WO2021159620A1 - 双液驱动旋冲钻井冲击器及双液驱动旋冲钻进方法 - Google Patents
双液驱动旋冲钻井冲击器及双液驱动旋冲钻进方法 Download PDFInfo
- Publication number
- WO2021159620A1 WO2021159620A1 PCT/CN2020/089956 CN2020089956W WO2021159620A1 WO 2021159620 A1 WO2021159620 A1 WO 2021159620A1 CN 2020089956 W CN2020089956 W CN 2020089956W WO 2021159620 A1 WO2021159620 A1 WO 2021159620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil
- piston
- anvil
- oil pump
- dual
- Prior art date
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 51
- 238000009527 percussion Methods 0.000 title claims abstract description 11
- 239000007788 liquid Substances 0.000 title claims abstract description 8
- 238000000034 method Methods 0.000 title claims description 12
- 238000011010 flushing procedure Methods 0.000 claims abstract description 20
- 230000005540 biological transmission Effects 0.000 claims abstract description 19
- 239000003921 oil Substances 0.000 claims description 187
- 239000012530 fluid Substances 0.000 claims description 36
- 239000010720 hydraulic oil Substances 0.000 claims description 31
- 235000001674 Agaricus brunnescens Nutrition 0.000 claims description 4
- 238000007789 sealing Methods 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 6
- 210000001503 joint Anatomy 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- -1 that is Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B4/00—Drives for drilling, used in the borehole
- E21B4/06—Down-hole impacting means, e.g. hammers
- E21B4/14—Fluid operated hammers
Definitions
- the invention relates to an impactor for drilling, in particular to a dual-fluid (flushing fluid, hydraulic oil) rotary drilling impactor and a rotary drilling method.
- Rotary percussion drilling can greatly increase the drilling speed, and at the same time has the advantages of anti-deflection effect and increase the service life of the drill bit.
- Rotary percussive drilling can be widely used in hard rock formations, formations that are prone to hole deflection, and formations with strong abrasiveness.
- the friction between the drill tool and the formation can be overcome, and the problem of low bit pressure can be solved. It can be applied to oil drilling, coalbed methane and shale gas drilling, and geothermal drilling. It can also meet the speed-up drilling of ultra-deep drilling.
- CN203296693U discloses "a drilling tool capable of generating axial impact vibration", which relates to an impactor, which is composed of an outer tube, an inner tube, a hammer and an anvil.
- the upper end of the outer tube is connected to a drill string through an upper joint, and the anvil
- the drill bit or the drill string is connected through the lower joint, the hammer is slidably arranged in the outer tube, and the change in the area difference when the high-pressure flushing fluid acts on the upper and lower end faces of the hammer pushes the hammer to reciprocate up and down in the outer tube to achieve the striking anvil. Passing the drill string through the outer tube transmits the torque to the drill bit while transmitting the shock vibration received by the anvil to the drill bit.
- this type of impactor has the following shortcomings: using flushing fluid, that is, mud as the motive medium, particles in the flushing fluid enter the gap between the piston structure of the hammer and the outer tube, increasing wear and tear, resulting in a low life of the impactor.
- flushing fluid that is, mud as the motive medium
- particles in the flushing fluid enter the gap between the piston structure of the hammer and the outer tube, increasing wear and tear, resulting in a low life of the impactor.
- the inability to meet the requirement of drilling interval generally requires downhole working time greater than 120 hours), which limits the application of rotary percussive drilling technology, and the advantages of rotary percussive drilling cannot be fully utilized.
- the purpose of the present invention is to provide a dual-fluid drive rotary drilling impactor to reduce the wear of the flushing fluid to the impactor, increase the service life, and further satisfy the drilling interval. Requirements.
- a dual-fluid drive rotary percussion drilling impactor which includes an outer tube, a hammer and an anvil, and also includes
- the mud motor is installed in the outer tube and is used to be driven by the washing liquid to output rotational power;
- the sealed oil pressure system components include an oil tank and an oil pump.
- the oil pump is used to pressurize the hydraulic oil, and the oil pump drive shaft is connected with the output shaft of the hydraulic motor. It also includes a cylinder and a piston that reciprocates in the cylinder.
- the oil passage is connected to the oil inlet passage of the cylinder block to generate the driving force of the driving piston, and the oil return passage on the cylinder block connects the cylinder block and the oil tank;
- a hammer located in the outer tube and connected to the piston;
- Anvil installed at the lower end of the outer tube and under the hammer
- the flushing fluid channel is isolated from the oil circuit of the sealing oil pressure system assembly in the outer tube, and penetrates from the upper end of the outer tube to the lower end of the outer tube.
- the oil tank may be an independent oil tank, the oil outlet is connected to the oil inlet of the oil pump, and the oil return port is connected to the oil return passage of the cylinder.
- the oil tank is a section of oil storage pipe filled with hydraulic oil, the oil pump is immersed in the hydraulic oil in the oil storage pipe, and a transmission shaft as the power input of the oil pump passes through the upper end of the oil storage pipe
- the cover is connected to the output shaft of the mud motor. In this way, the inlet of the oil pump does not need to be connected with a pipe, and the structure is compact, which improves the utilization rate of the internal space of the outer pipe.
- the piston and cylinder of the sealed hydraulic system assembly can adopt the structure and driving mode of the traditional impactor, but the flushing fluid is replaced with hydraulic oil.
- a more advanced structure is adopted: the lower end of the oil storage pipe is connected to the piston cylinder, the piston cylinder is equipped with a rotary valve piston, and the output shaft of the mud motor or the shaft of the oil pump also penetrates The upper end cover of the piston cylinder is inserted into the rotary valve piston through a key, a spline or a non-circular cross-section to drive the rotary valve piston to rotate.
- the rotary valve piston is not only a component that produces up and down reciprocating motion, but also a part of the oil circuit switching valve.
- the structure is simple and ensures that when one end of the rotary valve piston is always in the high pressure area, the other end is in the low pressure area, which ensures that the two ends of the piston are in a low pressure area.
- the upper and lower chambers have sufficient pressure difference.
- the oil passage on the rotary valve piston can be a hole on the piston. In order to simplify the structure and facilitate processing, especially to ensure easy communication with the oil inlet and return passages on the piston cylinder, it can be evenly distributed along the side wall of the piston.
