WO2021157839A1 - 항균제의 항균력 평가 방법 - Google Patents

항균제의 항균력 평가 방법 Download PDF

Info

Publication number
WO2021157839A1
WO2021157839A1 PCT/KR2020/018098 KR2020018098W WO2021157839A1 WO 2021157839 A1 WO2021157839 A1 WO 2021157839A1 KR 2020018098 W KR2020018098 W KR 2020018098W WO 2021157839 A1 WO2021157839 A1 WO 2021157839A1
Authority
WO
WIPO (PCT)
Prior art keywords
antimicrobial
antibacterial
agent
activity
evaluating
Prior art date
Application number
PCT/KR2020/018098
Other languages
English (en)
French (fr)
Inventor
손제구
박선영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to DE112020006678.9T priority Critical patent/DE112020006678T5/de
Priority to US17/797,431 priority patent/US20230069554A1/en
Priority to CN202080095554.8A priority patent/CN115052992A/zh
Publication of WO2021157839A1 publication Critical patent/WO2021157839A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P1/00Disinfectants; Antimicrobial compounds or mixtures thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/12Powders or granules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Definitions

  • the present invention relates to a method for evaluating the antimicrobial activity of an antimicrobial agent, which can evaluate the antimicrobial activity according to the type and content of the antimicrobial agent, and can accurately and reliably evaluate the antimicrobial activity of the antimicrobial agent.
  • antibacterial processing products have been applied to all industrial products, and the scale of the antibacterial processing industry is rapidly expanding.
  • the subject of antibacterial processing has also been expanded, and medical supplies have been the mainstream in the initial stage of processing, but in recent years, the processing area has been expanded to include textile products and plastic products, as well as home appliances, stationery, furniture, and steel products.
  • the reason why the MIC is not consistently determined for antibacterial agents is that the unique antibacterial activity measurement method according to the characteristics of the antibacterial agent is not supported. Of course it cannot be.
  • Republic of Korea Patent Publication No. 10-1439918 discloses "a method for quantitative antibacterial evaluation of an antibacterial specimen using a disk diffusion method and a measurement method using the method", but only a quantitative evaluation method of antibacterial activity due to an antimicrobial agent is presented. However, there is no way to accurately and objectively evaluate the antimicrobial activity of the antimicrobial agent itself.
  • an object of the present invention is to provide a method for evaluating the antimicrobial activity of an antibacterial agent capable of selecting an excellent antimicrobial agent between the time during which the antibacterial agent expresses the antimicrobial activity and the antibacterial agent.
  • the present invention includes the step of sampling the antimicrobial agent inoculated with the strain by time during shaking, and by repeatedly checking the number of live cells by time, it is possible to clearly know the sterilization power trend of the antimicrobial agent.
  • the present invention performs a centrifugation process of separating the antibacterial agent and the bacterial liquid after sampling, so that the strain is not continuously exposed to the antimicrobial agent, thereby improving the accuracy of the antimicrobial activity of the antimicrobial agent.
  • the method for evaluating the antimicrobial activity of the antimicrobial agent comprises the steps of inoculating the antimicrobial agent into the culture medium in which the strain is cultured; shaking the medium hourly and sampling the medium hourly; centrifuging the medium inoculated with the antimicrobial agent after the sampling; and measuring the number of bacteria after culturing the bacterial solution from which the antibacterial agent is removed after the centrifugation.
  • the antibacterial agent can be applied not only in the form of fibers, but also in the form of a powder, and the antibacterial agent can be objectively and accurately evaluated for antimicrobial activity even when a smaller amount of the antibacterial agent is used in the culture medium in which the strain is cultured.
  • the present invention it is possible to objectively know the antibacterial activity trend of the antibacterial agent by performing and sampling the shaking for a specific time period, so that it is possible to accurately measure the time required for the antibacterial agent to express the antibacterial activity.
  • FIG. 1 is a flowchart illustrating a method for evaluating antimicrobial activity of an antimicrobial agent according to the present invention.
  • FIG. 2 is a graph showing the antimicrobial activity of a sample by a method according to the conventional shaking culture method.
  • FIG 3 is a graph showing the antimicrobial activity of a sample by the method for evaluating the antimicrobial activity of the antimicrobial agent according to the present invention.
  • an arbitrary component is disposed on the "upper (or lower)" of a component or “upper (or below)” of a component means that any component is disposed in contact with the upper surface (or lower surface) of the component. Furthermore, it may mean that other components may be interposed between the component and any component disposed on (or under) the component.
  • each component when it is described that a component is “connected”, “coupled” or “connected” to another component, the components may be directly connected or connected to each other, but other components are “interposed” between each component. It is to be understood that “or, each component may be “connected,” “coupled,” or “connected” through another component.
  • the present invention comprises the steps of inoculating the culture medium with an antimicrobial agent
  • It provides a method for evaluating the antibacterial activity of an antimicrobial agent comprising a; measuring the number of bacteria after culturing the bacterial solution from which the antimicrobial agent is removed after the centrifugation.
