WO2021157802A1 - Mobility device comprising driving speed and direction control device and controlling method therefor - Google Patents

Mobility device comprising driving speed and direction control device and controlling method therefor Download PDF

Info

Publication number
WO2021157802A1
WO2021157802A1 PCT/KR2020/011098 KR2020011098W WO2021157802A1 WO 2021157802 A1 WO2021157802 A1 WO 2021157802A1 KR 2020011098 W KR2020011098 W KR 2020011098W WO 2021157802 A1 WO2021157802 A1 WO 2021157802A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobility
shaft
distance
distance sensor
unit
Prior art date
Application number
PCT/KR2020/011098
Other languages
French (fr)
Korean (ko)
Inventor
이희승
강동훈
박하은
김병헌
김병진
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200069113A external-priority patent/KR102288041B1/en
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Publication of WO2021157802A1 publication Critical patent/WO2021157802A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J25/00Foot-rests; Knee grips; Passenger hand-grips
    • B62J25/04Floor-type foot rests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05GCONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
    • G05G1/00Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
    • G05G1/30Controlling members actuated by foot

Definitions

  • the present invention relates to a mobility including a traveling speed and direction control device and a control method therefor. Specifically, it relates to a mobility including a scaffolding device for driving operation that a mobility user can easily move through a structure for controlling one scaffolding with both feet and a control method thereof.
  • Personal mobility requires a steering method to move in the direction desired by the user.
  • the steering is determined by using the inclination of the body, or the steering is steered by controlling the steering wheel with both hands.
  • wheelchair-type mobility mobility is controlled using a joystick or a steering wheel like a bicycle or car.
  • the steering wheel, the joystick, etc. are controlled by hand or the entire body is controlled through the body, such as the inclination of the body, and there is a problem depending on each driving method.
  • This type of mobility is not suitable for users to respond to emergencies because both hands of the user hold the steering system or control it through the inclination of the body. It is not a structure
  • the hand in many cases because the steering device is used to drive.
  • a driving method in a seated state such as a car or an electric wheelchair
  • both hands are not free and the arms are fatigued.
  • Mobility that runs in a standing state such as a Segway, has a problem in that the user's legs are tired because the user must continuously drive in a standing state.
  • the present invention aims to control mobility with both feet, away from the conventional method of steering with both hands.
  • the present invention is to solve the problems of the prior art described above, the present invention measures the distance to the distance sensor reflector provided on both footrests using a distance sensor, and utilizes this distance value to determine the rotation speed and direction of rotation of the motor It aims to propose mobility that moves forward, backward, left turn, and right turn by determining
  • Mobility including a driving speed and direction manipulation device according to an embodiment of the present invention and a control method therefor enable a mobility user to easily move through a device for controlling one footrest with both feet, and the purpose is to drive conveniently There is this.
  • the present invention for achieving the above object is a scaffold frame, at least one shaft installed on the scaffold frame, at least one shaft unit moving along the axial direction of the shaft, and connected to the shaft unit at least one distance sensor reflector, a plurality of distance sensors for sensing the distance value with the distance sensor reflector to determine the driving direction, and one or more long holes are formed so that the shaft unit is inserted, and coupled to the footrest case on the upper part It is to provide mobility including a scaffold connection part, first to fourth elastic members installed on the shaft and maintaining the scaffold connection part at a reference point, and a control unit for controlling the motor speed of the wheel according to the change value of the distance sensor.
  • the first to fourth elastic members are objects having elastic force and are provided on the shaft of the shaft.
  • the scaffold frame It is coupled to one side of the scaffold frame, and includes a boarding unit for supporting the user.
  • the driving direction of forward, backward, left turn, and right turn is determined.
  • the controller calculates the change value of the distance sensor according to Equation 1 below, and calculates the change value of the distance sensor as a motor control signal according to Equation 2 below.