- the axial oil passage grooves leading to the upper end of the piston and the oil passage grooves leading to the lower end of the piston are alternately arranged, and the oil inlet and outlet passages on the piston cylinder are arranged at a corresponding position leading to the lower end surface of the rotary valve piston When the oil flow groove is corresponding to the oil flow groove leading to the upper end surface of the rotary valve piston.
- the mud motor is a turbine motor, a screw motor or a gear motor.
- the output shaft of the mud motor is connected with a transmission shaft penetrating the oil pump, and the lower end of the transmission shaft is inserted into the piston to simultaneously drive the oil pump and the piston to rotate.
- the present invention also provides a dual-fluid drive rotary percussion drilling method.
- the method is as follows: while the drill rod is used to provide the drill bit with rotary torque for drilling, the flushing fluid also drives the mud motor in the downhole outer pipe, and uses the The mud motor drives the oil pump of the sealed hydraulic system.
- the high-pressure hydraulic oil produced by the oil pump drives the piston to reciprocate.
- the piston drives the hammer through the connecting rod under the sealed hydraulic system to hit the anvil connected to the drill bit, providing pulsating impact kinetic energy for the drill bit. .
- the dual-fluid of the dual-fluid drive rotary drilling impactor is the flushing fluid used for full-hole circulation and the closed-circulation hydraulic oil in the impactor.
- the invention uses the flushing fluid to drive the mud motor, the mud motor drives the oil pump in the sealed hydraulic system assembly, and the oil pump drives the piston to generate reciprocating motion to drive the hammer outside the sealed hydraulic system assembly.
- the piston that generates impact power is Driven by hydraulic oil instead of flushing fluid, and the oil pressure system is in a closed system, isolated from the flushing fluid, so the life of the piston components is increased, and the existing impactor directly driven by the flushing fluid has a low life and cannot It meets the requirement of drilling interval (generally requires downhole working time greater than 120 hours), so that the advantages of rotary percussion drilling can be brought into full play.
- Fig. 1 is a structural schematic diagram of the first state of the double-fluid driven rotary drilling impactor of the present invention.
- Figure 2 is a structural schematic diagram of the second state of the dual-fluid drive rotary drilling impactor.
- Figure 3 is a schematic diagram of the structure of the power section.
- Figure 4 is a schematic structural diagram of the piston in the upward state of the impulse section
- Figure 5 is a schematic diagram of the second structure of the piston in the impulse section in a downward state
- Figure 6 is a schematic diagram of another embodiment of the impulse section
- Figure 7 is a schematic diagram of the structure of the impact section
- Figure 8 is a cross-sectional view taken along line A-A of Figure 7;
- the shell is an external round tube structure (referred to as "outer tube"), the upper end is threadedly connected with an upper joint 1 to facilitate connection with the drill pipe, and the lower end is a lower joint 34, which is used to directly connect a drill bit or a coring pipe.
- outer tube an external round tube structure
- the outer tube is assembled from three sections, namely, outer tube 1, outer tube 2 13 and outer tube 3 28. Each outer tube is assembled with different components to form different functional sections.
- the outer tube 1 2 and the outer tube 2 13 are connected by a middle joint 8.
- the outer tube 28 is connected to the righting joint 30 through a screw thread, and the anvil 31 connected to the lower joint 34 is mounted on the righting joint 30 and sliding In the sleeve 32, each joint is essentially an outer tube.
- a screw motor 4 (or a turbine motor or a gear motor) is installed inside the outer tube 2 as the screw motor 4 driven by the flushing liquid to generate primary power, so this part is the power section 100.
- Inside the outer tube 13 is an oil pressure system component.
- the mud motor of the power section 100 is used as a power source.
- the oil pump 14 is driven to generate high pressure oil and then the piston is driven to reciprocate to form an impact action, which is the impulse section 200.
- the outer tube 28 is the movement space section of the hammer 27, which is the impact section 300, and the lower end is the anvil section 400 where the anvil 31 is installed.
- the power section is shown in Figure 3. Inside the outer tube 2, there is a screw motor 4 installed and fixed inside the outer tube 2 through the upper motor joint 3 and the lower motor joint 5 at both ends.
- the upper motor joint 3 and the lower motor joint 5 are flanges.
- the flushing liquid entering the upper joint 1 and the outer tube 2 after driving the screw motor 4 enters the mud passage 9 in the middle joint 8 through the central passage of the motor output shaft 6 and is further conveyed downward through the mud passage 10.
- the screw motor 4 can also be replaced by a turbine motor or a gear motor. This type of hydraulic motor drives the output shaft to rotate through high-pressure mud. As the prior art, the specific structure of the mud motor will not be described.
- the output shaft of the screw motor 4 is plug-connected to the transmission shaft 7 through a connection structure such as a spline or a regular polygon as shown in FIG.
- the structure of the impulse section is shown in Figure 4. Inside the outer tube 13 is a key component for generating impact kinetic energy and is a set of hydraulic system components.
- An oil storage pipe 12 is coaxially installed in the outer pipe 13 and is filled with hydraulic oil as a fuel tank. The upper end of the oil storage pipe 12 is sealed by the upper end cover 11, and the upper end cover 11 and the oil storage pipe 12 are connected by threads and are shown in Fig. 3 through its flange.
- the middle joint 8 is pressed against the inner wall of the outer tube 13 and the flange of the upper end cover 11 is provided with an annular through hole to form a mud channel 10, so that the mud on the upper end of the upper end cover 11 enters the outer tube 2 through the mud channel 10 13 and the oil storage pipe 12 are in the annular gap 15 and then transported downwards.
- the mud also plays a role in cooling the oil storage pipe 12.
- the lower end of the oil storage pipe 12 is connected with a piston cylinder 22 through threads, and the piston cylinder 22 is connected with a valve body piston cover 25 through threads to realize the sealing of the lower end of the piston cylinder 22.
- the valve body piston cover 25 is tightened by the outer pipe 28, and there are through holes on the periphery thereof so that the mud in the annular gap 15 can enter the outer pipe 28.
- the hydraulic medium power component at the core of the present invention is a specific solution as a preferred embodiment: the oil storage pipe 12 has hydraulic oil and the oil pump 14, the piston cylinder 22 is equipped with a rotary valve piston 23, and the rotary valve piston 23 is both a rotary valve
- the valve used to switch the oil circuit constitutes a piston that realizes the up and down reciprocating movement under the action of the hydraulic oil pressure difference, which is the ingenious feature of the present invention.
