, and the like.
- the chip may also include one or more of the memories.
- the application also provides a chip including one or more processors.
- the one or more processors are used to execute a computer program stored in a memory to execute operations and/or processing performed by a network device in any method embodiment.
- the memory used for storing the computer program is provided independently of the chip.
- the chip may also include one or more communication interfaces.
- the one or more communication interfaces may be input/output interfaces, input/output circuits, and the like.
- the chip may also include one or more of the memories.
- This application also provides a communication system, including the terminal device and the network device in the embodiment of this application.
- the processor in the embodiment of the present application may be an integrated circuit chip, which has the ability to process signals.
- the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
- the processor can be a general-purpose processor, digital signal processor (digital signal processor, DSP), application specific integrated circuit (ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic Devices, discrete gates or transistor logic devices, discrete hardware components.
- the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
- the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware encoding processor, or executed and completed by a combination of hardware and software modules in the encoding processor.
- the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
- the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
- the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
- the volatile memory may be random access memory (RAM), which is used as an external cache.
- RAM random access memory
- static random access memory static random access memory
- dynamic RAM dynamic random access memory
- synchronous dynamic random access memory synchronous DRAM, SDRAM
- double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
- enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
- synchronous connection dynamic random access memory direct rambus RAM, DRRAM
- direct rambus RAM direct rambus RAM
- unit used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
- the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
- the application running on the computing device and the computing device can be components.
- One or more components may reside in a process and/or thread of execution.
- the components may be located on one computer and/or distributed between two or more computers.
- these components can be executed from various computer readable media having various data structures stored thereon.
- a component can be based on data that has one or more data packets (for example, data from two components that interact with another component in a local system, a distributed system, and/or a network, for example, the Internet that interacts with other systems through signals) Signals are communicated through local and/or remote processes.
- data packets for example, data from two components that interact with another component in a local system, a distributed system, and/or a network, for example, the Internet that interacts with other systems through signals
- the disclosed system, device, and method can be implemented in other ways.
- the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
- the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
- the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
- the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供了一种关口站切换的方法和装置,能够保证终端设备关口站切换的可靠性以及节省关口站切换过程的硬件开销。终端设备通过一个服务链路从网络设备接收同步广播块SSB,该SSB包括源关口站的SSB和至少一个候选目标关口站的SSB;终端设备根据至少一个候选目标关口站的SSB,获取对应SSB的信道质量的测量值并将测量结果发送给网络设备,网络设备根据测量结果确定是否将终端设备从源关口站切换到至少一个候选目标关口站中的一个目标关口站。
Description
本申请要求于2020年2月13日提交中国专利局、申请号为202010095050.8、申请名称为“关口站切换的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信领域,具体涉及一种关口站切换的方法和装置。
