WO2021159295A1 - Method of generating captured image and electrical device - Google Patents

Method of generating captured image and electrical device Download PDF

Info

Publication number
WO2021159295A1
WO2021159295A1 PCT/CN2020/074828 CN2020074828W WO2021159295A1 WO 2021159295 A1 WO2021159295 A1 WO 2021159295A1 CN 2020074828 W CN2020074828 W CN 2020074828W WO 2021159295 A1 WO2021159295 A1 WO 2021159295A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
electrical device
light source
captured
initial images
Prior art date
Application number
PCT/CN2020/074828
Other languages
French (fr)
Inventor
Ahmed BOUDISSA
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to PCT/CN2020/074828 priority Critical patent/WO2021159295A1/en
Priority to CN202080090782.6A priority patent/CN115066880A/en
Publication of WO2021159295A1 publication Critical patent/WO2021159295A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio

Definitions

  • the present disclosure relates to a method of generating a captured image in an electrical device including a camera assembly and such an electrical device.
  • Electrical devices such as smartphones and tablet terminals are widely used in our daily life.
  • many of the electrical devices are equipped with a camera assembly to capture an image.
  • Some of the electrical devices are portable and are thus easy to carry. Therefore, a user of the electrical device can easily capture an image by using the camera assembly of the electrical device anytime, anywhere.
  • the captured image includes one or more light source areas which are overexposed or halation.
  • the overexposed light source areas and the halation areas in the captured image can be subject to an image correction process after capturing the image.
  • the present disclosure aims to solve at least one of the technical problems mentioned above. Accordingly, the present disclosure needs to provide a method of generating a captured image and an electrical device.
  • a method of generating a captured image in an electrical device including a camera assembly may include:
  • the light detectable image is at least one image of the plurality of the first initial images and is suitable for detecting the light source area
  • the capturing the plurality of the first initial images may include capturing the plurality of the first initial images at different exposure values.
  • the light detectable image may be the one image of the plurality of the first initial images, which is captured at the lowest of the exposure values.
  • the lowest of the exposure values may be low enough not to detect a light from areas other than the light source area in the first initial images.
  • the lowest of the exposure values may be negative.
  • the method may further include:
  • the generating the captured image may further include executing a Bokeh rendering process to introduce a Bokeh effect to the captured image based on the depth map.
  • the plurality of the first initial images may be captured by a first main camera of the camera assembly and the second initial image may be captured by a second main camera of the camera assembly.
  • the generating the captured image may further include executing a segmentation process to introduce a Bokeh effect to the captured image based on the intermediate image.
  • the plurality of the first initial images may be captured by a first main camera in a back side of the electrical device or a sub camera in a front side of the camera assembly of the electrical device.
  • an electrical device may include:
  • a camera assembly capable of capturing an image in a first dynamic range
  • an image processor configured to:
  • the light detectable image is at least one image of the plurality of the first initial images and is suitable for detecting light source area;
  • the captured image based on the intermediate image and the light source map, wherein a position of the light source area of the captured image is decided in accordance with the light source map and a color of the light source area of the captured image is decided in accordance with the intermediate image.
  • the plurality of the first initial images when the plurality of the first initial images are captured, the plurality of the first initial images may be captured at different exposure values.
  • the light detectable image may be the one image of the plurality of the first initial images, which is captured at the lowest of the exposure values.
  • the lowest of the exposure values may be low enough not to detect a light from areas other than the light source area in the first initial images.
  • the lowest of the exposure values may be negative.
  • the image processor may be further configured to:
  • a Bokeh effect may be also introduced to the captured image through a Bokeh rendering process based on the depth map.
  • the plurality of the first initial images may be captured by a first main camera of the camera assembly and the second initial image may be captured by a second main camera of the camera assembly.
  • a Bokeh effect may be also introduced to the captured image through a segmentation process based on the intermediate image.
  • the plurality of the first initial images may be captured by a first main camera in a back side of the electrical device or a sub camera in a front side of the camera assembly of the electrical device.
  • FIG. 1 illustrates a back side view of an electrical device according to a first embodiment of the present disclosure
  • FIG. 2 illustrates a front side view of the electrical device according to the first embodiment of the present disclosure
  • FIG. 3 illustrates a block diagram of the electrical device according to the first embodiment of the present disclosure
  • FIG. 4 illustrates a flowchart of an image capturing process performed by the electrical device according to the first embodiment of the present disclosure
  • FIG. 5 illustrates a back side view of the electrical device according to a second embodiment of the present disclosure.
  • FIG. 6 illustrates a flowchart of an image capturing process performed by the electrical device according to the second embodiment of the present disclosure.
  • FIG. 1 illustrates a back side view of an electrical device 10 according to a first embodiment of the present disclosure
  • FIG. 2 illustrates a front side view of the electrical device 10 according to the first embodiment of the present disclosure.
  • the electrical device 10 may include a display 20 and a camera assembly 30.
  • the camera assembly 30 includes a first main camera 32, a second main camera 34 and a sub camera 36.
  • the first main camera 32 and the second main camera 34 can capture an image in back side of the electrical device 10 and the sub camera 36 can capture an image in front side of the electrical device 10. Therefore, the first main camera 32 and the second main camera 34 are so called out-camera whereas the sub camera 36 is so called in-camera.
  • the first main camera 32 and the second main camera 34 may have the same performance and/or characteristics or they may have different performance and/or characteristics.
  • the first main camera 32 may be equipped with a full color image sensor and the second main camera 34 may be equipped with a black-and-white image sensor.
  • the first main camera 32 may be a camera suitable for capturing a still image and the second main camera 34 may be a camera suitable for capturing a moving image.
  • the first main camera 32 may be a camera equipped with a wide-angle lens and the second main camera 34 may be a camera equipped with a telephoto lens.
  • the performance of the sub camera 36 is lower than that of the first main camera 32 and the second main camera 34.
  • the performance of the sub camera 36 may be the same as that of the first main camera 32 and the second main camera 34.
  • the electrical device 10 may have more than three cameras.
  • the electrical device 10 may have three, four, five, etc. main cameras.
  • FIG. 3 illustrates a block diagram of the electrical device 10 according to the present embodiment.
  • the electrical device 10 may include a main processor 40, an image signal processor 42, a memory 44, a power supply circuit 46 and a communication circuit 48.
  • the display 20, the camera assembly 30, the main processor 40, the image signal processor 42, the memory 44, the power supply circuit 46 and the communication circuit 48 are connected together via a bus 50.
  • the main processor 40 executes one or more programs stored in the memory 44.
  • the main processor 40 implements various applications and data processing of the electrical device 10 by executing the programs.
  • the main processor 40 may be one or more computer processors.
  • the main processor 40 is not limited to one CPU core, but it may have a plurality of CPU cores.
  • the main processor 40 may be a main CPU of the electrical device 10, an image processing unit (IPU) or a DSP provided with the camera assembly 30.
  • the image signal processor 42 controls the camera assembly 30 and processes the image captured by the camera assembly 30.
  • the image signal processor 42 can execute a de-mosaic process, a noise reduction process, an auto exposure process, an auto focus process, an auto white balance process, a high dynamic range process and so on to the image captured by the camera assembly 30.
  • the main processor 40 and the image signal processor 42 collaborate with each other to obtain the captured image by the camera assembly 30. That is, the main processor 40 and the image signal processor 42 are configured to capture the image by the camera assembly 30 and execute various kinds of image processes for the captured image.
  • the memory 44 stores a program to be executed by the main processor 40 and various kinds of data. For example, data of the captured image are stored in the memory 44.
  • the memory 44 may be a high-speed RAM memory, or a non-volatile memory such as a flash memory and a magnetic disk memory.
  • the power supply circuit 46 may have a battery such as a lithium-ion rechargeable battery (not shown) and a battery management unit (BMU) for managing the battery.
  • a battery such as a lithium-ion rechargeable battery (not shown) and a battery management unit (BMU) for managing the battery.
  • BMU battery management unit
  • the communication circuit 48 is configured to receive and transmit data to communicate with the Internet or other devices via wireless communication.
  • the wireless communication may adopt any communication standard or protocol, including but not limited to GSM (Global System for Mobile communication) , CDMA (Code Division Multiple Access) , LTE (Long Term Evolution) , LTE-Advanced, 5th generation (5G) .
  • GSM Global System for Mobile communication
  • CDMA Code Division Multiple Access
  • LTE Long Term Evolution
  • 5G 5th generation
  • the communication circuit 48 may include an antenna and a RF (radio frequency) circuit.
  • FIG. 4 illustrates a flowchart of an image capturing process performed by the electrical device 10 according to the present embodiment.
  • the image capturing process is executed by the main processor 40 in collaboration with the image signal processor 42. Therefore, the main processor 40 and the image signal processor 42 constitute an image processor in the present embodiment.
