WO2021159947A1 - 连续变量量子密钥分发方法及系统 - Google Patents

连续变量量子密钥分发方法及系统 Download PDF

Info

Publication number
WO2021159947A1
WO2021159947A1 PCT/CN2021/073436 CN2021073436W WO2021159947A1 WO 2021159947 A1 WO2021159947 A1 WO 2021159947A1 CN 2021073436 W CN2021073436 W CN 2021073436W WO 2021159947 A1 WO2021159947 A1 WO 2021159947A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
module
key distribution
pulse sequence
continuous variable
Prior art date
Application number
PCT/CN2021/073436
Other languages
English (en)
French (fr)
Inventor
黄鹏
汪诗寓
曾贵华
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to US17/435,023 priority Critical patent/US20220150060A1/en
Publication of WO2021159947A1 publication Critical patent/WO2021159947A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/60Quantum algorithms, e.g. based on quantum optimisation, quantum Fourier or Hadamard transforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1141One-way transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/524Pulse modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding

Definitions

  • the present invention relates to the technical field of quantum key distribution, in particular to a continuous variable quantum key distribution method and system. In particular, it relates to a phase compensation method for free space transmission in a continuous variable quantum key distribution system.
  • Continuous variable quantum key distribution is a kind of quantum key distribution scheme, which is based on the uncertainty principle of orthogonal components of coherent states. Because continuous variable quantum key distribution uses coherent detection, it has good compatibility with existing optical fiber communication systems, and has inherent anti-background noise characteristics in free space transmission, making it a very competitive commercial key distribution implementation plan. However, in a continuous variable quantum key distribution system in free space, due to the random attenuation of the signal by the channel, that is, fading, phase compensation becomes a difficult problem.
  • phase shift by calculating the cross-correlation and finding the maximum value in the free-space continuous variable quantum key distribution system, and the estimated phase shift value is phase-compensated at the transmitting end.
  • the quantum signal and the local oscillator signal are time and polarization multiplexed for transmission, and the signal detection is performed at the receiving end by means of homodyne detection.
  • This scheme can accurately compensate the phase in a fading channel, and can be widely used in a free-space continuous variable quantum key distribution system.
  • Patent document CN109194470A (application number: 201811045247.X) discloses an efficient continuous variable quantum key distribution method, including the sending end sending N weak light pulses and 1 strong light pulse in one cycle; weak light pulses and strong light The pulse is separated by the first beam splitter after amplitude modulation; the weak light pulse is input into the second beam splitter after amplitude modulation and phase modulation, and then passes through the first and second polarization beam splitters, while the strong light pulse passes through After the unmodulated equidistant optical path is input to the second polarization beam splitter, the second polarization beam splitter outputs a set of optical pulses; the optical pulse is sent to the receiving end; the receiving end receives the optical pulse and combines the local light for heterodyne detection, and the transmission is obtained The continuous variable quantum key sent by the terminal.
  • the purpose of the present invention is to provide a continuous variable quantum key distribution method and system.
  • the continuous variable quantum key distribution method provided according to the present invention includes:
  • Step 1 Synchronously transmit the quantum signal and the local oscillator signal according to time and polarization multiplexing, and perform detection to obtain detection data;
  • Step 2 Compensate the detection data according to the phase compensation algorithm and public data.
  • the step 1 includes:
  • Step 1.1 Chop the continuous laser light emitted by the laser according to the intensity modulator, and convert the continuous laser light into an optical pulse sequence
  • Step 1.2 Modulate part of the optical pulse sequence, load the information to be transmitted on the quantum signal, and delay;
  • Step 1.3 Combine the optical pulse sequence loaded with the quantum signal of the required transmission information and the optical pulse sequence of the local oscillator signal through polarization multiplexing, and transmit to the receiving end through the free space channel;
  • Step 1.4 At the receiving end, a polarization beam splitter is used to split the beam, and the optical pulse sequence loaded with the quantum signal of the required transmission information and the optical pulse sequence of the local oscillator signal are aligned in the time domain and zeroed. Poor detection
  • Step 1.5 Collect the electrical signal output by the detector through the data acquisition device and perform digital signal processing to obtain the detection data.
  • the step 2 includes:
  • Step 2.1 The communicating parties announce the public data, and the sender will phase-shift the public data and form comparison data;
  • Step 2.2 Calculate the cross-correlation between the comparison data and the detection data and find the maximum value.
  • the phase shift angle of the maximum value is the estimated value of the phase shift;
  • Step 2.3 Perform data compensation on the detection data according to the drift estimate