非地面通信(non-terrestrial network,NTN)系统指使用空中或空间平台作为传输设备中继节点或基站的通信网络。空中或空间平台包括但不限于无人机、热气球、飞机、卫星等。以卫星通信为例,卫星运行过程中,由于维护、流量分流、乌云遮挡、雨衰或卫星移动出关口站的可视范围等原因,需要将馈电链路由源关口站切换到另一个关口站,现有的硬切换可靠性差,软切换需要增加额外的硬件成本和带宽。
发明内容
本申请提供一种关口站切换的方法和装置,能够保证关口站切换的可靠性以及节省高空平台的硬件开销。
第一方面,提供了一种关口站切换的方法,包括:终端设备通过一个服务链路接收同步广播块SSB,SSB包括第一消息和第二消息,第一消息包括源关口站的SSB,第二消息包括至少一个候选目标关口站的SSB;终端设备根据第二消息获取测量结果,测量结果包括至少一个候选目标关口站的SSB对应的信道质量的测量值;终端设备发送测量结果;终端设备接收切换指令,该切换指令包括源关口站根据测量结果确定的关口站切换信息;终端设备根据切换指令确定是否从源关口站切换到至少一个候选目标关口站中的一个目标关口站。
上述技术方案中,终端设备在同一服务链路资源中接收源关口站和至少一个候选目标关口站广播的SSB,从而占用更少的频谱资源。此外,源关口站和至少一个候选目标关口站使用相同的服务链路,一个服务链路只需要一套收发装置,从而降低了高空平台的硬件资源的开销。
结合第一方面,在第一方面的某些实现方式中,该SSB是第一消息和第二消息通过服务链路以时分复用或频分复用的方式被发送的SSB。
结合第一方面,在第一方面的某些实现方式中,测量结果还包括终端设备根据第一消息获取的源关口站的SSB对应的信道质量的测量值。
结合第一方面,在第一方面的某些实现方式中,第二消息还包括小区优先级信息,其中,该小区为广播第二消息中的SSB对应的小区且小区为服务链路覆盖的小区;终端设 备根据小区优先级信息,选择至少一个候选目标关口站中的一个关口站进行关口站切换。
上述技术方案中,在候选的目标关口站的SSB中携带对应小区的优先级信息,可以使UE根据小区的优先级信息从候选的多个目标关口站中确定要切换的目标关口站,从而减少UE对其他候选目标关口站的下行信道质量的测量。
结合第一方面,在第一方面的某些实现方式中,若该终端设备确定从该源关口站切换到该目标关口站,在该切换之前,该方法还包括:该终端设备接收同步信息,该同步信息用于该终端设备和该目标关口站建立时间同步。
上述技术方案中,终端设备能够根据同步信息快速准确地与目标关口站建立时间同步,从而提高关口站切换的可靠性。
结合第一方面,在第一方面的某些实现方式中,该同步信息包括该源关口站和该目标关口站之间向网络设备的馈电链路时延差和/或该源关口站和该目标关口站之间向网络设备发送信号的定时差。
结合第一方面,在第一方面的某些实现方式中,终端设备通过广播或组播或单播的方式接收该同步信息。
结合第一方面,在第一方面的某些实现方式中,该终端设备接收测量配置信息,该测量配置信息包括以下一项或多项信息:至少一个候选目标关口站的SSB的时频信息、至少一个候选目标关口站的SSB的时域周期、上报测量结果的时频资源。
第二方面,提供了一种关口站切换的方法,包括:网络设备通过一个服务链路发送同步广播块SSB,该SSB包括第一消息和第二消息,该第一消息包括源关口站的SSB,该第二消息包括至少一个候选目标关口站的SSB;该网络设备接收测量结果,该测量结果包括该终端设备根据该第二消息测量的至少一个候选目标关口站的SSB对应的信道质量的测量值;该网络设备发送该测量结果;该网络设备接收切换指令,该切换指令包括该源关口站根据该测量结果确定的关口站切换信息,该切换指令用于指示是否将该终端设备从该源关口站切换到该至少一个候选目标关口站中的一个目标关口站;该网络设备发送该切换指令。
结合第二方面,在第二方面的某些实现方式中,该网络设备通过一个服务链路以时分复用或频分复用的方式发送该第一消息和第二消息。
结合第二方面,在第二方面的某些实现方式中,测量结果还包括终端设备根据第一消息获取的源关口站的SSB对应的信道质量的测量值。
结合第二方面,在第二方面的某些实现方式中,第二消息包括小区优先级信息,其中,小区为广播第二消息中的SSB对应的小区且小区为服务链路覆盖的小区。
结合第二方面,在第二方面的某些实现方式中,该网络设备发送同步信息,该同步信息用于该终端设备和该目标关口站建立时间同步。
结合第二方面,在第二方面的某些实现方式中,该同步信息包括该源关口站和该目标关口站之间的馈电链路时延差和/或该源关口站和该目标关口站之间发送信号的定时差。
结合第二方面,在第二方面的某些实现方式中,该网络设备通过广播或组播或单播的方式发送该同步信息。
结合第二方面,在第二方面的某些实现方式中,该网络设备发送测量配置信息,该测量配置信息包括以下一项或多项信息:至少一个候选目标关口站的SSB的时频信息、至 少一个候选目标关口站的SSB的时域周期、上报测量结果的时频资源。
关于第二方面或第二方面的各种实施方式所带来的技术效果,可以参考对于第一方面或第一方面的各种实施方式的技术效果的介绍,不多赘述。
第三方面,提供了一种关口站切换的装置,该装置具有实现第一方面以及第一方面中任一种可能的实现方式中的方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,提供了一种关口站切换的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面以及第一方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为终端设备。当该装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为芯片或芯片系统。当该装置为芯片或芯片系统时,该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该装置为配置于终端设备中的芯片或芯片系统。
第五方面,提供了一种关口站切换的装置,该装置具有实现第二方面以及第二方面中任一种可能的实现方式中的方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
第六方面,提供了一种关口站切换的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面中任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为网络设备。当该装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该装置为配置于终端设备中的芯片或芯片系统。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面以及第一方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第二方面以及第二方面中任一种可能实现方式中的方法。
第九方面,提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序(也可以称为代码,或指令),当其在计算机上运行时,使得计算机执行上述第一方面以 及第一方面中任一种可能实现方式中的方法。
第十方面,提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序(也可以称为代码,或指令),当其在计算机上运行时,使得计算机执行上述第二方面以及第二方面中任一种可能实现方式中的方法。
第十一方面,提供了一种通信系统,包括前述的网络设备和终端设备。
图1是NTN通信的示意性架构图。
图2为关口站硬切换的示意图。
图3为关口站的软切换示意图。
图4是适用于本申请实施例的NTN通信的示意性架构图。
图5是适用于本申请实施例的关口站切换的方法的示意性交互图。
图6是适用于本申请实施例的关口站切换的方法的示意性交互图。
图7是在一个服务链路的时域资源上广播源关口站和目标关口站的同步广播块图样的示意图一。
图8是在一个服务链路的时域资源上广播源关口站和目标关口站的同步广播块图样的示例图二。
图9是在一个服务链路的频域资源上广播源关口站和目标关口站的同步广播块图样示意图。
图10是源关口站和目标关口站发送下行信号的定时差示意图。
图11为本申请提供的通信装置1000的示意性结构图。
图12为本申请提供的通信装置2000的示意性结构图。
图13为本申请提供的通信装置10的示意性结构图。
图14为本申请提供的通信装置20的示意性结构图。
下面将结合附图,对本申请中的技术方案进行描述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
为了更好地理解本申请实施例,下面先介绍本申请实施例可适用的通信系统,以及涉及到的概念。
本申请实施例的技术方案可以应用于各种通信系统,例如,长期演进(long term evolution,LTE)系统、第五代移动通信(the 5th Generation,5G)系统、设备到设备(device-to-device,D2D)网络、机器与机器通信(machine to machine,M2M)系统、非地面通信(non-terrestrial network,NTN)系统、或者未来演进的其它通信系统。其中,5G的无线空口技术称为新空口(new radio,NR),5G系统也可称为NR系统。NTN系统也可以称为卫星通信系统。此外,非地面通信系统还可以包括高空平台(high altitude platform station,HAPS)通信系统。