  • the antibacterial activity evaluation method of the antibacterial agent according to the present invention can accurately measure the time required for the antibacterial agent powder to express the antibacterial activity than in the prior art by shaking and sampling the antibacterial agent in the culture medium in which the strain is cultured.
  • the method for evaluating the antimicrobial activity of an antimicrobial agent according to the present invention includes inoculating the antimicrobial agent into the culture medium in which the strain is cultured.
  • the antibacterial agent is not limited to evaluating the antimicrobial activity of the antimicrobial agent in a specific material, such as inoculated from a conventional fiber sample, and the antibacterial activity of the powder antibacterial agent can be evaluated.
  • 0.02 to 2 g of the antimicrobial agent may be inoculated into the culture medium in which the strain is cultured.
  • the antibacterial activity evaluation method of the antibacterial agent according to the present invention uses the amount of the antibacterial agent in the above-mentioned range to objectively evaluate the antibacterial performance of the antibacterial agent itself. It is also possible to compare the antibacterial performance of antibacterial agents.
  • the strain may be a strain that may exist in electronic products, particularly washing machines, air purifiers, etc., specifically, Klebsiella pneumoniae, Staphylococcus aureus, micro It may be one selected from the group consisting of Micrococcus, Slalmonella typhimurium, Escherichia coli, Bacillus subtillus and Pseudomonas aeruginosa.
  • the method for evaluating the antimicrobial activity of the antimicrobial agent according to the present invention includes shaking the medium for each hour and sampling for each hour.
  • the antimicrobial activity of the antimicrobial agent in the method for evaluating the antimicrobial activity of the antimicrobial agent according to the present invention, by shaking the medium by time and sampling by time, the change in the number of bacteria over time can be diagrammed, and accordingly, the antimicrobial activity of the antimicrobial agent can be known.
  • the method for evaluating the antimicrobial activity of the antimicrobial agent according to the present invention may sample the shaken medium at 20-minute intervals, and this time-based sampling may vary depending on the type of the antimicrobial agent.
  • the method for evaluating the antimicrobial activity of an antimicrobial agent according to the present invention includes centrifuging the medium inoculated with the antimicrobial agent after the sampling.
  • the centrifugation is preferably performed at 4000 ⁇ 6000 rpm for 5 ⁇ 10 seconds.
  • the centrifugation is performed at less than 4000 rpm, there is a problem that the antibacterial agent and the bacterial solution are not separated, and when it exceeds 6000 rpm, excessive energy is consumed to separate the antibacterial agent and the bacterial solution, thereby reducing the process efficiency.
  • the antibacterial activity evaluation method of the antibacterial agent according to the present invention can use a powder-type antibacterial agent, so that centrifugation is possible, so that various types of antibacterial agents can be applied to the antimicrobial test.
  • the method for evaluating the antimicrobial activity of an antimicrobial agent according to the present invention includes the step of measuring the number of bacteria after culturing the bacterial solution from which the antimicrobial agent is removed after the centrifugation.
  • the number of bacteria By culturing the bacterial solution separated after the above-described centrifugation, the number of bacteria can be visually confirmed, and the number of surviving bacteria can be measured to evaluate the antimicrobial activity of the antimicrobial agent.
  • Each Klebsiella pneumoniae strain was placed in 50 ml of a sterile LB liquid culture medium, stirred at 37 °C, and incubated for 18 hours.
  • a glass antibacterial agent in powder form was put in a 250 ml Erlenmeyer flask and inoculated with 50 ml of cultured pneumococcus 1.5 to 3.0 ⁇ 10 5 CFU/ml.
  • Glass antibacterial agents inoculated with the strain were placed in a wrist-action shaker and exposed to shaking at 37° C. for 20 minutes, 40 minutes and 60 minutes, and then each sampled.
  • centrifugation was performed at 6000 rpm for 10 seconds to recover the supernatant, the bacterial solution, and separated from the antibacterial agent.
  • the isolated bacterial solution was cultured for 24 to 48 hours on a standard agar plate medium, and the number of colonies generated in the culture medium was measured the next day using a counter.
  • the antimicrobial activity of various samples was analyzed by the conventional shaking culture method and the antimicrobial activity evaluation method of the antimicrobial agent according to the present invention, and the results are shown in FIGS. 2 and 3 .
  • a and B are both Zn-based antibacterial agents, but The content of Zn contained is different, so it is indicated as A and B).
  • C and D is an Ag-based antibacterial agent, but the content of Ag contained in the antibacterial agent is different
  • E and F are Cu-based antibacterial agents, but the content of Cu contained in the antibacterial agent is different, so it is indicated as above).
  • the antimicrobial activity of the antibacterial agent can be known by time by the method for evaluating the antibacterial activity of the antibacterial agent according to the present invention, and the antibacterial activity can be measured according to the sample.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 항균제의 항균력 평가 방법에 관한 것이다. 본 발명에 따른 항균제의 항균력 평가 방법은 균주가 배양된 배지에 항균제를 접종시키는 단계; 상기 배지를 시간별로 진탕하고, 상기 시간별로 샘플링하는 단계; 상기 샘플링 후 상기 항균제가 접종된 배지를 원심분리하는 단계; 및 상기 원심분리 후 상기 항균제가 제거된 균액을 배양한 후 균수를 측정하는 단계;를 포함하여, 항균제의 종류 및 함량에 따라 항균력을 평가할 수 있고, 항균제의 항균력을 정확하고 신뢰성 있게 평가할 수 있다.