  • a mobility including a traveling speed and direction manipulation device, a step of moving a shaft unit fitted to one or more shafts, and a plurality of distance sensors installed on one end surface of the frame according to the movement of the shaft unit. It provides a mobility control method comprising; sensing each distance value, and controlling the operation of the mobility according to the distance value.
  • the controlling may include calculating a change value of the distance sensor according to Equation 1 below, and calculating the change value of the distance sensor as a motor control signal according to Equation 2 below.
  • Mobility and its control method including the driving speed and direction manipulation device can steer the driving direction using only a distance sensor in the scaffolding device.
  • mobility can be driven using only the distance sensor, there is no need to provide a separate actuator and motor in the scaffold device, thereby simplifying the scaffold device structure.
  • the present invention can control the direction without a steering device for controlling the steering wheel, there is no need for a steering wheel space in the mobility, and thus the spatial efficiency of mobility can be improved.
  • FIG 1 and 2 are views of a scaffolding device for driving operation according to an embodiment of the present invention.
  • FIG. 3 is a schematic perspective view of the internal structure of FIG. 2 ;
  • FIG. 4 is a view of a scaffolding device in which a scaffolding connection part is coupled to the shift unit of FIG. 2 .
  • FIG. 5 is a perspective view of FIG. 4 ;
  • FIG. 6 is an exemplary view showing the scaffolding device in a stationary state.
  • FIG. 7 is an exemplary view showing a scaffolding device that moves backward.
  • FIG. 8 is an exemplary view illustrating mobility moving backward according to FIG. 7 .
  • FIG 9 is an exemplary view showing a scaffolding device that rotates in the left direction.
  • FIG. 10 is an exemplary diagram illustrating mobility moving in a counterclockwise direction according to FIG. 9 .
  • FIG. 11 is an exemplary view showing a scaffolding device that rotates in the right direction.
  • FIG. 12 is an exemplary diagram illustrating mobility moving in a clockwise direction according to FIG. 11 .
  • FIG. 13 is an exemplary view showing the scaffolding device moving in the rear and left directions.
  • FIG. 14 is an exemplary view showing mobility that moves backward and left according to FIG. 13 .
  • 15 is a flowchart illustrating a mobility control method according to an embodiment of the present invention.
  • the mobility 1000 of the present invention includes a scaffold device 100 , a scaffold case 200 , a boarding unit 300 , a wheel 400 , and a control unit (not shown).
  • the scaffolding device 100 refers to a device for manipulating the traveling speed and direction of the mobility 1000 .
  • the mobility 1000 includes a boarding unit 300 on which a user can sit together with the scaffolding device 100 and the scaffolding case 200 , and a driving wheel 400 for moving the mobility 1000 .
  • the left and right sides of the boarding unit 300 may be formed with a handle that the user can grip for safety, which will be said to be for the user's safety while the mobility 1000 is moving.
  • a motor is provided under the boarding unit 300 to control the traveling speed and direction of the mobility 1000 .
  • the scaffold device 100 includes a scaffold frame 110, a shaft 120, a shaft unit 130a, 130b, a distance sensor reflector 140a, 140b), a distance sensor ( 150a, 150b), a footrest connection part 160 , elastic members 170a to 170d, a fixing holder 180 , and a bearing 190 may be included.
  • the scaffolding frame 110 supports the scaffolding device 100, and a space in which various components are mounted is formed.
  • the scaffold frame 110 is formed in a substantially rectangular parallelepiped shape, but is not necessarily limited to this shape.
  • a pair of shafts 120 are installed in the long longitudinal direction in the inner space.
  • the shaft 120 is installed to be spaced apart from each other by a predetermined interval, and preferably, the interval at which the user can easily drive the vehicle using his or her two feet is preferable.
  • Fixing holders 180 are respectively provided at both ends of the shaft 120 so that the inner surface of the scaffolding frame 110 and the shaft 120 are coupled.