  • the electrical device 10 captures a plurality of first initial images in a first dynamic range by the first main camera 32 of the camera assembly 30 (Step S10) and captures a second initial image in the first dynamic range by the second main camera 34 of the camera assembly 30 (Step S32) .
  • the camera assembly 30 may have a setting of the auto focus, a setting of the auto exposure and a setting of the auto white balance.
  • the camera assembly 30 may have a setting of ISO sensitivity, a setting of an exposure time, a setting of an exposure value, and so on, respectively.
  • the setting of imaging of the camera assembly 30 can be set automatically by the electrical device 10. In other words, the user can select an automatic setting for the setting of imaging of the camera assembly 30.
  • the setting of imaging of the camera assembly 30 can be previously set by the user. In other words, the user can previously set each item of the setting of imaging of the camera assembly 30.
  • the electrical device 10 when the electrical device 10 captures the plurality of the first initial images in the step S10, the electrical device 10 changes the exposure value for each of the first initial images in order to generate an intermediate image in a second dynamic range in the later process.
  • the first dynamic range corresponds to a low dynamic range and the second dynamic range corresponds to a high dynamic range.
  • the electrical device 10 captures three of the first initial images, in which the settings of the exposure value are -1, 0, and +1, respectively. That is, it is assumed that the electrical device 10 has set the exposure value of the camera assembly 30 at 0. In order to capture two additional first initial images, the exposure values are incremented by 1 and decremented by 1, respectively.
  • the number of the first initial images is optional.
  • the number of the first initial images captured in the step S10 may be two, four, five, etc.
  • the electrical device 10 captures one image of the second initial image in order to compute a depth map in the later process.
  • a dynamic range of the first initial images may be different from that of the second initial dynamic range.
  • the first dynamic range is a dynamic range of the first main camera 32 and the second main camera 34.
  • the first initial image of the exposure value at 0 and the second initial image are captured simultaneously, because the exposure value at 0 is the setting of imaging, set by the electrical device 10.
  • the timing of capturing the first initial image of exposure value at 0 and the timing of capturing the second initial image may be different.
  • the electrical device 10 executes a high dynamic range generation process (Step S14) . More specifically, in the high dynamic range generation process, the electrical device 10 generates the intermediate image in the second dynamic range based on the plurality of the first initial images.
  • the electrical device 10 generates the intermediate image based on the three of the first initial images captured at the exposure values at -1, 0, and 1, respectively.
  • the intermediate image of the high dynamic range can be generated by combining and synthesizing the plurality of the first initial images of the low dynamic range.
  • the electrical device 10 computes the depth map based on the intermediate image generated in the step S14 and the second initial image captured in the step S12 (Step S16) .
  • a position of the first main camera 32 is different from a positon of the second main camera 34. Therefore, a viewpoint of the intermediate image generated on the basis of the first initial images captured by the first main camera 32 is different from a viewpoint of the second initial image captured by the second main camera 34.
  • the electrical device 10 can generate the depth map which indicates a distance between the electrical device 10 and surfaces of objects in the intermediate image and the second main image.
  • the depth map may be computed by the main processor 40 and/or the image signal processor 42. Moreover, the depth map may be computed inside a camera module of the camera assembly 30. However, a depth map computation circuit for computing the depth map may be placed in the electrical device 10.
  • the electrical device 10 detects the light source area based on a light detectable image to generate a light source map by detecting the light source in the light detectable image to indicate where the light source area is located in the intermediate image (Step S18) .
  • the light source map may be a kind of image which indicates the center of the light source or it may be a set of one or more coordinates of the center of the light source on the captured image.
  • the light source map may be temporarily stored in the memory 44.
  • the light detectable image is at least one of the plurality of the first initial images and it is suitable for detecting light source area.
  • one image of the first initial images captured at the exposure value at -1 is the light detectable image in this case because the one image captured at the exposure value at -1 is the lowest of the exposure values for the plurality of the first initial images captured in the step S10.
  • the exposure value at -1 is low enough not to detect the light from areas other than the light source area in the first initial images.
  • the exposure value (EV) is preferably negative. That is, the light detectable image should be one image of the first initial images captured by the negative exposure value.
  • the exposure value (EV) can be constituted of the shutter speed, the ISO sensitivity and the diaphragm.
  • the electrical device 10 compares a brightness of a certain area in the light detectable image with a threshold value, and regards the certain area as the light source area if the brightness of the certain area is larger than the threshold value.
  • the electrical device 10 compares the brightness of every area in the light detectable image with the threshold value.
  • the electrical device 10 compares the brightness of every pixel in the light detectable image with the threshold value to detect the light source area in the light detectable image.
  • the threshold value may be stored in the memory 44, set in the program executed by the main processor 40, or set in the image signal processor 42.
  • the electrical device 10 can determine that the pixel is in the light source area if the brightness value of the pixel is more than 128.
  • the threshold value is not necessarily set as a certain value but may be set as a percentage.
  • the threshold value may be set at 50%of the brightness.
  • the electrical device 10 detects the center of area with the brightness more than the threshold value and determines the center to be the center of the light source to generate the light source map.
  • the electrical device 10 detects the light source area in the light detectable image after the depth map has been computed in the present embodiment, the electrical device 10 may detect the light source area in the light detectable image before the depth map is computed. In this case, the step S18 is executed before the step S16 is executed.
  • the light source area may be detected based on the light detectable image by the main processor 40 and/or the image signal processor 42. Moreover, the light source area may be detected based on the light detectable image captured by the camera assembly 30.
  • the electrical device 10 executes an image generation process to generate the captured image (Step S20) .
  • the image generation process is executed based on at least the intermediate image generated in the step S14, the light source map generated in the step S18, and the depth map computed in the step S16.
  • the other images and/or any information may be used to generate the captured image in the image generation process in the step S20.
  • the image generation process includes at least a light source area adjustment process which suitably renders the light source area on the captured image.
  • a position of the light source area is decided in accordance with the light source map and a color of the light source area is decided in accordance with the intermediate image.
  • the image generation process includes at least a Bokeh rendering process based on the depth map. That is, after the intermediate image is generated based on the plurality of the first initial images, the Bokeh rendering process is applied to the intermediate image to defocus a background of the intermediate image based on the depth map. In other words, the background of the intermediate image is defocused to be blurred through the Bokeh rendering process.
  • the color of the intermediate image of the high dynamic range is more natural and more precise than the color of each of the first initial images and each of the second initial image.
  • the Bokeh rendering process is applied to the intermediate image of the high dynamic range, the Bokeh effect is also introduced to the light source area and thus the light source area is too much blurred. Therefore, in the present embodiment, the position of the light source area is adjusted in accordance with the light source map generated in the step S18 and the color of the light source area is adjusted in accordance with the color of the intermediate image.
  • the captured image the user wants to capture is generated.
  • the image generation process to generate the captured image may include various processes being applied to the intermediate image, other than the Bokeh rendering process and the light source area adjustment process.
  • the image generation process may include a de-mosaic process, a noise reduction process, an auto exposure process, an auto focus process, an auto white balance process, a high dynamic range process, and so on, to generate the captured image.
  • the image generation process may be executed by the main processor 40 and/or the image signal processor 42.
  • a Bokeh rendering circuit for executing the Bokeh rendering process may be placed in the electrical device 10.
  • a light source area adjustment circuit for executing the light source area adjustment process may be placed in the electrical device 10.
  • the electrical device 10 outputs the captured image (Step S22) .
  • the electrical device 10 may show the captured image on the display 20.
  • the electrical device 10 may store the captured image in the memory 44.
  • the image capturing process according to the present embodiment is completed.
  • the position of the light source area on the captured image is decided in accordance with the light source map and the color of the light source area on the captured image is decided in accordance with the intermediate image of the high dynamic range. Therefore, the light source area on the captured image can be more beautiful and more natural. Thus, the user can be satisfied with the quality of the captured image by the electrical device 10 according to the present embodiment.
  • one image of the plurality of the first initial images can be used as the light detectable image to detect the light source area, no additional image captured by the camera assembly 30 or no additional mechanical element is required. Thus, the user satisfaction on the captured image can be improved without any additional costs.