Description

항균제의 항균력 평가 방법
본 발명은 항균제의 종류 및 함량에 따라 항균력을 평가할 수 있고, 항균제의 항균력을 정확하고 신뢰성 있게 평가할 수 있는 항균제의 항균력 평가 방법에 관한 것이다.
최근에 이르러 항균 가공제품은 공산품 전반에 걸쳐서 적용되고 있으며 항균 가공산업의 규모도 급격히 팽창되고 있다. 항균 가공의 대상도 확대되어 가공의 초기단계에서는 의료용품이 주류를 이루어 왔으나 근년에는 섬유제품, plastic 제품을 비롯하여 가전제품, 문구류, 가구류, 철강재 제품까지 그 가공영역이 확대되고 있는 실정이다.
초기에는 합성 유기항균제 또는 Ag 이온을 중심으로 하는 무기항균제가 주로 사용되어 왔으나 이후에는 인체친화성의 강조, 친환경적 가공방법, 인체 위해성의 최소화 등이 강조되면서 좀 더 다양한 부류의 항균제들이 사용되게 되었다.
고전적으로 사용되어온 합성 유기항균제들과 Ag 이온을 중심으로 하는 무기항균제들은 비교적 높은 항균력을 유지하고 있음이 밝혀졌으나, 항균제 자체의 항균성이 시험자마다 일치되지 않는 경우가 있고, 박테리아에 대한 최소발육저지농도(MIC) 조차 정확히 결정되지 않는 경우도 있다.
항균제에서 MIC가 일정하게 결정되지 않고 있는 이유는 항균제 특성에 따른 고유한 항균력 측정방법이 뒷받침되지 못하고 있기 때문이며, 항균제 자체의 항균력이 의심된다면 이러한 항균제로 항균가공이 이루어진 제품의 항균력도 역시 신뢰성이 부여될 수 없음은 당연하다.
상기와 같은 이유로 인하여 항균제 자체의 정확한 항균력 측정시험법이 요구되고 있다.
대한민국 공개특허 제10-1439918(공고일: 2014.09.15)에는 "디스크 확산법을 이용한 항균 시편의 정량적 항균 평가 방법 및 그 방법을 이용한 측정 방법"이 개시되어 있으나, 항균제로 인한 항균력의 정량적 평가 방법만을 제시하고 있을 뿐, 항균제 자체의 항균력을 정확하고 객관적으로 평가할 수 있는 방법은 제시하지 못하고 있다.
따라서, 본 발명은 항균제가 항균력을 발현하는 시간 및 항균제 간의 우수한 항균제의 선별이 가능한 항균제의 항균력 평가 방법을 제공하는 것을 목적으로 한다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상술한 기술적 과제를 해결하기 위해, 본 발명은 진탕시 시간별로 균주가 접종된 항균제를 샘플링하는 공정을 포함하여, 시간별로 생균수를 반복 확인함으로써 항균제의 살균력 추이를 명확하게 알 수 있다.
또한, 본 발명은 샘플링 후 항균제와 균액을 분리하는 원심분리 공정을 수행하여, 균주가 항균제에 지속적으로 노출되지 않게 하며, 이를 통해 항균제의 항균력의 정확도를 개선시킬 수 있다.
구체적으로, 본 발명에 따른 항균제의 항균력 평가 방법은 균주가 배양된 배지에 항균제를 접종시키는 단계; 상기 배지를 시간별로 진탕하고 상기 시간별로 샘플링하는 단계; 상기 샘플링 후 상기 항균제가 접종된 배지를 원심분리하는 단계; 및 상기 원심분리 후 상기 항균제가 제거된 균액을 배양한 후 균수를 측정하는 단계;를 포함한다.
이때, 상기 항균제는 섬유 형태뿐만 아니라, 분말 형태에도 적용될 수 있고, 상기 항균제는 상기 균주가 배양된 배지에 종래보다 적은 양의 항균제를 사용함에도 객관적이고 정확한 항균력을 평가할 수 있다.
