WO2021159267A1 - Vehicle maneuvering techniques in wireless systems - Google Patents

Vehicle maneuvering techniques in wireless systems Download PDF

Info

Publication number
WO2021159267A1
WO2021159267A1 PCT/CN2020/074692 CN2020074692W WO2021159267A1 WO 2021159267 A1 WO2021159267 A1 WO 2021159267A1 CN 2020074692 W CN2020074692 W CN 2020074692W WO 2021159267 A1 WO2021159267 A1 WO 2021159267A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless device
maneuver
planned
wireless
examples
Prior art date
Application number
PCT/CN2020/074692
Other languages
French (fr)
Inventor
Dan Vassilovski
Hong Cheng
Gene Wesley Marsh
Lan Yu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/074692 priority Critical patent/WO2021159267A1/en
Publication of WO2021159267A1 publication Critical patent/WO2021159267A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0027Post collision measures, e.g. notifying emergency services
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/10Fittings or systems for preventing or indicating unauthorised use or theft of vehicles actuating a signalling device
    • B60R25/102Fittings or systems for preventing or indicating unauthorised use or theft of vehicles actuating a signalling device a signal being sent to a remote location, e.g. a radio signal being transmitted to a police station, a security company or the owner
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]

Definitions

  • the following relates generally to wireless communications and more specifically to managing vehicle maneuvering.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a method of wireless communications at a wireless device in a wireless communications system may include determining a planned maneuver for the wireless device.
  • the method may include determining a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof.
  • the method may include transmitting an application-layer message indicating the spatial clearance for the planned maneuver.
  • the apparatus may include a processor, memory coupled to the processor, and instructions stored in the memory.
  • the memory and the processor may be configured (e.g., the instructions may be executable) to cause the apparatus to determine a planned maneuver for the wireless device, determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof, and transmit an application-layer message indicating the spatial clearance for the planned maneuver.
  • the apparatus may include means for determining a planned maneuver for the wireless device, determining a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof, and transmitting an application-layer message indicating the spatial clearance for the planned maneuver.
  • a non-transitory computer-readable medium storing code for wireless communications at a wireless device in a wireless communications system is described.
  • the code may include instructions executable by a processor to determine a planned maneuver for the wireless device, determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof, and transmit an application-layer message indicating the spatial clearance for the planned maneuver.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the application-layer message to one or more vehicles or vulnerable road users (VRUs) in the wireless communications system.
  • VRUs vulnerable road users
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the application-layer message via a device-to-device communications channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a safety margin based on a set of parameters associated with the wireless device and one or more traffic regulations, and determining the spatial clearance based on the safety margin.
  • the one or more traffic regulations may be associated with a set of local traffic regulations, a set of state traffic regulations, a set of regional traffic regulations, a set of federal traffic regulations, or any combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the planned maneuver may be a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof.
  • the spatial clearance includes a first longitudinal distance corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
  • the one or more static parameters of the wireless device includes a vehicle type, a vehicle size, a vehicle weight, a turning radius of the wireless device, an acceleration capability of the wireless device, a deceleration capability of the wireless device, a braking parameter of the wireless device, one or more components equipped on the wireless device, or any combination thereof.
  • the one or more dynamic parameters of the wireless device includes a payload carried by the wireless device, a number of passengers in the wireless device, a tire pressure of the wireless device, a tire wear parameter of the wireless device, a brake status of the wireless device, a current acceleration capability of the wireless device, a current deceleration capability of the wireless device.
  • the one or more environmental parameters associated with the wireless device includes a surface of a road, a condition of the road, a weather condition, a number of vulnerable road users (VRUs) neighboring the wireless device, a designated speed limit of the road, or any combination thereof.
  • VRUs vulnerable road users
  • a method of wireless communications at a wireless device in a wireless communications system may include monitoring one or more channels configured for the wireless communications system.
  • the method may include receiving, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring.
  • the method may include performing, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the memory and the processor may be configured (e.g., the instructions may be executable) to cause the apparatus to monitor one or more channels configured for the wireless communications system, receive, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring, and perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
  • the apparatus may include means for monitoring one or more channels configured for the wireless communications system, receiving, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring, and performing, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
  • a non-transitory computer-readable medium storing code for wireless communications at a wireless device in a wireless communications system is described.
  • the code may include instructions executable by a processor to monitor one or more channels configured for the wireless communications system, receive, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring, and perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the application-layer message via a device-to-device communications channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining whether the planned maneuver of the neighboring wireless device affects the wireless device, and performing the maneuver based on the determining.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining, based on the application-layer message, that the planned maneuver may be a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof.
  • performing the maneuver to accommodate the planned maneuver may include operations, features, means, or instructions for performing a right turn, a left turn, a straight procession, a lane change, a stop, an acceleration, a deceleration, a parking maneuver, or any combination thereof.
  • performing the maneuver to accommodate the planned maneuver may include operations, features, means, or instructions for modifying one or more planned maneuvers of the wireless device based on the planned maneuver of the neighboring wireless device.
  • the spatial clearance includes a first longitudinal distance corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
  • FIG. 1 illustrates an example of a wireless communications system that supports vehicle maneuvering techniques in accordance with one or more aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports vehicle maneuvering techniques in accordance with one or more aspects of the present disclosure.
  • FIGs. 3 and 4 illustrate examples of systems that support vehicle maneuvering techniques in accordance with one or more aspects of the present disclosure.
  • FIG. 5 illustrates an example of a process flow that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • FIGs. 6 and 7 show block diagrams of devices that support vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • FIG. 8 shows a block diagram of a communications manager that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • FIG. 9 shows a diagram of a system including a device that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • FIGs. 10 and 11 show flowcharts illustrating methods that support vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • Some wireless communications systems may support communications between devices, such as device-to-device (D2D) communications.
  • a device in such a wireless communications system e.g., a vehicle to everything (V2X) system, a cellular V2X (C-V2X) system
  • V2X vehicle to everything
  • C-V2X cellular V2X
  • Traffic efficiency of such a system may be relatively low.
  • vehicles may be relatively far apart (e.g., to accommodate human perception and reaction times) , which may result in a relatively smaller quantity of vehicles utilizing a road.
  • a driver of a vehicle or an autonomous vehicle may be unaware of some information corresponding to other devices (e.g., information of a planned maneuver of another vehicle) , which may also result in traffic inefficiency.
  • a turning vehicle may pass an obstacle (e.g., a pedestrian, a cyclist, a stationary vehicle, a moving vehicle, or other VRU) with a spatial clearance such that neither the vehicle nor the obstacle is at risk of impact.
  • the spatial clearance may be difficult to determine due to unknown or inaccurate parameters.
  • a human driver may not be able to accurately determine the acceleration of the vehicle or how current road conditions may affect its turning radius.
  • traffic efficiency may be negatively impacted when a driver overestimates a spatial clearance.
  • one or more wireless devices may implement vehicle maneuvering techniques in order to realize enhanced safety and traffic efficiency (e.g., relatively smaller inter-vehicle spacing such that a relatively higher quantity of vehicles may utilize a road) , among other benefits.
  • a wireless device may identify a planned maneuver, such as a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof, among other examples of maneuvers.
  • the wireless device may determine one or more parameters associated with the planned maneuver.
  • the wireless device may determine a spatial clearance for the planned maneuver (e.g., a lateral clearance, a longitudinal clearance, or both) .
  • the wireless device may determine one or more static parameters of the wireless device (e.g., parameters of a vehicle that remain relatively unchanged over time, such as a vehicle type, a vehicle size, etc. ) , one or more dynamic parameters of the wireless device (e.g., parameters that may change over time, such as tire pressure, brake status, etc. ) , one or more environmental parameters (e.g., weather conditions, road conditions, etc. ) , or any combination thereof.
  • the wireless device may determine the spatial clearance based on the various parameters. For example, the wireless device may determine the spatial clearance based on a size of the wireless device and a safety margin (e.g., a pre-configured safety margin or a safety margin determined based on the one or more parameters) , among other factors.
  • a safety margin e.g., a pre-configured safety margin or a safety margin determined based on the one or more parameters
  • the wireless device may indicate the planned maneuver to one or more other wireless devices (e.g., neighboring wireless devices) .
  • the wireless device may transmit a message (e.g., an application layer message such as a safety message transmitted via an application-layer) indicating a determined spatial clearance for a planned maneuver of the wireless device.
  • a receiving wireless device may monitor for and receive the message, which may enable the receiving device to perform one or more maneuvers based on the indication of the planned maneuver.
  • the receiving wireless device may identify a spatial clearance of the planned maneuver and determine whether to perform a maneuver at the receiving wireless device in accordance with the spatial clearance of the planned maneuver.
  • the receiving wireless device may modify one or more aspects of the maneuver based on the indicated spatial clearance.
  • the receiving wireless device may adjust or delay a maneuver of the receiving wireless device to satisfy the spatial clearance of the planned maneuver, for example, such that the planned maneuver and the performed maneuver by the receiving wireless device avoids a collision between the two devices (e.g., two vehicles) while maintaining a relatively high traffic efficiency.
  • the two devices e.g., two vehicles
  • aspects of the disclosure are initially described in the context of systems such as wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to vehicle maneuvering techniques in wireless systems.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, drones, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT- S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT- S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using V2X communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as RSUs, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a wireless device may be an example of a UE 115 in a V2X communications system.
  • the wireless device may be an example of a vehicle (e.g., a car, a truck, a bicycle, a motorcycle, a drone, etc. ) , a VRU 205, an RSU, among other examples of UEs 115 as described herein.
  • traffic efficiency between the wireless devices e.g., the UEs 115
  • the UEs 115 may be relatively low.
  • the UEs 115 may be relatively far apart (e.g., to accommodate human perception and reaction times) , which may result in a relatively smaller quantity of vehicles utilizing a road.
  • a driver or a UE 115 may be unaware of some information corresponding to other devices (e.g., information of a planned maneuver of another UE 115) , which may also result in traffic inefficiency.
  • a turning vehicle may pass an obstacle (e.g., a pedestrian, a cyclist, a stationary vehicle, a moving vehicle) with a spatial clearance such that neither the vehicle nor the obstacle is at risk of impact.
  • the spatial clearance may be difficult to determine due to unknown or inaccurate parameters.
  • a human driver may not be able to accurately determine the acceleration of the vehicle or how current road conditions may affect its turning radius.
  • traffic efficiency may be negatively impacted when a driver overestimates a clearance.
  • one or more wireless devices may implement vehicle maneuvering techniques in order to realize enhanced safety and traffic efficiency (e.g., relatively smaller inter-vehicle spacing such that a relatively higher quantity of vehicles may utilize a road) , among other benefits.
  • a wireless device may identify a planned maneuver.
  • the wireless device may determine one or more parameters associated with the planned maneuver.
  • the wireless device may determine a spatial clearance for the planned maneuver (e.g., a lateral clearance, a longitudinal clearance, or both) .
  • the wireless device may determine one or more static parameters of the wireless device (e.g., parameters of a vehicle that remain relatively unchanged over time, such as a vehicle type, a vehicle size, etc. ) , one or more dynamic parameters of the wireless device (e.g., parameters that may change over time, such as tire pressure, brake status, etc. ) , one or more environmental parameters (e.g., weather conditions, road conditions, etc. ) , or any combination thereof.
  • the wireless device may indicate the planned maneuver to one or more other wireless devices. For example, the wireless device may transmit a message (e.g., a safety message transmitted via an application-layer) indicating a determined spatial clearance for a planned maneuver of the wireless device.
  • a message e.g., a safety message transmitted via an application-layer
  • a receiving wireless device may monitor for and receive the message, which may enable the receiving device to perform one or more maneuvers based on the indication of the planned maneuver.
  • One or more of these operations may be performed by a communications manager 101 (e.g., a communications manager 101-a and/or a communications manager 101-b) , which may be an example of a communications manager 615, 715, 805, or 910 as described with reference to FIGs. 6 through 9.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • the wireless communications system 200 may implement aspects of wireless communication system 100.
  • the wireless communications system 200 may include a base station 105-a and UEs 115-a through 115-c, which may be examples of a base station 105 and a UE 115, respectively, as described with reference to FIG. 1.
  • the UEs 115 may be examples of vehicles or other wireless devices as described herein.
  • the wireless communications system 200 may also include VRUs 205 (e.g., other UEs 115, such as bicycles, other vehicles, pedestrians, etc. ) .
  • VRUs 205 e.g., other UEs 115, such as bicycles, other vehicles, pedestrians, etc.
  • the UEs 115 in the wireless communications system 200 may directly communicate with each other (e.g., using V2X communications, D2D communications, etc. ) to exchange information.
  • a UE 115 may use V2V communications to communicate with a vehicle, vehicle-to-pedestrian (V2P) communications to communicate with a personal electronic device, or V2N communications to communicate with roadside infrastructure.
  • V2P vehicle-to-pedestrian
  • V2N communications to communicate with roadside infrastructure.
  • the V2X communications are facilitated by the base station 105-a, which may communicate with wireless devices that are within a coverage area via a communication link 125-a.
  • the techniques described herein may be implemented using any type of communication that allows one UE 115 to communicate directly with another UE 115 (e.g., via D2D communication link 135-a) .
  • traffic efficiency in the wireless communications system 200 may be relatively low.
  • the UE 115-b and the UE 115-c may be separated by a relatively large distance (e.g., due to a human perception and reaction time) , which may result in a relatively smaller quantity of UEs 115 that may utilize the road.
  • a UE 115 may be unaware of some information corresponding to the other wireless devices (e.g., other UEs 115 and/or VRUs 205) .
  • a human driver may be unable to accurately determine one or more parameters associated with a corresponding vehicle or other vehicles.
  • the UE 115-b may identify some parameters of other UEs 115 or VRUs 205 remotely, but may be unable to identify other parameters of the UEs 115 or VRUs 205 (e.g., due to vehicle-mounted sensors of the UE 115-b being subject to error) , which may result in the UE 115-b detecting relatively inaccurate parameters of the other UEs 115 (e.g., characteristics of the UE 115-a, road conditions at the UE 115-a, etc. ) .
  • the UE 115-b may be unaware of other information or parameters corresponding to another UE 115, such as a spatial clearance of a planned maneuver by the UE 115-a. Such examples may result in an increased chance of collisions with other UEs 115 or VRUs 205, reduced traffic efficiency, or both.
  • the various wireless devices in the wireless communications system 200 may determine and/or communicate information associated with one or more maneuvers in order to provide for enhanced safety and traffic efficiency in the wireless communications system 200.
  • the UE 115-a may identify a planned maneuver of the UE 115-a.
  • the planned maneuver may be a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof, among other examples of maneuvers.
  • the UE 115-a may determine one or more parameters associated with the planned maneuver. For example, the UE 115-a may determine a spatial clearance for the planned maneuver.
  • the spatial clearance may be a minimum distance from other UEs 115 and VRUs 205 such that the UE 115-a may avoid a collision with another wireless device (e.g., a vehicle such as the UE 115-b) .
  • the spatial clearance may include a longitudinal clearance (e.g., a distance extending from the back of the UE 115-a to the front of the UE 115-a) .
  • the longitudinal clearance may be a minimum distance from the UE 115-a to a leading vehicle (e.g., a UE 115 in front of the UE 115-a) and/or a trailing vehicle (e.g., a UE 115 behind the UE 115-a) to ensure safe stopping.