NTN系统指使用空中或空间平台作为传输设备中继节点或基站的通信网络。空中或空间平台包括但不限于无人机、热气球、飞机、卫星等。
图1是NTN通信的示意性架构图。如图1所示,以卫星通信为例,在该场景中,可以包括:关口站(gateway,GW)、卫星、用户终端(user equipment,UE)等。NTN系统中的关口站能够提供与陆地通信系统中网关类似的功能,例如,与UE建立连接、与服务器通信。为了与陆地通信系统区分,这里将gateway称作关口站。关口站还具有对卫星监测、故障查询,对通信数据进行分组交换、接口协议变换等功能。关口站与核心网相连,关口站与卫星间的链路称作馈电链路(feeder link),卫星与用户设备间的链路称作服务链路(servicelink)。卫星工作在透传(transparent)模式,即卫星做中继(relay),可以做射频过滤、放大等,将信号重新生成。
其中,UE可以是各种移动终端,例如,移动卫星电话,也可以是各种固定终端,例如,通信地面站等。
终端可以是无线终端也可以是有线终端。无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信。无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端也可以称为系统、订户单元(subscriber unit,SU)、订户站(subscriber station,SS),移动站(mobile station,MB)、移动台(Mobile)、远程站(remote station,RS)、接入点(access point,AP)、远程终端(remote terminal,RT)、接入终端(access terminal,AT)、用户终端(user terminal,UT)、用户代理(user agent,UA)、终端设备(user device,UD)。以卫星电话、车载卫星系统为代表的终端设备可以与卫星直接通信。以地面通信站为代表的固定终端需要经地面站中继后才能与卫星通信。终端设备通过安装有无线收发天线实现对通信状态的设置、获取,完成通信。
应理解,图1示例性地介绍了NTN通信场景,本申请实施例中的网络设备以卫星为例,但本申请实施例中的网络设备并未限定于此。本申请中的网络设备还可以是NTN通信中的关口站、高空平台、无人机,或D2D通信中承担基站功能的终端设备等。
在图1所示的场景中,卫星运行过程中,由于维护、流量分流、乌云遮挡、雨衰或卫星移动出关口站的可视范围等原因,需要将馈电链路由源关口站切换到另一个关口站。
图2为关口站硬切换的示意图。卫星工作在透传模式。针对于图2中服务链路的覆盖区域(一个波束或小区,其中,一个波束或多个波束组成一个小区。),假设卫星的馈电链路和服务链路都分别只有一套收发设备支持关口站与用户终端的通信。对于某个波束或小区,同一时间只能有一个关口站为其提供服务。当卫星运动到图2中黑色虚线的位置,卫星从关口站1切换到关口站2,即馈电链路由关口站1切换到关口站2。由于硬切换要求严格的时间和频率的同步,如果关口站2发送的下行信号的定时和频率发生较大变化,那么用户终端将失去与关口站2的时频同步。用户终端需要重新接入网络、建立无线资源 控制(radio resource control,RRC)连接,中断时延大。硬切换的缺点是切换可靠性差,UE发生通信中断需要重新建立RRC连接,中断时延大。
图3为关口站的软切换示意图。当卫星在虚线位置附近时,卫星同时建立与关口站1和关口站2的馈电链路连接。与此同时,两个关口站拥有不同的服务链路,为同一区域用户终端提供通信服务。图3中所示的用户终端在保持与关口站1的通信连接的同时,建立与关口站2的连接。当用户终端与关口站2成功建立连接后,断开与关口站1的连接。软切换方法是先建立新的连接,然后断开旧连接,可以保证用户终端切换关口站的可靠性。但是,软切换建立新的连接需要额外增加一套馈电链路和服务链路的收发设备,增加了卫星平台的硬件成本。另外,为了保证关口站1和关口站2能够同时为同一覆盖区域用户终端提供通信服务,两个关口站的服务链路需要工作在不同频段,因此关口站2的服务链路还需要占用额外的带宽。
有鉴于此,本申请提出一种方法,针对卫星通信场景下的关口站切换机制进行优化,可以有效地提高切换成功率,节省服务链路频谱资源和硬件资源。
图4示是适用于本申请实施例的NTN通信的示意性架构图。卫星在时间T1和时间T2之间的位置时,卫星(即网络设备的一例)覆盖区域中的用户终端(即终端设备的一例)需要从关口站1(即源关口站的一例)切换到关口站2(即目标关口站的一例)。关口站1与关口站2在一段时间内使用相同的服务链路频域资源覆盖同一个波束或小区,为覆盖区域内用户终端提供切换的时间窗口。
为了方案的完整性,以下结合图5对关口站切换的相关步骤进行介绍。图5是适用于本申请实施例的关口站切换的方法的示意性交互图。
S501,关口站1向UE发送测量配置信息。
该测量配置信息包括关口站2广播的同步信号块(synchronization signal and PBCH block,SSB)的时频信息、关口站2的SSB时域周期、UE上报测量结果的上行资源等。SSB由主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)等组成,为UE提供小区下行同步,以及小区的基本配置信息。其中PBCH中会承载小区的主信息块(master information block,MIB),MIB中会指示是否有系统信息块类型一(system information block type 1,SIB1)存在,以及SIB1的位置。
应理解,同步信号块也可以称为同步广播块,本申请对此不作限定。
应理解,本申请实施例中涉及的关口站1和关口站2与UE之间的通信和配置都要卫星作为中继设备进行转发。
S502,关口站2在相应的时频资源上广播SSB。
对应的,卫星作为中继站,在接收到两个关口站广播的SSB后,通过一个服务链路以时分复用或频分复用的方式向UE广播关口站2的SSB与关口站1的SSB。
S502中关口站1的SSB与关口站2的SSB时分复用或频分复用的具体广播图样这里暂不展开叙述,后面会结合图7-图9进行具体描述。
S503,UE根据关口站2广播的SSB测量相应的信道质量,并通过卫星上报给关口站1。
可选的,信道质量的测量结果可以包括以下参数中一个或多个:参考信号与噪声功率 比(signal to noise ratio,SNR)、比特能量与噪声功率谱密度比(E
b/N
0)、参考信号接收功率(reference signal received power,RSRP)、信道质量指示(channel quality indicator,CQI)、信号与干扰噪声功率比(signal to interference plus noise power ratio,SINR)、参考信号接收质量(reference signal received quality,RSRQ)或解码性能(例如丢包率等)。
S504,关口站1根据UE上报的信道质量决定UE是否切换到关口站2。
关口站1根据UE上报的信道质量向卫星发送切换指令,切换指令包括源关口站根据测量结果确定的关口站切换信息,切换指令用于指示是否将UE从源关口站切换到目标关口站。卫星将切换指令发送给UE,如果确定切换到关口站2,同时关口站1向关口站2申请切换接入。
可选的,当只存在一个候选目标关口站时,源关口站可以不根据测量的候选源关口站与UE间的信道质量直接将UE切换到目的关口站。
可选的,由于天气影响、源关口站与UE间的链路质量等原因,需要考虑关口站切换时,UE将根据关口站1和关口站2广播的SSB测量得到相应的关口站1的信道质量和关口站2的信道质量。UE将测量结果通过卫星上报给关口站1。源关口站(即关口站1)可以根据测量的信道质量确定是否切换到该目标关口站(关口站2),例如目标关口站信道质量优于源关口站,则执行切换,反之,则不执行切换。
S505,关口站1向UE发送RRC重配置消息,该配置消息包括UE切换到关口站2所需的信息,目标小区号(identity,ID),新的小区无线网络临时标识(cell radio network temporary identity,C-RNTI)(在目标小区使用),目标小区的安全算法、发送信息A的时频资源等。
应理解,这里目标小区是指广播关口站2的SSB对应的小区。
S506,UE在调度的时频资源上使用新的C-RNTI向关口站2发送信息A,信息A包括申请在目标小区中建立RRC连接。
S507,关口站2向UE发送信息B,消息B包括确认建立RRC连接。
S508,UE向关口站2发送混合自动重传请求(hybrid automatic repeat request,HARQ)肯定应答/否定应答(acknowledgement/negative acknowledge,ACK/NACK),确认信息B成功接收。
S509,关口站2向关口站1发送切换完成消息,确认该UE已经切换到关口站2。
