WO2021159794A1 - 一种光线路终端和无源光纤网络 - Google Patents

一种光线路终端和无源光纤网络 Download PDF

Info

Publication number
WO2021159794A1
WO2021159794A1 PCT/CN2020/128714 CN2020128714W WO2021159794A1 WO 2021159794 A1 WO2021159794 A1 WO 2021159794A1 CN 2020128714 W CN2020128714 W CN 2020128714W WO 2021159794 A1 WO2021159794 A1 WO 2021159794A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
adapter
device group
optical
transmitted
Prior art date
Application number
PCT/CN2020/128714
Other languages
English (en)
French (fr)
Inventor
林华枫
张军
李远谋
曾小飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021159794A1 publication Critical patent/WO2021159794A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring

Definitions

  • This application relates to the technical field of communication terminals, in particular to an optical line terminal and a passive optical fiber network.
  • Passive optical network is a single-fiber bidirectional optical access network that adopts a point-to-multipoint structure, and is currently mainly used to implement fiber to the home.
  • a PON system includes an optical line terminal (OLT) 110 installed at the central control station and an optical network unit (optical network terminal, ONT) installed at the user end 120.
  • the OLT 110 and the ONU 120 are connected through an optical distribution network (optical distribution network, ODN) 130.
  • OLT optical line terminal
  • ODN optical distribution network
  • usually one OLT can be connected to one ODU, and one ODU can be connected to multiple ONTs.
  • the number of ONTs is usually determined first according to user requirements, and then the numbers of OLTs and ODNs are determined and deployed according to the number of ONTs.
  • a splitter connected to the OLT is set.
  • One splitter can be connected to two ODNs. Therefore, through the splitter, one OLT can connect two ODNs. , So that one OLT can support a larger number of ONTs.
  • the ODN in the PON system is replaced with a higher configuration ODN, so that the replaced ODN can connect to a larger number of ONTs, so that one OLT can support a larger number of ONTs.
  • the inventor found in the research process of this application that the first method requires an additional splitter and the need to reconnect the ODN through the splitter, while the second method requires replacement of the ODN. Both methods need to be reconnected. The construction of the project is therefore more difficult to achieve, and the construction process requires a higher cost.
  • the following embodiments of the present application disclose an optical line terminal and a passive optical fiber network.
  • an optical line terminal including:
  • the first device group and the second device group are The first device group and the second device group;
  • the first device group includes: an optical splitter and a first adapter
  • the second device group includes: a reflective glass slide and a second adapter
  • the optical splitter is used to divide the received downstream light into a first light beam transmitted to the first adapter and a second light beam reflected out;
  • the first adapter is used to connect to a first optical distribution network ODN, and the first upstream light transmitted by the first ODN is transmitted to the receiving device of the optical line terminal after passing through the first adapter and the optical splitter;
  • the reflective glass slide is used to reflect the second light beam to the second adapter after receiving the second light beam reflected by the optical splitter;
  • the second adapter is used to connect to a second optical distribution network ODN, and the second upstream light transmitted by the second ODN is transmitted to the receiving device of the optical line terminal after passing through the second adapter and the reflective glass slide.
  • the optical line terminal disclosed in the embodiment of the present application can support a larger number of ONTs. Compared with the prior art, the cost of new engineering construction is reduced, and the implementation method is relatively simple and easy to implement.
  • the reflective glass slide is also used to reflect the second upstream light toward the first device group
  • the optical splitter is further configured to, after receiving the second up-going light and/or the first up-going light reflected by the reflective glass slide, connect the second up-going light and/or the first up-going light to An upstream light undergoes multiplexing processing, and the multiplexed light beam is transmitted to the receiving device of the optical line terminal.
  • the optical splitter Through the multiplexing processing of the optical splitter, two or more uplink lights can be combined into one uplink light, and then this road travel light can be transmitted to the receiving device of the optical line terminal.
  • the upstream light transmitted by the optical splitter to the receiving device is one beam, which can reduce the loss of upstream light in the transmission process, and at the same time facilitate the receiving device of the optical line terminal to process the received upstream light.
  • the first device group is at least one;
  • the two or more first device groups are connected in sequence, and when the first target device group in the first device group is connected to the second target device group
  • the optical splitter in the first target device group divides the received downstream light into a first target beam that is transmitted to the first adapter in the first target device group, and to the second target The second target beam reflected by the device group;
  • the optical splitter in the second target device group divides the second target beam into the The third target beam transmitted by the first adapter in the second target device group, and the fourth target beam reflected out.
  • the optical line terminal disclosed in the embodiment of the present application can be connected to at least With two ODNs, compared with the prior art, the optical line terminal disclosed in the embodiment of the present application can connect a larger number of ODNs.
  • the first device group further includes:
  • a first collimating lens arranged between the optical splitter and the first adapter
  • the first collimating lens is used to convert the first upward light into parallel light, and the converted first upward light is transmitted to the optical splitter, so that the transformed first upward light passes through the The optical splitter transmits to the receiving device of the optical line terminal;
  • the first collimating lens is also used to convert the first light beam passing through the optical splitter into convergent light, and the converted first light beam is transmitted to the first adapter, so that the converted first light beam is transmitted to the first adapter.
  • the light beam is transmitted to the first ODN through the first adapter.
  • the first upstream light can be transmitted over a longer distance, thereby reducing the loss of the first upstream light in the process of transmitting to the optical line terminal.
  • the cross-sectional area of the first light beam can be gradually reduced during the transmission process to the first ODN, thereby facilitating the coupling of the first light beam into the first ODN , To reduce the loss of the first beam in the transmission process.
  • the focal point of the first collimating lens and the ferrule of the first adapter in the same first component group are located on the same horizontal line.
  • the focal point of the first collimating lens and the ferrule of the first adapter in the same first device group be on the same horizontal line, it is possible to reduce the impact of the inner wall of the first adapter on the converted first light beam.
  • the resulting influence reduces the loss of the converted first light beam and increases the light intensity received by the first ODN.
  • the diameter of the first light beam converted by the first collimating lens in the same first device group is not greater than the diameter of the ferrule of the first adapter.
  • the coupling of the first light beam to the first adapter can be further reduced.
  • the loss in the process increases the light intensity received by the first ODN.
  • the second device group further includes:
  • a second collimating lens arranged between the reflective glass slide and the second adapter
  • the second collimator lens is used to convert the second light beam reflected by the reflective glass into convergent light, and the converted second light beam is transmitted to the second adapter so that the converted second light beam Transmit to the second ODN through the second adapter;
  • the second collimating lens is also used to convert the second upward light transmitted by the second adapter into parallel light, and the transformed second upward light is transmitted to the reflective glass slide, so that the transformed first The two upstream light is transmitted to the receiving device of the optical line terminal through the reflective glass slide.
  • the second upstream light can be transmitted for a longer distance, thereby reducing the loss of the second upstream light in the process of transmitting to the optical line terminal.
  • the cross-sectional area of the second light beam can be gradually reduced during the transmission process to the second ODN, thereby facilitating the coupling of the second light beam into the second ODN , To reduce the loss of the second beam in the transmission process.
  • the focal point of the second collimating lens in the second device group in the same first device group and the ferrule of the second adapter are located on the same horizontal line.
  • the diameter of the second light beam converted by the second collimating lens in the same first device group is not greater than the diameter of the ferrule of the second adapter.
  • the reflective glass slide is a total reflection glass slide.
  • the optical splitter is an optical power splitter.
  • An optional design also includes:
  • a wavelength splitter arranged in the propagation path of the downstream light of the optical line terminal
  • the wavelength splitter After receiving the downstream light generated by the transmitting device in the optical line terminal, the wavelength splitter is used to filter out the unnecessary part of the downstream light and allow the remaining downstream light to pass through the wavelength division. After the router continues to spread.
  • the optical splitter in the first device group is arranged between the first adapter and the target wavelength splitter, so The target wavelength splitter is the wavelength splitter closest to the first adapter.
  • a passive optical fiber network including:
  • Optical distribution network ODN and the optical line terminal OLT according to any one of the first aspect
  • each adapter in the OLT is used to connect to one ODN, and different adapters connect to different ODNs.
  • the number of ODNs that can be connected to each OLT disclosed in the embodiments of this application is more.
  • the addition of splitters and the need to replace the ODN in the PON system eliminates the need for re-engineering. Therefore, the OLT disclosed in the embodiments of the present application can not only support a larger number of ONTs, but also reduces the cost required for re-engineering construction compared with the prior art, and the implementation method is relatively simple and easy to implement.
  • the solution of replacing a high-configuration ODN adopted in the prior art requires repurchasing a high-configuration ODN, and the replaced ODN is often shelved, resulting in a lot of cost waste.
  • the solution disclosed in the embodiments of the present application does not need to replace ODN, but adds some additional devices (such as adapters and reflective glass slides, etc.) in the OLT.
  • the cost of the added devices is far less than the cost of ODN. Therefore, compared with the prior art In comparison, the solutions disclosed in the embodiments of the present application can also reduce costs.
  • Fig. 1 is a schematic structural diagram of a passive optical fiber network system disclosed in the prior art
  • FIG. 2 is a schematic structural diagram of a passive optical fiber network system disclosed in the prior art
  • Fig. 3(a) is a schematic diagram of the structure of an optical line terminal disclosed in the prior art
  • Figure 3(b) is a schematic structural diagram of another optical line terminal disclosed in the prior art.
  • FIG. 4 is a schematic structural diagram of an optical line terminal disclosed in an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of yet another optical line terminal disclosed in an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of another optical line terminal disclosed in an embodiment of the application.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • a passive optical network (PON) system it usually includes an optical line termination (OLT) installed in a central control station, and the OLT is connected to an optical distribution network (ODN), and The ODN is connected to an optical network terminal (ONT) installed at the user end.
  • OLT optical line termination
  • ODN optical distribution network
  • ONT optical network terminal
  • OLT, ODN and ONT jointly form a PON system to realize fiber to the home.
  • the OLT usually includes two forms.
  • the OLT in the first form, the OLT includes: a transmitting device 101, a receiving device 102, a wavelength splitter 103, and an adapter 104.
  • the OLT may include a larger number of transmitting devices, receiving devices, and wavelength splitters.
  • the OLT includes: two transmitting devices 101, two receiving devices 102, a three-wavelength splitter 103, and an adapter 104.
  • the transmitting device 101 is used for transmitting light, and the adapter 104 has a built-in optical fiber interface, and the optical fiber interface is used to connect to an optical distribution network (ODN).
  • ODN optical distribution network
  • the wavelength splitter 103 is arranged between the adapter 104 and the transmitting device 101.
  • the wavelength splitter 103 is used to split the light according to the wavelength of the light, that is, when the light reaches the wavelength splitter 103, the light can be divided into two paths according to the wavelength of the light. One path of light can pass through the wavelength splitter 103, and the other path is reflected by the wavelength splitter 103, and the reflected light is the part filtered by the wavelength splitter 103.
  • the wavelength of the light that can pass through the wavelength splitter 103 is usually different.
  • the wavelength splitter 103 may be an optical filter.
  • the wavelength splitter 103 allows light with a wavelength that meets the requirement to pass, and light with other wavelengths will be rejected. After the light passing through the wavelength splitter 103 passes through the adapter 104, it is transmitted to the ODN connected to the adapter 104, so that the ODN obtains the light emitted by the OLT.
  • the light is transmitted to the wavelength splitter 103 through the adapter 104, and the wavelength splitter 103 then reflects the light to the receiving device 102.
  • the light transmitted by the OLT to the ODN may be referred to as downstream light
  • the light received by the OLT may be referred to as upstream light.
  • the above two types of OLT can transmit the downstream light to the ODN connected to the OLT after the transmitting device in the OLT generates the downstream light, and transmit the upstream light transmitted by the ODN to the receiving device of the OLT.
