WO2021158079A1 - Computer tomography device comprising rotational beam-shielding structure, and method - Google Patents

Computer tomography device comprising rotational beam-shielding structure, and method Download PDF

Info

Publication number
WO2021158079A1
WO2021158079A1 PCT/KR2021/001587 KR2021001587W WO2021158079A1 WO 2021158079 A1 WO2021158079 A1 WO 2021158079A1 KR 2021001587 W KR2021001587 W KR 2021001587W WO 2021158079 A1 WO2021158079 A1 WO 2021158079A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
blocking
module
projection data
scattered
Prior art date
Application number
PCT/KR2021/001587
Other languages
French (fr)
Korean (ko)
Inventor
이호
이익재
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2021158079A1 publication Critical patent/WO2021158079A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4035Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • A61B6/4085Cone-beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data

Definitions

  • the present invention relates to an apparatus and method for computed tomography, and more particularly, to a cone-beam type computed tomography apparatus and method for improving image quality deterioration due to a scattered beam.
  • the research on the present invention was supported by the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning, and the high-speed, high-definition single-source dual-energy cone beam CT imaging technology development project for next-generation image-guided radiation therapy (2017M2A2A6A01070330, 2017-2020) and related It is also related to the core technology development project (2019R1I1A1A01062157, 2019-2022) for the generation of deep cone-beam-type computed tomography images, supported by the National Research Foundation, funded by the Ministry of Education.
  • SBRT stereotactic body radiation therapy
  • CBCT Cone Beam CT
  • Intrafraction Imaging it is possible to acquire CBCT X-ray images simultaneously with Volumetric Modulated Arc Therapy (VMAT) through a flat-panel detector, so that the location of the tumor shown in the image is different from the actual beam. It is judged by the location of the tumor at the time of delivery, so it is possible to monitor the deformation and movement of the affected area.
  • VMAT Volumetric Modulated Arc Therapy
  • CBCT X-ray images are acquired at the same time as VMAT, CBCT volume images can be generated during intrafraction, but MV X-rays and kV X-rays interact with particles inside the object, so As a result, the overall image quality deteriorates, and its clinical use is very limited.
  • the CBCT with a detector with a large irradiation area has a problem in that it is difficult to obtain an accurate image because the effect of the scattered beam increases exponentially compared to the general CT.
  • the present invention provides a computed tomography apparatus, which enables to more accurately determine the deformity and movement state of the affected area during treatment by improving the quality degradation of the computed tomography image due to the scattered beam. intended to provide
  • the present invention also provides a rotating beam blocking device for use in a computed tomography apparatus, in particular for prediction of scattered light incident on a detector in a cone beam type computed tomography apparatus.
  • the beam blocking apparatus of the present invention is located between the imaging beam module of the radiation imaging apparatus and the detector, and is capable of more accurately predicting a scattered beam map through an operation of continuously blocking or non-blocking at least a portion of an image beam incident to the detector. make it possible
  • the present invention generates a model for the movement of a target during radiation treatment, recalculates the dose distribution for the target and adjacent risk organs using CBCT during segmentation treatment, and adaptive radiotherapy using CBCT images during segmentation treatment ( Adaptive Radiotherapy) aims to provide a technology that can be applied to clinical practice.
  • the computed tomography apparatus of the present invention includes a gantry formed to be rotatable; a light source module irradiating a radiation image beam to the subject; and a beam blocking module positioned in a path between the light source module and the subject to selectively block a portion of the treatment beam or image beam irradiated from the light source module, and including a rotatable shielding unit.
  • the shielding unit has a blocking region that selectively blocks the image beam and a non-blocking region that does not block the image beam.
  • the blocking area of the shielding unit has a structure in which a strip portion that blocks the image beam irradiated from the image beam module and an open portion that does not block the image beam are alternately disposed.
  • a portion of the image beam may be continuously blocked in a blocking section in which the image beam irradiated from the image beam module is blocked from the viewpoint of the time domain.
  • the beam blocking module of the present invention may further include a driving wheel having an open inner shape and provided to be rotatable, and a motor for rotating the driving wheel.
  • the shielding part may be located inside the driving wheel, and the shielding part may include arc-shaped strips arranged so that the strip part and the open part have a circular arc shape with respect to a rotation center of the driving wheel.
  • the computed tomography apparatus of the present invention provides a plurality of projection data for an object to be inspected, wherein the plurality of projection data is acquired irrespective of the influence of the scattered beam obtained by the selective blocking of the beam blocking module and the blocking effect.
  • the image acquisition unit may continuously acquire first projection data obtained when the image beam is partially blocked by rotation of the shielding unit and second projection data obtained when the image beam is not blocked in a time domain. there is.
  • the shielding portion may include arc-shaped strips arranged at regular intervals in at least a portion of the region. Estimating the scattered beam map from the projection data obtained through the shield having the structure of such an arc-shaped strip is,
  • An initial scattering beam map obtained under the influence of selective blocking according to the structure of the arc-shaped strip is interpolated, but a scattering beam map is obtained by interpolating the scattering beam in a direction orthogonal to an arc that can be defined according to the arc-shaped strip structure. It may further include the step of estimating.
  • the image processing unit performs distance-based weighted summing of first projection data at a first viewpoint and first projection data at a second viewpoint adjacent to the first viewpoint between the first viewpoint and the second viewpoint. Estimate a scattered beam map for the second projection data located in .
  • the image processing unit of the present invention estimates a scattering beam map using the first projection data, and reconstructs a 3D scattering volume through backprojection on the estimated scattering beam map, A scattering beam map for the second projection data may be estimated by reprojecting the 3D scattering volume.
  • the image processing unit of the present invention generates scatter corrected data through a subtraction operation between the second projection data and the scatter beam map for the second projection data estimated by the method, and the scattering correction data can be used to generate a reconstructed image in which scattering is suppressed.
  • the computed tomography apparatus is a cone beam type computed tomography apparatus
  • the light source module includes: a radiation module for irradiating a radiation treatment beam to the subject; and an imaging beam module configured to irradiate an imaging beam to the subject, wherein the radiation therapy beam and the imaging beam overlap at least in a partial intersection region.
  • a beam blocking device for removing noise caused by a scattered beam in a computed tomography image obtained by the computed tomography apparatus of the present invention includes: a driving wheel having an open inner side; a motor for generating rotational driving force; and a shielding unit positioned on a path between the light source module and the subject to selectively block a portion of the image beam irradiated from the light source module, but rotated according to the rotational driving force of the motor.
  • the shielding unit has a blocking region that selectively blocks the image beam and a non-blocking region that does not block the image beam, and the blocking region of the shielding unit includes the image beam irradiated from the image beam module. It has a structure in which a strip portion that blocks the image beam and an open portion that does not block the image beam are alternately arranged.
  • the shielding unit has an arc-shaped structure so as to continuously block a portion of the image beam in a blocking section that blocks the image beam irradiated from the image beam module in the time domain.
  • the shielding portion preferably includes an arc-shaped strip in which the strip portion and the open portion are arranged to have an arc shape with respect to a rotation center of the driving wheel.
  • a computed tomography method by a computed tomography apparatus of the present invention includes: irradiating a radiation treatment beam to a subject; irradiating an image beam onto a path of a radiation treatment beam irradiated from the radiation module to an image beam module; continuously blocking or non-blocking at least a portion of the image beam irradiated from the imaging beam module with a beam blocking module located in a path between the imaging beam module and the subject; acquiring a plurality of projection data by detecting a radiation treatment beam that has passed through the subject and a scattered beam scattered by the image beam; and generating a reconstructed image by estimating a scattered beam map for the plurality of projection data.
  • the computed tomography apparatus for performing the computed tomography method of the present invention may further include a shielding unit formed of an arc-shaped strip arranged at regular intervals in at least a portion of the region.
  • the estimating of the scattering beam map includes interpolating an initial scattering beam map obtained under the influence of selective blocking according to the structure of the arc-shaped strip, in a direction orthogonal to an arc that can be defined according to the structure of the arc-shaped strip. It is desirable to estimate the scattered beam map by interpolating the scattered beam.
  • the cone-beam-type computed tomography method by the cone-beam-type computed tomography apparatus of the present invention includes the steps of irradiating a radiation treatment beam to a subject with a radiation module, and using the image beam module as described above.
  • irradiating an image beam on a path of a radiation therapy beam irradiated from a radiation module and continuously applying at least a portion of the image beam irradiated from the imaging beam module to a beam blocking module located in a path between the imaging beam module and the subject blocking or non-blocking, detecting a radiation treatment beam that has passed through the subject and a scattered beam scattered by the image beam to obtain a plurality of projection data and scattering of the plurality of projection data and generating a reconstructed image by estimating the beam map.
  • the beam blocking module includes a drive wheel rotatable in one direction and having an open inner side, a motor for rotating the drive wheel, and a shield provided to cover at least a portion of the inner side of the drive wheel,
  • the shielding part has a structure in which a plurality of arc-shaped strips are disposed to coincide with the rotational direction of the driving wheel.
  • the acquiring of the plurality of projection data may include, by rotation of the shielding part, first projection data when the image beam is blocked and second projection data when the image beam is not blocked. obtained successively.
  • the step of generating a reconstructed image by estimating a scattered beam map for the plurality of projection data is orthogonal to the arc-shaped strip shape in the projection data when the image beam is blocked by the shielding unit.
  • the scattered beam map is estimated by applying interpolation to the direction.
  • the step of generating a reconstructed image by estimating a scattering beam map for the plurality of projection data includes estimating a scattering map for the entire first projection data and using a backprojection to perform a 3D scattering volume ( 3D Scatter Volume) and reprojecting the 3D scattering volume to estimate and generate a scattering map for the entire second projection data.
  • 3D Scatter Volume 3D Scatter Volume
  • the generating a reconstructed image by estimating a scattering beam map for the plurality of projection data includes subtracting a scattering map for the second projection data estimated from the second projection data to obtain scatter corrected data (Scatter Corrected Data). ) and generating the reconstructed image from the scattering correction data using a reconstruction algorithm.
  • a computed tomography imaging method of the present invention comprises: irradiating, by a light source module, an image beam on a path of a radiation treatment beam irradiated from the radiation module; rotating the shielding unit to selectively block the irradiated image beam during a first time period and not to block the irradiated image beam during the second time period; obtaining first projection data obtained when the image beam is partially blocked and second projection data obtained when the image beam is not blocked with rotation of the shielding unit; estimating a scattered beam map using the first projection data; estimating a scattered beam map for the second projection data using the estimated scattered beam map; and generating a reconstructed image by using the scattered beam map for the estimated second projection data.
  • the present invention further provides a computer application program for performing the above-described computed tomography method on a computer or a computer-readable recording medium in which the computer application program is recorded.
  • a radiation module connected to a gantry and irradiating a radiation treatment beam to a subject, an image beam module irradiating an image beam on a path of a radiation treatment beam irradiated from the radiation module, and the image beam module and the subject
  • a blocking structure including a beam blocking module that is located in the path between the cadavers and continuously blocks or does not block at least a portion of the image beam irradiated from the imaging beam module
  • the problem of image quality degradation due to scattering can be improved there is.
  • obtaining a scattering beam passing through a rotational shielding structure configured in an arc-shaped strip shape is a major factor in improving the accuracy of estimation for a scattering beam map.
  • the present invention by improving the quality of a medical image, it is possible to accurately grasp the deformation and movement state of the affected part during treatment.
  • adaptive radiotherapy using CBCT images during segmentation treatment is possible by creating a model for the movement of the target during radiotherapy and recalculating the dose distribution for the target and adjacent risk organs using CBCT during segmentation treatment. It can be made clinically applicable.
  • FIG. 1 is a diagram for explaining the effect of scattered beams of MV X-rays and kV X-rays.
  • FIG. 2 is a view showing a computed tomography apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view showing a cone beam type computed tomography apparatus according to another embodiment of the present invention.
  • FIGS. 4 and 5 are diagrams illustrating a beam blocking module of a cone beam type computed tomography apparatus according to another embodiment of the present invention.
  • FIG. 6 is a diagram illustrating image acquisition using a cone-beam-type computed tomography apparatus according to an embodiment of the present invention.
  • FIG. 7 is a view for explaining a method of calculating a scattered beam distribution map of the cone beam type computed tomography apparatus according to an embodiment of the present invention.
  • FIG. 8 is a view for explaining a method of estimating a scattered beam distribution map from a blocked X-ray image of the cone beam type computed tomography apparatus according to an embodiment of the present invention.
  • FIG. 9 is a view for explaining a method of estimating a scattered beam distribution map from a non-blocking X-ray image of the cone beam type computed tomography apparatus according to an embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a computed tomography method according to an embodiment of the present invention.
  • the present invention relates to a computed tomography apparatus for generating a CT image and a method for acquiring a CT image.
  • the present invention obtains a scattered beam through a rotating wheel blocking structure located between an image beam module and a detector (used in combination with an image acquisition unit in the present invention), and results through prediction of the obtained scattered beam.
  • This is an invention for obtaining a CT image in which the effect of the scattered beam is suppressed.
  • an example has been described focusing on CBCT, but this is only an example and the scope of the present invention is not limited to CBCT.
  • FIG. 1 is a diagram for explaining the effect of scattered beams of MV X-rays and kV X-rays.
  • a CBCT volume image can be generated during intrafraction therapy.
  • MV X-rays and kV X-rays interact with particles inside the object, resulting in overall image quality degradation due to the influence of the generated scattered beam, so its clinical use is very limited.
  • the CBCT with a detector having a large irradiation area has a problem in that it is more difficult to obtain an accurate image because the effect of the scattered beam increases exponentially compared to the general CT.
  • a computed tomography apparatus has a novel circuit breaker structure for solving the above problems.
  • the blocker according to an embodiment of the present invention is a rotatable wheel-based blocker that simultaneously acquires primary beam and scattered beam X-ray images. It is possible to implement a high-definition On-Treatment CBCT (Cone-Beam CT) imaging system in which the scattered beam is effectively removed using the primary beam and the scattered beam obtained through such a wheel-based blocker.
  • CBCT Cone-Beam CT
  • the CBCT device uses a light source of megavolts (MV)-kilovolts (kV) that is generated when a radiation therapy beam and a CBCT image beam are simultaneously transmitted. lowers the By using the blocker structure of the present invention, it is possible to improve image quality degradation due to the scattered beam, and to accurately grasp the deformation and movement state of the affected part during treatment, thereby helping to treat the patient.
  • MV megavolts
  • kV kV
  • the computed tomography apparatus 10 of FIG. 2 includes a gantry 100 , a radiation module 200 , an image beam module 300 , a beam blocking module 400 , an image acquisition unit 500 , and an image processing unit 600 .
  • the computed tomography apparatus 10 may be a cone-beam-type computerized (computerized) tomography apparatus that restores a plurality of tomography images at once from a two-dimensional fluoroscopic image obtained by irradiating cone-shaped X-rays.
  • the CBCT device it is possible to calculate a plurality of horizontal tomography images only by measuring the projection image in one rotation, so it has the advantage of rapidly reconstructing the three-dimensional structure of the subject.
  • the computed tomography apparatus of the present invention is applied to a CT imaging system using a plurality of detectors, the influence of scattering can be suppressed.
  • the gantry 100 supports the radiation module 200 and is formed to be rotatable with respect to the subject.
  • the radiation module 200 is fixed to the gantry, and irradiates a radiation treatment beam to the subject.
  • the imaging beam module 300 irradiates the imaging beam on the path of the radiation treatment beam irradiated from the radiation module.
  • the image beam module may further include an image beam module driver (not shown) for controlling the driving thereof.
  • the image beam module driver may irradiate the image beam to the subject, and control the irradiation direction of the image beam so that the radiation therapy beam and the image beam overlap at least in a partial intersection area.
  • the angle between the image beam and the treatment beam is preferably irradiated to be a right angle.
  • both the radiation module 200 and the image beam module 300 irradiate a radiation beam to the subject, they are collectively referred to as a “light source module”.
  • the present embodiment includes both the radiation module and the image beam module, it is of course possible to configure the light source only with the image beam module.
  • the beam blocking module 400 is positioned in a path between the imaging beam module and the object to continuously block or non-block at least a portion of the imaging beam irradiated from the imaging beam module.
  • the beam blocking module selectively blocks a portion of the image beam and includes a rotatably shielding unit.
  • the beam blocking module 400 uses an easy-to-machine lead or solid tungsten for shielding primary and scattered X-rays for kV and scattered X-rays for MV to match the direction of wheel rotation.
  • the circuit breaker is a wheel type circuit breaker configured in the form of a strip.
  • the beam blocking module is rotatable, and is formed in a partially shielded and partially open structure.
  • the image processing unit can estimate a more accurate scattered beam map, and through this, it is possible to obtain
  • the size of the beam blocking module when the beam blocking module is located in front of the image beam module may be smaller than the size of the beam blocking module when the beam blocking module is located in front of the image acquisition unit (detector), so it is advantageous for miniaturization.
  • the beam blocking module is located between the image acquisition unit and the patient, it is possible to improve the performance of the image quality in that the distortion due to beam scattering that may be additionally generated by the patient can be further predicted through the wheel blocker structure.
  • the image acquisition unit 500 acquires a plurality of projection data by detecting the radiation treatment beam that has passed through the target object and the scattered beam scattered by the image beam.
  • image acquisition unit and detector are used interchangeably.
  • the image acquisition unit 500 distinguishes and acquires the first projection data and the second projection data.
  • the shielding unit has a blocking area that selectively blocks the image beam and a non-blocking area that does not block the image beam.
  • the blocking area includes the strip portion where the strip is present. It is distinguished by an open part where there is no strip.
  • the first projection data is information obtained by passing through the blocking area.
  • the second projection data is information obtained through the non-blocking area.
  • the image processing unit 600 generates a reconstructed image by estimating a scattered beam map for the plurality of projection data.
  • the image processing unit 600 estimates a scattered beam map by applying an interpolation method in a direction orthogonal to the arc strip shape in projection data when the image beam is blocked by the shielding unit.
  • the CBCT device is a gantry 100, a main body 110, a rotation shaft 120, a radiation irradiation module 200, an image beam module 300, a beam blocking module 400, an image acquisition unit 500 ), an image processing unit 600 , and a table 130 .
  • the gantry 100 may be implemented in various forms according to required conditions and design specifications. The present invention is not limited or limited by the type and characteristics of the gantry 100 .
  • the gantry 100 may be connected to the main body 110 by a rotation shaft 120 and configured to rotate.
  • a conventional ring gantry, a partial ring gantry, a C-shaped gantry, etc. may be used as the gantry, but instead of the gantry any other frame capable of positioning the radiation module in various rotational and/or axial positions relative to the patient. Work may also be used.
  • a radiation module 200 may be provided in a fixed form on one side of the gantry 100 .
  • the radiation module 200 for emitting a treatment beam may include a radiation source operable to generate a radiation beam and a linear accelerator.
  • the CBCT device further includes a table 130 for positioning the patient.
  • the table 130 is a place on which the patient to be treated lies, and may be provided to enable horizontal and vertical position adjustment.
  • the path The image beam module 300 irradiates the image beam L2 so that an overlap occurs on the image. It is preferable that the position of the overlapping section overlaps the area where the subject is located.
  • the beam blocking module 400 is positioned in a path between the imaging beam module and the object to block at least a portion of the image beam irradiated from the imaging beam module, and an arc-shaped strip to match the wheel rotation direction.
  • the shield rotates during rotation, and a part rotates and a part opens continuously.
  • the detector 510 of the image acquisition unit 500 is positioned in parallel with the image beam irradiation direction to detect the radiation treatment beam passing through the subject and the scattered beam scattered by the image beam to perform a plurality of projections. data will be acquired.
  • the plurality of projection data acquired by the image acquisition unit includes a scattered beam acquired under the influence of the selective blocking of the beam blocking module and an image according to the primary beam acquired regardless of the influence of the blocking.
  • the selective blocking means acquiring a scattered beam obtained by the effect of selective blocking according to the pattern of the strip and the position of the strip.
  • FIGS. 4 and 5 are diagrams illustrating a beam blocking device (beam blocking module) used in a computed tomography apparatus according to various embodiments of the present disclosure.
  • the beam blocking module 400 includes a driving wheel 410 , a shielding unit 420 , and a driving motor 440 .
  • the beam blocking module 400 is positioned in a path between the imaging beam module and the object to block at least a portion of the imaging beam irradiated from the imaging beam module.
  • the position of the beam blocking module may be located between the patient and the imaging beam module as shown in FIG. 3 .
  • the beam blocking module may be located between the patient and the image acquisition unit.
  • the beam blocking module 400 uses lead or solid tungsten, which is easy to process for shielding primary and scattered X-rays for kV and scattered X-rays for MV, in an arc-shaped strip shape to match the wheel rotation direction. It is preferably a circuit breaker of a constructed wheel model.
  • the shield 420 is configured to be seated on the inner side.
  • the shielding part 420 is provided to cover at least a part of the inner side of the driving wheel.
  • the driving motor 440 generates rotational driving for rotation of the shield 420 and/or the driving wheel 410 .
  • the driving wheel may be configured to rotate only the shield in a fixed state, and the driving wheel and the shield may be configured to rotate together.
  • the shielding part 420 has a structure in which a strip portion 421 in which arc-shaped strips are present and an open portion 423 in which a strip is not present are arranged to cross each other. In order to distinguish it from the unblocked region 430 in which the shielding part does not exist, the region in which the shielding part 420 is present is referred to as a blocked region in this embodiment.
  • the incident image beam is selectively blocked.
  • the incident image beam is a circular arc and a primary beam and a scattered beam according to a pattern specified according to the rotation direction of the shielding unit are transmitted to the image acquisition unit.
  • the scattered beam affected by the block by the strip is transmitted to the image acquisition unit.
  • the image beam (including the scattered scattered beam and the primary beam excluding the scattered) is transmitted to the image acquisition unit.
  • an image beam that is not affected by the beam blocking module of the present embodiment (herein, a naturally occurring scattered beam is included) is transmitted to the image acquisition unit.
  • the shielding part is positioned in the direction in which the image beam is incident, and has a configuration for allowing the image beam to pass through the shielding section for a first time section and pass through the non-blocking area for a second time section.
  • the time for the image beam to pass through the non-blocking area is three times the time for passing through the blocking area. It is preferable that the shielding portion is provided to be perpendicular to an incident axis on which the image beam is incident.
  • the driving motor 440 may rotate only the shield or rotate the shield and the driving wheel together.
  • the drive motor is preferably a step motor.
  • the shielding part 420 has a structure in which a plurality of arc-shaped strips 421 are disposed to coincide with the rotational direction of the driving wheel.
  • the arrangement structure of the strip portion and the open portion 423 is not limited thereto, and combinations of various widths and arrangements are possible.
  • a shape of a strip that draws an arc around a rotation axis is also possible, a shape in which a part of the strip is cut is possible, and a shape in which a part of the strip is cut off is deviated and arranged in the form of a checkerboard.
  • the strip may be provided in a helical strip structure instead of in the form of an arc.
  • the shape of the strip is designed to draw an arc around the axis of rotation, it is possible to estimate the scattered beam map from the projection data obtained by blocking or non-blocking of the image beam. Images can be acquired without performing.
  • the image acquisition unit may successively acquire first projection data when the image beam is blocked and second projection data when the image beam is not blocked.
  • the wheel breaker may further include an immobilization device so that it can be fixed well in front of the X-ray tube.
  • the shielding unit of the present embodiment is provided to continuously block a part of the image beam in a blocking section for blocking the image beam irradiated from the image beam module in the time domain.
  • the continuous in terms of the time domain means that the blocking is continuously made during a predetermined time period in which the arc-shaped strip is located.
  • the beam blocking module 400 may further include a shielding wall 450 to distinguish the boundary of the shielding part, and the shielding wall includes a lead material, , preferably located in the boundary region.
  • the thickness T1 of the driving wheel is 1 to 4 mm, and when it is less than 1 mm, the blocking effect is reduced, and when it is more than 4 mm, it is difficult to rotate.
  • the area where the shielding part exists is preferably formed at an angle of 90 to 180 degrees with respect to the rotation center, but the specific gravity of the blocking area can be changed by those skilled in the art according to the purpose of correcting the image of the scattered beam. .
  • another shield including copper for average energy modulation is placed on one side of the strip-shaped shield, so that the driving wheel is filled with the strip-shaped shield, copper. It may be provided in a structure capable of obtaining dual energy CBCT, including a shielding part and a space part.
  • the cone-beam-type computed tomography apparatus rotates a wheel breaker in one direction at a constant speed using a stepping motor at the same time as the gantry is rotated to provide a blocked X-ray image and a non-blocking X-ray image. - Acquire line images continuously.
  • the arc-shaped strip passes through the same position of the detector while the gantry rotates, it is an easy structure to automatically classify a non-blocking image and a blocked image after acquiring a projection image.
  • FIG. 6 is a conceptual diagram illustrating a concept in which a cone beam type computed tomography apparatus having a rotating beam shield according to an embodiment of the present invention acquires a radiographic image.
  • the CBCT device may further include a driving unit (not shown) for rotationally moving the image beam module.
  • the image beam module irradiates an image beam, that is, X-rays while rotating, and the beam blocking module blocks a portion of the X-rays in the path between the light source and the subject.
  • the first projection data acquired by the image acquisition unit includes a shaded region and an unshaded region where a pattern of shadows is formed.
  • the shaded area (blocking area) 420 corresponds to the area in which the arc-shaped strip pattern is formed.
  • the second projection data acquired by the image acquisition unit includes a non-shaded area.
  • a 'blocked X-ray image' is acquired, including the scattered beam (shaded area) due to the influence of the blocker and the image beam without the influence of the blocker (the primary beam and the scattered beam are accumulated).
  • the non-blocking state there is no effect of the breaker, so a 'non-blocking X-ray image' containing only the image beam is acquired.
  • the image acquisition unit 500 acquires a plurality of projection data by detecting a radiation treatment beam that has passed through the target object and a scattered beam scattered by the image beam using a detector.
  • first projection data when the image beam is blocked and second projection data when the image beam is not blocked are successively acquired.
  • FIG. 7 is a view for explaining a method of calculating a scattered beam distribution map of the cone beam type computed tomography apparatus according to an embodiment of the present invention.
  • the image processing unit 600 uses information detected in a blocked region in the intercepted X-ray images configured in an arc-shaped strip shape in a direction orthogonal to the arc-shaped strip shape in a one-dimensional cubic shape.
  • the scattered beam map is estimated by applying the 1D cubic B-Spline interpolation method.
  • the image processing unit 600 generates a reconstruction image through backprojection of the scattered beam map estimated through the above-described interpolation by receiving the plurality of projection data as inputs. Specifically, the image processing unit 600 estimates a scattered beam map by applying an interpolation method in a direction orthogonal to the arc strip shape in projection data when the image beam is blocked by the shielding unit.
  • FIG. 8 is a view for explaining a method of estimating a scattered beam distribution map from a blocked X-ray image by a cone beam type computed tomography apparatus according to an embodiment of the present invention.
  • the image processing unit 600 backprojects the image according to the first projection data obtained in the blocking region, that is, the scattered beam map estimated through interpolation on the blocked X-ray image, to obtain a three-dimensional scattered beam volume.
  • the image processing unit includes an image obtained in the non-blocking area, that is, an image according to second projection data obtained from a non-blocking X-ray image (All unblocked projection), and a geometric shape specified according to the spatial structure of the rotating beam shielding unit. The relationship can be used to estimate the corresponding scattered beam distribution map. This will be described later.
  • the image processing unit 600 estimates a scattering map for the entire first projection data, reconstructs a 3D scattering volume using backprojection, and re-projects the 3D scattering volume. ) to estimate and generate a scattering map for the entire second projection data.
  • the back projection may be a method of continuously summing the values of the projection image obtained in each direction by turning them back upside down. After the summation is completed, the original pixel value can be reconstructed by subtracting the lowest basic value among all pixel values from each pixel value and dividing it by the least common multiple of the pixels.
  • the image processing unit generates scatter corrected data by subtracting a scatter map for the second projection data estimated from the second projection data, and uses a reconstruction algorithm to generate the reconstructed image from the scatter correction data.
  • FIG. 9 is a view for explaining a method of estimating a scattered beam distribution map from a non-blocking X-ray image of a cone beam type computed tomography apparatus according to an embodiment of the present invention.
  • the image processing unit may finally obtain a scattered beam-removed non-blocking X-ray image by subtracting the scattered beam map estimated from the non-blocking X-ray images from the image component. More specifically, the image processing unit 600 uses a weighted sum based on distances from two first projection data from scattering maps for two pieces of first projection data adjacent to the second projection data that are successively acquired. 2 Estimate and generate scatter maps for projection data. The image processing unit generates a CBCT image during scattering correction segmentation treatment by applying a compression sensing-based iterative reconstruction algorithm to the non-blocking X-ray image.
  • the image acquisition unit may continuously acquire the second projection data to acquire the first projection data and the second projection data in a ratio of 1 to N (where N is a natural number), and the image processing unit may acquire the N second projection data From the scattering maps for the two first projection data adjacent to , the scattering maps for the N pieces of second projection data may be estimated using a weighted sum based on distances from the two first projection data.
  • the image processor may obtain scattering correction data in which scattering is suppressed by subtracting an image formed through the estimated scattering maps and the second projection data.
  • the embodiment of FIG. 9 shows an example of unblocked 2nd to 5th second projection data between the blocked 1st first projection data and 6th first projection data.
  • the scattered beam map for the 2nd second projection data is more affected by the scattered beam map estimated for the 1st first projection data. Therefore, by increasing the weight of the scattered beam map estimated with respect to the 1st first projection data and lowering the weight of the scattered beam map estimated for the 6th first projection data and adding them, the scattered beam map for the 2nd second projection data is estimated can do.
  • the computed tomography method includes the following steps performed in the computed tomography apparatus 10 , in particular, the cone beam type computed tomography apparatus. Duplicate descriptions of the items already described will be omitted.
  • the radiation module 200 starts in the step (S100) of irradiating a radiation treatment beam to the subject.
  • the image beam module 300 irradiates an image beam on the path of the radiation treatment beam irradiated from the radiation module in step S200 . It is preferable that the image beam and the treatment beam be irradiated so that they overlap each other in the area where the patient is located.
  • the CBCT apparatus may include a controller (not shown) for adjusting the irradiation direction and position of the image beam and/or the treatment beam.
  • the beam blocking module 400 blocks at least a portion of the image beam irradiated from the imaging beam module with a beam blocking module located in a path between the imaging beam module and the subject in step S300 .
  • the beam blocking module a driving wheel rotatable in one direction, the inner side of which is open; a step motor for rotating the driving wheel and a shielding part provided to cover at least a part of the inside of the driving wheel, wherein the shielding part has a structure in which a plurality of arc-shaped strips are disposed to coincide with the rotational direction of the driving wheel am.
  • the image acquisition unit 500 acquires a plurality of projection data by detecting the radiation treatment beam that has passed through the target object and the scattered beam scattered by the image beam in step S400 .
  • the first projection data when the image beam is blocked and the second projection data when the image beam is not blocked by the rotation of the shielding part obtained successively.
  • the image processing unit 600 generates a reconstructed image by estimating a scattered beam map for the plurality of projection data in step S500 .
  • the step (S500) of generating a reconstructed image by estimating a scattered beam map for a plurality of projection data is orthogonal to the arc strip shape in the projection data when the image beam is blocked by the shielding unit.
  • Estimate a scattering beam map by applying interpolation in the direction, estimating a scattering map for the entire first projection data, reconstructing a 3D scattering volume using backprojection, and the 3D The scattering volume is reprojected to estimate and generate a scattering map for the whole of the second projection data.
  • scattering corrected data is generated by subtracting a scattering map for the second projection data estimated from the second projection data, and the reconstructed image is generated from the scattering correction data using a reconstruction algorithm.
  • the cone-beam computed tomography apparatus and method for correcting scattering using a wheel breaker can reduce the target adjacent margin during treatment planning by utilizing a CBCT image during high-definition segmentation treatment during VMAT treatment, Targeting accuracy is improved and the dose to at-risk organs adjacent to the tumor is reduced.
  • CBCT during split therapy can be used to recalculate the dose distribution for the target and adjacent at-risk organs. Therefore, adaptive radiotherapy using CBCT images can be applied clinically during segmentation therapy and can be a new clinical guideline. As a result, the incidence of complications related to radiation therapy is lowered and the survival rate can be improved.
  • the cone-beam-type computed tomography apparatus and method for correcting scattering using a wheel blocker according to an embodiment of the present invention, if the radiation was irradiated by estimating the location based on this during treatment. It is possible to perform CBCT for confirmation in real time while irradiating the radiation therapy beam during each treatment. It does not take more treatment time, but the accuracy of treatment can be further improved.
  • the manufactured wheel breaker does not need to stop in the middle of rotation, change direction, or change rotation speed while rotating, no backlash problem occurs, so it is easy to control.
  • the linear type circuit breaker it is possible to secure higher stability by reducing the problems caused by CBCT X-ray image acquisition synchronization during breaker movement and gantry rotation.
  • the present invention is not necessarily limited to this embodiment. That is, within the scope of the object of the present invention, all the components may operate by selectively combining one or more.
  • all the components may be implemented as one independent hardware, some or all of the components are selectively combined to perform some or all of the functions of the combined hardware in one or a plurality of hardware program modules It may be implemented as a computer program having
  • such a computer program is stored in a computer readable media such as a USB memory, a CD disk, a flash memory, etc., read and executed by a computer, thereby implementing the embodiment of the present invention.
  • the computer program recording medium may include a magnetic recording medium, an optical recording medium, and the like.
  • the present invention is a technique applied to a computed tomography apparatus, particularly a cone beam type computed tomography apparatus.
  • the present invention is a technique applied to a beam blocking module of a detector for improving distortion due to a scattered beam present in a radiation image obtained through a computed tomography apparatus.
  • the present invention may be applied to a stereotactic radiation therapy apparatus.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Disclosed is a computer tomography device including a rotational beam-shielding unit, and in particular, a cone beam-type computer tomography device for improving distortions in a radiographic image caused by scattering. A computer tomography device of the present invention comprises: a gantry formed to be rotatable; a light source module which emits a radiographic imaging beam onto a subject; and a beam-blocking module which is located on the path from the light source module to the subject, selectively blocks a portion of the treatment beam or the imaging beam emitted from the light source module, and includes a shielding unit that is provided to be rotatable.