  • the electrical device 10 may changes the setting of imaging other than the exposure value for capturing each of the plurality of the first initial images.
  • the electrical device 10 may change the ISO sensitivity, the exposure time and so on for capturing each of the plurality of the first initial images in the step S10.
  • the most suitable image for detecting the light source area in the first initial images and for generating the light source map is used as the light detectable image in the step S18.
  • the electrical device 10 captures the plurality of the first initial images in order to generate the intermediate image of the high dynamic range, the most suitable image to detect the light source area is selected as the light detectable image in the step S18.
  • the electrical device 10 has two main cameras on the back side thereof in the first embodiment of the present disclosure, the electrical device 10 has one main camera on the back side thereof in a second embodiment of the present disclosure.
  • differentials from the first embodiment will be explained.
  • FIG. 5 illustrates the back side view of the electrical device 10 according to the second embodiment of the present disclosure. Also, FIG. 5 is a diagram which corresponds to FIG. 1 in the first embodiment. The front side view of the electrical device 10 according to the second embodiment is substantially the same as FIG. 2 in the first embodiment.
  • the electrical device 10 according to the present embodiment has the camera assembly 30 which includes a main camera 38 but does not include any additional main cameras. That is, the camera assembly 30 of the electrical device 10 according to the present embodiment has one main camera 38 in the back side of the electrical device 10 in order to capture the image in the back side thereof.
  • the electrical device 10 has the sub camera 36 in the same manner as that of the first embodiment. That is, the camera assembly 30 of the electrical device 10 according to the second embodiment also includes one so called in-camera in the front side of the electrical device 10 in order to capture the image in the front side thereof.
  • FIG. 6 illustrates a flowchart of an image capturing process performed by the electrical device 10 according to the second embodiment. Also in the present embodiment, the image capturing process is executed by the main processor 40 in collaboration with the image signal processor 42. Therefore, the main processor 40 and the image signal processor 42 constitute the image processor in the present embodiment.
  • the electrical device 10 captures, by the main camera 38 of the camera assembly 30, the plurality of the first initial images in the first dynamic range which is lower than the second dynamic range (Step S30) .
  • the step S30 in the second embodiment is substantially the same as the step S10 in the first embodiment except that of the plurality of the first initial images are captured by the single main camera 38.
  • the electrical device 10 of the second embodiment does not capture the second initial image because the camera assembly 30 of the electrical device 10 does not have the second main camera 34.
  • the step S12 to capture the second initial image in the first embodiment is omitted in the second embodiment.
  • the electrical device 10 executes the high dynamic range generation process in order to generate the intermediate image of the high dynamic range based on the plurality of the first initial images of the low dynamic range (Step S14) .
  • the step S14 in the second embodiment is substantially the same as that in the first embodiment.
  • the electrical device 10 detects the light source area based on the light detectable image to generate the light source map by detecting the light source in the light detectable image to indicate where the light source area is located in the intermediate image (Step S18) .
  • the step S18 in the second embodiment is substantially the same as that in the first embodiment.
  • the electrical device 10 executes an image generation process to generate the captured image (Step S32) .
  • the image generation process is executed based on at least the intermediate image generated in the step S14 and the light source map generated in the step S18.
  • the other images and/or any information may be used to generate the captured image in the image generation process in the step S32.
  • the depth map is not used in the image generation process according to the present embodiment because the camera assembly 30 includes the single main camera 38. That is, the step S16 to generate the depth map in the first embodiment is omitted in the second embodiment.
  • the image generation process includes a segmentation process instead of the Bokeh rendering process.
  • the Bokeh effect is introduced to the captured image without the depth map computed in the step S16 in the first embodiment.
  • the Bokeh effect is introduced to the captured image by analyzing and recognizing a human face in the intermediate image, segmenting the human silhouette and introducing the Bokeh effect to a background of the human silhouette in the intermediate image.
  • the image generation process according to the present embodiment includes the light source area adjustment process in the same manner as that of the first embodiment. That is, also in the present embodiment, the position of the light source area is decided in accordance with the light source map and a color of the light source area is decided in accordance with the intermediate image.
  • the electrical device 10 outputs the captured image (Step S22) .
  • the step S22 in the second embodiment is substantially the same as that in the first embodiment.
  • the position of the light source area on the captured image is decided in accordance with the light source map and the color of the light source are on the captured image is decided in accordance with the intermediate image of the high dynamic range. Therefore, the light source area on the captured image can be more beautiful and more natural. Thus, the user can be satisfied with the quality of the captured image captured by the electrical device 10 according to the present embodiment as well.
  • the electrical device 10 can execute the image generation process including the light source area adjustment process. Therefore, the present embodiment can be implemented by the camera assembly 30 with the single main camera 38 of the electrical device 10.
  • the present embodiment can be implemented by the sub camera 36 in the front side of the electrical device 10.
  • the image capturing process in FIG. 6 can be executed based on the plurality of the first initial images captured by the sub camera 36.
  • the quality of the captured image captured by the sub camera 36 can also be improved.
  • first and second are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features.
  • the feature defined with “first” and “second” may comprise one or more of this feature.
  • a plurality of means two or more than two, unless specified otherwise.
  • the terms “mounted” , “connected” , “coupled” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements, which can be understood by those skilled in the art according to specific situations.
  • a structure in which a first feature is "on" or “below” a second feature may include an embodiment in which the first feature is in direct contact with the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are contacted via an additional feature formed therebetween.
  • a first feature "on” , “above” or “on top of” a second feature may include an embodiment in which the first feature is right or obliquely “on” , “above” or “on top of” the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature “below” , “under” or “on bottom of” a second feature may include an embodiment in which the first feature is right or obliquely “below” , "under” or “on bottom of” the second feature, or just means that the first feature is at a height lower than that of the second feature.
  • Any process or method described in a flow chart or described herein in other ways may be understood to include one or more modules, segments or portions of codes of executable instructions for achieving specific logical functions or steps in the process, and the scope of a preferred embodiment of the present disclosure includes other implementations, in which it should be understood by those skilled in the art that functions may be implemented in a sequence other than the sequences shown or discussed, including in a substantially identical sequence or in an opposite sequence.
  • the logic and/or step described in other manners herein or shown in the flow chart, for example, a particular sequence table of executable instructions for realizing the logical function may be specifically achieved in any computer readable medium to be used by the instruction execution system, device or equipment (such as the system based on computers, the system comprising processors or other systems capable of obtaining the instruction from the instruction execution system, device and equipment and executing the instruction) , or to be used in combination with the instruction execution system, device and equipment.
  • the computer readable medium may be any device adaptive for including, storing, communicating, propagating or transferring programs to be used by or in combination with the instruction execution system, device or equipment.
  • the computer readable medium comprise but are not limited to: an electronic connection (an electronic device) with one or more wires, a portable computer enclosure (a magnetic device) , a random access memory (RAM) , a read only memory (ROM) , an erasable programmable read-only memory (EPROM or a flash memory) , an optical fiber device and a portable compact disk read-only memory (CDROM) .
  • the computer readable medium may even be a paper or other appropriate medium capable of printing programs thereon, this is because, for example, the paper or other appropriate medium may be optically scanned and then edited, decrypted or processed with other appropriate methods when necessary to obtain the programs in an electric manner, and then the programs may be stored in the computer memories.
  • each part of the present disclosure may be realized by the hardware, software, firmware or their combination.
  • a plurality of steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instruction execution system.
  • the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA) , a field programmable gate array (FPGA) , etc.
  • each function cell of the embodiments of the present disclosure may be integrated in a processing module, or these cells may be separate physical existence, or two or more cells are integrated in a processing module.
  • the integrated module may be realized in a form of hardware or in a form of software function modules. When the integrated module is realized in a form of software function module and is sold or used as a standalone product, the integrated module may be stored in a computer readable storage medium.
  • the storage medium mentioned above may be read-only memories, magnetic disks, CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Human Computer Interaction (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)

