WO2021159294A1 - 体征检测方法、装置及设备 - Google Patents

体征检测方法、装置及设备 Download PDF

Info

Publication number
WO2021159294A1
WO2021159294A1 PCT/CN2020/074816 CN2020074816W WO2021159294A1 WO 2021159294 A1 WO2021159294 A1 WO 2021159294A1 CN 2020074816 W CN2020074816 W CN 2020074816W WO 2021159294 A1 WO2021159294 A1 WO 2021159294A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
heartbeat
frequency
phase signal
state
Prior art date
Application number
PCT/CN2020/074816
Other languages
English (en)
French (fr)
Inventor
刘建华
周安福
马华东
杨宁
唐海
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/074816 priority Critical patent/WO2021159294A1/zh
Priority to CN202080085356.3A priority patent/CN114786569A/zh
Publication of WO2021159294A1 publication Critical patent/WO2021159294A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications

Definitions

  • This application relates to the field of computer technology, and in particular to a physical sign detection method, device and equipment.
  • the user when the user's physical sign information needs to be learned, the user usually wears a special contact device, and the contact device is provided with a sensor, and the sensor detects the user's physical sign information.
  • the sensor When a user wears a contact device, the sensor needs to be in contact with the user. If the sensor cannot make good contact with the user, the accuracy of physical sign detection is low.
  • the embodiments of the present application provide a physical sign detection method, device, and equipment. Improve the accuracy of physical sign detection.
  • an embodiment of the present application provides a physical sign detection method, which is applied to a terminal device, the terminal device is provided with a radar, and the method includes:
  • the radar Acquiring a transmission signal emitted by the radar and a reflection signal received by the radar, the reflection signal including a signal after the transmission signal is reflected by an object;
  • the transmitted signal the reflected signal and the state of the object
  • the physical sign information of the object is determined, and the state of the object is a stationary state or a moving state.
  • an embodiment of the present application provides a physical sign detection device, which is applied to a terminal device, the terminal device is provided with a radar, and the device includes: an acquisition module and a determination module, wherein,
  • the acquisition module is configured to acquire a transmission signal emitted by the radar and a reflection signal received by the radar, the reflection signal including a signal after the transmission signal is reflected by an object;
  • the determining module is configured to determine the physical sign information of the object according to the transmitted signal, the reflected signal, and the state of the object, and the state of the object is a stationary state or a moving state.
  • an embodiment of the present application provides a physical sign detection device, including: a memory, a processor, and a communication interface, the memory is used to store program instructions, and the processor is used to call the program instructions in the memory to execute as in the first aspect Any one of the methods for detecting physical signs.
  • an embodiment of the present application provides a readable storage medium with a computer program stored on the readable storage medium; the computer program is used to implement the physical sign detection method according to any one of the first aspect.
  • the terminal device can obtain the transmitted signal transmitted by the radar and the reflected signal received by the radar, and determine the physical sign information of the object according to the transmitted signal, the reflected signal and the state of the object.
  • the terminal device can determine the physical sign information of the user based on the radar’s transmitted signal, reflected signal and the user’s state without direct contact between the user and the sensor. Since the user’s motion may interfere with the reflected signal, the terminal device The physical sign information of the user can be accurately determined according to the transmitted signal, the reflected signal and the user's motion state, which improves the accuracy of determining the physical sign information.
  • FIG. 1 is a schematic diagram of an application scenario of a feature detection method provided by an embodiment of the application
  • FIG. 2 is a schematic flowchart of a physical sign detection method provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of signals provided by an embodiment of this application.
  • FIG. 4 is a schematic flowchart of a method for determining respiratory rate provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of the first function provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a first spectrogram provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of a method for determining a heartbeat frequency according to an embodiment of the application.
  • FIG. 8 is a schematic flowchart of another method for determining a heartbeat frequency provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a physical sign detection device provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of the hardware structure of the physical sign detection device provided by this application.
  • Terminal equipment refers to equipment with data processing capabilities.
  • the terminal device may be a portable device.
  • the terminal device may include a mobile phone, a wearable device (such as a bracelet, a necklace, etc.), and the like.
  • the Radar It is an electronic device that uses electromagnetic waves to measure objects.
  • the measurement of the object by the radar may include: the speed of the measurement object, the distance between the measurement object and the radar, the position of the measurement object, and so on.
  • the objects can be people, animals, vehicles, airplanes, etc.
  • the radar can be directed towards multiple discovery and transmission signals. When the transmission signal transmitted by the radar reaches the obstacle, the obstacle reflects the transmission signal, and the radar can receive the reflected signal reflected by the obstacle.
  • Millimeter wave radar refers to the radar that works in the millimeter wave band.
  • the transmission signal emitted by the millimeter wave radar can also be referred to as a frequency modulated continuous wave (FMCW) signal.
  • Millimeter wave radar can also be called FMCW radar.
  • Physical signs Refers to the physical characteristics of a living subject. Objects can include humans, animals, etc. Physical characteristics may include heartbeat characteristics, breathing characteristics, and so on.
  • FIG. 1 is a schematic diagram of an application scenario of a feature detection method provided by an embodiment of the application.
  • a user can carry a terminal device 101, and a radar A is provided in the terminal device 101.
  • Radar A can transmit signals in multiple directions, and the transmitted signal transmitted by radar A can reach the chest cavity of the user, and the chest cavity can reflect the transmitted signal so that radar A receives the reflected signal corresponding to the transmitted signal.
  • the terminal device 101 can obtain the transmitted signal transmitted by radar A and the reflected signal received by radar A.
  • the terminal device 101 can also obtain the user's state (stationary state or moving state), and determine according to the transmitted signal, the transmitted signal and the user's state The user's physical information.
  • the terminal device can determine the physical sign information of the user based on the radar’s transmitted signal, reflected signal and the user’s state without direct contact between the user and the sensor. Since the user’s motion may interfere with the reflected signal, the terminal device According to the transmitted signal, the reflected signal and the user's motion state, the user's physical sign information can be accurately determined.
  • FIG. 2 is a schematic flowchart of a physical sign detection method provided by an embodiment of the application. See Figure 2.
  • the method can include:
  • S201 Obtain a transmission signal transmitted by the radar and a reflected signal received by the radar.
  • the execution subject of the embodiments of the present application may be a terminal device or a physical sign detection device provided in the terminal device.
  • the physical sign detection device may be implemented by software or a combination of software and hardware.
  • the physical sign detection device may be a processor or a chip provided in a terminal device.
  • the reflected signal includes the signal after the object reflects the transmitted signal.
  • the object may be an object with vital characteristics, for example, the object may be a human, an animal, or the like.
  • the object is a person (also referred to as a user) as an example.
  • the transmitted signal from the radar can reach multiple body parts of the user (for example, legs, arms, chest, etc.), and the user's body part can reflect the reflected signal. Therefore, the reflected signal can include A reflected signal in which multiple body parts of the user reflect the transmitted signal.
  • the transmission signal emitted by the radar may also reach other objects. For example, the transmission signal emitted by the radar may reach the objects around the user, and the objects around the user may reflect the transmission signal.
  • the terminal device may periodically execute the embodiment shown in FIG. 2.
  • the above-mentioned transmission signal may be a transmission signal transmitted by the radar in one period
  • the above-mentioned reflected signal may be a reflection signal corresponding to the transmission signal transmitted by the radar in the period.
  • the transmission signal may be a transmission signal transmitted by the radar in a period
  • the reflection signal may be a reflection signal received by the radar in the period.
  • S202 Determine physical sign information of the object according to the transmitted signal, the reflected signal, and the state of the object.
  • the state of the object is a static state or a moving state.
  • a motion sensor for example, an acceleration sensor, a gyroscope, etc.
  • the terminal device may determine the state of the object according to the data collected by the motion sensor.
  • the physical sign information of the object can be determined by the following methods: mixing the transmitted signal and the reflected signal to obtain the mixing signal, determining the phase signal of the mixing signal, and according to the phase signal of the mixing signal and the state of the object, Determine the physical sign information of the subject.
  • FIG. 3 is a schematic diagram of signals provided by an embodiment of this application.
  • the horizontal axis of the coordinate system represents time
  • the vertical axis of the coordinate axis represents frequency.
  • the difference between the reflected signal and the transmitted signal has a time delay ⁇ t between the reflected signal and the transmitted signal.
  • the bandwidth of the radar is B (Hz)
  • the scanning period of the radar also referred to as the scanning time or the duration of the transmitted signal
  • T c the frequency difference between the transmitted signal and the reflected signal
  • F c the frequency difference between the transmitted signal and the reflected signal.
  • the frequency of the mixing signal is the difference between the frequency of the transmitted signal and the frequency of the reflected signal. Therefore, the frequency of the mixed signal is F c .
  • the displacement of the chest cavity caused by the user's breathing/heartbeat is usually on the order of millimeters.
  • the chest movement caused by breathing is usually 1-12 mm
  • the chest movement caused by heartbeat is usually 0.1-0.5 mm.
  • the frequency shift cannot accurately represent the subtle movement of the chest cavity.
  • Phase of mixing signal Since the wavelength ⁇ of the signal (transmitted signal, reflected signal) is in the millimeter level, when the distance d between the radar and the chest cavity changes slightly, the phase of the mixing signal can be changed significantly. Therefore, the mixing The phase of the frequency signal can accurately represent the displacement of the chest cavity. Furthermore, according to the displacement of the thoracic cavity, the physical sign information of the user can be accurately determined.
  • the terminal device can obtain the transmitted signal transmitted by the radar and the reflected signal received by the radar, and determine the physical sign information of the object according to the transmitted signal, the reflected signal, and the state of the object.
  • the terminal device can determine the physical sign information of the user based on the radar’s transmitted signal, reflected signal and the user’s state without direct contact between the user and the sensor. Since the user’s motion may interfere with the reflected signal, the terminal device The physical sign information of the user can be accurately determined according to the transmitted signal, the reflected signal and the user's motion state, which improves the accuracy of determining the physical sign information.