  • the longitudinal clearance may vary from one UE 115 to another UE 115 (e.g., the longitudinal clearance for a passenger car may be different than the longitudinal clearance for a large truck) .
  • the spatial clearance may include a lateral clearance (e.g., a distance extending from one side of the UE 115-a to the other side of the UE 115-a) .
  • the lateral clearance may be a minimum distance from the UE 115-a to another UE 115 extending in a direction, for example, perpendicular to the longitudinal clearance.
  • the lateral clearance may vary from one UE 115 to another UE 115.
  • the lateral clearance when turning left or right in an intersection may be different for a bus compared to a small sports car.
  • the UE 115-a may determine the spatial clearance based on one or more parameters. For example, the UE 115-a may determine one or more static parameters of the UE 115-a. The one or more static parameters may include a size, a weight, a brake condition, a vehicle design (e.g., a parameter indicating that the UE 115-a has an anti-lock brake feature available) , a turning radius, an acceleration and/or deceleration capability, among other examples of static parameters. Additionally or alternatively, the UE 115-a may determine one or more dynamic parameters.
  • the one or more static parameters may include a size, a weight, a brake condition, a vehicle design (e.g., a parameter indicating that the UE 115-a has an anti-lock brake feature available) , a turning radius, an acceleration and/or deceleration capability, among other examples of static parameters. Additionally or alternatively, the UE 115-a may determine one or more dynamic parameters.
  • the one or more dynamic parameters may include a speed, a heading (e.g., a direction the UE 115-a is traveling in) , a yaw rate, a carried payload (e.g., in addition or alternative to a weight of the UE 115-a, such as a weight of passengers or cargo) , a skid characteristic, one or more intended maneuvers (i.e., planned maneuvers) , a tire pressure and/or tire wear, a brake status, an acceleration/deceleration measurement, among other examples of dynamic parameters. Additionally or alternatively, the UE 115-a may determine one or more environmental parameters.
  • the one or more environmental parameters may include road conditions such as a surface type, a weather condition (e.g., raining, snowing, cross-wind measurements, etc. ) , among other examples of environmental parameters. Although examples of such parameters are listed for clarity, one or more of the various parameters may not be included, additional parameters may be included, or one or more parameters may be categorized differently than listed (e.g., the turning radius may be an example of a dynamic parameter that changes based on road conditions, tire pressure, weight, etc., among other examples of parameters that may be categorized differently) .
  • the UE 115-a may determine the spatial clearance based on the one or more of the static parameters, the one or more dynamic parameters, and/or the one or more environmental parameters.
  • the spatial clearance may be a function of static characteristics of the UE 115-a, dynamic characteristics of the UE 115-a, environmental conditions (e.g., road conditions) , and/or information corresponding to the planned maneuver of the UE 115-a.
  • the UE 115-a may determine the spatial clearance based on a safety margin.
  • a longitudinal clearance and/or a lateral clearance of the spatial clearance may include a first distance (e.g., a minimum distance for performing a maneuver) and a second distance (e.g., a safety margin) .
  • the longitudinal clearance may be the sum of the first distance and the second distance or the greatest value between the first distance and the second distance, among other examples.
  • the safety margin may be pre-configured at the UE 115-a (e.g., based on regulations in a geographic location that the wireless communications system 200 is located in) .
  • the various wireless devices in the wireless communications system 200 may communicate via CV2X communications.
  • the wireless devices may communicate information indicating vehicle characteristics, motion state information, and planned maneuvers to neighboring wireless devices (e.g., wireless devices in a relatively close proximity, a same geographic location, a cell of a base station 105, etc. ) .
  • the UE 115-a may indicate a planned maneuver to other wireless devices (e.g., other UEs 115, VRUs 205, and/or the base station 105-a) .
  • the UE 115-a may transmit a message (e.g., a safety message) to the UE 115-b via the D2D link 135-a.
  • the message may indicate information associated with a planned maneuver of the UE 115-a (e.g., the spatial clearance corresponding to the planned maneuver, a timing of the planned maneuver, the one or more static parameters, the one or more dynamic parameters, the one or more environmental parameters, or any combination thereof) .
  • information associated with a planned maneuver of the UE 115-a e.g., the spatial clearance corresponding to the planned maneuver, a timing of the planned maneuver, the one or more static parameters, the one or more dynamic parameters, the one or more environmental parameters, or any combination thereof.
  • the message may be transmitted via the application-layer (e.g., an application-layer message such as a basic safety message (BSM) ) .
  • the message may include one or more data elements indicating information as described herein.
  • the table 1 shown below illustrates example data fields, descriptions, and data elements that may be indicated by the message.
  • the SpatialClearance_Longitudinal data field may represent the longitudinal clearance (e.g., distance) along an x-axis of the UE 115-a, where the x-axis extends from the UE 115-a in a positive x-axis direction (e.g., a direction of a vehicle heading vector such as a forward movement direction of the UE 115-a) and a negative x-axis direction opposite of the positive x-axis direction.
  • the positive x-axis direction may be a vector extending from the front of the UE 115-a and the negative x-axis direction may be a vector extending from the back of the UE 115-a.
  • Such a data field may include one or more data elements as illustrated by the DE_SpatClearnLonPlusX data element (e.g., an indication of the distance in meters from the vehicle reported position in the positive x-axis direction) and a DE_SpatClearLonNegX data element (e.g., indication of the distance in meters from the vehicle reported position in the negative x-axis direction) .
  • DE_SpatClearnLonPlusX data element e.g., an indication of the distance in meters from the vehicle reported position in the positive x-axis direction
  • DE_SpatClearLonNegX data element e.g., indication of the distance in meters from the vehicle reported position in the negative x-axis direction
  • the SpatialClearance_Lateral data field may represent the lateral clearance (e.g., distance) along a y-axis of the UE 115-a, where the y-axis is perpendicular to the x-axis.
  • a positive y-axis vector may extend out from the left of the UE 115-a (e.g., from the perspective of a driver) and a negative y-axis vector may extend out from the right of the UE 115-a.
  • Such a data field may include one or more data elements as illustrated by the DE_SpatClearnLatPlusY data element (e.g., an indication of the distance in meters from a vehicle reported position in the positive y-axis direction) and a DE_SpatClearLatNegY data element (e.g., indication of the distance in meters from a vehicle reported position in the negative y-axis direction) .
  • DE_SpatClearnLatPlusY data element e.g., an indication of the distance in meters from a vehicle reported position in the positive y-axis direction
  • DE_SpatClearLatNegY data element e.g., indication of the distance in meters from a vehicle reported position in the negative y-axis direction
  • One or more receiving wireless devices may monitor for and receive the message.
  • the UE 115-b may receive the message and identify information indicating a planned maneuver of the UE 115-a.
  • the UE 115-b may and perform and/or adjust one or more maneuvers based on the identified information.
  • the UE 115-b may identify a spatial clearance of the planned maneuver of the UE 115-a.
  • the UE 115-b may determine whether to perform a maneuver in accordance with the spatial clearance.
  • the UE 115-b may perform the maneuver if one or more parameters of the maneuver of the UE 115-b satisfies the spatial clearance (or other indicated information in the message) of the planned maneuver of the UE 115-a. For example, the UE 115-b may determine that the maneuver will avoid a collision with the UE 115-a based on a spatial clearance of the maneuver of the UE 115-b failing to overlap with the spatial clearance of the maneuver of the UE 115-a. In some other examples, the UE 115-b may modify one or more aspects of the maneuver based on the indicated spatial clearance.
  • the UE 115-b may refrain from performing the maneuver based on determining an overlap between the spatial clearance of the maneuver of the UE 115-a and the maneuver of the UE 115-b. Additionally or alternatively, the UE 115-b may adjust one or more parameters of the maneuver (e.g., change a timing of the maneuver, a path of the maneuver, a spatial clearance of the maneuver, etc. ) to satisfy the spatial clearance of the planned maneuver of the UE 115-a. Such examples may result in avoiding an impact between the UE 115-a and the UE 115-b while maintaining a relatively high traffic efficiency.
  • one or more parameters of the maneuver e.g., change a timing of the maneuver, a path of the maneuver, a spatial clearance of the maneuver, etc.
  • FIGs. 3A and 3B illustrate examples of systems 300-a and 300-b, respectively, that support vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • the systems 300-a and 300-b may implement aspects of wireless communications systems 100 and 200.
  • the systems 300-a and/or the system 300-b may include UEs 115-d through 115-f, which may be examples of UEs 115 as described with reference to FIGs. 1 and 2.
  • the UEs 115 may be examples of vehicles or other wireless devices as described herein (e.g., base stations 105, VRUs 205, etc. ) .
  • the system 300-a may include a UE 115-d.
  • the UE 115-d may identify a planned maneuver to undergo. Although the maneuver is illustrated for illustrative clarity as a left turn, the maneuver may be any example of maneuver.
  • the UE 115-d may determine a spatial clearance 310-a of the planned maneuver as described with reference to FIG. 2. For example, the UE 115-d may determine one or more parameters (e.g., static parameters, dynamic parameters, environmental parameters, etc. ) of the UE 115-d and/or the spatial clearance 310-a.
  • the UE 115-d may determine the spatial clearance 310-a based on the one or more parameters.
  • the UE 115-d may determine the spatial clearance 310-a based on a safety margin 305-a. For example, a lateral clearance and/or a longitudinal clearance of the spatial clearance 310-a may be based on the safety margin 305-a, as described with reference to FIG. 2.
  • the UE 115-d may transmit a message to one or more wireless devices.
  • the UE 115-d may transmit a safety message to the UE 115-e via an application-layer (e.g., an application-layer message such as a BSM) , as described with reference to FIG. 2.
  • the message may indicate the maneuver and/or the spatial clearance 310-a of the UE 115-d (e.g., the message may indicate one or more parameters, such as a lateral clearance data element and a longitudinal clearance data element, among other examples of parameters) .
  • the UE 115-e may monitor for and receive the message.
  • the UE 115-e may determine whether to perform and/or adjust one or more maneuvers based on the received message. For example, the UE 115-e may identify the spatial clearance 310-a of the planned maneuver of the UE 115-d. The UE 115-e may determine whether to perform a maneuver in accordance with the spatial clearance.
  • the planned maneuver of the UE 115-e is illustrated as a left turn for illustrative clarity, the maneuver may be any example of maneuver.
  • the UE 115-e may perform the maneuver if the indicated spatial clearance 310-a does not overlap with a spatial clearance 310-b of the maneuver of the UE 115-e.
  • the UE 115-e may determine that the indicated spatial clearance 310-a satisfies one or more conditions to perform the maneuver corresponding to the spatial clearance 310-b (e.g., the maneuver of the UE 115-e may avoid a collision with the UE 115-d) .
  • the UE 115-e may perform the maneuver based on determining that the one or more conditions are satisfied.
  • the system 300-b may include a UE 115-f and a UE 115-g.
  • the UE 115-f may identify a planned maneuver to undergo.
  • the UE 115-f may determine a spatial clearance 310-c for the planned maneuver.
  • the spatial clearance 310-c may be calculated based on one or more parameters as described with reference to FIG. 2. As illustrated, the spatial clearance 310-c may be different than the spatial clearance 310-a.
  • the spatial clearance 310-c may be relatively larger than the spatial clearance 310-a due to a larger size and/or safety margin 305-c of the UE 115-f, among other examples of parameters (e.g., the difference may also be based on road conditions, dynamic parameters, other static parameters, etc. ) .
  • the UE 115-f may indicate the planned maneuver to the UE 115-g via a message (e.g., a safety message transmitted via the application layer) .
  • the system 300-b may illustrate an example of a scenario where the spatial clearance 310-c overlaps with a spatial clearance 310-d of a planned maneuver of the UE 115-g.
  • the UE 115-g may refrain from performing a maneuver based on determining that the spatial clearance 310-d overlaps with the spatial clearance 310-c.
  • the UE 115-g may adjust one or more parameters of the planned maneuver.
  • the UE 115-g may change a timing of the maneuver of the UE 115-g (e.g., the UE 115-g may wait to perform the maneuver) , a path of the maneuver, or both, such that the spatial clearance 310-d does not overlap with the spatial clearance 310-c in location and/or time.
  • FIG. 4 illustrates an example of a system 400 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • the system 400 may implement aspects of systems 100, 200, 300-a, and/or 300-b.
  • the system 400 may include UEs 115-h through 115-j, which may be examples of UEs 115 as described with reference to FIGs. 1 through 3.
  • the UEs 115 may be examples of vehicles or other wireless devices as described herein (e.g., base stations 105, VRUs 205, etc. ) .
  • the system 400 may illustrate an example of a lane change maneuver by the UE 115-h in accordance with one or more aspects of the techniques described herein.
  • the UE 115-h may identify a planned maneuver (e.g., the lane chance maneuver) .
  • the UE 115-h may determine a spatial clearance of the planned maneuver and/or the UE 115-h based on one or more parameters (e.g., static parameters, dynamic parameters, environmental parameters, a safety margin of the UE 115-k, etc. ) .
  • the UE 115-h may determine one or more longitudinal clearances 405 of the spatial clearance as described with reference to FIG. 2.
  • the UE 115-h may determine a longitudinal clearance 405-a between the UE 115-h and a trailing device, such as the UE 115-i. Additionally or alternatively, the UE 115-h may determine a longitudinal clearance 405-b between the UE 115-h and a leading device, such as the UE 115-j. In some examples, the determine spatial clearance may vary between devices. For example, a relatively larger vehicle may require more leading clearance (e.g., a larger longitudinal clearance 405-b) than a relatively smaller vehicle.
  • the UE 115-h may indicate the planned maneuver and/or the spatial clearance (e.g., an indication of the longitudinal clearances 405) to other wireless devices (e.g., the UE 115-i and the UE 115-j) .
  • the UE 115-h may transmit a message to the UE 115-j and/or the UE 115-i as described herein.
  • the UE 115-j and/or the UE 115-i may perform one or more actions to accommodate (i.e., grant) or reject the maneuver of the UE 115-h.
  • the UE 115-j may determine if a request of the message from the UE 115-h may be granted based on traffic conditions (e.g., considering whether the UE 115-j may accommodate the requested spatial clearance based on other vehicles in front of the UE 115-j) .
  • the UE 115-j or the UE 115-i may increase a spacing between the UE 115-j and the UE 115-i to satisfy one or more parameters indicated by the message from the UE 115-h (e.g., to satisfy the longitudinal clearances 405) .
  • Such examples may result in improved safety in the system 400.
  • the UEs 115 (and/or VRUs 205) may be aware of maneuvers of other vehicles and may implement communicated and/or negotiated spatial clearances to ensure safety in the system 400 (e.g., the spatial clearances may satisfy a braking time or distance for a given road condition, vehicle type, etc. ) .
  • the examples described herein may also enable relatively high traffic efficiency.
  • the inter-device spacing e.g., the longitudinal clearances 405 may be relatively small such that a higher quantity of devise may utilize the road while maintaining safe distancing.
  • FIG. 5 illustrates an example of a process flow 500 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • the process flow 500 may implement aspects of systems 100, 200, 300-a, 300-b, and/or 400.
  • the system 400 may include UEs 115-k and 115-l, which may be examples of UEs 115 as described with reference to FIGs. 1 through 4.
  • the UEs 115 may be examples of vehicles or other wireless devices as described herein (e.g., VRUs 205) .
  • VRUs 205 a wireless resource unit
  • the operations between UE 115-k and UE 115-l may occur in a different order than the exemplary order shown, or the operations performed by the devices may be performed in different orders or at different times. Certain operations may also be left out of the process flow 500, or other operations may be added to the process flow 500. In some examples, one or more of the operations described in the process flow 500 may be performed by one or more other devices (e.g., a VRU 205 or a base station 105) .
  • the UE 115-k may identify a planned maneuver as described herein with reference to FIGs. 1–4.
  • the UE 115-a may identify a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof, among other examples of maneuvers.
  • the UE 115-k may determine one or more parameters as described herein. For example, the UE 115-k may identify one or more static parameters, one or more dynamic parameters, one or more environmental parameters, a safety margin, etc., as described with reference to FIGs. 1–4.
  • the UE 115-k may calculate a spatial clearance of the planned maneuver. For example, the UE 115-k may determine a spatial clearance based on the one or more parameters as described with reference to FIGs. 1–4. In some examples, the spatial clearance may include a longitudinal clearance and a lateral clearance.
  • the UE 115-l may monitor for messages.
  • the UE 115-l may monitor for V2X communications in a wireless communications system as described with reference to FIGs. 1–4.
  • the UE 115-k may transmit an application-layer message to at least the UE 115-l.
  • the UE 115-k may transmit one or more data elements indicating the spatial clearance of the planned maneuver, among other examples of information associated with the UE 115-k and/or the planned maneuver.
  • the UE 115-l may optionally perform an action. For example, the UE 115-l may determine whether to grant or reject the planned maneuver of the UE 115-k. In some examples, the UE 115-k may adjust one or more parameters of a maneuver of the UE 115-k as described herein with reference to FIGs. 1–4. For example, the UE 115-l may refrain from performing a maneuver based on determining that the spatial clearance of the planned maneuver of the UE 115-k overlaps with a spatial clearance of a maneuver of the UE 115-l.
  • the UE 115-l may change a timing of the maneuver of the UE 115-l (e.g., the UE 115-l may wait to perform the maneuver) , a path of the maneuver, or both, which may enable relatively higher traffic efficiency and/or relatively higher safety conditions.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • the device 605 may be an example of aspects of a wireless device as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 620.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related vehicle maneuvering techniques, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 915 described with reference to FIG. 9.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the receiver 610 may include one or more radio frequency (RF) chains, and when multiple RF chains are included, the receiver 610 may support separate receptions at different ones of the multiple RF chains.