  • Step 2.4 Perform negotiation decoding on the compensated detection data, and perform confidentiality enhancement processing to obtain the final key.
  • the length of the public data affects the accuracy of compensation.
  • the range of the phase shift is 0 to 360 degrees
  • the interval of multiple phase shifts is set according to requirements, which affects the accuracy of compensation.
  • the continuous variable quantum key distribution system includes:
  • Module M1 Synchronously transmit the quantum signal and the local oscillator signal according to time and polarization multiplexing, and perform detection to obtain detection data;
  • Module M2 Compensate the detection data according to the phase compensation algorithm and public data.
  • the module M1 includes:
  • Module M1.1 Chop the continuous laser light emitted by the laser according to the intensity modulator, and convert the continuous laser light into an optical pulse sequence
  • Module M1.2 modulate part of the light pulse sequence, load the information to be transmitted on the quantum signal, and delay;
  • Module M1.3 Combine the optical pulse sequence loaded with the quantum signal of the required transmission information and the optical pulse sequence of the local oscillator signal through polarization multiplexing, and transmit to the receiving end through the free space channel;
  • a polarization beam splitter is used to split the beam, and the optical pulse sequence loaded with the quantum signal of the required transmission information is aligned with the optical pulse sequence of the local oscillator signal in the time domain through delay, and Perform homodyne detection;
  • Module M1.5 Collect the electrical signal output by the detector through the data acquisition device and perform digital signal processing to obtain the detection data.
  • the module M2 includes:
  • Module M2.1 The communication parties announce public data, and the sender phase shifts the public data and forms comparison data;
  • Module M2.2 Calculate the cross-correlation between the comparison data and the detection data and find the maximum value.
  • the phase shift angle of the maximum value is the estimated value of the phase shift;
  • Module M2.3 Perform data compensation on the detection data according to the drift estimation value
  • Module M2.4 negotiate and decode the compensated detection data, and perform confidentiality enhancement processing to obtain the final key.
  • the length of the public data affects the accuracy of compensation.
  • the range of the phase shift is 0 to 360 degrees
  • the interval of multiple phase shifts is set according to requirements, which affects the accuracy of compensation.
  • the present invention has the following beneficial effects:
  • the present invention can accurately compensate the phase in the case of channel fading, and improve the performance of the continuous variable quantum key distribution system
  • the present invention improves the accuracy of compensation by setting the phase shift range and interval.
  • Figure 1 is a structure diagram of signal transmission
  • FIG. 2 is a flowchart of the phase compensation scheme.
  • Continuous variable quantum key distribution is a kind of quantum key distribution scheme. It distributes the key information by encoding the key information on the regular component of the light field, and uses the principle of the uncertainty of the orthogonal component of the coherent state as a security guarantee. Continuous variable quantum key distribution uses coherent detection, which has good compatibility with existing optical fiber communication systems, and has inherent anti-background noise characteristics in free space transmission, making it a very competitive commercial key distribution Implementation plan.
  • the quantum signal and the local oscillator pulse sequence are transmitted.
  • the quantum signal transmission structure is shown in Figure 1.
  • the laser light emitted by the continuous laser is first input into the intensity modulator to complete the chopping, and generate a light pulse sequence.
  • the pulse sequence is then split into beams, one of which is modulated and delayed to generate a quantum signal.
  • the local oscillator and quantum signals are transmitted simultaneously through polarization multiplexing and sent to the receiving end through a free space channel.
  • the receiving end After receiving the signal, the receiving end separates and delays the signal from the local oscillator through a polarization beam splitter, and aligns the local oscillator with the signal pulse. Then, the homodyne detection detects the signal, and the high-speed acquisition equipment is used to collect the electrical signal for subsequent data processing.
  • the phase compensation scheme is shown in Figure 2.
  • the communicating parties publish part of the data for phase compensation.
  • the data at the sender is phase-shifted multiple times within the range of 0 to 360 degrees and new data is formed.
  • Perform a cross-correlation operation between the new data and the data at the receiving end, and find the largest cross-correlation value, and the corresponding phase shift angle is the estimated value of the phase shift.
  • the estimated value is used to perform a phase shift operation on the data at the transmitting end, thereby compensating for the phase shift.
  • the compensated quantum signal is subjected to data negotiation, decoding and confidentiality enhancement to form the final key.
  • the key can be used to encrypt data to ensure the security of information transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Data Mining & Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Optical Communication System (AREA)