S510,UE向关口站2发送数据,关口站2可以调度UE之前向关口站1发送上行数据使用的时频资源。
S511,关口站2向UE发送数据,关口站2可以使用之前关口站1向UE发送下行数据的时频资源。
当关口站1服务的波束或小区的UE都切换到关口站2后,可以关闭关口站1对该覆盖波束或小区的服务。
应理解,不同的波束或小区在协议中可根据部分带宽(bandwidth part,BWP)、传输配置指示(transmission configuration indicator,TCI)或SSB进行区分;或者换句话说,波束可根据BWP、TCI或SSB进行指示。例如,终端设备和网络设备之间可以通过BWP、TCI或者SSB的切换,来指示波束的切换,从而对于终端设备和/或网络设备来说,实际进行的可能是BWP、TCI或者SSB的切换。此外,本申请中涉及的波束也可替换为BWP、 TCI或者SSB。
上述技术方案中,相比软切换方法占用了更少的频域资源,服务链路只需要一套收发装置,降低了硬件资源的开销,相比硬切换方式提高了切换的可靠性。
应理解,图4示意性的给出了在卫星移动过程中只有一个候选目标关口站(关口站2)的切换场景中,在实际的关口站切换过程中,可以存在至少一个候选目标关口站。例如,在图4所示切换场景中,当卫星在时间点T1和T2之间时,同时与关口站1、关口站2、关口站3、关口站4连接,其中关口站1为源关口站,关口站2、关口站3、关口站4为候选目标关口站,那么在对应的S502中,源关口站和3个候选目标关口站分别在相应的时频资源上向卫星广播SSB,卫星将接收到的4个SSB以时分复用或频分复用的方式发送给UE。图6是适用于本申请实施例的关口站切换的方法的示意性交互图。以下将结合图6介绍当存在多个(即两个或两个以上)的候选目标关口站时,如何实现关口站的切换。
S610,网络设备通过一个服务链路向终端设备发送同步广播块SSB,该SSB包括第一消息和第二消息。
对应的,终端设备通过一个服务链路从网络设备接收该SSB。
可选的,网络设备可以是卫星。
其中,第一消息包括源关口站的SSB,第二消息包括多个候选目标关口站的SSB。
可选地,第一消息还可以包括源关口站广播的系统信息块(system information block,SIB)1和其他系统消息(other system information,OSI),第二消息还可以包括多个候选目标关口站的SIB1和OSI。这些信息可以为UE提供更多的网络设备和关口站相关信息(例如卫星轨道信息、卫星运动速度、关口站位置等),令UE能够更快速地与目标关口站建立时频同步。
S620,网络设备从终端设备接收测量结果。
对应的,终端设备将该测量结果发送给网络设备。
该测量结果包括终端设备根据第二消息对多个候选目标关口站的SSB中的每一个SSB对应的信道质量的测量值。
可选的,该测量结果还可以包括终端设备根据第一消息对源关口站的SSB对应的信道质量的测量值。
S630,网络设备向源关口站发送测量结果。
S640,网络设备从接收源关口站接收切换指令。
该切换指令包括该源关口站根据该测量结果确定的关口站切换信息,该切换指令用于指示是否将该终端设备从该源关口站切换到该多个预选候选目标关口站中的一个目标关口站。例如,关口站1为源关口站,关口站2、3、4分别为多个候选目标关口站,UE根据关口站2、3、4广播的SSB分别测量相应信道质量,并将测量结果由卫星转发给关口站1,假设关口站3的测量值最优,则切换指令指示可以指示将终端设备从关口站1切换至关口站3。
可选的,信道质量的测量结果可以包括以下参数中一个或多个:参考信号与噪声功率比(signal to noise ratio,SNR)、比特能量与噪声功率谱密度比(E
b/N
0)、参考信号接收功率(reference signal received power,RSRP)、信道质量指示(channel quality indicator,CQI)、信号与干扰噪声功率比(signal to interference plus noise power ratio,SINR)、参考 信号接收质量(reference signal received quality,RSRQ)或解码性能(例如丢包率等)。
S650,网络设备向终端设备发送切换指令。
对应的,终端设备接收该切换指令,并根据切换指令中的指示的信息执行关口站切换。
应理解,S610-S650为本申请关口站切换方法改进的核心步骤,其它步骤参见图5对应的实施例的描述,这里不再赘述。
上述技术方案中,相比软切换方法占用了更少的频域资源,服务链路只需要一套收发装置,降低了硬件资源的开销,相比硬切换方式提高了切换的可靠性。
图7和图8分别是在一个服务链路的时域资源上广播源关口站和目标关口站的同步广播块图样的示意图一和示例图二。
在图7和图8中,斜线填充的SSB表示的是关口站1(即源关口站的一例)广播的SSB;网格线填充的SSB表示的是关口站2(即目标关口站的一例)广播的SSB,两个关口站广播的SSB在时域分开(即源关口站的SSB和目标关口站的SSB通过时分复用的方式被发送)。
应理解,由于关口站1的SSB和关口站2的SSB使用时分复用的方式被发送,因此关口站1和关口站2在广播SSB时需要分别在时域资源上为对方预留资源。
多个SSB组成同步广播块集合(synchronization signal block set),同步广播块集合的时域周期可以为5ms、10ms、20ms、40ms、80ms、160ms,一般默认为20ms。
可选的,在S505的RRC重配置消息中,可以携带关口站2的SSB所在的时频资源,以及关口站2的SSB的周期或SSB集合的周期,UE根据这些信息来检测关口站2的SSB。
图7所示是关口站1的SSB集合与关口站2的SSB集合相隔时间等于同步广播块集合周期的情况(关口站1的SSB集合周期与关口站2的SSB集合周期相同)。
图8所示是关口站1的SSB集合与关口站2的SSB集合相隔时间设定为其它值的情况。假设关口站1的SSB集合周期1与关口站2的SSB集合周期2相同,而不同关口站SSB集合相隔时间可以根据系统需要设置成不同的值,只需要通知UE根据相隔时间进行检测即可。
应理解,图7和图8中的SSB图样是只存在一个候选目标关口站的情况的示意图。同理,当存在多个候选目标关口站时,SSB图样由多个候选目标关口站的SSB组成,多个候选目标关口站在广播SSB时,需要分别在对应的时域资源上为其他候选目标关口站广播的SSB预留资源。
图7和图8所示的技术方案中,关口站1和关口站2的SSB通过同一服务链路资源被广播,这样两个关口站的服务链路可以使用相同的频率资源,占用更少的频谱资源,对应的,UE可以在同一服务链路频域资源中根据关口站1的SSB集合与关口站2的SSB集合相隔时间进行检测两个关口站广播的SSB,并且服务链路只需要一套收发装置,降低了硬件资源的开销。
图9是在一个服务链路的频域资源上广播源关口站和目标关口站的同步广播块图样示意图。
在图9中,斜线填充的SSB表示的是关口站1广播的SSB;网格线填充的SSB表示的是关口站2广播的SSB,与图7和图8不同的是图9所示的两个关口站广播的SSB在频域分开(即不同的SSB通过频分复用的方式被发送)。
可选的,在S505的RRC重配置消息中,可以携带关口站2的SSB所在的时频资源,以及关口站2的SSB的周期或SSB集合的周期,UE根据这些信息来检测关口站2的SSB。
应理解,图9中的SSB图样是只存在一个候选目标关口站的情况的示意图。同理,当存在多个候选目标关口站时,SSB图样由多个候选目标关口站的SSB组成,多个候选目标关口站在广播SSB时,需要分别在对应的频域资源上为其他候选目标关口站广播的SSB预留资源。
图9所示的技术方案中,关口站1和关口站2的SSB通过同一服务链路资源被广播,这样两个关口站的服务链路可以使用相同的频率资源,占用更少的频谱资源,对应的,UE可以在同一服务链路频域资源中根据关口站1的SSB与关口站2的SSB所在的频域资源进行检测两个关口站广播的SSB,并且服务链路只需要一套收发装置,降低了硬件资源的开销。
由图6所示的实施例可知,当存在多个候选目标关口时,UE需要对每个候选目标关口站发送的SSB都进行测量,源关口站根据所有SSB的测量结果最终确定将UE切换到哪个候选目标关口站,这样会增加UE的测量任务与信令开销,有鉴于此,本申请提出一种方法,可以减少UE的测量任务,同时提高切换效率和成功率。
可选的,当存在2个及2个以上的候选目标关口站时,可以在第二消息中携带多个候选目标关口站的SSB对应小区的优先级信息和/或馈电链路质量,给需要切换的UE选择小区作参考。其中,对应小区为广播该候选目标关口站SSB的小区且小区与候选目标关口站的SSB一一对应。UE可以根据优先级信息和/或馈电链路质量决定接入到哪个候选关口站。并且UE可以只将该关口站对应的信道质量测量值上报给源关口站,以此告知源关口站对目标关口站的选择。在确定切换的目标关口站后,后续的切换步骤参考图5中S503及之后的步骤,这里不再赘述。
可选的,第一消息中也可以携带源关口站的SSB对应小区的优先级信息,新接入的UE可以根据源关口站的SSB对应的小区的优先级信息和候选目标关口站的SSB对应的小区的优先级信息选择接入的小区,例如新接入的UE选择接入优先级高的波束或小区。