Description

회전형 빔 차폐 구조를 포함하는 컴퓨터 단층 촬영 장치 및 방법Computed tomography apparatus and method including rotating beam shielding structure
본 발명은 컴퓨터 단층 촬영 장치 및 방법에 관한 것으로서, 특히 산란 빔으로 인한 영상의 질 저하를 개선하는 콘빔형 컴퓨터 단층 촬영 장치 및 방법에 관한 것이다. 본 발명에 대한 연구는, 미래창조과학부의 재원으로 한국연구재단의 지원을 받은, 차세대 영상유도 방사선 치료를 위한 고속 고화질 단일선원이중에너지 콘빔 CT 영상화 기술 개발 사업(2017M2A2A6A01070330, 2017년~2020년)과 관련된다. 또한, 교육부의 재원으로 한국연구재단의 지원을 받은, 딥 콘빔형 전산화 단층촬영 영상 생성을 위한 핵심 기술 개발 사업(2019R1I1A1A01062157, 2019년~2022년)과 관련이 된다. The present invention relates to an apparatus and method for computed tomography, and more particularly, to a cone-beam type computed tomography apparatus and method for improving image quality deterioration due to a scattered beam. The research on the present invention was supported by the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning, and the high-speed, high-definition single-source dual-energy cone beam CT imaging technology development project for next-generation image-guided radiation therapy (2017M2A2A6A01070330, 2017-2020) and related It is also related to the core technology development project (2019R1I1A1A01062157, 2019-2022) for the generation of deep cone-beam-type computed tomography images, supported by the National Research Foundation, funded by the Ministry of Education.
방사선 치료의 기술의 발전은, 정위적 체부 방사선 치료(Stereotactic Body Radiation Therapy; SBRT)등의 고난도 치료를 가능하게 하였다. SBRT는 치료 횟수를 1회 내지 3-4회 정도로 나누어 고선량 방사선을 조사함으로써 치료 기간을 획기적으로 단축시킬 수 있다. 하지만, 회당 많은 빔 조사 시간으로 인해 환자들이 치료 테이블에 누워있는 치료 시간이 증가하고 있어, 방사선 치료 중에 환자의 자세 및 변화 등을 정밀히 모니터링하고, 평가하는 것이 방사선 치료의 성패를 결정하는 매우 중요한 작업이다.Advances in radiation therapy technology have enabled advanced treatments such as stereotactic body radiation therapy (SBRT). SBRT can dramatically shorten the treatment period by dividing the number of treatments from 1 to 3 to 4 times and irradiating high-dose radiation. However, due to the large number of beam irradiation times per session, the treatment time of patients lying on the treatment table is increasing. Therefore, precisely monitoring and evaluating the patient's posture and changes during radiation therapy is a very important task that determines the success or failure of radiation therapy. am.
환자의 위치 설정에 더 높은 정확성을 요구하는 고난도 방사선 치료에서는 치료 중 환자에게 정확하게 계획된 선량이 전달되었는지를 실시간으로 모니터링 하는 과정이 매우 중요하지만, 현 CBCT(Cone Beam CT)는 매일 방사선 치료하기 전 환자의 치료 계획을 수립할 때의 위치와 동일하게 설정하기 위해 사용되거나, 치료 전후 사이에 환자 자세 변화가 있는지를 정량화하기 위한 확인 영상장치로 사용될 뿐 빔 전달 중에는 해부학적 정보를 제공하지 않는다.In advanced radiation therapy that requires higher accuracy in positioning the patient, the process of monitoring in real time whether the accurately planned dose is delivered to the patient during treatment is very important, but the current CBCT (Cone Beam CT) It is used to set the same position as when establishing a treatment plan for treatment or as a confirmation imaging device to quantify whether there is a change in patient posture between before and after treatment, but does not provide anatomical information during beam delivery.
인트라프랙션 이미징(Intrafraction Imaging)이라는 옵션 추가로 평판 형태의 검출기를 통해 체적 조절 회전 치료(Volumetric Modulated Arc Therapy; VMAT)와 동시에 CBCT X-선 영상 획득이 가능해져 영상에 보이는 종양 위치가 실제 빔이 전달될 때의 종양 위치로 판단이 되므로 환부의 변형과 이동 상태를 모니터링 할 수 있다. VMAT과 동시에 CBCT X-선 영상을 획득하면 분할치료 중(Intrafraction) CBCT 볼륨영상을 생성할 수 있지만, MV X-선과 kV X-선이 물체내부의 입자들과 상호작용을 일으켜 발생된 산란빔의 영향으로 인해 전반적인 화질 저하를 가져와 임상적 사용은 매우 제한적이다. 특히, 넓은 조사 면적의 검출기를 부착한 CBCT는 일반적인 CT에 비하여 산란빔에 의한 영향이 기하급수적으로 증가하므로 정확한 영상을 획득하기 어려운 문제가 있다.With the addition of an option called Intrafraction Imaging, it is possible to acquire CBCT X-ray images simultaneously with Volumetric Modulated Arc Therapy (VMAT) through a flat-panel detector, so that the location of the tumor shown in the image is different from the actual beam. It is judged by the location of the tumor at the time of delivery, so it is possible to monitor the deformation and movement of the affected area. If CBCT X-ray images are acquired at the same time as VMAT, CBCT volume images can be generated during intrafraction, but MV X-rays and kV X-rays interact with particles inside the object, so As a result, the overall image quality deteriorates, and its clinical use is very limited. In particular, the CBCT with a detector with a large irradiation area has a problem in that it is difficult to obtain an accurate image because the effect of the scattered beam increases exponentially compared to the general CT.
상기 종래 기술의 한계를 고려하여, 본 발명은 산란 빔으로 인한 컴퓨터 단층 촬영 영상의 화질 저하를 개선함으로써, 치료 중 환부의 변형과 이동 상태를 더욱 정확하게 파악하는 것을 가능하게 하는, 컴퓨터 단층 촬영 장치를 제공하는 것을 목적으로 한다. In consideration of the limitations of the prior art, the present invention provides a computed tomography apparatus, which enables to more accurately determine the deformity and movement state of the affected area during treatment by improving the quality degradation of the computed tomography image due to the scattered beam. intended to provide
또한, 본 발명은 컴퓨터 단층 촬영 장치에 사용되기 위한, 특히 콘빔형 컴퓨터 단층 촬영 장치에서 검출기에 입사되는 산란 광의 예측을 위한 회전형 빔 차단 장치를 제공한다. 본 발명의 빔 차단 장치는 방사선 영상 장치의 영상 빔 모듈과 검출기 사이에 위치하며, 검출기로 입사되는 영상 빔의 적어도 일부를 연속적으로 차단 또는 비 차단하는 동작을 통해, 산란빔 맵을 보다 정확히 예측하는 것을 가능하게 한다. The present invention also provides a rotating beam blocking device for use in a computed tomography apparatus, in particular for prediction of scattered light incident on a detector in a cone beam type computed tomography apparatus. The beam blocking apparatus of the present invention is located between the imaging beam module of the radiation imaging apparatus and the detector, and is capable of more accurately predicting a scattered beam map through an operation of continuously blocking or non-blocking at least a portion of an image beam incident to the detector. make it possible
또한, 본 발명은 방사선 치료 중 타겟의 움직임에 대한 모델을 생성하고, 분할 치료 중 CBCT를 이용해 타겟 및 인접 위험 장기에 대해 선량 분포를 재계산하여, 분할 치료 중 CBCT영상을 이용한 적응형 방사선 치료(Adaptive Radiotherapy)를 임상에 적용가능하게 하는 기술을 제공하는 것을 목적으로 한다. In addition, the present invention generates a model for the movement of a target during radiation treatment, recalculates the dose distribution for the target and adjacent risk organs using CBCT during segmentation treatment, and adaptive radiotherapy using CBCT images during segmentation treatment ( Adaptive Radiotherapy) aims to provide a technology that can be applied to clinical practice.
본 발명의 명시되지 않은 또 다른 목적들은 하기의 상세한 설명 및 그 효과로부터 용이하게 추론할 수 있는 범위 내에서 추가적으로 고려될 수 있다.Other objects not specified in the present invention may be additionally considered within the scope that can be easily inferred from the following detailed description and effects thereof.
상술한 기술적 과제를 해결하기 위해, 본 발명의 컴퓨터 단층 촬영 장치는 회전 가능 하도록 형성된 갠트리; 피검사체에 방사선 영상 빔을 조사하는 광원 모듈; 상기 광원 모듈로부터 상기 피검사체 간의 경로에 위치하여 상기 광원 모듈로부터 조사되는 상기 치료 빔 또는 영상 빔의 일부를 선택적으로 차단하고, 회전가능하도록 마련된 차폐부를 포함하는 빔 차단 모듈;을 포함한다. In order to solve the above technical problem, the computed tomography apparatus of the present invention includes a gantry formed to be rotatable; a light source module irradiating a radiation image beam to the subject; and a beam blocking module positioned in a path between the light source module and the subject to selectively block a portion of the treatment beam or image beam irradiated from the light source module, and including a rotatable shielding unit.
본 발명에서, 차폐부는 상기 영상 빔을 선택적으로 차단하는 차단 영역과 상기 영상 빔을 차단하지 않는 비차단 영역을 갖는다. 또한, 차폐부의 차단 영역은, 상기 영상 빔 모듈로부터 조사된 영상 빔을 차단하는 스트립 부분과, 상기 영상 빔을 차단하지 않는 개방 부분이 서로 교번하여 배치되는 구조를 갖는다. 또한, 시간 영역의 관점에서 상기 영상 빔 모듈로부터 조사된 영상 빔을 차단하는 차단 구간에서는 상기 영상 빔의 일부를 연속적으로 차단하도록 마련될 수 있다. In the present invention, the shielding unit has a blocking region that selectively blocks the image beam and a non-blocking region that does not block the image beam. In addition, the blocking area of the shielding unit has a structure in which a strip portion that blocks the image beam irradiated from the image beam module and an open portion that does not block the image beam are alternately disposed. In addition, in a blocking section in which the image beam irradiated from the image beam module is blocked from the viewpoint of the time domain, a portion of the image beam may be continuously blocked.
본 발명의 빔 차단 모듈은, 내측이 개방된 형태를 가지며 회전가능하도록 마련된 구동휠과, 상기 구동휠을 회동시키는 모터를 더 포함할 수 있다. 차폐부는 상기 구동휠의 내측으로 위치하고, 상기 차폐부는 상기 스트립 부분과 개방 부분이 상기 구동휠의 회전 중심을 기준으로 원호의 형상을 갖도록 배치된 호형(arc)의 스트립들을 포함할 수 있다. The beam blocking module of the present invention may further include a driving wheel having an open inner shape and provided to be rotatable, and a motor for rotating the driving wheel. The shielding part may be located inside the driving wheel, and the shielding part may include arc-shaped strips arranged so that the strip part and the open part have a circular arc shape with respect to a rotation center of the driving wheel.
본 발명의 컴퓨터 단층 촬영 장치는, 피검사체에 대한 복수의 프로젝션 데이터 - 여기에서 복수의 프로젝션 데이터는 상기 빔 차단 모듈의 선택적 차단의 영향으로 획득되는 산란빔과, 상기 차단의 영항과는 무관하게 획득되는 일차빔에 따른 영상을 포함함 - 를 획득하는 영상 획득부; 및 복수의 프로젝션 데이터로부터 산란빔 맵을 추정하여 산란빔 맵을 생성하고, 상기 산란빔 맵을 이용하여 산란이 억제된 재구성 영상을 생성하는 영상 처리부를 더 포함한다. The computed tomography apparatus of the present invention provides a plurality of projection data for an object to be inspected, wherein the plurality of projection data is acquired irrespective of the influence of the scattered beam obtained by the selective blocking of the beam blocking module and the blocking effect. an image acquisition unit for acquiring - including an image according to the primary beam; and an image processor configured to generate a scattered beam map by estimating a scattered beam map from a plurality of projection data, and to generate a reconstructed image in which scattering is suppressed by using the scattered beam map.
상기 영상 획득부는, 상기 차폐부의 회전에 의해, 상기 영상 빔이 일부 차단됨에 따라 얻어지는 제1 프로젝션 데이터와, 상기 영상 빔이 비 차단된 경우의 제2 프로젝션 데이터를 시간 영역 측면에서 연속적으로 획득할 수 있다.The image acquisition unit may continuously acquire first projection data obtained when the image beam is partially blocked by rotation of the shielding unit and second projection data obtained when the image beam is not blocked in a time domain. there is.
본 발명에서, 차폐부는 적어도 일부의 영역에서 일정 간격으로 배치된 호형(arc)의 스트립을 포함할 수 있다. 이러한 호형의 스트립의 구조를 갖는 차폐부를 통해서 획득된 프로젝션 데이터로부터 산란빔 맵을 추정하는 것은, In the present invention, the shielding portion may include arc-shaped strips arranged at regular intervals in at least a portion of the region. Estimating the scattered beam map from the projection data obtained through the shield having the structure of such an arc-shaped strip is,
상기 호형의 스트립의 구조에 따른 선택적 차단의 영향으로 획득되는 초기의 산란빔 맵을 보간하되, 상기 호형의 스트립 구조에 따라 정의될 수 있는 원호와 직교하는 방향으로 산란빔을 보간하여 산란빔 맵을 추정하는 단계를 더 포함할 수 있다. An initial scattering beam map obtained under the influence of selective blocking according to the structure of the arc-shaped strip is interpolated, but a scattering beam map is obtained by interpolating the scattering beam in a direction orthogonal to an arc that can be defined according to the arc-shaped strip structure. It may further include the step of estimating.
본 발명에서, 영상 처리부는 제1 시점에서의 제1 프로젝션 데이터, 그리고 상기 제1 시점과 인접한 제2 시점에서의 제1 프로젝션 데이터를 거리 기반의 가중합을 통해 상기 제1 시점과 제2 시점 사이에 위치하는 제2 프로젝션 데이터에 대한 산란빔 맵을 추정한다. 또한, 본 발명의 영상 처리부는, 제1 프로젝션 데이터를 이용하여 산란빔 맵을 추정하고, 추정된 산란빔 맵에 대한 백프로젝션(Backprojection)을 통해 3차원 산란 볼륨(3D Scatter Volume)을 재구성하며, 3차원 산란 볼륨을 리프로젝션(Reprojection)하여 제2 프로젝션 데이터에 대한 산란빔 맵을 추정할 수 있다. In the present invention, the image processing unit performs distance-based weighted summing of first projection data at a first viewpoint and first projection data at a second viewpoint adjacent to the first viewpoint between the first viewpoint and the second viewpoint. Estimate a scattered beam map for the second projection data located in . In addition, the image processing unit of the present invention estimates a scattering beam map using the first projection data, and reconstructs a 3D scattering volume through backprojection on the estimated scattering beam map, A scattering beam map for the second projection data may be estimated by reprojecting the 3D scattering volume.
또한, 본 발명의 영상 처리부는, 제2 프로젝션 데이터와 상기 방법으로 추정된 상기 제2 프로젝션 데이터에 관한 산란빔 맵 간의 차감 연산을 통해 산란 보정 데이터(Scatter Corrected Data)를 생성하고, 상기 산란 보정 데이터를 이용하여 산란이 억제된 재구성 영상을 생성할 수 있다.In addition, the image processing unit of the present invention generates scatter corrected data through a subtraction operation between the second projection data and the scatter beam map for the second projection data estimated by the method, and the scattering correction data can be used to generate a reconstructed image in which scattering is suppressed.
본 발명에서, 컴퓨터 단층 촬영 장치는 콘빔형 전산화 단층 촬영 장치이고, 상기 광원 모듈은 상기 피검사체에 방사선 치료 빔을 조사하는 방사선 모듈; 및 상기 피검체에 영상 빔을 조사하되, 상기 방사선 치료 빔과 상기 영상 빔은 적어도 일부 교차 영역에서 오버 랩되도록 상기 영상 빔을 조사하도록 마련된 영상 빔 모듈을 포함할 수 있다. In the present invention, the computed tomography apparatus is a cone beam type computed tomography apparatus, and the light source module includes: a radiation module for irradiating a radiation treatment beam to the subject; and an imaging beam module configured to irradiate an imaging beam to the subject, wherein the radiation therapy beam and the imaging beam overlap at least in a partial intersection region.
본 발명의 또 다른 일 목적을 달성하기 위하여, 본 발명의 컴퓨터 단층 촬영 장치에서 얻어지는 컴퓨터 단층 영상에서 산란빔에 따른 노이즈를 제거하기 위한 빔 차단 장치는, 내측이 개방된 형태를 갖는 구동휠; 회전 구동력을 발생시키는 모터; 및 광원 모듈로부터 피검사체 간의 경로 상에 위치하여 상기 광원 모듈로부터 조사되는 영상 빔의 일부를 선택적으로 차단하되, 상기 모터의 회전 구동력에 따라 회전하도록 마련된 차폐부;를 포함한다. In order to achieve another object of the present invention, a beam blocking device for removing noise caused by a scattered beam in a computed tomography image obtained by the computed tomography apparatus of the present invention includes: a driving wheel having an open inner side; a motor for generating rotational driving force; and a shielding unit positioned on a path between the light source module and the subject to selectively block a portion of the image beam irradiated from the light source module, but rotated according to the rotational driving force of the motor.
본 발명의 빔 차단 장치에서, 차폐부는 상기 영상 빔을 선택적으로 차단하는 차단 영역과 상기 영상 빔을 차단하지 않는 비차단 영역을 가지며, 상기 차폐부의 차단 영역은, 상기 영상 빔 모듈로부터 조사된 영상 빔을 차단하는 스트립 부분과, 상기 영상 빔을 차단하지 않는 개방 부분이 서로 교번하여 배치되는 구조를 갖는다. 시간 영역의 관점에서 상기 영상 빔 모듈로부터 조사된 영상 빔을 차단하는 차단 구간에서는 상기 영상 빔의 일부를 연속적으로 차단하도록, 차폐부는 호형 구조를 갖는다. In the beam blocking device of the present invention, the shielding unit has a blocking region that selectively blocks the image beam and a non-blocking region that does not block the image beam, and the blocking region of the shielding unit includes the image beam irradiated from the image beam module. It has a structure in which a strip portion that blocks the image beam and an open portion that does not block the image beam are alternately arranged. The shielding unit has an arc-shaped structure so as to continuously block a portion of the image beam in a blocking section that blocks the image beam irradiated from the image beam module in the time domain.
특히, 상기 차폐부는 상기 스트립 부분과 개방 부분이 상기 구동휠의 회전 중심을 기준으로 원호의 형상을 갖도록 배치된 호형(arc)의 스트립을 포함하는 것이 바람직하다. In particular, the shielding portion preferably includes an arc-shaped strip in which the strip portion and the open portion are arranged to have an arc shape with respect to a rotation center of the driving wheel.