- the transmission shaft 7 passing through the upper end cover 11 is used as the input shaft of the oil pump 14 to penetrate the oil pump 14 and inserted into the inner cavity of the piston cylinder 22. There is a seal between the transmission shaft 7 and the upper end cover 11 to isolate the hydraulic oil from the mud .
- the oil outlet of the oil pump 14 is stored in the accumulator 16 and connected to the oil inlet 18 of the piston cylinder 22 to pass high-pressure hydraulic oil into the inner cavity of the piston cylinder 22.
- the oil pump 14 is directly immersed in the hydraulic oil of the oil storage pipe 12, that is, the hydraulic oil is directly discharged from the oil storage chamber of the oil storage pipe 12.
- the oil return passage 19 only needs to be connected to the oil storage space of the oil storage pipe 12, and there is no need to connect to the oil inlet of the oil pump 14 with a pipeline.
- the rotary valve piston 23 is sleeved on the lower end of the transmission shaft 7 and transmits torque through a spline or regular polygon structure. That is, the transmission shaft 7 can transmit torque to the rotary valve piston 23 to rotate to switch the direction of oil in and out of the oil passage.
- the piston 23 can again reciprocate up and down along the transmission shaft 7 in the chamber of the piston cylinder 22.
- the rotary valve piston 23 On the outer side wall of the rotary valve piston 23, there is an axial lower cavity oil passage 20 that leads to the lower end surface of the rotary valve piston 23 to communicate with the lower cavity 24, and the upper cavity oil passage 21 leads to the upper cavity 17 on the upper end surface of the rotary valve piston 23.
- the oil inlet passage 18 and the oil return passage 19 on the piston cylinder 22 are symmetrically arranged.
- the lower cavity oil passage groove 20 and the upper cavity oil passage groove 21 on the rotary valve piston 23 are also symmetrically and alternately arranged.
- the high-pressure hydraulic oil produced by the oil pump 14 is stored and buffered by the accumulator 16, and then enters the rotary valve through the oil inlet channel 18 of the piston cylinder 22 through the lower cavity oil groove 20 on the side wall of the rotary valve piston 23.
- the upper cavity 17 above the rotary valve piston 23 is connected to the oil return passage 19 of the piston cylinder 22 through the upper cavity oil groove 21 on the side wall of the rotary valve piston to connect with the oil storage pipe
- the cavity is connected with the fuel tank.
- the lower chamber 24 enters the high-pressure hydraulic oil pressurized by the oil pump 14, and the upper chamber 17 is at normal pressure because it is connected to the oil tank.
- the high-pressure hydraulic pressure continues to enter the lower chamber 24 under the action of the pressure difference.
- the oil quickly pushes the rotary valve piston 23 upward, and the hydraulic oil in the upper cavity 17 returns to the oil tank formed by the oil storage pipe 12 through the upper cavity oil passage 21 and the oil return passage 19 to realize the circulation of hydraulic oil.
- the rotary valve piston 23 Since the rotary valve piston 23 is also driven to rotate by the drive shaft 7 during the upward movement, when it rotates to a certain angle, it becomes the upper cavity oil passage 21 on the rotary valve piston 23 and the inlet on the piston cylinder as shown in FIG.
- the oil passage 18 communicates, and the lower cavity oil passage 20 communicates with the oil return passage 19, which is equivalent to completing the reversal of the piston oil passage.
- the high pressure hydraulic oil enters the upper cavity 17 to make the upper cavity 17 become high pressure, and the lower cavity 24 becomes normal pressure due to the communication with the oil tank, and the rotary valve piston 23 rapidly moves downward under the action of the pressure difference.
- FIG. 6 another embodiment of the hydraulic system assembly in the outer tube 13 is shown.
- An inner cylinder 35 is fixedly arranged in the oil storage pipe 12, and an oil inlet passage 18 is arranged in the middle.
- the piston 36 is installed between the inner cylinder 35 and the oil storage pipe 12, and the upper middle of the piston 36 corresponds to the oil inlet passage 18 of the inner cylinder 35.
- the position has a throttle protrusion, a lower limit boss, an oil inlet passage on the piston connects the upper cavity 17 and the lower cavity 24, an oil return passage 19 connects the inner space of the lower cavity 24 and the oil storage pipe 12, and the return on the piston 36
- the flow cross-section of the oil passage 19 is smaller than the total flow cross-section of the oil inlet passage.
- the piston 36 is also connected to the punch through a connecting rod.
- the upper end cover 11 has the same structure as that of Figs. 4 and 5 and will not be described in detail.
- the outlet of the oil pump 14 driven by the transmission shaft 7 is connected to the oil inlet 18 of the inner cylinder 35.
- the high-pressure hydraulic oil generated by the oil pump 14 enters the lower cavity 24 under the piston through the oil inlet on the piston 36, due to the oil return passage of the piston 36
- the flow cross-section is smaller than the total flow cross-section of the oil inlet, which produces a throttling effect. Therefore, the pressure in the lower chamber 24 below the piston 36 increases. Since the area of the piston 36 in the lower chamber 24 is greater than the area in the upper chamber 17, the piston 36 is subject to upward pressure.
- the structure of the hammer section is shown in FIG. Since the hammer 27 in the present invention is a counterweight, it improves the inertia force through mass and improves the impact resistance through the mechanical properties of the material. Therefore, the hammer 27 uses a centralizing ring 29 to ensure that it does not swing during operation. There is a sufficient annular gap between 27 and the inner wall of the outer tube three 28, which not only serves as a channel for conveying mud to the drill bit, but also makes the hammer and the outer tube three do not contact and rub, thus increasing the life of the hammer 27.
- the centralizing ring 29 has through holes evenly distributed in a ring shape to form a mud passage. Since the hammer centralizing ring 29 is provided, even if the impactor is horizontal or inclined, the hammer can still be maintained at the center position without swinging downward under gravity, and can be used for horizontal drilling.
- the lower end of the outer tube 28 is connected with a sliding sleeve 32 through a threaded centralizing joint 30.
- the centralizing joint 30 and the sliding sleeve 32 are equipped with an anvil 31, and the lower end of the anvil 31 is threaded with a lower joint 34.