可选的,利用PBCH中的预留的1比特参数Spare表示优先级。例如,1表示高优先级,0表示低优先级,或者0表示高优先级,1表示低优先级,。
可选的,利用PSS和/或SSS得到的小区标识1或小区标识2或物理小区标识来隐式表示优先级。例如,小区标识号大表示高优先级,小区标识号小表示低优先级。或者小区标识2隐式表示优先级,例如,小区标识2大表示高优先级,小区标识2小表示低优先级。或者小区标识1隐式表示优先级,例如,小区标识1大表示高优先级,小区标识1小表示低优先级:
由PSS获取小区标识2:N
ID
(2)={0,1,2}
由SSS获取小区标识1:N
ID
(1)={0,1,…,355}
物理小区标识:N
ID=3*N
ID
(1)+N
ID
(2)
可选的,利用SSB所在的系统帧号(system frame number,SFN)、子帧号、时隙号、正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号位置来隐式表示优先级,例如系统帧号是个位数的奇偶、固定数字等,又例如SSB所在时隙号较大的,表示优先级较高。
可选的,在剩余最小系统信息(remaining minimum system information,RMSI)或其它系统消息(other system information,OSI)中携带小区的优先级信息。例如,SIB1中携带SSB或小区的优先级信息。
上述技术方案中,在候选的目标关口站的SSB中携带对应小区的优先级信息,可以使UE根据小区的优先级信息从候选的多个目标关口站中确定要切换的目标关口站,从而减少UE对其他候选目标关口站的下行信道质量的测量。
为了UE能够快速准确地与目标关口站建立上下行时间同步,卫星需要向UE发送同步信息。应理解,同步信息实际是由源关口站发送给卫星的,再由卫星再转发给UE的。
源关口站可以根据卫星的位置、两个关口站的位置,计算出关口站切换所需要的同步信息,同步信息包括两条馈电链路的传播时延差和/或两个关口站发送下行信号的定时差等,源关口站将该同步信息通过卫星告知UE。
可选的,同步信息可以通过广播、组播、单播的方式发送给UE。
例如,图4中卫星与关口站1的传播时延为delay1,卫星与关口站2间的传播时延为delay2,那么两个关口站的馈电链路传播时延差为delay_diff=delay2-delay1。或者根据传播的往返时延(round trip delay,RTD)计算得到往返传播时延差,即delay_RTDdiff=2*(delay2-delay1)。
另外,考虑到关口站1和关口站2发送下行信号的定时不一定对齐,如图10所示,源关口站将两个关口站通过下行链路(down link,DL)发送下行信号的定时差DL_timing_diff也要通过卫星告知UE,UE利用下行信号的发送定时差与馈电链路的传播时延差推导出UE接收到目标关口站下行信号的定时。例如,UE可以根据接收到的源关口站下行信号的定时,加上或减去delay_diff和DL_timing_diff得到接收目标关口站下行信号的定时。
UE能够根据传播时延差delay_diff和向源关口站发送上行信号使用的定时提前(timing advance,TA)值推导出在目标关口站使用的TA值。例如,可以在原TA值的基础上加上或减去2*delay_diff。
本申请实施例中的方案同样可以适用于卫星间的切换,相当于服务链路和馈电链路都发生了变化。为了UE能够快速准确地与目标关口站/卫星建立上下行时间同步。类似地,可以将同步信息,例如两个关口站的服务链路和馈电链路的时延差以及下行信号的定时差发送给UE。
可选的,网络设备可以在SIB1、OSI、MIB等广播信息的至少一种信息中携带同步信息。
可选的,如果在RRC连接阶段发送同步信息,网络设备可以在RRC信息、RRC重配置信息、下行控制信息(downlink control information,DCI)、组DCI、介质访问控制(media access control,MAC)元素(element)、定时提前命令(timing advance command,TAC)中的至少一种信息中携带同步信息,或者随数据传输或在单独分配的物理下行共享信道(physical downlink shared channel,PDSCH)承载中向终端设备发送。
本申请中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可 用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
下面介绍本申请提供的关口站切换的装置。
参见图11,图11为本申请提供的通信装置1000的示意性框图。如图11所示,通信装置1000包括:处理单元1100和收发单元1200。
收发单元1200,用于通过一个服务链路接收同步广播块SSB,SSB包括第一消息和第二消息,第一消息包括源关口站的SSB,第二消息包括至少一个候选目标关口站的SSB;处理单元1100,用于根据第二消息获取测量结果,测量结果包括至少一个候选目标关口站的SSB对应的信道质量的测量值;收发单元1200,还用于发送测量结果;收发单元1200,接收切换指令,该切换指令包括源关口站根据测量结果确定的关口站切换信息;处理单元1100,还用于根据切换指令确定是否将配置有该装置的终端设备从源关口站切换到至少一个候选目标关口站中一个目标关口站。
可选的,SSB是第一消息和第二消息通过该服务链路以时分复用或频分复用的方式被发送的SSB。
可选的,测量结果还包括终端设备根据第一消息获取的源关口站的SSB对应的信道质量的测量值。
可选的,第二消息还包括小区优先级信息,其中,该小区为广播第二消息中的SSB对应的小区且小区为该服务链路覆盖的小区;终端设备根据小区优先级信息,选择至少一个候选目标关口站中的一个关口站进行关口站切换。
可选的,配置有装置的终端设备从源关口站切换到目标关口站切换之前,收发单元1200,还用于接收同步信息,同步信息用于配置有装置的终端设备和目标关口站建立时间同步。
可选的,同步信息包括源关口站和目标关口站之间的馈电链路时延差和/或源关口站和目标关口站之间向网络设备发送信号的定时差。
可选的,收发单元1200,还用于通过广播或组播或单播的方式接收同步信息。
可选的,收发单元1200,还用于接收测量配置信息,测量配置信息包括以下一项或多项信息:至少一个候选目标关口站的SSB的时频信息、至少一个候选目标关口站的SSB的时域周期、上报测量结果的时频资源。。
可选地,收发单元1200也可以由发送单元或者接收单元替代。例如,收发单元1200在执行发送的动作时,可以由发送单元替代。收发单元1200执行接收的动作时,可以由接收单元替代。
可选地,该装置1000可以为终端设备,或者终端设备中可实现上述方法实施例中的终端设备的功能的器件、部件等。
例如,收发单元1200可以为收发器。收发器可以由接收器或发射器代替。例如,收发器在执行发送的动作时,可以由发送器替代。收发器执行接收的动作时,可以由接收器替代。处理单元1100可以为处理装置或处理器这里不作限定。
可选地,装置1000可以为安装在终端设备中的电路系统,例如,芯片或片上系统(system on chip,SoC)等。处理单元1100以及收发单元1200可以各自为电路系统的一个模块或者单元,也可以由一个模块或单元实现其全部功能。在这种实现方式中,收发单元 1200可以为通信接口。例如,收发单元1200可以为输入输出接口或者输入输出电路。输入输出接口可以包括输入接口和输出接口。输入输出电路可以包括输入电路和输出电路。
其中,上述装置实施例中的处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。
例如,处理装置可以包括一个或多个存储器以及一个或多个处理器,其中,一个或多个存储器用于存储计算机程序,一个或多个处理器读取并执行一个或多个存储器中存储的计算机程序,使得装置1000执行各方法实施例中由终端设备执行的操作和/或处理。
可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。
可选地,收发单元1200可以为射频装置。
图12为本申请提供的通信装置2000的示意性框图。如图12所示,通信装置2000包括:处理单元2100和收发单元2200。
收发单元2200,用于通过一个服务链路发送同步广播块SSB,该SSB包括第一消息和第二消息,第一消息包括源关口站的SSB,第二消息包括至少一个候选目标关口站的SSB;收发单元2200,还用于接收测量结果,该测量结果包括终端设备根据第二消息测量的至少一个候选目标关口站的SSB对应的信道质量的测量值;收发单元2200,还用于发送测量结果;收发单元2200,还用于接收切换指令,该切换指令包括源关口站根据测量结果确定的关口站切换信息,切换指令用于指示是否将终端设备从源关口站切换到至少一个候选目标关口站中的一个目标关口站;收发单元2200,还用于发送切换指令。
可选的,收发单元2200,具体用于通过一个服务链路以时分复用或频分复用的方式发送第一消息和第二消息。
可选的,测量结果还包括终端设备根据第一消息获取的源关口站的SSB对应的信道质量的测量值。
可选的,第二消息包括小区优先级信息,其中,小区为广播第二消息中的SSB对应的小区且小区为服务链路覆盖的小区。