  • Shaft units 130a and 130b moving along the axial direction of the shaft 120 are installed on each shaft 120 . Therefore, a through hole is formed in the shaft unit (130a, 130b) to fit the shaft (120).
  • the shaft units 130a and 130b respectively move differently along the axial direction of the shaft 120 to determine the driving direction of the mobility. This is described in detail below.
  • the shaft unit (130a, 130b) may be provided with a bearing 190 on the upper surface to rotate the footrest connecting portion (160). And elastic members 170a to 170d are provided on both shafts around the shaft units 130a and 130b so that the shaft units 130a and 130b are located in the center of the shaft 120 .
  • the elastic members 170a to 170d can be divided into a first elastic member 170a, a second elastic member 170b, a third elastic member 170c, and a fourth elastic member 170d.
  • the shaft units 130a and 130b are positioned in the center of the shaft 120, the mobility 1000 is in a stationary state, and in that state, the mobility 1000 moves forward and backward according to the movement of the shaft units 130a and 130b. , left turn and right turn can be driven. Therefore, the center of the shaft 120 may be a reference point.
  • the elastic members 170a to 170d employ a spring, but other elastic members capable of allowing the shaft units 130a and 130b to be located in the center of the shaft 120 may be used.
  • the shaft unit (130a, 130b) is installed on the upper side of the footrest connecting portion (160).
  • a long hole is formed in the footrest connection part 160 at corresponding positions so that a pair of bearings are fitted. If it is not a long hole and is formed in a general circular hole shape that matches the shape of the bearing 190 , the footrest connection unit 160 can only move forward and backward. As such, it is formed as a long hole in one direction, and the bearing can move in the long hole according to the user's operation of the footrest, so that mobility is possible in the left/right direction in addition to the front/rear direction.
  • the footrest case 200 is coupled to the upper portion of the footrest connection part 160 .
  • the footrest case 200 supports the user's foot, and the footrest connection part 160 is also operated according to the operation of the footrest case 200 .
  • the shaft units (130a, 130b) are provided with distance sensor reflectors (140a, 140b).
  • the distance sensor reflectors 140a and 140b are installed to protrude from the side surfaces of the shaft units 130a and 130b.
  • the distance sensor reflectors 140a and 140b are provided on one surface (ie, the surface facing the distance sensor) of the shaft units 130a and 130b. This is because the distance sensors 150a and 150b only need to be able to detect the amount of movement of the shaft units 130a and 130b.
  • distance sensors 150a and 150b are installed on the inner surface of the shaft frame 110 facing the reflecting plates 140a and 140b.
  • the distance sensors 150a and 150b serve to detect the distance to the distance sensor reflectors 140a and 140b changed by the movement of the shaft units 130a and 130b. In this case, since the distance sensor reflectors 140a and 140b move at the same time or move differently from each other, the distance from the distance sensor reflectors 140a and 140b detected by the distance sensors 150a and 150b may be different from each other.
  • the distance sensors 150a and 150b measure the distances to the distance sensor reflectors 140a and 140b, and the measured distance values are driven by the controller (not shown) in forward, backward, left turn, or right turn according to the corresponding distance value. information to determine the direction.
  • the controller is a processor that controls the overall driving of the mobility 1000, and it is preferable to be mounted at a place where the values sensed by the distance sensors 150a and 150b can be easily transmitted.
  • a sensor for detecting the moving speed of the shaft units 130a and 130b fitted to the shaft 120 may be further provided. These sensors relate to the speed of mobility.
  • the controller can control the direction and speed of the motor according to the change value according to the distance value of the distance sensors 150a and 150b and the speed at which the shaft units 130a and 130b move.
  • the mobility 1000 may include a boarding detection sensor (not shown) that detects whether the user boards the boarding unit 300 .
  • the boarding detection sensor may include, but is not limited to, a detection sensor, an infrared sensor, a radar, and the like.
  • the mobility 1000 may be recognized as a stationary state.