Abstract

A method includes capturing first initial images in a first dynamic range, wherein the first initial images are captured at different settings of imaging; generating an intermediate image in a second dynamic range based on the first initial images, wherein the second dynamic range is higher than the first dynamic range; detecting a light source area based on a light detectable image to generate a light source map; wherein the light detectable image is at least one image of the first initial images and is suitable for detecting the light source area; generating a captured image based on the intermediate image and the light source map, wherein a position of the light source area of the captured image is decided in accordance with the light source map and a color of the light source area of the captured image is decided in accordance with the intermediate image.

Description

METHOD OF GENERATING CAPTURED IMAGE AND ELECTRICAL DEVICE FIELD
The present disclosure relates to a method of generating a captured image in an electrical device including a camera assembly and such an electrical device.
BACKGROUND
Electrical devices such as smartphones and tablet terminals are widely used in our daily life. Nowadays, many of the electrical devices are equipped with a camera assembly to capture an image. Some of the electrical devices are portable and are thus easy to carry. Therefore, a user of the electrical device can easily capture an image by using the camera assembly of the electrical device anytime, anywhere.
However, if the user of the electrical device captures an image at night, the captured image includes one or more light source areas which are overexposed or halation. The overexposed light source areas and the halation areas in the captured image can be subject to an image correction process after capturing the image.
However, even if the image correction process has been applied to the captured image, a quality of the light source areas on the captured image is occasionally not sufficient for the user because, for example, its color is not suitable for the light source area or a Bokeh effect introduced to the light source area on the captured image is too strong. Therefore, a technique to improve the quality of the light source area on the captured image has been awaited.
SUMMARY
The present disclosure aims to solve at least one of the technical problems mentioned above. Accordingly, the present  disclosure needs to provide a method of generating a captured image and an electrical device.
In accordance with the present disclosure, a method of generating a captured image in an electrical device including a camera assembly may include:
capturing a plurality of first initial images in a first dynamic range by the camera assembly, wherein the plurality of the first initial images are captured at different settings of imaging;
generating an intermediate image in a second dynamic range based on the plurality of the first initial images, wherein the second dynamic range is higher than the first dynamic range;
detecting a light source area based on a light detectable image to generate a light source map; wherein the light detectable image is at least one image of the plurality of the first initial images and is suitable for detecting the light source area;
generating the captured image based on the intermediate image and the light source map, wherein a position of the light source area of the captured image is decided in accordance with the light source map and a color of the light source area of the captured image is decided in accordance with the intermediate image.
In some embodiments, in the method, the capturing the plurality of the first initial images may include capturing the plurality of the first initial images at different exposure values.
In some embodiments, in the method, the light detectable image may be the one image of the plurality of the first initial images, which is captured at the lowest of the exposure values.
In some embodiments, in the method, the lowest of the exposure values may be low enough not to detect a light from areas other than the light source area in the first initial images.
In some embodiments, in the method, the lowest of the exposure values may be negative.
In some embodiments, the method may further include:
capturing a second initial image by the camera assembly; and
computing a depth map based on the plurality of the first initial images and the second initial images.
In some embodiments, in the method, the generating the captured image may further include executing a Bokeh rendering process to introduce a Bokeh effect to the captured image based on the depth map.
In some embodiments, in the method, the plurality of the first initial images may be captured by a first main camera of the camera assembly and the second initial image may be captured by a second main camera of the camera assembly.
In some embodiments, in the method, the generating the captured image may further include executing a segmentation process to introduce a Bokeh effect to the captured image based on the intermediate image.
In some embodiments, in the method, the plurality of the first initial images may be captured by a first main camera in a back side of the electrical device or a sub camera in a front side of the camera assembly of the electrical device.
In accordance with the present disclosure, an electrical device may include:
a camera assembly capable of capturing an image in a first dynamic range; and
an image processor configured to:
capture a plurality of first initial images in a first dynamic range by the camera assembly, wherein the plurality of the first initial images are captured at different settings of imaging;
generate an intermediate image in a second dynamic range based on the plurality of the first initial images, wherein the second dynamic range is higher than the first dynamic range;
detect a light source area based on a light detectable image to generate a light source map; wherein the light detectable image is at least one image of the plurality of the  first initial images and is suitable for detecting light source area;
generate the captured image based on the intermediate image and the light source map, wherein a position of the light source area of the captured image is decided in accordance with the light source map and a color of the light source area of the captured image is decided in accordance with the intermediate image.
In some embodiments, in the electrical device, when the plurality of the first initial images are captured, the plurality of the first initial images may be captured at different exposure values.
In some embodiments, in the electrical device, the light detectable image may be the one image of the plurality of the first initial images, which is captured at the lowest of the exposure values.
In some embodiments, in the electrical device, the lowest of the exposure values may be low enough not to detect a light from areas other than the light source area in the first initial images.
In some embodiments, in the electrical device, the lowest of the exposure values may be negative.
In some embodiments, in the electrical device, the image processor may be further configured to:
capture a second initial image by the camera assembly; and
compute a depth map based on the plurality of the first initial images and the second initial images.
In some embodiments, in the electrical device, when the captured image is generated, a Bokeh effect may be also introduced to the captured image through a Bokeh rendering process based on the depth map.
In some embodiments, in the electrical device, the plurality of the first initial images may be captured by a first main camera of the camera assembly and the second initial image may be captured by a second main camera of the camera  assembly.
In some embodiments, in the electrical device, when the captured image is generated, a Bokeh effect may be also introduced to the captured image through a segmentation process based on the intermediate image.
In some embodiments, in the electrical device, the plurality of the first initial images may be captured by a first main camera in a back side of the electrical device or a sub camera in a front side of the camera assembly of the electrical device.
BRIEF DESCRIPTION OF THE DRAWINGS
These and/or other aspects and advantages of embodiments of the present disclosure will become apparent and more readily appreciated from the following descriptions made with reference to the drawings, in which:
FIG. 1 illustrates a back side view of an electrical device according to a first embodiment of the present disclosure;
FIG. 2 illustrates a front side view of the electrical device according to the first embodiment of the present disclosure;
FIG. 3 illustrates a block diagram of the electrical device according to the first embodiment of the present disclosure;
FIG. 4 illustrates a flowchart of an image capturing process performed by the electrical device according to the first embodiment of the present disclosure;
FIG. 5 illustrates a back side view of the electrical device according to a second embodiment of the present disclosure; and
FIG. 6 illustrates a flowchart of an image capturing process performed by the electrical device according to the second embodiment of the present disclosure.
DETAILED DESCRIPTION
Embodiments of the present disclosure will be described in detail and examples of the embodiments will be illustrated in the accompanying drawings. The same or similar elements and  the elements having same or similar functions are denoted by like reference numerals throughout the descriptions. The embodiments described herein with reference to the drawings are explanatory, which aim to illustrate the present disclosure, but shall not be construed to limit the present disclosure.
[First Embodiment]
FIG. 1 illustrates a back side view of an electrical device 10 according to a first embodiment of the present disclosure and FIG. 2 illustrates a front side view of the electrical device 10 according to the first embodiment of the present disclosure.
As shown in FIG. 1 and FIG. 2, the electrical device 10 may include a display 20 and a camera assembly 30. In the present embodiment, the camera assembly 30 includes a first main camera 32, a second main camera 34 and a sub camera 36. The first main camera 32 and the second main camera 34 can capture an image in back side of the electrical device 10 and the sub camera 36 can capture an image in front side of the electrical device 10. Therefore, the first main camera 32 and the second main camera 34 are so called out-camera whereas the sub camera 36 is so called in-camera.