  • RF radio frequency
  • the communications manager 615 may determine a planned maneuver for the wireless device, determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof, and transmit an application-layer message indicating the spatial clearance for the planned maneuver.
  • the communications manager 615 may also monitor one or more channels configured for the wireless communications system, receive, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring, and perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
  • the communications manager 615 may be an example of aspects of the communications manager 910 described herein.
  • the communications manager 615 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the communications manager 615 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 615, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 615, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 620 may transmit signals generated by other components of the device 605.
  • the transmitter 620 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 620 may be an example of aspects of the transceiver 915 described with reference to FIG. 9.
  • the transmitter 620 may utilize a single antenna or a set of antennas.
  • the transmitter 620 may include one or more RF chains, and when multiple RF chains are included, the transmitter 620 may support separate transmissions at different ones of the multiple RF chains.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • the device 705 may be an example of aspects of a device 605 or a wireless device (e.g., a UE 115, a RSU, a VRU, etc. ) as described herein.
  • the device 705 may include a receiver 710, a communications manager 715, and a transmitter 750.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related vehicle maneuvering techniques, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 915 described with reference to FIG. 9.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the receiver 710 may include one or more RF chains, and when multiple RF chains are included, the receiver 710 may support separate receptions at different ones of the multiple RF chains.
  • the communications manager 715 may be an example of aspects of the communications manager 615 as described herein.
  • the communications manager 715 may include a planned maneuver component 720, a spatial clearance component 725, a message transmitter 730, a monitoring component 735, a message receiver 740, and a maneuver component 745.
  • the communications manager 715 may be an example of aspects of the communications manager 910 described herein.
  • the planned maneuver component 720 may determine a planned maneuver for the wireless device.
  • the spatial clearance component 725 may determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof.
  • the message transmitter 730 may transmit an application-layer message indicating the spatial clearance for the planned maneuver.
  • the monitoring component 735 may monitor one or more channels configured for the wireless communications system.
  • the message receiver 740 may receive, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring.
  • the maneuver component 745 may perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
  • the transmitter 750 may transmit signals generated by other components of the device 705.
  • the transmitter 750 may be collocated with a receiver 710 in a transceiver module.
  • the transmitter 750 may be an example of aspects of the transceiver 915 described with reference to FIG. 9.
  • the transmitter 750 may utilize a single antenna or a set of antennas.
  • the transmitter 750 may include one or more RF chains, and when multiple RF chains are included, the transmitter 750 may support separate transmissions at different ones of the multiple RF chains.
  • FIG. 8 shows a block diagram 800 of a communications manager 805 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • the communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein.
  • the communications manager 805 may include a planned maneuver component 810, a spatial clearance component 815, a message transmitter 820, a safety margin component 825, a monitoring component 830, a message receiver 835, and a maneuver component 840. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the planned maneuver component 810 may determine a planned maneuver for the wireless device. In some examples, the planned maneuver component 810 may determine that the planned maneuver is a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof.
  • the spatial clearance component 815 may determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof. In some examples, the spatial clearance component 815 may determine the spatial clearance based on the safety margin. In some cases, the spatial clearance includes a first longitudinal distance corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
  • the one or more static parameters of the wireless device includes a vehicle type, a vehicle size, a vehicle weight, a turning radius of the wireless device, an acceleration capability of the wireless device, a deceleration capability of the wireless device, a braking parameter of the wireless device, one or more components equipped on the wireless device, or any combination thereof.
  • the one or more dynamic parameters of the wireless device includes a payload carried by the wireless device, a number of passengers in the wireless device, a tire pressure of the wireless device, a tire wear parameter of the wireless device, a brake status of the wireless device, a current acceleration capability of the wireless device, a current deceleration capability of the wireless device.
  • the one or more environmental parameters associated with the wireless device includes a surface of a road, a condition of the road, a weather condition, a number of VRUs neighboring the wireless device, a designated speed limit of the road, or any combination thereof.
  • the message transmitter 820 may transmit an application-layer message indicating the spatial clearance for the planned maneuver. In some examples, the message transmitter 820 may transmit the application-layer message to one or more vehicles or VRUs in the wireless communications system. In some examples, the message transmitter 820 may transmit the application-layer message via a device-to-device communications channel.
  • the monitoring component 830 may monitor one or more channels configured for the wireless communications system.
  • the message receiver 835 may receive, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring.
  • the message receiver 835 may receive the application-layer message via a device-to-device communications channel.
  • the spatial clearance includes a first longitudinal distance corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
  • the maneuver component 840 may perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device. In some examples, the maneuver component 840 may determine whether the planned maneuver of the neighboring wireless device affects the wireless device. In some examples, the maneuver component 840 may perform the maneuver based on the determining.
  • the maneuver component 840 may determine, based on the application-layer message, that the planned maneuver is a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof.
  • the maneuver component 840 may perform a right turn, a left turn, a straight procession, a lane change, a stop, an acceleration, a deceleration, a parking maneuver, or any combination thereof. In some examples, the maneuver component 840 may modify one or more planned maneuvers of the wireless device based on the planned maneuver of the neighboring wireless device.
  • the safety margin component 825 may determine a safety margin based on the set of parameters associated with the wireless device and one or more traffic regulations.
  • the one or more traffic regulations are associated with a set of local traffic regulations, a set of state traffic regulations, a set of regional traffic regulations, a set of federal traffic regulations, or any combination thereof.
  • FIG. 9 shows a diagram of a system 900 including a device 905 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • the device 905 may be an example of or include the components of device 605, device 705, or a wireless device as described herein, such as a UE 115, a base station 105, a RSU, a VRU 205, or any combination thereof.
  • the device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 910. These components may be in electronic communication via one or more buses (e.g., bus) .
  • buses e.g., bus
  • the transceiver 915 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein.
  • the transceiver 915 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 915 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the transceiver 915 may include one or more RF chains, and when multiple RF chains are included, the transceiver 915 may support separate transmissions or receptions at different ones of the multiple RF chains.
  • multiple RF chains may be co-located in a single transceiver component, or different ones of multiple RF chains may be separately located in different transceiver components of the device 905.
  • different transceiver components of the device 905 may be associated with different directions of transmission or reception.
  • the device 905 may include a single antenna 920. However, in some cases the device may have more than one antenna 920, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. In some examples, different antennas 920 may be co-located with different transceiver components of the device 905, and different antennas 920 may or may not be associated with different directions of transmission or reception
  • the memory 925 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 925 may store computer-readable, computer-executable code 930 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 925 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • the code 930 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 930 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 930 may not be directly executable by the processor 935 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the processor 935 may include an intelligent hardware device, (e.g., a general-purpose processor, a digital signal processor (DSP) , a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 935 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 935.
  • the processor 935 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 925) to cause the device 905 to perform various functions (e.g., functions or tasks supporting beam correlation for carrier aggregation) .
  • the communications manager 910 may determine a planned maneuver for the wireless device, determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof, and transmit an application-layer message indicating the spatial clearance for the planned maneuver.
  • the communications manager 910 may also monitor one or more channels configured for the wireless communications system, receive, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring, and perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
  • the actions performed by the communications manager 910 as described herein may be implemented to realize one or more potential improvements.
  • the operations of communications manager 910 may allow one or more wireless devices to determine, negotiate, and communicate information associated with one or more maneuvers. This information in turn may enable a device that receives maneuver information (e.g., a spatial clearance) in order to ensure safe conditions and/or enhanced traffic efficiency.
  • wireless devices may implement inter-device spacing (e.g., inter-vehicle spacing) that is relatively large enough to ensure safe braking times and distances, and relatively small enough such that a relatively high quantity of devices may utilize a road.
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a wireless device or its components as described herein.
  • the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the functions described below. Additionally or alternatively, a wireless device may perform aspects of the functions described below using special-purpose hardware.
  • the wireless device may determine a planned maneuver for the wireless device.
  • the operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a planned maneuver component as described with reference to FIGs. 6 through 9.
  • the wireless device may determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof.
  • the operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a spatial clearance component as described with reference to FIGs. 6 through 9.
  • the wireless device may transmit an application-layer message indicating the spatial clearance for the planned maneuver.
  • the operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a message transmitter as described with reference to FIGs. 6 through 9.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
  • the operations of method 1100 may be implemented by a wireless device or its components as described herein.
  • the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 6 through 9.
  • a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the functions described below. Additionally or alternatively, a wireless device may perform aspects of the functions described below using special-purpose hardware.
  • the wireless device may monitor one or more channels configured for the wireless communications system.
  • the operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a monitoring component as described with reference to FIGs. 6 through 9.
  • the wireless device may receive, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring.
  • the operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a message receiver as described with reference to FIGs. 6 through 9.
  • the wireless device may perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
  • the operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a maneuver component as described with reference to FIGs. 6 through 9.
  • Described below are a number of examples of methods, systems or apparatuses including means for implementing methods or realizing apparatuses, non-transitory computer-readable medium storing instructions executable by one or more processors to cause the one or more processors to implement methods, and systems including one or more processors and memory coupled with the one or more processors storing instructions executable by the one or more processors to cause the system or apparatus to implement methods. It is to be understood that these are just some examples of possible examples, and other examples will be readily apparent to those skilled in the art without departing from the scope of the disclosure.
  • Example 1 A method for wireless communications at a wireless device in a wireless communications system, comprising: determining a planned maneuver for the wireless device; determining a spatial clearance for the planned maneuver based at least in part on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof; and transmitting an application-layer message indicating the spatial clearance for the planned maneuver.
  • Example 2 The method of example 1, further comprising: transmitting the application-layer message to one or more vehicles or VRUs in the wireless communications system.
  • Example 3 The method of examples 1 or 2, further comprising: transmitting the application-layer message via a device-to-device communications channel.
  • Example 4 The method of any of examples 1 through 3, further comprising: determining a safety margin based at least in part on a set of parameters associated with the wireless device and one or more traffic regulations; and determining the spatial clearance based at least in part on the safety margin.
  • Example 5 The method of any of examples 1 through 4, wherein the one or more traffic regulations are associated with a set of local traffic regulations, a set of state traffic regulations, a set of regional traffic regulations, a set of federal traffic regulations, or any combination thereof.
  • Example 6 The method of any of examples 1 through 5, further comprising: determining that the planned maneuver is a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof.
  • Example 7 The method of any of examples 1 through 6, wherein the spatial clearance comprises a first longitudinal distance corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
  • Example 8 The method of any of examples 1 through 7, wherein the one or more static parameters of the wireless device comprises a vehicle type, a vehicle size, a vehicle weight, a turning radius of the wireless device, an acceleration capability of the wireless device, a deceleration capability of the wireless device, a braking parameter of the wireless device, one or more components equipped on the wireless device, or any combination thereof.
  • Example 9 The method of any of examples 1 through 8, wherein the one or more dynamic parameters of the wireless device comprises a payload carried by the wireless device, a number of passengers in the wireless device, a tire pressure of the wireless device, a tire wear parameter of the wireless device, a brake status of the wireless device, a current acceleration capability of the wireless device, a current deceleration capability of the wireless device.
  • Example 10 The method of any of examples 1–9, wherein the one or more environmental parameters associated with the wireless device comprises a surface of a road, a condition of the road, a weather condition, a number of vulnerable road users (VRUs) neighboring the wireless device, a designated speed limit of the road, or any combination thereof.
  • the one or more environmental parameters associated with the wireless device comprises a surface of a road, a condition of the road, a weather condition, a number of vulnerable road users (VRUs) neighboring the wireless device, a designated speed limit of the road, or any combination thereof.
  • VRUs vulnerable road users
  • Example 11 An apparatus comprising at least one means for performing a method of any of examples 1 to 10.
  • Example 12 An apparatus for wireless communications comprising: a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of examples 1 to 10.
  • Example 13 A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to perform a method of any of examples 1 to 10.
  • Example 14 A method for wireless communications at a wireless device in a wireless communications system, comprising: monitoring one or more channels configured for the wireless communications system; receiving, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based at least in part on the monitoring; and performing, by the wireless device, a maneuver to accommodate the planned maneuver based at least in part on the spatial clearance for the planned maneuver of the neighboring wireless device.
  • Example 15 The method of example 14, further comprising: receiving the application-layer message via a device-to-device communications channel.
  • Example 16 The method of examples 14 or 15, further comprising: determining whether the planned maneuver of the neighboring wireless device affects the wireless device; and performing the maneuver based at least in part on the determining.
  • Example 17 The method of any of examples 14 through 16, further comprising: determining, based at least in part on the application-layer message, that the planned maneuver is a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof
  • Example 18 The method of any of examples 14 through 17, wherein performing the maneuver to accommodate the planned maneuver comprises: planned maneuver comprises: performing a right turn, a left turn, a straight procession, a lane change, a stop, an acceleration, a deceleration, a parking maneuver, or any combination thereof.
  • Example 19 The method of any of examples 14 through 18, wherein performing the maneuver to accommodate the planned maneuver comprises: modifying one or more planned maneuvers of the wireless device based at least in part on the planned maneuver of the neighboring wireless device.
  • Example 20 The method of any of examples 14 through 19, wherein the spatial clearance comprises a first longitudinal distance corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
  • Example 21 An apparatus comprising at least one means for performing a method of any of examples 14 to 20.
  • Example 22 An apparatus for wireless communications comprising: a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of examples 14 to 20.
  • Example 23 A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to perform a method of any of examples 14 to 20.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Traffic Control Systems (AREA)