  • both of the above two types of OLTs only have one adapter, and each adapter is used to connect to one ODN, that is, at present, each OLT can only connect to one ODN.
  • a splitter can be set for the OLT. One end of the splitter is connected to the OLT and the other One end includes two interfaces, and the two interfaces can be connected to two ODNs respectively.
  • one OLT can be connected to two ODNs, and accordingly, one OLT can be connected to a larger number of ONTs, thereby providing fiber to the home service for more users.
  • the ODN in the PON system is replaced with a higher-configuration ODN.
  • the high-configuration ODN after the replacement can connect to a larger number of ONTs, thereby enabling one OLT Support a larger number of ONTs, that is, the OLT can provide fiber-to-the-home services for more users.
  • the method of setting a splitter for the OLT not only requires an additional splitter, but also needs to reconnect the ODN through the splitter. Therefore, the engineering construction needs to be restarted. In addition, the replacement of ODN also requires re-engineering. However, it is more difficult to realize the re-engineering construction, and the construction process requires a higher cost.
  • the ODN in the PON system is replaced with a higher-configuration ODN, the replaced ODN will be shelved, causing a lot of cost waste and further increasing the cost.
  • the following embodiments of the present application disclose an optical line terminal and a passive optical fiber network.
  • the embodiment of the application discloses an optical line terminal OLT.
  • the optical line terminal includes: a first device group 100 and a second device group 200.
  • the first device group is at least one.
  • two first device groups 100 and one second device group 200 are included.
  • a larger number of first device groups may also be included, which is not limited in the embodiment of the present application.
  • the optical line terminal shown in FIG. 5 includes a first device group.
  • each of the first device groups includes: an optical splitter 110 and a first adapter 120
  • the second device group includes: a reflective glass 210 and a second adapter 220.
  • the optical splitter 110 is used to divide the received downstream light into a first light beam transmitted to the first adapter 120 and a second light beam reflected out.
  • the first adapter 120 is used to connect to the first optical distribution network ODN, and the first upstream light transmitted by the first ODN is transmitted to the optical line terminal after passing through the first adapter 120 and the optical splitter 110.
  • the receiving device that is, the first upstream light transmitted by the first ODN is transmitted to the optical splitter, and the optical splitter transmits the first upstream light to the receiving device of the optical line terminal.
  • each first adapter can be connected to a first ODN.
  • the optical splitter 110 has the function of splitting light, that is, dividing one beam of light into at least two beams of light.
  • the OLT includes a transmitting device 300, which can generate light and transmit it to the ODN.
  • the light may be referred to as downstream light, and the optical splitter 110 is arranged in the propagation path of the downstream light.
  • the optical splitter 110 divides the received downstream light into a first light beam and a second light beam.
  • the first light beam passes through the optical splitter 110 and is transmitted to the first adapter 120.
  • the first adapter 120 is connected to the first optical distribution network ODN, and the first light beam is transmitted to the first ODN after passing through the first adapter 120, so that the first ODN can obtain downstream light.
  • the second light beam is reflected by the optical splitter 110.
  • the first device group is connected to other first device groups, it needs to be transmitted to other first device groups.
  • Light beam the second light beam is transmitted to the optical splitter in the other first device group; if the first device group is connected to the second device group, the second light beam is transmitted to the second device group Device group.
  • a first device group is provided, and the first device group is connected to the second device group.
  • the second light beam is transmitted to the first device group.
  • the second device group specifically, the second light beam is transmitted to the reflective glass 210 in the second device group.
  • the first ODN connected to the first adapter 120 will also transmit upstream light to the OLT.
  • the upstream light transmitted by the first ODN is referred to as the first upstream light.
  • the first upstream light continues to be transmitted after passing through the first adapter 120, and can be transmitted to the receiving device 400 of the OLT through the optical splitter 110, that is, the first upstream of the first ODN transmission After the light passes through the first adapter and the optical splitter 110, it is transmitted to the receiving device of the optical line terminal. After receiving the first upstream light, the receiving device 400 of the OLT can convert it into a corresponding electrical signal.
  • the reflective glass 210 is used to reflect the second light beam to the second adapter 220 after receiving the second light beam reflected by the optical splitter 110.
  • the second adapter 220 is used to connect to a second optical distribution network ODN, and the second upstream light transmitted by the second ODN is transmitted to the optical line terminal after passing through the second adapter 220 and the reflective glass 210 Device.
  • the reflective glass 210 After the reflective glass 210 receives the second light beam reflected by the optical splitter 110, it reflects the second light beam to the second adapter 220, and the second adapter 220 is the same as the second ODN. Connection, in this case, the second light beam is transmitted to the second ODN, so that the second ODN can acquire the second light beam, that is, the second ODN can acquire the emission from the OLT's transmitter ⁇ The downward light.
  • the second ODN connected to the second adapter 220 will also emit upstream light to the OLT.
  • the upstream light transmitted by the second ODN is referred to as the second upstream light.
  • the second upstream light can be transmitted to the reflective glass 210 after passing through the second adapter 220.
  • the reflective glass 210 reflects the second upward light to the first device group.
  • the optical splitter 110 in the first device group obtains the second upstream light reflected by the reflective glass 210
  • the optical splitter 110 changes the propagation direction of the second upstream light, so that all The second upstream light is transmitted to the receiving device in the OLT, that is, the second upstream light transmitted by the second ODN is transmitted to the receiving device of the optical line terminal after passing through the second adapter and the reflective glass 210.
  • the receiving device After the receiving device receives the second upstream light, it can convert it into a corresponding electrical signal.
  • the upstream light emitted by the transmitting device in the OLT can be transmitted to the ODN connected to the OLT, and the downstream light transmitted by the ODN can be transmitted to the receiving device in the OLT to achieve fiber access The function of the user.
  • the OLT disclosed in the embodiment of the present application includes a first device group and a second device group.
  • the first adapter in each first device group can be connected to an ODN, and the second adapter in the second device group can also be connected An ODN. If the number of the first device group is set to N, the OLT disclosed in the embodiment of the present application can be connected to N+1 ODNs. Wherein, when the number of the first device group is 1, the number of ODNs connected to the OLT is the smallest, that is, the OLT disclosed in the embodiment of the present application can be connected to at least two ODNs.
  • Each OLT in the prior art can only be connected to one ODN, and each OLT disclosed in the embodiment of the present application can be connected to at least two ODNs.
  • the number of ODNs that can be connected to each OLT disclosed in the embodiments of this application is more.
  • the addition of splitters and the need to replace the ODN in the PON system eliminates the need for re-engineering. Therefore, the OLT disclosed in the embodiments of the present application can not only support a larger number of ONTs, but also reduces the cost of re-engineering construction compared with the prior art, and the implementation method is relatively simple and easy to implement.
  • the solution of replacing a high-configuration ODN adopted in the prior art requires repurchasing a high-configuration ODN, and the replaced ODN is often shelved, resulting in a lot of cost waste.
  • the solution disclosed in the embodiments of the present application does not need to replace ODN, but adds some additional devices (such as adapters and reflective glass slides, etc.) in the OLT.
  • the cost of the added devices is far less than the cost of ODN. Therefore, compared with the prior art In comparison, the solutions disclosed in the embodiments of the present application can also reduce costs.
  • the first adapter and the second adapter may adopt different types of adapters.
  • the first adapter and the second adapter may be adapters using square connectors (SC) as interfaces.
  • SC square connectors
  • the first adapter and the second adapter are respectively connected to the first ODN through the SC interface.
  • the SC interface Connected to the second ODN, the SC interface adopts a push-pull connection, which has the advantages of low insertion loss and small size.
  • first adapter and the second adapter may also adopt other forms of optical fiber interfaces, so that the first adapter and the second adapter can be connected to different forms of ODN, for example, a lucent connector (lucent connector, LC) or ferrule connector (FC) is used as an interface adapter, etc., which is not limited in the embodiment of the present application.
  • a lucent connector lucent connector, LC
  • ferrule connector FC
  • the reflective glass plate 210 is also used to reflect the second upstream light toward the first device group.
  • the optical splitter 110 is further configured to, after receiving the second up-going light and/or the first up-going light reflected by the reflective glass 210, combine the second up-going light and/or the first up-going light
  • the first upstream light undergoes multiplexing processing, and the multiplexed light beam is transmitted to the receiving device of the optical line terminal.
  • the multiplexing processing refers to combining at least two light beams into one light beam.
  • the second adapter 220 in the second device group is connected to the second ODN, and can receive the second upstream optical signal transmitted by the second ODN. After passing through the second adapter 220, the second upstream optical signal is transmitted to the reflective glass 210, and the reflective glass 210 reflects the received second upstream optical signal to the first device group.
  • the second upstream light may be multiplexed.
  • the optical splitter 110 may also perform multiplexing processing on the first uplink light.
  • the optical splitter 110 may also perform multiplexing processing on the second upstream light and the first upstream light received at the same time.
  • the optical splitter transmits the light beams after the multiplexing processing to the receiving device of the optical line terminal.
  • the optical splitter can perform multiplexing processing on the received upstream light, so that two or more upstream lights are combined into one upstream light, and then transmitted to the receiving device of the optical line terminal.
  • the upstream light transmitted by the optical splitter to the receiving device is one beam, which can reduce the loss of upstream light in the transmission process, and at the same time facilitate the receiving device of the optical line terminal to process the received upstream light.
  • the OLT includes a first device group.
  • the OLT may further include a larger number of first device groups, which is not limited in the embodiment of the present application.
  • the first device group is at least one.
  • the two or more first device groups are connected in sequence, and when the first target device group in the first device group is connected to the second target device group
  • the optical splitter in the first target device group divides the received downstream light into a first target beam that is transmitted to the first adapter in the first target device group, and to the second target The second target beam reflected by the device group;
  • the optical splitter in the second target device group divides the second target beam into the The third target beam transmitted by the first adapter in the second target device group, and the fourth target beam reflected out.
  • the first device group located below is the first target device group
  • the first device group located above is the second target device group.
  • the intensity of the downstream light emitted by the transmitter of the OLT can be increased accordingly.
  • the first device group further includes: a first collimator disposed between the optical splitter 110 and the first adapter 120 Lens 130.
  • the first collimating lens 130 is used to convert the first upstream light into parallel light, and the converted first upstream light is transmitted to the optical splitter 110, so that the first upstream light after the conversion is transmitted to the optical splitter 110.
  • the light is transmitted through the optical splitter 110 to the receiving device of the optical line terminal.
  • the first collimating lens 130 is also used to convert the first light beam passing through the optical splitter 110 into convergent light, and the converted first light beam is transmitted to the first adapter for the conversion The subsequent first light beam is transmitted to the first ODN through the first adapter.
  • parallel light refers to the light whose optical path is parallel;
  • convergent light refers to the light whose optical path is converged.
  • the cross-sectional area of the converged light beam gradually becomes smaller and finally converges at a point. It is called the convergence point of convergent light.
  • the upstream light emitted by the ODN is usually convergent light.
  • the first collimating lens 130 converts the first upstream light from converged light into parallel light.
  • the first collimating lens is transmitted between the receiving device of the optical line terminal
  • the beam is parallel light.
  • the light path of parallel light is parallel, so parallel light tends to travel longer.
  • the first upstream light can be transmitted for a longer distance, thereby reducing the loss of the first upstream light in the process of transmitting to the optical line terminal.
  • the first collimator lens 130 converts the first light beam transmitted to the first ODN into convergent light. Therefore, during the transmission process to the first ODN, the cross-sectional area of the first light beam is gradually reduced, thereby facilitating the coupling of the first light beam into the first ODN and reducing the loss of the first light beam during the transmission process.