  • the process of determining the physical sign information of the user by the terminal device is different.
  • the physical sign information includes heartbeat characteristics (for example, heartbeat frequency) and breathing characteristics (for example, breathing frequency) as an example for description.
  • FIG. 4 is a schematic flowchart of a method for determining a respiratory rate provided by an embodiment of the application.
  • the state of the user is a static state.
  • the method may include:
  • S401 Acquire a transmission signal transmitted by the radar, and the reflected signal received by the radar.
  • S402 Perform mixing processing on the transmitted signal and the reflected signal to obtain a mixed signal.
  • the transmitted signal and the reflected signal can be mixed by a mixer inside the radar or a mixer in a terminal device to obtain a mixed signal.
  • S403 Perform Fourier transform on the mixed signal to obtain the first function.
  • the first function can be obtained in the following manner: multiple frames of the mixed signal can be obtained, one frame of the mixed signal can be the mixed signal at a certain moment, and discrete Fourier is performed on each frame of the mixed signal.
  • the fast fourier transformation (FFT) obtains the distance-time relationship of each frame, and splices (or superimposes) the distance-time relationship of each frame to obtain the first function.
  • the distance-time relationship of each frame of the mixed signal includes multiple time points and the measured distance corresponding to each time point, and the measured distance is the distance measured by the radar.
  • one time point can correspond to one distance.
  • one time point can correspond to multiple distances.
  • the first function will be described with reference to FIG. 5.
  • FIG. 5 is a schematic diagram of the first function provided by an embodiment of the application. Please refer to Fig. 5, assuming that 4 frames of the mixed signal are obtained, and FFT is performed on the 4 frames respectively to obtain the distance-time relationship corresponding to each frame.
  • the distance-time relationship corresponding to the 4 frames is the distance in Fig. 5 -Time relationship 1, distance-time relationship 2, distance-time relationship 3, and distance-time relationship 4 are shown.
  • one time point corresponds to one distance
  • the distance is the distance measured by the radar.
  • the first function one time point corresponds to multiple distances.
  • the first distance interval may be determined according to the energy value corresponding to each distance interval in the first function.
  • the energy value corresponding to the first distance interval is the largest.
  • the distance in the first function can be divided into multiple distance intervals.
  • the energy value corresponding to the distance interval is used to indicate the number of measured distances included in the distance interval. The more the number of measured distances included in a distance interval, the more the distance The greater the energy value corresponding to the interval.
  • the distance in the first function can be divided into a distance interval 0-a, a distance interval ab, and a distance interval bc.
  • the distance interval 0-a includes 1 measurement distance
  • the distance interval ab includes 4 Measuring distance
  • one measuring distance is included in the distance interval bc. Therefore, the distance interval a-b can be determined as the first distance interval.
  • the first distance interval is the distance interval in which the user is located, that is, the distance between the user and the radar is in the distance interval.
  • S405 Determine the phase signal of the mixing signal according to the Fourier transform value corresponding to the first distance interval.
  • the phase signal of the mixing signal can be determined according to the arctangent function of the Fourier transform value.
  • the phase signal of the mixing signal can be determined.
  • the main movement of the user's limbs is the movement of the chest cavity. Therefore, the phase signal can indicate the movement of the chest cavity.
  • phase signal of the mixing signal can also be determined in other ways, which is not specifically limited in the embodiment of the present application.
  • S406 Determine the respiratory waveform according to the phase signal.
  • the phase signal can be processed by the first band-pass filter to obtain the respiratory waveform, and the frequency of the first band-pass filter is within the first frequency range.
  • the first band-pass filter may be a band-pass infinite impulse response (infinite impulse response, IIR) filter.
  • the first frequency range may be 0.1 Hz to 0.5 Hz.
  • S407 Determine the respiratory frequency according to the respiratory waveform.
  • the respiration waveform may be converted in the first frequency range to obtain a first spectrogram of the respiration waveform in the first frequency range, and the respiration frequency may be determined according to the peak value of the first spectrogram.
  • the first spectrogram is a refined spectrogram of the respiratory waveform in the first frequency range.
  • the conversion process may be Chirp-Z conversion (Chirp-Z transform).
  • the frequency f_br corresponding to the peak of the first spectrogram can be obtained, and the respiratory frequency can be determined to be f_br*60.
  • FIG. 6 is a schematic diagram of a first spectrogram provided by an embodiment of this application.
  • the horizontal axis of the coordinate axis represents frequency
  • the vertical axis of the coordinate axis represents amplitude.
  • the peak of the first spectrogram is point A, that is, the frequency at point A is f_br
  • the respiratory frequency can be determined as point A
  • the terminal device when the user is in a static state, can obtain the transmission signal transmitted by the radar and the reflected signal received by the radar, determine the mixing signal according to the transmission signal and the reflection signal, and according to the mixing signal Determine the phase signal used to reflect the movement of the chest cavity, and the respiratory frequency that can be determined according to the phase signal. Since the above-mentioned phase signal can accurately reflect the movement of the chest cavity, the respiratory frequency can be accurately determined according to the phase signal, which improves the accuracy of determining the respiratory frequency.
  • FIG. 7 is a schematic flowchart of a method for determining a heartbeat frequency provided by an embodiment of the application. Referring to Figure 7, the method may include:
  • S701 Obtain a transmission signal emitted by the radar and a reflected signal received by the radar.
  • S703 Perform Fourier transform on the mixed signal to obtain the first function.
  • S705 Determine the phase signal of the mixing signal according to the Fourier transform value corresponding to the first distance interval.
  • S706 Determine the heartbeat waveform according to the phase signal.
  • the phase signal can be processed by the second band-pass filter to obtain the heartbeat waveform, and the frequency of the second band-pass filter is within the second frequency range.
  • the second band pass filter may be an IIR filter.
  • the second frequency range may be max(f_br*2, 0.8 Hz) to 3.3 Hz, where f_br is the peak value of the first spectrogram of the respiratory waveform in the first frequency range.
  • the f_br can be determined through the embodiment shown in FIG. 4, which will not be repeated here.
  • S707 Determine the heartbeat frequency according to the heartbeat waveform.
  • the heartbeat waveform can be converted in the second frequency range to obtain a second spectrogram of the heartbeat waveform in the second frequency range, and the heartbeat frequency can be determined according to the peak value of the second spectrogram.
  • the second spectrogram is a refined spectrogram of the heartbeat waveform in the second frequency range.
  • the conversion process may be Chirp-Z conversion (Chirp-Z transform).
  • the second spectrogram is similar to the first spectrogram and will not be repeated here.
  • the terminal device when the user is in a static state, can obtain the transmitted signal transmitted by the radar and the reflected signal received by the radar, determine the mixing signal according to the transmitted signal and the reflected signal, and according to the mixed signal Determine the phase signal used to reflect the movement of the chest cavity, and the heartbeat frequency that can be determined according to the phase signal. Since the above-mentioned phase signal can accurately reflect the movement of the chest cavity, the heartbeat frequency can be accurately determined according to the phase signal, which improves the accuracy of determining the heartbeat frequency.
  • a single heartbeat can also be extracted by the following methods: obtain the duration of one heartbeat of the subject, and determine multiple heartbeat segments of the subject according to the duration and heartbeat waveform of one heartbeat of the subject, one heartbeat segment Used to indicate a heartbeat of the subject.
  • the process of extracting a single heartbeat will be described in conjunction with step A-step E.
  • Step A initialize the template T, initialize the set of heartbeat fragments S_set, and initialize the number of iterations i.
  • the initialized template The initialized heartbeat fragment set S_set is empty.
  • the number of iterations i after initialization is 0.
  • Step B Initialize the cost set, initialize the temporary heartbeat segment set, and initialize the cycle number k.
  • Step C Update the heartbeat segment set S_set through the template T.
  • L_set k L e' +
  • LW(T,n) is the linear interpolation of T so that its length is n.
  • e_set ⁇ e
  • Step D Update the template T through the heartbeat fragment set S_set.
  • Step E Judge whether the convergence condition is satisfied.
  • step B If yes, it is determined that the i-th heartbeat segment is obtained. Increase i by 1, and continue to step B.
  • the convergence condition is:
  • FIG. 8 is a schematic flowchart of another method for determining a heartbeat frequency provided by an embodiment of the application. Referring to Figure 8, the method may include:
  • S801 Obtain a transmission signal transmitted by the radar, and a reflected signal received by the radar.
  • the user can be considered to be stationary, and the user's movement (such as walking, running, limb movement, etc.) will not affect the heartbeat and breathing.
  • the resulting movement of the chest cavity For example, the length of the quasi-stationary time window may be 0.1 seconds and so on. In other words, within the quasi-stationary time window, it can be determined that the user's state is the stationary state.
  • the first function in a stationary time window, has the largest energy value in the second distance interval corresponding to the stationary time window.
  • S805 Determine a set of distance intervals according to the multiple second distance intervals and adjacent distance intervals of each second distance interval.
  • the set of distance intervals includes a plurality of second distance intervals and adjacent distance intervals of each second distance interval.
  • the number of adjacent intervals in the second distance interval may be one or two.
  • there is one distance interval adjacent to the distance interval 0-a which is the distance interval a-b.
  • There are two distance intervals adjacent to the distance interval a-b namely the distance interval 0-a and the distance interval b-c.
  • S806 Perform principal component analysis processing on the distance interval set to determine the first distance interval in the distance interval set.
  • the first distance interval is the distance interval in which the user is located, that is, the distance between the user and the radar is in the distance interval.
  • PCA principal component analysis
  • S807 Determine the phase signal of the mixing signal according to the real part and the imaginary part of the Fourier transform value corresponding to the first distance interval.
  • phase signal of the mixing signal satisfies the following formula:
  • P(n) is the phase signal
  • n is the nth time point
  • I[i] is the real part of the Fourier transform value
  • Q[i] is the imaginary part of the Fourier transform
  • ⁇ I[i] I [i]-I[i-1]
  • ⁇ Q[i] Q[i]-Q[i-1]
  • the first processing is used to eliminate the interference of the movement of the object on the phase signal.
  • the first processing on the phase signal may be performed in the following manner: determining the breakpoint set corresponding to the phase signal, and performing the first processing on the phase signal according to the breakpoint set.
  • the breakpoint set includes multiple breakpoints, and the motion amplitude of the object at the time corresponding to the breakpoint is greater than the preset amplitude.
  • the breakpoint satisfies the following formula:
  • P(n) is the phase signal
  • mean(P(n),Q) is the average value of the phase signal corresponding to Q time points after time n
  • mean(P(n,-Q)) is the time before time n
  • var(P(n),Q) is the variance of the phase signal corresponding to Q time points after time n
  • var(P(n),-Q) is before time n
  • is the preset parameter
  • r is the preset threshold.