- the upper end of the anvil 31 is located inside the centralization joint 30 and has a large diameter and is equipped with an O-ring.
- the lower end passes through the sliding sleeve 32 with a small diameter.
- the inner diameter of the sliding sleeve 32 is also small.
- the shoulder and the upper edge of the sliding sleeve 32 constitute a lower limit anti-drop structure.
- the upper and lower ends of the punch 27 are designed with chamfered or rounded corners.
- the upper middle part of the anvil 31 adopts a mushroom head protrusion, and the root part of the mushroom head protrusion is an oblique hole communicating with the mud passage in the middle part. This method can increase the force area of the impact part without affecting the mud flow, and the impact part can be made of high-impact materials.
- the torque transmission between the anvil 31 and the sliding sleeve 32 is as shown in FIG. 8 and adopts a polygonal mating section.
- the dual-fluid drive rotary percussion drilling method of the present invention is as follows: While drilling with a drill pipe to provide a rotary torque for the drill bit, it also drives the mud motor in the downhole outer pipe through the flushing fluid, and uses the downhole
- the mud motor drives the oil pump of the sealed hydraulic system.
- the high-pressure hydraulic oil produced by the oil pump drives the piston to reciprocate.
- the piston drives the hammer through the connecting rod through the sealed hydraulic system to hit the anvil connected to the drill bit, providing pulse vibration kinetic energy for the drill bit.
- the invention adopts a two-way circulation system, one is mud circulation and the other is hydraulic circulation.
- Mud circulation The drilling mud drives the mud motor to rotate, and the working mud passes around the hydraulic oil tank (oil storage pipe) to cool the hydraulic oil tank, and then enters the hammer cavity 26 through the annular gap 15 between the outer pipe and the piston cylinder. The impact area of the anvil flows to the drill bit at the bottom of the hole through the anvil drain hole.
- Hydraulic cycle The screw motor or turbine motor rotates to drive the oil pump.
- the high-pressure hydraulic oil pumped by the oil pump enters the cylinder through the oil inlet.
- the pressure and area difference between the upper and lower chambers at the upper and lower ends of the piston are used to generate the driving force to push the piston.
- the piston reciprocates up and down, and the oil returns to the oil tank through the oil return channel.
- the entire hydraulic oil system is completely closed in circulation and does not come into contact with mud.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
Abstract
一种双液驱动旋冲钻井冲击器,包括外管、冲锤(27)和砧子(31),还包括泥浆马达,安装在外管内;安装在外管内的密封油压系统组件,包括油箱及油泵(14);泥浆马达的马达输出轴(6)与油泵(14)的传动轴(7)联接;油泵(14)通过油道连通到活塞缸体(22)的进油道(18)以产生驱动活塞(36)的推动力,活塞缸体(22)上有回油通道(19),回油通道(19)连通活塞缸体(22)和油箱;冲锤(27),连接于活塞(36)上;砧子(31),安装于冲锤(27)下方;冲洗液通道,与密封油压系统组件的油路隔绝,由外管上端贯通到外管下端。
Description