  • the converging point of the first light beam is usually located in the first ODN.
  • the focal point of the first collimating lens and the ferrule of the first adapter in the same first device group are located on the same horizontal line.
  • the focal point of the first collimating lens and the ferrule of the first adapter are on the same horizontal line, the first light beam transformed by the first collimating lens is aligned with the ferrule of the first adapter.
  • the influence of the inner wall of the first adapter on the converted first light beam can be reduced, The loss of the converted first light beam is reduced, and the light intensity received by the first ODN is increased.
  • the diameter of the first light beam converted by the first collimating lens in the same first device group is usually not greater than the diameter of the ferrule of the first adapter, so that the first light beam can be further reduced.
  • the loss of a light beam in the process of coupling to the first adapter increases the light intensity received by the first ODN.
  • the diameter of the ferrule of the first adapter is 9um
  • the diameter of the first beam converted by the first collimating lens is not greater than 9um
  • the second device group further includes: a second device set between the reflective glass 210 and the second adapter 220 Collimating lens 230.
  • the second collimating lens 230 is used to convert the second light beam reflected by the reflective glass 210 into convergent light, and the converted second light beam is transmitted to the second adapter 220, so that the converted light The second light beam is transmitted to the second ODN through the second adapter 220;
  • the second collimating lens 230 is also used to convert the second upstream light transmitted by the second adapter 220 into parallel light, and the second upstream light after the conversion is transmitted to the reflective glass 210, so that the conversion After that, the second upstream light is transmitted to the receiving device of the optical line terminal through the reflective glass slide 210.
  • the second collimator lens 230 converts the second light beam transmitted to the second ODN into convergent light. Therefore, during the transmission process to the second ODN, the cross-sectional area of the second light beam is gradually reduced, thereby facilitating the coupling of the second light beam into the second ODN and reducing the loss of the second light beam during the transmission process.
  • the second collimating lens 230 converts the second upstream light from converged light into parallel light.
  • the second collimating lens 230 and the receiving device of the optical line terminal Parallel light is transmitted between them.
  • the light path of parallel light is parallel, and parallel light tends to travel longer. Therefore, through the conversion of the second collimating lens 230, the second upstream light can be transmitted over a longer distance, thereby reducing the loss of the second upstream light in the process of transmitting to the optical line terminal.
  • the focal point of the second collimating lens 230 in the second device group in the same first device group and the ferrule of the second adapter 220 are located on the same horizontal line.
  • the focal point of the second collimating lens 230 and the ferrule of the second adapter 220 are on the same horizontal line, the second light beam transformed by the second collimating lens 230 is aligned with the insert of the second adapter 220.
  • the influence of the shielding of the inner wall of the second adapter 220 on the second light beam can be reduced.
  • the loss of the second light beam increases the light intensity received by the second ODN.
  • the diameter of the second light beam converted by the second collimating lens in the same first device group is not greater than the diameter of the ferrule of the second adapter, so that the second light beam can be further reduced.
  • the loss of the light beam in the process of coupling to the second adapter increases the light intensity received by the second ODN.
  • the reflective glass slide 210 is a total reflection glass slide.
  • the reflective glass slide 210 is a total reflection glass slide, all incident light can be reflected, so that the loss of the second light beam can be further reduced, and the intensity of the second light beam obtained by the second ODN can be guaranteed.
  • the direction of each light is a horizontal direction or a vertical direction.
  • the optical splitter divides the downstream light into a first light beam transmitted to the first adapter and a second light beam reflected out.
  • the first light beam is in a horizontal direction.
  • the second light beam is in the vertical direction;
  • the reflective glass slide reflects the received second light beam to the second adapter. It is usually desired that the second light beam received by the reflective glass slide is in the vertical direction, and the reflective glass slide reflects to The light beam of the second adapter is horizontal.
  • the angle between the optical splitter and the horizontal plane is 45 degrees
  • the angle between the reflective glass slide and the horizontal plane is 45 degrees
  • the optical splitter 110 and the reflective glass slide are usually arranged in a parallel manner.
  • the optical splitter included in the first device group is usually an optical power splitter.
  • the power of the first light beam and the second light beam may be the same.
  • the power of the first light beam and the power of the second light beam may also be different, so that the power of the light received by different adapters is approximately the same.
  • a certain optical line terminal includes a first device group A, a first device group B, and a first device group C that are connected in sequence, and the first device group C is connected to the second device group.
  • the optical splitter in the first device group of the first device group divides the received downstream light into a first light beam and a second light beam
  • the second light beam serves as the downstream light of the first device group B, and It transmits to the first device group B and is divided into a first light beam and a second light beam by the first device group B
  • the second light beam divided by the first device group B serves as the downstream of the first device group C
  • the light is divided into a first beam and a second beam by the first device group C
  • the second beam divided by the first device group C is transmitted to the second device group for reflection in the second device group
  • the glass slide reflects the second light beam divided by the first device group C to the second adapter.
  • the power of the second beam divided by the first device group A may be 3 times the power of the first device group A
  • the power of the second beam divided by the first device group B may be This is twice the power divided by the first device group B
  • the power of the second beam divided by the first device group C may be the same as the power divided by the first device group C.
  • the OTL disclosed in the embodiment of the present application further includes:
  • the wavelength splitter 500 is provided in the propagation path of the downstream light of the optical line terminal.
  • the wavelength splitter 500 After receiving the downstream light generated by the transmitting device in the optical line terminal, the wavelength splitter 500 is used to filter out the unnecessary part of the downstream light and allow the remaining downstream light to pass through the Propagation continues after the wavelength splitter.
  • the wavelength splitter 500 filters out the unnecessary part of the downstream light according to the wavelength of the downstream light, that is, does not allow the unnecessary part to pass through the wavelength
  • the splitter 500 allows the remaining downstream light to pass through the wavelength splitter 500.
  • the remaining downstream light continues to propagate after passing through the wavelength splitter 500, and when transmitted to the optical splitter in the first device group, the optical splitter divides the remaining downstream light into the first device group.
  • One beam and second beam are used to divide the remaining downstream light into the first device group.
  • the OTL disclosed in the embodiments of the present application supports multiple wavelength splitters, that is, multiple wavelength splitters can be set in the OTL, and accordingly, multiple receiving devices and transmitting devices can be set in the OTL .
  • this application also discloses FIG. 6.
  • the OTL includes a first device group and a second device group.
  • the first device group includes: an optical splitter 110, a first adapter 120, and The first collimating lens 130 between the optical splitter 110 and the first adapter 120
  • the second device group includes: a reflective glass 210, a second adapter 220, and a reflective glass 210 and a second The second collimating lens 230 between the adapters 220.
  • the OTL further includes a transmitting device 300, a receiving device 400 and a wavelength splitter 500.
  • a transmitting device 300 In Fig. 6, two transmitting devices, two receiving devices, and three wavelength splitters are provided.
  • more transmitting devices, receiving devices, and wavelength splitters may also be included, which is not limited in the embodiment of the present application.
  • the optical splitter in the first device group is set between the first adapter and the target wavelength splitter.
  • the target wavelength splitter is the wavelength splitter closest to the first adapter.
  • the downstream light emitted by the transmitting device sequentially passes through each wavelength splitter, and then is transmitted to the optical splitter, and then the downstream light is divided into the first beam and the second beam by the optical splitter. beam.
  • the transmitter in the OLT can emit downstream light.
  • the wavelength splitter allows some of the light required to pass through and filters out the unnecessary light. Light part.
  • the optical splitter divides the downstream light into a first light beam and a second light beam.
  • the first light beam passes through the optical splitter and is transmitted to the first adapter.
  • the first collimating lens converts the first light beam into convergent light.
  • the converted first light beam is transmitted to the first ODN connected to the first adapter, so that the first ODN receives the light emitted by the OTL.
  • the second light beam is reflected by the optical splitter.
  • the optical splitter When the optical splitter is connected to other first device groups and needs to transmit light to other first device groups, the second light beam is transmitted to the optical splitters in the other first device groups. Router.
  • the optical splitter in the other first device group regards the second light beam as the downstream light of the OLT, and divides the downstream light into a first light beam and a second light beam.
  • the optical splitter transmits the second light beam to the reflective glass in the second device group, and the reflective glass faces the The second light beam reflection performs a reflection operation so that the second light beam is transmitted to the second adapter in the second device group.
  • the second collimating lens converts the second light beam into convergent light.
  • the converted second light beam is further transmitted to the second ODN connected to the second adapter, so that the second ODN obtains the light emitted by the OTL.
  • the downstream light emitted by the OTL transmitter is transmitted to each ODN connected to the OTL.
  • the first ODN may transmit the first upstream light to the OTL through the first adapter.
  • the first collimating lens converts the first upstream light into parallel light, and the converted first upstream light is transmitted to the optical division
  • the optical splitter can perform multiplexing processing on the first upstream light, and the processed first upstream light sequentially passes through the first collimator lens and the first optical splitter, and then is transmitted to the wavelength splitter,
  • the wavelength splitter reflects the first upstream light to the receiving device of the OTL, so that the receiving device of the OTL obtains the first upstream light transmitted by the first ODN.
  • the second ODN can transmit the second upstream light to the OTL through the second adapter.
  • the second collimating lens converts the second upstream light into parallel light, and the second upstream light after the conversion is transmitted to the reflective glass.
  • the reflective glass slide is transmitted to the optical splitter in the first device group.
  • the reflective glass slide performs a reflection operation on the second ascending light after the conversion.
  • the optical splitter is the optical splitter farthest from the second device group, and then the second upstream light received by the target splitter is reflected to the wavelength splitter.
  • the OTL includes a first device group
  • the converted second upstream light is reflected by the reflective glass to the optical splitter in the first device group, and then the optical splitter converts The second upstream light after that is reflected to the wavelength splitter.
  • the wavelength splitter reflects the second upstream light to the receiving device of the OTL, so that the receiving device of the OTL obtains the second upstream light transmitted by the second ODN.
  • each optical splitter may also perform multiplexing processing on the second upstream light.
  • the OTL receiving device can receive the upstream light transmitted by the first ODN and the second ODN.
  • an embodiment of the present application also discloses a passive optical fiber network PON, which includes the optical line terminal OLT and the optical distribution network ODN disclosed in each of the above embodiments.
  • each adapter in the OLT is used to connect to one ODN, and different adapters connect to different ODNs.
  • the OLT can be connected to at least two ODNs.
  • each OLT can connect to a larger number of ODNs.
  • the PON disclosed in the embodiments of the present application can not only realize fiber to the home, but also support a larger number of ONTs. Compared with the prior art, the PON also reduces the cost of re-engineering construction. It is relatively simple and easy to implement.
  • the technology in the embodiments of the present invention can be implemented by means of software plus a necessary universal hardware platform.
  • the technical solutions in the embodiments of the present invention can be embodied in the form of software products, which can be stored in a storage medium, such as ROM/RAM. , Magnetic disks, optical disks, etc., including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in the various embodiments or some parts of the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请实施例公开一种光线路终端和无源光纤网络。所述光线路终端包括第一器件组和第二器件组。第一器件组包括:光分路器和第一适配器,第二器件组包括:反射玻片和第二适配器。光分路器将接收到的下行光分为向第一适配器传输的第一光束,以及反射出去的第二光束,第一适配器连接第一光分配网络ODN;反射玻片接收到所述光分路器反射的第二光束之后,将第二光束反射至第二适配器;第二适配器用于连接第二光分配网络ODN。与现有技术中的OLT相比,本申请实施例所公开的每个OLT能够连接的ODN的数量更多,因此,通过本申请实施例公开的OLT不仅能够支撑更多数量的ONT,并且,与现有技术相比,降低了重新进行工程施工的成本,实现方式较为简单易行。