  • phase signal after the first processing satisfies the following formula:
  • P(n) is the phase signal
  • b h is the identifier of the time point corresponding to the nearest breakpoint before time n
  • b 1 is the identifier of the time point corresponding to the nearest break point after time n.
  • the first processed phase signal is processed by the third band pass filter to obtain the heartbeat signal, and the frequency of the third band pass filter is within the third frequency range.
  • the third band pass filter may be an IIR filter.
  • the third frequency range may be 0.8 Hz to 3.3 Hz.
  • S810 Determine the heartbeat frequency according to the heartbeat signal.
  • the heartbeat frequency can be determined according to the heartbeat signal in the following way: the heartbeat signal is corrected according to a preset network to obtain a millimeter wave electrocardiogram (mmWavecardiogram, MCG) signal, and the heartbeat frequency is determined according to the MCG signal.
  • MCG millimeter wave electrocardiogram
  • the preset network may be a generative adversarial network (generative adversarial networks, GAN).
  • GAN generative adversarial networks
  • the sample data can be learned to obtain a preset network, and the sample data can be an electrocardiogram generated by a medical electrocardiograph.
  • the preset network can correct the heartbeat signal to obtain an accurate heartbeat signal. In this way, the influence of the minute muscle movements of the user's body on the heartbeat can be eliminated.
  • the heartbeat frequency is determined according to the duration of the MCG signal and the number of peaks included in the MCG signal. For example, the ratio of the number of peaks to the duration can be determined as the heartbeat frequency.
  • the terminal device when the user is in a motion state, can obtain the transmitted signal transmitted by the radar and the reflected signal received by the radar, determine the mixing signal according to the transmitted signal and the reflected signal, and according to the mixed signal Determine the phase signal used to reflect the movement of the chest cavity, perform the first processing on the phase signal to eliminate the influence of the user's movement on the phase signal, and determine the heartbeat frequency according to the first processed phase signal. Since the above-mentioned phase signal can accurately reflect the movement of the chest cavity, the heartbeat frequency can be accurately determined according to the phase signal, which improves the accuracy of determining the heartbeat frequency.
  • FIG. 9 is a schematic structural diagram of a physical sign detection device provided by an embodiment of the application.
  • the physical sign detection device 10 may be set in a terminal device, and the terminal device is provided with a radar.
  • the physical sign detection device may include: an acquisition module 11 and a determination module 12, wherein,
  • the acquisition module 11 is configured to acquire a transmission signal emitted by the radar and a reflection signal received by the radar, the reflection signal including a signal after the transmission signal is reflected by an object;
  • the determining module 12 is configured to determine the physical sign information of the object according to the transmitted signal, the reflected signal, and the state of the object, and the state of the object is a stationary state or a moving state.
  • the physical sign detection device provided in the embodiments of the present application can execute the technical solutions shown in the foregoing method embodiments, and its implementation principles and beneficial effects are similar, and will not be repeated here.
  • the determining module 12 is specifically configured to:
  • the physical sign information of the object is determined according to the phase signal of the mixing signal and the state of the object.
  • the frequency of the mixing signal is: the difference between the frequency of the transmission signal and the frequency of the reception signal.
  • the frequency of the mixing signal satisfies the following formula:
  • the F c is the frequency of the mixing signal
  • the B is the bandwidth of the transmission signal
  • the d is the distance between the radar and the object
  • the T c is the transmission The duration of the signal, where v is the propagation speed of the transmitted signal.
  • the determining module 12 is specifically configured to:
  • the first function includes the measured distance corresponding to each time point, and the measured distance is the distance between the radar and the object measured by the radar. The distance between
  • the determining module 12 is specifically configured to:
  • the phase signal of the mixing signal is determined according to the Fourier transform value corresponding to the first distance interval and the state of the object.
  • the state of the object is a static state; the determining module 12 is specifically configured to:
  • the phase signal of the mixing signal is determined according to the arctangent function of the Fourier transform value.
  • the state of the object is a static state;
  • the phase signal of the mixing signal satisfies the following formula:
  • S(t) is the Fourier transform value corresponding to the first distance interval
  • P(t) is the phase signal
  • arctan(S(t)) is the arctangent function of S(t).
  • the state of the subject is a static state
  • the physical sign information includes respiration frequency and/or heartbeat frequency.
  • the determining module 12 is specifically configured to:
  • the respiration frequency is determined.
  • the determining module 12 is specifically configured to:
  • the phase signal is processed by a first band-pass filter to obtain the respiratory waveform, and the frequency of the first band-pass filter is within a first frequency range.
  • the determining module 12 is specifically configured to:
  • the respiration frequency is determined according to the peak value of the first spectrogram.
  • the determining module 12 is specifically configured to:
  • the heartbeat frequency is determined.
  • the determining module 12 is specifically configured to:
  • the phase signal is processed by a second band pass filter to obtain the heartbeat waveform, and the frequency of the second band pass filter is within a second frequency range.
  • the determining module 12 is specifically configured to:
  • the heartbeat frequency is determined according to the peak value of the second spectrogram.
  • the determining module 12 is further configured to:
  • one heartbeat segment of the subject is determined, and one heartbeat segment is used to indicate one heartbeat of the subject.
  • the determining module 12 is specifically configured to:
  • a distance interval set is determined, and the distance interval set includes the plurality of second distance intervals and the distance interval of each second distance interval. Adjacent distance interval;
  • Principal component analysis processing is performed on the set of distance intervals to determine the first distance interval in the set of distance intervals.
  • the determining module 12 is specifically configured to:
  • phase signal satisfies the following formula:
  • the P(n) is the phase signal
  • the n is the nth time point
  • the I[i] is the real part of the Fourier transform value
  • the state of the subject is an exercise state
  • the physical sign information includes a heartbeat frequency
  • the determining module 12 is specifically configured to:
  • the heartbeat frequency is determined.
  • the determining module 12 is specifically configured to:
  • the breakpoint set includes a plurality of breakpoints, and the motion amplitude of the object at the time corresponding to the breakpoint is greater than a preset amplitude
  • the breakpoint satisfies the following formula:
  • the P(n) is the phase signal
  • the mean(P(n), Q) is the average value of the phase signal corresponding to Q time points after the time n
  • the mean(P(n,- Q)) is the mean value of the phase signal corresponding to Q time points before time n
  • the var(P(n), Q) is the variance of the phase signal corresponding to Q time points after time n
  • the var( P(n), -Q) is the variance of the phase signal corresponding to Q time points before time n
  • the ⁇ is a preset parameter
  • the r is a preset threshold.
  • the first processed phase signal satisfies the following formula:
  • the b h is the identifier of the time point corresponding to the nearest breakpoint before time n
  • the b l is the identifier of the time point corresponding to the nearest breakpoint after time n .
  • the determining module 12 is specifically configured to:
  • the first processed phase signal is processed by a third band pass filter to obtain the heartbeat signal, and the frequency of the third band pass filter is within a third frequency range.
  • the determining module 12 is specifically configured to:
  • the heartbeat frequency is determined.
  • the determining module 12 is specifically configured to:
  • the heartbeat frequency is determined according to the duration of the MCG signal and the number of peaks included in the MCG signal.
  • the physical sign detection device provided in the embodiments of the present application can execute the technical solutions shown in the foregoing method embodiments, and its implementation principles and beneficial effects are similar, and will not be repeated here.
  • FIG. 10 is a schematic diagram of the hardware structure of the physical sign detection device provided by this application.
  • the physical sign detection device 20 may be a terminal device or a terminal device.
  • the physical sign detection device 20 may include: a processor 21 and a memory 22, where the processor 21 and the memory 22 can communicate; for example, the processor 21 and the memory 22 communicate through a communication bus 23, and the memory 22 is used to store program instructions, and the processor 21 is used to call the program instructions in the memory to execute the physical sign detection method shown in any of the foregoing method embodiments.
  • the physical sign detection device 20 may further include a communication interface, and the communication interface may include a transmitter and/or a receiver.
  • the processor 21 may implement the functions of the acquiring module 11 and the determining module 12 in the embodiment shown in FIG. 9.
  • the foregoing processor may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), application specific integrated circuits (ASICs) )Wait.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like. The steps in the method disclosed in this application can be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • An embodiment of the present application provides a terminal device.
  • the terminal device includes a radar and the physical sign detection device 20 shown in FIG. 10.
  • the present application provides a readable storage medium with a computer program stored on the readable storage medium; the computer program is used to implement the physical sign detection method as described in any of the foregoing embodiments.
  • An embodiment of the present application provides a computer program product.
  • the computer program product includes instructions. When the instructions are executed, the computer executes the above-mentioned physical sign detection method.
  • An embodiment of the present application provides a system on a chip or a system chip, the system on a chip or a system chip may be applied to a terminal device, and the system on a chip or a system chip includes: at least one communication interface, at least one processor, and at least one The memory, the communication interface, the memory, and the processor are interconnected by a bus, and the processor executes the instructions stored in the memory so that the base station can execute the above-mentioned physical sign detection method.
  • All or part of the steps in the foregoing method embodiments may be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a readable memory.
  • the program executes the steps including the above-mentioned method embodiments; and the aforementioned memory (storage medium) includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, Solid state hard disk, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.
  • These computer program instructions can be provided to the processing unit of a general-purpose computer, a special-purpose computer, an embedded processor, or other programmable data processing equipment to generate a machine, so that the instructions executed by the processing unit of the computer or other programmable data processing equipment can be used to generate It is a device that realizes the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • the term “including” and its variations may refer to non-limiting inclusion; the term “or” and its variations may refer to “and/or”.
  • the terms “first”, “second”, etc. are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence.
  • plural means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Pulmonology (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请提供了一种体征检测方法、装置(20)及设备。该方法应用于终端设备(101),终端设备(101)中设置有雷达(A)。该方法包括:获取雷达发射的发射信号、以及雷达接收到反射信号(S201),反射信号包括对象对发射信号进行反射后的信号;根据发射信号、反射信号和对象的状态,确定对象的体征信息(S202),对象的状态为静止状态或者运动状态。该方法能提高体征信息检测的准确度。