본 발명의 또 다른 일 목적을 달성하기 위하여, 본 발명의 컴퓨터 단층 촬영 장치에 의한 컴퓨터 단층 촬영 방법은, 피검사체에 방사선 치료빔을 조사하는 단계; 영상 빔 모듈로 상기 방사선 모듈로부터 조사되는 방사선 치료빔의 경로 상에 영상 빔을 조사하는 단계; 상기 영상 빔 모듈과 상기 피검사체 간의 경로에 위치하는 빔 차단 모듈로 상기 영상 빔 모듈로부터 조사된 영상 빔의 적어도 일부를 연속적으로 차단 또는 비 차단하는 단계; 상기 피검사체를 투과한 방사선 치료빔과 상기 영상 빔에 의해 산란된 산란 빔을 감지하여 복수의 프로젝션(Projection) 데이터를 획득하는 단계; 및 상기 복수의 프로젝션 데이터에 관한 산란빔 맵을 추정하여 재구성 영상을 생성하는 단계;를 포함한다. In order to achieve another object of the present invention, a computed tomography method by a computed tomography apparatus of the present invention includes: irradiating a radiation treatment beam to a subject; irradiating an image beam onto a path of a radiation treatment beam irradiated from the radiation module to an image beam module; continuously blocking or non-blocking at least a portion of the image beam irradiated from the imaging beam module with a beam blocking module located in a path between the imaging beam module and the subject; acquiring a plurality of projection data by detecting a radiation treatment beam that has passed through the subject and a scattered beam scattered by the image beam; and generating a reconstructed image by estimating a scattered beam map for the plurality of projection data.
본 발명의 컴퓨터 단층 촬영 방법을 수행하는, 컴퓨터 단층 촬영 장치는, 적어도 일부의 영역에서 일정 간격으로 배치된 호형(arc)의 스트립으로 이루어진 차폐부를 더 포함할 수 있다. 상기 산란빔 맵을 추정하는 것은, 상기 호형의 스트립의 구조에 따른 선택적 차단의 영향으로 획득되는 초기의 산란빔 맵을 보간하되, 상기 호형의 스트립 구조에 따라 정의될 수 있는 원호와 직교하는 방향으로 산란빔을 보간하여 산란빔 맵을 추정하는 것이 바람직하다.The computed tomography apparatus for performing the computed tomography method of the present invention may further include a shielding unit formed of an arc-shaped strip arranged at regular intervals in at least a portion of the region. The estimating of the scattering beam map includes interpolating an initial scattering beam map obtained under the influence of selective blocking according to the structure of the arc-shaped strip, in a direction orthogonal to an arc that can be defined according to the structure of the arc-shaped strip. It is desirable to estimate the scattered beam map by interpolating the scattered beam.
본 발명의 또 다른 일 목적을 달성하기 위하여, 본 발명의 콘빔형 전산화 단층 촬영 장치에 의한 콘빔형 전산화 단층 촬영 방법은, 방사선 모듈로 피검사체에 방사선 치료빔을 조사하는 단계, 영상 빔 모듈로 상기 방사선 모듈로부터 조사되는 방사선 치료빔의 경로 상에 영상 빔을 조사하는 단계, 상기 영상 빔 모듈과 상기 피검사체 간의 경로에 위치하는 빔 차단 모듈로 상기 영상 빔 모듈로부터 조사된 영상 빔의 적어도 일부를 연속적으로 차단 또는 비 차단하는 단계, 상기 피검사체를 투과한 방사선 치료빔과 상기 영상 빔에 의해 산란된 산란 빔을 감지하여 복수의 프로젝션(Projection) 데이터를 획득하는 단계 및 상기 복수의 프로젝션 데이터에 관한 산란빔 맵을 추정하여 재구성 영상을 생성하는 단계를 포함한다.In order to achieve another object of the present invention, the cone-beam-type computed tomography method by the cone-beam-type computed tomography apparatus of the present invention includes the steps of irradiating a radiation treatment beam to a subject with a radiation module, and using the image beam module as described above. irradiating an image beam on a path of a radiation therapy beam irradiated from a radiation module, and continuously applying at least a portion of the image beam irradiated from the imaging beam module to a beam blocking module located in a path between the imaging beam module and the subject blocking or non-blocking, detecting a radiation treatment beam that has passed through the subject and a scattered beam scattered by the image beam to obtain a plurality of projection data and scattering of the plurality of projection data and generating a reconstructed image by estimating the beam map.
여기서, 상기 빔 차단 모듈은, 일 방향으로 회전 가능하며, 내측이 개방된 형태인 구동휠, 상기 구동휠을 회동시키는 모터 및 상기 구동휠 내측의 적어도 일부를 가리도록 마련되는 차폐부를 포함하며, 상기 차폐부는, 상기 구동휠의 회전 방향과 일치하도록 호형(arc)의 스트립이 복수개 배치되는 구조이다.Here, the beam blocking module includes a drive wheel rotatable in one direction and having an open inner side, a motor for rotating the drive wheel, and a shield provided to cover at least a portion of the inner side of the drive wheel, The shielding part has a structure in which a plurality of arc-shaped strips are disposed to coincide with the rotational direction of the driving wheel.
여기서, 상기 복수의 프로젝션(Projection) 데이터를 획득하는 단계는, 상기 차폐부의 회전에 의해, 상기 영상 빔이 차단된 경우의 제1 프로젝션 데이터와 상기 영상 빔이 비 차단된 경우의 제2 프로젝션 데이터를 연속적으로 획득한다.Here, the acquiring of the plurality of projection data may include, by rotation of the shielding part, first projection data when the image beam is blocked and second projection data when the image beam is not blocked. obtained successively.
여기서, 상기 복수의 프로젝션 데이터에 관한 산란빔 맵을 추정하여 재구성 영상을 생성하는 단계는, 상기 차폐부에 의해 상기 영상 빔이 차단된 경우의 프로젝션 데이터에서 상기 호형(arc)의 스트립 형태와 직교하는 방향으로 보간법을 적용하여 산란빔 맵을 추정한다.Here, the step of generating a reconstructed image by estimating a scattered beam map for the plurality of projection data is orthogonal to the arc-shaped strip shape in the projection data when the image beam is blocked by the shielding unit. The scattered beam map is estimated by applying interpolation to the direction.
여기서, 상기 복수의 프로젝션 데이터에 관한 산란빔 맵을 추정하여 재구성 영상을 생성하는 단계는, 상기 제1 프로젝션 데이터의 전체에 관한 산란 맵을 추정하고, 역투영(Backprojection)을 이용하여 3D 산란 볼륨(3D Scatter Volume)을 재구성하는 단계 및 상기 3D 산란 볼륨을 재투영(Reprojection)하여 제2 프로젝션 데이터의 전체에 관한 산란 맵을 추정하여 생성하는 단계를 포함한다.Here, the step of generating a reconstructed image by estimating a scattering beam map for the plurality of projection data includes estimating a scattering map for the entire first projection data and using a backprojection to perform a 3D scattering volume ( 3D Scatter Volume) and reprojecting the 3D scattering volume to estimate and generate a scattering map for the entire second projection data.
여기서, 상기 복수의 프로젝션 데이터에 관한 산란빔 맵을 추정하여 재구성 영상을 생성하는 단계는, 상기 제2 프로젝션 데이터에서 추정된 상기 제2 프로젝션 데이터에 관한 산란 맵을 차감하여 산란 보정 데이터(Scatter Corrected Data)를 생성하고, 복원 알고리즘을 이용하여 상기 산란 보정 데이터로부터 상기 재구성 영상을 생성하는 단계를 더 포함한다.Here, the generating a reconstructed image by estimating a scattering beam map for the plurality of projection data includes subtracting a scattering map for the second projection data estimated from the second projection data to obtain scatter corrected data (Scatter Corrected Data). ) and generating the reconstructed image from the scattering correction data using a reconstruction algorithm.
본 발명의 또 다른 일 목적을 달성하기 위하여, 본 발명의 컴퓨터 단층 영상 촬영 방법은, 광원 모듈이 상기 방사선 모듈로부터 조사되는 방사선 치료빔의 경로 상에 영상 빔을 조사하는 단계; 조사되는 영상 빔을 제1 시간 구간 동안에서는 선택적으로 차단하고, 상기 제2 시간 구간 동안에서는 차단하지 않도록 상기 차폐부를 회전시키는 단계; 차폐부의 회전과 함께, 상기 영상 빔이 일부 차단됨에 따라 얻어지는 제1 프로젝션 데이터와, 상기 영상 빔이 차단되지 않은 경우의 제2 프로젝션 데이터를 획득하는 단계; 제1 프로젝션 데이터를 이용하여 산란빔 맵을 추정하는 단계; 추정된 산란빔 맵을 이용하여 상기 제2 프로젝션 데이터에 대한 산란빔 맵을 추정하는 단계; 추정된 제2 프로젝션 데이터에 대한 산란빔 맵을 이용하여 재구성 영상을 생성하는 단계;를 포함한다.In order to achieve another object of the present invention, a computed tomography imaging method of the present invention comprises: irradiating, by a light source module, an image beam on a path of a radiation treatment beam irradiated from the radiation module; rotating the shielding unit to selectively block the irradiated image beam during a first time period and not to block the irradiated image beam during the second time period; obtaining first projection data obtained when the image beam is partially blocked and second projection data obtained when the image beam is not blocked with rotation of the shielding unit; estimating a scattered beam map using the first projection data; estimating a scattered beam map for the second projection data using the estimated scattered beam map; and generating a reconstructed image by using the scattered beam map for the estimated second projection data.
본 발명은 상술한 컴퓨터 단층 촬영 방법을 컴퓨터에서 수행하기 위한 컴퓨터 응용 프로그램 또는 상기 컴퓨터 응용 프로그램이 기록된 컴퓨터에서 판독 가능한 기록 매체를 더욱 제공한다.The present invention further provides a computer application program for performing the above-described computed tomography method on a computer or a computer-readable recording medium in which the computer application program is recorded.
본 발명에 따르면, 갠트리에 연결되며 피검사체에 방사선 치료빔을 조사하는 방사선 모듈, 상기 방사선 모듈로부터 조사되는 방사선 치료빔의 경로 상에 영상 빔을 조사하는 영상 빔 모듈 및 상기 영상 빔 모듈과 상기 피검사체 간의 경로에 위치하여 상기 영상 빔 모듈로부터 조사된 영상 빔의 적어도 일부를 연속적으로 차단 또는 비 차단하는 빔 차단 모듈을 포함하는 차단 구조를 채택함으로써, 산란에 따른 영상 품질 저하의 문제를 개선할 수 있다. 특히, 호형 스트립 형태로 구성되는 회전형 차폐 구조를 통과하는 산란빔을 획득하는 것은, 산란빔 맵에 대한 추정의 정확성을 향상시키는 주요한 요인이 된다. According to the present invention, a radiation module connected to a gantry and irradiating a radiation treatment beam to a subject, an image beam module irradiating an image beam on a path of a radiation treatment beam irradiated from the radiation module, and the image beam module and the subject By adopting a blocking structure including a beam blocking module that is located in the path between the cadavers and continuously blocks or does not block at least a portion of the image beam irradiated from the imaging beam module, the problem of image quality degradation due to scattering can be improved there is. In particular, obtaining a scattering beam passing through a rotational shielding structure configured in an arc-shaped strip shape is a major factor in improving the accuracy of estimation for a scattering beam map.
본 발명에 따르면, 의료 영상의 품질을 개선하여 치료 중 환부의 변형과 이동 상태를 정확하게 파악할 수 있다. 또한, 방사선 치료 중 타겟의 움직임에 대한 모델을 생성하고, 분할 치료 중 CBCT를 이용해 타겟 및 인접 위험 장기에 대해 선량 분포를 재계산하여 분할 치료 중 CBCT영상을 이용한 적응형 방사선 치료(adaptive radiotherapy)가 임상 적용 가능하도록 할 수 있다.According to the present invention, by improving the quality of a medical image, it is possible to accurately grasp the deformation and movement state of the affected part during treatment. In addition, adaptive radiotherapy using CBCT images during segmentation treatment is possible by creating a model for the movement of the target during radiotherapy and recalculating the dose distribution for the target and adjacent risk organs using CBCT during segmentation treatment. It can be made clinically applicable.
여기에서 명시적으로 언급되지 않은 효과라 하더라도, 본 발명의 기술적 특징에 의해 기대되는 이하의 명세서에서 기재된 효과 및 그 잠정적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급된다.Even if it is an effect not explicitly mentioned herein, the effects described in the following specification expected by the technical features of the present invention and their potential effects are treated as if they were described in the specification of the present invention.
도 1은 MV X-선과 kV X-선의 산란빔에 의한 영향을 설명하기 위한 도면이다.FIG. 1 is a diagram for explaining the effect of scattered beams of MV X-rays and kV X-rays.
도 2는 본 발명의 일 실시예에 따른 컴퓨터 단층 촬영 장치를 나타내는 도면이다.2 is a view showing a computed tomography apparatus according to an embodiment of the present invention.
도 3은 본 발명의 또 다른 일 실시예에 따른, 콘빔형 전산화 단층 촬영 장치를 나타내는 도면이다.3 is a view showing a cone beam type computed tomography apparatus according to another embodiment of the present invention.
도 4 및 도 5는 본 발명의 또 다른 일 실시예에 따른, 콘빔형 전산화 단층 촬영 장치의 빔 차단 모듈을 나타내는 도면이다.4 and 5 are diagrams illustrating a beam blocking module of a cone beam type computed tomography apparatus according to another embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 콘빔형 전산화 단층 촬영 장치를 이용한 영상 획득을 예시한 도면이다.6 is a diagram illustrating image acquisition using a cone-beam-type computed tomography apparatus according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 콘빔형 전산화 단층 촬영 장치의 산란빔 분포맵 계산 방법을 설명하기 위한 도면이다.7 is a view for explaining a method of calculating a scattered beam distribution map of the cone beam type computed tomography apparatus according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 콘빔형 전산화 단층 촬영 장치의 차단 X-선 영상으로부터 산란빔 분포맵을 추정하는 방법을 설명하기 위한 도면이다.8 is a view for explaining a method of estimating a scattered beam distribution map from a blocked X-ray image of the cone beam type computed tomography apparatus according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 콘빔형 전산화 단층 촬영 장치의 비차단 X-선 영상으로부터 산란빔 분포맵을 추정하는 방법을 설명하기 위한 도면이다.9 is a view for explaining a method of estimating a scattered beam distribution map from a non-blocking X-ray image of the cone beam type computed tomography apparatus according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 컴퓨터 단층 촬영 방법을 나타내는 흐름도이다.10 is a flowchart illustrating a computed tomography method according to an embodiment of the present invention.
이하, 본 발명의 회전형 빔 차폐 장치, 이를 포함하는 컴퓨터 단층 촬영 장치 및 방법에 대하여, 도면을 참조하여 보다 상세하게 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 설명하는 실시예에 한정되는 것이 아니다. 그리고, 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 생략되며, 도면의 동일한 참조부호는 동일한 요소임을 나타낸다.Hereinafter, the rotational beam shielding apparatus of the present invention, and a computed tomography apparatus and method including the same will be described in more detail with reference to the drawings. The present invention may be embodied in several different forms, and is not limited to the described embodiments. In addition, in order to clearly describe the present invention, parts irrelevant to the description are omitted, and the same reference numerals in the drawings indicate the same elements.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈", "~부", "장치"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. The suffixes "module", "~ part", and "device" for the components used in the following description are given or mixed in consideration of only the ease of writing the specification, and have a meaning or role that is distinct from each other by itself. no.
본 발명은 CT 영상을 생성하는 컴퓨터 단층 촬영 장치 및 CT 영상 획득 방법에 관한 것이다. 특히, 본 발명은 영상빔 모듈과 검출기(본 발명에서는 영상 획득부와 혼용하여 사용된다)의 사이에 위치하는, 회전형 휠 차단 구조를 통해 산란빔을 얻고, 얻어진 산란빔에 대한 예측을 통해 결과적으로 산란빔의 효과가 억제된 CT 영상을 획득하기 위한 발명이다. 본 실시예에서는, CBCT를 중심으로 예시를 설명하였지만, 이는 예시일 뿐 본 발명의 권리 범위가 CBCT에 한정되는 것은 아니다. The present invention relates to a computed tomography apparatus for generating a CT image and a method for acquiring a CT image. In particular, the present invention obtains a scattered beam through a rotating wheel blocking structure located between an image beam module and a detector (used in combination with an image acquisition unit in the present invention), and results through prediction of the obtained scattered beam. This is an invention for obtaining a CT image in which the effect of the scattered beam is suppressed. In this embodiment, an example has been described focusing on CBCT, but this is only an example and the scope of the present invention is not limited to CBCT.
도 1은 MV X-선과 kV X-선의 산란빔에 의한 영향을 설명하기 위한 도면이다.FIG. 1 is a diagram for explaining the effect of scattered beams of MV X-rays and kV X-rays.
도 1에 나타난 바와 같이, VMAT과 동시에 CBCT X-선 영상을 획득하면 분할치료 중(intrafraction) CBCT 볼륨영상을 생성할 수 있다. 하지만, MV X-선과 kV X-선이 물체내부의 입자들과 상호작용을 일으켜 발생된 산란빔의 영향으로 인해 전반적인 화질 저하를 가져와 임상적 사용은 매우 제한적이다. 특히, 넓은 조사 면적의 검출기를 부착한 CBCT는 일반적인 CT에 비하여 산란빔에 의한 영향이 기하급수적으로 증가하므로 정확한 영상 획득이 좀더 어렵다는 문제를 가지게 된다.As shown in FIG. 1 , when a CBCT X-ray image is acquired at the same time as VMAT, a CBCT volume image can be generated during intrafraction therapy. However, MV X-rays and kV X-rays interact with particles inside the object, resulting in overall image quality degradation due to the influence of the generated scattered beam, so its clinical use is very limited. In particular, the CBCT with a detector having a large irradiation area has a problem in that it is more difficult to obtain an accurate image because the effect of the scattered beam increases exponentially compared to the general CT.