본 발명에 따르면, 진탕을 특정 시간별로 수행하고 샘플링함으로써 항균제의 항균력 추이를 객관적으로 알 수 있어, 항균제가 항균력을 발현하는데 필요한 시간을 정확하게 측정할 수 있다.
또한, 종래보다 적은 양의 항균제를 사용함에도 항균제의 항균력을 정확하게 판단할 수 있고, 단순히 항균제의 항균력 유무를 판단하는 것이 아니라 적은 양으로도 항균제의 항균력을 선별하는 것이 가능하다.
나아가, 항균제와 균액을 분리하는 공정을 포함하여 항균력의 부정확도를 개선할 수 있고, 섬유와 같은 물질에 국한되지 않고 다양한 항균제를 분말 형태로 성능을 평가할 수 있다.
도 1은 본 발명에 따른 항균제의 항균력 평가 방법을 나타낸 순서도이다.
도 2는 종래 진탕배양법에 따른 방법으로 시료의 항균력을 나타낸 그래프이다.
도 3은 본 발명에 따른 항균제의 항균력 평가 방법으로 시료의 항균력을 나타낸 그래프이다.
전술한 목적, 특징 및 장점은 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.
본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다.
이하에서 구성요소의 "상부 (또는 하부)" 또는 구성요소의 "상 (또는 하)"에 임의의 구성이 배치된다는 것은, 임의의 구성이 상기 구성요소의 상면 (또는 하면)에 접하여 배치되는 것뿐만 아니라, 상기 구성요소와 상기 구성요소 상에 (또는 하에) 배치된 임의의 구성 사이에 다른 구성이 개재될 수 있음을 의미할 수 있다.
또한 어떤 구성요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 상기 구성요소들은 서로 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성요소 사이에 다른 구성요소가 "개재"되거나, 각 구성요소가 다른 구성요소를 통해 "연결", "결합" 또는 "접속"될 수도 있는 것으로 이해되어야 할 것이다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
명세서 전체에서, "A 및/또는 B" 라고 할 때, 이는 특별한 반대되는 기재가 없는 한, A, B 또는 A 및 B 를 의미하며, "C 내지 D" 라고 할 때, 이는 특별한 반대되는 기재가 없는 한, C 이상이고 D 이하인 것을 의미한다.
이하, 본 발명에 따른 항균제의 항균력 평가 방법에 대해 상세히 설명하기로 한다.
본 발명은 균주가 배양된 배지에 항균제를 접종시키는 단계;
상기 배지를 시간별로 진탕하고, 시간별로 샘플링하는 단계;
상기 샘플링 후 상기 항균제가 접종된 배지를 원심분리하는 단계; 및
상기 원심분리 후 상기 항균제가 제거된 균액을 배양한 후 균수를 측정하는 단계;를 포함하는 항균제의 항균력 평가 방법을 제공한다.
기존의 항균실험법(ASTM-E2149)의 경우 첫 시작의 균수와 마지막의 균수만을 정량화하기 때문에 분말의 항균력을 발현하는데 필요한 시간을 정확하게 측정하기 어렵고, 비교적 많은 양의 분말이 항균실험법에 사용되기 때문에 서로 다른 항균력을 갖는 분말 간의 비교가 어려운 문제가 있다.
본 발명에 따른 항균제의 항균력 평가 방법은 균주가 배양된 배지에 항균제를 시간별로 진탕하고 샘플링함으로써, 종래보다 항균제 분말이 항균력을 발현하는데 필요한 시간을 정확하게 측정할 수 있다.