Description

体征检测方法、装置及设备 技术领域
本申请涉及计算机技术领域,尤其涉及一种体征检测方法、装置及设备。
背景技术
目前,在多种场景(例如,医疗场景、日常生活等)下,需要获知用户的一些体征信息(例如,心跳频率、呼吸频率等)。
在相关技术中,当需要获知用户的体征信息时,通常由用户佩戴专门的接触式设备,接触式设备中设置有传感器,由该传感器检测用户的体征信息。在用户佩戴接触式设备时,需要传感器与用户接触,若传感器无法与用户良好接触,则导致体征检测的准确度较低。
发明内容
本申请实施例提供一种体征检测方法、装置及设备。提高了体征检测的准确度。
第一方面,本申请实施例提供一种体征检测方法,应用于终端设备,所述终端设备中设置有雷达,所述方法包括:
获取所述雷达发射的发射信号、以及所述雷达接收到反射信号,所述反射信号包括对象对所述发射信号进行反射后的信号;
根据所述发射信号、所述反射信号和所述对象的状态,确定所述对象的体征信息,所述对象的状态为静止状态或者运动状态。
第二方面,本申请实施例提供一种体征检测装置,应用于终端设备,所述终端设备中设置有雷达,所述装置包括:获取模块和确定模块,其中,
所述获取模块用于,获取所述雷达发射的发射信号、以及所述雷达接收到反射信号,所述反射信号包括对象对所述发射信号进行反射后的信号;
所述确定模块用于,根据所述发射信号、所述反射信号和所述对象的状态,确定所述对象的体征信息,所述对象的状态为静止状态或者运动状态。
第三方面,本申请实施例提供一种体征检测装置,包括:存储器、处理器和通信接口,所述存储器用于存储程序指令,所述处理器用于调用存储器中的程序指令执行如第一方面任一项所述的体征检测的方法。
第四方面,本申请实施例提供一种可读存储介质,所述可读存储介质上存储有计算机程序;所述计算机程序用于实现如第一方面任一项所述的体征检测方法。
本申请实施例提供的体征检测方法、装置及设备,终端设备可以获取雷达发射的发射信号、以及雷达接收到反射信号,并根据发射信号、反射信号和对象的状态,确定对象的体征信息。在上述过程中,无需用户与传感器进行直接接触,终端设备即可根据雷达的发射信号、反射信号以及用户的状态确定用户的体征信息,由于用户的运动对反射信号可能存在干扰,因此,终端设备根据发射信号、反射信号和用户的运动状态可以准确的确定得到用户的体征信息,提高了确定体征信息的精确性。
附图说明
图1为本申请实施例提供的特征检测方法的应用场景示意图;
图2为本申请实施例提供的一种体征检测方法的流程示意图;
图3为本申请实施例提供的信号示意图;
图4为本申请实施例提供的一种呼吸频率确定方法的流程示意图;
图5为本申请实施例提供的第一函数的示意图;
图6为本申请实施例提供的第一频谱图的示意图;
图7为本申请实施例提供的一种心跳频率确定方法的流程示意图;
图8为本申请实施例提供的另一种心跳频率确定方法的流程示意图;
图9为本申请实施例提供的一种体征检测装置的结构示意图;
图10为本申请提供的体征检测装置的硬件结构示意图。
具体实施方式
为了便于理解,首先对本申请所涉及的概念进行说明。
终端设备:是指具有数据处理能力的设备。终端设备可以为便携式设备,例如,终端设备可以包括为手机、可穿戴设备(例如手环、项链等)等。
雷达:是一种利用电磁波对对象进行测量的电子设备。雷达对对象的测量可以包括:测量对象的速度、测量对象与雷达之间的距离、测量对象的位置等。对象可以为人、动物、车辆、飞机等。在实际应用过程中,雷达可以朝向多个发现发射信号,当雷达发射的发射信号到达障碍物之后,障碍物对发射信号进行反射,雷达可以接收障碍物反射的反射信号。
毫米波雷达:是指工作在毫米波波段的雷达。毫米波雷达发射的发射信号还可以称为调频连续波(frequency modulated continuous wave,FMCW)信号。毫米波雷达还可以称为FMCW雷达。
体征:是指具有生命力的对象的身体特征。对象可以包括人、动物等。身体特征可以包括心跳特征、呼吸特征等。
为了便于理解,下面,结合图1,对本申请所适用的应用场景进行说明。
图1为本申请实施例提供的特征检测方法的应用场景示意图。请参见图1,用户可以携带终端设备101,终端设备101中设置有雷达A。雷达A可以向多个方向发射信号,雷达A发射的发射信号可以达到用户的胸腔,胸腔可以对发射信号进行反射,以使雷达A接收到该发射信号对应的反射信号。
终端设备101可以获取雷达A发射的发射信号以及雷达A接收到的反射信号,终端设备101还可以获取用户的状态(静止状态或者运动状态),并根据发射信号、发射信号和用户的状态,确定用户的体征信息。
在上述过程中,无需用户与传感器进行直接接触,终端设备即可根据雷达的发射信号、反射信号以及用户的状态确定用户的体征信息,由于用户的运动对反射信号可能存在干扰,因此,终端设备根据发射信号、反射信号和用户的运动状态可以准确的确定得到用户的体征信息。
下面,通过具体实施例对本申请所示的技术方案进行说明。需要说明的是,下面几个实施例可以独立存在,也可以相互结合,对于相同或相似的内容,在不同的实施例中不再重复说明。
图2为本申请实施例提供的一种体征检测方法的流程示意图。请参见图2,该方法可以包括:
S201、获取雷达发射的发射信号、以及雷达接收到反射信号。
本申请实施例的执行主体可以为终端设备,也可以为设置在终端设备中的体征检测装置,体征检测装置可以通过软件实现,也可以通过软件和硬件的结合实现。例如,体征检测装置可以为设置在终端设备中的处理器或者芯片等。
其中,反射信号包括对象对发射信号进行反射后的信号。例如,对象可以为具有生命特征的对象,例如,对象可以为人、动物等。为了便于描述,在下文中,以对象为人(还可以称为用户)为例进行说明。
在用户携带终端设备的过程中,雷达发射的发射信号可以到达用户的多个身体部位(例如,腿、胳膊、胸腔等),用户的身体部位可以对反射信号进行反射,因此,反射信号可以包括用户的多个身体部位对发射信号进行反射的反射信号。当然,雷达发射的发射信号还可能到达其它物体上,例如,雷达发射的发射信号可能到达用户周围的物体上,用户周围的物体可以对发射信号进行反射。
可选的,终端设备可以周期性执行图2所示的实施例。相应的,上述发射信号可以为雷达在一个周期内发射的发射信号,上述反射信号可以为雷达在该周期内发射的发射信号对应的反射信号。或者,上述发射信号可以为雷达在一个周期内发射的发射信号,上述反射信号可以为雷达在该周期内接收到的反射信号。
S202、根据发射信号、反射信号和对象的状态,确定对象的体征信息。
其中,对象的状态为静止状态或者运动状态。
可选的,终端设备中可以设置有运动传感器(例如,加速度传感器、陀螺仪等),终端设备可以根据运动传感器采集得到的数据确定对象的状态。
可选的,可以通过如下方式确定对象的体征信息:对发射信号和反射信号进行混频处理,得到混频信号,确定混频信号的相位信号,根据混频信号的相位信号和对象的状态,确定对象的体征信息。
为了便于理解,下面,结合图3,对发射信号、反射信号和混频信号进行说明。
图3为本申请实施例提供的信号示意图。请参见图3,坐标系的横轴表示时间,坐标轴的纵轴表示频率。反射信号与发射信号之间的差别在反射信号与发射信号之间具有时延Δt。雷达的带宽为B(Hz),雷达的扫描周期(还可以称为扫描时间或者发射信号的时长)为T c,在同一时刻,发射信号与反射信号之间的频率之差为F c。混频信号的频率为:发射信号的频率与反射信号的频率的差值。因此,混频信号的频率为F c
请参见图3,根据三角形相似原理可知:
Figure PCTCN2020074816-appb-000001
由于
Figure PCTCN2020074816-appb-000002
因此,
Figure PCTCN2020074816-appb-000003
其中,d为雷达与对象(障碍物)之间的距离,v为信号(发射信号、反射信号)的传播速度。
在实际应用过程中,在用户的呼吸/心跳所引起的胸腔位移通常是毫米级别的,例如,呼吸引起的胸腔移动通常为1~12毫米,心跳引起的胸腔移动通常为0.1~0.5毫米,因此,频移无法精确的表示胸腔的细微移动。混频信号的相位
Figure PCTCN2020074816-appb-000004
由于信号(发射信号、反射信号)的波长λ为毫米级别,因此,在雷达与胸腔之间的距离d发生微小变化时,即可使得混频信号的相位发生较大的变化,因此,通过混频信号的相位可以精确的表示胸腔的位移。进而根据胸腔的位移,可以准确地确定得到用户的体征信息。
本申请实施例提供的体征检测方法,终端设备可以获取雷达发射的发射信号、以及雷达接收到反射信号,并根据发射信号、反射信号和对象的状态,确定对象的体征信息。在上述过程中,无需用户与传感器进行直接接触,终端设备即可根据雷达的发射信号、反射信号以及用户的状态确定用户的体征信息,由于用户的运动对反射信号可能存在干扰,因此,终端设备根据发射信号、反射信号和用户的运动状态可以准确的确定得到用户的体征信息,提高了确定体征信息的精确性。
当用户的状态(静止状态或者运动状态)不同时,终端设备确定用户的体征信息的过程不同。下面,分别通过图4-图5所示的实施例,分别对静止状态和运动状态时的体征信息确定过程进行说明。在本申请中,以体征信息包括心跳特征(例如心跳频率)和呼吸特征(例如,呼吸频率)为例进行说明。
下面,通过图4所示的实施例,对用户的状态为静止状态时,确定用户的呼吸频率的过程进行说明。
图4为本申请实施例提供的一种呼吸频率确定方法的流程示意图。在该实施例中,用户的状态为静止状态。请参见图4,该方法可以包括:
S401、获取雷达发射的发射信号、以及雷达接收到反射信号。
需要说明的是,S401的执行过程可以参见S201的执行过程,此次不再进行赘述。
S402、对发射信号和反射信号进行混频处理,得到混频信号。
可选的,可以通过雷达内部的混频器或者终端设备中的混频器对发射信号和反射信号进行混频处理,得到混频信号。
S403、对混频信号进行傅里叶变换,得到第一函数。
可选的,可以通过如下方式得到第一函数:可以获取混频信号的多帧,混频信号的一帧可以为某一时刻的混频信号,并对混频信号的每一帧执行离散傅里叶变换(fast fourier transformation,FFT),得到每一帧的距离-时间关系,对每一帧的距离-时间关系进行拼接(或者叠加)得到第一函数。
在混频信号的每一帧的距离-时间关系中,包括多个时间点和每个时间点对应的测量距离,该测量距离为雷达测量得到的距离。
在混频信号的每一帧的距离-时间关系中,一个时间点可以对应一个距离。在第一函数中,一个时间点可以对应多个距离。下面,结合图5,对第一函数进行说明。
图5为本申请实施例提供的第一函数的示意图。请参见图5,假设获取得到混频信号的4帧,对该4帧分别进行FFT,得到每一帧对应的距离-时间关系,该4帧对应的距离-时间关系分别如图5中的距离-时间关系1、距离-时间关系2、距离-时间关系3和距离-时间关系4所示。在该4个距离-时间关系中,一个时间点对应一个距离,该距离为雷达测量得到的距离。对该4个距离-时间关系进行叠加处理,得到第一函数。在第一函数中,一个时间点对应多个距离。
S404、根据第一函数,确定第一距离区间。