The first main camera 32 and the second main camera 34 may have the same performance and/or characteristics or they may have different performance and/or characteristics. For example, in a case where the first main camera 32 and the second main camera 34 have different performance and/or characteristics from each other, the first main camera 32 may be equipped with a full color image sensor and the second main camera 34 may be equipped with a black-and-white image sensor. Also, the first main camera 32 may be a camera suitable for capturing a still image and the second main camera 34 may be a camera suitable for capturing a moving image. Also, the first main camera 32 may be a camera equipped with a wide-angle lens and the second main camera 34 may be a camera equipped with a telephoto lens.
In the present embodiment, the performance of the sub camera 36 is lower than that of the first main camera 32 and  the second main camera 34. However, the performance of the sub camera 36 may be the same as that of the first main camera 32 and the second main camera 34.
Although the electrical device 10 according to the present embodiment has three cameras, the electrical device may have more than three cameras. For example, the electrical device 10 may have three, four, five, etc. main cameras.
FIG. 3 illustrates a block diagram of the electrical device 10 according to the present embodiment. As shown in FIG. 3, in addition to the display 20 and the camera assembly 30, the electrical device 10 may include a main processor 40, an image signal processor 42, a memory 44, a power supply circuit 46 and a communication circuit 48. The display 20, the camera assembly 30, the main processor 40, the image signal processor 42, the memory 44, the power supply circuit 46 and the communication circuit 48 are connected together via a bus 50.
The main processor 40 executes one or more programs stored in the memory 44. The main processor 40 implements various applications and data processing of the electrical device 10 by executing the programs. The main processor 40 may be one or more computer processors. The main processor 40 is not limited to one CPU core, but it may have a plurality of CPU cores. The main processor 40 may be a main CPU of the electrical device 10, an image processing unit (IPU) or a DSP provided with the camera assembly 30.
The image signal processor 42 controls the camera assembly 30 and processes the image captured by the camera assembly 30. For example, the image signal processor 42 can execute a de-mosaic process, a noise reduction process, an auto exposure process, an auto focus process, an auto white balance process, a high dynamic range process and so on to the image captured by the camera assembly 30.
In the present embodiment, the main processor 40 and the image signal processor 42 collaborate with each other to obtain the captured image by the camera assembly 30. That is, the main processor 40 and the image signal processor 42 are  configured to capture the image by the camera assembly 30 and execute various kinds of image processes for the captured image.
The memory 44 stores a program to be executed by the main processor 40 and various kinds of data. For example, data of the captured image are stored in the memory 44.
The memory 44 may be a high-speed RAM memory, or a non-volatile memory such as a flash memory and a magnetic disk memory.
The power supply circuit 46 may have a battery such as a lithium-ion rechargeable battery (not shown) and a battery management unit (BMU) for managing the battery.
The communication circuit 48 is configured to receive and transmit data to communicate with the Internet or other devices via wireless communication. The wireless communication may adopt any communication standard or protocol, including but not limited to GSM (Global System for Mobile communication) , CDMA (Code Division Multiple Access) , LTE (Long Term Evolution) , LTE-Advanced, 5th generation (5G) .
The communication circuit 48 may include an antenna and a RF (radio frequency) circuit.
FIG. 4 illustrates a flowchart of an image capturing process performed by the electrical device 10 according to the present embodiment. In the present embodiment, the image capturing process is executed by the main processor 40 in collaboration with the image signal processor 42. Therefore, the main processor 40 and the image signal processor 42 constitute an image processor in the present embodiment.
As shown in FIG. 4, the electrical device 10 captures a plurality of first initial images in a first dynamic range by the first main camera 32 of the camera assembly 30 (Step S10) and captures a second initial image in the first dynamic range by the second main camera 34 of the camera assembly 30 (Step S32) .
In the present embodiment, for example, the camera assembly 30 may have a setting of the auto focus, a setting of the auto exposure and a setting of the auto white balance. In other words, the camera assembly 30 may have a setting of ISO  sensitivity, a setting of an exposure time, a setting of an exposure value, and so on, respectively.
The setting of imaging of the camera assembly 30 can be set automatically by the electrical device 10. In other words, the user can select an automatic setting for the setting of imaging of the camera assembly 30. Alternatively, the setting of imaging of the camera assembly 30 can be previously set by the user. In other words, the user can previously set each item of the setting of imaging of the camera assembly 30.
Furthermore, in the present embodiment, when the electrical device 10 captures the plurality of the first initial images in the step S10, the electrical device 10 changes the exposure value for each of the first initial images in order to generate an intermediate image in a second dynamic range in the later process. In the present embodiment, the first dynamic range corresponds to a low dynamic range and the second dynamic range corresponds to a high dynamic range.
For example, in the step S10, the electrical device 10 captures three of the first initial images, in which the settings of the exposure value are -1, 0, and +1, respectively. That is, it is assumed that the electrical device 10 has set the exposure value of the camera assembly 30 at 0. In order to capture two additional first initial images, the exposure values are incremented by 1 and decremented by 1, respectively.
However, the number of the first initial images is optional. For example, the number of the first initial images captured in the step S10 may be two, four, five, etc.
When the electrical device 10 captures the second initial image in the step S12, the electrical device 10 captures one image of the second initial image in order to compute a depth map in the later process. In the present embodiment, although both the plurality of the first initial images and the second initial images are captured in the first dynamic range, a dynamic range of the first initial images may be different from that of the second initial dynamic range. In other words, the first dynamic range is a dynamic range of the first main camera 32 and the  second main camera 34.
In the present embodiment, the first initial image of the exposure value at 0 and the second initial image are captured simultaneously, because the exposure value at 0 is the setting of imaging, set by the electrical device 10. However, the timing of capturing the first initial image of exposure value at 0 and the timing of capturing the second initial image may be different.
Next, the electrical device 10 executes a high dynamic range generation process (Step S14) . More specifically, in the high dynamic range generation process, the electrical device 10 generates the intermediate image in the second dynamic range based on the plurality of the first initial images.
In the present embodiment, the electrical device 10 generates the intermediate image based on the three of the first initial images captured at the exposure values at -1, 0, and 1, respectively. The intermediate image of the high dynamic range can be generated by combining and synthesizing the plurality of the first initial images of the low dynamic range.
Next, as shown in FIG. 4, the electrical device 10 computes the depth map based on the intermediate image generated in the step S14 and the second initial image captured in the step S12 (Step S16) .
More specifically, a position of the first main camera 32 is different from a positon of the second main camera 34. Therefore, a viewpoint of the intermediate image generated on the basis of the first initial images captured by the first main camera 32 is different from a viewpoint of the second initial image captured by the second main camera 34. Using a parallax of the intermediate image and the second initial image, the electrical device 10 can generate the depth map which indicates a distance between the electrical device 10 and surfaces of objects in the intermediate image and the second main image.
For example, the depth map may be computed by the main processor 40 and/or the image signal processor 42.  Moreover, the depth map may be computed inside a camera module of the camera assembly 30. However, a depth map computation circuit for computing the depth map may be placed in the electrical device 10.
Next, as shown in FIG. 4, the electrical device 10 detects the light source area based on a light detectable image to generate a light source map by detecting the light source in the light detectable image to indicate where the light source area is located in the intermediate image (Step S18) .
The light source map may be a kind of image which indicates the center of the light source or it may be a set of one or more coordinates of the center of the light source on the captured image. The light source map may be temporarily stored in the memory 44.
The light detectable image is at least one of the plurality of the first initial images and it is suitable for detecting light source area. For example, one image of the first initial images captured at the exposure value at -1 is the light detectable image in this case because the one image captured at the exposure value at -1 is the lowest of the exposure values for the plurality of the first initial images captured in the step S10. In other words, the exposure value at -1 is low enough not to detect the light from areas other than the light source area in the first initial images.
In general, in order to detect the light source area in the light detectable image, the exposure value (EV) is preferably negative. That is, the light detectable image should be one image of the first initial images captured by the negative exposure value. Here, the exposure value (EV) can be constituted of the shutter speed, the ISO sensitivity and the diaphragm.
In the present embodiment, in order to generate the light source map, the electrical device 10 compares a brightness of a certain area in the light detectable image with a threshold value, and regards the certain area as the light source area if the brightness of the certain area is larger than the threshold value.