또한, 종래보다 적은 양의 항균제를 사용하여 항균제의 항균력을 더욱 정확하게 판단할 수 있으며, 단순히 항균력의 유무를 판단하는 것이 아니라 적은 양으로도 항균제의 항균력을 선별하는 것이 가능하다.
본 발명에 따른 항균제의 항균력 평가 방법은 균주가 배양된 배지에 항균제를 접종하는 단계를 포함한다.
이때, 상기 항균제는 종래 섬유 샘플에서 접종되는 것과 같이 특정한 물질에서 항균제의 항균력을 평가하는 것에 제한되지 않고, 분말 형상 항균제의 항균력을 평가할 수 있다.
또한, 본 발명에 따른 항균제의 항균력 평가 방법에서 상기 항균제는 상기 균주가 배양된 배지에 0.02 ~ 2g이 접종될 수 있다.
관련하여, 기존의 진탕배양법(ASTM-E2149)에서는 2g의 항균제를 이용하여 실험을 진행하며, 이러한 항균제 양은 대부분의 물질에서 높은 항균력이 발현된다.
따라서, 기존의 진탕배양법에서는 항균제의 항균능력을 명확하게 알 수 없는 문제가 있으나, 본 발명에 따른 항균제의 항균력 평가 방법은 항균제의 양을 전술한 범위로 사용하여 항균제 자체의 항균성능을 객관적으로 평가할 수 있고, 항균제끼리의 항균성능 비교도 가능하다.
또한, 본 발명에 따른 항균제의 항균력 평가 방법에서 상기 균주는 전자제품, 특히 세탁기, 공기 청정기 등에 존재할 수 있는 균주일 수 있고, 구체적으로 폐렴구균(Klebsiella pneumoniae), 황색포도상구균(Staphylococcus aureus), 마이크로코쿠스균(Micrococcus), 살로넬라 티피무륨(Slalmonella typhimurium), 대장균(Escherichia coli), 고초균(Bacillus subtillus) 및 녹농균(Pseudomonas aeruginosa)로 이루어진 군으로부터 선택되는 하나일 수 있다.
다음으로, 본 발명에 따른 항균제의 항균력 평가 방법은 상기 배지를 시간별로 진탕하고, 시간별로 샘플링하는 단계를 포함한다.
본 발명에 따른 항균제의 항균력 평가 방법에서 상기 배지를 시간별로 진탕하고 시간별로 샘플링함으로써, 시간에 따른 균수의 변화를 도식화할 수 있고, 이에 따라 항균제의 항균력 추이를 알 수 있다.
구체적으로, 본 발명에 따른 항균제의 항균력 평가 방법은 진탕된 배지를 20분 간격으로 샘플링할 수 있으며, 이러한 시간별 샘플링은 항균제의 종류에 따라 다양할 수 있다.
본 발명에 따른 항균제의 항균력 평가 방법은 상기 샘플링 후 상기 항균제가 접종된 배지를 원심분리하는 단계를 포함한다.
본 발명에서는 원심분리 공정을 통해 균주에 항균제가 지속적으로 노출시 발생하는 결과의 부정확도를 개선할 수 있어, 더욱 정확한 항균 성능을 평가할 수 있다.
상기 원심분리는 4000 ~ 6000 rpm에서 5 ~ 10초 동안 수행되는 것이 바람직하다. 상기 원심분리가 4000 rpm 미만으로 수행되는 경우에는 항균제와 균액이 분리되지 않는 문제가 있고, 6000 rpm을 초과하는 경우에는 항균제와 균액 분리에 과도한 에너지가 소모되어 공정 효율이 저하된다.
또한, 본 발명에 따른 항균제의 항균력 평가 방법은 분말 타입의 항균제를 사용할 수 있어, 원심분리가 가능하므로 다양한 형태의 항균제가 항균성 실험에 적용될 수 있다.