Abstract

A wireless device (105, 115, 205) may determine a planned maneuver for the wireless device (105, 115, 205). The wireless device (105, 115, 205) may determine a spatial clearance for the planned maneuver based at least in part on one or more static parameters of the wireless device (105, 115, 205), one or more dynamic parameters of the wireless device (105, 115, 205), one or more environmental parameters associated with the wireless device (105, 115, 205), or a combination thereof. The wireless device (105, 115, 205) may transmit an application-layer message indicating the spatial clearance for the planned maneuver. A receiving wireless device (610, 710) may monitor one or more channels configured for the wireless communications system (100). The receiving wireless device (610, 710) may receive the application-layer message indicating the spatial clearance for the planned maneuver. The receiving wireless device (610, 710) may perform a maneuver to accommodate the planned maneuver based at least in part on the spatial clearance for the planned maneuver.

Description

VEHICLE MANEUVERING TECHNIQUES IN WIRELESS SYSTEMS
INTRODUCTION
The following relates generally to wireless communications and more specifically to managing vehicle maneuvering.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal FDMA (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
SUMMARY
A method of wireless communications at a wireless device in a wireless communications system is described. The method may include determining a planned maneuver for the wireless device. The method may include determining a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof. The method may include transmitting an application-layer message indicating the spatial clearance for the planned maneuver.
An apparatus for wireless communications at a wireless device in a wireless communications system is described. The apparatus may include a processor, memory coupled to the processor, and instructions stored in the memory. The memory and the  processor may be configured (e.g., the instructions may be executable) to cause the apparatus to determine a planned maneuver for the wireless device, determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof, and transmit an application-layer message indicating the spatial clearance for the planned maneuver.
Another apparatus for wireless communications at a wireless device in a wireless communications system is described. The apparatus may include means for determining a planned maneuver for the wireless device, determining a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof, and transmitting an application-layer message indicating the spatial clearance for the planned maneuver.
A non-transitory computer-readable medium storing code for wireless communications at a wireless device in a wireless communications system is described. The code may include instructions executable by a processor to determine a planned maneuver for the wireless device, determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof, and transmit an application-layer message indicating the spatial clearance for the planned maneuver.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the application-layer message to one or more vehicles or vulnerable road users (VRUs) in the wireless communications system.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the application-layer message via a device-to-device communications channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a safety margin based on a set of parameters associated with the wireless device  and one or more traffic regulations, and determining the spatial clearance based on the safety margin.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more traffic regulations may be associated with a set of local traffic regulations, a set of state traffic regulations, a set of regional traffic regulations, a set of federal traffic regulations, or any combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the planned maneuver may be a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the spatial clearance includes a first longitudinal distance corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more static parameters of the wireless device includes a vehicle type, a vehicle size, a vehicle weight, a turning radius of the wireless device, an acceleration capability of the wireless device, a deceleration capability of the wireless device, a braking parameter of the wireless device, one or more components equipped on the wireless device, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more dynamic parameters of the wireless device includes a payload carried by the wireless device, a number of passengers in the wireless device, a tire pressure of the wireless device, a tire wear parameter of the wireless device, a brake status of the wireless device, a current acceleration capability of the wireless device, a current deceleration capability of the wireless device.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the one or more environmental parameters associated with the wireless device includes a surface of a road, a condition of the road, a weather condition,  a number of vulnerable road users (VRUs) neighboring the wireless device, a designated speed limit of the road, or any combination thereof.
A method of wireless communications at a wireless device in a wireless communications system is described. The method may include monitoring one or more channels configured for the wireless communications system. The method may include receiving, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring. The method may include performing, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
An apparatus for wireless communications at a wireless device in a wireless communications system is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The memory and the processor may be configured (e.g., the instructions may be executable) to cause the apparatus to monitor one or more channels configured for the wireless communications system, receive, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring, and perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
Another apparatus for wireless communications at a wireless device in a wireless communications system is described. The apparatus may include means for monitoring one or more channels configured for the wireless communications system, receiving, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring, and performing, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
A non-transitory computer-readable medium storing code for wireless communications at a wireless device in a wireless communications system is described. The code may include instructions executable by a processor to monitor one or more channels  configured for the wireless communications system, receive, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring, and perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the application-layer message via a device-to-device communications channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining whether the planned maneuver of the neighboring wireless device affects the wireless device, and performing the maneuver based on the determining.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining, based on the application-layer message, that the planned maneuver may be a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, performing the maneuver to accommodate the planned maneuver may include operations, features, means, or instructions for performing a right turn, a left turn, a straight procession, a lane change, a stop, an acceleration, a deceleration, a parking maneuver, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, performing the maneuver to accommodate the planned maneuver may include operations, features, means, or instructions for modifying one or more planned maneuvers of the wireless device based on the planned maneuver of the neighboring wireless device.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the spatial clearance includes a first longitudinal distance  corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports vehicle maneuvering techniques in accordance with one or more aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports vehicle maneuvering techniques in accordance with one or more aspects of the present disclosure.
FIGs. 3 and 4 illustrate examples of systems that support vehicle maneuvering techniques in accordance with one or more aspects of the present disclosure.
FIG. 5 illustrates an example of a process flow that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
FIGs. 6 and 7 show block diagrams of devices that support vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
FIG. 8 shows a block diagram of a communications manager that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
FIG. 9 shows a diagram of a system including a device that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
FIGs. 10 and 11 show flowcharts illustrating methods that support vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure.
DETAILED DESCRIPTION
Some wireless communications systems may support communications between devices, such as device-to-device (D2D) communications. For example, a device in such a wireless communications system (e.g., a vehicle to everything (V2X) system, a cellular V2X (C-V2X) system) may be an example of a vehicle, a vulnerable road user (VRU) , a road side unit (RSU) , etc. Traffic efficiency of such a system may be relatively low. For example, vehicles may be relatively far apart (e.g., to accommodate human perception and reaction times) , which may result in a relatively smaller quantity of vehicles utilizing a road. Additionally or alternatively, a driver of a vehicle or an autonomous vehicle may be unaware of some information corresponding to other devices (e.g., information of a planned maneuver of another vehicle) , which may also result in traffic inefficiency. As an illustrative example, a turning vehicle may pass an obstacle (e.g., a pedestrian, a cyclist, a stationary vehicle, a moving vehicle, or other VRU) with a spatial clearance such that neither the vehicle nor the obstacle is at risk of impact. However, the spatial clearance may be difficult to determine due to unknown or inaccurate parameters. For example, a human driver may not be able to accurately determine the acceleration of the vehicle or how current road conditions may affect its turning radius. Additionally or alternatively, traffic efficiency may be negatively impacted when a driver overestimates a spatial clearance.
According to the techniques describes herein, one or more wireless devices may implement vehicle maneuvering techniques in order to realize enhanced safety and traffic efficiency (e.g., relatively smaller inter-vehicle spacing such that a relatively higher quantity of vehicles may utilize a road) , among other benefits. For example, a wireless device may identify a planned maneuver, such as a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof, among other examples of maneuvers. The wireless device may determine one or more parameters associated with the planned maneuver. For example, the wireless device may determine a spatial clearance for the planned maneuver (e.g., a lateral clearance, a longitudinal clearance, or both) . Additionally or alternatively, the wireless device may determine one or more static parameters of the wireless device (e.g., parameters of a vehicle that remain relatively unchanged over time, such as a vehicle type, a vehicle size, etc. ) , one or more dynamic parameters of the wireless device (e.g., parameters that may change over time, such as tire pressure, brake status, etc. ) , one or more environmental  parameters (e.g., weather conditions, road conditions, etc. ) , or any combination thereof. In some examples, the wireless device may determine the spatial clearance based on the various parameters. For example, the wireless device may determine the spatial clearance based on a size of the wireless device and a safety margin (e.g., a pre-configured safety margin or a safety margin determined based on the one or more parameters) , among other factors.
The wireless device may indicate the planned maneuver to one or more other wireless devices (e.g., neighboring wireless devices) . For example, the wireless device may transmit a message (e.g., an application layer message such as a safety message transmitted via an application-layer) indicating a determined spatial clearance for a planned maneuver of the wireless device. A receiving wireless device may monitor for and receive the message, which may enable the receiving device to perform one or more maneuvers based on the indication of the planned maneuver. For example, the receiving wireless device may identify a spatial clearance of the planned maneuver and determine whether to perform a maneuver at the receiving wireless device in accordance with the spatial clearance of the planned maneuver. In some examples, the receiving wireless device may modify one or more aspects of the maneuver based on the indicated spatial clearance. For example, the receiving wireless device may adjust or delay a maneuver of the receiving wireless device to satisfy the spatial clearance of the planned maneuver, for example, such that the planned maneuver and the performed maneuver by the receiving wireless device avoids a collision between the two devices (e.g., two vehicles) while maintaining a relatively high traffic efficiency.
Aspects of the disclosure are initially described in the context of systems such as wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to vehicle maneuvering techniques in wireless systems.
FIG. 1 illustrates an example of a wireless communications system 100 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband  communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, drones, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT- S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s= 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest  scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a  base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D  communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using V2X communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as RSUs, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some  configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base  station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
In some examples, a wireless device may be an example of a UE 115 in a V2X communications system. For example, the wireless device may be an example of a vehicle (e.g., a car, a truck, a bicycle, a motorcycle, a drone, etc. ) , a VRU 205, an RSU, among other examples of UEs 115 as described herein. In such examples, traffic efficiency between the wireless devices (e.g., the UEs 115) may be relatively low. For example, the UEs 115 may be relatively far apart (e.g., to accommodate human perception and reaction times) , which may result in a relatively smaller quantity of vehicles utilizing a road. Additionally or alternatively, a driver or a UE 115 may be unaware of some information corresponding to other devices (e.g., information of a planned maneuver of another UE 115) , which may also result in traffic inefficiency. As an illustrative example, a turning vehicle may pass an obstacle (e.g., a pedestrian, a cyclist, a stationary vehicle, a moving vehicle) with a spatial clearance such that neither the vehicle nor the obstacle is at risk of impact. However, the  spatial clearance may be difficult to determine due to unknown or inaccurate parameters. For example, a human driver may not be able to accurately determine the acceleration of the vehicle or how current road conditions may affect its turning radius. Additionally or alternatively, traffic efficiency may be negatively impacted when a driver overestimates a clearance.
According to the techniques describes herein, one or more wireless devices (e.g., UEs 115 and/or base stations 105) may implement vehicle maneuvering techniques in order to realize enhanced safety and traffic efficiency (e.g., relatively smaller inter-vehicle spacing such that a relatively higher quantity of vehicles may utilize a road) , among other benefits. For example, a wireless device may identify a planned maneuver. The wireless device may determine one or more parameters associated with the planned maneuver. For example, the wireless device may determine a spatial clearance for the planned maneuver (e.g., a lateral clearance, a longitudinal clearance, or both) . Additionally or alternatively, the wireless device may determine one or more static parameters of the wireless device (e.g., parameters of a vehicle that remain relatively unchanged over time, such as a vehicle type, a vehicle size, etc. ) , one or more dynamic parameters of the wireless device (e.g., parameters that may change over time, such as tire pressure, brake status, etc. ) , one or more environmental parameters (e.g., weather conditions, road conditions, etc. ) , or any combination thereof. The wireless device may indicate the planned maneuver to one or more other wireless devices. For example, the wireless device may transmit a message (e.g., a safety message transmitted via an application-layer) indicating a determined spatial clearance for a planned maneuver of the wireless device. A receiving wireless device may monitor for and receive the message, which may enable the receiving device to perform one or more maneuvers based on the indication of the planned maneuver. One or more of these operations may be performed by a communications manager 101 (e.g., a communications manager 101-a and/or a communications manager 101-b) , which may be an example of a  communications manager  615, 715, 805, or 910 as described with reference to FIGs. 6 through 9.
FIG. 2 illustrates an example of a wireless communications system 200 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure. In some examples, the wireless communications system 200 may implement aspects of wireless communication system 100. For example, the wireless communications system 200 may include a base station 105-a and UEs 115-a through 115-c,  which may be examples of a base station 105 and a UE 115, respectively, as described with reference to FIG. 1. The UEs 115 may be examples of vehicles or other wireless devices as described herein. In some examples, the wireless communications system 200 may also include VRUs 205 (e.g., other UEs 115, such as bicycles, other vehicles, pedestrians, etc. ) .
The UEs 115 in the wireless communications system 200 may directly communicate with each other (e.g., using V2X communications, D2D communications, etc. ) to exchange information. For example, in a CV2X system a UE 115 may use V2V communications to communicate with a vehicle, vehicle-to-pedestrian (V2P) communications to communicate with a personal electronic device, or V2N communications to communicate with roadside infrastructure. In some cases, the V2X communications are facilitated by the base station 105-a, which may communicate with wireless devices that are within a coverage area via a communication link 125-a. Although described with reference to V2X, the techniques described herein may be implemented using any type of communication that allows one UE 115 to communicate directly with another UE 115 (e.g., via D2D communication link 135-a) .
In some examples, traffic efficiency in the wireless communications system 200 may be relatively low. For example, the UE 115-b and the UE 115-c may be separated by a relatively large distance (e.g., due to a human perception and reaction time) , which may result in a relatively smaller quantity of UEs 115 that may utilize the road. Additionally or alternatively, a UE 115 may be unaware of some information corresponding to the other wireless devices (e.g., other UEs 115 and/or VRUs 205) . For example, a human driver may be unable to accurately determine one or more parameters associated with a corresponding vehicle or other vehicles. As another example, the UE 115-b may identify some parameters of other UEs 115 or VRUs 205 remotely, but may be unable to identify other parameters of the UEs 115 or VRUs 205 (e.g., due to vehicle-mounted sensors of the UE 115-b being subject to error) , which may result in the UE 115-b detecting relatively inaccurate parameters of the other UEs 115 (e.g., characteristics of the UE 115-a, road conditions at the UE 115-a, etc. ) . Additionally or alternatively, the UE 115-b may be unaware of other information or parameters corresponding to another UE 115, such as a spatial clearance of a planned maneuver by the UE 115-a. Such examples may result in an increased chance of collisions with other UEs 115 or VRUs 205, reduced traffic efficiency, or both.
According to the techniques described herein, the various wireless devices in the wireless communications system 200 (e.g., the base station 105-a, the UEs 115, and/or the VRUs 205) may determine and/or communicate information associated with one or more maneuvers in order to provide for enhanced safety and traffic efficiency in the wireless communications system 200. For example, the UE 115-a may identify a planned maneuver of the UE 115-a. The planned maneuver may be a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof, among other examples of maneuvers.