본 발명의 일 실시예에 따른 컴퓨터 단층 촬영 장치는, 상기의 문제점을 해결하기 위한 신규의 차단기 구조를 갖는다. 특히, 본 발명의 일 실시예에 따른 차단기는 일차빔과 산란빔 X-선 영상을 동시에 획득하는 회전 가능한 휠(wheel) 기반 차단기(wheel-blocker)이다. 이러한 휠 기반 차단기를 통해 얻어지는, 일차빔과 산란빔을 이용하여 산란빔이 효과적으로 제거된 고화질 On-Treatment CBCT(Cone-Beam CT) 영상 시스템의 구현이 가능하다. A computed tomography apparatus according to an embodiment of the present invention has a novel circuit breaker structure for solving the above problems. In particular, the blocker according to an embodiment of the present invention is a rotatable wheel-based blocker that simultaneously acquires primary beam and scattered beam X-ray images. It is possible to implement a high-definition On-Treatment CBCT (Cone-Beam CT) imaging system in which the scattered beam is effectively removed using the primary beam and the scattered beam obtained through such a wheel-based blocker.
특히, CBCT 장치는 방사선 치료빔과 CBCT 영상빔이 동시 전달시 발생되는 메가볼트(MV)-킬로볼트(kV)의 광원을 사용하는데, 이러한 광원으로부터 생성되는 산란빔은 On-Treatment CBCT 영상의 질을 저하시킨다. 본 발명의 차단기 구조를 사용하면, 산란빔에 따른 영상의 질 저하를 개선하고, 치료 중 환부의 변형과 이동 상태를 정확하게 파악할 수 있으므로, 환자 치료에 도움을 줄 수 있다. In particular, the CBCT device uses a light source of megavolts (MV)-kilovolts (kV) that is generated when a radiation therapy beam and a CBCT image beam are simultaneously transmitted. lowers the By using the blocker structure of the present invention, it is possible to improve image quality degradation due to the scattered beam, and to accurately grasp the deformation and movement state of the affected part during treatment, thereby helping to treat the patient.
도 2는 본 발명의 일 실시예에 따른 컴퓨터 단층 촬영 장치를 나타내는 블록도이다. 도 2의 컴퓨터 단층 촬영 장치(10)는, 갠트리(100), 방사선 모듈(200), 영상빔 모듈(300), 빔 차단 모듈(400), 영상 획득부(500) 및 영상 처리부(600)을 포함한다. 2 is a block diagram illustrating a computed tomography apparatus according to an embodiment of the present invention. The computed tomography apparatus 10 of FIG. 2 includes a gantry 100 , a radiation module 200 , an image beam module 300 , a beam blocking module 400 , an image acquisition unit 500 , and an image processing unit 600 . include
본 실시예에서, 컴퓨터 단층 촬영 장치(10)는 원추형으로 발산하는 X선을 조사하여 획득한 2차원 투시 영상에서 복수의 단층 영상을 한꺼번에 복원하는 콘빔형 전산화(컴퓨터) 단층 촬영 장치일 수 있다. CBCT 장치의 경우, 1회전의 투사영상 측정만으로도 복수의 수평 단층 영상을 계산할 수 있어 피검사체의 3차원 구조를 고속으로 복원할 수 있는 장점이 있다. 또한, 본 발명의 컴퓨터 단층 촬영 장치는, 복수개의 디텍터를 이용하는 CT 영상 시스템에도 적용할 경우, 산란에 의한 영향을 억제할 수 있다. In the present embodiment, the computed tomography apparatus 10 may be a cone-beam-type computerized (computerized) tomography apparatus that restores a plurality of tomography images at once from a two-dimensional fluoroscopic image obtained by irradiating cone-shaped X-rays. In the case of the CBCT device, it is possible to calculate a plurality of horizontal tomography images only by measuring the projection image in one rotation, so it has the advantage of rapidly reconstructing the three-dimensional structure of the subject. In addition, when the computed tomography apparatus of the present invention is applied to a CT imaging system using a plurality of detectors, the influence of scattering can be suppressed.
도 2에서, 갠트리(100)는 방사선 모듈(200)을 지지하며, 피검사체에 대하여 회전 가능 하도록 형성된다.In FIG. 2 , the gantry 100 supports the radiation module 200 and is formed to be rotatable with respect to the subject.
방사선 모듈(200)은 상기 갠트리에 고정되어, 피검사체에 방사선 치료빔을 조사한다.The radiation module 200 is fixed to the gantry, and irradiates a radiation treatment beam to the subject.
영상 빔 모듈(300)은 상기 방사선 모듈로부터 조사되는 방사선 치료빔의 경로 상에 영상 빔을 조사한다.The imaging beam module 300 irradiates the imaging beam on the path of the radiation treatment beam irradiated from the radiation module.
본 발명의 또 다른 일 실시예 따르면, 영상 빔 모듈은 이의 구동을 제어하기 위한 영상 빔 모듈 구동부(미도시)를 더 포함할 수 있다. 영상빔 모듈 구동부는 상기 피검체에 영상 빔을 조사하되, 상기 방사선 치료 빔과 상기 영상 빔은 적어도 일부 교차 영역에서 오버 랩되도록 상기 영상빔의 조사 방향을 제어할 수 있다. 영상빔과 치료빔이 이루는 각도는, 직각이 되도록 조사하는 것이 바람직하다. According to another embodiment of the present invention, the image beam module may further include an image beam module driver (not shown) for controlling the driving thereof. The image beam module driver may irradiate the image beam to the subject, and control the irradiation direction of the image beam so that the radiation therapy beam and the image beam overlap at least in a partial intersection area. The angle between the image beam and the treatment beam is preferably irradiated to be a right angle.
본 실시예에서, 방사선 모듈(200)과 영상빔 모듈(300)은 모두 피검사체에 방사선 빔을 조사하는 것이므로, 이를 통칭하여 "광원 모듈"이라 칭한다. 본 실시예에서는, 방사선 모듈과 영상빔 모듈을 모두 포함하고 있으나, 영상빔 모듈로만 광원을 구성하는 것도 물론 가능하다.In the present embodiment, since both the radiation module 200 and the image beam module 300 irradiate a radiation beam to the subject, they are collectively referred to as a “light source module”. Although the present embodiment includes both the radiation module and the image beam module, it is of course possible to configure the light source only with the image beam module.
빔 차단 모듈(400)은 상기 영상 빔 모듈과 상기 피검사체 간의 경로에 위치하여 상기 영상 빔 모듈로부터 조사된 영상 빔의 적어도 일부를 연속적으로 차단 또는 비 차단한다. 특히, 빔 차단 모듈은 영상 빔의 일부를 선택적으로 차단하고, 회전가능하도록 마련된 차폐부를 포함한다. The beam blocking module 400 is positioned in a path between the imaging beam module and the object to continuously block or non-block at least a portion of the imaging beam irradiated from the imaging beam module. In particular, the beam blocking module selectively blocks a portion of the image beam and includes a rotatably shielding unit.
예를 들어, 빔 차단 모듈(400)은 kV용 일차 및 산란 X-선과 MV용 산란 X-선 차폐를 위해 가공이 용이한 납 또는 견고한 텅스텐을 이용해 휠 회전 방향과 일치되게 호형(arc) 스트립(strip) 형태로 구성된 휠(wheel) 모형의 차단기인 것이 바람직하다.For example, the beam blocking module 400 uses an easy-to-machine lead or solid tungsten for shielding primary and scattered X-rays for kV and scattered X-rays for MV to match the direction of wheel rotation. It is preferable that the circuit breaker is a wheel type circuit breaker configured in the form of a strip.
구체적으로, 빔 차단 모듈은, 회전 가능하며, 일부 차폐되어 있고 일부 개방되어 있는 구조로 형성되되, 상기 일부 차폐된 부분이 회전축을 중심으로 원호의 형상으로 이루어지는 다수개의 구조물을 포함하는 것이 바람직하다. 상기 원호의 형상으로 이루어지는 구조물들을 통과하여 영상 획득부에 입사되는 산란광들을 이용하면, 영상 처리부가 좀더 정확한 산란빔 맵을 추정할 수 있고, 이를 통해 비차단 영역에서 산란의 영향이 제거된 방사선 영상의 획득이 가능하다. Specifically, the beam blocking module is rotatable, and is formed in a partially shielded and partially open structure. When the scattered light incident to the image acquisition unit passing through the arc-shaped structures is used, the image processing unit can estimate a more accurate scattered beam map, and through this, it is possible to obtain
빔 차단 모듈이 영상빔 모듈 앞에 위치할 경우의 빔 차단 모듈의 크기는, 빔 차단 모듈이 영상 획득부(디텍터) 앞에 위치할 경우의 빔 차단 모듈의 크기에 비하여 작을 수 있으므로 소형화에 유리하다. 빔 차단 모듈이 영상 획득부와 환자 사이에 위치할 경우, 환자에 의하여 추가적으로 발생할 수 있는 빔 산란에 따른 왜곡을 휠 차단기 구조를 통해 더욱 예측할 수 있다는 점에서, 영상 품질의 성능 개선이 가능하다.The size of the beam blocking module when the beam blocking module is located in front of the image beam module may be smaller than the size of the beam blocking module when the beam blocking module is located in front of the image acquisition unit (detector), so it is advantageous for miniaturization. When the beam blocking module is located between the image acquisition unit and the patient, it is possible to improve the performance of the image quality in that the distortion due to beam scattering that may be additionally generated by the patient can be further predicted through the wheel blocker structure.
영상 획득부(500)는 상기 피검사체를 투과한 방사선 치료빔과 상기 영상 빔에 의해 산란된 산란 빔을 감지하여 복수의 프로젝션(Projection) 데이터를 획득한다. 참고로, 본 실시예에서 영상 획득부와 디텍터라는 용어는 혼용하여 사용한다. The image acquisition unit 500 acquires a plurality of projection data by detecting the radiation treatment beam that has passed through the target object and the scattered beam scattered by the image beam. For reference, in this embodiment, the terms image acquisition unit and detector are used interchangeably.
영상 획득부(500)는 제1 프로젝션 데이터와 제2 프로젝션 데이터를 구별하여 획득한다. 상기 차폐부는 상기 영상 빔을 선택적으로 차단하는 차단 영역과 상기 영상 빔을 차단하지 않는 비차단 영역을 갖는다. 차단 영역은, 스트립이 존재하는 스트립 부분과. 스트립이 존재하지 않는 개방 부분으로 구별된다. 제1 프로젝션 데이터는, 차단 영역을 투과하여 얻어지는 정보이다. 제2 프로젝션 데이터는 비차단 영역을 통해 얻어지는 정보이다.The image acquisition unit 500 distinguishes and acquires the first projection data and the second projection data. The shielding unit has a blocking area that selectively blocks the image beam and a non-blocking area that does not block the image beam. The blocking area includes the strip portion where the strip is present. It is distinguished by an open part where there is no strip. The first projection data is information obtained by passing through the blocking area. The second projection data is information obtained through the non-blocking area.
영상 처리부(600)는 상기 복수의 프로젝션 데이터에 관한 산란빔 맵을 추정하여 재구성 영상을 생성한다.The image processing unit 600 generates a reconstructed image by estimating a scattered beam map for the plurality of projection data.
구체적으로, 영상 처리부(600)는 상기 차폐부에 의해 상기 영상 빔이 차단된 경우의 프로젝션 데이터에서 상기 호형(arc)의 스트립 형태와 직교하는 방향으로 보간법을 적용하여 산란빔 맵을 추정한다.Specifically, the image processing unit 600 estimates a scattered beam map by applying an interpolation method in a direction orthogonal to the arc strip shape in projection data when the image beam is blocked by the shielding unit.
도 3은 본 발명의 일 실시예에 따른 콘빔형 전산화 단층 촬영 장치(10)를 나타낸다. 본 실시예에 따른 CBCT 장치는 갠트리(100), 본체부(110), 회전축(120), 방사선 조사 모듈(200), 영상빔 모듈(300), 빔 차단 모듈(400), 영상 획득부(500), 영상 처리부(600), 테이블(130)을 포함한다.3 shows a cone-beam-type computed tomography apparatus 10 according to an embodiment of the present invention. The CBCT device according to this embodiment is a gantry 100, a main body 110, a rotation shaft 120, a radiation irradiation module 200, an image beam module 300, a beam blocking module 400, an image acquisition unit 500 ), an image processing unit 600 , and a table 130 .
도 3에서, 갠트리(100)는 요구되는 조건 및 설계 사양에 따라 다양한 형태로 구현될 수 있다. 갠트리(100) 종류 및 특성에 의해 본 발명이 제한되거나 한정되는 것은 아니다. 일 예로, 상기 갠트리(100)는 본체부(110)에 회전축(120)으로 연결되어 축회전하도록 구성될 수 있다. 경우에 따라서는 갠트리 로서 통상의 링형 갠트리, 부분 링형 갠트리, C형 갠트리 등이 사용될 수 있으며, 그 외에도 갠트리 대신 환자에 대하여 방사선 모듈을 다양한 회전 위치 및/또는 축 위치로 위치시킬 수 있는 어떠한 다른 프레임 워크가 사용될 수도 있다.In FIG. 3 , the gantry 100 may be implemented in various forms according to required conditions and design specifications. The present invention is not limited or limited by the type and characteristics of the gantry 100 . As an example, the gantry 100 may be connected to the main body 110 by a rotation shaft 120 and configured to rotate. In some cases, a conventional ring gantry, a partial ring gantry, a C-shaped gantry, etc. may be used as the gantry, but instead of the gantry any other frame capable of positioning the radiation module in various rotational and/or axial positions relative to the patient. Work may also be used.
상기 갠트리(100)의 일측에는 방사선 모듈(200)이 고정된 형태로 제공될 수 있다. 치료빔을 방사하는 방사선 모듈(200)은 방사선 빔을 생성하도록 동작할 수 있는 방사선 소스 및 선형 가속기를 포함할 수 있다.A radiation module 200 may be provided in a fixed form on one side of the gantry 100 . The radiation module 200 for emitting a treatment beam may include a radiation source operable to generate a radiation beam and a linear accelerator.
본 실시예에 따른 CBCT 장치는, 환자를 위치시키기 위한 테이블(130)을 더 포함한다. 테이블(130)은 치료할 환자가 눕는 장소로서, 수평 및 수직 위치조절이 가능하도록 제공될 수 있다.The CBCT device according to the present embodiment further includes a table 130 for positioning the patient. The table 130 is a place on which the patient to be treated lies, and may be provided to enable horizontal and vertical position adjustment.
도 3에 나타난 바와 같이, 본 발명의 일 실시예에 따른 콘빔형 전산화 단층 촬영 장치(10)는 방사선 모듈의 방사선 조사 모듈(210)에서 피검사체에 방사선 치료빔(L1)을 조사하면, 그 경로 상에서 오버랩이 발생하도록 영상 빔 모듈(300)이 영상 빔(L2)을 조사한다. 오버랩되는 구간의 위치는, 피검사체가 위치하는 영역과 중복되는 것이 바람직하다. As shown in FIG. 3 , in the cone beam type computed tomography apparatus 10 according to an embodiment of the present invention, when the radiation treatment beam L1 is irradiated to the subject from the radiation irradiation module 210 of the radiation module, the path The image beam module 300 irradiates the image beam L2 so that an overlap occurs on the image. It is preferable that the position of the overlapping section overlaps the area where the subject is located.
빔 차단 모듈(400)은 상기 영상 빔 모듈과 상기 피검사체 간의 경로에 위치하여 상기 영상 빔 모듈로부터 조사된 영상 빔의 적어도 일부를 차단하며, 휠 회전 방향과 일치되게 호형(arc) 스트립(strip) 형태로 구성된 휠(wheel) 모형의 차단기로써, 회전 시 차폐부가 회전하며 일부가 회전하고 일부가 개방되는 모습이 연속적으로 발생하게 된다.The beam blocking module 400 is positioned in a path between the imaging beam module and the object to block at least a portion of the image beam irradiated from the imaging beam module, and an arc-shaped strip to match the wheel rotation direction. As a circuit breaker in the shape of a wheel, the shield rotates during rotation, and a part rotates and a part opens continuously.
이에, 영상 획득부(500)의 디텍터(510)가 영상 빔 조사 방향과 나란하게 위치하여 피검사체를 투과한 방사선 치료빔과 상기 영상 빔에 의해 산란된 산란 빔을 감지하여 복수의 프로젝션(Projection) 데이터를 획득하게 된다.Accordingly, the detector 510 of the image acquisition unit 500 is positioned in parallel with the image beam irradiation direction to detect the radiation treatment beam passing through the subject and the scattered beam scattered by the image beam to perform a plurality of projections. data will be acquired.
영상 획득부가 획득하는 복수의 프로젝션 데이터는, 상기 빔 차단 모듈의 선택적 차단의 영향으로 획득되는 산란빔과, 상기 차단의 영항과는 무관하게 획득되는 일차빔에 따른 영상을 포함한다. 여기서 선택적 차단의 의미는, 스트립의 패턴, 스트립의 위치에 따른 선택적 차단의 영향으로 얻어지는 산란빔을 획득함을 의미한다. The plurality of projection data acquired by the image acquisition unit includes a scattered beam acquired under the influence of the selective blocking of the beam blocking module and an image according to the primary beam acquired regardless of the influence of the blocking. Here, the selective blocking means acquiring a scattered beam obtained by the effect of selective blocking according to the pattern of the strip and the position of the strip.
도 4와 도 5는 본 발명의 다양한 실시예에 따른 컴퓨터 단층 촬영 장치에 사용되기 위한 빔 차단 장치(빔 차단 모듈)을 나타내는 도면이다.4 and 5 are diagrams illustrating a beam blocking device (beam blocking module) used in a computed tomography apparatus according to various embodiments of the present disclosure.
도 4와 도 5를 참조하면, 본 발명의 일 실시예에 따른 빔 차단 모듈(400)은 구동휠(410), 차폐부(420), 구동 모터(440)를 포함한다.4 and 5 , the beam blocking module 400 according to an embodiment of the present invention includes a driving wheel 410 , a shielding unit 420 , and a driving motor 440 .
빔 차단 모듈(400)은 상기 영상 빔 모듈과 상기 피검사체 간의 경로에 위치하여 상기 영상 빔 모듈로부터 조사된 영상 빔의 적어도 일부를 차단한다. 빔 차단 모듈의 위치는 도 3에서와 같이 환자와 영상 빔 모듈 사이에 위치할 수 있다. 또한, 빔 차단 모듈은 환자와 영상 획득부 사이에 위치할 수도 있다.The beam blocking module 400 is positioned in a path between the imaging beam module and the object to block at least a portion of the imaging beam irradiated from the imaging beam module. The position of the beam blocking module may be located between the patient and the imaging beam module as shown in FIG. 3 . In addition, the beam blocking module may be located between the patient and the image acquisition unit.
빔 차단 모듈(400)은 kV용 일차 및 산란 X-선과 MV용 산란 X-선 차폐를 위해 가공이 용이한 납 또는 견고한 텅스텐을 이용해 휠 회전 방향과 일치되게 호형(arc) 스트립(strip) 형태로 구성된 휠(wheel) 모형의 차단기인 것이 바람직하다.The beam blocking module 400 uses lead or solid tungsten, which is easy to process for shielding primary and scattered X-rays for kV and scattered X-rays for MV, in an arc-shaped strip shape to match the wheel rotation direction. It is preferably a circuit breaker of a constructed wheel model.