본 발명에 따른 항균제의 항균력 평가 방법은 상기 원심분리 후 상기 항균제가 제거된 균액을 배양한 후 균수를 측정하는 단계를 포함한다.
전술한 원심분리 후 분리된 균액을 배양하여 균수를 육안으로 확인할 수 있고, 생존하는 균수를 측정하여 항균제의 항균력을 평가할 수 있다.
실시예 1: 항균제의 항균력 평가
1) 실험균주 배양
Klebsiella pneumoniae 균주를 각각 50 ml의 멸균된 LB 액체 배양액 속에 넣고 37 ℃에서 교반하여 18시간 배양하였다.
2) 균주 접종
250 ml 삼각 플라스크에 분말 형상의 글래스 항균제를 넣고 50 ml의 배양된 폐렴 구균 1.5 ~ 3.0×10 5 CFU/ml를 접종하였다.
3) 진탕 노출 및 샘플링
균주가 접종된 글래스 항균제를 팔 달린 진탕기(Wrist-action shaker)에 넣고 37 ℃에서 20분, 40분 및 60분 동안 진탕에 노출시킨 후 각각을 샘플링하였다.
4) 원심분리
샘플링 후 6000 rpm에서 10초 동안 원심분리를 실시하여 상등액인 균액을 회수하여 항균제와 분리하였다.
5) 배양
분리된 균액을 표준 한천 평판배지에서 24 ~ 48시간 동안 배양하고, 배양한 다음날 배지에 생성된 군체의 수를 계수기를 사용하여 측정하였다.
실험예 1: 항균제에 따른 항균력 평가
본 발명에 따른 항균제의 항균력 평가 방법의 명확성 및 정확도를 알아보기 위해 다양한 시료의 항균력을 종래 진탕배양법과 본 발명에 따른 항균제의 항균력 평가 방법으로 분석하고 그 결과를 도 2 및 도 3에 나타내었다.
도 2는 종래 진탕배양법으로 A(Zn계 항균제), B(Zn계 항균제), C(Ag계 항균제) 시료의 항균력을 나타낸 그래프이다(A와 B는 모두 Zn을 기반으로 한 항균제이나, 항균제에 포함되는 Zn의 함량이 상이하여 A와 B로 표시함).
도 2에 나타낸 바와 같이, 종래 진탕배양법에서는 1시간의 진탕으로 생균수가 감소된 정도만을 알 수 있다.
도 3은 본 발명에 따른 항균제의 항균력 평가 방법으로 B(Zn계 항균제), D(Ag계 항균제), E(Cu계 항균제) 및 F(Cu계 항균제) 시료의 항균력을 나타낸 그래프이다(C와 D는 Ag를 기반으로 한 항균제이나, 항균제에 포함되는 Ag의 함량이 상이하고, E와 F는 Cu를 기반으로 한 항균제이나, 항균제에 포함되는 Cu의 함량이 상이하여 상기와 같이 표시함).
도 3을 참고하면, 본 발명에 따른 항균제의 항균력 평가 방법으로 시간별로 항균제의 항균력을 알 수 있고, 시료에 따른 항균력 측정도 가능한 것을 알 수 있다.
따라서, 본 발명에 따른 항균제의 항균력 평가 방법으로 종래보다 항균제 분말이 항균력을 발현하는데 필요한 시간을 정확하게 측정할 수 있다.
또한, 종래보다 적은 양의 항균제를 사용하여 항균제의 항균력을 더욱 정확하게 판단할 수 있으며, 단순히 항균력의 유무를 판단하는 것이 아니라 적은 양으로도 항균제의 항균력을 선별하는 것이 가능하다.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시 예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시 예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.