Abstract

本发明提供了一种连续变量量子密钥分发方法及系统,包括:步骤1:根据时间和偏振复用对量子信号与本振信号进行同步传输,并进行探测,得到探测数据;步骤2:根据相位补偿算法和公开数据对探测数据进行补偿。本发明可以在信道衰落的情况下准确地补偿相位,提升连续变量量子密钥分发系统的性能。

Description

连续变量量子密钥分发方法及系统 技术领域
本发明涉及量子密钥分发技术领域,具体地,涉及一种连续变量量子密钥分发方法及系统。尤其地,涉及一种连续变量量子密钥分发系统中针对自由空间传输的相位补偿方法。
背景技术
随着信息时代的来临,通信技术的不断发展为信息传递提供了快捷渠道,而人们对信息在传输过程中的安全性也越来越重视。随着量子计算机的提出和发展,经典密码学所依赖的计算安全性将面临巨大挑战。而基于量子力学基本原理的量子密钥分发方案具备理论上的无条件安全性,能够从物理层面上保障通信的安全性。连续变量量子密钥分发是量子密钥分发方案的一种,其基于相干态正交分量测不准原理。由于连续变量量子密钥分发采用相干检测,其同现有光纤通信系统具有良好的兼容性,且在自由空间传输中具有内在抗背景噪声特性,从而成为了极具竞争力的商用密钥分发实现方案。然而,在自由空间的连续变量量子密钥分发系统中,由于信道对信号的随机衰减,即衰落,对其进行相位补偿成为了一项难题。
为了解决这一问题,我们提出在自由空间连续变量量子密钥分发系统中通过计算互相关并寻找最大值来估计相位漂移,估计的相位漂移值在发送端进行相位补偿。量子信号与本振信号进行时间和偏振复用传输,在接收端采用零差探测的方式进行信号检测。该方案可在衰落信道下精确地补偿相位,能够广泛地应用在自由空间连续变量量子密钥分发系统中。
专利文献CN109194470A(申请号:201811045247.X)公开了一种高效连续变量量子密钥分发方法,包括发送端在一个周期内发送N个弱光脉冲和1个强光脉冲;弱光脉冲和强光脉冲通过振幅调制后再通过第一分束器进行分离;弱光脉冲通过振幅调制和相位调制后输入第二分束器,然后再通过第一和第二偏振分束器,同时强光脉冲通过未调制的等距离光路后输入第二偏振分束器,第二偏振分束器输出一组光脉冲;将光脉冲发送接收端;接收端接收光脉冲并结合本地光进行外差检测,得 到发送端发送的连续变量量子密钥。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种连续变量量子密钥分发方法及系统。
根据本发明提供的连续变量量子密钥分发方法,包括:
步骤1:根据时间和偏振复用对量子信号与本振信号进行同步传输,并进行探测,得到探测数据;
步骤2:根据相位补偿算法和公开数据对探测数据进行补偿。
优选地,所述步骤1包括:
步骤1.1:根据强度调制器对激光器发出的连续激光进行斩波,将连续激光转化为光脉冲序列;
步骤1.2:将部分光脉冲序列进行调制,加载所需传输的信息到量子信号上,并进行延时;
步骤1.3:将加载有所需传输信息的量子信号的光脉冲序列与本振信号的光脉冲序列通过偏振复用方式进行合并,并通过自由空间信道传输到接收端;
步骤1.4:在接收端采用偏振分束器进行分束,通过延时将加载有所需传输信息的量子信号的光脉冲序列与本振信号的光脉冲序列在时域上进行对齐,并进行零差检测;
步骤1.5:通过数据采集设备对探测器输出的电信号进行采集并进行数字信号处理,得到探测数据。
优选地,所述步骤2包括:
步骤2.1:通信双方公布公开数据,发送端将公开数据进行移相并形成对比数据;
步骤2.2:计算对比数据与探测数据之间的互相关并找到最大值,最大值的移相角度即为相位漂移估计值;
步骤2.3:根据漂移估计值对探测数据进行数据补偿;
步骤2.4:将补偿后探测数据进行协商译码,并进行保密增强处理得到最终密钥。
优选地,所述公开数据的长度影响补偿的精度。
优选地,所述移相的范围为0到360度;
多次移相的间隔根据需求进行设定,影响补偿的精度。
根据本发明提供的连续变量量子密钥分发系统,包括:
模块M1:根据时间和偏振复用对量子信号与本振信号进行同步传输,并进行探测,得到探测数据;
模块M2:根据相位补偿算法和公开数据对探测数据进行补偿。
优选地,所述模块M1包括:
模块M1.1:根据强度调制器对激光器发出的连续激光进行斩波,将连续激光转化为光脉冲序列;