구동휠(410)은 내측이 개방된 형태를 가지면, 내측에 차폐부(420)가 안착되도록 구성된다. 차폐부(420)는 상기 구동휠 내측의 적어도 일부를 가리도록 마련된다. 구동 모터(440)는 차폐부(420) 및/또는 구동휠(410)의 회전을 위한 회전 구동을 발생시킨다. 본 시스템이 적용되는 시스템의 사양에 따라, 구동휠은 고정된 상태에서 차폐부만 회전하도록 구성될 수 있고, 구동휠과 차폐부가 함께 회전하도록 구성될 수 있다. When the driving wheel 410 has an open inner side, the shield 420 is configured to be seated on the inner side. The shielding part 420 is provided to cover at least a part of the inner side of the driving wheel. The driving motor 440 generates rotational driving for rotation of the shield 420 and/or the driving wheel 410 . Depending on the specifications of the system to which the present system is applied, the driving wheel may be configured to rotate only the shield in a fixed state, and the driving wheel and the shield may be configured to rotate together.
차폐부(420)는 호형의 스트립들이 존재하는 스트립 부분(421)과, 스트립이 존재하지 않는 개방 부분(423)이 서로 교차 배열된 구조를 갖는다. 차폐부가 존재하지 않는 비차단 영역(Unblocked region, 430)과의 구별을 위하여, 차폐부(420)가 존재하는 영역을 본 실시예에서는 차단 영역(blocked region)이라 칭한다. The shielding part 420 has a structure in which a strip portion 421 in which arc-shaped strips are present and an open portion 423 in which a strip is not present are arranged to cross each other. In order to distinguish it from the unblocked region 430 in which the shielding part does not exist, the region in which the shielding part 420 is present is referred to as a blocked region in this embodiment.
차단 영역에서는, 입사되는 영상 빔이 선택적으로 차단된다. 호형 스트립이 배열된 구조를 갖는 경우, 입사되는 영상 빔은 원호와 차폐부가 회전하는 방향에 따라 특정되는 패턴에 따른 일차빔과 산란빔이 영상 획득부로 전달된다. 호형 스트립이 존재하는 영역에서는 스트립에 의한 차단의 영향을 받은 산란빔이 영상 획득부에 전달된다. 호형 스트립이 존재하지 않는 개방 부분에서는 영상빔(산란된 산란빔과 산란을 제외한 일차빔을 포함)이 영상 획득부로 전달된다. In the blocking region, the incident image beam is selectively blocked. When the arc-shaped strip has a structure in which the arc-shaped strip is arranged, the incident image beam is a circular arc and a primary beam and a scattered beam according to a pattern specified according to the rotation direction of the shielding unit are transmitted to the image acquisition unit. In the region where the arc-shaped strip is present, the scattered beam affected by the block by the strip is transmitted to the image acquisition unit. In the open portion where the arc-shaped strip does not exist, the image beam (including the scattered scattered beam and the primary beam excluding the scattered) is transmitted to the image acquisition unit.
비차단 영역에서는, 본 실시예의 빔 차단 모듈의 영향이 없는 영상빔(여기에도, 자연적으로 발생하는 산란빔은 포함됨)이 영상 획득부로 전달된다. In the non-blocking area, an image beam that is not affected by the beam blocking module of the present embodiment (herein, a naturally occurring scattered beam is included) is transmitted to the image acquisition unit.
차폐부는 영상빔이 입사되는 방향을 향하여 위치하며, 영상빔이 차폐 구간을 제1 시간 구간 동안 통과하고, 비차단 영역을 제2 시간 구간 동안 통과시키기 위한 구성을 갖는다. 차폐 구간의 영역이 90도로 구현된 경우, 영상빔이 비차단 영역을 통과하는 시간은, 차단 영역을 통과하는 시간의 세배가 된다. 차폐부는 영상빔이 입사되는 입사축과 수직이 되도록 마련되는 것이 바람직하다. The shielding part is positioned in the direction in which the image beam is incident, and has a configuration for allowing the image beam to pass through the shielding section for a first time section and pass through the non-blocking area for a second time section. When the area of the shielding section is implemented at 90 degrees, the time for the image beam to pass through the non-blocking area is three times the time for passing through the blocking area. It is preferable that the shielding portion is provided to be perpendicular to an incident axis on which the image beam is incident.
구동 모터(440)는 차폐부만을 회전시키거나, 또는 차폐부 및 구동휠을 함께 회전시킬 수 있다. 예를 들어, 구동 모터는 스텝 모터가 바람직하다.The driving motor 440 may rotate only the shield or rotate the shield and the driving wheel together. For example, the drive motor is preferably a step motor.
도 4에 도시된 바와 같이, 차폐부(420)는 상기 구동휠의 회전 방향과 일치하도록 호형(arc)의 스트립(421)이 복수개 배치되는 구조이다. 스트립 부분과 개방부분(423)의 배치구조는 이에 한정되는 것은 아니며, 다양한 너비와 배열로 조합이 가능하다. 예를 들면, 회전축을 중심으로 원호를 그리는 스트립의 형상도 가능하며, 스트립이 일부가 끊어진 형상이 가능하고, 스트립의 일부가 끊어진 형상이 어긋나게 배열되어 바둑판의 형태로 배열되는 것도 가능하다. 또한, 스트립은 원호의 형태가 아닌 나선형의 스트립 구조로도 마련될 수 있다. As shown in FIG. 4 , the shielding part 420 has a structure in which a plurality of arc-shaped strips 421 are disposed to coincide with the rotational direction of the driving wheel. The arrangement structure of the strip portion and the open portion 423 is not limited thereto, and combinations of various widths and arrangements are possible. For example, a shape of a strip that draws an arc around a rotation axis is also possible, a shape in which a part of the strip is cut is possible, and a shape in which a part of the strip is cut off is deviated and arranged in the form of a checkerboard. In addition, the strip may be provided in a helical strip structure instead of in the form of an arc.
스트립의 형상이 회전축을 중심으로 원호를 그리도록 설계됨에 따라, 영상 빔의 차단 또는 비차단에 의해 획득하는 프로젝션 데이터에서 산란빔 맵을 추정하는 것이 가능하며, 별도로 시간 차를 두어 차단 또는 비 차단을 수행하지 않고도 영상을 획득할 수 있다.As the shape of the strip is designed to draw an arc around the axis of rotation, it is possible to estimate the scattered beam map from the projection data obtained by blocking or non-blocking of the image beam. Images can be acquired without performing.
즉, 차폐부(420)의 회전에 의해, 영상 획득부는 상기 영상 빔이 차단된 경우의 제1 프로젝션 데이터와 상기 영상 빔이 비 차단된 경우의 제2 프로젝션 데이터를 연속적으로 획득할 수 있다.That is, by rotation of the shielding unit 420 , the image acquisition unit may successively acquire first projection data when the image beam is blocked and second projection data when the image beam is not blocked.
또한, 휠 차단기가 X-선관 앞에 잘 고정 될 수 있도록 고정(immobilization) 장치를 더 포함할 수 있다.In addition, the wheel breaker may further include an immobilization device so that it can be fixed well in front of the X-ray tube.
본 실시예의 차폐부는, 시간 영역의 관점에서 상기 영상 빔 모듈로부터 조사된 영상 빔을 차단하는 차단 구간에서는 상기 영상 빔의 일부를 연속적으로 차단하도록 마련된다. 여기에서, 시간 영역의 관점에서 연속된다는 것의 의미는, 호형의 스트립이 위치하는 일정한 시간 구간 동안에는 연속적으로 차단이 이루어진다는 것을 의미한다. The shielding unit of the present embodiment is provided to continuously block a part of the image beam in a blocking section for blocking the image beam irradiated from the image beam module in the time domain. Here, the continuous in terms of the time domain means that the blocking is continuously made during a predetermined time period in which the arc-shaped strip is located.
도 5에 도시된 바와 같이, 본 발명의 일 실시예에 따른 빔 차단 모듈(400)은 차폐부의 경계를 구분할 수 있도록 차폐벽(450)을 더 포함할 수 있으며, 차폐벽은 납 재질을 포함하며, 경계영역에 위치하는 것이 바람직하다. 또한, 구동 휠의 두께(T1)는 1 내지 4mm인 것이 바람직하고, 1mm 미만일 경우 차단의 효과가 감소되며, 4mm 초과인 경우 회전시키기 어렵다.5, the beam blocking module 400 according to an embodiment of the present invention may further include a shielding wall 450 to distinguish the boundary of the shielding part, and the shielding wall includes a lead material, , preferably located in the boundary region. In addition, it is preferable that the thickness T1 of the driving wheel is 1 to 4 mm, and when it is less than 1 mm, the blocking effect is reduced, and when it is more than 4 mm, it is difficult to rotate.
차폐부가 존재하는 영역 즉 차단 영역은, 회전 중심을 기준으로 90 내지 180도의 각도로 형성되는 것이 바람직하나, 차단 영역의 비중은 산란되는 빔의 영상을 보정하고자 하는 목적에 따라 당업자에 의해 변경 가능하다.The area where the shielding part exists, that is, the blocking area, is preferably formed at an angle of 90 to 180 degrees with respect to the rotation center, but the specific gravity of the blocking area can be changed by those skilled in the art according to the purpose of correcting the image of the scattered beam. .
또한, 본 발명의 다양한 실시예에 따르면, 스트립 형상의 차폐부의 일측에 평균에너지변조를 위한 구리(copper)를 포함하는 또 다른 차폐부를 위치시켜, 구동휠이 스트립 형상의 차폐부, 구리로 채워지는 차폐부, 공간부를 포함하여 이중에너지 CBCT 획득이 가능한 구조로 마련될 수도 있다.In addition, according to various embodiments of the present invention, another shield including copper for average energy modulation is placed on one side of the strip-shaped shield, so that the driving wheel is filled with the strip-shaped shield, copper. It may be provided in a structure capable of obtaining dual energy CBCT, including a shielding part and a space part.
본 발명의 일 실시예에 따른 콘빔형 전산화 단층 촬영 장치는 갠트리 회전과 동시에 스텝 모터(stepping motor)를 이용해 휠(wheel) 차단기를 한쪽 방향으로 일정한 속도로 회전하면서 차단 X-선 영상과 비차단 X-선 영상을 연속적으로 획득한다. 기존 방식은 방사선 빔이 켜진 시간에 차단 상태를 유지하기 위한 시간을 동기화하고, 방사선 빔이 꺼진 시간에 상태를 변환하는 시간 및 지연 시간을 동기화하는 과정이 중요한 반면, 본 발명의 일 실시예에 따르면 휠(wheel)이 방향 변환 없이 한쪽 방향으로 회전하는 구조이기 때문에 회전 방향 변환시의 백래쉬 문제가 없다. 즉, 갠트리 회전과 동기화에 대한 부담이 적은 구조를 갖는 장치이다. 본 발명의 경우 갠트리가 회전하면서 호형 스트립(strip)이 검출기의 동일한 위치를 지나가기 때문에 프로젝션(projection) 영상 획득 후 비차단 영상과 차단 영상을 자동으로 분류하기에 용이한 구조이다.The cone-beam-type computed tomography apparatus according to an embodiment of the present invention rotates a wheel breaker in one direction at a constant speed using a stepping motor at the same time as the gantry is rotated to provide a blocked X-ray image and a non-blocking X-ray image. - Acquire line images continuously. In the conventional method, it is important to synchronize the time for maintaining the blocked state when the radiation beam is on, and synchronize the time and delay time for changing the state when the radiation beam is off, whereas according to an embodiment of the present invention Since the wheel rotates in one direction without changing the direction, there is no backlash problem when changing the direction of rotation. That is, it is a device having a structure with a low burden on gantry rotation and synchronization. In the present invention, since the arc-shaped strip passes through the same position of the detector while the gantry rotates, it is an easy structure to automatically classify a non-blocking image and a blocked image after acquiring a projection image.
도 6은 본 발명의 일 실시예에 따른 회전형 빔 차폐부를 갖는 콘빔형 전산화 단층 촬영 장치가 방사선 영상을 획득하는 개념을 설명하는 개념도이다. 6 is a conceptual diagram illustrating a concept in which a cone beam type computed tomography apparatus having a rotating beam shield according to an embodiment of the present invention acquires a radiographic image.
도 6을 참조하면, CBCT 장치는 영상빔 모듈을 회전이동 시키는 구동부(미도시)를 더 포함할 수 있다. 영상빔 모듈이 회전하면서 영상빔 즉 X선을 조사하며, 빔 차단 모듈이 광원 및 피검사체 간의 경로에서 X선의 일부를 차단한다. 영상 획득부가 획득하는 제1 프로젝션 데이터는 음영의 패턴이 형성되는 음영 영역(Shaded Region) 및 비음영 영역(Unshaded Region)을 포함한다. 음영 영역(차단 영역, 420)은 호의 형태의 스트립 패턴이 형성된 영역과 대응되는 영역이다. 영상 획득부가 획득하는 제2 프로젝션 데이터는 비음영 영역을 포함한다.Referring to FIG. 6 , the CBCT device may further include a driving unit (not shown) for rotationally moving the image beam module. The image beam module irradiates an image beam, that is, X-rays while rotating, and the beam blocking module blocks a portion of the X-rays in the path between the light source and the subject. The first projection data acquired by the image acquisition unit includes a shaded region and an unshaded region where a pattern of shadows is formed. The shaded area (blocking area) 420 corresponds to the area in which the arc-shaped strip pattern is formed. The second projection data acquired by the image acquisition unit includes a non-shaded area.
차단 상태에서는 차단기의 영향으로 인한 산란빔(그늘진 영역)과 차단기의 영향이 없는 영상빔(일차빔과 산란빔이 누적)을 포함하는‘차단 X-선 영상’을 획득한다. 비 차단 상태에서는 차단기의 영향이 없으므로 영상빔만 포함하는 ‘비차단 X-선 영상’을 획득한다.In the blocked state, a 'blocked X-ray image' is acquired, including the scattered beam (shaded area) due to the influence of the blocker and the image beam without the influence of the blocker (the primary beam and the scattered beam are accumulated). In the non-blocking state, there is no effect of the breaker, so a 'non-blocking X-ray image' containing only the image beam is acquired.
영상 획득부(500)는 디텍터를 이용하여 상기 피검사체를 투과한 방사선 치료빔과 상기 영상 빔에 의해 산란된 산란 빔을 감지하여 복수의 프로젝션(Projection) 데이터를 획득한다.The image acquisition unit 500 acquires a plurality of projection data by detecting a radiation treatment beam that has passed through the target object and a scattered beam scattered by the image beam using a detector.
구체적으로, 빔 차단 모듈(400)의 차폐부의 회전에 의해, 상기 영상 빔이 차단된 경우의 제1 프로젝션 데이터와 상기 영상 빔이 비 차단된 경우의 제2 프로젝션 데이터를 연속적으로 획득한다.Specifically, by rotation of the shielding unit of the beam blocking module 400 , first projection data when the image beam is blocked and second projection data when the image beam is not blocked are successively acquired.
도 7은 본 발명의 일 실시예에 따른 콘빔형 전산화 단층 촬영 장치의 산란빔 분포맵 계산 방법을 설명하기 위한 도면이다.7 is a view for explaining a method of calculating a scattered beam distribution map of the cone beam type computed tomography apparatus according to an embodiment of the present invention.
도 7을 참조하면, 영상 처리부(600)는 호형 스트립(strip) 형태로 구성된 차단 X-선 영상들에서 차단된 영역에 검출된 정보들을 이용해 호형 스트립(strip) 형태와 직교하는 방향으로 1차원 큐빅 B스플라인(1D cubic B-Spline) 보간법을 적용해 산란빔 맵을 추정한다.Referring to FIG. 7 , the image processing unit 600 uses information detected in a blocked region in the intercepted X-ray images configured in an arc-shaped strip shape in a direction orthogonal to the arc-shaped strip shape in a one-dimensional cubic shape. The scattered beam map is estimated by applying the 1D cubic B-Spline interpolation method.
또한, 영상 처리부(600)는 상기 복수의 프로젝션 데이터를 입력으로, 상술한 보간을 통해 얻어지는 추정된 산란빔 맵을 역투영(Backprojection)을 통해 재구성 영상(Reconstruction Image)을 생성한다. 구체적으로, 영상 처리부(600)는 상기 차폐부에 의해 상기 영상 빔이 차단된 경우의 프로젝션 데이터에서 상기 호형(arc)의 스트립 형태와 직교하는 방향으로 보간법을 적용하여 산란빔 맵을 추정한다.In addition, the image processing unit 600 generates a reconstruction image through backprojection of the scattered beam map estimated through the above-described interpolation by receiving the plurality of projection data as inputs. Specifically, the image processing unit 600 estimates a scattered beam map by applying an interpolation method in a direction orthogonal to the arc strip shape in projection data when the image beam is blocked by the shielding unit.
도 8은 본 발명의 일 실시예에 따른 콘빔형 전산화 단층 촬영 장치가, 차단 X-선 영상으로부터 산란빔 분포맵을 추정하는 방법을 설명하기 위한 도면이다.FIG. 8 is a view for explaining a method of estimating a scattered beam distribution map from a blocked X-ray image by a cone beam type computed tomography apparatus according to an embodiment of the present invention.
영상 처리부(600)는 차단 영역에서 얻어지는 제1 프로젝션 데이터에 따른 영상, 즉 차단 X-선 영상에 대한 보간을 통해 추정되는 추정된 산란빔 맵을 역투영(backprojection)시켜 3차원의 산란빔 볼륨을 생성할 수 있다. 또한, 영상 처리부는 비차단 영역에서 얻어지는 영상, 즉 비차단 X-선 영상으로 부터 얻어지는 제2 프로젝션 데이터에 따른 영상(All unblocked projection)과, 회전하는 빔 차폐부의 공간적 구조에 따라 특정되는 기하하적 관계를 이용해 대응하는 산란빔 분포맵을 추정할 수 있다. 이에 대하여는 이후 후술한다.The image processing unit 600 backprojects the image according to the first projection data obtained in the blocking region, that is, the scattered beam map estimated through interpolation on the blocked X-ray image, to obtain a three-dimensional scattered beam volume. can create In addition, the image processing unit includes an image obtained in the non-blocking area, that is, an image according to second projection data obtained from a non-blocking X-ray image (All unblocked projection), and a geometric shape specified according to the spatial structure of the rotating beam shielding unit. The relationship can be used to estimate the corresponding scattered beam distribution map. This will be described later.