The UE 115-a may determine one or more parameters associated with the planned maneuver. For example, the UE 115-a may determine a spatial clearance for the planned maneuver. The spatial clearance may be a minimum distance from other UEs 115 and VRUs 205 such that the UE 115-a may avoid a collision with another wireless device (e.g., a vehicle such as the UE 115-b) . In some examples, the spatial clearance may include a longitudinal clearance (e.g., a distance extending from the back of the UE 115-a to the front of the UE 115-a) . For example, the longitudinal clearance may be a minimum distance from the UE 115-a to a leading vehicle (e.g., a UE 115 in front of the UE 115-a) and/or a trailing vehicle (e.g., a UE 115 behind the UE 115-a) to ensure safe stopping. In some cases, the longitudinal clearance may vary from one UE 115 to another UE 115 (e.g., the longitudinal clearance for a passenger car may be different than the longitudinal clearance for a large truck) . Additionally or alternatively, the spatial clearance may include a lateral clearance (e.g., a distance extending from one side of the UE 115-a to the other side of the UE 115-a) . For example, the lateral clearance may be a minimum distance from the UE 115-a to another UE 115 extending in a direction, for example, perpendicular to the longitudinal clearance. In some cases, the lateral clearance may vary from one UE 115 to another UE 115. For example, the lateral clearance when turning left or right in an intersection may be different for a bus compared to a small sports car.
In some examples, the UE 115-a may determine the spatial clearance based on one or more parameters. For example, the UE 115-a may determine one or more static parameters of the UE 115-a. The one or more static parameters may include a size, a weight, a brake condition, a vehicle design (e.g., a parameter indicating that the UE 115-a has an anti-lock brake feature available) , a turning radius, an acceleration and/or deceleration capability, among other examples of static parameters. Additionally or alternatively, the UE 115-a may  determine one or more dynamic parameters. The one or more dynamic parameters may include a speed, a heading (e.g., a direction the UE 115-a is traveling in) , a yaw rate, a carried payload (e.g., in addition or alternative to a weight of the UE 115-a, such as a weight of passengers or cargo) , a skid characteristic, one or more intended maneuvers (i.e., planned maneuvers) , a tire pressure and/or tire wear, a brake status, an acceleration/deceleration measurement, among other examples of dynamic parameters. Additionally or alternatively, the UE 115-a may determine one or more environmental parameters. The one or more environmental parameters may include road conditions such as a surface type, a weather condition (e.g., raining, snowing, cross-wind measurements, etc. ) , among other examples of environmental parameters. Although examples of such parameters are listed for clarity, one or more of the various parameters may not be included, additional parameters may be included, or one or more parameters may be categorized differently than listed (e.g., the turning radius may be an example of a dynamic parameter that changes based on road conditions, tire pressure, weight, etc., among other examples of parameters that may be categorized differently) . In some examples, the UE 115-a may determine the spatial clearance based on the one or more of the static parameters, the one or more dynamic parameters, and/or the one or more environmental parameters. In other words, the spatial clearance may be a function of static characteristics of the UE 115-a, dynamic characteristics of the UE 115-a, environmental conditions (e.g., road conditions) , and/or information corresponding to the planned maneuver of the UE 115-a.
Additionally or alternatively, the UE 115-a may determine the spatial clearance based on a safety margin. For example, a longitudinal clearance and/or a lateral clearance of the spatial clearance may include a first distance (e.g., a minimum distance for performing a maneuver) and a second distance (e.g., a safety margin) . As an illustrative example, the longitudinal clearance may be the sum of the first distance and the second distance or the greatest value between the first distance and the second distance, among other examples. In some examples, the safety margin may be pre-configured at the UE 115-a (e.g., based on regulations in a geographic location that the wireless communications system 200 is located in) .
The various wireless devices in the wireless communications system 200 may communicate via CV2X communications. In some examples, the wireless devices may communicate information indicating vehicle characteristics, motion state information, and  planned maneuvers to neighboring wireless devices (e.g., wireless devices in a relatively close proximity, a same geographic location, a cell of a base station 105, etc. ) . For example, the UE 115-a may indicate a planned maneuver to other wireless devices (e.g., other UEs 115, VRUs 205, and/or the base station 105-a) . The UE 115-a may transmit a message (e.g., a safety message) to the UE 115-b via the D2D link 135-a. The message may indicate information associated with a planned maneuver of the UE 115-a (e.g., the spatial clearance corresponding to the planned maneuver, a timing of the planned maneuver, the one or more static parameters, the one or more dynamic parameters, the one or more environmental parameters, or any combination thereof) .
In some examples, the message may be transmitted via the application-layer (e.g., an application-layer message such as a basic safety message (BSM) ) . The message may include one or more data elements indicating information as described herein. For example, the table 1 shown below illustrates example data fields, descriptions, and data elements that may be indicated by the message.
Figure PCTCN2020074692-appb-000001
Table 1
As shown in table 1, the SpatialClearance_Longitudinal data field may represent the longitudinal clearance (e.g., distance) along an x-axis of the UE 115-a, where the x-axis extends from the UE 115-a in a positive x-axis direction (e.g., a direction of a vehicle heading vector such as a forward movement direction of the UE 115-a) and a negative x-axis direction opposite of the positive x-axis direction. For example, the positive x-axis direction may be a vector extending from the front of the UE 115-a and the negative x-axis direction may be a vector extending from the back of the UE 115-a. Such a data field may include one or more data elements as illustrated by the DE_SpatClearnLonPlusX data element (e.g., an indication of the distance in meters from the vehicle reported position in the positive x-axis direction) and a DE_SpatClearLonNegX data element (e.g., indication of the distance in meters from the vehicle reported position in the negative x-axis direction) .
The SpatialClearance_Lateral data field may represent the lateral clearance (e.g., distance) along a y-axis of the UE 115-a, where the y-axis is perpendicular to the x-axis. For example, a positive y-axis vector may extend out from the left of the UE 115-a (e.g., from the  perspective of a driver) and a negative y-axis vector may extend out from the right of the UE 115-a. Such a data field may include one or more data elements as illustrated by the DE_SpatClearnLatPlusY data element (e.g., an indication of the distance in meters from a vehicle reported position in the positive y-axis direction) and a DE_SpatClearLatNegY data element (e.g., indication of the distance in meters from a vehicle reported position in the negative y-axis direction) .
One or more receiving wireless devices (e.g., VRUs 205, other UEs 115, or the base station 105-a) may monitor for and receive the message. For example, the UE 115-b may receive the message and identify information indicating a planned maneuver of the UE 115-a. In some examples, the UE 115-b may and perform and/or adjust one or more maneuvers based on the identified information. For example, the UE 115-b may identify a spatial clearance of the planned maneuver of the UE 115-a. The UE 115-b may determine whether to perform a maneuver in accordance with the spatial clearance. In some examples, the UE 115-b may perform the maneuver if one or more parameters of the maneuver of the UE 115-b satisfies the spatial clearance (or other indicated information in the message) of the planned maneuver of the UE 115-a. For example, the UE 115-b may determine that the maneuver will avoid a collision with the UE 115-a based on a spatial clearance of the maneuver of the UE 115-b failing to overlap with the spatial clearance of the maneuver of the UE 115-a. In some other examples, the UE 115-b may modify one or more aspects of the maneuver based on the indicated spatial clearance. For example, the UE 115-b may refrain from performing the maneuver based on determining an overlap between the spatial clearance of the maneuver of the UE 115-a and the maneuver of the UE 115-b. Additionally or alternatively, the UE 115-b may adjust one or more parameters of the maneuver (e.g., change a timing of the maneuver, a path of the maneuver, a spatial clearance of the maneuver, etc. ) to satisfy the spatial clearance of the planned maneuver of the UE 115-a. Such examples may result in avoiding an impact between the UE 115-a and the UE 115-b while maintaining a relatively high traffic efficiency.
FIGs. 3A and 3B illustrate examples of systems 300-a and 300-b, respectively, that support vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure. In some examples, the systems 300-a and 300-b may implement aspects of  wireless communications systems  100 and 200. For example, the systems 300-a and/or the system 300-b may include UEs 115-d through 115-f, which may be  examples of UEs 115 as described with reference to FIGs. 1 and 2. The UEs 115 may be examples of vehicles or other wireless devices as described herein (e.g., base stations 105, VRUs 205, etc. ) .
The system 300-a may include a UE 115-d. The UE 115-d may identify a planned maneuver to undergo. Although the maneuver is illustrated for illustrative clarity as a left turn, the maneuver may be any example of maneuver. The UE 115-d may determine a spatial clearance 310-a of the planned maneuver as described with reference to FIG. 2. For example, the UE 115-d may determine one or more parameters (e.g., static parameters, dynamic parameters, environmental parameters, etc. ) of the UE 115-d and/or the spatial clearance 310-a. The UE 115-d may determine the spatial clearance 310-a based on the one or more parameters. Additionally or alternatively, the UE 115-d may determine the spatial clearance 310-a based on a safety margin 305-a. For example, a lateral clearance and/or a longitudinal clearance of the spatial clearance 310-a may be based on the safety margin 305-a, as described with reference to FIG. 2.
The UE 115-d may transmit a message to one or more wireless devices. For example, the UE 115-d may transmit a safety message to the UE 115-e via an application-layer (e.g., an application-layer message such as a BSM) , as described with reference to FIG. 2. The message may indicate the maneuver and/or the spatial clearance 310-a of the UE 115-d (e.g., the message may indicate one or more parameters, such as a lateral clearance data element and a longitudinal clearance data element, among other examples of parameters) .
The UE 115-e may monitor for and receive the message. The UE 115-e may determine whether to perform and/or adjust one or more maneuvers based on the received message. For example, the UE 115-e may identify the spatial clearance 310-a of the planned maneuver of the UE 115-d. The UE 115-e may determine whether to perform a maneuver in accordance with the spatial clearance. Although the planned maneuver of the UE 115-e is illustrated as a left turn for illustrative clarity, the maneuver may be any example of maneuver. In some examples, the UE 115-e may perform the maneuver if the indicated spatial clearance 310-a does not overlap with a spatial clearance 310-b of the maneuver of the UE 115-e. In other words, the UE 115-e may determine that the indicated spatial clearance 310-a satisfies one or more conditions to perform the maneuver corresponding to the spatial  clearance 310-b (e.g., the maneuver of the UE 115-e may avoid a collision with the UE 115-d) . The UE 115-e may perform the maneuver based on determining that the one or more conditions are satisfied.
The system 300-b may include a UE 115-f and a UE 115-g. The UE 115-f may identify a planned maneuver to undergo. For example, the UE 115-f may determine a spatial clearance 310-c for the planned maneuver. In some examples, the spatial clearance 310-c may be calculated based on one or more parameters as described with reference to FIG. 2. As illustrated, the spatial clearance 310-c may be different than the spatial clearance 310-a. For example, the spatial clearance 310-c may be relatively larger than the spatial clearance 310-a due to a larger size and/or safety margin 305-c of the UE 115-f, among other examples of parameters (e.g., the difference may also be based on road conditions, dynamic parameters, other static parameters, etc. ) .
The UE 115-f may indicate the planned maneuver to the UE 115-g via a message (e.g., a safety message transmitted via the application layer) . The system 300-b may illustrate an example of a scenario where the spatial clearance 310-c overlaps with a spatial clearance 310-d of a planned maneuver of the UE 115-g. In some such examples, the UE 115-g may refrain from performing a maneuver based on determining that the spatial clearance 310-d overlaps with the spatial clearance 310-c. Additionally or alternatively, the UE 115-g may adjust one or more parameters of the planned maneuver. For example, the UE 115-g may change a timing of the maneuver of the UE 115-g (e.g., the UE 115-g may wait to perform the maneuver) , a path of the maneuver, or both, such that the spatial clearance 310-d does not overlap with the spatial clearance 310-c in location and/or time.
FIG. 4 illustrates an example of a system 400 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure. In some examples, the system 400 may implement aspects of  systems  100, 200, 300-a, and/or 300-b. For example, the system 400 may include UEs 115-h through 115-j, which may be examples of UEs 115 as described with reference to FIGs. 1 through 3. The UEs 115 may be examples of vehicles or other wireless devices as described herein (e.g., base stations 105, VRUs 205, etc. ) .
The system 400 may illustrate an example of a lane change maneuver by the UE 115-h in accordance with one or more aspects of the techniques described herein. For  example, the UE 115-h may identify a planned maneuver (e.g., the lane chance maneuver) . The UE 115-h may determine a spatial clearance of the planned maneuver and/or the UE 115-h based on one or more parameters (e.g., static parameters, dynamic parameters, environmental parameters, a safety margin of the UE 115-k, etc. ) . For example, the UE 115-h may determine one or more longitudinal clearances 405 of the spatial clearance as described with reference to FIG. 2. For example, the UE 115-h may determine a longitudinal clearance 405-a between the UE 115-h and a trailing device, such as the UE 115-i. Additionally or alternatively, the UE 115-h may determine a longitudinal clearance 405-b between the UE 115-h and a leading device, such as the UE 115-j. In some examples, the determine spatial clearance may vary between devices. For example, a relatively larger vehicle may require more leading clearance (e.g., a larger longitudinal clearance 405-b) than a relatively smaller vehicle. The UE 115-h may indicate the planned maneuver and/or the spatial clearance (e.g., an indication of the longitudinal clearances 405) to other wireless devices (e.g., the UE 115-i and the UE 115-j) . For example, the UE 115-h may transmit a message to the UE 115-j and/or the UE 115-i as described herein.
In some examples, the UE 115-j and/or the UE 115-i may perform one or more actions to accommodate (i.e., grant) or reject the maneuver of the UE 115-h. For example, the UE 115-j may determine if a request of the message from the UE 115-h may be granted based on traffic conditions (e.g., considering whether the UE 115-j may accommodate the requested spatial clearance based on other vehicles in front of the UE 115-j) . Alternatively, the UE 115-j or the UE 115-i may increase a spacing between the UE 115-j and the UE 115-i to satisfy one or more parameters indicated by the message from the UE 115-h (e.g., to satisfy the longitudinal clearances 405) . Such examples may result in improved safety in the system 400. For example, the UEs 115 (and/or VRUs 205) may be aware of maneuvers of other vehicles and may implement communicated and/or negotiated spatial clearances to ensure safety in the system 400 (e.g., the spatial clearances may satisfy a braking time or distance for a given road condition, vehicle type, etc. ) . Additionally or alternatively, the examples described herein may also enable relatively high traffic efficiency. For example, the inter-device spacing (e.g., the longitudinal clearances 405) may be relatively small such that a higher quantity of devise may utilize the road while maintaining safe distancing.
FIG. 5 illustrates an example of a process flow 500 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the  present disclosure. In some examples, the process flow 500 may implement aspects of  systems  100, 200, 300-a, 300-b, and/or 400. For example, the system 400 may include UEs 115-k and 115-l, which may be examples of UEs 115 as described with reference to FIGs. 1 through 4. In some examples, the UEs 115 may be examples of vehicles or other wireless devices as described herein (e.g., VRUs 205) . \
In the following description of the process flow 500, the operations between UE 115-k and UE 115-l may occur in a different order than the exemplary order shown, or the operations performed by the devices may be performed in different orders or at different times. Certain operations may also be left out of the process flow 500, or other operations may be added to the process flow 500. In some examples, one or more of the operations described in the process flow 500 may be performed by one or more other devices (e.g., a VRU 205 or a base station 105) .
At 505, the UE 115-k may identify a planned maneuver as described herein with reference to FIGs. 1–4. For example, the UE 115-a may identify a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof, among other examples of maneuvers.
At 510, the UE 115-k may determine one or more parameters as described herein. For example, the UE 115-k may identify one or more static parameters, one or more dynamic parameters, one or more environmental parameters, a safety margin, etc., as described with reference to FIGs. 1–4.
At 515, the UE 115-k may calculate a spatial clearance of the planned maneuver. For example, the UE 115-k may determine a spatial clearance based on the one or more parameters as described with reference to FIGs. 1–4. In some examples, the spatial clearance may include a longitudinal clearance and a lateral clearance.
At 520, the UE 115-l may monitor for messages. For example, the UE 115-l may monitor for V2X communications in a wireless communications system as described with reference to FIGs. 1–4. At 525, the UE 115-k may transmit an application-layer message to at least the UE 115-l. For example, the UE 115-k may transmit one or more data elements indicating the spatial clearance of the planned maneuver, among other examples of information associated with the UE 115-k and/or the planned maneuver.
At 530, the UE 115-l may optionally perform an action. For example, the UE 115-l may determine whether to grant or reject the planned maneuver of the UE 115-k. In some examples, the UE 115-k may adjust one or more parameters of a maneuver of the UE 115-k as described herein with reference to FIGs. 1–4. For example, the UE 115-l may refrain from performing a maneuver based on determining that the spatial clearance of the planned maneuver of the UE 115-k overlaps with a spatial clearance of a maneuver of the UE 115-l. Additionally or alternatively, the UE 115-l may change a timing of the maneuver of the UE 115-l (e.g., the UE 115-l may wait to perform the maneuver) , a path of the maneuver, or both, which may enable relatively higher traffic efficiency and/or relatively higher safety conditions.
FIG. 6 shows a block diagram 600 of a device 605 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure. The device 605 may be an example of aspects of a wireless device as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 620. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related vehicle maneuvering techniques, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 915 described with reference to FIG. 9. The receiver 610 may utilize a single antenna or a set of antennas. The receiver 610 may include one or more radio frequency (RF) chains, and when multiple RF chains are included, the receiver 610 may support separate receptions at different ones of the multiple RF chains.