本发明涉及钻井用冲击器,特别是一种双液(冲洗液、液压油)旋冲钻井冲击器以及旋冲钻进方法。
在地质或石油勘探的钻井作业中,采用在钻头上部连接冲击器,冲击器的冲锤上下运动冲击砧子产生冲击动能,即旋转钻进与轴向冲击相结合,使钻头在冲击力和回转剪切力作用下破碎岩石,这种钻井方式称为旋冲钻井。旋冲钻井可大幅度提高钻井速度,同时具有防斜效果和提高钻头的使用寿命等优点。旋冲钻井可广泛应用于硬岩地层、容易孔斜的地层和强研磨性的地层钻进。此外,在水平钻进过程中,可克服钻具与地层的摩擦力,解决钻头钻压过低问题。可应用于石油钻井、煤层气页岩气钻井,以及地热钻井,同时也能满足超深钻井提速钻进。
CN203296693U公开的“一种能够产生轴向冲击振动的钻井工具”,涉及了一种冲击器,由外管、内筒、冲锤和砧子组成,外管上端通过上接头连接钻柱,砧子通过下接头连接钻头或下钻柱,冲锤滑动设置于外管内,利用高压冲洗液作用于冲锤上下端面时作用面积差的变化,推动冲锤在外管内上下往复运动,实现打击砧子,在将钻柱通过外管将转矩传统给钻头同时,将砧子受到的冲击振动传递给钻头。但这种冲击器存在如下不足:以冲洗液即泥浆作为动力介质,冲洗液中的颗粒物进入冲锤的活塞结构与外管之间的间隙,增大了磨损,导致冲击器的寿命偏低,不能满足提钻间隔的要求(一般要求井下工作时间大于120小时),致使旋冲钻井技术的应用受到限制,旋冲钻进的优势性得不到充分发挥。
有鉴于此,特提出本发明。
发明内容
针对现有旋冲钻井存在的上述问题,本发明的目的在于,提供一种双液驱动旋冲钻井冲击器,以减小冲洗液对冲击器的磨损,提高使用寿命,以进一步满足提钻间隔的要求。
本发明的技术方案为:
一种双液驱动旋冲钻井冲击器,包括外管、冲锤和砧子,还包括
泥浆马达,安装在所述外管内,用于被冲洗液驱动输出旋转动力;
密封的油压系统组件,包括油箱及油泵,油泵用于对液压油增压,油泵传动轴与液马达的输出轴联接;还包括在缸体及在缸体内往复运动的活塞,所述油泵通过油道连通到缸体的进油道以产生驱动活塞的推动力,缸体上有回油通道连通缸体和油箱;
冲锤,位于外管内且连接于所述活塞上;
砧子,安装于外管下端且位于冲锤下方;
冲洗液通道,与外管内的密封油压系统组件的油路隔绝,由外管上端贯通到外管下端。
所述油箱既可以为一个独立的油箱,出油口连接于所述油泵入油口,回油口连接于所述缸体回油通道。为了减少管路和提高结构紧密性,所述油箱为一段充有液压油的储油管,所述油泵浸在储油管内的液压油中,一根作为油泵动力输入的传动轴穿过储油管上端盖连接到所述泥浆马达的输出轴上。这样油泵入口不需要连接管道,且结构紧凑,提高了外管的内部空间利用率。
本发明中,密封的油压系统组件的活塞和缸体可以采用传统的冲击器的结构和驱动方式,只是冲洗液换成了液压油。在本发明中,作为一个较佳实施例,则采用一种更先进的结构:储油管下端连接活塞缸体,活塞缸体内装有转阀活塞,所述泥浆马达输出轴或油泵的轴还穿过所述活塞缸体上端盖,通过键、花键或非圆形截面插在所述转阀活塞内以驱动转阀活塞旋转,所述转阀活塞上有多条油通道分别通到活塞上端面和下端面,油通道在活塞行程范围内通过油口分别与活塞缸体上的进油道和回油通道相通,进油道连通的是油泵出口,回油通道连接储油管。这种结构,转阀活塞既是产生上下往复运动的部件,也是油路切换阀的一部分,结构简单且保证转阀活塞始终处于一端是高压区时,则另一端是低压区,保证了活塞两端的上下腔具有足够的压差。
所述转阀活塞上的油通道可以为活塞上的孔,为了简化结构便于加工,特别是为了保证与活塞缸体上的进油道和回油通道简便连通,可以采用沿活塞侧壁均布的轴向通油槽,通向活塞上端面与通向活塞下端的通油槽交替排列,且所述活塞缸体上的进油道与出油通道的设置位置为一个对应通向转阀活塞下端面的通油槽时,另一个则对应通向转阀活塞上端面的通油槽。
进一步地,所述泥浆马达为涡轮马达或螺杆马达或齿轮马达。
为了简化结构,进一步地,所述泥浆马达的输出轴是连接一根贯穿油泵的传动轴,该传动轴下端插入活塞,以同时驱动油泵和活塞旋转。
本发明还提供了一种双液驱动旋冲钻进方法,该方法为:利用钻杆为钻头提供旋转扭矩钻进的同时,还通过冲洗液驱动井下外管内的泥浆马达,利用井下外管内的泥浆马达驱动密封油压系统的油泵,油泵产生的高压液压油驱动活塞往复运动,活塞通过穿过密封油压系统下面的连杆带动冲锤击打连接钻头的砧子,为钻头提供脉动冲击动能。
在本发明中,双液驱动旋冲钻井冲击器的双液,为用于全孔循环的冲洗液和冲击器内封闭循环的液压油。
本发明是利用冲洗液驱动泥浆马达,泥浆马达再驱动密封的油压系统组件中的油泵,油泵再驱动活塞产生往复运动驱动密封的油压系统组件外的冲锤,由于产生冲击动力的活塞是被液压油而不是冲洗液驱动,且油压系统是在密闭的系统内,与冲洗液隔离,因此提高了活塞部件的寿命,解决了现有冲洗液直接驱动的冲击器的寿命偏低,不能满足提钻间隔的要求(一般要求井下工作时间大于120小时)问题,使旋冲钻进的优势性得到充分发挥。
图1为本发明双液驱动旋冲钻井冲击器状态一的结构示意图。
图2为双液驱动旋冲钻井冲击器状态二的结构示意图。
图3为动力段的结构示意图。
图4为冲动段的活塞上行状态的一结构示意图;
图5为冲动段的活塞下行状态的二结构示意图;
图6为冲动段的另一种实施例示意图;
图7为冲击段的结构示意图;
图8为图7的A-A剖面图;
图中:1、上接头,2、外管一,3、马达上接头,4、螺杆马达,5、马达下接头,6、马达输出轴,7、传动轴,8、中接头,9、泥浆通室,10、泥浆通道,11、上端盖,12、储油管,13、外管二,14、油泵,15、环状间隙,16、蓄能器,17、上腔,18、进油道,19、回油通道,20、下腔通油槽,21上腔通油槽,22、 活塞缸体,23、转阀活塞,24、下腔,25、阀体活塞盖,26、冲锤腔,27、冲锤,28、外管三,29、扶正环,30、扶正接头,31、砧子,32、滑动轴套,33、调整垫,34、下接头,35、内缸,36、活塞
100、动力段,200、冲动段,300、冲击段,400、砧子段
下面结合附图和具体实施例对本发明做进一步说明,以助于理解本发明的内容。
如图1和图2所示,是本发明的一个双液驱动旋冲钻井冲击器的较佳实施例。外壳为外部圆管结构(简称“外管”),上端通过螺纹连接有上接头1,以便于与钻杆连接,下端是下接头34,下接头34是用于直接连接钻头或取心管。
为了便于加工和装配,外管由三节装配而成,即外管一2、外管二13和外管三28,每一节外管装配不同的构件以形成不同的功能段。外管一2和外管二13之间是通过一中接头8实现衔接连接,外管三28是通过螺纹连接扶正接头30,连接下接头34的砧子31是装在由扶正接头30和滑动轴套32内,本质上各接头也是一段外管。
外管一2内部安装有螺杆马达4(或涡轮马达或齿轮马达),作为被冲洗液驱动的螺杆马达4产生初级动力,因此该部分为动力段100。外管二13内部安装的是油压系统组件,以动力段100的泥浆马达作为动力源,驱动油泵14产生高压油再驱动活塞产生往复运动,以形成冲击动作,为冲动段200。外管三28是冲锤27的运动空间段,为冲击段300,下端为安装砧子31的砧子段400。下面结合附图按各段分别进行详细说明。