영상 처리부(600)는 상기 제1 프로젝션 데이터의 전체에 관한 산란 맵을 추정하고, 역투영(Backprojection)을 이용하여 3D 산란 볼륨(3D Scatter Volume)을 재구성하며, 상기 3D 산란 볼륨을 다시 투영(Reprojection)하여 제2 프로젝션 데이터의 전체에 관한 산란 맵을 추정하여 생성한다. 예를들어, 역투영은 각 방향에서 얻어진 투영영상의 값을 거꾸로 되돌려서 연속해서 합산하는 방식일 수 있다. 합산이 다 된 후에 전체 픽셀 값 중에서 가장 수치가 낮은 기본 값을 각각의 픽셀 값에서 뺀 다음 다시 픽셀들의 최소 공배수 값으로 나누어 원래의 픽셀 값으로 재구성할 수 있다.The image processing unit 600 estimates a scattering map for the entire first projection data, reconstructs a 3D scattering volume using backprojection, and re-projects the 3D scattering volume. ) to estimate and generate a scattering map for the entire second projection data. For example, the back projection may be a method of continuously summing the values of the projection image obtained in each direction by turning them back upside down. After the summation is completed, the original pixel value can be reconstructed by subtracting the lowest basic value among all pixel values from each pixel value and dividing it by the least common multiple of the pixels.
이후, 영상 처리부는 상기 제2 프로젝션 데이터에서 추정된 상기 제2 프로젝션 데이터에 관한 산란 맵을 차감하여 산란 보정 데이터(Scatter Corrected Data)를 생성하고, 복원 알고리즘을 이용하여 상기 산란 보정 데이터로부터 상기 재구성 영상을 생성한다.Thereafter, the image processing unit generates scatter corrected data by subtracting a scatter map for the second projection data estimated from the second projection data, and uses a reconstruction algorithm to generate the reconstructed image from the scatter correction data. create
도 9는 본 발명의 일 실시예에 따른 콘빔형 전산화 단층 촬영 장치의 비차단 X-선 영상으로부터 산란빔 분포맵을 추정하는 방법을 설명하기 위한 도면이다.9 is a view for explaining a method of estimating a scattered beam distribution map from a non-blocking X-ray image of a cone beam type computed tomography apparatus according to an embodiment of the present invention.
영상 처리부는, 비차단 X-선 영상들에서 추정된 산란빔 맵을 영상성분에서 차감함으로써 최종적으로 산란빔 제거 비차단 X-선 영상을 얻을 수 있다. 더욱 구체적으로, 영상 처리부(600)는 연속적으로 획득한 상기 제2 프로젝션 데이터에 인접한 두 개의 제1 프로젝션 데이터에 관한 산란 맵들로부터 두 개의 제1 프로젝션 데이터로부터의 거리에 기반한 가중치 합을 이용하여 상기 제2 프로젝션 데이터에 관한 산란 맵들을 추정하여 생성한다. 영상 처리부는 비차단 X-선 영상에 대하여, 압축센싱 기반 반복적 재구성 알고리즘을 적용하여 산란보정 분할 치료 중 CBCT 영상을 생성한다.The image processing unit may finally obtain a scattered beam-removed non-blocking X-ray image by subtracting the scattered beam map estimated from the non-blocking X-ray images from the image component. More specifically, the image processing unit 600 uses a weighted sum based on distances from two first projection data from scattering maps for two pieces of first projection data adjacent to the second projection data that are successively acquired. 2 Estimate and generate scatter maps for projection data. The image processing unit generates a CBCT image during scattering correction segmentation treatment by applying a compression sensing-based iterative reconstruction algorithm to the non-blocking X-ray image.
영상 획득부는 제2 프로젝션 데이터를 연속적으로 획득하여, 제1 프로젝션 데이터 및 상기 제2 프로젝션 데이터를 1 대 N(상기 N은 자연수)의 비율로 획득할 수 있으며, 영상 처리부는 N개의 제2 프로젝션 데이터에 인접한 두 개의 제1 프로젝션 데이터에 관한 산란 맵들로부터 두 개의 제1 프로젝션 데이터로부터의 거리에 기반한 가중치 합을 이용하여 N개의 상기 제2 프로젝션 데이터에 관한 산란 맵들을 추정할 수 있다. 영상 처리부는 추정된 산란 맵들과, 제2 프로젝션 데이터를 통해 구성되는 영상을 차감하여, 산란이 억제된 산란 보정 데이터를 얻을 수 있다.The image acquisition unit may continuously acquire the second projection data to acquire the first projection data and the second projection data in a ratio of 1 to N (where N is a natural number), and the image processing unit may acquire the N second projection data From the scattering maps for the two first projection data adjacent to , the scattering maps for the N pieces of second projection data may be estimated using a weighted sum based on distances from the two first projection data. The image processor may obtain scattering correction data in which scattering is suppressed by subtracting an image formed through the estimated scattering maps and the second projection data.
도 9의 실시예는, 차단된 1st 제1 프로젝션 데이터와, 6th 제1 프로젝션 데이터 사이에, 차단되지 않은 2nd ~ 5th의 제2 프로젝션 데이터의 예를 나타낸 것이다. 2nd 제2 프로젝션 데이터에 대한 산란빔 맵의 경우, 1st 제1 프로젝션 데이터에 대하여 추정된 산란빔 맵의 영향을 더 많이 받는다. 따라서 1st 제1 프로젝션 데이터에 대하여 추정된 산란빔 맵의 가중치를 높이고, 6th 제1 프로젝션 데이터에 대하여 추정된 산란빔 맵의 가중치를 낮추어 합산을 함으로써, 2nd 제2 프로젝션 데이터에 대한 산란빔 맵을 추정할 수 있다. The embodiment of FIG. 9 shows an example of unblocked 2nd to 5th second projection data between the blocked 1st first projection data and 6th first projection data. The scattered beam map for the 2nd second projection data is more affected by the scattered beam map estimated for the 1st first projection data. Therefore, by increasing the weight of the scattered beam map estimated with respect to the 1st first projection data and lowering the weight of the scattered beam map estimated for the 6th first projection data and adding them, the scattered beam map for the 2nd second projection data is estimated can do.
도 10은 본 발명의 일 실시예에 따른 컴퓨터 단층 촬영 방법을 나타내는 흐름도이다. 도 10을 참조하면, 컴퓨터 단층 촬영 방법은 컴퓨터 단층 촬영 장치(10), 특히 콘빔형 전산화 단층 촬영 장치에서 수행되는 하기의 단계들을 포함한다. 이미 설명된 사항에 대하여는 중복적 설명을 생략한다. 10 is a flowchart illustrating a computed tomography method according to an embodiment of the present invention. Referring to FIG. 10 , the computed tomography method includes the following steps performed in the computed tomography apparatus 10 , in particular, the cone beam type computed tomography apparatus. Duplicate descriptions of the items already described will be omitted.
방사선 모듈(200)은 피검사체에 방사선 치료빔을 조사하는 단계(S100)에서 시작한다.The radiation module 200 starts in the step (S100) of irradiating a radiation treatment beam to the subject.
영상빔 모듈(300)은, 단계 S200에서 상기 방사선 모듈로부터 조사되는 방사선 치료빔의 경로 상에 영상 빔을 조사한다. 영상빔과 치료빔은 환자가 위치한 영역에서 서로 오버랩되도록 조사되는 것이 바람직하다. 이를 위해서, 본 실시예에 따른 CBCT장치는 영상빔 및/또는 치료빔의 조사 방향, 위치를 조정하기 위한 컨트롤러(미도시)를 포함할 수 있다.The image beam module 300 irradiates an image beam on the path of the radiation treatment beam irradiated from the radiation module in step S200 . It is preferable that the image beam and the treatment beam be irradiated so that they overlap each other in the area where the patient is located. To this end, the CBCT apparatus according to the present embodiment may include a controller (not shown) for adjusting the irradiation direction and position of the image beam and/or the treatment beam.
빔 차단 모듈(400), 단계 S300에서 상기 영상 빔 모듈과 상기 피검사체 간의 경로에 위치하는 빔 차단 모듈로 상기 영상 빔 모듈로부터 조사된 영상 빔의 적어도 일부를 차단한다. 여기서, 빔 차단 모듈은, 일 방향으로 회전 가능하며, 내측이 개방된 형태인 구동휠; 상기 구동휠을 회동시키는 스텝 모터 및 상기 구동휠 내측의 적어도 일부를 가리도록 마련되는 차폐부를 포함하며, 상기 차폐부는, 상기 구동휠의 회전 방향과 일치하도록 호형(arc)의 스트립이 복수개 배치되는 구조이다.The beam blocking module 400 blocks at least a portion of the image beam irradiated from the imaging beam module with a beam blocking module located in a path between the imaging beam module and the subject in step S300 . Here, the beam blocking module, a driving wheel rotatable in one direction, the inner side of which is open; a step motor for rotating the driving wheel and a shielding part provided to cover at least a part of the inside of the driving wheel, wherein the shielding part has a structure in which a plurality of arc-shaped strips are disposed to coincide with the rotational direction of the driving wheel am.
영상 획득부(500)는, 단계 S400에서 상기 피검사체를 투과한 방사선 치료빔과 상기 영상 빔에 의해 산란된 산란 빔을 감지하여 복수의 프로젝션(Projection) 데이터를 획득한다.The image acquisition unit 500 acquires a plurality of projection data by detecting the radiation treatment beam that has passed through the target object and the scattered beam scattered by the image beam in step S400 .
복수의 프로젝션(Projection) 데이터를 획득하는 단계(S400)는, 상기 차폐부의 회전에 의해, 상기 영상 빔이 차단된 경우의 제1 프로젝션 데이터와 상기 영상 빔이 비 차단된 경우의 제2 프로젝션 데이터를 연속적으로 획득한다.In the step of acquiring a plurality of projection data (S400), the first projection data when the image beam is blocked and the second projection data when the image beam is not blocked by the rotation of the shielding part obtained successively.
영상 처리부(600)는, 단계 S500에서 상기 복수의 프로젝션 데이터에 관한 산란빔 맵을 추정하여 재구성 영상을 생성한다.The image processing unit 600 generates a reconstructed image by estimating a scattered beam map for the plurality of projection data in step S500 .
복수의 프로젝션 데이터에 관한 산란빔 맵을 추정하여 재구성 영상을 생성하는 단계(S500)는, 상기 차폐부에 의해 상기 영상 빔이 차단된 경우의 프로젝션 데이터에서 상기 호형(arc)의 스트립 형태와 직교하는 방향으로 보간법을 적용하여 산란빔 맵을 추정하고, 상기 제1 프로젝션 데이터의 전체에 관한 산란 맵을 추정하고, 백프로젝션(Backprojection)을 이용하여 3D 산란 볼륨(3D Scatter Volume)을 재구성하며, 상기 3D 산란 볼륨을 리프로젝션(Reprojection)하여 제2 프로젝션 데이터의 전체에 관한 산란 맵을 추정하여 생성한다.The step (S500) of generating a reconstructed image by estimating a scattered beam map for a plurality of projection data is orthogonal to the arc strip shape in the projection data when the image beam is blocked by the shielding unit. Estimate a scattering beam map by applying interpolation in the direction, estimating a scattering map for the entire first projection data, reconstructing a 3D scattering volume using backprojection, and the 3D The scattering volume is reprojected to estimate and generate a scattering map for the whole of the second projection data.
이후, 상기 제2 프로젝션 데이터에서 추정된 상기 제2 프로젝션 데이터에 관한 산란 맵을 차감하여 산란 보정 데이터(Scatter Corrected Data)를 생성하고, 복원 알고리즘을 이용하여 상기 산란 보정 데이터로부터 상기 재구성 영상을 생성한다.Thereafter, scattering corrected data is generated by subtracting a scattering map for the second projection data estimated from the second projection data, and the reconstructed image is generated from the scattering correction data using a reconstruction algorithm. .
본 발명의 일 실시예에 따른 휠 차단기를 이용하여 산란을 보정하는 콘빔형 전산화 단층 촬영 장치 및 방법은 VMAT 치료 시 고화질의 분할 치료 중 CBCT 영상이 활용되어 치료 계획 시 타켓 인접 마진을 줄일 수 있으므로, 타겟 정확도가 향상되며 종양 인접 위험 장기에 대한 선량이 줄어들게 된다.The cone-beam computed tomography apparatus and method for correcting scattering using a wheel breaker according to an embodiment of the present invention can reduce the target adjacent margin during treatment planning by utilizing a CBCT image during high-definition segmentation treatment during VMAT treatment, Targeting accuracy is improved and the dose to at-risk organs adjacent to the tumor is reduced.
또한, 방사선 치료 중 타겟의 움직임에 대한 모델을 생성할 수 있고, 각 방사선 치료 후에 분할 치료 중 CBCT를 이용해 타겟 및 인접 위험 장기에 대해 선량 분포를 재계산할 수 있다. 따라서 분할 치료 중 CBCT영상을 이용한 적응형 방사선 치료(adaptive radiotherapy)가 임상 적용 가능하고, 새로운 임상 가이드라인이 될 수 있음. 이로 인해 방사선 치료에 대한 합병증 발생률이 낮아지며 생존율을 개선할 수 있다.In addition, it is possible to create a model for the movement of the target during radiation therapy, and after each radiation therapy, CBCT during split therapy can be used to recalculate the dose distribution for the target and adjacent at-risk organs. Therefore, adaptive radiotherapy using CBCT images can be applied clinically during segmentation therapy and can be a new clinical guideline. As a result, the incidence of complications related to radiation therapy is lowered and the survival rate can be improved.
기존에는 치료 전후 CBCT 만 찍은 후에, 치료 시에는 이를 토대로 위치를 가늠하여 방사선을 조사하는 것이었다면 본 발명의 일 실시예에 따른 휠 차단기를 이용하여 산란을 보정하는 콘빔형 전산화 단층 촬영 장치 및 방법은 매 치료 시에 방사선 치료빔을 조사하면서 동시에 실시간으로 확인용 CBCT를 시행 가능하다. 치료 시간이 더 소요되는 것이 아니지만, 치료의 정확도는 더 향상될 수 있다.In the past, after only taking CBCT before and after treatment, the cone-beam-type computed tomography apparatus and method for correcting scattering using a wheel blocker according to an embodiment of the present invention, if the radiation was irradiated by estimating the location based on this during treatment. It is possible to perform CBCT for confirmation in real time while irradiating the radiation therapy beam during each treatment. It does not take more treatment time, but the accuracy of treatment can be further improved.
제작된 휠(wheel) 차단기는 회전하면서 회전 중간에 멈추거나 방향 전환, 회전 속도 변화를 요하지 않기 때문에 백래쉬 문제가 발생치 않으므로 제어가 쉽다. 선형 방식 차단기에 비해 차단기 움직임과 갠트리 회전 시 CBCT X-선 영상 획득 동기화로 인한 문제를 감소시켜 보다 높은 안정성을 확보할 수 있게 된다.Since the manufactured wheel breaker does not need to stop in the middle of rotation, change direction, or change rotation speed while rotating, no backlash problem occurs, so it is easy to control. Compared to the linear type circuit breaker, it is possible to secure higher stability by reducing the problems caused by CBCT X-ray image acquisition synchronization during breaker movement and gantry rotation.
이상에서 설명한 본 발명의 실시예를 구성하는 모든 구성요소들이 하나로 결합하거나 결합하여 동작하는 것으로 기재되어 있다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위안에서라면, 그 모든 구성요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 그 모든 구성요소들이 각각 하나의 독립적인 하드웨어로 구현될 수있지만, 각 구성요소들의 그 일부 또는 전부가 선택적으로 조합되어 하나 또는 복수개의 하드웨어에서 조합된 일부 또는 전부의 기능을 수행하는 프로그램 모듈을갖는 컴퓨터 프로그램으로서 구현될 수도 있다. 또한, 이와 같은 컴퓨터 프로그램은 USB 메모리, CD 디스크, 플래쉬 메모리 등과 같은 컴퓨터가 읽을 수 있는 기록매체(Computer Readable Media)에 저장되어 컴퓨터에 의하여 읽혀지고 실행됨으로써, 본 발명의 실시예를 구현할 수 있다. 컴퓨터 프로그램의 기록 매체로서는 자기기록매체, 광 기록매체 등이 포함될 수 있다.Even if all the components constituting the embodiment of the present invention described above are described as being combined or operated in combination, the present invention is not necessarily limited to this embodiment. That is, within the scope of the object of the present invention, all the components may operate by selectively combining one or more. In addition, although all the components may be implemented as one independent hardware, some or all of the components are selectively combined to perform some or all of the functions of the combined hardware in one or a plurality of hardware program modules It may be implemented as a computer program having In addition, such a computer program is stored in a computer readable media such as a USB memory, a CD disk, a flash memory, etc., read and executed by a computer, thereby implementing the embodiment of the present invention. The computer program recording medium may include a magnetic recording medium, an optical recording medium, and the like.
이상의 설명은 본 발명의 일 실시예에 불과할 뿐, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 본질적 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현할 수 있을 것이다. 따라서 본 발명의 범위는 전술한 실시예에 한정되지 않고 특허 청구 범위에 기재된 내용과 동등한 범위 내에 있는 다양한 실시 형태가 포함되도록 해석되어야 할 것이다.The above description is only one embodiment of the present invention, and those of ordinary skill in the art to which the present invention pertains will be able to implement it in a modified form without departing from the essential characteristics of the present invention. Therefore, the scope of the present invention is not limited to the above-described embodiments, and should be construed to include various embodiments within the scope equivalent to the content described in the claims.
[부호의 설명][Explanation of code]
10: 컴퓨터 단층 촬영 장치10: computed tomography apparatus
100: 갠트리100: gantry
200: 방사선 모듈200: radiation module
300: 영상 빔 모듈300: image beam module
400: 빔 차단 모듈400: beam blocking module
500: 영상 획득부500: image acquisition unit
600: 영상 처리부600: image processing unit
본 발명은 컴퓨터 단층 촬영 장치, 특히 콘빔형 컴퓨터 단층 촬영 장치에 적용되는 기술이다. 또한, 본 발명은 컴퓨터 단층 촬영 장치를 통해 획득되는 방사선 영상에 존재하는 산란 빔에 따른 왜곡을 개선하기 위한, 검출기의 빔 차단 모듈에 적용되는 기술이다. 또한, 본 발명은 정위적 방사선 치료 장치에 적용될 수도 있다.The present invention is a technique applied to a computed tomography apparatus, particularly a cone beam type computed tomography apparatus. In addition, the present invention is a technique applied to a beam blocking module of a detector for improving distortion due to a scattered beam present in a radiation image obtained through a computed tomography apparatus. Also, the present invention may be applied to a stereotactic radiation therapy apparatus.