可以根据第一函数中各距离区间对应的能量值确定第一距离区间。在第一函数中,第一距离区间对应的能量值最大。
可以将第一函数中的距离划分为多个距离区间,距离区间对应的能量值用于指示距离区间中包括的测量距离的数量,一个距离区间中包括的测量距离的数量越多,则该距离区间对应的能量值越大。
下面,结合图5,对距离区间对应的能量值进行说明。请参见图5,可以将第一函数中的距离划分为距离区间0-a,距离区间a-b,距离区间b-c,其中,距离区间0-a中包括1个测量距离,距离区间a-b中包括4个测量距离,距离区间b-c中包括1个测量距离。因此,可以将距离区间a-b确定为第一距离区间。
第一距离区间为用户所在的距离区间,即,用户与雷达之间的距离位于该距离区间中。
S405、根据第一距离区间对应的傅里叶变换值,确定混频信号的相位信号。
可以根据傅里叶变换值的反正切函数,确定混频信号的相位信号。
将第一距离区间对应的傅里叶变换值记为S(t),S(t)的反正切函数记为arctan(S(t)),则混频信号的相位信号满足如下公式:
若arctan(S(t))-arctan(S(t-1))≥-π,则P(t)=arctan(S(t))-2×π;
若arctan(S(t))-arctan(S(t-1))<-π,则P(t)=arctan(S(t))+2×π;
通过S403-S405可以确定得到混频信号的相位信号,在用户为静止状态时,用户肢体的主要运动为胸腔的移动,因此,该相位信号可以指示胸腔的移动。
需要说明的是,S403-S405只是以示例的形式示意一种确定相位信号的方式,当然,还可以通过其他方式确定混频信号的相位信号,本申请实施例对此不作具体限定。
S406、根据相位信号,确定呼吸波形。
可以通过第一带通滤波器对相位信号进行处理,得到呼吸波形,第一带通滤波器的频率在第一频率范围内。
第一带通滤波器可以为带通无限脉冲响应(infinite impulse response,IIR)滤波器。
例如,第一频率范围可以为0.1Hz至0.5Hz。
S407、根据呼吸波形,确定呼吸频率。
可以在第一频率范围内对呼吸波形进行转换处理,得到呼吸波形在第一频率范围内的第一频谱图,并根据第一频谱图的峰值,确定呼吸频率。第一频谱图为呼吸波形在第一频率范围内的细化频谱图。
例如,转换处理可以为Chirp-Z转换处理(Chirp-Z transform)。
例如,可以获取第一频谱图的峰值对应的频率f_br,并确定呼吸频率为f_br*60。
下面,结合图6,对第一频谱图进行说明。
图6为本申请实施例提供的第一频谱图的示意图。请参见图6,坐标轴的横轴表示频率、坐标轴的纵轴表示幅值,第一频谱图的峰值为A点,即,A点处的频率为f_br,则可以确定呼吸频率为A点处的频率*60。例如,假设A点处的频率为0.31,则可以确定呼吸频率为0.31*60=18.6,四舍五入后,可以确定呼吸频率为每分钟19次。
在图4所示的实施例中,在用户为静止状态时,终端设备可以获取雷达发射的发射信号、以及雷达接收到反射信号,根据发射信号和反射信号确定混频信号,并根据混频信号确定用于反映胸腔移动的相位信号,根据相位信号可以确定的呼吸频率。由于上述相位信号可以准确的反映胸腔的移动,因此,根据相位信号可以准确的确定得到呼吸频率,提高了确定呼吸频率的准确性。
下面,通过图7所示的实施例,对用户的状态为静止状态时,确定用户的心跳频率的过程进行说明。
图7为本申请实施例提供的一种心跳频率确定方法的流程示意图。请参见图7,该方法可以包括:
S701、获取雷达发射的发射信号、以及雷达接收到反射信号。
S702、对发射信号和反射信号进行混频处理,得到混频信号。
S703、对混频信号进行傅里叶变换,得到第一函数。
S704、根据第一函数,确定第一距离区间。
S705、根据第一距离区间对应的傅里叶变换值,确定混频信号的相位信号。
需要说明是,S701-S705的执行过程可以参见S401-S405的执行过程,此处不再进行赘述。
S706、根据相位信号,确定心跳波形。
可以通过第二带通滤波器对相位信号进行处理,得到心跳波形,第二带通滤波器的频率在第二频率范围内。第二带通滤波器可以为IIR滤波器。
例如,第二频率范围可以为max(f_br*2,0.8Hz)至3.3Hz,其中,f_br为呼吸波形在第一频率范围内的第一频谱图的峰值。可以通过图4所示的实施例确定f_br,此处不再进行赘述。
S707、根据心跳波形,确定心跳频率。
可以在第二频率范围内对心跳波形进行转换处理,得到心跳波形在第二频率范围内的第二频谱图,并根据第二频谱图的峰值,确定心跳频率。第二频谱图为心跳波形在第二频率范围内的细化频谱图。
例如,转换处理可以为Chirp-Z转换处理(Chirp-Z transform)。
需要说明的是,第二频谱图与第一频谱图类似,此处不再进行赘述。
在图7所示的实施例中,在用户为静止状态时,终端设备可以获取雷达发射的发射信号、以及雷达接收到反射信号,根据发射信号和反射信号确定混频信号,并根据混频信号确定用于反映胸腔移动的相位信号,根据相位信号可以确定的心跳频率。由于上述相位信号可以准确的反映胸腔的移动,因此,根据相位信号可以准确的确定得到心跳频率,提高了确定心跳频率的准确性。
在图7所示实施例的基础上,还可以通过如下方式提取单个心跳:获取对象的一个心跳的时长,根据对象的一个心跳的时长和心跳波形,确定对象的多个心跳片段,一个心跳片段用于指示对象的一个心跳。下面,结合步骤A-步骤E,对提取单个心跳的过程进行说明。
步骤A:对模板T进行初始化,对心跳片段集合S_set进行初始化,对迭代次数i进行初始化。
其中,初始化后的模板
Figure PCTCN2020074816-appb-000005
初始化后的心跳片段集合S_set为空。初始化后的迭代次数i为0。
步骤B、对代价集合进行初始化,对临时心跳片段集合进行初始化,对循环次数k进行初始化。
其中,初始化后的代价集合
Figure PCTCN2020074816-appb-000006
初始化后的临时心跳片段集S_tSet为空,初始化后的循环次数k=1。
步骤C、通过模板T更新心跳片段集S_set。
对于第k次循环,分别计算第k次的代价L_set k,临时心跳片段集S_tSet k,计算公式可以如下:
L_set k=L e'+||x e'+1:k-LW(T,k-e')|| 2
S_tSet k=S_tSet e'∪{x e'+1:k}。
其中,LW(T,n)是将T通过线性插值的方式使得其长度为n。||x-y|| 2是求x与y之间的欧氏距离。若i>1,则L_pre=L。
其中,
Figure PCTCN2020074816-appb-000007
其中,e_set={e|1≤e≤m,e<k,t-e∈B range}。
当k>m时,停止上述循环。此时,S_set=S_tSet m,L=L_set m
步骤D、通过心跳片段集S_set来更新模板T。
Figure PCTCN2020074816-appb-000008
其中,
Figure PCTCN2020074816-appb-000009
Figure PCTCN2020074816-appb-000010
当前的长度。
步骤E、判断收敛条件是否满足。
若是,则确定得到第i个心跳片段。将i加1,并继续执行步骤B。
若否,则执行步骤C。
其中,收敛条件为:|L-L_pre|>0.001。
下面,通过图8所示的实施例,对用户的状态为运动状态时,确定用户的心跳频率的过程进行说明。
图8为本申请实施例提供的另一种心跳频率确定方法的流程示意图。请参见图8,该方法可以包括:
S801、获取雷达发射的发射信号、以及雷达接收到反射信号。
S802、对发射信号和反射信号进行混频处理,得到混频信号。
S803、对混频信号进行傅里叶变换,得到第一函数。
需要说明的是,S801-S803的执行过程可以参见S401-S403的执行过程,此处不再进行赘述。
S804、根据第一函数,确定多个准静止时间窗对应的第二距离区间。
在用户运动的过程中,在很短的时间(可以称为准静止时间窗)内,可以认为用户为静止的,用户的移动(例如走路、跑步、肢体运动等)不会影响心跳和呼吸所引起的胸腔移动。例如,准静止时间窗的时长可以为0.1秒等。换句话说,在准静止时间窗内,可以确定用户的状态为静止状态。
其中,在一个静止时间窗中,第一函数在该静止时间窗对应的第二距离区间上的能量值最大。
需要说明的是,确定第二距离区间的过程可以参见S404中确定第一距离区间的过程,此处不再进行赘述。
S805、根据多个第二距离区间和每个第二距离区间的相邻距离区间,确定距离区间集合。
其中,距离区间集合中包括多个第二距离区间和每个第二距离区间的相邻距离区间。
第二距离区间的相邻区间可以为1个,也可以为两个。例如,请参见图5,与距离区间0-a相邻的距离区间有1个,为距离区间a-b。与距离区间a-b相邻的距离区间有两个,分别为距离区间0-a、以及距离区间b-c。
S806、对距离区间集合进行主成分分析处理,以在距离区间集合中确定第一距离区间。
第一距离区间为用户所在的距离区间,即,用户与雷达之间的距离位于该距离区间中。
可选的,可以采用主成分分析(principal component analysis,PCA)对距离区间集合进行降维,找到其贡献最大的主成分作为第一距离区间。
S807、根据第一距离区间对应的傅里叶变换值的实部和虚部,确定混频信号的相位信号。
可选的,混频信号的相位信号满足如下公式:
Figure PCTCN2020074816-appb-000011
其中,P(n)为相位信号,n为第n个时间点,I[i]为傅里叶变换值的实部Q[i]为傅里叶变换的虚部,ΔI[i]=I[i]-I[i-1],ΔQ[i]=Q[i]-Q[i-1]。
S808、对相位信号进行第一处理。
其中,第一处理用于消除对象的移动对相位信号的干扰。
可以通过如下方式对相位信号进行第一处理:确定相位信号对应的断点集合,根据断点集合,对相位信号进行第一处理。其中,断点集合中包括多个断点,对象在断点对应的时刻的运动幅度大于预设幅度。
断点满足如下公式:
Figure PCTCN2020074816-appb-000012
其中,P(n)为相位信号,mean(P(n),Q)为时间n之后的Q个时间点对应的相位信号的均值,mean(P(n,-Q))为时间n之前的Q个时间点对应的相位信号的均值,var(P(n),Q)为时间n之后的Q个时间点对应的相位信号的方差,var(P(n),-Q)为时间n之前的Q个时间点对应的相位信号的方差,ε为预设参数,r为预设阈值。
第一处理后的相位信号满足如下公式:
Figure PCTCN2020074816-appb-000013
其中,P(n)为相位信号,
Figure PCTCN2020074816-appb-000014
为第一处理后的相位信号,b h为时间n之前最近的一个断点对应的时间点的标识,b l为时间n之后最近的一个断点对应的时间点的标识。
S809、根据第一处理后的相位信号,确定心跳信号。
通过第三带通滤波器对第一处理后的相位信号进行处理,得到心跳信号,第三带通滤波器的频率在第三频率范围内。