Description

一种光线路终端和无源光纤网络
本申请要求于2020年2月13日提交中国国家知识产权局、申请号为202010090091.8、发明名称为“一种光线路终端和无源光纤网络”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信终端技术领域,具体涉及一种光线路终端和无源光纤网络。
背景技术
无源光纤网络(passive optical network,PON)是一种采用点到多点结构的单纤双向光接入网络,目前主要用于实现光纤入户。
参见图1所示的PON系统的结构示意图,在一个PON系统中,包括安装于中心控制站的光线路终端(optical line termination,OLT)110以及安装于用户端的光网络单元(optical networkterminal,ONT)120,OLT 110与ONU 120之间通过光分配网络(optical distribution network,ODN)130实现连接。其中,通常一个OLT可连接一个ODU,而一个ODU可连接多个ONT。在PON系统的部署过程中,通常首先根据用户需求确定ONT的数量,然后再根据ONT的数量分别确定OLT和ODN的数量并部署。
另外,在部署PON系统之后,需要光纤入户的用户数量可能还会进一步增多。为了满足用户需求,目前通常采用以下两种方法。参见图2所示的示意图,在第一种方法中,设置与OLT相连接的分路器,一个分路器可与两个ODN相连接,因此通过分路器,一个OLT可连接两个ODN,从而能够使一个OLT支撑更多数量的ONT。在第二种方法中,将PON系统中的ODN替换为更高配置的ODN,以使替换后的ODN能够连接更多数量的ONT,从而使一个OLT支撑更多数量的ONT。
但是,发明人在本申请的研究过程中发现,第一种方法需要额外增加分路器,以及需要通过分路器重新连接ODN,而第二种方法需要更换ODN,这两种方法都需要重新进行工程施工,因此实现较为困难,并且,施工过程需要较高的成本。
发明内容
为了解决现有技术中,当需要OLT连接更多数量的ONT时,需要重新进行工程施工,成本较高的问题,本申请以下各个实施例公开一种光线路终端和无源光纤网络。
第一方面,本申请实施例公开一种光线路终端,包括:
第一器件组和第二器件组;
其中,所述第一器件组包括:光分路器和第一适配器,所述第二器件组包括:反射玻片和第二适配器;
所述光分路器用于将接收到的下行光分为向所述第一适配器传输的第一光束,以及反射出去的第二光束;
所述第一适配器用于连接第一光分配网络ODN,第一ODN传输的第一上行光通过所 述第一适配器和所述光分路器之后,传输至所述光线路终端的接收装置;
所述反射玻片用于接收到所述光分路器反射的第二光束之后,将所述第二光束反射至所述第二适配器;
所述第二适配器用于连接第二光分配网络ODN,第二ODN传输的第二上行光通过所述第二适配器和所述反射玻片之后,传输至所述光线路终端的接收装置。
本申请实施例公开的光线路终端能够支撑较多数量的ONT,与现有技术相比,降低了新进行工程施工的成本,实现方式较为简单易行。
一种可选的设计中,所述反射玻片还用于,向所述第一器件组反射所述第二上行光;
所述光分路器还用于,在接收到所述反射玻片反射的所述第二上行光和/或所述第一上行光之后,将所述第二上行光和/或所述第一上行光进行合波处理,并将合波处理后的光束传输至所述光线路终端的接收装置。
通过光分路器的合波处理,能够使两路以上的上行光合并为一路上行光,再向光线路终端的接收装置传输这一路上行光。这种情况下,光分路器向接收装置传输的上行光为一路光束,从而能够减少上行光在传输过程中的损耗,同时便于光线路终端的接收装置对接收到的上行光进行处理。
一种可选的设计中,所述第一器件组为至少一个;
当所述第一器件组为两个以上时,两个以上的所述第一器件组依次连接,并且,当所述第一器件组中的第一目标器件组与第二目标器件组相连接时,所述第一目标器件组中的光分路器将接受到的下行光分为向所述第一目标器件组内的第一适配器传输的第一目标光束,以及向所述第二目标器件组反射的第二目标光束;
所述第二目标器件组在接收到所述第一目标器件组反射的第二目标光束之后,所述第二目标器件组内的光分路器将所述第二目标光束分为向所述第二目标器件组内的第一适配器传输的第三目标光束,以及反射出去的第四目标光束。
在本申请实施例中,由于第一器件组为至少一个,且每个第一器件组可连接一个ODN,第二器件组可连接一个ODN,则本申请实施例公开的光线路终端至少可连接两个ODN,与现有技术相比,本申请实施例公开的光线路终端可连接更多数量的ODN。
一种可选的设计中,所述第一器件组还包括:
设置在所述光分路器和所述第一适配器之间的第一准直透镜;
所述第一准直透镜用于将所述第一上行光转化为平行光,转化之后的第一上行光传输至所述光分路器,以便所述转化之后的第一上行光通过所述光分路器传输至所述光线路终端的接收装置;
所述第一准直透镜还用于将透过所述光分路器的第一光束转化为汇聚光,转化后的第一光束传输至所述第一适配器,以便所述转化后的第一光束通过所述第一适配器传输至所述第一ODN。
通过所述第一准直透镜对第一上行光的转化,能够使第一上行光传输较长的距离,从而减少第一上行光在传输至光线路终端的过程中的损耗。另外,通过所述第一准直透镜对第一光束的转化,能够使第一光束的横截面积在传输至第一ODN的传输过程中逐渐缩小,从而便于第一光束耦合至第一ODN中,减少第一光束在传输过程中的损耗。
一种可选的设计中,同一个第一器件组中的所述第一准直透镜的焦点与所述第一适配 器的插芯位于同一水平线。
通过使同一个第一器件组中的所述第一准直透镜的焦点与所述第一适配器的插芯位于同一水平线,能够减少第一适配器的内壁的遮挡对所述转化后的第一光束造成的影响,减少所述转化后的第一光束的损失,提高第一ODN接收到的光强。
一种可选的设计中,同一个第一器件组中的所述第一准直透镜转化的第一光束的直径不大于所述第一适配器的插芯的直径。
通过使同一个第一器件组中的所述第一准直透镜转化的第一光束的直径不大于所述第一适配器的插芯的直径,能够进一步减少第一光束在耦合至第一适配器的过程中的损失,提高第一ODN接收到的光强。
一种可选的设计中,所述第二器件组还包括:
设置在所述反射玻片和所述第二适配器之间的第二准直透镜;
所述第二准直透镜用于将所述反射玻片反射的所述第二光束转化为汇聚光,转化后的第二光束传输至所述第二适配器,以便所述转化后的第二光束通过所述第二适配器传输至所述第二ODN;
所述第二准直透镜还用于,将所述第二适配器传输的第二上行光转化为平行光,转化之后的第二上行光传输至所述反射玻片,以便所述转化之后的第二上行光通过所述反射玻片传输至所述光线路终端的接收装置。
通过所述第二准直透镜对第二上行光的转化,能够使第二上行光传输较长的距离,从而减少第二上行光在传输至光线路终端的过程中的损耗。另外,通过所述第二准直透镜对第二光束的转化,能够使第二光束的横截面积在传输至第二ODN的传输过程中逐渐缩小,从而便于第二光束耦合至第二ODN中,减少第二光束在传输过程中的损耗。
一种可选的设计中,同一个第一器件组中的所述第二器件组中的所述第二准直透镜的焦点与所述第二适配器的插芯位于同一水平线。
一种可选的设计中,同一个第一器件组中的所述第二准直透镜转化的第二光束的直径不大于所述第二适配器的插芯的直径。
一种可选的设计中,所述反射玻片为全反射玻片。
一种可选的设计中,所述光分路器为光功率分路器。
一种可选的设计中,还包括:
设置在所述光线路终端的下行光的传播路径中的波长分路器;
在接收到所述光线路终端中的发射装置生成的所述下行光之后,所述波长分路器用于滤除所述下行光中不需要的部分,并使剩余的下行光通过所述波长分路器之后继续传播。
一种可选的设计中,当所述波长分路器包括两个以上时,所述第一器件组中的光分路器设置在所述第一适配器与目标波长分路器之间,所述目标波长分路器为距离所述第一适配器最近的波长分路器。
第二方面,本申请实施例公开一种无源光纤网络,包括:
光分配网络ODN和第一方面任一项所述的光线路终端OLT;
其中,所述OLT中的每个适配器用于连接一个ODN,不同的适配器连接的ODN不同。
与现有技术中的OLT相比,本申请实施例所公开的每个OLT能够连接的ODN的数 量更多,这种情况下,当需要OLT连接更多数量的ONT时,无需为该OLT额外增设分路器,以及无需替换PON系统中的ODN,从而无需重新进行工程施工。因此,通过本申请实施例公开的OLT不仅能够支撑更多数量的ONT,并且,与现有技术相比,较少了重新进行工程施工所需的成本,实现方式较为简单易行。
进一步的,现有技术中采用的替换高配置的ODN的方案,需要重新购买高配置的ODN,而且被替换的ODN往往被搁置,从而造成大量的成本浪费。而本申请实施例公开的方案无需替换ODN,而是在OLT中额外增加了部分器件(例如适配器和反射玻片等),增加的器件的成本远远小于ODN的成本,因此,与现有技术相比,本申请实施例公开的方案还能够降低成本。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术公开的一种无源光纤网络系统的结构示意图;