More specifically, the electrical device 10 compares the brightness of every area in the light detectable image with the threshold value. In other words, the electrical device 10 compares the brightness of every pixel in the light detectable image with the threshold value to detect the light source area in the light detectable image. The threshold value may be stored in the memory 44, set in the program executed by the main processor 40, or set in the image signal processor 42.
For example, in a case where every pixel in the light detectable image includes a brightness composed of 256 gradations, the electrical device 10 can determine that the pixel is in the light source area if the brightness value of the pixel is more than 128.
Incidentally, the threshold value is not necessarily set as a certain value but may be set as a percentage. For example, in a case where the maximum brightness is 100%and the minimum brightness is 0%, the threshold value may be set at 50%of the brightness.
Thereafter, the electrical device 10 detects the center of area with the brightness more than the threshold value and determines the center to be the center of the light source to generate the light source map.
Moreover, although the electrical device 10 detects the light source area in the light detectable image after the depth map has been computed in the present embodiment, the electrical device 10 may detect the light source area in the light detectable image before the depth map is computed. In this case, the step S18 is executed before the step S16 is executed.
For example, the light source area may be detected based on the light detectable image by the main processor 40 and/or the image signal processor 42. Moreover, the light source area may be detected based on the light detectable image captured by the camera assembly 30.
Next, as shown in FIG. 4, the electrical device 10 executes an image generation process to generate the captured image (Step S20) . In the present embodiment, the image  generation process is executed based on at least the intermediate image generated in the step S14, the light source map generated in the step S18, and the depth map computed in the step S16. Of course, the other images and/or any information may be used to generate the captured image in the image generation process in the step S20.
In the present embodiment, the image generation process includes at least a light source area adjustment process which suitably renders the light source area on the captured image. In the light source area adjustment process, a position of the light source area is decided in accordance with the light source map and a color of the light source area is decided in accordance with the intermediate image.
Also, the image generation process includes at least a Bokeh rendering process based on the depth map. That is, after the intermediate image is generated based on the plurality of the first initial images, the Bokeh rendering process is applied to the intermediate image to defocus a background of the intermediate image based on the depth map. In other words, the background of the intermediate image is defocused to be blurred through the Bokeh rendering process.
In general, the color of the intermediate image of the high dynamic range is more natural and more precise than the color of each of the first initial images and each of the second initial image. On the other hand, if the Bokeh rendering process is applied to the intermediate image of the high dynamic range, the Bokeh effect is also introduced to the light source area and thus the light source area is too much blurred. Therefore, in the present embodiment, the position of the light source area is adjusted in accordance with the light source map generated in the step S18 and the color of the light source area is adjusted in accordance with the color of the intermediate image.
When the image generation process in step S20 is completed, the captured image the user wants to capture is generated. Of course, the image generation process to  generate the captured image may include various processes being applied to the intermediate image, other than the Bokeh rendering process and the light source area adjustment process. For example, the image generation process may include a de-mosaic process, a noise reduction process, an auto exposure process, an auto focus process, an auto white balance process, a high dynamic range process, and so on, to generate the captured image.
For example, the image generation process may be executed by the main processor 40 and/or the image signal processor 42. However, a Bokeh rendering circuit for executing the Bokeh rendering process may be placed in the electrical device 10. Similarly, a light source area adjustment circuit for executing the light source area adjustment process may be placed in the electrical device 10.
Next, as shown in FIG. 4, the electrical device 10 outputs the captured image (Step S22) . For example, the electrical device 10 may show the captured image on the display 20. Also, the electrical device 10 may store the captured image in the memory 44.
After the electrical device 10 has output the captured image in the step S22, the image capturing process according to the present embodiment is completed.
As explained above, in accordance with the electrical device 10 of the present embodiment, when the electrical device 10 generates the captured image, the position of the light source area on the captured image is decided in accordance with the light source map and the color of the light source area on the captured image is decided in accordance with the intermediate image of the high dynamic range. Therefore, the light source area on the captured image can be more beautiful and more natural. Thus, the user can be satisfied with the quality of the captured image by the electrical device 10 according to the present embodiment.
In addition, since one image of the plurality of the first initial images can be used as the light detectable image to  detect the light source area, no additional image captured by the camera assembly 30 or no additional mechanical element is required. Thus, the user satisfaction on the captured image can be improved without any additional costs.
Although the electrical device 10 mentioned above changes the exposure value for capturing each of the plurality of the first initial images in the step S10 in order to generate an intermediate image in the high dynamic range in the step S14, the electrical device 10 may changes the setting of imaging other than the exposure value for capturing each of the plurality of the first initial images. For example, the electrical device 10 may change the ISO sensitivity, the exposure time and so on for capturing each of the plurality of the first initial images in the step S10.
In any case, the most suitable image for detecting the light source area in the first initial images and for generating the light source map is used as the light detectable image in the step S18. In other words, since the electrical device 10 captures the plurality of the first initial images in order to generate the intermediate image of the high dynamic range, the most suitable image to detect the light source area is selected as the light detectable image in the step S18.
[Second embodiment]
Although the electrical device 10 has two main cameras on the back side thereof in the first embodiment of the present disclosure, the electrical device 10 has one main camera on the back side thereof in a second embodiment of the present disclosure. Hereinafter, differentials from the first embodiment will be explained.
FIG. 5 illustrates the back side view of the electrical device 10 according to the second embodiment of the present disclosure. Also, FIG. 5 is a diagram which corresponds to FIG. 1 in the first embodiment. The front side view of the electrical device 10 according to the second embodiment is substantially the same as FIG. 2 in the first embodiment.
As shown in FIG. 5, the electrical device 10 according to the present embodiment has the camera assembly 30 which includes a main camera 38 but does not include any additional main cameras. That is, the camera assembly 30 of the electrical device 10 according to the present embodiment has one main camera 38 in the back side of the electrical device 10 in order to capture the image in the back side thereof.
As shown in FIG. 2, also in the second embodiment, the electrical device 10 has the sub camera 36 in the same manner as that of the first embodiment. That is, the camera assembly 30 of the electrical device 10 according to the second embodiment also includes one so called in-camera in the front side of the electrical device 10 in order to capture the image in the front side thereof.
FIG. 6 illustrates a flowchart of an image capturing process performed by the electrical device 10 according to the second embodiment. Also in the present embodiment, the image capturing process is executed by the main processor 40 in collaboration with the image signal processor 42. Therefore, the main processor 40 and the image signal processor 42 constitute the image processor in the present embodiment.
As shown in FIG. 6, the electrical device 10 captures, by the main camera 38 of the camera assembly 30, the plurality of the first initial images in the first dynamic range which is lower than the second dynamic range (Step S30) . The step S30 in the second embodiment is substantially the same as the step S10 in the first embodiment except that of the plurality of the first initial images are captured by the single main camera 38.
On the other hand, the electrical device 10 of the second embodiment does not capture the second initial image because the camera assembly 30 of the electrical device 10 does not have the second main camera 34. In other words, the step S12 to capture the second initial image in the first embodiment is omitted in the second embodiment.
Next, as shown in FIG. 6, the electrical device 10 executes the high dynamic range generation process in order to  generate the intermediate image of the high dynamic range based on the plurality of the first initial images of the low dynamic range (Step S14) . The step S14 in the second embodiment is substantially the same as that in the first embodiment.
Next, as shown in FIG. 6, the electrical device 10 detects the light source area based on the light detectable image to generate the light source map by detecting the light source in the light detectable image to indicate where the light source area is located in the intermediate image (Step S18) . The step S18 in the second embodiment is substantially the same as that in the first embodiment.
Next, as shown in FIG. 6, the electrical device 10 executes an image generation process to generate the captured image (Step S32) . In the present embodiment, the image generation process is executed based on at least the intermediate image generated in the step S14 and the light source map generated in the step S18. Of course, the other images and/or any information may be used to generate the captured image in the image generation process in the step S32.