  • the distance value ( ) the distance value measured in real time by the distance sensors 150a and 150b ( ) can be obtained, and through this, the distance change value ( ) is calculated.
  • the control unit controls the change value of the distance sensors 150a and 150b ( ), the control signal of the motor is calculated by the formula of [Equation 2].
  • the control signal of the motor is information for determining the driving direction and speed of the mobility.
  • initial position value is the initial position value on the left ( ), the initial position value on the right ( ) can be set.
  • the measured distance value of the left distance sensor 150a and the distance sensor reflector 140a is ' '
  • the measured distance value of the right distance sensor 150b and the distance sensor reflector 140b is ' '
  • the left change value is ' '
  • the right change value is ' '
  • the mobility 1000 may drive in a forward direction.
  • the footrest connection unit 160 connected thereto also moves forward.
  • the first elastic member 170a and the third elastic member 170c at the front are compressed, and the second elastic member 170b and the fourth elastic member 170d at the rear are expanded.
  • the distance value of the left distance sensor 150a ( ) and the distance value of the right distance sensor 150b ( ) is increased, and the left change value ( ) and the right change value ( ) is a positive number.
  • the scaffolding device 100 moves forward and the mobility 1000 moves forward.
  • FIG. 7 is an exemplary view showing the scaffolding device 100 moving in the backward direction.
  • the footrest connection part 160 connected thereto also moves rearward.
  • the second elastic member 170b and the fourth elastic member 170d at the rear are compressed, and the first elastic member 170a and the third elastic member 170c at the front are expanded.
  • both the left wheel and the right wheel rotate in reverse so that the scaffolding device 100 moves backward. That is, as shown in FIG. 8 , the mobility 1000 moves in the backward direction.
  • FIG. 9 is an exemplary view showing the scaffolding device 100 for rotationally moving the mobility 1000 in the left direction.
  • the right shaft unit 130b moves forward.
  • the left shaft unit (130a) is located in the center or is moved slightly rearward.
  • the distance value ( ) is the reference point ( ), and the distance value ( ) is the reference point ( ) will be greater than Due to this, the right wheel moves forward and the mobility 1000 may turn left. At this time, the left wheel may be maintained at its original position or slightly backward according to the movement of the left shaft unit 130a.
  • 11 is an exemplary view showing the scaffolding device 100 for rotating and moving the mobility 1000 in the right direction. 11, when the user pushes the left part of the footrest case 200, the left shaft unit 130a moves forward. At this time, the right shaft unit 130b is located in the center or slightly rearward. will move
  • the distance value of the left distance sensor 150a ( ) is the reference point ( ), and the distance value of the distance sensor 150b on the right ( ) is the reference point ( ) is smaller than the value. Due to this, the left wheel may move forward and the mobility 1000 may turn right. At this time, the right wheel may be maintained at the original position or slightly backward according to the movement of the right shaft unit (130b).
  • the left wheel rotates forward and the mobility 1000 rotates clockwise.
  • 13 is an exemplary view showing the scaffolding device 100 for driving the mobility 1000 in the reverse and left directions. 13, when the user pulls the rear left part of the footrest case 200, only the left shaft unit 130a moves backward and the right shaft unit 130b is located in the center of the shaft 120. do.
  • the distance sensor 150a on the left ) is the reference point ( ) and the distance value of the distance sensor 150b on the right ( ) is the initial position ( ) will match. For this reason, the left wheel moves backward and the right wheel becomes stationary, so that the mobility 1000 may reverse and turn left.
  • the mobility 1000 moves backward and turns left at the speed difference between the left wheel and the right wheel.
  • the seat units 130a and 130b are located in the center of the shaft 120 by the first to fourth elastic members 170a to 170d. .
  • the mobility 1000 is in a stationary state, and the user can get off the mobility 1000 .
  • 15 is a flowchart illustrating a method of controlling the mobility 1000 according to an embodiment of the present invention.