第三带通滤波器可以为IIR滤波器。
例如,第三频率范围可以为0.8Hz至3.3Hz。
S810、根据心跳信号,确定心跳频率。
可以通过如下方式根据心跳信号确定心跳频率:根据预设网络对心跳信号进行校正处理,得到毫米波心电图(mmWavecardiogram,MCG)信号,根据MCG信号,确定心跳频率。
该预设网络可以为生成式对抗网络(generative adversarial networks,GAN)。
可以对样本数据进行学习以得到预设网络,样本数据可以为医用心电图机生成的心电图。使得预设网络可以对心跳信号进行校正处理,以得到精准的心跳信号。这样,可以消除用户身体微小的肌肉移动对心跳造成的影响。
可选的,根据MCG信号的时长和MCG信号中包括的峰值个数,确定心跳频率。例如,可以将峰值个数与时长的比值确定为心跳频率。
在图8所示的实施例中,在用户为运动状态时,终端设备可以获取雷达发射的发射信号、以及雷达接收到反射信号,根据发射信号和反射信号确定混频信号,并根据混频信号确定用于反映胸腔移动的相位信号,对相位信号进行第一处理,以消除用户运动对相位信号的影响,并根据第一处理后的相位信号确定的心跳频率。由于上述相位信号可以准确的反映胸腔的移动,因此,根据相位信号可以准确的确定得到心跳频率,提高了确定心跳频率的准确性。
图9为本申请实施例提供的一种体征检测装置的结构示意图。请参见图9,该体征检测装置10可以设置在终端设备中,所述终端设备中设置有雷达,请参见图9,该体征检测装置可以包括:获取模块11和确定模块12,其中,
所述获取模块11用于,获取所述雷达发射的发射信号、以及所述雷达接收到反射信号,所述反射信号包括对象对所述发射信号进行反射后的信号;
所述确定模块12用于,根据所述发射信号、所述反射信号和所述对象的状态,确定所述对象的体征信息,所述对象的状态为静止状态或者运动状态。
本申请实施例提供的体征检测装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,所述确定模块12具体用于:
对所述发射信号和所述反射信号进行混频处理,得到混频信号;
确定所述混频信号的相位信号;
根据所述混频信号的相位信号和所述对象的状态,确定所述对象的体征信息。
在一种可能的实施方式中,所述混频信号的频率为:所述发射信号的频率与所述接收信号的频率的差值。
在一种可能的实施方式中,所述混频信号的频率满足如下公式:
Figure PCTCN2020074816-appb-000015
其中,所述F c为所述混频信号的频率,所述B为所述发射信号的带宽,所述d为所述雷达与所述对象之间的距离,所述T c为所述发射信号的时长,所述v为所述发射信号的传播速度。
在一种可能的实施方式中,所述确定模块12具体用于:
对所述混频信号进行傅里叶变换,得到第一函数,所述第一函数包括各时间点对应的测量距离,所述测量距离为所述雷达测量得到的所述雷达与所述对象之间的距离;
根据所述第一函数,确定第一距离区间,其中,所述第一函数在所述第一距离区间中的能量值最大;
根据所述第一距离区间对应的傅里叶变换值,确定所述混频信号的相位信号。
在一种可能的实施方式中,所述确定模块12具体用于:
根据所述第一距离区间对应的傅里叶变换值和所述对象的状态,确定所述混频信号的 相位信号。
在一种可能的实施方式中,所述对象的状态为静止状态;所述确定模块12具体用于:
根据所述傅里叶变换值的反正切函数,确定所述混频信号的相位信号。
在一种可能的实施方式中,所述对象的状态为静止状态;所述混频信号的相位信号满足如下公式:
若arctan(S(t))-arctan(S(t-1))≥-π,则P(t)=arctan(S(t))-2×π;
若arctan(S(t))-arctan(S(t-1))<-π,则P(t)=arctan(S(t))+2×π;
其中,S(t)为第一距离区间对应的傅里叶变换值,P(t)为所述相位信号,arctan(S(t))为S(t)的反正切函数。
在一种可能的实施方式中,所述对象的状态为静止状态,所述体征信息包括呼吸频率和/或心跳频率。
在一种可能的实施方式中,所述确定模块12具体用于:
根据所述相位信号,确定呼吸波形;
根据所述呼吸波形,确定所述呼吸频率。
在一种可能的实施方式中,所述确定模块12具体用于:
通过第一带通滤波器对所述相位信号进行处理,得到所述呼吸波形,所述第一带通滤波器的频率在第一频率范围内。
在一种可能的实施方式中,所述确定模块12具体用于:
在第一频率范围内对所述呼吸波形进行转换处理,得到所述呼吸波形在所述第一频率范围内的第一频谱图;
根据所述第一频谱图的峰值,确定所述呼吸频率。
在一种可能的实施方式中,所述确定模块12具体用于:
根据所述相位信号,确定心跳波形;
根据所述心跳波形,确定所述心跳频率。
在一种可能的实施方式中,所述确定模块12具体用于:
通过第二带通滤波器对所述相位信号进行处理,得到所述心跳波形,所述第二带通滤波器的频率在第二频率范围内。
在一种可能的实施方式中,所述确定模块12具体用于:
在第二频率范围内对所述心跳波形进行转换处理,得到所述心跳波形在所述第二频率范围内的第二频谱图;
根据所述第二频谱图的峰值,确定所述心跳频率。
在一种可能的实施方式中,所述确定模块12还用于:
获取所述对象的一个心跳的时长;
根据所述对象的一个心跳的时长和所述心跳波形,确定所述对象的多个心跳片段,一个心跳片段用于指示所述对象的一个心跳。
在一种可能的实施方式中,所述确定模块12具体用于:
根据所述第一函数,确定多个准静止时间窗对应的第二距离区间,在一个静止时间窗中,所述第一函数在该静止时间窗对应的第二距离区间上的能量值最大;
根据所述多个第二距离区间和每个第二距离区间的相邻距离区间,确定距离区间集合,所述距离区间集合中包括所述多个第二距离区间和每个第二距离区间的相邻距离区间;
对所述距离区间集合进行主成分分析处理,以在所述距离区间集合中确定所述第一距离区间。
在一种可能的实施方式中,所述确定模块12具体用于:
根据所述第一距离区间对应的傅里叶变换值的实部和虚部,确定混频信号的相位信号。
在一种可能的实施方式中,所述相位信号满足如下公式:
Figure PCTCN2020074816-appb-000016
其中,所述P(n)为所述相位信号,所述n为第n个时间点,所述I[i]为所述傅里叶变换值的实部所述Q[i]为所述傅里叶变换的虚部,ΔI[i]=I[i]-I[i-1],ΔQ[i]=Q[i]-Q[i-1]。
在一种可能的实施方式中,所述对象的状态为运动状态,所述体征信息包括心跳频率。
在一种可能的实施方式中,所述确定模块12具体用于:
对所述相位信号进行第一处理,所述第一处理用于消除所述对象的移动对所述相位信号的干扰;
根据所述第一处理后的相位信号,确定心跳信号;
根据所述心跳信号,确定所述心跳频率。
在一种可能的实施方式中,所述确定模块12具体用于:
确定所述相位信号对应的断点集合,所述断点集合中包括多个断点,所述对象在所述断点对应的时刻的运动幅度大于预设幅度;
根据所述断点集合,对所述相位信号进行所述第一处理。
在一种可能的实施方式中,所述断点满足如下公式:
Figure PCTCN2020074816-appb-000017
其中,所述P(n)为所述相位信号,所述mean(P(n),Q)为时间n之后的Q个时间点对应的相位信号的均值,所述mean(P(n,-Q))为时间n之前的Q个时间点对应的相位信号的均值,所述var(P(n),Q)为时间n之后的Q个时间点对应的相位信号的方差,所述var(P(n),-Q)为时间n之前的Q个时间点对应的相位信号的方差,所述ε为预设参数,所述r为预设阈值。
在一种可能的实施方式中,所述第一处理后的相位信号满足如下公式:
Figure PCTCN2020074816-appb-000018
其中,P(n)为所述相位信号,所述
Figure PCTCN2020074816-appb-000019
为所述第一处理后的相位信号,所述b h为时间n之前最近的一个断点对应的时间点的标识,所述b l为时间n之后最近的一个断点对应的时间点的标识。
在一种可能的实施方式中,所述确定模块12具体用于:
通过第三带通滤波器对所述第一处理后的相位信号进行处理,得到所述心跳信号,所述第三带通滤波器的频率在第三频率范围内。
在一种可能的实施方式中,所述确定模块12具体用于:
根据预设网络对所述心跳信号进行校正处理,得到毫米波心电图MCG信号;
根据所述MCG信号,确定所述心跳频率。
在一种可能的实施方式中,所述确定模块12具体用于:
根据所述MCG信号的时长和所述MCG信号中包括的峰值个数,确定所述心跳频率。
本申请实施例提供的体征检测装置可以执行上述方法实施例所示的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图10为本申请提供的体征检测装置的硬件结构示意图。该体征检测装置20可以终端设备,也可以为终端设备。请参见图10,该体征检测装置20可以包括:处理器21和存储器22,其中,处理器21和存储器22可以通信;示例性的,处理器21和存储器22通过通 信总线23通信,所述存储器22用于存储程序指令,所述处理器21用于调用存储器中的程序指令执行上述任意方法实施例所示的体征检测方法。
可选的,体征检测装置20还可以包括通信接口,通信接口可以包括发送器和/或接收器。
可选的,处理器21可以实现图9所示实施例中获取模块11和确定模块12的功能。
可选的,上述处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例提供一种终端设备,该终端设备中包括雷达和图10所示的体征检测装置20。
本申请提供一种可读存储介质,所述可读存储介质上存储有计算机程序;所述计算机程序用于实现如上述任意实施例所述的体征检测方法。
本申请实施例提供一种计算机程序产品,所述计算机程序产品包括指令,当所述指令被执行时,使得计算机执行上述体征检测方法。
本申请实施例提供一种芯片上系统或系统芯片,所述芯片上系统或系统芯片可应用于终端设备,所述芯片上系统或系统芯片包括:至少一个通信接口,至少一个处理器,至少一个存储器,所述通信接口、存储器和处理器通过总线互联,所述处理器通过执行所述存储器中存储的指令,使得所述基站可执行上述体征检测方法。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理单元以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理单元执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
在本申请中,术语“包括”及其变形可以指非限制性的包括;术语“或”及其变形可以指“和/或”。本本申请中术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定 的顺序或先后次序。本申请中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。