Claims (15)

  1. 회전 가능 하도록 형성된 갠트리;a gantry formed to be rotatable;
    피검사체에 방사선 영상 빔을 조사하는 광원 모듈; 및a light source module irradiating a radiation image beam to the subject; and
    상기 광원 모듈로부터 상기 피검사체 간의 경로에 위치하여 상기 광원 모듈로부터 조사되는 상기 치료 빔 또는 영상 빔의 일부를 선택적으로 차단하고, 회전가능하도록 마련된 차폐부를 포함하는 빔 차단 모듈;a beam blocking module located in a path between the light source module and the subject to selectively block a portion of the treatment beam or image beam irradiated from the light source module, and including a rotatable shielding unit;
    을 포함하는 것을 특징으로 하는 컴퓨터 단층 촬영 장치.A computed tomography apparatus comprising a.
  2. 제 1 항에 있어서, 상기 차폐부는 상기 영상 빔을 선택적으로 차단하는 차단 영역과 상기 영상 빔을 차단하지 않는 비차단 영역을 가지며, The method of claim 1, wherein the shielding unit has a blocking area that selectively blocks the image beam and a non-blocking area that does not block the image beam,
    상기 차폐부의 차단 영역은, 상기 영상 빔 모듈로부터 조사된 영상 빔을 차단하는 스트립 부분과, 상기 영상 빔을 차단하지 않는 개방 부분이 서로 교번하여 배치되는 구조를 가지며,The blocking area of the shielding unit has a structure in which a strip portion blocking the image beam irradiated from the image beam module and an open portion not blocking the image beam are alternately disposed,
    시간 영역의 관점에서 상기 영상 빔 모듈로부터 조사된 영상 빔을 차단하는 차단 구간에서는 상기 영상 빔의 일부를 연속적으로 차단하도록 마련되는 것을 특징으로 하는, 컴퓨터 단층 촬영 장치.A computerized tomography apparatus, characterized in that provided to continuously block a portion of the image beam in a blocking section for blocking the image beam irradiated from the image beam module in terms of time domain.
  3. 제 1 항에 있어서, 상기 빔 차단 모듈은, According to claim 1, wherein the beam blocking module,
    내측이 개방된 형태를 갖도록 마련된 구동휠과, a driving wheel provided to have an open inner side;
    상기 차폐부의 회전을 위한 회전 구동력을 발생시키는 구동 모터를 더 포함하며, 상기 차폐부는 상기 구동휠의 내측으로 위치하고, 상기 차폐부는 상기 스트립 부분과 개방 부분이 상기 구동휠의 회전 중심을 기준으로 원호의 형상을 갖도록 배치된 호형(arc)의 스트립들을 포함하는 것을 특징으로 하는, 컴퓨터 단층 촬영 장치.and a driving motor for generating a rotational driving force for rotation of the shield, wherein the shield is located inside the driving wheel, and the shield has a circular arc between the strip portion and the open portion with respect to the rotation center of the driving wheel. A computed tomography apparatus, characterized in that it comprises arc-shaped strips arranged to have a shape.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 피검사체에 대한 복수의 프로젝션 데이터 - 여기에서 복수의 프로젝션 데이터는 상기 빔 차단 모듈의 선택적 차단의 영향으로 획득되는 산란빔과, 상기 차단의 영항과는 무관하게 획득되는 일차빔에 따른 영상을 포함함 - 를 획득하는 영상 획득부; 및A plurality of projection data for the subject - Here, the plurality of projection data includes an image according to a scattered beam obtained by the effect of selective blocking of the beam blocking module and a primary beam obtained regardless of the influence of the blocking Ham - an image acquisition unit to acquire; and
    상기 복수의 프로젝션 데이터로부터 산란빔 맵을 추정하고, 상기 산란빔 맵을 이용하여 산란이 억제된 재구성 영상을 생성하는 영상 처리부를 포함하는, 컴퓨터 단층 촬영 장치.and an image processing unit for estimating a scattered beam map from the plurality of projection data and generating a reconstructed image in which scattering is suppressed by using the scattered beam map.
  5. 제 4 항에 있어서, 상기 영상 획득부는, The method of claim 4, wherein the image acquisition unit,
    상기 차폐부의 회전에 의해, 상기 영상 빔이 일부 차단됨에 따라 얻어지는 제1 프로젝션 데이터와, first projection data obtained by partially blocking the image beam by rotation of the shielding unit;
    상기 영상 빔이 차단되지 않은 경우의 제2 프로젝션 데이터를 시간 영역 측면에서 연속적으로 획득하는 것을 특징으로 하는 컴퓨터 단층 촬영 장치.Computational tomography apparatus, characterized in that the second projection data is continuously acquired in terms of time domain when the image beam is not blocked.
  6. 제 4 항에 있어서, 상기 차폐부는 적어도 일부의 영역에서 일정 간격으로 배치된 호형(arc)의 스트립을 포함하며,5. The method of claim 4, wherein the shield comprises arc-shaped strips arranged at regular intervals in at least a part of the area,
    상기 영상 처리부가 상기 산란빔 맵을 추정하는 것은, The image processing unit estimating the scattered beam map,
    상기 호형의 스트립의 구조에 따른 선택적 차단의 영향으로 획득되는 초기의 산란빔 맵을 보간하되, 상기 호형의 스트립 구조에 따라 정의될 수 있는 원호와 직교하는 방향으로 산란빔을 보간하여 산란빔 맵을 추정하는 것을, 특징으로 하는 컴퓨터 단층 촬영 장치.An initial scattering beam map obtained under the influence of selective blocking according to the structure of the arc-shaped strip is interpolated, but a scattering beam map is obtained by interpolating the scattering beam in a direction orthogonal to an arc that can be defined according to the arc-shaped strip structure. A computed tomography apparatus, characterized in that it is estimated.
  7. 제 4 항에 있어서, 상기 영상 처리부는,According to claim 4, wherein the image processing unit,
    제1 시점에서의 제1 프로젝션 데이터와, first projection data at a first time point;
    상기 제1 시점과 인접한 제2 시점에서의 제1 프로젝션 데이터를 거리 기반의 가중합을 통해 상기 제1 시점과 제2 시점 사이에 위치하는 제2 프로젝션 데이터에 대한 산란빔 맵을 추정하는 것을 특징으로 하는 컴퓨터 단층 촬영 장치.and estimating the scattered beam map for the second projection data located between the first and second viewpoints through distance-based weighted summing of first projection data at a second viewpoint adjacent to the first viewpoint. computerized tomography device.
  8. 제 7 항에 있어서, 상기 영상 처리부는, The method of claim 7, wherein the image processing unit,
    상기 제1 프로젝션 데이터를 이용하여 산란빔 맵을 추정하고,estimating a scattered beam map using the first projection data;
    상기 추정된 산란빔 맵에 대한 역투영(Backprojection)을 통해 3차원 산란 볼륨(3D Scatter Volume)을 재구성하며, Reconstructing a 3D scattering volume through backprojection on the estimated scattering beam map,
    상기 3차원 산란 볼륨을 재투영(Reprojection)하여 제2 프로젝션 데이터에 대한 산란빔 맵을 추정하는 것을 특징으로 하는 컴퓨터 단층 촬영 장치.Computed tomography apparatus, characterized in that by reprojecting the 3D scattering volume to estimate a scattering beam map for the second projection data.
  9. 제 7 항에 있어서, 상기 영상 처리부는,The method of claim 7, wherein the image processing unit,
    상기 제2 프로젝션 데이터와 the second projection data and
    상기 추정된 상기 제2 프로젝션 데이터에 관한 산란 맵 간의 차감 연산을 통해 산란 보정 데이터(Scatter Corrected Data)를 생성하고, 상기 산란 보정 데이터를 이용하여 산란이 억제된 재구성 영상을 생성하는 것을 특징으로 하는 컴퓨터 단층 촬영 장치.A computer characterized in that generating scatter corrected data through a subtraction operation between scatter maps with respect to the estimated second projection data, and generating a reconstructed image in which scattering is suppressed by using the scattering correction data tomography device.
  10. 제 1 항에 있어서, The method of claim 1,
    상기 컴퓨터 단층 촬영 장치는 콘빔형 전산화 단층 촬영 장치이고, The computed tomography apparatus is a cone beam type computed tomography apparatus,
    상기 광원 모듈은 상기 피검사체에 방사선 치료 빔을 조사하는 방사선 모듈; 및The light source module includes: a radiation module for irradiating a radiation treatment beam to the subject; and
    상기 피검체에 영상 빔을 조사하되, 상기 방사선 치료 빔과 상기 영상 빔은 적어도 일부 교차 영역에서 오버 랩되도록 상기 영상 빔을 조사하도록 마련된 영상 빔 모듈을 포함하는 것을 특징으로 하는 컴퓨터 단층 촬영 장치.and an imaging beam module configured to irradiate an imaging beam to the subject, wherein the radiation therapy beam and the imaging beam overlap in at least a partial intersection area.
  11. 컴퓨터 단층 촬영 장치에서 얻어지는 컴퓨터 단층 영상에서 산란빔에 따른 노이즈를 제거하기 위한 빔 차단 장치에 있어서,A beam blocking device for removing noise caused by a scattered beam from a computed tomography image obtained by a computed tomography apparatus, comprising:
    회전 구동력을 발생시키는 구동 모터;a driving motor for generating rotational driving force;
    내측이 개방된 형태를 갖는 구동휠; 및a driving wheel having an open inner side; and
    광원 모듈로부터 피검사체 간의 경로 상에 위치하여 상기 광원 모듈로부터 조사되는 영상 빔의 일부를 선택적으로 차단하되, 상기 모터의 구동에 의하여 회전하도록 마련된 차폐부;를 포함하는 것을 특징으로 하는 빔 차단 장치.A beam blocking device comprising: a shielding unit positioned on a path between the light source module and the subject to selectively block a portion of the image beam irradiated from the light source module, but rotated by driving the motor.
  12. 제 11 항에 있어서, 상기 차폐부는 상기 영상 빔을 선택적으로 차단하는 차단 영역과 상기 영상 빔을 차단하지 않는 비차단 영역을 가지며, The method of claim 11 , wherein the shielding unit has a blocking area that selectively blocks the image beam and a non-blocking area that does not block the image beam,
    상기 차폐부의 차단 영역은, 상기 영상 빔 모듈로부터 조사된 영상 빔을 차단하는 스트립 부분과, 상기 영상 빔을 차단하지 않는 개방 부분이 서로 교번하여 배치되는 구조를 가지며,The blocking area of the shielding unit has a structure in which a strip portion blocking the image beam irradiated from the image beam module and an open portion not blocking the image beam are alternately disposed,
    시간 영역의 관점에서 상기 영상 빔 모듈로부터 조사된 영상 빔을 차단하는 차단 구간에서는 상기 영상 빔의 일부를 연속적으로 차단하도록 마련되는 것을 특징으로 하는, 빔 차단 장치.A beam blocking apparatus, characterized in that in a blocking section for blocking the image beam irradiated from the image beam module in the time domain, a part of the image beam is continuously blocked.
  13. 제 12 항에 있어서, 상기 차폐부는 상기 스트립 부분과 개방 부분이 회전 중심을 기준으로 원호의 형상을 갖도록 배치된 호형(arc)의 스트립들을 포함하는 것을 특징으로 하는, 빔 차단 장치.13. The beam blocking device according to claim 12, wherein the shield comprises arc-shaped strips arranged such that the strip portion and the open portion have the shape of an arc with respect to a center of rotation.
  14. 컴퓨터 단층 촬영 장치에 의한 컴퓨터 단층 촬영 방법에 있어서,A computed tomography method using a computed tomography apparatus, comprising:
    피검사체에 방사선 치료빔을 조사하는 단계;irradiating a radiation therapy beam to the subject;
    영상 빔 모듈로 상기 방사선 모듈로부터 조사되는 방사선 치료빔의 경로 상에 영상 빔을 조사하는 단계;irradiating an image beam onto a path of a radiation treatment beam irradiated from the radiation module to an image beam module;
    상기 영상 빔 모듈과 상기 피검사체 간의 경로에 위치하는 빔 차단 모듈로 상기 영상 빔 모듈로부터 조사된 영상 빔의 적어도 일부를 연속적으로 차단 또는 비 차단하는 단계;continuously blocking or non-blocking at least a portion of the image beam irradiated from the imaging beam module with a beam blocking module located in a path between the imaging beam module and the subject;
    상기 피검사체를 투과한 방사선 치료빔과 상기 영상 빔에 의해 산란된 산란 빔을 감지하여 복수의 프로젝션(Projection) 데이터를 획득하는 단계; 및acquiring a plurality of projection data by detecting a radiation treatment beam that has passed through the subject and a scattered beam scattered by the image beam; and
    상기 복수의 프로젝션 데이터에 관한 산란빔 맵을 추정하여 재구성 영상을 생성하는 단계;를 포함하는 컴퓨터 단층 촬영 방법.and generating a reconstructed image by estimating a scattered beam map with respect to the plurality of projection data.
  15. 제 14 항에 있어서, 15. The method of claim 14,
    상기 컴퓨터 단층 촬영 장치는, 적어도 일부의 영역에서 일정 간격으로 배치된 호형(arc)의 스트립으로 이루어진 차폐부를 더 포함하며,The computed tomography apparatus further includes a shielding unit made of an arc-shaped strip arranged at regular intervals in at least a part of the area,
    상기 산란빔 맵을 추정하는 것은, 상기 호형의 스트립의 구조에 따른 선택적 차단의 영향으로 획득되는 초기의 산란빔 맵을 보간하되, 상기 호형의 스트립 구조에 따라 정의될 수 있는 원호와 직교하는 방향으로 산란빔을 보간하여 산란빔 맵을 추정하는 것을 특징으로 하는 컴퓨터 단층 촬영 방법.The estimating of the scattering beam map includes interpolating an initial scattering beam map obtained under the influence of selective blocking according to the structure of the arc-shaped strip, in a direction orthogonal to an arc that can be defined according to the structure of the arc-shaped strip. A computed tomography method comprising estimating a scattered beam map by interpolating the scattered beam.
PCT/KR2021/001587 2020-02-05 2021-02-05 Computer tomography device comprising rotational beam-shielding structure, and method WO2021158079A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200013838A KR102344158B1 (en) 2020-02-05 2020-02-05 Cone Beam Computed Tomography Apparatus and Method for Correcting Scatter Using Wheel-Shaped Blocker
KR10-2020-0013838 2020-02-05