However, the depth map is not used in the image generation process according to the present embodiment because the camera assembly 30 includes the single main camera 38. That is, the step S16 to generate the depth map in the first embodiment is omitted in the second embodiment.
Therefore, the image generation process according to the present embodiment includes a segmentation process instead of the Bokeh rendering process. In the segmentation process, the Bokeh effect is introduced to the captured image without the depth map computed in the step S16 in the first embodiment. For example, the Bokeh effect is introduced to the captured image by analyzing and recognizing a human face in the intermediate image, segmenting the human silhouette and introducing the Bokeh effect to a background of the human silhouette in the intermediate image.
The image generation process according to the present embodiment includes the light source area adjustment process in the same manner as that of the first embodiment. That is, also in the present embodiment, the position of the light source area is decided in accordance with the light source map and a color of the light source area is decided in accordance with the intermediate image.
Next, as shown in FIG. 4, the electrical device 10 outputs the captured image (Step S22) . The step S22 in the second embodiment is substantially the same as that in the first embodiment.
As explained above, also in accordance with the electrical device 10 of the present embodiment, when the electrical device 10 generates the captured image, the position of the light source area on the captured image is decided in accordance with the light source map and the color of the light source are on the captured image is decided in accordance with the intermediate image of the high dynamic range. Therefore, the light source area on the captured image can be more beautiful and more natural. Thus, the user can be satisfied with the quality of the captured image captured by the electrical device 10 according to the present embodiment as well.
Moreover, even though the electrical device 10 includes the single main camera 38, the electrical device 10 can execute the image generation process including the light source area adjustment process. Therefore, the present embodiment can be implemented by the camera assembly 30 with the single main camera 38 of the electrical device 10.
Similarly, the present embodiment can be implemented by the sub camera 36 in the front side of the electrical device 10. In other words, if the sub camera 36 captures the plurality of the first initial images, the image capturing process in FIG. 6 can be executed based on the plurality of the first initial images captured by the sub camera 36. As a result, the quality of the captured image captured by the sub camera 36 can also be improved.
In the description of embodiments of the present disclosure, it is to be understood that terms such as "central" , "longitudinal" , "transverse" , "length" , "width" , "thickness" , "upper" , "lower" , "front" , "rear" , "back" , "left" , "right" , "vertical" , "horizontal" , "top" , "bottom" , "inner" , "outer" , "clockwise" and "counterclockwise" should be construed to refer to the orientation or the position as described or as shown in the drawings under discussion. These relative terms are only used to simplify description of the present disclosure, and do not indicate or imply that the device or element referred to must have a particular orientation, or constructed or operated in a particular orientation. Thus, these terms cannot be constructed to limit the present disclosure.
In addition, terms such as "first" and "second" are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, the feature defined with "first" and "second" may comprise one or more of this feature. In the description of the present disclosure, "a plurality of" means two or more than two, unless specified otherwise.
In the description of embodiments of the present disclosure, unless specified or limited otherwise, the terms "mounted" , "connected" , "coupled" and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements, which can be understood by those skilled in the art according to specific situations.
In the embodiments of the present disclosure, unless specified or limited otherwise, a structure in which a first feature is "on" or "below" a second feature may include an embodiment in which the first feature is in direct contact with  the second feature, and may also include an embodiment in which the first feature and the second feature are not in direct contact with each other, but are contacted via an additional feature formed therebetween. Furthermore, a first feature "on" , "above" or "on top of" a second feature may include an embodiment in which the first feature is right or obliquely "on" , "above" or "on top of" the second feature, or just means that the first feature is at a height higher than that of the second feature; while a first feature "below" , "under" or "on bottom of" a second feature may include an embodiment in which the first feature is right or obliquely "below" , "under" or "on bottom of" the second feature, or just means that the first feature is at a height lower than that of the second feature.
Various embodiments and examples are provided in the above description to implement different structures of the present disclosure. In order to simplify the present disclosure, certain elements and settings are described in the above. However, these elements and settings are only by way of example and are not intended to limit the present disclosure. In addition, reference numbers and/or reference letters may be repeated in different examples in the present disclosure. This repetition is for the purpose of simplification and clarity and does not refer to relations between different embodiments and/or settings. Furthermore, examples of different processes and materials are provided in the present disclosure. However, it would be appreciated by those skilled in the art that other processes and/or materials may be also applied.
Reference throughout this specification to "an embodiment" , "some embodiments" , "an exemplary embodiment" , "an example" , "a specific example" or "some examples" means that a particular feature, structure, material, or characteristics described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the above phrases throughout this specification are not necessarily referring to the same embodiment or example of the present  disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Any process or method described in a flow chart or described herein in other ways may be understood to include one or more modules, segments or portions of codes of executable instructions for achieving specific logical functions or steps in the process, and the scope of a preferred embodiment of the present disclosure includes other implementations, in which it should be understood by those skilled in the art that functions may be implemented in a sequence other than the sequences shown or discussed, including in a substantially identical sequence or in an opposite sequence.
The logic and/or step described in other manners herein or shown in the flow chart, for example, a particular sequence table of executable instructions for realizing the logical function, may be specifically achieved in any computer readable medium to be used by the instruction execution system, device or equipment (such as the system based on computers, the system comprising processors or other systems capable of obtaining the instruction from the instruction execution system, device and equipment and executing the instruction) , or to be used in combination with the instruction execution system, device and equipment. As to the specification, "the computer readable medium" may be any device adaptive for including, storing, communicating, propagating or transferring programs to be used by or in combination with the instruction execution system, device or equipment. More specific examples of the computer readable medium comprise but are not limited to: an electronic connection (an electronic device) with one or more wires, a portable computer enclosure (a magnetic device) , a random access memory (RAM) , a read only memory (ROM) , an erasable programmable read-only memory (EPROM or a flash memory) , an optical fiber device and a portable compact disk read-only memory (CDROM) . In addition, the computer readable medium may even be a paper or other appropriate medium capable of  printing programs thereon, this is because, for example, the paper or other appropriate medium may be optically scanned and then edited, decrypted or processed with other appropriate methods when necessary to obtain the programs in an electric manner, and then the programs may be stored in the computer memories.
It should be understood that each part of the present disclosure may be realized by the hardware, software, firmware or their combination. In the above embodiments, a plurality of steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instruction execution system. For example, if it is realized by the hardware, likewise in another embodiment, the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA) , a field programmable gate array (FPGA) , etc.
Those skilled in the art shall understand that all or parts of the steps in the above exemplifying method of the present disclosure may be achieved by commanding the related hardware with programs. The programs may be stored in a computer readable storage medium, and the programs comprise one or a combination of the steps in the method embodiments of the present disclosure when run on a computer.
In addition, each function cell of the embodiments of the present disclosure may be integrated in a processing module, or these cells may be separate physical existence, or two or more cells are integrated in a processing module. The integrated module may be realized in a form of hardware or in a form of software function modules. When the integrated module is realized in a form of software function module and is sold or used as a standalone product, the integrated module may be stored in a computer readable storage medium.
The storage medium mentioned above may be read-only  memories, magnetic disks, CD, etc.
Although embodiments of the present disclosure have been shown and described, it would be appreciated by those skilled in the art that the embodiments are explanatory and cannot be construed to limit the present disclosure, and changes, modifications, alternatives and variations can be made in the embodiments without departing from the scope of the present disclosure.