  • a boarding detection sensor (not shown) detects whether the user boards. At this time, the user's feet are located on the footrest case 200 .
  • the boarding sensor detects that the user boards the boarding unit 300
  • the mobility 1000 becomes a driving state and the user can push or pull the footrest case 200 .
  • the footrest connection unit 160 moves according to the user's manipulation of the footrest case 200 .
  • step S100 the shaft units 130a and 130b are respectively fitted to the shafts 120 spaced apart from each other, and the shaft units 130a and 130b move according to the movement of the footrest connection part 160 . At this time, the positions of the distance sensor reflectors 150a and 150b coupled to the shaft units 130a and 130b are also moved.
  • a pair of distance sensors 150a and 150b installed on one end face of the frame senses respective distance values according to the movement of the first and second shaft units 130a and 130b. Specifically, the distance sensors 150a and 150b are distance values ( ) is detected.
  • step S300 the detected distance value ( ) using the change value ( ) and control the operation of the mobility 1000 by determining the driving directions of forward, backward, left turn, and right turn according to the change value.
  • the mobility 1000 of the present invention may include an autonomous driving system for potential users.
  • the mobility 1000 stops and the occupancy sensor may detect whether the user is on board.
  • the mobility 1000 of the present invention may control the plate by hand by placing the scaffolding device 100 on the upper portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

The present invention relates to a mobility device and a control method therefor, the mobility device comprising a driving speed and direction control device for controlling the mobility device with both feet, instead of conventionally controlling and joystick-steering with both hands, and provides a mobility device comprising: a pedal frame; one or more shafts mounted on the pedal frame; one or more shaft units that move along the axial direction of the shafts; one or more distance sensor reflectors connected to the shaft units; a plurality of distance sensors for sensing values of distances between themselves and the distance sensor reflectors to determine a driving direction; a pedal connection portion which is coupled to a pedal case above and has one or more elongated holes into which the shaft units are inserted; first to fourth elastic members which are mounted on the shafts and retain the pedal connection portion at a reference point; and a control unit for controlling a wheel motor speed according to change values of the distance sensors.

Description

주행 속도 및 방향 조작 장치를 포함하는 모빌리티 및 그 제어 방법Mobility including driving speed and direction control device and method for controlling the same
본 발명은 주행 속도 및 방향 조작 장치를 포함하는 모빌리티 및 그 제어 방법에 관한 것이다. 구체적으로, 양 발로 하나의 발판을 제어하는 구조를 통해 모빌리티 사용자가 쉽게 이동할 수 있는 주행 조작용 발판장치를 포함하는 모빌리티 및 그 제어방법 에 관한 것이다.The present invention relates to a mobility including a traveling speed and direction control device and a control method therefor. Specifically, it relates to a mobility including a scaffolding device for driving operation that a mobility user can easily move through a structure for controlling one scaffolding with both feet and a control method thereof.
퍼스널 모빌리티에는 사용자가 원하는 방향으로 나아가기 위한 조향 방법이 필요하다. 세그웨이에는 몸의 기울기를 이용하여 조향을 결정하거나 양 손으로 핸들을 제어하여 조향한다. 휠체어형 모빌리티에서는 자전거나 자동차와 같이 스티어링휠 형태이거나 조이스틱을 이용해서 모빌리티를 제어한다.Personal mobility requires a steering method to move in the direction desired by the user. In a Segway, the steering is determined by using the inclination of the body, or the steering is steered by controlling the steering wheel with both hands. In wheelchair-type mobility, mobility is controlled using a joystick or a steering wheel like a bicycle or car.
이와 같이 종래의 모빌리티 운전 방식은 핸들, 조이스틱 등을 손으로 제어하거나 몸의 기울기 등 몸 전체를 통해 제어하며 각 운전 방식에 따라 문제점이 존재한다. As described above, in the conventional mobility driving method, the steering wheel, the joystick, etc. are controlled by hand or the entire body is controlled through the body, such as the inclination of the body, and there is a problem depending on each driving method.