Claims (7)

  1. 균주가 배양된 배지에 항균제를 접종시키는 단계;
    상기 배지를 시간별로 진탕하고, 상기 시간별로 샘플링하는 단계;
    상기 샘플링 후 상기 항균제가 접종된 배지를 원심분리하는 단계; 및
    상기 원심분리 후 상기 항균제가 제거된 균액을 배양한 후 균수를 측정하는 단계;를 포함하는 항균제의 항균력 평가 방법.
  2. 제1항에 있어서,
    상기 항균제는 분말 형상인 것을 특징으로 하는 항균제의 항균력 평가 방법.
  3. 제1항에 있어서,
    상기 항균제는 상기 균주가 배양된 배지에 0.02 ~ 2g이 접종되는 것을 특징으로 하는 항균제의 항균력 평가 방법.
  4. 제1항에 있어서,
    상기 균주는 폐렴구균(Klebsiella pneumoniae), 황색포도상구균(Staphylococcus aureus), 마이크로코쿠스균(Micrococcus), 살로넬라 티피무륨(Slalmonella typhimurium), 대장균(Escherichia coli), 고초균(Bacillus subtillus) 및 녹농균(Pseudomonas aeruginosa)로 이루어진 군으로부터 선택되는 하나인 것을 특징으로 하는 항균제의 항균력 평가 방법.
  5. 제1항에 있어서,
    상기 시간별 샘플링은 시간에 따른 균수의 변화를 도식화하는 것을 특징으로 하는 항균제의 항균력 평가 방법.
  6. 제1항에 있어서,
    상기 샘플링은 20분, 40분 및 60분 각각에서 수행되는 것을 특징으로 하는 항균제의 항균력 평가 방법.
  7. 제1항에 있어서,
    상기 원심분리는 4000 ~ 6000 rpm에서 5 ~ 10초 동안 수행되는 것을 특징으로 하는 항균제의 항균력 평가 방법.
PCT/KR2020/018098 2020-02-04 2020-12-10 항균제의 항균력 평가 방법 WO2021157839A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020006678.9T DE112020006678T5 (de) 2020-02-04 2020-12-10 Assay-verfahren für die antimikrobielle aktivität eines antimikrobiellen agens
US17/797,431 US20230069554A1 (en) 2020-02-04 2020-12-10 Assay method for antimicrobial activity of antimicrobial agent
CN202080095554.8A CN115052992A (zh) 2020-02-04 2020-12-10 抗菌剂的抗菌力评价方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0013182 2020-02-04
KR1020200013182A KR20210099382A (ko) 2020-02-04 2020-02-04 항균제의 항균력 평가 방법

Publications (1)

Publication Number Publication Date
WO2021157839A1 true WO2021157839A1 (ko) 2021-08-12

Family

ID=77199616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018098 WO2021157839A1 (ko) 2020-02-04 2020-12-10 항균제의 항균력 평가 방법

Country Status (5)