图2为现有技术公开的一种无源光纤网络系统的结构示意图;
图3(a)为现有技术公开的一种光线路终端的结构示意图;
图3(b)为现有技术公开的又一种光线路终端的结构示意图;
图4为本申请实施例公开的一种光线路终端的结构示意图;
图5为本申请实施例公开的又一种光线路终端的结构示意图;
图6为本申请实施例公开的又一种光线路终端的结构示意图。
具体实施方式
本申请说明书和权利要求书及附图说明中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了下述各实施例的描述清楚简洁,首先给出相关技术的简要介绍:
在无源光纤网络(passive optical network,PON)系统中,通常包括安装于中心控制站的光线路终端(optical line termination,OLT),OLT与光分配网络(optical distribution network,ODN)相连接,而ODN与安装于用户端的光网络单元(optical network terminal,ONT)相连接。其中,OLT、ODN与ONT共同构成PON系统,以实现光纤入户。
目前常用的OLT通常包括两种形式。参见图3(a)所示的结构示意图,在第一种形式中,OLT包括:一个发射装置101、一个接收装置102、一个波长分路器103和一个适配器104。另外,在第二种形式中,OLT可包括更多数量的发射装置、接收装置和波长分路器。例如,参见图3(b)所示的结构示意图,该OLT包括:两个发射装置101、两个接收装置102、三波长分路器103和一个适配器104。
其中,所述发射装置101用于发射光,所述适配器104中内置有光纤接口,该光纤接 口用于连接光分配网络(optical distribution network,ODN)。
所述波长分路器103设置在适配器104与所述发射装置101之间。所述波长分路器103用于根据光的波长,实现光的分路,也就是说,光到达所述波长分路器103时,根据光的波长,可将光分为两路光,其中一路光能够通过所述波长分路器103,另一路被所述波长分路器103反射出去,反射出去的光即为被所述波长分路器103滤除的部分。对于不同型号的波长分路器103来说,可通过所述波长分路器103的光的波长通常不同。在一种可行的实现方式中,所述波长分路器103可以为光滤波器。
所述发射装置101发射的光到达所述波长分路器103时,所述波长分路器103允许波长符合需求的光通过,并且其他波长的光会被拒绝通过。通过所述波长分路器103的光经过所述适配器104之后,传输至与所述适配器104相连接的ODN,从而使所述ODN获取OLT发射的光。
另外,当所述OLT需要接收光时,所述光通过所述适配器104传输至所述波长分路器103,所述波长分路器103再将该光反射至所述接收装置102中。
在本申请实施例中,所述OLT传输至ODN的光可称为下行光,由OLT接收的光可称为上行光。上述两种形式的OLT,均可在OLT内的发射装置生成下行光之后,将下行光传输至与OLT相连接的ODN,并且,将ODN传输的上行光传输至OLT的接收装置。
但是,上述两种形式的OLT均只具备一个适配器,每一个适配器用于连接一个ODN,也就是说,目前每个OLT均只能连接一个ODN。这种情况下,当需要PON系统为更多用户提供光纤入户服务,即需要PON系统支撑更多数量的ONT时,可为OLT设置分路器,该分路器一端与OLT相连接,另一端包括两个接口,两个接口可分别与两个ODN相连接。这种情况下,通过所述分路器,一个OLT可连接两个ODN,相应的,能够使一个OLT连接更多数量的ONT,从而为更多用户提供光纤入户服务。
或者,在另一种方式中,将PON系统中的ODN替换为更高配置的ODN,与替换之前的ODN相比,替换之后的高配置的ODN能够连接更多数量的ONT,从而使一个OLT支撑更多数量的ONT,也就是说,该OLT能够为更多用户提供光纤入户服务。
但是,为OLT设置分路器的方式不仅需要额外增加分路器,还需要通过分路器重新连接ODN,因此,需要重新进行工程施工。另外,替换ODN的方式也需要重新进行工程施工。而重新工程施工实现较为困难,并且施工过程需要耗费较高的成本。
进一步的,如果将PON系统中的ODN替换为更高配置的ODN,被更换的ODN被搁置,造成大量的成本浪费,进一步增加成本。
为了解决现有技术中,当需要OLT连接更多数量的ONT时,需要重新进行工程施工,成本较高的问题,本申请以下各个实施例公开一种光线路终端和无源光纤网络。
本申请实施例公开一种光线路终端OLT。参见图4所示的结构示意图,所述光线路终端包括:第一器件组100和第二器件组200。
在本申请实施例中,所述第一器件组为至少一个。其中,在图4所示的结构示意图中,包括两个第一器件组100和一个第二器件组200。当然,在实际应用场景中,还可以包括更多数量的第一器件组,本申请实施例对此不做限定。
为了进一步明确所述第一器件组和第二器件组的结构,本申请实施例还公开图5。在图5所示的光线路终端中,包括一个第一器件组。
参见图5所示的结构示意图,每个所述第一器件组包括:光分路器110和第一适配器120,所述第二器件组包括:反射玻片210和第二适配器220。
其中,所述光分路器110用于将接收到的下行光分为向所述第一适配器120传输的第一光束,以及反射出去的第二光束。
所述第一适配器120用于连接第一光分配网络ODN,第一ODN传输的第一上行光通过所述第一适配器120和所述光分路器110之后,传输至所述光线路终端的接收装置,即第一ODN传输的第一上行光传输至所述光分路器,再由所述光分路器将所述第一上行光传输至所述光线路终端的接收装置。在本申请实施例中,每一个第一适配器可以连接一个第一ODN。
光分路器110具有使光分路的作用,即可将一束光划分为至少两束光。在OLT中,包括发射装置300,所述发射装置300可生成光,并向ODN传输,该光可称为下行光,所述光分路器110设置在下行光的传播路径中。下行光在传输至光分路器110时,所述光分路器110将接收到的下行光划分为第一光束和第二光束。所述第一光束透过所述光分路器110,向所述第一适配器120传输。而所述第一适配器120与第一光分配网络ODN相连接,所述第一光束在通过所述第一适配器120之后,被传输至第一ODN,从而能够使第一ODN获取到下行光。
另外,所述第二光束被所述光分路器110反射出去,这种情况下,如果所述第一器件组与其他的第一器件组相连接,还需要向其他的第一器件组传输光束,则所述第二光束被传输至其他的第一器件组中的光分路器;如果所述第一器件组与第二器件组相连接,则第二光束被传输至所述第二器件组。
例如,在图5所示的光线路终端中,设置有一个第一器件组,该第一器件组与第二器件组相连接,这种情况下,所述第二光束被传输至所述第二器件组,具体的,该第二光束被传输至所述第二器件组中的反射玻片210中。
另外,与所述第一适配器120相连接的第一ODN还会向OLT传输上行光。在本申请实施例中,将第一ODN传输的上行光称为第一上行光。所述第一上行光在经过所述第一适配器120之后,继续传输,并可透过所述光分路器110,传输至所述OLT的接收装置400,即第一ODN传输的第一上行光通过所述第一适配器和所述光分路器110之后,传输至所述光线路终端的接收装置。所述OLT的接收装置400在接收到所述第一上行光之后,可将其转化为相应的电信号。
在本申请实施例公开的OLT中,所述反射玻片210用于接收到所述光分路器110反射的第二光束之后,将所述第二光束反射至所述第二适配器220。
所述第二适配器220用于连接第二光分配网络ODN,第二ODN传输的第二上行光通过所述第二适配器220和所述反射玻片210之后,传输至所述光线路终端的接收装置。
所述反射玻片210在接收到所述光分路器110反射的第二光束之后,将所述第二光束反射至所述第二适配器220,而所述第二适配器220与第二ODN相连接,这种情况下,所述第二光束被传输至所述第二ODN,从而能够使第二ODN获取到所述第二光束,也就是说,能够使第二ODN获取OLT的发射装置发射的下行光。
另外,与所述第二适配器220相连接的第二ODN还会向OLT发射上行光。在本申请实施例中,将第二ODN传输的上行光称为第二上行光。所述第二上行光在经过所述第二 适配器220之后,可传输至所述反射玻片210。所述反射玻片210将所述第二上行光反射至所述第一器件组。所述第一器件组内的光分路器110在获取到所述反射玻片210反射的第二上行光之后,所述光分路器110改变所述第二上行光的传播方向,使所述第二上行光传输至OLT中的接收装置,即第二ODN传输的第二上行光通过所述第二适配器和所述反射玻片210之后,传输至所述光线路终端的接收装置。所述接收装置在接收到所述第二上行光之后,能够将其转化为相应的电信号。