이러한 형태의 모빌리티는 사용자의 양 손이 조향장치를 쥐고 있거나 몸의 기울기를 통해 제어하게 되어, 운전 중의 모빌리티가 불안정해지더라도 신속하게 대응하지 못하고 모빌리티가 전진하기 때문에 사용자가 위급상황에 대처를 하기에는 알맞지 않은 구조이다.This type of mobility is not suitable for users to respond to emergencies because both hands of the user hold the steering system or control it through the inclination of the body. It is not a structure
구체적으로, 앉은 상태에서 주행하는 모빌리티는 운전하기 위해 조향장치를 이용하기 때문에 손을 활용하는 경우가 다수이다. 예를 들면, 자동차 또는 전동휠체어와 같이 앉은 상태에서 운전하는 방식은 양 손이 자유롭지 못하고 팔 부분이 피로해진다. 세그웨이와 같이 일어선 상태에서 주행하는 모빌리티는 사용자가 지속적으로 일어서 있는 상태에서 주행해야 하므로 다리가 피로해지는 문제가 있다.Specifically, in mobility driving in a seated state, the hand is used in many cases because the steering device is used to drive. For example, in a driving method in a seated state such as a car or an electric wheelchair, both hands are not free and the arms are fatigued. Mobility that runs in a standing state, such as a Segway, has a problem in that the user's legs are tired because the user must continuously drive in a standing state.
따라서, 본 발명은 종래의 양 손으로 제어하여 방향을 조향하는 방식에서 벗어나, 양 발로 모빌리티를 제어하고자 한다.Accordingly, the present invention aims to control mobility with both feet, away from the conventional method of steering with both hands.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명은 거리센서를 이용해 양 발판에 구비된 거리센서 반사판까지의 거리를 측정하며, 이 거리 값을 활용하여 모터의 회전 속도와 회전 방향을 결정하여 전진, 후진, 좌회전, 우회전으로 이동하는 모빌리티를 제안하는 것을 목적으로 한다.The present invention is to solve the problems of the prior art described above, the present invention measures the distance to the distance sensor reflector provided on both footrests using a distance sensor, and utilizes this distance value to determine the rotation speed and direction of rotation of the motor It aims to propose mobility that moves forward, backward, left turn, and right turn by determining
본 발명의 일 실시예에 따른 주행 속도 및 방향 조작 장치를 포함하는 모빌리티 및 그 제어방법은 양 발로 하나의 발판을 제어하는 장치를 통해 모빌리티 사용자가 쉽게 이동할 수 있도록 하며, 편리하게 운전하는 것에 그 목적이 있다.Mobility including a driving speed and direction manipulation device according to an embodiment of the present invention and a control method therefor enable a mobility user to easily move through a device for controlling one footrest with both feet, and the purpose is to drive conveniently There is this.
이와 같은 목적을 달성하기 위한 본 발명은, 발판부 프레임, 상기 발판부 프레임 상에 설치되어 있는 한 개 이상의 샤프트, 상기 샤프트의 축 방향을 따라 이동하는 한 개 이상의 샤프트 유니트, 상기 샤프트 유니트에 연결되어 있는 한 개 이상의 거리센서 반사판, 운전방향을 결정하도록 상기 거리센서 반사판과의 거리 값을 감지하는 복수의 거리센서, 상기 샤프트 유니트가 끼워지도록 한 개 이상의 장공이 형성되며, 상부에 발판 케이스와 결합하는 발판 연결부, 상기 샤프트에 설치되며 상기 발판 연결부가 기준점에 유지되도록 하는 제1 내지 제4 탄성부재, 상기 거리 센서의 변화값에 따라 바퀴의 모터 속도를 제어하는 제어부를 포함하는 모빌리티를 제공하는 것이다.The present invention for achieving the above object is a scaffold frame, at least one shaft installed on the scaffold frame, at least one shaft unit moving along the axial direction of the shaft, and connected to the shaft unit at least one distance sensor reflector, a plurality of distance sensors for sensing the distance value with the distance sensor reflector to determine the driving direction, and one or more long holes are formed so that the shaft unit is inserted, and coupled to the footrest case on the upper part It is to provide mobility including a scaffold connection part, first to fourth elastic members installed on the shaft and maintaining the scaffold connection part at a reference point, and a control unit for controlling the motor speed of the wheel according to the change value of the distance sensor.