模块M1.2:将部分光脉冲序列进行调制,加载所需传输的信息到量子信号上,并进行延时;
模块M1.3:将加载有所需传输信息的量子信号的光脉冲序列与本振信号的光脉冲序列通过偏振复用方式进行合并,并通过自由空间信道传输到接收端;
模块M1.4:在接收端采用偏振分束器进行分束,通过延时将加载有所需传输信息的量子信号的光脉冲序列与本振信号的光脉冲序列在时域上进行对齐,并进行零差检测;
模块M1.5:通过数据采集设备对探测器输出的电信号进行采集并进行数字信号处理,得到探测数据。
优选地,所述模块M2包括:
模块M2.1:通信双方公布公开数据,发送端将公开数据进行移相并形成对比数据;
模块M2.2:计算对比数据与探测数据之间的互相关并找到最大值,最大值的移相角度即为相位漂移估计值;
模块M2.3:根据漂移估计值对探测数据进行数据补偿;
模块M2.4:将补偿后探测数据进行协商译码,并进行保密增强处理得到最终密钥。
优选地,所述公开数据的长度影响补偿的精度。
优选地,所述移相的范围为0到360度;
多次移相的间隔根据需求进行设定,影响补偿的精度。
与现有技术相比,本发明具有如下的有益效果:
1、本发明可以在信道衰落的情况下准确地补偿相位,提升连续变量量子密钥分发系统的性能;
2、本发明通过对移相范围和间隔的设定,提高了补偿的精度。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为信号传输结构图;
图2为相位补偿方案流程图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
根据本发明提供的一种提供的连续变量量子密钥分发系统中针对自由空间传输的相位补偿方案,在信息时代中通信技术的不断发展为信息传递提供了快捷渠道,而传输过程中的安全性也越来越重视。连续变量量子密钥分发是量子密钥分发方案的一种,它通过将密钥信息编码在光场正则分量上进行分发,以相干态正交分量测不准原理作为安全保障。连续变量量子密钥分发采用的是相干检测,其同现有光纤通信系统具有良好的兼容性,且在自由空间传输中具有内在抗背景噪声特性,从而成为了极具竞争力的商用密钥分发实现方案。然而在自由空间信道的传输过程中,由于信道衰落的影响,对传输后的信号进行相位补偿成为了一项难题。为了解决这一问题,我们提出在自由空间连续变量量子密钥分发系统中通过公布部分数据而计算互相关并寻找最大值来估计相位漂移值。将相位漂移的估计在发送端进行相位补偿,从而允许后续处理过程的进行并完成量子密钥分发。
为实现上述目的,本发明采用的技术方案如下:
首先传输量子信号与本振脉冲序列。
量子信号传输结构如图1所示,在发送端,首先将连续激光器发出的激光输入到强度调制器中完成斩波,产生光脉冲序列。随后将脉冲序列分束,对其中一路进行调制并延时产生量子信号。通过偏振复用的方式同传本振和量子信号,并通过自由空间信道发送到接收端。
接收端接收到信号后,通过偏振分束器将信号与本振分离并延时,将本振与信号脉冲对齐。随后进行零差探测检测信号,并采用高速采集设备对电信号进行采集,以进行后续的数据处理。
相位补偿方案如图2所示,在完成量子信号的探测之后,通信双方公布部分数据以进行相位补偿。发送端的数据在0到360度范围内进行多次移相并形成新的数据。将新的数据与接收端数据进行互相关操作,并寻找到最大的互相关值,其对应的相移角度即为相位漂移估计值。以该估计值对发送端数据进行移相操作,从而补偿相位漂移。
将补偿后的量子信号进行数据协商译码以及保密增强,形成最终的密钥。该密钥可用于对数据进行加密,保障信息传递的安全。
本领域技术人员知道,除了以纯计算机可读程序代码方式实现本发明提供的系统、装置及其各个模块以外,完全可以通过将方法步骤进行逻辑编程来使得本发明提供的系统、装置及其各个模块以逻辑门、开关、专用集成电路、可编程逻辑控制器以及嵌入式微控制器等的形式来实现相同程序。所以,本发明提供的系统、装置及其各个模块可以被认为是一种硬件部件,而对其内包括的用于实现各种程序的模块也可以视为硬件部件内的结构;也可以将用于实现各种功能的模块视为既可以是实现方法的软件程序又可以是硬件部件内的结构。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