动力段如图3所示,在外管一2内部,有螺杆马达4通过两端的马达上接头3和马达下接头5安装固定在外管一2内部,马达上接头3和马达下接头5为法兰,通过外管一2两端的平或斜肩以及与外管一两端螺纹连接的上接头1和中接头8顶紧卡住,这种安装方式简便、牢固且拆装快捷。进入上接头1和外管一2内的冲洗液在驱动螺杆马达4后通过马达输出轴6的中心通道进入中接头8内的泥浆通室9,并通过泥浆通道10进一步向下输送。螺杆马达4也可以采用涡轮马达、齿轮马达代替,这一类的液压马达均是通过高压泥浆带动输出轴旋转,作为现有技术不再对泥浆马达的具体结构进行描述。
螺杆马达4的输出轴通过花键或者图8这样的正多边形等传递转矩的连接结构,与传动轴7插接连接,为了装配的需要,连接位置设置在中接头8的位置。
冲动段的结构如图4所示,在外管二13内,是实现产生冲击动能的关键部件,是一套油压系统组件。在外管二13内同轴安装有储油管12,里面充满液压油作为油箱,储油管12上端通过上端盖11进行密封,上端盖11与储油管12通过螺纹连接并通过其法兰被图3中的中接头8压紧和抵靠在外管二13内壁上,上端盖11的法兰上环形设置有通孔构成泥浆通道10,使上端盖11上部的泥浆通过该泥浆通道10进入到外管二13与储油管12之间的环状间隙15内,并进而向下输送,同时泥浆对储油管12还起到冷却作用。储油管12下端通过螺纹连接有一个活塞缸体22,活塞缸体22通过螺纹连接有阀体活塞盖25以实现将活塞缸体22的下端密封。阀体活塞盖25通过外管三28被顶紧,并且其周边也有通孔以使环状间隙15内的泥浆能够进入外管三28内。
本发明核心的油压介质动力部件,作为较佳实施例的具体方案为:储油管12内有液压油和油泵14,活塞缸体22内装有转阀活塞23,转阀活塞23既是一个通过旋转来切换油路的阀门,又构成了一个在液压油压力差作用下实现上下往复运动的活塞,这是本发明的巧妙之处。穿过上端盖11的传动轴7是作为油泵14的输入轴贯穿油泵14并插入到活塞缸体22的内腔中,传动轴7与上端盖11之间有密封,以将液压油与泥浆隔绝。为了保证推动转阀活塞23向下运动的上腔17的压力,传动轴7与活塞缸体22上端之间也有密封,填料密封或O形密封圈等。油泵14出油口通过蓄能器16蓄能后连通到活塞缸体22的进油道18上,以向活塞缸体22内腔通入高压液压油,活塞缸体22内有回油通道19连通活塞缸体22的腔室中部与储油管12的储油空间,本实施例中油泵14是直接浸在储油管12的液压油内,即液压油是直接从储油管12的储油腔室进入油泵14内,因此回油通道19只需要通到储油管12的储油空间即可,不需要用管路连接到油泵14的进油口。转阀活塞23套在传动轴7的下端,并通过花键或正多边形结构传递转矩,即传动轴7可以传递转矩给转阀活塞23使其旋转以切换油路进出油方向,转阀活塞23又可以在活塞缸体22的腔室内沿传动轴7上下往复运动。在转阀活塞23外侧壁有轴向的下腔通油槽20通到转阀活塞23下端面以连通到下腔24,以及上腔通油槽21通到转阀活塞23上端面上部的上腔17,本实施例 中活塞缸体22上的进油道18与回油通道19对称设置,同样地转阀活塞23上的下腔通油槽20与上腔通油槽21也对称且交替设置。这样如图4所示,油泵14产生的高压液压油经过蓄能器16蓄能和缓冲后,沿活塞缸体22的进油道18通过转阀活塞23侧壁的下腔通油槽20进入转阀活塞23下方的下腔24时,转阀活塞23上方的上腔17则通过转阀活塞侧壁上的上腔通油槽21连通到活塞缸体22的回油通道19,以与储油管的腔体即油箱连通。
由于图4所示状态,下腔24进入的是经过油泵14增压后的高压液压油,上腔17由于与油箱相通所以是常压,在压力差作用下持续进入到下腔24的高压液压油快速地推动转阀活塞23向上移动,同时上腔17内的液压油则通过上腔通油槽21和回油通道19回到储油管12构成的油箱内,实现液压油的循环。
由于转阀活塞23在向上移动过程中还被传动轴7驱动旋转,当旋转一定角度后就如图5所示变成了转阀活塞23上的上腔通油槽21与活塞缸体上的进油道18相通,而下腔通油槽20与回油通道19相通,相当于完成了活塞油路的换向切换。此时高压液压油是进入上腔17使上腔17变为高压,下腔24由于与油箱连通变为常压,转阀活塞23则在压力差作用下快速向下移动。转阀活塞23在传动轴7驱动下连续转动时,由于上腔17与下腔24实现高压与常压的交替变换,因此转阀活塞23则在活塞缸体22内上下往复运动,通过穿过阀体活塞盖25的连杆带动冲锤27作往复冲击运动。
该较佳实施例的结构,通过设置转阀活塞23上的上腔通油槽21和下腔通油槽20的数量,和匹配转阀活塞23的转速,可以实现单位时间油路切换次数的变化,从而设计出不同的冲击频率。通过匹配油泵14的输出压力,转阀活塞23在上腔17和下腔24内的端面面积,从而设计不同的冲击动能。
为了实现在转阀活塞23向上运动到达行程上顶点时,产生一个缓冲力,避免转阀活塞23与活塞缸体22的硬碰撞,如图4和图5所示在转阀活塞23上端面设有一环形凸台,对应地在活塞缸体22上围绕传动轴形成一环形凹槽,当转阀活塞23向上运动至凸台插入凹槽内形成一个密闭油腔时,凹槽内液压油产生的油垫起到缓冲作用。
在图6中,是外管二13内另一种油压系统组件实施例。在储油管12内固定设置有内缸35,其中部设置有进油道18,活塞36是装在内缸35和储油管12 之间,活塞36上面中部对应内缸35的进油道18的位置有节流凸起,下部有限位凸台,活塞上有进油道连通上腔17和下腔24,有回油通道19连通下腔24与储油管12的内部空间,活塞36上的回油通道19的流通截面小于其进油道总流通截面,活塞36同样通过连杆连接冲锤,上端盖11与图4、5结构相同,不再详细描述。被传动轴7驱动的油泵14出口连接于内缸35的进油道18,油泵14产生的高压液压油通过活塞36上的进油道进入活塞下面的下腔24,由于活塞36的回油通道流通截面小于进油道总流通截面,产生节流作用,所以活塞36下方的下腔24压力升高,由于活塞36在下腔24内的面积大于在上腔17内的面积,活塞36受到向上的压力大于向下的压力,压力差推动活塞36克服重力和阻力上升,当活塞36上的节流凸起进入内缸35的进油道18的喷射口时,液压油的流通面积减少,产生油击作用,活塞36在油击压力下高速向下移动,推动冲锤冲击砧子。
冲锤段的结构如图7所示,连接在外管二13的下端的外管三28内,是冲锤腔26。由于本发明中的冲锤27是配重件,是通过质量提高惯性力,并通过材料机械性能提高抗冲击性能,因此冲锤27除通过一个扶正环29保证运行过程中不摆动外,冲锤27与外管三28的内壁之间有足够环状间隙,除作为向钻头输送泥浆的通道外,也使得冲锤与外管三并不接触和摩擦,因此提高了冲锤27的寿命。扶正环29上环形均布有通孔以形成泥浆通道。由于设置了冲锤扶正环29,即使冲击器水平或倾斜,冲锤仍然能够保持在中心位置而不在重力下向下偏摆,可以用于水平钻井。