可选的,收发单元2200,还用于发送同步信息,该同步信息用于终端设备和目标关口站建立时间同步。
可选的,该同步信息包括源关口站和目标关口站之间的馈电链路时延差和/或源关口站和目标关口站之间发送信号的定时差。
可选的,收发单元2200,具体用于通过广播或组播或单播的方式发送同步信息。
可选的,收发单元2200,还用于发送测量配置信息,测量配置信息包括以下一项或多项信息:至少一个候选目标关口站的SSB的时频信息、至少一个候选目标关口站的SSB的时域周期、上报测量结果的时频资源。
可选地,收发单元2200也可以由发送单元或者接收单元替代。例如,收发单元1200在执行发送的动作时,可以由发送单元替代。收发单元1200执行接收的动作时,可以由接收单元替代。
可选地,该装置2000可以为网络设备,或者网络设备中可实现上述方法实施例中的终端设备的功能的器件、部件等。
例如,收发单元2200可以为收发器。收发器可以由接收器或发射器代替。例如,收 发器在执行发送的动作时,可以由发送器替代。收发器执行接收的动作时,可以由接收器替代。处理单元2100可以为处理装置或处理器这里不作限定。
可选地,装置2000可以为安装在终端设备中的电路系统,例如,芯片或片上系统(system on chip,SoC)等。处理单元2100以及收发单元2200可以各自为电路系统的一个模块或者单元,也可以由一个模块或单元实现其全部功能。在这种实现方式中,收发单元2200可以为通信接口。例如,收发单元2200可以为输入输出接口或者输入输出电路。输入输出接口可以包括输入接口和输出接口。输入输出电路可以包括输入电路和输出电路。
其中,上述通信装置实施例中的处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。
例如,处理装置可以包括一个或多个存储器以及一个或多个处理器,其中,一个或多个存储器用于存储计算机程序,一个或多个处理器读取并执行一个或多个存储器中存储的计算机程序,使得装置2000执行各方法实施例中由网络设备执行的操作和/或处理。
可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。
可选地,收发单元2200可以为射频装置。
参见图13,图13为本申请提供的通信装置10的示意性结构图。如图13所示,通信装置10包括:一个或多个处理器11,一个或多个存储器12,以及一个或多个通信接口13。其中,处理器11用于控制通信接口13收发信号,存储器12用于存储计算机程序,处理器11用于从存储器12中调用并运行计算机程序,使得通信装置10执行本申请的各方法实施例中由终端设备执行的处理和/或操作。
例如,处理器11可以集成了图11中的处理单元1100的功能,通信接口13可以具有图11中所示的收发单元1200的功能。具体可以参见图11中的详细说明,这里不再赘述。
可选地,当装置10为终端设备时,处理器11可以为安装在终端设备中的基带装置,通信接口13可以为射频装置。
可选的,上述各装置实施例中的存储器与处理器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
图14为本申请提供的通信装置20的示意性结构图。如图14所示,通信装置20包括:一个或多个处理器21,一个或多个存储器22,以及一个或多个通信接口23。其中,处理器21用于控制通信接口23收发信号,存储器22用于存储计算机程序,处理器21用于从存储器22中调用并运行计算机程序,使得通信装置20执行本申请的各方法实施例中由网络设备执行的处理和/或操作。
例如,处理器21可以集成了图12中的处理单元2100的功能,通信接口23可以具有图12中所示的收发单元2200的功能。具体可以参见图12中的详细说明,这里不再赘述。
可选地,当装置20为网络设备时,处理器21可以为安装在网络设备中的基带装置,通信接口23可以为射频装置。
可选的,上述各装置实施例中的存储器与处理器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
此外,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行本申请提供的关口站切换的方法 中由终端设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行本申请提供的关口站切换的方法中由网络设备执行的操作和/或处理。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行本申请提供的关口站切换的方法中由终端设备执行的操作和/或处理。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行本申请提供的关口站切换的方法中由网络设备执行的操作和/或处理。
本申请还提供一种通信装置,包括处理器和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理器,所述处理器用于运行所述计算机代码或指令,以执行本申请提供的关口站切换的方法中由终端设备设备执行的操作和/或处理。
本申请还提供一种通信装置,包括处理器和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理器,所述处理器用于运行所述计算机代码或指令,以执行本申请提供的关口站切换的方法中由网络设备执行的操作和/或处理。
本申请还提供一种芯片,所述芯片包括一个或多个处理器。所述一个或多个处理器用于执行存储器中存储的计算机程序,以执行任意一个方法实施例中由终端设备执行的操作和/或处理。其中,所述用于存储计算机程序的存储器独立于所述芯片之外而设置。
进一步地,所述芯片还可以包括一个或多个通信接口。所述一个或多个通信接口可以是输入/输出接口,输入/输出电路等。
进一步地,所述芯片还可以包括一个或多个所述存储器。
本申请还提供一种芯片,所述芯片包括一个或多个处理器。所述一个或多个处理器用于执行存储器中存储的计算机程序,以执行任意一个方法实施例中由网络设备执行的操作和/或处理。其中,所述用于存储计算机程序的存储器独立于所述芯片之外而设置。
进一步地,所述芯片还可以包括一个或多个通信接口。所述一个或多个通信接口可以是输入/输出接口,输入/输出电路等。
进一步地,所述芯片还可以包括一个或多个所述存储器。
本申请还提供一种通信系统,包括本申请实施例中的终端设备和网络设备。
本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在本说明书中使用的术语“单元”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中。部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从上面存储有各种数据结构的各种计算机可读介质执行。部件可根据具有一个或多个数据分组(例如,来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如,通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (35)
- 一种关口站切换的方法,其特征在于,包括:终端设备通过一个服务链路接收同步广播块SSB,所述SSB包括第一消息和第二消息,所述第一消息包括源关口站的SSB,所述第二消息包括至少一个候选目标关口站的SSB;所述终端设备根据所述第二消息获取测量结果,所述测量结果包括至少一个所述候选目标关口站的SSB对应的信道质量的测量值;所述终端设备发送所述测量结果;所述终端设备接收所述切换指令,所述切换指令包括所述源关口站根据所述测量结果确定的关口站切换信息;所述终端设备根据切换指令确定是否从所述源关口站切换到至少一个所述候选目标关口站中的一个目标关口站。
- 根据权利要求1所述的方法,其特征在于,所述SSB是所述第一消息和所述第二消息通过所述服务链路以时分复用或频分复用的方式被发送的SSB。
- 根据权利要求1或2所述的方法,其特征在于,所述测量结果还包括所述终端设备根据所述第一消息获取的所述源关口站的SSB对应的信道质量的测量值。
- 根据权利要求1至3中任一项所述的方法,其特征在,所述第二消息还包括小区优先级信息,其中,所述小区为广播所述第二消息中的SSB对应的小区且所述小区为所述服务链路覆盖的小区;所述终端设备根据所述小区优先级信息,选择至少一个所述候选目标关口站中的一个关口站进行关口站切换。
- 根据权利要求1至4中任一项所述的方法,其特征在于,若所述终端设备确定从所述源关口站切换到所述目标关口站,在所述切换之前,所述方法还包括:所述终端设备接收同步信息,所述同步信息用于所述终端设备和所述目标关口站建立时间同步。
- 根据权利要求5所述的方法,其特征在于,所述同步信息包括所述源关口站和所述目标关口站之间的馈电链路时延差和/或所述源关口站和所述目标关口站之间向所述网络设备发送信号的定时差。
- 根据权利要求5或6所述的方法,其特征在于,所述终端设备通过广播或组播或单播的方式接收所述同步信息。