通过本申请实施例公开的OLT,能够将OLT中的发射装置发射的上行光传输至与OLT相连接的ODN,并且,能够将ODN传输的下行光传输至OLT内的接收装置,以实现光纤入户的功能。进一步的,本申请实施例公开的OLT包括第一器件组和第二器件组,每一个第一器件组内的第一适配器可连接一个ODN,而第二器件组内的第二适配器也可连接一个ODN。设定所述第一器件组的数量为N,则本申请实施例公开的OLT可连接N+1个ODN。其中,当所述第一器件组的数量为1时,所述OLT连接的ODN的数量最少,即本申请实施例公开的OLT至少可连接两个ODN。
现有技术中的每个OLT只能连接一个ODN,而本申请实施例所公开的每个OLT至少可连接两个ODN。与现有技术中的OLT相比,本申请实施例所公开的每个OLT能够连接的ODN的数量更多,这种情况下,当需要OLT连接更多数量的ONT时,无需为该OLT额外增设分路器,以及无需替换PON系统中的ODN,从而无需重新进行工程施工。因此,通过本申请实施例公开的OLT不仅能够支撑更多数量的ONT,并且,与现有技术相比,降低了重新进行工程施工的成本,实现方式较为简单易行。
进一步的,现有技术中采用的替换高配置的ODN的方案,需要重新购买高配置的ODN,而且被替换的ODN往往被搁置,从而造成大量的成本浪费。而本申请实施例公开的方案无需替换ODN,而是在OLT中额外增加了部分器件(例如适配器和反射玻片等),增加的器件的成本远远小于ODN的成本,因此,与现有技术相比,本申请实施例公开的方案还能够降低成本。
另外,在本申请实施例公开的OLT中,第一适配器和第二适配器可采用不同类型的适配器。例如,所述第一适配器和第二适配器可为采用方形连接器(square connector,SC)作为接口的适配器,这种情况下,所述第一适配器和第二适配器通过SC接口分别与第一ODN和第二ODN相连接,SC接口采用推拉式连接,具有插入损耗低和体积小等优势。
当然,所述第一适配器和第二适配器还可以采用其他形式的光纤接口,以便能够所述第一适配器和第二适配器能够连接不同形式的ODN,例如,还可以采用朗讯连接器(lucent connector,LC)或卡套式连接器(ferrule connector,FC)作为接口的适配器等,本申请实施例对此不做限定。
进一步的,在本申请实施例公开的光线路终端中,所述反射玻片210还用于,向所述第一器件组反射所述第二上行光。
所述光分路器110还用于,在接收到所述反射玻片210反射的所述第二上行光和/或所述第一上行光之后,将所述第二上行光和/或所述第一上行光进行合波处理,并将合波处理后的光束传输至所述光线路终端的接收装置。
其中,所述合波处理指的是将至少两路光束合并为一路光束。
在本申请实施例中,第二器件组中的第二适配器220与第二ODN相连接,并可接收 第二ODN传输的第二上行光信号。该第二上行光信号通过第二适配器220之后,传输至反射玻片210,所述反射玻片210再将接收到的第二上行光信号反射至第一器件组。
所述第一器件组内的光分路器110在接收到所述反射玻片210反射的第二上行光之后,可将所述第二上行光进行合波处理。或者,所述光分路器110在接收到第一ODN传输的第一上行光之后,还可以对所述第一上行光进行合波处理。另外,当所述光分路器110同时接收到所述第二上行光和第一上行光之后,还可对同时接收到的所述第二上行光和第一上行光进行合波处理。
在完成合波处理之后,所述光分路器再将合波处理之后的光束传输至光线路终端的接收装置。
在本申请实施例中,光分路器能够将接收到上行光进行合波处理,以使两路以上的上行光合并为一路上行光,再向光线路终端的接收装置传输这一路上行光。这种情况下,光分路器向接收装置传输的上行光为一路光束,从而能够减少上行光在传输过程中的损耗,同时便于光线路终端的接收装置对接收到的上行光进行处理。
另外,在图5所示的结构示意图中,OLT中包括一个第一器件组。在实际的结构中,所述OLT中还可包括更多数量的第一器件组,本申请实施例对此不做限定。
也就是说,在本申请实施例公开的OLT中,所述第一器件组为至少一个。
当所述第一器件组为两个以上时,两个以上的所述第一器件组依次连接,并且,当所述第一器件组中的第一目标器件组与第二目标器件组相连接时,所述第一目标器件组中的光分路器将接受到的下行光分为向所述第一目标器件组内的第一适配器传输的第一目标光束,以及向所述第二目标器件组反射的第二目标光束;
所述第二目标器件组在接收到所述第一目标器件组反射的第二目标光束之后,所述第二目标器件组内的光分路器将所述第二目标光束分为向所述第二目标器件组内的第一适配器传输的第三目标光束,以及反射出去的第四目标光束。
示例性的,在图4所示的结构示意图中,位于下方的第一器件组为第一目标器件组,位于上方的第一器件组为第二目标器件组。
当所述第一器件组的数量较多时,为了保障与OLT相连接的每个ONT的信号质量,还可相应增加OLT的发射装置所发射的下行光的强度。
在本申请另一实施例中,参见图5所示的结构示意图,所述第一器件组还包括:设置在所述光分路器110和所述第一适配器120之间的第一准直透镜130。
其中,所述第一准直透镜130用于将所述第一上行光转化为平行光,转化之后的第一上行光传输至所述光分路器110,以便所述转化之后的第一上行光通过所述光分路器110传输至所述光线路终端的接收装置。
另外,所述第一准直透镜130还用于将透过所述光分路器110的第一光束转化为汇聚光,转化后的第一光束传输至所述第一适配器,以便所述转化后的第一光束通过所述第一适配器传输至所述第一ODN。
其中,平行光指的是光路为平行的光;汇聚光指的是光路为汇聚的光,在传输过程中,汇聚光的光束的横截面积逐渐变小,并最终汇聚于一点,该点可称为汇聚光的汇聚点。ODN所发射的上行光通常为汇聚光。
在本申请实施例中,所述第一准直透镜130将第一上行光由汇聚光转化为平行光,这 种情况下,第一准直透镜与所述光线路终端的接收装置之间传输的光束为平行光。与汇聚光相比,平行光的光路为平行,因此,平行光往往传播的距离更长。这种情况下,通过所述第一准直透镜130的转化,能够使第一上行光传输较长的距离,从而减少第一上行光在传输至光线路终端的过程中的损耗。
另外,在本申请实施例中,所述第一准直透镜130将向第一ODN传输的第一光束转化为汇聚光。因此,在传输至第一ODN的传输过程中,第一光束的横截面积逐渐缩小,从而便于第一光束耦合至第一ODN中,减少第一光束在传输过程中的损耗。
进一步的,如果所述第一光束在传输过程中被汇聚于一点,则所述第一光束的汇聚点通常位于第一ODN中。
进一步的,在本申请实施例中,同一个第一器件组中的所述第一准直透镜的焦点与所述第一适配器的插芯位于同一水平线。
当所述第一准直透镜的焦点与所述第一适配器的插芯位于同一水平线时,则所述第一准直透镜转化后的第一光束对准所述第一适配器的插芯,这种情况下,所述转化后的第一光束在通过所述第一适配器传输至第一ODN的过程中,能够减少第一适配器的内壁的遮挡对所述转化后的第一光束造成的影响,减少所述转化后的第一光束的损失,提高第一ODN接收到的光强。
另外,在本申请实施例中,同一个第一器件组中的所述第一准直透镜转化的第一光束的直径通常不大于所述第一适配器的插芯的直径,从而能够进一步减少第一光束在耦合至第一适配器的过程中的损失,提高第一ODN接收到的光强。
示例性的,当所述第一适配器的插芯的直径为9um时,所述第一准直透镜转化后的第一光束的直径不大于9um。
另外,参见图5所示的结构示意图,在本申请实施例公开的OLT中,所述第二器件组还包括:设置在所述反射玻片210和所述第二适配器220之间的第二准直透镜230。
所述第二准直透镜230用于将所述反射玻片210反射的所述第二光束转化为汇聚光,转化后的第二光束传输至所述第二适配器220,以便所述转化后的第二光束通过所述第二适配器220传输至所述第二ODN;
所述第二准直透镜230还用于,将所述第二适配器220传输的第二上行光转化为平行光,转化之后的第二上行光传输至所述反射玻片210,以便所述转化之后的第二上行光通过所述反射玻片210传输至所述光线路终端的接收装置。
在本申请实施例中,所述第二准直透镜230将向第二ODN传输的第二光束转化为汇聚光。因此,在传输至第二ODN的传输过程中,第二光束的横截面积逐渐缩小,从而便于第二光束耦合至第二ODN中,减少第二光束在传输过程中的损耗。
进一步的,如果所述第二光束在传输过程中被汇聚于一点,则所述第二光束的汇聚点通常位于第二ODN中。
另外,在本申请实施例中,所述第二准直透镜230将第二上行光由汇聚光转化为平行光,这种情况下,第二准直透镜230与所述光线路终端的接收装置之间传输的是平行光。与汇聚光相比,平行光的光路为平行,而平行光往往传播的距离更长。因此,通过所述第二准直透镜230的转化,能够使第二上行光传输较长的距离,从而减少第二上行光在传输至光线路终端的过程中的损耗。
进一步的,在本申请实施例中,同一个第一器件组中的所述第二器件组中的所述第二准直透镜230的焦点与所述第二适配器220的插芯位于同一水平线。
当所述第二准直透镜230的焦点与所述第二适配器220的插芯位于同一水平线时,则所述第二准直透镜230转化的第二光束对准所述第二适配器220的插芯,这种情况下,所述第二光束在通过所述第二适配器220传输至第二ODN的过程中,能够减少第二适配器220的内壁的遮挡对所述第二光束造成的影响,减少所述第二光束的损失,提高第二ODN接收到的光强。