在图7中,外管三28的下端通过螺纹连接的扶正接头30连接有滑动轴套32,扶正接头30和滑动轴套32内装有砧子31,砧子31下端通过螺纹连接有下接头34。砧子31上端位于扶正接头30以内部分的直径大且装有O形圈,下端穿过滑动轴套32的部分直径小,对应地滑动轴套32的内径也小,这样通过砧子31上的凸肩和滑动轴套32的上边缘构成下限位防掉落结构。滑动轴套与下接头34之间有调整垫33,以便调整冲锤行程的大小。砧子31中心有泥浆通道,以通向钻头。
为了便于冲锤27上下运动时排开泥浆,冲锤27上下两端采用倒角或圆角设计。砧子31上端中部采用蘑菇头凸起,蘑菇头凸起根部为斜孔与中部的泥浆通 道相通。这种方式可以提高冲击部位受力面积且不影响泥浆流动,并且打击部位可以采用高抗冲击材料。
砧子31与滑动轴套32之间传递转矩是如图8所示,采用了多边形的配合截面。
根据上面的原理,可以理解,本发明双液驱动旋冲钻进方法,该方法为:利用钻杆为钻头提供旋转扭矩钻进的同时,还通过冲洗液驱动井下外管内的泥浆马达,利用井下泥浆马达驱动密封油压系统的油泵,油泵产生的高压液压油驱动活塞往复运动,活塞通过穿过密封油压系统的连杆带动冲锤击打连接钻头的砧子,为钻头提供脉冲振动动能。
本发明采用了双路循环系统,一种为泥浆循环,另一路为油压循环。泥浆循环:钻井泥浆带动泥浆马达旋转,工作后的泥浆沿液压油箱(储油管)周围通过,起到冷却液压油箱的作用,之后经过外管和活塞缸体的环状间隙15进入冲锤腔26的冲击区,再经过砧子泄水孔流向孔底钻头。油压循环:螺杆马达或涡轮马达旋转驱动油泵,油泵泵出的高压液压油经过进油道进入缸体内,利用活塞上下端的上腔与下腔的压力和面积差产生推动活塞的推动力,使活塞上下往复运动,而回油通过回油通道回到油箱。整个液压油系统完全封闭循环,不与泥浆接触。
Claims (10)
- 一种双液驱动旋冲钻井冲击器,包括外管、冲锤和砧子,其特征在于还包括:泥浆马达,安装在所述外管内,用于被冲洗液驱动输出旋转动力;安装在外管内的密封油压系统组件,包括油箱及油泵,泥浆马达的输出轴与油泵的传动轴联接;还包括在缸体内往复运动的活塞,所述油泵通过油道连通到缸体的进油道以产生驱动活塞的推动力,缸体上有回油通道连通缸体和油箱;冲锤,位于外管内且连接于所述活塞上;砧子,安装于外管下端且位于冲锤下方;冲洗液通道,与密封油压系统组件的油路隔绝,由外管上端贯通到外管下端。
- 如权利要求1所述的双液驱动旋冲钻井冲击器,其特征在于:所述油箱为一段充有液压油的储油管,所述油泵浸在储油管内的液压油中,作为油泵动力输入的所述传动轴穿过储油管上端盖连接到所述泥浆马达的输出轴上。
- 如权利要求2所述的双液驱动旋冲钻井冲击器,其特征在于:所述储油管下端连接一个活塞缸体,活塞缸体内装有转阀活塞,所述泥浆马达输出轴或油泵的轴还穿过所述活塞缸体上端盖,并通过键、花键或非圆形截面插在所述转阀活塞内以驱动转阀活塞旋转,所述转阀活塞上分别有多条通到活塞上端面和下端面的油通道,油通道分别通过油口与活塞缸体上的进油道和回油通道相通,进油道连通的是油泵出口,回油通道连通所述储油管。
- 如权利要求3所述的双液驱动旋冲钻井冲击器,其特征在于:所述转阀活塞上的油通道为沿活塞侧壁均布的轴向通油槽,通向活塞上端面与通向活塞下端的通油槽交替排列,且所述活塞缸体上的进油道与出油通道的设置位置为一个对应通向转阀活塞下端面的通油槽时,另一个则对应通向转阀活塞上端面的通油槽。
- 如权利要求3所述的双液驱动旋冲钻井冲击器,其特征在于:在所述转阀活塞上端面围绕传动轴设有环形凸台,对应地在所述活塞缸体上有环形凹槽。
- 如权利要求2所述的双液驱动旋冲钻井冲击器,其特征在于:所述泥浆马达的输出轴是连接一根贯穿油泵的传动轴,该传动轴下端插入活塞,以同时驱动油泵和活塞旋转。
- 如权利要求1所述的双液驱动旋冲钻井冲击器,其特征在于:所述冲锤 与外管之间设置有扶正环。
- 如权利要求1所述的双液驱动旋冲钻井冲击器,其特征在于:所述砧子上端中部采用蘑菇头凸起,蘑菇头凸起根部有斜孔与中部的泥浆通道相通。
- 如权利要求1所述的双液驱动旋冲钻井冲击器,其特征在于:所述外管下端连接有扶正接头和滑动轴套,扶正接头和滑动轴套内装有所述砧子,砧子下端连接有下接头,砧子上端位于扶正接头以内的部分直径大且装有O形圈,下端穿过滑动轴套的部分直径小,对应地滑动轴套的内径也小,滑动轴套与下接头之间有调整垫。
- 一种双液驱动旋冲钻进方法,该方法为:利用钻杆为钻头提供旋转扭矩钻进的同时,还通过冲洗液驱动井下外管内的泥浆马达,利用外管内的泥浆马达驱动密封油压系统的油泵,油泵产生的高压液压油驱动活塞往复运动,活塞通过穿过密封油压系统的连杆带动冲锤击打连接钻头的砧子,为钻头提供脉动冲击动能。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010084676.9A CN111173443B (zh) | 2020-02-10 | 2020-02-10 | 双液驱动旋冲钻井冲击器及双液驱动旋冲钻进方法 |
CN202010084676.9 | 2020-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021159620A1 true WO2021159620A1 (zh) | 2021-08-19 |
Family
ID=70649537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/089956 WO2021159620A1 (zh) | 2020-02-10 | 2020-05-13 | 双液驱动旋冲钻井冲击器及双液驱动旋冲钻进方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111173443B (zh) |
WO (1) | WO2021159620A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024018015A1 (en) * | 2022-07-21 | 2024-01-25 | Mincon International Limited | Hybrid hydraulic down-the-hole hammer |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112627721B (zh) * | 2020-12-19 | 2022-11-01 | 盘锦卓汇钻井技术开发有限责任公司 | 一种连续轴向冲击破岩锤子 |
SE544866C2 (sv) * | 2021-05-28 | 2022-12-13 | Per Gustafsson | Rotationsenhet för borrning |
CN113445902B (zh) * | 2021-08-11 | 2023-09-19 | 中煤科工集团重庆研究院有限公司 | 一种自闭式多通道高压钻杆 |
CN113445903B (zh) * | 2021-08-11 | 2023-09-19 | 中煤科工集团重庆研究院有限公司 | 一种自闭式双油道钻杆连接结构 |