Claims (56)

  1. 一种体征检测方法,其特征在于,应用于终端设备,所述终端设备中设置有雷达,所述方法包括:
    获取所述雷达发射的发射信号、以及所述雷达接收到反射信号,所述反射信号包括对象对所述发射信号进行反射后的信号;
    根据所述发射信号、所述反射信号和所述对象的状态,确定所述对象的体征信息,所述对象的状态为静止状态或者运动状态。
  2. 根据权利要求1所述的方法,其特征在于,根据所述发射信号、所述反射信号和对象的状态,确定所述对象的体征信息,包括:
    对所述发射信号和所述反射信号进行混频处理,得到混频信号;
    确定所述混频信号的相位信号;
    根据所述混频信号的相位信号和所述对象的状态,确定所述对象的体征信息。
  3. 根据权利要求2所述的方法,其特征在于,所述混频信号的频率为:所述发射信号的频率与所述接收信号的频率的差值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述混频信号的频率满足如下公式:
    Figure PCTCN2020074816-appb-100001
    其中,所述F c为所述混频信号的频率,所述B为所述发射信号的带宽,所述d为所述雷达与所述对象之间的距离,所述T c为所述发射信号的时长,所述v为所述发射信号的传播速度。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,确定所述混频信号的相位信号,包括:
    对所述混频信号进行傅里叶变换,得到第一函数,所述第一函数包括各时间点对应的测量距离,所述测量距离为所述雷达测量得到的所述雷达与所述对象之间的距离;
    根据所述第一函数,确定第一距离区间,其中,所述第一函数在所述第一距离区间中的能量值最大;
    根据所述第一距离区间对应的傅里叶变换值,确定所述混频信号的相位信号。
  6. 根据权利要求5所述的方法,其特征在于,根据所述第一距离区间对应的傅里叶变换值,确定所述混频信号的相位信号,包括:
    根据所述第一距离区间对应的傅里叶变换值和所述对象的状态,确定所述混频信号的相位信号。
  7. 根据权利要求6所述的方法,其特征在于,所述对象的状态为静止状态;根据所述第一距离区间对应的傅里叶变换值和所述对象的状态,确定所述混频信号的相位信号,包括:
    根据所述傅里叶变换值的反正切函数,确定所述混频信号的相位信号。
  8. 根据权利要求6或7所述的方法,其特征在于,所述对象的状态为静止状态;所述混频信号的相位信号满足如下公式:
    若arctan(S(t))-arctan(S(t-1))≥-π,则P(t)=arctan(S(t))-2×π;
    若arctan(S(t))-arctan(S(t-1))<-π,则P(t)=arctan(S(t))+2×π;
    其中,S(t)为第一距离区间对应的傅里叶变换值,P(t)为所述相位信号,arctan(S(t))为S(t)的反正切函数。
  9. 根据权利要求2-8任一项所述的方法,其特征在于,所述对象的状态为静止状态,所述体征信息包括呼吸频率和/或心跳频率。
  10. 根据权利要求9所述的方法,其特征在于,根据所述混频信号的相位信号和所述对象的状态,确定所述对象的呼吸频率,包括:
    根据所述相位信号,确定呼吸波形;
    根据所述呼吸波形,确定所述呼吸频率。
  11. 根据权利要求10所述的方法,其特征在于,根据所述相位信号,确定呼吸波形,包括:
    通过第一带通滤波器对所述相位信号进行处理,得到所述呼吸波形,所述第一带通滤波器的频率在第一频率范围内。
  12. 根据权利要求10或11所述的方法,其特征在于,根据所述呼吸波形,确定所述呼吸频率,包括:
    在第一频率范围内对所述呼吸波形进行转换处理,得到所述呼吸波形在所述第一频率范围内的第一频谱图;
    根据所述第一频谱图的峰值,确定所述呼吸频率。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,根据所述混频信号的相位信号和所述对象的状态,确定所述对象的心跳频率,包括:
    根据所述相位信号,确定心跳波形;
    根据所述心跳波形,确定所述心跳频率。
  14. 根据权利要求13所述的方法,其特征在于,根据所述相位信号,确定心跳波形,包括:
    通过第二带通滤波器对所述相位信号进行处理,得到所述心跳波形,所述第二带通滤波器的频率在第二频率范围内。
  15. 根据权利要求13或14所述的方法,其特征在于,根据所述心跳波形,确定所述心跳频率,包括:
    在第二频率范围内对所述心跳波形进行转换处理,得到所述心跳波形在所述第二频率范围内的第二频谱图;
    根据所述第二频谱图的峰值,确定所述心跳频率。
  16. 根据权利要求13-15任一项所述的方法,其特征在于,所述方法还包括:
    获取所述对象的一个心跳的时长;
    根据所述对象的一个心跳的时长和所述心跳波形,确定所述对象的多个心跳片段,一个心跳片段用于指示所述对象的一个心跳。
  17. 根据权利要求5或6所述的方法,其特征在于,所述对象的状态为运动状态;根据所述第一函数关系,确定第一距离区间,包括:
    根据所述第一函数,确定多个准静止时间窗对应的第二距离区间,在一个静止时间窗中,所述第一函数在该静止时间窗对应的第二距离区间上的能量值最大;
    根据所述多个第二距离区间和每个第二距离区间的相邻距离区间,确定距离区间集合,所述距离区间集合中包括所述多个第二距离区间和每个第二距离区间的相邻距离区间;
    对所述距离区间集合进行主成分分析处理,以在所述距离区间集合中确定所述第一距离区间。
  18. 根据权利要求6或17所述的方法,其特征在于,所述对象的状态为运动状态;根据所述第一距离区间对应的傅里叶变换值和所述对象的状态,确定所述混频信号的相位信号,包括:
    根据所述第一距离区间对应的傅里叶变换值的实部和虚部,确定混频信号的相位信号。
  19. 根据权利要求6、17-18任一项所述的方法,其特征在于,所述相位信号满足如下公式:
    Figure PCTCN2020074816-appb-100002
    其中,所述P(n)为所述相位信号,所述n为第n个时间点,所述I[i]为所述傅里叶变 换值的实部所述Q[i]为所述傅里叶变换的虚部,ΔI[i]=I[i]-I[i-1],ΔQ[i]=Q[i]-Q[i-1]。
  20. 根据权利要求2-6、17-19任一项所述的方法,其特征在于,所述对象的状态为运动状态,所述体征信息包括心跳频率。
  21. 根据权利要求20所述的方法,其特征在于,根据所述混频信号的相位信号和所述对象的状态,确定所述对象的心跳频率,包括:
    对所述相位信号进行第一处理,所述第一处理用于消除所述对象的移动对所述相位信号的干扰;
    根据所述第一处理后的相位信号,确定心跳信号;
    根据所述心跳信号,确定所述心跳频率。
  22. 根据权利要求21所述的方法,其特征在于,对所述相位信号进行第一处理,包括:
    确定所述相位信号对应的断点集合,所述断点集合中包括多个断点,所述对象在所述断点对应的时刻的运动幅度大于预设幅度;
    根据所述断点集合,对所述相位信号进行所述第一处理。
  23. 根据权利要求22所述的方法,其特征在于,所述断点满足如下公式:
    Figure PCTCN2020074816-appb-100003
    其中,所述P(n)为所述相位信号,所述mean(P(n),Q)为时间n之后的Q个时间点对应的相位信号的均值,所述mean(P(n,-Q))为时间n之前的Q个时间点对应的相位信号的均值,所述var(P(n),Q)为时间n之后的Q个时间点对应的相位信号的方差,所述var(P(n),-Q)为时间n之前的Q个时间点对应的相位信号的方差,所述ε为预设参数,所述r为预设阈值。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第一处理后的相位信号满足如下公式:
    Figure PCTCN2020074816-appb-100004
    其中,P(n)为所述相位信号,所述
    Figure PCTCN2020074816-appb-100005
    为所述第一处理后的相位信号,所述b h为时间n之前最近的一个断点对应的时间点的标识,所述b l为时间n之后最近的一个断点对应的时间点的标识。
  25. 根据权利要求21-24任一项所述的方法,其特征在于,根据所述第一处理后的相位信号,确定心跳信号,包括:
    通过第三带通滤波器对所述第一处理后的相位信号进行处理,得到所述心跳信号,所述第三带通滤波器的频率在第三频率范围内。
  26. 根据权利要求21-25任一项所述的方法,其特征在于,根据所述心跳信号,确定所述心跳频率,包括:
    根据预设网络对所述心跳信号进行校正处理,得到毫米波心电图MCG信号;
    根据所述MCG信号,确定所述心跳频率。
  27. 根据权利要求26所述的方法,其特征在于,根据所述MCG信号,确定所述心跳频率,包括:
    根据所述MCG信号的时长和所述MCG信号中包括的峰值个数,确定所述心跳频率。
  28. 一种体征检测装置,其特征在于,应用于终端设备,所述终端设备中设置有雷达,所述装置包括:获取模块和确定模块,其中,
    所述获取模块用于,获取所述雷达发射的发射信号、以及所述雷达接收到反射信号,所述反射信号包括对象对所述发射信号进行反射后的信号;
    所述确定模块用于,根据所述发射信号、所述反射信号和所述对象的状态,确定所述对象的体征信息,所述对象的状态为静止状态或者运动状态。
  29. 根据权利要求28所述的装置,其特征在于,所述确定模块具体用于:
    对所述发射信号和所述反射信号进行混频处理,得到混频信号;
    确定所述混频信号的相位信号;
    根据所述混频信号的相位信号和所述对象的状态,确定所述对象的体征信息。
  30. 根据权利要求29所述的装置,其特征在于,所述混频信号的频率为:所述发射信号的频率与所述接收信号的频率的差值。
  31. 根据权利要求29或30所述的装置,其特征在于,所述混频信号的频率满足如下公式:
    Figure PCTCN2020074816-appb-100006
    其中,所述F c为所述混频信号的频率,所述B为所述发射信号的带宽,所述d为所述雷达与所述对象之间的距离,所述T c为所述发射信号的时长,所述v为所述发射信号的传播速度。
  32. 根据权利要求29-31任一项所述的装置,其特征在于,所述确定模块具体用于:
    对所述混频信号进行傅里叶变换,得到第一函数,所述第一函数包括各时间点对应的测量距离,所述测量距离为所述雷达测量得到的所述雷达与所述对象之间的距离;
    根据所述第一函数,确定第一距离区间,其中,所述第一函数在所述第一距离区间中的能量值最大;
    根据所述第一距离区间对应的傅里叶变换值,确定所述混频信号的相位信号。
  33. 根据权利要求32所述的装置,其特征在于,所述确定模块具体用于:
    根据所述第一距离区间对应的傅里叶变换值和所述对象的状态,确定所述混频信号的相位信号。
  34. 根据权利要求33所述的装置,其特征在于,所述对象的状态为静止状态;所述确定模块具体用于:
    根据所述傅里叶变换值的反正切函数,确定所述混频信号的相位信号。
  35. 根据权利要求33或34所述的装置,其特征在于,所述对象的状态为静止状态;所述混频信号的相位信号满足如下公式:
    若arctan(S(t))-arctan(S(t-1))≥-π,则P(t)=arctan(S(t))-2×π;
    若arctan(S(t))-arctan(S(t-1))<-π,则P(t)=arctan(S(t))+2×π;
    其中,S(t)为第一距离区间对应的傅里叶变换值,P(t)为所述相位信号,arctan(S(t))为S(t)的反正切函数。
  36. 根据权利要求29-35任一项所述的装置,其特征在于,所述对象的状态为静止状态,所述体征信息包括呼吸频率和/或心跳频率。
  37. 根据权利要求36所述的装置,其特征在于,所述确定模块具体用于:
    根据所述相位信号,确定呼吸波形;
    根据所述呼吸波形,确定所述呼吸频率。
  38. 根据权利要求37所述的装置,其特征在于,所述确定模块具体用于:
    通过第一带通滤波器对所述相位信号进行处理,得到所述呼吸波形,所述第一带通滤波器的频率在第一频率范围内。
  39. 根据权利要求37或38所述的装置,其特征在于,所述确定模块具体用于:
    在第一频率范围内对所述呼吸波形进行转换处理,得到所述呼吸波形在所述第一频率范围内的第一频谱图;
    根据所述第一频谱图的峰值,确定所述呼吸频率。
  40. 根据权利要求36-39任一项所述的装置,其特征在于,所述确定模块具体用于:
    根据所述相位信号,确定心跳波形;
    根据所述心跳波形,确定所述心跳频率。
  41. 根据权利要求40所述的装置,其特征在于,所述确定模块具体用于:
    通过第二带通滤波器对所述相位信号进行处理,得到所述心跳波形,所述第二带通滤波器的频率在第二频率范围内。
  42. 根据权利要求40或41所述的装置,其特征在于,所述确定模块具体用于:
    在第二频率范围内对所述心跳波形进行转换处理,得到所述心跳波形在所述第二频率范围内的第二频谱图;
    根据所述第二频谱图的峰值,确定所述心跳频率。
  43. 根据权利要求40-42任一项所述的装置,其特征在于,所述确定模块还用于:
    获取所述对象的一个心跳的时长;
    根据所述对象的一个心跳的时长和所述心跳波形,确定所述对象的多个心跳片段,一个心跳片段用于指示所述对象的一个心跳。
  44. 根据权利要求31或32所述的装置,其特征在于,所述确定模块具体用于:
    根据所述第一函数,确定多个准静止时间窗对应的第二距离区间,在一个静止时间窗中,所述第一函数在该静止时间窗对应的第二距离区间上的能量值最大;
    根据所述多个第二距离区间和每个第二距离区间的相邻距离区间,确定距离区间集合,所述距离区间集合中包括所述多个第二距离区间和每个第二距离区间的相邻距离区间;
    对所述距离区间集合进行主成分分析处理,以在所述距离区间集合中确定所述第一距离区间。
  45. 根据权利要求33或44所述的装置,其特征在于,所述确定模块具体用于:
    根据所述第一距离区间对应的傅里叶变换值的实部和虚部,确定混频信号的相位信号。
  46. 根据权利要求33、44-45任一项所述的装置,其特征在于,所述相位信号满足如下公式:
    Figure PCTCN2020074816-appb-100007
    其中,所述P(n)为所述相位信号,所述n为第n个时间点,所述I[i]为傅里叶变换值的实部所述Q[i]为所述傅里叶变换的虚部,ΔI[i]=I[i]-I[i-1],ΔQ[i]=Q[i]-Q[i-1]。
  47. 根据权利要求29-33、44-46任一项所述的装置,其特征在于,所述对象的状态为运动状态,所述体征信息包括心跳频率。
  48. 根据权利要求47所述的装置,其特征在于,所述确定模块具体用于:
    对所述相位信号进行第一处理,所述第一处理用于消除所述对象的移动对所述相位信号的干扰;
    根据所述第一处理后的相位信号,确定心跳信号;
    根据所述心跳信号,确定所述心跳频率。
  49. 根据权利要求48所述的装置,其特征在于,所述确定模块具体用于:
    确定所述相位信号对应的断点集合,所述断点集合中包括多个断点,所述对象在所述断点对应的时刻的运动幅度大于预设幅度;
    根据所述断点集合,对所述相位信号进行所述第一处理。
  50. 根据权利要求49所述的装置,其特征在于,所述断点满足如下公式:
    Figure PCTCN2020074816-appb-100008
    其中,所述P(n)为所述相位信号,所述mean(P(n),Q)为时间n之后的Q个时间点对应的相位信号的均值,所述mean(P(n,-Q))为时间n之前的Q个时间点对应的相位信号的均值,所述var(P(n),Q)为时间n之后的Q个时间点对应的相位信号的方差,所述var(P(n),-Q)为时间n之前的Q个时间点对应的相位信号的方差,所述ε为预设参数,所述r为预设阈值。
  51. 根据权利要求49或50所述的装置,其特征在于,所述第一处理后的相位信号满足如下公式:
    Figure PCTCN2020074816-appb-100009
    其中,P(n)为所述相位信号,所述
    Figure PCTCN2020074816-appb-100010
    为所述第一处理后的相位信号,所述b h为时间n之前最近的一个断点对应的时间点的标识,所述b l为时间n之后最近的一个断点对应的时间点的标识。
  52. 根据权利要求48-51任一项所述的装置,其特征在于,所述确定模块具体用于:
    通过第三带通滤波器对所述第一处理后的相位信号进行处理,得到所述心跳信号,所述第三带通滤波器的频率在第三频率范围内。
  53. 根据权利要求48-52任一项所述的装置,其特征在于,所述确定模块具体用于:
    根据预设网络对所述心跳信号进行校正处理,得到毫米波心电图MCG信号;
    根据所述MCG信号,确定所述心跳频率。
  54. 根据权利要求53所述的装置,其特征在于,所述确定模块具体用于:
    根据所述MCG信号的时长和所述MCG信号中包括的峰值个数,确定所述心跳频率。
  55. 一种体征检测装置,其特征在于,包括:存储器、处理器和通信接口,所述存储器用于存储程序指令,所述处理器用于调用存储器中的程序指令执行如权利要求1-27任一项所述的体征检测的方法。
  56. 一种可读存储介质,其特征在于,所述可读存储介质上存储有计算机程序;所述计算机程序用于实现如权利要求1-27任一项所述的体征检测方法。
PCT/CN2020/074816 2020-02-12 2020-02-12 体征检测方法、装置及设备 WO2021159294A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/074816 WO2021159294A1 (zh) 2020-02-12 2020-02-12 体征检测方法、装置及设备
CN202080085356.3A CN114786569A (zh) 2020-02-12 2020-02-12 体征检测方法、装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074816 WO2021159294A1 (zh) 2020-02-12 2020-02-12 体征检测方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2021159294A1 true WO2021159294A1 (zh) 2021-08-19