另外,在本申请实施例中,同一个第一器件组中的所述第二准直透镜转化的第二光束的直径不大于所述第二适配器的插芯的直径,从而能够进一步减少第二光束在耦合至第二适配器的过程中的损失,提高第二ODN接收到的光强。
另外,在本申请实施例公开的OLT中,可采用多种形式的反射玻片。示例性的,所述反射玻片210为全反射玻片。
当所述反射玻片210为全反射玻片时,能够将入射光线全部反射,从而能够进一步减少第二光束的损耗,保障第二ODN获取的第二光束的强度。
另外,为了减少光线路终端的制造难度,在本申请实施例中,当所述光线路终端放置在水平面时,通常希望各路光的方向为水平方向或垂直方向。例如,光分路器将下行光分为向第一适配器传输的第一光束,以及反射出去的第二光束,当所述光线路终端放置在水平面时,往往希望所述第一光束为水平方向,而第二光束为垂直方向;另外,反射玻片将接收到的第二光束反射至第二适配器,通常希望反射玻片接收到的第二光束为垂直方向,而所述反射玻片反射至第二适配器的光束为水平方向。
这种情况下,通常设置所述光分路器与水平面之间的夹角为45度,以及所述反射玻片与水平面之间的夹角为45度。
为了减少第二光束的损耗,在本申请实施例公开的OLT中,所述光分路器110与所述反射玻片通常以平行的方式排列。
进一步的,在本申请实施例公开的OTL中,第一器件组中包括的所述光分路器通常为光功率分路器。另外,当所述光分路器将接收到下行光划分为第一光束和第二光束时,所述第一光束和第二光束的功率可相同。或者,根据实际应用需求,所述第一光束和第二光束的功率也可不同,以使不同的适配器接收到的光的功率大致相同。
示例性的,某一光线路终端包括依次连接的第一器件组A、第一器件组B和第一器件组C,并且所述第一器件组C与第二器件组相连接。第一器件组第一器件组中的光分路器在将接收到的下行光划分为第一光束和第二光束之后,所述第二光束作为所述第一器件组B的下行光,并向所述第一器件组B传输,由所述第一器件组B划分为第一光束和第二光束;所述第一器件组B划分的第二光束作为所述第一器件组C的下行光,再由所述第一器件组C划分为第一光束和第二光束;所述第一器件组C划分的第二光束向第二器件组传输,以便所述第二器件组中的反射玻片将所述第一器件组C划分的第二光束反射至第二适配器。
这种情况下,所述第一器件组A划分的第二光束的功率可为所述第一器件组A划分的功率的3倍,所述第一器件组B划分的第二光束的功率可为所述第一器件组B划分的功率的2倍,所述第一器件组C划分的第二光束的功率可与所述第一器件组C划分的功率的相同。
另外,参见图5所示的结构示意图,在本申请实施例公开的OTL中,还包括:
设置在所述光线路终端的下行光的传播路径中的波长分路器500。
在接收到所述光线路终端中的发射装置生成的所述下行光之后,所述波长分路器500用于滤除所述下行光中不需要的部分,并使剩余的下行光通过所述波长分路器之后继续传播。
当所述下行光传输至所述波长分路器500时,波长分路器500根据所述下行光的波长,滤除其中不需要的部分,即不允许所述不需要的部分通过所述波长分路器500,并允许剩余的下行光通过所述波长分路器500。
所述剩余的下行光通过所述波长分路器500之后继续传播,当传输至第一器件组中的光分路器时,所述光分路器再将所述剩余的下行光划分为第一光束和第二光束。
另外,本申请实施例公开的OTL支持多个波长分路器,即在所述OTL中,可设置多个波长分路器,相应的,可在所述OTL中设置多个接收装置和发射装置。为了明确OTL的这一结构,本申请还公开图6。
参见图6所示的OTL的结构示意图,在所述OTL中,包括第一器件组和第二器件组,所述第一器件组包括:光分路器110、第一适配器120,以及设置在所述光分路器110和第一适配器120之间的第一准直透镜130,所述第二器件组包括:反射玻片210、第二适配器220,以及设置在反射玻片210和第二适配器220之间的第二准直透镜230。
另外,参见图5和图6所示的示意图,在所述OTL中,还包括发射装置300、接收装置400和波长分路器500。在图6中,设置有两个发射装置、两个接收装置以及三个波长分路器。当然,在其他形式的OTL中,还可以包括更多的发射装置、接收装置以及波长分路器,本申请实施例对此不做限定。
进一步的,在申请实施例公开的OTL中,当所述波长分路器包括两个以上时,所述第一器件组中的光分路器设置在所述第一适配器与目标波长分路器之间,所述目标波长分路器为距离所述第一适配器最近的波长分路器。
这种情况下,发射装置发射的下行光依次通过各个波长分路器之后,传输至所述光分路器,再由所述光分路器将所述下行光划分为第一光束和第二光束。
当采用本申请实施例公开的OTL时,OLT内的发射装置可发射下行光,该下行光传输至波长分路器时,波长分路器允许其中需要的部分光通过,并滤除其中不需要的光部分。通过所述波长分路器的下行光传输至第一器件组的光分路器时,所述光分路器将所述下行光划分为第一光束与第二光束。所述第一光束透过所述光分路器,向第一适配器传输。当所述第一光束被传输至所述第一适配器与所述光分路器之间的第一准直透镜时,所述第一准直透镜将所述第一光束转化为汇聚光。转化后的第一光束传输至与所述第一适配器相连接的第一ODN,从而使第一ODN接收到所述OTL发射的光。
另外,所述第二光束被所述光分路器反射出去。当所述光分路器与其他的第一器件组相连接,并且需要向其他的第一器件组传输光时,所述第二光束被传输至所述其他的第一器件组内的光分路器。所述其他的第一器件组内的光分路器将所述第二光束作为OLT的下行光,并将所述下行光划分为第一光束和第二光束。当所述光分路器与第二器件组相连接时,所述光分路器将所述第二光束传输至所述第二器件组内的反射玻片,所述反射玻片对所述第二光束反射执行反射操作,以使所述第二光束向所述第二器件组内的第二适配器传 输。当所述第二光束被传输至所述第二适配器与所述反射玻片之间的第二准直透镜时,所述第二准直透镜将所述第二光束转化为汇聚光。转化后的第二光束进而被传输至与所述第二适配器相连接的第二ODN,从而使所述第二ODN获取所述OTL发射的光。
通过上述方式,OTL的发射装置所发射的下行光被传输至与所述OTL相连接的各个ODN中。
进一步的,第一ODN可通过第一适配器,向所述OTL传输第一上行光。所述第一ODN传输的第一上行光传输至第一准直透镜时,所述第一准直透镜将所述第一上行光转化为平行光,转化之后的第一上行光传输至光分路器,光分路器可对第一上行光进行合波处理,处理之后的第一上行光依次透过第一准直透镜和第一光分路器,然后被传输至波长分路器,所述波长分路器将第一上行光反射至所述OTL的接收装置,从而使所述OTL的接收装置获取所述第一ODN传输的第一上行光。
另外,第二ODN可通过第二适配器,向所述OTL传输第二上行光。所述第二ODN传输的第二上行光传输至第二准直透镜时,所述第二准直透镜将所述第二上行光转化为平行光,转化之后的第二上行光传输至反射玻片,再通过反射玻片传输至第一器件组内的光分路器。所述反射玻片对所述转化之后的第二上行光进行反射操作。当所述OTL包括多个第一器件组时,所述转化之后的第二上行光依次透过各个第一器件组内的光分路器,并传输至目标分路器,所述目标分路器为距离所述第二器件组最远的光分路器,然后,所述目标分路器接收到的第二上行光反射至波长分路器。当所述OTL包括一个第一器件组时,所述转化之后的第二上行光被反射玻片反射至这一个第一器件组内的光分路器,再由所述光分路器将转化之后的第二上行光反射至波长分路器。所述波长分路器将第二上行光反射至所述OTL的接收装置,从而使所述OTL的接收装置获取所述第二ODN传输的第二上行光。并且,在这一过程中,每个光分路器在接收到第二上行光之后,还可对第二上行光进行合波处理。
通过上述方式,OTL的接收装置能够接收到第一ODN和第二ODN传输的上行光。
相应的,本申请实施例还公开一种无源光纤网络PON,所述PON中包括以上各个实施例所公开的光线路终端OLT和光分配网络ODN。
其中,所述OLT中的每个适配器用于连接一个ODN,不同的适配器连接的ODN不同。
在本申请实施例公开的PON中,OLT至少可连接两个ODN,与现有技术相比,每个OLT能够连接的ODN的数量更多,这种情况下,当需要OLT连接更多数量的ONT时,无需为该OLT额外增设分路器,以及无需替换PON系统中的ODN,从而无需重新进行工程施工。
因此,通过本申请实施例公开的PON,不仅能够实现光纤入户,并且,还能够支撑更多数量的ONT,与现有技术相比,该PON还降低了重新进行工程施工的成本,实现方式较为简单易行。
本说明书的各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需的通 用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
本说明书中各个实施例之间相同相似的部分互相参见即可。以上所述的本发明实施方式并不构成对本发明保护范围的限定。