Publications (1)

Publication Number Publication Date
WO2021158079A1 true WO2021158079A1 (en) 2021-08-12

Family

ID=77200376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001587 WO2021158079A1 (en) 2020-02-05 2021-02-05 Computer tomography device comprising rotational beam-shielding structure, and method

Country Status (2)

Country Link
KR (1) KR102344158B1 (en)
WO (1) WO2021158079A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120138451A (en) * 2011-06-15 2012-12-26 한국과학기술원 X-ray computed tomography system and scatter correction method using the same
KR20150127388A (en) * 2014-05-07 2015-11-17 (주)라컴텍 X-ray grid
KR20160090558A (en) * 2015-01-22 2016-08-01 성균관대학교산학협력단 The marker tracking apparatus
KR20180107899A (en) * 2017-03-23 2018-10-04 연세대학교 산학협력단 Cone Beam Computed Tomography System for Correcting Scatter Using Binary Moving Blocker
KR20190140641A (en) * 2018-06-12 2019-12-20 연세대학교 산학협력단 Single Source Cone Beam Computed Tomography System Operating in Dual Energy Mode Using Binary Moving Modulation Blocker

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120138451A (en) * 2011-06-15 2012-12-26 한국과학기술원 X-ray computed tomography system and scatter correction method using the same
KR20150127388A (en) * 2014-05-07 2015-11-17 (주)라컴텍 X-ray grid
KR20160090558A (en) * 2015-01-22 2016-08-01 성균관대학교산학협력단 The marker tracking apparatus
KR20180107899A (en) * 2017-03-23 2018-10-04 연세대학교 산학협력단 Cone Beam Computed Tomography System for Correcting Scatter Using Binary Moving Blocker
KR20190140641A (en) * 2018-06-12 2019-12-20 연세대학교 산학협력단 Single Source Cone Beam Computed Tomography System Operating in Dual Energy Mode Using Binary Moving Modulation Blocker

Also Published As

Publication number Publication date
KR102344158B1 (en) 2021-12-27
KR20210099907A (en) 2021-08-13

Similar Documents

Publication Publication Date Title
Mosleh-Shirazi et al. A cone-beam megavoltage CT scanner for treatment verification in conformal radiotherapy
US7561659B2 (en) Method for reconstructing a local high resolution X-ray CT image and apparatus for reconstructing a local high resolution X-ray CT image
US7961838B2 (en) Computerized tomography image reconstruction
US11380025B2 (en) Scatter correction method and apparatus for dental cone-beam CT
CN102341044B (en) Real-time motion tracking using tomosynthesis
CN102846333B (en) The method and system of the scatter correction in x-ray imaging
CN103462628B (en) Radiation imaging apparatus and method
US20120278055A1 (en) Motion correction in radiation therapy
Lam et al. An on-line electronic portal imaging system for external beam radiotherapy
JPH05302979A (en) Simultaneous transmission/emission type focus tomography
US20090076379A1 (en) Ultrasonic Imager for Motion Measurement in Multi-Modality Emission Imaging
US20150003591A1 (en) Nuclear imaging system
JP2004000734A (en) Improved using method for x-ray ct apparatus
JP2007007411A (en) Method or x-ray device for creating a series of recordings of medical x-ray images
JP2002148340A (en) Diagnostic image forming nuclear medicine gamma ray camera and diagnostic image forming method by using it
US9375192B2 (en) Reconstruction of a cone beam scanned object
CN117425433A (en) Artificial intelligence training using multiple motion pulse X-ray source tomosynthesis imaging systems
WO2021077481A1 (en) Dual-energy cbct based imaging method and system, and radiotherapy device
WO2016003016A1 (en) Curved movable beam stop array and cbct including same
Wu et al. On-board patient positioning for head-and-neck IMRT: comparing digital tomosynthesis to kilovoltage radiography and cone-beam computed tomography
JP2024513188A (en) X-ray multileaf dynamic collimation for multi-source in-motion tomosynthesis imaging systems
JP5121482B2 (en) Radiation therapy dose distribution measuring apparatus and radiation therapy dose distribution measuring program
JP3313611B2 (en) Radiation tomography method and apparatus
WO2021158079A1 (en) Computer tomography device comprising rotational beam-shielding structure, and method
CN117618008A (en) Multi-view CBCT imaging system and imaging method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750914

Country of ref document: EP

Kind code of ref document: A1