Country Link
US (1) US20230069554A1 (ko)
KR (1) KR20210099382A (ko)
CN (1) CN115052992A (ko)
DE (1) DE112020006678T5 (ko)
WO (1) WO2021157839A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153400A (en) * 1999-03-12 2000-11-28 Akzo Nobel N.V. Device and method for microbial antibiotic susceptibility testing
KR20010025736A (ko) * 2001-01-26 2001-04-06 이종구 항균제 자체의 항균성 및 항균제로 가공 처리된항균제품의 항균력 시험방법
KR20060135041A (ko) * 2004-03-31 2006-12-28 메이지 데어리즈 코포레이션 항균성 조성물
KR20160016218A (ko) * 2014-08-04 2016-02-15 충북보건과학대학교 산학협력단 Mtt염료를 이용한 항균효과 측정방법
KR20190079386A (ko) * 2017-12-27 2019-07-05 주식회사 엘지화학 광촉매 시료의 항균성 시험법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439918B1 (ko) 2013-09-26 2014-09-15 연세대학교 산학협력단 디스크 확산법을 이용한 항균 시편의 정량적 항균 평가 방법 및 그 방법을 이용한 측정 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6153400A (en) * 1999-03-12 2000-11-28 Akzo Nobel N.V. Device and method for microbial antibiotic susceptibility testing
KR20010025736A (ko) * 2001-01-26 2001-04-06 이종구 항균제 자체의 항균성 및 항균제로 가공 처리된항균제품의 항균력 시험방법
KR20060135041A (ko) * 2004-03-31 2006-12-28 메이지 데어리즈 코포레이션 항균성 조성물
KR20160016218A (ko) * 2014-08-04 2016-02-15 충북보건과학대학교 산학협력단 Mtt염료를 이용한 항균효과 측정방법
KR20190079386A (ko) * 2017-12-27 2019-07-05 주식회사 엘지화학 광촉매 시료의 항균성 시험법

Also Published As

Publication number Publication date
KR20210099382A (ko) 2021-08-12
DE112020006678T5 (de) 2022-12-08
US20230069554A1 (en) 2023-03-02
CN115052992A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
Habimana et al. Micro ecosystems from feed industry surfaces: a survival and biofilm study of Salmonella versus host resident flora strains
Athalye et al. Selective isolation and enumeration of actinomycetes using rifampicin
Boulter et al. Microbial studies of compost: bacterial identification, and their potential for turfgrass pathogen suppression
Shikano et al. Changes of traits in a bacterial population associated with protozoal predation
Shanker et al. Campylobacter jejuni in broilers: the role of vertical transmission
US6686173B2 (en) Comparative phenotype analysis of two or more microorganisms using a plurality of substrates within a multiwell testing device
Bauer et al. False-positive results from cultures of Mycobacterium tuberculosis due to laboratory cross-contamination confirmed by restriction fragment length polymorphism
Domingue et al. Novel bacterial structures in human blood: cultural isolation
Clanner‐Engelshofen et al. Corynebacterium kroppenstedtii subsp. demodicis is the endobacterium of Demodex folliculorum
EP0717112B1 (en) Method and apparatus for testing MAI (Mycobacterium Avium-Intracellulare) for antibiotic sensitivity
Kadhum et al. The study of bacillus subtils antimicrobial activity on some of the pathological isolates
Wiegel et al. Determination of the Gram type using the reaction between polymyxin B and lipopolysaccharides of the outer cell wall of whole bacteria
WO2021157839A1 (ko) 항균제의 항균력 평가 방법
Lewis et al. Microscopy of stained urine smears to determine the need for quantitative culture
Kühn et al. The PhP RS system. A simple microplate method for studying coliform bacterial populations
Agu et al. Isolation and identification of microorganisms associated with automated teller machines in calabar metropolis
Afnani et al. Profile of multidrug resistance and methicillin-resistant Staphylococcus aureus (MRSA) isolated from cats in Surabaya, Indonesia
Sands et al. Ecology and physiology of fluorescent pectolytic pseudomonads
CN101423863A (zh) 一种化妆品中链球菌的检验方法
Petersen et al. Listeria spp. in broiler flocks: recovery rates and species distribution investigated by conventional culture and the EiaFoss method
Kennedy et al. Enumeration of Bradyrhizobium japonicum in soil subjected to high temperature: comparison of plate count, most probable number and fluorescent antibody techniques
Hurley et al. A comparison of six enrichment media for isolating Salmonella pullorum from egg products
Böhm et al. Application of the laser microprobe mass analyser (LAMMA) to the differentiation of single bacterial cells
Yahia et al. Isolation and identification of antibiotic producing Pseudomonas fluorescens NBRC-14160 from Delta Soil in Egypt
Sindhu et al. Occurrence of Multiple Antibiotic Resistance in Azotobacter chroococcum: Multiple Antibiotikaresistenz bei Azotobacter chroococcum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917790

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20917790

Country of ref document: EP

Kind code of ref document: A1