  1. 一种连续变量量子密钥分发方法,其特征在于,包括:
    步骤1:根据时间和偏振复用对量子信号与本振信号进行同步传输,并进行探测,得到探测数据;
    步骤2:根据相位补偿算法和公开数据对探测数据进行补偿。
  2. 根据权利要求1所述的连续变量量子密钥分发方法,其特征在于,所述步骤1包括:
    步骤1.1:根据强度调制器对激光器发出的连续激光进行斩波,将连续激光转化为光脉冲序列;
    步骤1.2:将部分光脉冲序列进行调制,加载所需传输的信息到量子信号上,并进行延时;
    步骤1.3:将加载有所需传输信息的量子信号的光脉冲序列与本振信号的光脉冲序列通过偏振复用方式进行合并,并通过自由空间信道传输到接收端;
    步骤1.4:在接收端采用偏振分束器进行分束,通过延时将加载有所需传输信息的量子信号的光脉冲序列与本振信号的光脉冲序列在时域上进行对齐,并进行零差检测;
    步骤1.5:通过数据采集设备对探测器输出的电信号进行采集并进行数字信号处理,得到探测数据。
  3. 根据权利要求1所述的连续变量量子密钥分发方法,其特征在于,所述步骤2包括:
    步骤2.1:通信双方公布公开数据,发送端将公开数据进行移相并形成对比数据;
    步骤2.2:计算对比数据与探测数据之间的互相关并找到最大值,最大值的移相角度即为相位漂移估计值;
    步骤2.3:根据漂移估计值对探测数据进行数据补偿;
    步骤2.4:将补偿后探测数据进行协商译码,并进行保密增强处理得到最终密钥。
  4. 根据权利要求3所述的连续变量量子密钥分发方法,其特征在于,所述公开数据的长度影响补偿的精度。
  5. 根据权利要求3所述的连续变量量子密钥分发方法,其特征在于,所述移相的范围为0到360度;
    多次移相的间隔根据需求进行设定,影响补偿的精度。
  6. 一种连续变量量子密钥分发系统,其特征在于,包括:
    模块M1:根据时间和偏振复用对量子信号与本振信号进行同步传输,并进行探测,得到探测数据;
    模块M2:根据相位补偿算法和公开数据对探测数据进行补偿。
  7. 根据权利要求6所述的连续变量量子密钥分发系统,其特征在于,所述模块M1包括:
    模块M1.1:根据强度调制器对激光器发出的连续激光进行斩波,将连续激光转化为光脉冲序列;
    模块M1.2:将部分光脉冲序列进行调制,加载所需传输的信息到量子信号上,并进行延时;
    模块M1.3:将加载有所需传输信息的量子信号的光脉冲序列与本振信号的光脉冲序列通过偏振复用方式进行合并,并通过自由空间信道传输到接收端;
    模块M1.4:在接收端采用偏振分束器进行分束,通过延时将加载有所需传输信息的量子信号的光脉冲序列与本振信号的光脉冲序列在时域上进行对齐,并进行零差检测;
    模块M1.5:通过数据采集设备对探测器输出的电信号进行采集并进行数字信号处理,得到探测数据。
  8. 根据权利要求6所述的连续变量量子密钥分发系统,其特征在于,所述模块M2包括:
    模块M2.1:通信双方公布公开数据,发送端将公开数据进行移相并形成对比数据;
    模块M2.2:计算对比数据与探测数据之间的互相关并找到最大值,最大值的移相角度即为相位漂移估计值;
    模块M2.3:根据漂移估计值对探测数据进行数据补偿;
    模块M2.4:将补偿后探测数据进行协商译码,并进行保密增强处理得到最终密钥。
  9. 根据权利要求8所述的连续变量量子密钥分发系统,其特征在于,所述公开数据的长度影响补偿的精度。
  10. 根据权利要求8所述的连续变量量子密钥分发系统,其特征在于,所述移相的范围为0到360度;
    多次移相的间隔根据需求进行设定,影响补偿的精度。
PCT/CN2021/073436 2020-02-14 2021-01-23 连续变量量子密钥分发方法及系统 WO2021159947A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/435,023 US20220150060A1 (en) 2020-02-14 2021-01-23 Continuous-variable quantum key distribution (cv-qkd) method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010093011.4 2020-02-14
CN202010093011.4A CN111314071B (zh) 2020-02-14 2020-02-14 连续变量量子密钥分发方法及系统