Claims (14)

  1. 一种光线路终端,其特征在于,包括:
    第一器件组和第二器件组;
    其中,所述第一器件组包括:光分路器和第一适配器,所述第二器件组包括:反射玻片和第二适配器;
    所述光分路器用于将接收到的下行光分为向所述第一适配器传输的第一光束,以及反射出去的第二光束;
    所述第一适配器用于连接第一光分配网络ODN,第一ODN传输的第一上行光通过所述第一适配器和所述光分路器之后,传输至所述光线路终端的接收装置;
    所述反射玻片用于接收到所述光分路器反射的第二光束之后,将所述第二光束反射至所述第二适配器;
    所述第二适配器用于连接第二光分配网络ODN,第二ODN传输的第二上行光通过所述第二适配器和所述反射玻片之后,传输至所述光线路终端的接收装置。
  2. 根据权利要求1所述的光线路终端,其特征在于,
    所述反射玻片还用于,向所述第一器件组反射所述第二上行光;
    所述光分路器还用于,在接收到所述反射玻片反射的所述第二上行光和/或所述第一上行光之后,将所述第二上行光和/或所述第一上行光进行合波处理,并将合波处理后的光束传输至所述光线路终端的接收装置。
  3. 根据权利要求1所述的光线路终端,其特征在于,
    所述第一器件组为至少一个;
    当所述第一器件组为两个以上时,两个以上的所述第一器件组依次连接,并且,当所述第一器件组中的第一目标器件组与第二目标器件组相连接时,所述第一目标器件组中的光分路器将接受到的下行光分为向所述第一目标器件组内的第一适配器传输的第一目标光束,以及向所述第二目标器件组反射的第二目标光束;
    所述第二目标器件组在接收到所述第一目标器件组反射的第二目标光束之后,所述第二目标器件组内的光分路器将所述第二目标光束分为向所述第二目标器件组内的第一适配器传输的第三目标光束,以及反射出去的第四目标光束。
  4. 根据权利要求1所述的光线路终端,其特征在于,所述第一器件组还包括:
    设置在所述光分路器和所述第一适配器之间的第一准直透镜;
    所述第一准直透镜用于将所述第一上行光转化为平行光,转化之后的第一上行光传输至所述光分路器,以便所述转化之后的第一上行光通过所述光分路器传输至所述光线路终端的接收装置;
    所述第一准直透镜还用于将透过所述光分路器的第一光束转化为汇聚光,转化后的第一光束传输至所述第一适配器,以便所述转化后的第一光束通过所述第一适配器传输至所述第一ODN。
  5. 根据权利要求4所述的光线路终端,其特征在于,
    同一个第一器件组中的所述第一准直透镜的焦点与所述第一适配器的插芯位于同一水平线。
  6. 根据权利要求4所述的光线路终端,其特征在于,
    同一个第一器件组中的所述第一准直透镜转化的第一光束的直径不大于所述第一适配器的插芯的直径。
  7. 根据权利要求1所述的光线路终端,其特征在于,所述第二器件组还包括:
    设置在所述反射玻片和所述第二适配器之间的第二准直透镜;
    所述第二准直透镜用于将所述反射玻片反射的所述第二光束转化为汇聚光,转化后的第二光束传输至所述第二适配器,以便所述转化后的第二光束通过所述第二适配器传输至所述第二ODN;
    所述第二准直透镜还用于,将所述第二适配器传输的第二上行光转化为平行光,转化之后的第二上行光传输至所述反射玻片,以便所述转化之后的第二上行光通过所述反射玻片传输至所述光线路终端的接收装置。
  8. 根据权利要求7所述的光线路终端,其特征在于,
    同一个第一器件组中的所述第二器件组中的所述第二准直透镜的焦点与所述第二适配器的插芯位于同一水平线。
  9. 根据权利要求7所述的光线路终端,其特征在于,
    同一个第一器件组中的所述第二准直透镜转化的第二光束的直径不大于所述第二适配器的插芯的直径。
  10. 根据权利要求1至9任意一项所述的光线路终端,其特征在于,
    所述反射玻片为全反射玻片。
  11. 根据权利要求1至9任意一项所述的光线路终端,其特征在于,
    所述光分路器为光功率分路器。
  12. 根据权利要求1至9任意一项所述的光线路终端,其特征在于,还包括:
    设置在所述光线路终端的下行光的传播路径中的波长分路器;
    在接收到所述光线路终端中的发射装置生成的所述下行光之后,所述波长分路器用于滤除所述下行光中不需要的部分,并使剩余的下行光通过所述波长分路器之后继续传播。
  13. 根据权利要求12所述的光线路终端,其特征在于,
    当所述波长分路器包括两个以上时,所述第一器件组中的光分路器设置在所述第一适配器与目标波长分路器之间,所述目标波长分路器为距离所述第一适配器最近的波长分路器。
  14. 一种无源光纤网络,其特征在于,包括:
    光分配网络ODN和权利要求1至13任一项所述的光线路终端OLT;
    其中,所述OLT中的每个适配器用于连接一个ODN,不同的适配器连接的ODN不同。
PCT/CN2020/128714 2020-02-13 2020-11-13 一种光线路终端和无源光纤网络 WO2021159794A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010090091.8 2020-02-13
CN202010090091.8A CN113259787B (zh) 2020-02-13 2020-02-13 一种光线路终端和无源光纤网络

Publications (1)

Publication Number Publication Date
WO2021159794A1 true WO2021159794A1 (zh) 2021-08-19

Family

ID=77219987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128714 WO2021159794A1 (zh) 2020-02-13 2020-11-13 一种光线路终端和无源光纤网络

Country Status (2)

Country Link
CN (1) CN113259787B (zh)
WO (1) WO2021159794A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201583697U (zh) * 2009-12-11 2010-09-15 深圳新飞通光电子技术有限公司 Olt用单纤双向三端口组件
CN202334536U (zh) * 2011-12-07 2012-07-11 华为技术有限公司 光收发组件和采用该光收发组件的无源光网络系统及设备
US20140050479A1 (en) * 2012-08-15 2014-02-20 Futurewei Technologies, Inc. Inter-Optical Line Terminal (OLT) Communication in Multiple-OLT Passive Optical Networks (PONs)
US20140086580A1 (en) * 2012-09-26 2014-03-27 Broadcom Corporation Optical line terminal (olt) system
CN107360481A (zh) * 2017-08-09 2017-11-17 苏州易锐光电科技有限公司 光组件和光线路终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7873039B2 (en) * 2006-06-29 2011-01-18 Broadlight Ltd. Enhanced optical line terminal controller
CN106576000B (zh) * 2015-04-29 2018-12-14 华为技术有限公司 分光器、信号传输方法和无源光网络
CN205265866U (zh) * 2015-12-22 2016-05-25 浙江省广电科技股份有限公司 一种波长灵活配给的波分复用无源光网络

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201583697U (zh) * 2009-12-11 2010-09-15 深圳新飞通光电子技术有限公司 Olt用单纤双向三端口组件
CN202334536U (zh) * 2011-12-07 2012-07-11 华为技术有限公司 光收发组件和采用该光收发组件的无源光网络系统及设备
US20140050479A1 (en) * 2012-08-15 2014-02-20 Futurewei Technologies, Inc. Inter-Optical Line Terminal (OLT) Communication in Multiple-OLT Passive Optical Networks (PONs)
US20140086580A1 (en) * 2012-09-26 2014-03-27 Broadcom Corporation Optical line terminal (olt) system
CN107360481A (zh) * 2017-08-09 2017-11-17 苏州易锐光电科技有限公司 光组件和光线路终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QU, ZIJING ET AL.: "The Key Technology of the Upstream BM-Receiver in XGPON", STUDY ON OPTICAL COMMUNICATIONS, 30 June 2018 (2018-06-30), pages 21 - 24,27, XP055835474 *

Also Published As

Publication number Publication date
CN113259787B (zh) 2022-02-25
CN113259787A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
CN205656355U (zh) 一种多波长光收发装置
JP6927628B2 (ja) 双方向光サブアセンブリ、宅内光回線終端装置、局内光回線終端装置、及び受動光ネットワークシステム
CN201387500Y (zh) Gpon单纤双向光收发组件
US20180123693A1 (en) Optical device and optical module
CN103139670B (zh) 共存无源光网络系统及上、下行光信号发送方法
WO2016172886A1 (zh) 分光器、信号传输方法和无源光网络
WO2019112735A1 (en) High-speed optical transceiver based on cwdm and sdm
WO2022057352A1 (zh) 一种单纤双向多通道传输光模块系统
CN105739032A (zh) 一种单接口多波长发射接收组件
US11828992B2 (en) Short-waveband active optical component based on vertical emitting laser and multi-mode optical fiber
CN212111867U (zh) 一种波分复用光通信系统
CN109557618A (zh) 波分复用装置
KR20210024169A (ko) 수신기 광 서브어셈블리, 콤보 송수신기 서브어셈블리, 콤보 광 모듈, 통신 장치 및 pon 시스템
WO2021159794A1 (zh) 一种光线路终端和无源光纤网络
CN202077033U (zh) 用于10g pon的单纤双向光收发模块光组件
CN102183827A (zh) 用于10g pon的单纤双向光收发模块光组件
CN102183825B (zh) 一种模式耦合光组件
CN205450361U (zh) 一种高隔离度双fwdm收发结构
CN202025112U (zh) 一种模式耦合光组件
CN209496171U (zh) 波分复用装置
TWM623104U (zh) 被動光網雙系統模組
CN103281605A (zh) 多波长无源光网络系统
CN103281150A (zh) 并行波分复用光时域检测仪组件
CN108174313B (zh) 一种epon扩展系统
CN117055179B (zh) 一种50G PON Combo OLT三模兼容光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918390

Country of ref document: EP

Kind code of ref document: A1