Claims (20)

  1. A method of generating a captured image in an electrical device including a camera assembly, comprising:
    capturing a plurality of first initial images of a first dynamic range by the camera assembly, wherein the plurality of the first initial images are captured at different settings of imaging;
    generating an intermediate image of a second dynamic range based on the plurality of the first initial images, wherein the second dynamic range is higher than the first dynamic range;
    detecting a light source area based on a light detectable image to generate a light source map, wherein the light detectable image is at least one image of the plurality of the first initial images and is suitable for detecting the light source area;
    generating the captured image based on the intermediate image and the light source map, wherein a position of the light source area of the captured image is decided in accordance with the light source map and a color of the light source area of the captured image is decided in accordance with the intermediate image.
  2. The method according to claim 1, wherein the capturing the plurality of the first initial images comprises capturing the plurality of the first initial images at different exposure values.
  3. The method according to claim 2, wherein the light detectable image is the one image of the plurality of the first initial images, which is captured at the lowest of the exposure values.
  4. The method according to claim 3, wherein the lowest of the exposure values is low enough not to detect a light from areas other than the light source area in the first initial images.
  5. The method according to claim 4, wherein the lowest of the exposure values is negative.
  6. The method according to any one of claims 1-5, further comprising:
    capturing a second initial image by the camera assembly; and
    computing a depth map based on the plurality of the first initial images and the second initial images.
  7. The method according to claim 6, wherein the generating the captured image further comprises executing a Bokeh rendering process to introduce a Bokeh effect to the captured image based on the depth map.
  8. The method according to claim 7, wherein the plurality of the first initial images are captured by a first main camera of the camera assembly and the second initial image is captured by a second main camera of the camera assembly.
  9. The method according to any one of claims 1-5, wherein the generating the captured image further comprising executing a segmentation process to introduce a Bokeh effect to the captured image based on the intermediate image.
  10. The method according to claim 9, wherein the plurality of the first initial images are captured by a first main camera in a back side of the electrical device or a sub camera in a front side of the camera assembly of the electrical device.
  11. An electrical device, comprising:
    a camera assembly capable of capturing an image in a first dynamic range; and
    an image processor configured to:
    capture a plurality of first initial images in a first dynamic  range by the camera assembly, wherein the plurality of the first initial images are captured at different settings of imaging;
    generate an intermediate image in a second dynamic range based on the plurality of the first initial images, wherein the second dynamic range is higher than the first dynamic range;
    detect a light source area based on a light detectable image to generate a light source map; wherein the light detectable image is at least one image of the plurality of the first initial images and is suitable for detecting the light source area;
    generate the captured image based on the intermediate image and the light source map, wherein a position of the light source area of the captured image is decided in accordance with the light source map and a color of the light source area of the captured image is decided in accordance with the intermediate image.
  12. The electrical device according to claim 11, wherein, when the plurality of the first initial images are captured, the plurality of the first initial images are captured at different exposure values.
  13. The electrical device according to claim 12, wherein the light detectable image is the one image of the plurality of the first initial images, which is captured at the lowest of the exposure values.
  14. The electrical device according to claim 13, wherein the lowest of the exposure values is low enough not to detect a light from areas other than the light source area in the first initial images.
  15. The electrical device according to claim 14, wherein the lowest of the exposure values is negative.
  16. The electrical device according to any one of claims 11-15, the image processor further configured to:
    capture a second initial image by the camera assembly; and
    compute a depth map based on the plurality of the first initial images and the second initial images.
  17. The electrical device according to claim 16, wherein, when the captured image is generated, a Bokeh effect is also introduced to the captured image through a Bokeh rendering process based on the depth map.
  18. The electrical device according to claim 17, wherein the plurality of the first initial images are captured by a first main camera of the camera assembly and the second initial image is captured by a second main camera of the camera assembly.
  19. The electrical device according to any one of claims 11-15, wherein, when the captured image is generated, a Bokeh effect is also introduced to the captured image through a segmentation process based on the intermediate image.
  20. The electrical device according to claim 19, wherein the plurality of the first initial images are captured by a first main camera in a back side of the electrical device or a sub camera in a front side of the camera assembly of the electrical device.
PCT/CN2020/074828 2020-02-12 2020-02-12 Method of generating captured image and electrical device WO2021159295A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/074828 WO2021159295A1 (en) 2020-02-12 2020-02-12 Method of generating captured image and electrical device
CN202080090782.6A CN115066880A (en) 2020-02-12 2020-02-12 Method for generating captured image and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074828 WO2021159295A1 (en) 2020-02-12 2020-02-12 Method of generating captured image and electrical device

Publications (1)

Publication Number Publication Date
WO2021159295A1 true WO2021159295A1 (en) 2021-08-19

Family

ID=77291986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074828 WO2021159295A1 (en) 2020-02-12 2020-02-12 Method of generating captured image and electrical device

Country Status (2)

Country Link
CN (1) CN115066880A (en)
WO (1) WO2021159295A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140192227A1 (en) * 2013-01-07 2014-07-10 GM Global Technology Operations LLC Glaring reduction for dynamic rearview mirror
CN106534677A (en) * 2016-10-27 2017-03-22 成都西纬科技有限公司 Image overexposure optimization method and device
JPWO2017002544A1 (en) * 2015-06-30 2017-06-29 オリンパス株式会社 Image processing apparatus and imaging system
CN108088658A (en) * 2016-11-23 2018-05-29 深圳华萤光电技术有限公司 A kind of dazzle measuring method and its measuring system
EP3462410A1 (en) * 2017-09-29 2019-04-03 Thomson Licensing A user interface for manipulating light-field images
US10554890B1 (en) * 2019-02-18 2020-02-04 Samsung Electronics Co., Ltd. Apparatus and method for generating low-light images with improved bokeh using mobile electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9230310B2 (en) * 2013-11-27 2016-01-05 Semiconductor Components Industries, Llc Imaging systems and methods for location-specific image flare mitigation
CN110177221B (en) * 2019-06-25 2021-02-26 维沃移动通信有限公司 Shooting method and device for high dynamic range image

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140192227A1 (en) * 2013-01-07 2014-07-10 GM Global Technology Operations LLC Glaring reduction for dynamic rearview mirror
JPWO2017002544A1 (en) * 2015-06-30 2017-06-29 オリンパス株式会社 Image processing apparatus and imaging system
CN106534677A (en) * 2016-10-27 2017-03-22 成都西纬科技有限公司 Image overexposure optimization method and device
CN108088658A (en) * 2016-11-23 2018-05-29 深圳华萤光电技术有限公司 A kind of dazzle measuring method and its measuring system
EP3462410A1 (en) * 2017-09-29 2019-04-03 Thomson Licensing A user interface for manipulating light-field images
US10554890B1 (en) * 2019-02-18 2020-02-04 Samsung Electronics Co., Ltd. Apparatus and method for generating low-light images with improved bokeh using mobile electronic device

Also Published As

Publication number Publication date
CN115066880A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
CN109379534B (en) Method, device, terminal and storage medium for processing image
CN105611182B (en) Brightness compensation method and device
CN105306806A (en) Mobile terminal and photographing method thereof
US11523056B2 (en) Panoramic photographing method and device, camera and mobile terminal
CN111050143A (en) Image shooting method and terminal equipment
CN110766729B (en) Image processing method, device, storage medium and electronic equipment
US10692199B2 (en) Image processing method and device, and non-transitory computer-readable storage medium
WO2021159295A1 (en) Method of generating captured image and electrical device
US20230177654A1 (en) Method of removing noise in image, electrical device, and storage medium
WO2021120107A1 (en) Method of generating captured image and electrical device
WO2021138867A1 (en) Method for electronic device with a plurality of cameras and electronic device
US20210168274A1 (en) Image processing apparatus and image processing method
US11405562B2 (en) Image processing apparatus, method of controlling the same, image capturing apparatus, and storage medium
WO2022246606A1 (en) Electrical device, method of generating image data, and non-transitory computer readable medium
WO2021243709A1 (en) Method of generating target image data, electrical device and non-transitory computer readable medium
WO2022222075A1 (en) Method of generating image data, electronic device, apparatus, and computer readable medium
WO2021138797A1 (en) Method of adjusting captured image and electrical device
WO2022241732A1 (en) Method of generating an image, electronic device, apparatus, and computer readable storage medium
WO2022016385A1 (en) Method of generating corrected pixel data, electrical device and non-transitory computer readable medium
WO2022174460A1 (en) Sensor, electrical device, and non-transitory computer readable medium
WO2022047614A1 (en) Method of generating target image data, electrical device and non-transitory computer readable medium
WO2024020958A1 (en) Method of generating an image, electronic device, apparatus, and computer readable storage medium
WO2021253166A1 (en) Method of generating target image data and electrical device
WO2022183437A1 (en) Method of generating embedded image data, image sensor, electrical device and non-transitory computer readable medium
WO2023272622A1 (en) Method of generating an image, electronic device, apparatus, and computer readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918274

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20918274

Country of ref document: EP

Kind code of ref document: A1