Publications (1)

Publication Number Publication Date
WO2021159947A1 true WO2021159947A1 (zh) 2021-08-19

Family

ID=71148406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073436 WO2021159947A1 (zh) 2020-02-14 2021-01-23 连续变量量子密钥分发方法及系统

Country Status (3)

Country Link
US (1) US20220150060A1 (zh)
CN (1) CN111314071B (zh)
WO (1) WO2021159947A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114650130A (zh) * 2022-03-10 2022-06-21 中国电子科技集团公司第三十研究所 一种基于多点采样均值的cvqkd系统的高精度相位补偿方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111314071B (zh) * 2020-02-14 2022-04-15 上海循态量子科技有限公司 连续变量量子密钥分发方法及系统
GB2602353B (en) 2020-12-24 2023-09-13 Toshiba Kk Optical system and method
CN112804055A (zh) * 2021-02-02 2021-05-14 上海循态信息科技有限公司 连续变量量子密钥分发系统中的动态偏振控制方法、系统及介质
GB2605392B (en) 2021-03-30 2023-12-06 Toshiba Kk Optical system and method
CN113556184B (zh) * 2021-07-21 2022-12-06 上海循态量子科技有限公司 自由空间变量量子密钥分发系统的数据采集方法及系统
CN113612611B (zh) * 2021-09-17 2024-01-30 上海循态量子科技有限公司 连续变量量子密钥分发异步采样方法及系统
CN114338011B (zh) * 2021-12-31 2024-05-07 武汉光谷信息光电子创新中心有限公司 一种信号处理装置、方法、设备及存储介质
CN114553417B (zh) * 2022-03-22 2024-01-09 上海循态量子科技有限公司 连续变量量子密钥分发系统中正则分量预校准方法及系统
CN117118614B (zh) * 2023-10-23 2024-01-23 浙江九州量子信息技术股份有限公司 相位编码qkd系统的相位漂移和相位误差在线修正方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7627126B1 (en) * 2002-10-15 2009-12-01 Bbn Technologies Corp. Systems and methods for implementing path length control for quantum cryptographic systems
CN107302430A (zh) * 2017-07-06 2017-10-27 上海交通大学 一种连续变量量子密钥分发系统高斯调制实现方法及装置
CN107566120A (zh) * 2017-09-28 2018-01-09 上海交通大学 本地本振连续变量量子密钥分发方法及系统
CN109039475A (zh) * 2018-07-11 2018-12-18 上海循态信息科技有限公司 基于自由空间的连续变量量子密钥分发方法及系统
CN109586911A (zh) * 2019-02-01 2019-04-05 上海循态信息科技有限公司 基于相干光通信系统的连续变量量子密钥分发方法
CN110113163A (zh) * 2019-05-22 2019-08-09 上海循态信息科技有限公司 自由空间连续变量量子密钥分发方法及系统
CN110445610A (zh) * 2019-08-26 2019-11-12 上海循态信息科技有限公司 连续变量量子密钥分发系统的偏振追踪方法、系统及介质
CN111314071A (zh) * 2020-02-14 2020-06-19 上海循态信息科技有限公司 连续变量量子密钥分发方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897434B1 (en) * 2002-02-28 2005-05-24 Northwestern University All-fiber photon-pair source for quantum communications
US7284024B1 (en) * 2003-02-07 2007-10-16 Magiq Technologies, Inc. Quantum noise random number generator
CN102868520B (zh) * 2012-08-28 2015-10-14 上海交通大学 连续变量量子密钥分发系统及其相位补偿方法
CN105375989B (zh) * 2015-12-01 2017-08-25 中国科学院上海技术物理研究所 一种具备实时偏振补偿的自由空间量子通信装置及方法
EP3244566B1 (en) * 2016-05-11 2020-08-05 Institut Mines Telecom Phase reference sharing schemes for continuous-variable quantum cryptography
KR101833956B1 (ko) * 2017-05-19 2018-03-02 한국과학기술원 연속 변수 양자 암호 키분배 위상 보정 시스템
ES2717548B2 (es) * 2017-11-08 2020-11-26 Univ Vigo Acuerdo seguro de clave con dispositivos no confiables
US11251952B2 (en) * 2018-09-12 2022-02-15 Board Of Regents, The University Of Texas System Quantum secure clock synchronization based on time-energy and polarization entangled photon pairs
US11258594B2 (en) * 2018-11-21 2022-02-22 Ut-Battelle, Llc Quantum key distribution using a thermal source