상기 발판부 프레임에 상기 샤프트를 고정시키기 위한 샤프트 고정홀더를 더 포함한다. It further includes a shaft fixing holder for fixing the shaft to the scaffold frame.
상기 제1 내지 제4 탄성부재는 탄성력을 가진 물체로 상기 샤프트의 축에 구비되는 것을 특징으로 한다. The first to fourth elastic members are objects having elastic force and are provided on the shaft of the shaft.
상기 발판 연결부가 회전할 수 있도록 상기 샤프트 유니트와 연결되어 있는 베어링을 더 포함한다. It further includes a bearing connected to the shaft unit so that the footrest connection portion can rotate.
상기 발판부 프레임의 일측에 결합되며, 사용자를 지지하는 탑승부를 포함한다. It is coupled to one side of the scaffold frame, and includes a boarding unit for supporting the user.
상기 거리센서의 거리값에 따라 전진, 후진, 좌회전, 우회전으로의 운전방향이 결정되는 것을 특징으로 한다. According to the distance value of the distance sensor, the driving direction of forward, backward, left turn, and right turn is determined.
상기 제어부는, 하기의 식 1에 따라 상기 거리 센서의 변화값을 산출하고, 상기 거리 센서의 변화값은 하기의 식 2에 따라 모터 제어신호로 산출하는 것을 특징한다. The controller calculates the change value of the distance sensor according to Equation 1 below, and calculates the change value of the distance sensor as a motor control signal according to Equation 2 below.
Figure PCTKR2020011098-appb-img-000001
- 식 1
Figure PCTKR2020011098-appb-img-000001
- Equation 1
여기서,
Figure PCTKR2020011098-appb-img-000002
= 거리센서의 변화 값,
Figure PCTKR2020011098-appb-img-000003
= 거리 센서 측정 값,
Figure PCTKR2020011098-appb-img-000004
= 정지 상태 거리 값을 나타낸다.
here,
Figure PCTKR2020011098-appb-img-000002
= change value of distance sensor,
Figure PCTKR2020011098-appb-img-000003
= distance sensor readings,
Figure PCTKR2020011098-appb-img-000004
= Indicates the stationary distance value.
Figure PCTKR2020011098-appb-img-000005
- 식 2
Figure PCTKR2020011098-appb-img-000005
- Equation 2
여기서,
Figure PCTKR2020011098-appb-img-000006
= 모터 제어 신호 (Motor Control Signal),
Figure PCTKR2020011098-appb-img-000007
= 속도 제어 상수(Velocity-Control Constant),
Figure PCTKR2020011098-appb-img-000008
= 거리센서의 변화 값을 나타낸다.
here,
Figure PCTKR2020011098-appb-img-000006
= Motor Control Signal,
Figure PCTKR2020011098-appb-img-000007
= Velocity-Control Constant,
Figure PCTKR2020011098-appb-img-000008
= Indicates the change value of the distance sensor.