- 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:所述终端设备接收测量配置信息,所述测量配置信息包括以下一项或多项信息:至少一个所述候选目标关口站的SSB的时频信息、至少一个所述候选目标关口站的SSB的时域周期、上报所述测量结果的时频资源。
- 一种关口站切换的方法,其特征在于,包括:网络设备通过一个服务链路发送同步广播块SSB,所述SSB包括第一消息和第二消息,所述第一消息包括源关口站的SSB,所述第二消息包括至少一个候选目标关口站的 SSB;所述网络设备接收测量结果,所述测量结果包括所述终端设备根据所述第二消息测量的至少一个所述候选目标关口站的SSB对应的信道质量的测量值;所述网络设备发送所述测量结果;所述网络设备接收切换指令,所述切换指令包括所述源关口站根据所述测量结果确定的关口站切换信息,所述切换指令用于指示是否将所述终端设备从所述源关口站切换到所述至少一个候选目标关口站中的一个目标关口站;所述网络设备发送所述切换指令。
- 根据权利要求9所述的方法,其特征在于,所述网络设备通过一个服务链路发送所述同步广播块SSB,包括:所述网络设备通过一个服务链路以时分复用或频分复用的方式发送所述第一消息和所述第二消息。
- 根据权利要求9或10所述的方法,其特征在于,所述测量结果还包括所述终端设备根据所述第一消息获取的所述源关口站的SSB对应的信道质量的测量值。
- 根据权利要求9至11中任一项所述的方法,其特征在于,所述第二消息包括小区优先级信息,其中,所述小区为广播所述第二消息中的SSB对应的小区且所述小区为所述服务链路覆盖的小区。
- 根据权利要求9至12中任一项所述的方法,其特征在于,所述方法还包括:所述网络设备发送同步信息,所述同步信息用于所述终端设备和所述目标关口站建立时间同步。
- 根据权利要求13所述的方法,其特征在于,所述同步信息包括所述源关口站和所述目标关口站之间的馈电链路时延差和/或所述源关口站和所述目标关口站之间向网络设备发送信号的定时差。
- 根据权利要求13或14所述的方法,其特征在于,所述网络设备通过广播或组播或单播的方式发送所述同步信息。
- 根据权利要求9至15中任一项所述的方法,其特征在于,所述方法还包括:所述网络设备发送测量配置信息,所述测量配置信息包括以下一项或多项信息:至少一个所述候选目标关口站的SSB的时频信息、至少一个所述候选目标关口站的SSB的时域周期、上报所述测量结果的时频资源。
- 一种关口站切换的装置,其特征在于,包括:收发单元,用于通过一个服务链路接收同步广播块SSB,所述SSB包括第一消息和第二消息,所述第一消息包括源关口站的SSB,所述第二消息包括至少一个候选目标关口站的SSB;处理单元,用于根据所述第二消息获取测量结果,所述测量结果包括至少一个所述候选目标关口站的SSB对应的信道质量的测量值;所述收发单元,还用于发送所述测量结果;所述收发单元,还用于接收所述切换指令,所述切换指令包括所述源关口站根据所述测量结果确定的关口站切换信息;所述处理单元,还用于根据切换指令确定是否将配置有所述装置的终端设备从所述源 关口站切换到所述至少一个候选目标关口站中一个目标关口站。
- 根据权利要求17所述的装置,其特征在于,所述SSB是所述第一消息和所述第二消息通过所述服务链路以时分复用或频分复用的方式被发送的SSB。
- 根据权利要求17或18所述的装置,其特征在于,所述测量结果还包括所述处理单元根据所述第一消息获取的所述源关口站的SSB对应的信道质量的测量值。
- 根据权利要求17至19中任一项所述的装置,其特征在,所述第二消息还包括小区优先级信息,其中,所述小区为广播所述第二消息中的SSB对应的小区且所述小区为所述服务链路覆盖的小区;所述处理单元,还用于根据所述小区优先级信息,选择至少一个所述候选目标关口站中的一个关口站进行关口站切换。
- 根据权利要求17至20中任一项所述的装置,其特征在于,若所述处理单元根据所述切换指令确定配置有所述装置的终端设备从所述源关口站切换到所述目标关口站,在所述切换之前,所述收发单元,还用于接收的同步信息,所述同步信息用于配置有所述装置的终端设备和所述目标关口站建立时间同步。
- 根据权利要求21所述的装置,其特征在于,所述同步信息包括所述源关口站和所述目标关口站之间的馈电链路时延差和/或所述源关口站和所述目标关口站之间向网络设备发送信号的定时差。
- 根据权利要求21或22所述的装置,其特征在于,所述收发单元,还用于通过广播或组播或单播的方式接收所述同步信息。
- 根据权利要求17至23中任一项所述的装置,其特征在于,所述收发单元,还用于接收测量配置信息,所述测量配置信息包括以下一项或多项信息:至少一个所述候选目标关口站的SSB的时频信息、至少一个所述候选目标关口站的SSB的时域周期、上报所述测量结果的时频资源。
- 一种关口站切换的装置,其特征在于,包括:收发单元,用于通过一个服务链路发送同步广播块SSB,所述SSB包括第一消息和第二消息,所述第一消息包括源关口站的SSB,所述第二消息包括至少一个候选目标关口站的SSB;所述收发单元,还用于接收测量结果,所述测量结果包括所述终端设备根据所述第二消息测量的至少一个候选目标关口站的SSB对应的信道质量的测量值;所述收发单元,还用于发送所述测量结果;所述收发单元,还用于接收切换指令,所述切换指令包括所述源关口站根据所述测量结果确定的关口站切换信息,所述切换指令用于指示是否将所述终端设备从所述源关口站切换到所述至少一个候选目标关口站中的一个目标关口站;所述收发单元,还用于发送所述切换指令。
- 根据权利要求25所述的装置,其特征在于,所述收发单元,具体用于通过一个服务链路以时分复用或频分复用的方式发送所述第一消息和所述第二消息。
- 根据权利要求25或26所述的装置,其特征在于,所述测量结果还包括所述终端设备根据所述第一消息获取的所述源关口站的SSB对应的信道质量的测量值。
- 根据权利要求25至27中任一项所述的装置,其特征在于,所述第二消息包括小 区优先级信息,其中,所述小区为广播所述第二消息中的SSB对应的小区且所述小区为所述服务链路覆盖的小区。
- 根据权利要求25至28中任一项所述的装置,其特征在于,所述收发单元,还用于发送同步信息,所述同步信息用于所述终端设备和所述目标关口站建立时间同步。
- 根据权利要求29所述的装置,其特征在于,所述同步信息包括所述源关口站和所述目标关口站之间的馈电链路时延差和/或所述源关口站和所述目标关口站之间向网络设备发送信号的定时差。
- 根据权利要求29或30所述的装置,其特征在于,所述收发单元,具体用于通过广播或组播或单播的方式发送所述同步信息。
- 根据权利要求25至31中任一项所述的装置,其特征在于,所述收发单元,还用于发送测量配置信息,所述测量配置信息包括以下一项或多项信息:至少一个所述候选目标关口站的SSB的时频信息、至少一个所述候选目标关口站的SSB的时域周期、上报所述测量结果的时频资源。
- 一种通信设备,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1至8中任一项所述的方法被执行,或权利要求9至16中任一项所述的方法被执行。
- 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,所述计算机程序或指令用于在通信设备上运行时,使得权利要求1至8中任一项所述的方法被执行,或权利要求9至16中任一项所述的方法被执行。
- 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的通信设备执行权利要求1至8中任一项所述的方法,或权利要求9至16中任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/886,028 US20220386185A1 (en) | 2020-02-13 | 2022-08-11 | Gateway handover method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010095050.8 | 2020-02-13 | ||
CN202010095050.8A CN113260005B (zh) | 2020-02-13 | 2020-02-13 | 关口站切换的方法和装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/886,028 Continuation US20220386185A1 (en) | 2020-02-13 | 2022-08-11 | Gateway handover method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021159968A1 true WO2021159968A1 (zh) | 2021-08-19 |
Family
ID=77219954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/074277 WO2021159968A1 (zh) | 2020-02-13 | 2021-01-29 | 关口站切换的方法和装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220386185A1 (zh) |
CN (1) | CN113260005B (zh) |