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7627126B1 (en) * 2002-10-15 2009-12-01 Bbn Technologies Corp. Systems and methods for implementing path length control for quantum cryptographic systems
CN107302430A (zh) * 2017-07-06 2017-10-27 上海交通大学 一种连续变量量子密钥分发系统高斯调制实现方法及装置
CN107566120A (zh) * 2017-09-28 2018-01-09 上海交通大学 本地本振连续变量量子密钥分发方法及系统
CN109039475A (zh) * 2018-07-11 2018-12-18 上海循态信息科技有限公司 基于自由空间的连续变量量子密钥分发方法及系统
CN109586911A (zh) * 2019-02-01 2019-04-05 上海循态信息科技有限公司 基于相干光通信系统的连续变量量子密钥分发方法
CN110113163A (zh) * 2019-05-22 2019-08-09 上海循态信息科技有限公司 自由空间连续变量量子密钥分发方法及系统
CN110445610A (zh) * 2019-08-26 2019-11-12 上海循态信息科技有限公司 连续变量量子密钥分发系统的偏振追踪方法、系统及介质
CN111314071A (zh) * 2020-02-14 2020-06-19 上海循态信息科技有限公司 连续变量量子密钥分发方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114650130A (zh) * 2022-03-10 2022-06-21 中国电子科技集团公司第三十研究所 一种基于多点采样均值的cvqkd系统的高精度相位补偿方法

Also Published As

Publication number Publication date
US20220150060A1 (en) 2022-05-12
CN111314071A (zh) 2020-06-19
CN111314071B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
WO2021159947A1 (zh) 连续变量量子密钥分发方法及系统
US10805075B2 (en) Phase reference sharing schemes for continuous-variable quantum cryptography
CN108737082B (zh) 信号的接收装置和接收方法
CN104065475A (zh) 高速连续变量量子密钥分发系统及其位帧同步方法
CN106656494B (zh) 一种基于连续光斩波的量子密钥分配系统与方法
CN105162523A (zh) 光学产生微波相位编码信号的装置
CN107135066B (zh) 一种原始密钥恢复装置和方法
US20090046857A1 (en) Quantum cryptography transmission system and optical device
US11546147B2 (en) Time division quadrature homodyne CV QKD system
Elsonbaty et al. Simultaneous concealment of time delay signature in chaotic nanolaser with hybrid feedback
CN111404681B (zh) 连续变量测量设备无关量子密钥分发方法、系统及介质
EP3629496B1 (en) Data transmission method, device, and system
CN112491542A (zh) 一种本地本振的四态连续变量量子密钥分发方法及系统
US8121489B2 (en) Optical transmitting and receiving system
CN111740778B (zh) 一种光源相位差测试系统及方法
CN107135071B (zh) 一种基于时分复用的量子秘钥分发系统及方法
CN110324140B (zh) 一种用于连续变量量子密钥分发的解码装置、方法及分发系统
CN112804056B (zh) 连续变量测量设备无关量子密钥分发实现装置及方法
CN112804055A (zh) 连续变量量子密钥分发系统中的动态偏振控制方法、系统及介质
Fang et al. Surpassing the rate-transmittance linear bound of quantum key distribution
JP5020999B2 (ja) 量子暗号通信装置および量子暗号通信方法
CN220775841U (zh) 一种基于sagnac环波分复用的多用户TF-QKD系统
Wang et al. Carrier synchronization for continuous-variable measurement-device-independent quantum key distribution with a real local oscillator
CN115225155A (zh) 一种基于阵列结构实现多通道共载频相位编码系统及方法
Islam et al. Scalable High-Dimensional Time-Bin QKD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753120

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 06/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 21753120

Country of ref document: EP

Kind code of ref document: A1