The communications manager 615 may determine a planned maneuver for the wireless device, determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof, and transmit an application-layer message indicating the spatial clearance for the planned maneuver. The communications manager 615 may also monitor one or more channels configured for the wireless communications system, receive, from a  neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring, and perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device. The communications manager 615 may be an example of aspects of the communications manager 910 described herein.
The communications manager 615, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 615, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 615, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 615, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 615, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 620 may transmit signals generated by other components of the device 605. In some examples, the transmitter 620 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 620 may be an example of aspects of the transceiver 915 described with reference to FIG. 9. The transmitter 620 may utilize a single antenna or a set of antennas. The transmitter 620 may include one or more RF chains, and when multiple RF chains are included, the transmitter 620 may support separate transmissions at different ones of the multiple RF chains.
FIG. 7 shows a block diagram 700 of a device 705 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure. The device 705 may be an example of aspects of a device 605 or a wireless device (e.g., a UE 115, a RSU, a VRU, etc. ) as described herein. The device 705 may include a receiver 710, a communications manager 715, and a transmitter 750. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related vehicle maneuvering techniques, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 915 described with reference to FIG. 9. The receiver 710 may utilize a single antenna or a set of antennas. The receiver 710 may include one or more RF chains, and when multiple RF chains are included, the receiver 710 may support separate receptions at different ones of the multiple RF chains.
The communications manager 715 may be an example of aspects of the communications manager 615 as described herein. The communications manager 715 may include a planned maneuver component 720, a spatial clearance component 725, a message transmitter 730, a monitoring component 735, a message receiver 740, and a maneuver component 745. The communications manager 715 may be an example of aspects of the communications manager 910 described herein.
The planned maneuver component 720 may determine a planned maneuver for the wireless device.
The spatial clearance component 725 may determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof.
The message transmitter 730 may transmit an application-layer message indicating the spatial clearance for the planned maneuver.
The monitoring component 735 may monitor one or more channels configured for the wireless communications system.
The message receiver 740 may receive, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring.
The maneuver component 745 may perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
The transmitter 750 may transmit signals generated by other components of the device 705. In some examples, the transmitter 750 may be collocated with a receiver 710 in a transceiver module. For example, the transmitter 750 may be an example of aspects of the transceiver 915 described with reference to FIG. 9. The transmitter 750 may utilize a single antenna or a set of antennas. The transmitter 750 may include one or more RF chains, and when multiple RF chains are included, the transmitter 750 may support separate transmissions at different ones of the multiple RF chains.
FIG. 8 shows a block diagram 800 of a communications manager 805 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure. The communications manager 805 may be an example of aspects of a communications manager 615, a communications manager 715, or a communications manager 910 described herein. The communications manager 805 may include a planned maneuver component 810, a spatial clearance component 815, a message transmitter 820, a safety margin component 825, a monitoring component 830, a message receiver 835, and a maneuver component 840. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The planned maneuver component 810 may determine a planned maneuver for the wireless device. In some examples, the planned maneuver component 810 may determine that the planned maneuver is a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof.
The spatial clearance component 815 may determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof. In some examples, the spatial clearance component 815 may determine the spatial clearance based on the safety margin. In some cases, the spatial clearance includes a first longitudinal distance corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
In some cases, the one or more static parameters of the wireless device includes a vehicle type, a vehicle size, a vehicle weight, a turning radius of the wireless device, an acceleration capability of the wireless device, a deceleration capability of the wireless device, a braking parameter of the wireless device, one or more components equipped on the wireless device, or any combination thereof.
In some cases, the one or more dynamic parameters of the wireless device includes a payload carried by the wireless device, a number of passengers in the wireless device, a tire pressure of the wireless device, a tire wear parameter of the wireless device, a brake status of the wireless device, a current acceleration capability of the wireless device, a current deceleration capability of the wireless device.
In some cases, the one or more environmental parameters associated with the wireless device includes a surface of a road, a condition of the road, a weather condition, a number of VRUs neighboring the wireless device, a designated speed limit of the road, or any combination thereof.
The message transmitter 820 may transmit an application-layer message indicating the spatial clearance for the planned maneuver. In some examples, the message transmitter 820 may transmit the application-layer message to one or more vehicles or VRUs in the wireless communications system. In some examples, the message transmitter 820 may transmit the application-layer message via a device-to-device communications channel.
The monitoring component 830 may monitor one or more channels configured for the wireless communications system.
The message receiver 835 may receive, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance  for a planned maneuver of the neighboring wireless device based on the monitoring. In some examples, the message receiver 835 may receive the application-layer message via a device-to-device communications channel. In some cases, the spatial clearance includes a first longitudinal distance corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
The maneuver component 840 may perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device. In some examples, the maneuver component 840 may determine whether the planned maneuver of the neighboring wireless device affects the wireless device. In some examples, the maneuver component 840 may perform the maneuver based on the determining.
In some examples, the maneuver component 840 may determine, based on the application-layer message, that the planned maneuver is a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof.
In some examples, the maneuver component 840 may perform a right turn, a left turn, a straight procession, a lane change, a stop, an acceleration, a deceleration, a parking maneuver, or any combination thereof. In some examples, the maneuver component 840 may modify one or more planned maneuvers of the wireless device based on the planned maneuver of the neighboring wireless device.
The safety margin component 825 may determine a safety margin based on the set of parameters associated with the wireless device and one or more traffic regulations. In some cases, the one or more traffic regulations are associated with a set of local traffic regulations, a set of state traffic regulations, a set of regional traffic regulations, a set of federal traffic regulations, or any combination thereof.
FIG. 9 shows a diagram of a system 900 including a device 905 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure. The device 905 may be an example of or include the components of device 605, device 705, or a wireless device as described herein, such as a UE 115, a base station 105, a RSU, a VRU 205, or any combination thereof. The device 905 may include components for bi-directional voice and data communications including components for  transmitting and receiving communications, including a communications manager 910. These components may be in electronic communication via one or more buses (e.g., bus) .
The transceiver 915 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein. For example, the transceiver 915 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 915 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas. The transceiver 915 may include one or more RF chains, and when multiple RF chains are included, the transceiver 915 may support separate transmissions or receptions at different ones of the multiple RF chains. In some examples, multiple RF chains may be co-located in a single transceiver component, or different ones of multiple RF chains may be separately located in different transceiver components of the device 905. In some examples, different transceiver components of the device 905 may be associated with different directions of transmission or reception.
In some cases, the device 905 may include a single antenna 920. However, in some cases the device may have more than one antenna 920, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. In some examples, different antennas 920 may be co-located with different transceiver components of the device 905, and different antennas 920 may or may not be associated with different directions of transmission or reception
The memory 925 may include random-access memory (RAM) and read-only memory (ROM) . The memory 925 may store computer-readable, computer-executable code 930 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 925 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The code 930 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 930 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 930 may not be directly executable by the processor 935 but  may cause a computer (e.g., when compiled and executed) to perform functions described herein.
The processor 935 may include an intelligent hardware device, (e.g., a general-purpose processor, a digital signal processor (DSP) , a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 935 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 935. The processor 935 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 925) to cause the device 905 to perform various functions (e.g., functions or tasks supporting beam correlation for carrier aggregation) .
The communications manager 910 may determine a planned maneuver for the wireless device, determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof, and transmit an application-layer message indicating the spatial clearance for the planned maneuver. The communications manager 910 may also monitor one or more channels configured for the wireless communications system, receive, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring, and perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device.
The actions performed by the communications manager 910 as described herein may be implemented to realize one or more potential improvements. For example, the operations of communications manager 910 may allow one or more wireless devices to determine, negotiate, and communicate information associated with one or more maneuvers. This information in turn may enable a device that receives maneuver information (e.g., a spatial clearance) in order to ensure safe conditions and/or enhanced traffic efficiency. For example, wireless devices may implement inter-device spacing (e.g., inter-vehicle spacing)  that is relatively large enough to ensure safe braking times and distances, and relatively small enough such that a relatively high quantity of devices may utilize a road.
FIG. 10 shows a flowchart illustrating a method 1000 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure. The operations of method 1000 may be implemented by a wireless device or its components as described herein. For example, the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the functions described below. Additionally or alternatively, a wireless device may perform aspects of the functions described below using special-purpose hardware.
At 1005, the wireless device may determine a planned maneuver for the wireless device. The operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a planned maneuver component as described with reference to FIGs. 6 through 9.
At 1010, the wireless device may determine a spatial clearance for the planned maneuver based on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof. The operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a spatial clearance component as described with reference to FIGs. 6 through 9.
At 1015, the wireless device may transmit an application-layer message indicating the spatial clearance for the planned maneuver. The operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a message transmitter as described with reference to FIGs. 6 through 9.
FIG. 11 shows a flowchart illustrating a method 1100 that supports vehicle maneuvering techniques in wireless systems in accordance with one or more aspects of the present disclosure. The operations of method 1100 may be implemented by a wireless device or its components as described herein. For example, the operations of method 1100 may be  performed by a communications manager as described with reference to FIGs. 6 through 9. In some examples, a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the functions described below. Additionally or alternatively, a wireless device may perform aspects of the functions described below using special-purpose hardware.
At 1105, the wireless device may monitor one or more channels configured for the wireless communications system. The operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a monitoring component as described with reference to FIGs. 6 through 9.
At 1110, the wireless device may receive, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based on the monitoring. The operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a message receiver as described with reference to FIGs. 6 through 9.
At 1115, the wireless device may perform, by the wireless device, a maneuver to accommodate the planned maneuver based on the spatial clearance for the planned maneuver of the neighboring wireless device. The operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a maneuver component as described with reference to FIGs. 6 through 9.
Described below are a number of examples of methods, systems or apparatuses including means for implementing methods or realizing apparatuses, non-transitory computer-readable medium storing instructions executable by one or more processors to cause the one or more processors to implement methods, and systems including one or more processors and memory coupled with the one or more processors storing instructions executable by the one or more processors to cause the system or apparatus to implement methods. It is to be understood that these are just some examples of possible examples, and other examples will be readily apparent to those skilled in the art without departing from the scope of the disclosure.
Example 1: A method for wireless communications at a wireless device in a wireless communications system, comprising: determining a planned maneuver for the  wireless device; determining a spatial clearance for the planned maneuver based at least in part on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof; and transmitting an application-layer message indicating the spatial clearance for the planned maneuver.
Example 2: The method of example 1, further comprising: transmitting the application-layer message to one or more vehicles or VRUs in the wireless communications system.
Example 3: The method of examples 1 or 2, further comprising: transmitting the application-layer message via a device-to-device communications channel.
Example 4: The method of any of examples 1 through 3, further comprising: determining a safety margin based at least in part on a set of parameters associated with the wireless device and one or more traffic regulations; and determining the spatial clearance based at least in part on the safety margin.
Example 5: The method of any of examples 1 through 4, wherein the one or more traffic regulations are associated with a set of local traffic regulations, a set of state traffic regulations, a set of regional traffic regulations, a set of federal traffic regulations, or any combination thereof.
Example 6: The method of any of examples 1 through 5, further comprising: determining that the planned maneuver is a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof.
Example 7: The method of any of examples 1 through 6, wherein the spatial clearance comprises a first longitudinal distance corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
Example 8: The method of any of examples 1 through 7, wherein the one or more static parameters of the wireless device comprises a vehicle type, a vehicle size, a vehicle weight, a turning radius of the wireless device, an acceleration capability of the wireless device, a deceleration capability of the wireless device, a braking parameter of the wireless  device, one or more components equipped on the wireless device, or any combination thereof.
Example 9: The method of any of examples 1 through 8, wherein the one or more dynamic parameters of the wireless device comprises a payload carried by the wireless device, a number of passengers in the wireless device, a tire pressure of the wireless device, a tire wear parameter of the wireless device, a brake status of the wireless device, a current acceleration capability of the wireless device, a current deceleration capability of the wireless device.
Example 10: The method of any of examples 1–9, wherein the one or more environmental parameters associated with the wireless device comprises a surface of a road, a condition of the road, a weather condition, a number of vulnerable road users (VRUs) neighboring the wireless device, a designated speed limit of the road, or any combination thereof.
Example 11: An apparatus comprising at least one means for performing a method of any of examples 1 to 10.
Example 12: An apparatus for wireless communications comprising: a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of examples 1 to 10.
Example 13: A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to perform a method of any of examples 1 to 10.
Example 14: A method for wireless communications at a wireless device in a wireless communications system, comprising: monitoring one or more channels configured for the wireless communications system; receiving, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based at least in part on the monitoring; and performing, by the wireless device, a maneuver to accommodate the planned maneuver based at least in part on the spatial clearance for the planned maneuver of the neighboring wireless device.
Example 15: The method of example 14, further comprising: receiving the application-layer message via a device-to-device communications channel.
Example 16: The method of examples 14 or 15, further comprising: determining whether the planned maneuver of the neighboring wireless device affects the wireless device; and performing the maneuver based at least in part on the determining.
Example 17: The method of any of examples 14 through 16, further comprising: determining, based at least in part on the application-layer message, that the planned maneuver is a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof
Example 18: The method of any of examples 14 through 17, wherein performing the maneuver to accommodate the planned maneuver comprises: planned maneuver comprises: performing a right turn, a left turn, a straight procession, a lane change, a stop, an acceleration, a deceleration, a parking maneuver, or any combination thereof.
Example 19: The method of any of examples 14 through 18, wherein performing the maneuver to accommodate the planned maneuver comprises: modifying one or more planned maneuvers of the wireless device based at least in part on the planned maneuver of the neighboring wireless device.
Example 20: The method of any of examples 14 through 19, wherein the spatial clearance comprises a first longitudinal distance corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
Example 21: An apparatus comprising at least one means for performing a method of any of examples 14 to 20.
Example 22: An apparatus for wireless communications comprising: a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of examples 14 to 20.
Example 23: A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to perform a method of any of examples 14 to 20.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations  are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as  used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (23)