WO (1) | WO2021159968A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220077922A1 (en) * | 2020-09-09 | 2022-03-10 | Qualcomm Incorporated | Synchronization signal block forwarding |
WO2023096342A1 (ko) * | 2021-11-24 | 2023-06-01 | 한국전자통신연구원 | 비-지상 네트워크에서 동기 신호 블록 생성 및 송신 방법과 그 장치 |
CN115296719B (zh) * | 2022-07-27 | 2024-04-16 | 亚太卫星宽带通信(深圳)有限公司 | 高通量卫星网内天气预警监测方法、装置、设备及介质 |
WO2024087170A1 (en) * | 2022-10-28 | 2024-05-02 | Nec Corporation | Method, device and computer storage medium of communication |
WO2024216507A1 (zh) * | 2023-04-18 | 2024-10-24 | 上海传英信息技术有限公司 | 处理方法、通信设备及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110212969A (zh) * | 2019-05-24 | 2019-09-06 | 航天科工空间工程发展有限公司 | 一种信标测控和信关融合的低轨星座接入与控制系统 |
CN110429975A (zh) * | 2019-09-05 | 2019-11-08 | 海能达通信股份有限公司 | 卫星切换方法及装置 |
CN110445528A (zh) * | 2019-07-25 | 2019-11-12 | 成都天奥集团有限公司 | 一种基于用户切换限制和卸载的卫星跨信关站馈电链路切换方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10925101B2 (en) * | 2017-09-11 | 2021-02-16 | Apple Inc. | Techniques for NR cell/beam identification |
-
2020
- 2020-02-13 CN CN202010095050.8A patent/CN113260005B/zh active Active
-
2021
- 2021-01-29 WO PCT/CN2021/074277 patent/WO2021159968A1/zh active Application Filing
-
2022
- 2022-08-11 US US17/886,028 patent/US20220386185A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110212969A (zh) * | 2019-05-24 | 2019-09-06 | 航天科工空间工程发展有限公司 | 一种信标测控和信关融合的低轨星座接入与控制系统 |
CN110445528A (zh) * | 2019-07-25 | 2019-11-12 | 成都天奥集团有限公司 | 一种基于用户切换限制和卸载的卫星跨信关站馈电链路切换方法 |
CN110429975A (zh) * | 2019-09-05 | 2019-11-08 | 海能达通信股份有限公司 | 卫星切换方法及装置 |
Non-Patent Citations (2)
Title |
---|
ERICSSON ET AL.: "Feeder link switch for transparent and regenerative LEO", R2-1905301, 11 April 2019 (2019-04-11), XP051709729 * |
QUALCOMM INCORPORATED: "R3-195481", DISCUSSION ABOUT SUCCESSFUL HO IN MRO, 4 October 2019 (2019-10-04), XP051792516 * |
Also Published As
Publication number | Publication date |
---|---|
US20220386185A1 (en) | 2022-12-01 |
CN113260005B (zh) | 2022-07-29 |
CN113260005A (zh) | 2021-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7405911B2 (ja) | 無線通信システム、基地局 | |
WO2021159968A1 (zh) | 关口站切换的方法和装置 | |
CN110662266B (zh) | Iab节点的切换方法、iab节点和宿主基站 | |
CN106576255B (zh) | 通信系统 | |
US10172061B2 (en) | Method and apparatus for transmitting cell shaping indication in wireless communication system | |
US20240129814A1 (en) | Methods providing anchor change for ethernet pdu sessions and related network entities/nodes | |
US9055492B2 (en) | Method and a network node for sharing information over an interface in a telecommunications system | |
US11601228B2 (en) | HARQ feedback for multicast/unicast | |
CN109905887B (zh) | 用于中继设备的通信方法、设备和计算机可读存储介质 | |
CN111373809B (zh) | 上行信号发送方法、上行信号接收方法、装置和系统 | |
JP2019533368A (ja) | Rtsのスロット化された送信および指向性の受信 | |
JP2019534605A (ja) | ビームの切替え | |
JP2021517751A (ja) | セカンダリセルを構成するための方法、装置及びコンピュータ記憶媒体 | |
US9788254B2 (en) | Method and apparatus for transmitting indication in wireless communication system | |
US9615353B2 (en) | Method and apparatus for allocating physical cell identities in wireless communication system | |
CN114846836A (zh) | 通信系统、基站及通信终端 | |
EP2775763A1 (en) | Method of Handling Selections of Base Stations Related Communication Device | |
WO2022133692A1 (zh) | 状态切换的方法、终端设备和网络设备 | |
US9854463B2 (en) | Method and apparatus for transmitting split availability of cell in wireless communication system | |
WO2020029275A1 (zh) | 一种无线通信方法、终端设备和网络设备 | |
WO2024027220A1 (zh) | 一种卫星网络中的同步方法及装置 | |
WO2024065538A1 (zh) | 开关控制方法、信息指示方法、转发器和网络设备 | |
US12068833B2 (en) | Beam sweeping for SSB polarization switching | |
CN117939547A (zh) | 条件切换方法、通信节点及存储介质 | |
WO2023080823A1 (en) | Methods, radio network node, and user equipment or integrated access and backhaul node for handling communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21753241 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21753241 Country of ref document: EP Kind code of ref document: A1 |