CN115012809A (zh) * | 2022-06-09 | 2022-09-06 | 长江岩土工程有限公司 | 一种具有液压振动冲击功能的钻机动力头 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2866785Y (zh) * | 2005-01-19 | 2007-02-07 | 李国民 | 转阀式液动冲击器 |
CN201031614Y (zh) * | 2007-04-11 | 2008-03-05 | 中国石化集团中原石油勘探局钻井工程技术研究院 | 一种钻井用液动冲击器 |
RU2534116C1 (ru) * | 2013-08-30 | 2014-11-27 | Сергей Александрович Ерилин | Способ и устройство гидротарана призабойной зоны пласта и освоения скважин |
CN106050129A (zh) * | 2016-06-06 | 2016-10-26 | 西南石油大学 | 一种利用涡轮实现旋转冲击的钻井工具 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6073708A (en) * | 1998-07-29 | 2000-06-13 | Dynamo Drilling Services Inc. | Downhole mud pressure intensifier |
CN101956526A (zh) * | 2009-07-13 | 2011-01-26 | 丁明明 | 一种旋转冲击锤 |
CN201460719U (zh) * | 2009-07-13 | 2010-05-12 | 丁明明 | 一种旋转冲击锤 |
CN108087584B (zh) * | 2018-02-02 | 2024-01-23 | 湖南沃飞科技有限公司 | 一种流体换向结构以及气液冲击机构 |
CN212105720U (zh) * | 2020-02-10 | 2020-12-08 | 中国地质大学(北京) | 双液驱动旋冲钻井冲击器 |
-
2020
- 2020-02-10 CN CN202010084676.9A patent/CN111173443B/zh active Active
- 2020-05-13 WO PCT/CN2020/089956 patent/WO2021159620A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2866785Y (zh) * | 2005-01-19 | 2007-02-07 | 李国民 | 转阀式液动冲击器 |
CN201031614Y (zh) * | 2007-04-11 | 2008-03-05 | 中国石化集团中原石油勘探局钻井工程技术研究院 | 一种钻井用液动冲击器 |
RU2534116C1 (ru) * | 2013-08-30 | 2014-11-27 | Сергей Александрович Ерилин | Способ и устройство гидротарана призабойной зоны пласта и освоения скважин |
CN106050129A (zh) * | 2016-06-06 | 2016-10-26 | 西南石油大学 | 一种利用涡轮实现旋转冲击的钻井工具 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024018015A1 (en) * | 2022-07-21 | 2024-01-25 | Mincon International Limited | Hybrid hydraulic down-the-hole hammer |
Also Published As
Publication number | Publication date |
---|---|
CN111173443B (zh) | 2024-08-27 |
CN111173443A (zh) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021159620A1 (zh) | 双液驱动旋冲钻井冲击器及双液驱动旋冲钻进方法 | |
CN106150349B (zh) | 一种周向轴向负压冲击提速工具 | |
CN103291214B (zh) | 适用于硬地层钻井的往复式液动冲击器 | |
US5662180A (en) | Percussion drill assembly | |
CN106639944B (zh) | 一种涡轮式井下水力振荡器 | |
CN106050129B (zh) | 一种利用涡轮实现旋转冲击的钻井工具 | |
CN109372424B (zh) | 一种连续油管用复合冲击提速钻具 | |
CN105239929A (zh) | 利用旋冲振荡加压实现高效破岩的井下工具 | |
CN208534402U (zh) | 一种水力振荡器 | |
CN102191915A (zh) | 一种谐振脉冲振动钻井装置 | |
NO20110518A1 (no) | Pulsgenerator | |
US3866746A (en) | Rotary bore hole air hammer drive mechanism | |
CN113006682B (zh) | 轴向冲击振荡螺杆钻具 | |
CN108798521A (zh) | 一种往复式轴向冲击加压装置 | |
WO2019238139A1 (zh) | 井底环空钻井液降压装置及方法 | |
CN208518604U (zh) | 一种往复式轴向冲击加压装置 | |
CN107605396A (zh) | 一种分流式射吸液动冲击器 | |
CN109611028B (zh) | 基于滚子与叶轮的水力振荡器 | |
US20160153236A1 (en) | Percussion hammer bit | |
CN212105720U (zh) | 双液驱动旋冲钻井冲击器 | |
CN110374509A (zh) | 减阻振击器双压腔螺杆钻具 | |
CN112377091B (zh) | 一种集束式分动潜孔钻具 | |
CN114776213A (zh) | 基于钻柱振动的旋转冲击钻井工具 | |
CN210460503U (zh) | 减阻振击器双压腔螺杆钻具 | |
CN201730549U (zh) | 盘阀式旋冲钻井工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20919170 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20919170 Country of ref document: EP Kind code of ref document: A1 |