  1. A method for wireless communications at a wireless device in a wireless communications system, comprising:
    determining a planned maneuver for the wireless device;
    determining a spatial clearance for the planned maneuver based at least in part on one or more static parameters of the wireless device, one or more dynamic parameters of the wireless device, one or more environmental parameters associated with the wireless device, or a combination thereof; and
    transmitting an application-layer message indicating the spatial clearance for the planned maneuver.
  2. The method of claim 1, further comprising:
    transmitting the application-layer message to one or more vehicles or vulnerable road users (VRUs) in the wireless communications system.
  3. The method of claim 1, further comprising:
    transmitting the application-layer message via a device-to-device communications channel.
  4. The method of claim 1, further comprising:
    determining a safety margin based at least in part on a set of parameters associated with the wireless device and one or more traffic regulations; and
    determining the spatial clearance based at least in part on the safety margin.
  5. The method of claim 4, wherein the one or more traffic regulations are associated with a set of local traffic regulations, a set of state traffic regulations, a set of regional traffic regulations, a set of federal traffic regulations, or any combination thereof.
  6. The method of claim 1, further comprising:
    determining that the planned maneuver is a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof.
  7. The method of claim 1, wherein the spatial clearance comprises a first longitudinal distance corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
  8. The method of claim 1, wherein the one or more static parameters of the wireless device comprises a vehicle type, a vehicle size, a vehicle weight, a turning radius of the wireless device, an acceleration capability of the wireless device, a deceleration capability of the wireless device, a braking parameter of the wireless device, one or more components equipped on the wireless device, or any combination thereof.
  9. The method of claim 1, wherein the one or more dynamic parameters of the wireless device comprises a payload carried by the wireless device, a number of passengers in the wireless device, a tire pressure of the wireless device, a tire wear parameter of the wireless device, a brake status of the wireless device, a current acceleration capability of the wireless device, a current deceleration capability of the wireless device.
  10. The method of claim 1, wherein the one or more environmental parameters associated with the wireless device comprises a surface of a road, a condition of the road, a weather condition, a number of vulnerable road users (VRUs) neighboring the wireless device, a designated speed limit of the road, or any combination thereof.
  11. A method for wireless communications at a wireless device in a wireless communications system, comprising:
    monitoring one or more channels configured for the wireless communications system;
    receiving, from a neighboring wireless device in the wireless communications system, an application-layer message indicating a spatial clearance for a planned maneuver of the neighboring wireless device based at least in part on the monitoring; and
    performing, by the wireless device, a maneuver to accommodate the planned maneuver based at least in part on the spatial clearance for the planned maneuver of the neighboring wireless device.
  12. The method of claim 11, further comprising:
    receiving the application-layer message via a device-to-device communications channel.
  13. The method of claim 11, further comprising:
    determining whether the planned maneuver of the neighboring wireless device affects the wireless device; and
    performing the maneuver based at least in part on the determining.
  14. The method of claim 11, further comprising:
    determining, based at least in part on the application-layer message, that the planned maneuver is a right turn, a left turn, a straight procession, a lane change, a planned stop, a planned acceleration, a planned deceleration, a parking maneuver, or any combination thereof.
  15. The method of claim 11, wherein performing the maneuver to accommodate the planned maneuver comprises:
    performing a right turn, a left turn, a straight procession, a lane change, a stop, an acceleration, a deceleration, a parking maneuver, or any combination thereof.
  16. The method of claim 11, wherein performing the maneuver to accommodate the planned maneuver comprises:
    modifying one or more planned maneuvers of the wireless device based at least in part on the planned maneuver of the neighboring wireless device.
  17. The method of claim 11, wherein the spatial clearance comprises a first longitudinal distance corresponding to leading vehicles and a second longitudinal distance corresponding to trailing vehicles.
  18. An apparatus for use in a method of wireless communications of any one of claims 1 through 10.
  19. A non-transitory computer-readable medium for a method of wireless communications of any one of claims 1 through 10.
  20. An apparatus comprising means for performing a method of wireless communications of any one of claims 1 through 10.
  21. An apparatus for use in a method of wireless communications of any one of claims 11 through 17.
  22. A non-transitory computer-readable medium for a method of wireless communications of any one of claims 11 through 17.
  23. An apparatus comprising means for performing a method of wireless communications of any one of claims 11 through 17.
PCT/CN2020/074692 2020-02-11 2020-02-11 Vehicle maneuvering techniques in wireless systems WO2021159267A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074692 WO2021159267A1 (en) 2020-02-11 2020-02-11 Vehicle maneuvering techniques in wireless systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074692 WO2021159267A1 (en) 2020-02-11 2020-02-11 Vehicle maneuvering techniques in wireless systems