Family

ID=77291987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074816 WO2021159294A1 (zh) 2020-02-12 2020-02-12 体征检测方法、装置及设备

Country Status (2)

Country Link
CN (1) CN114786569A (zh)
WO (1) WO2021159294A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114366051A (zh) * 2021-12-10 2022-04-19 五邑大学 无接触式活体体征检测方法、装置、设备及存储介质
CN117420538A (zh) * 2023-12-18 2024-01-19 深圳捷扬微电子有限公司 一种超宽带系统的测距方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170055912A1 (en) * 2012-03-19 2017-03-02 Advanced Telesensors, Inc. System and method for facilitating reflectometric detection of physiologic activity
CN106659428A (zh) * 2014-04-28 2017-05-10 麻省理工学院 通过无线电反射的生命体征监测
CN110058220A (zh) * 2019-05-05 2019-07-26 广东勘生科技有限公司 基于毫米波雷达技术的火灾探测救援方法及系统
CN110200607A (zh) * 2019-05-14 2019-09-06 南京理工大学 基于光流法与lms算法消除生命体征检测中体动影响的方法
CN110346790A (zh) * 2019-07-09 2019-10-18 长沙莫之比智能科技有限公司 一种基于毫米波雷达的非接触式生命体征监测方法、装置及系统
CN110584631A (zh) * 2019-10-10 2019-12-20 重庆邮电大学 一种基于fmcw雷达的静态人体心跳和呼吸信号提取方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170055912A1 (en) * 2012-03-19 2017-03-02 Advanced Telesensors, Inc. System and method for facilitating reflectometric detection of physiologic activity
CN106659428A (zh) * 2014-04-28 2017-05-10 麻省理工学院 通过无线电反射的生命体征监测
CN110058220A (zh) * 2019-05-05 2019-07-26 广东勘生科技有限公司 基于毫米波雷达技术的火灾探测救援方法及系统
CN110200607A (zh) * 2019-05-14 2019-09-06 南京理工大学 基于光流法与lms算法消除生命体征检测中体动影响的方法
CN110346790A (zh) * 2019-07-09 2019-10-18 长沙莫之比智能科技有限公司 一种基于毫米波雷达的非接触式生命体征监测方法、装置及系统
CN110584631A (zh) * 2019-10-10 2019-12-20 重庆邮电大学 一种基于fmcw雷达的静态人体心跳和呼吸信号提取方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114366051A (zh) * 2021-12-10 2022-04-19 五邑大学 无接触式活体体征检测方法、装置、设备及存储介质
CN117420538A (zh) * 2023-12-18 2024-01-19 深圳捷扬微电子有限公司 一种超宽带系统的测距方法
CN117420538B (zh) * 2023-12-18 2024-03-08 深圳捷扬微电子有限公司 一种超宽带系统的测距方法

Also Published As

Publication number Publication date
CN114786569A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
RU2531119C2 (ru) Бесконтактный мониторинг дыхания пациента
WO2021159294A1 (zh) 体征检测方法、装置及设备
CN110069134B (zh) 一种利用无线电射频信号还原手部空中移动轨迹的方法
Wang et al. CSI-based human sensing using model-based approaches: a survey
WO2021121361A1 (zh) 距离测量方法和距离测量装置
Cardillo et al. Head motion and eyes blinking detection: A mm-wave radar for assisting people with neurodegenerative disorders
Goldfine et al. Respiratory rate monitoring in clinical environments with a contactless ultra-wideband impulse radar-based sensor system
Fioranelli et al. Contactless radar sensing for health monitoring
CN115736886A (zh) 一种基于毫米波雷达的多目标呼吸率参数估计方法
CN110353729B (zh) 一种基于双向长短期记忆网络的声波渡越时间检测方法
JP2020165950A (ja) 無線信号に基づく運動状態の検出装置、方法及びシステム
Vishwakarma et al. SimHumalator: An open source WiFi based passive radar human simulator for activity recognition
Rong et al. Novel Respiration-Free Heartbeat Detection Algorithm Using Millimeter-Wave Radar
CN111580086A (zh) 生命体检测方法、检测装置和电子设备
Uysal et al. Contactless respiration rate estimation using MUSIC algorithm
Zhou et al. A robust respiration detection system via similarity-based selection mechanism using wifi
Li et al. Motion-robust contactless heartbeat sensing using 4D imaging radar
US10838516B2 (en) Six degrees of freedom tracking of objects using sensors
Rajagopal et al. Portable real-time system for multi-subject localization and vital sign estimation
CN112741617A (zh) 一种基于csi的全方向步态检测算法
CN114578367B (zh) 实时运动轨迹监测方法、装置、设备及可读存储介质
CN113729678B (zh) 一种基于毫米波雷达的无线体征测量系统
CN114947771A (zh) 人体特征数据采集方法和装置
CN113786180A (zh) 基于毫米波雷达信号的人体血压检测方法
CN110604553B (zh) 非接触式生命体征检测方法、检测装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918797

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20918797

Country of ref document: EP

Kind code of ref document: A1