Publications (1)

Publication Number Publication Date
WO2021159267A1 true WO2021159267A1 (en) 2021-08-19

Family

ID=77293123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074692 WO2021159267A1 (en) 2020-02-11 2020-02-11 Vehicle maneuvering techniques in wireless systems

Country Status (1)

Country Link
WO (1) WO2021159267A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103661190A (en) * 2014-01-07 2014-03-26 江苏新安电器有限公司 Side anticollision device and side anticollision method when large-sized car turns corner
CN104916152A (en) * 2015-05-19 2015-09-16 苏州大学 Cooperative vehicle infrastructure system-based intersection vehicle right turning guidance system and guidance method thereof
US20150310738A1 (en) * 2012-12-11 2015-10-29 Siemens Aktiengesellschaft Method for communication within an, in particular wireless, motor vehicle communication system interacting in an ad-hoc manner, device for the traffic infrastructure and road user device
CN106157696A (en) * 2016-08-30 2016-11-23 浙江吉利控股集团有限公司 Move avoidance system and preventing collision method based on truck traffic from car owner
CN108734999A (en) * 2017-04-24 2018-11-02 福特全球技术公司 Navigation auxiliary avoids colliding at intersection
CN109823349A (en) * 2019-02-01 2019-05-31 吉林微思智能科技有限公司 A kind of implementation method interacted for automatic driving vehicle with the external world

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150310738A1 (en) * 2012-12-11 2015-10-29 Siemens Aktiengesellschaft Method for communication within an, in particular wireless, motor vehicle communication system interacting in an ad-hoc manner, device for the traffic infrastructure and road user device
CN103661190A (en) * 2014-01-07 2014-03-26 江苏新安电器有限公司 Side anticollision device and side anticollision method when large-sized car turns corner
CN104916152A (en) * 2015-05-19 2015-09-16 苏州大学 Cooperative vehicle infrastructure system-based intersection vehicle right turning guidance system and guidance method thereof
CN106157696A (en) * 2016-08-30 2016-11-23 浙江吉利控股集团有限公司 Move avoidance system and preventing collision method based on truck traffic from car owner
CN108734999A (en) * 2017-04-24 2018-11-02 福特全球技术公司 Navigation auxiliary avoids colliding at intersection
CN109823349A (en) * 2019-02-01 2019-05-31 吉林微思智能科技有限公司 A kind of implementation method interacted for automatic driving vehicle with the external world

Similar Documents

Publication Publication Date Title
US11508243B2 (en) Intersection travel coordination via V2X communication
US11308810B2 (en) Sidelink based vehicle-to-pedestrian system
WO2021248441A1 (en) Dynamic sensor-sharing with confidence requirements
CN117295974A (en) Collaborative vehicle radar sensing
US20220030441A1 (en) Cooperative full-duplex techniques for sidelink communications
US20230164519A1 (en) Techniques for configuring transmission of a position message
US11496858B2 (en) Cooperative event warning system
WO2021159267A1 (en) Vehicle maneuvering techniques in wireless systems
US11989104B2 (en) Techniques for fault detection in wireless communications systems
US11950246B2 (en) Sidelink vehicle to vulnerable road user techniques for wireless communications systems
US12038523B2 (en) Radar transmission parameter selection for multi-radar coexistence
US12004047B2 (en) Roadside user alert techniques based on location accuracy
US20220308159A1 (en) Radar transmission parameter selection for multi-radar coexistence
WO2022040962A1 (en) Transmission coverage techniques
WO2023212854A1 (en) Source based synchronization for wireless devices
US20220349997A1 (en) Intra-vehicle radar handover
US20230232199A1 (en) User equipment signaling for vehicle alerting
WO2023240434A1 (en) User equipment group and quasi-collocation configuration management
WO2022067646A1 (en) Aided reception techniques for sidelink communications systems
WO2021087723A1 (en) Sensor performance indication
CN117881978A (en) Adaptive radar with public safety message integration
CN117397322A (en) Side-link assisted cellular-based positioning
CN115399053A (en) Techniques for Listen Before Talk (LBT) access mechanism for radar systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918267

Country of ref document: EP

Kind code of ref document: A1