본 발명의 다른 특징에 따르면, 주행 속도 및 방향 조작 장치를 포함하는 모빌리티이고, 한 개 이상의 샤프트에 끼워진 샤프트 유니트가 이동하는 단계, 프레임의 일 단면에 설치된 복수의 거리센서가 샤프트 유니트의 이동에 따른 각각의 거리값을 감지하는 단계, 상기 거리값에 따라 상기 모빌리티의 운전을 제어하는 단계;를 포함하는 모빌리티 제어방법을 제공한다.According to another feature of the present invention, it is a mobility including a traveling speed and direction manipulation device, a step of moving a shaft unit fitted to one or more shafts, and a plurality of distance sensors installed on one end surface of the frame according to the movement of the shaft unit. It provides a mobility control method comprising; sensing each distance value, and controlling the operation of the mobility according to the distance value.
상기 샤프트의 중앙에 상기 샤프트 유니트가 위치한 경우 상기 모빌리티는 정지상태인 단계를 포함하고, 상기 모빌리티 정지상태에서 상기 샤프트 유니트를 중심으로 상기 샤프트에 끼워진 제1 내지 제4 탄성부재는 탄성율을 가지는 것을 특징으로 한다. and wherein the mobility is in a stationary state when the shaft unit is located in the center of the shaft, wherein the first to fourth elastic members fitted to the shaft with the shaft unit as the center in the mobility stop state have a modulus of elasticity. do it with
상기 제어하는 단계는, 하기의 식 1에 따라 상기 거리 센서의 변화값를 산출하는 단계, 상기 거리 센서의 변화값은 하기의 식 2에 따라 모터 제어신호로 산출하는 단계를 포함한다.The controlling may include calculating a change value of the distance sensor according to Equation 1 below, and calculating the change value of the distance sensor as a motor control signal according to Equation 2 below.
Figure PCTKR2020011098-appb-img-000009
- 식 1
Figure PCTKR2020011098-appb-img-000009
- Equation 1
여기서,
Figure PCTKR2020011098-appb-img-000010
= 거리센서의 변화 값,
Figure PCTKR2020011098-appb-img-000011
= 거리 센서 측정 값,
Figure PCTKR2020011098-appb-img-000012
= 정지 상태 거리 값을 나타낸다.
here,
Figure PCTKR2020011098-appb-img-000010
= change value of distance sensor,
Figure PCTKR2020011098-appb-img-000011
= distance sensor readings,
Figure PCTKR2020011098-appb-img-000012
= Indicates the stationary distance value.
Figure PCTKR2020011098-appb-img-000013
-식 2
Figure PCTKR2020011098-appb-img-000013
-Equation 2
여기서,
Figure PCTKR2020011098-appb-img-000014
= 모터 제어 신호 (Motor Control Signal),
Figure PCTKR2020011098-appb-img-000015
= 속도 제어 상수(Velocity-Control Constant),
Figure PCTKR2020011098-appb-img-000016
= 거리센서의 변화 값을 나타낸다.
here,
Figure PCTKR2020011098-appb-img-000014
= Motor Control Signal,
Figure PCTKR2020011098-appb-img-000015
= Velocity-Control Constant,
Figure PCTKR2020011098-appb-img-000016
= Indicates the change value of the distance sensor.
본 발명의 일 실시예에 따른 주행 속도 및 방향 조작 장치를 포함하는 모빌리티 및 그 제어방법은 발판장치 내에 거리센서만을 이용하여 운전방향을 조향할 수 있다. 또한, 거리센서만을 이용하여 모빌리티를 구동할 수 있으므로, 발판장치 내에 별도의 액추에이터 및 모터 등이 구비되지 않아도 되어 발판장치의 구조를 간단하게 할 수 있다.Mobility and its control method including the driving speed and direction manipulation device according to an embodiment of the present invention can steer the driving direction using only a distance sensor in the scaffolding device. In addition, since mobility can be driven using only the distance sensor, there is no need to provide a separate actuator and motor in the scaffold device, thereby simplifying the scaffold device structure.
본 발명은 일 실시예에 따르면 사용자가 앉은 상태에서 양 발을 이용하여 발판을 제어하는 방식으로, 양손이 자유로운 상태에서 조향할 수 있어 응급상황에 손을 이용하여 대처할 수 있다. 또한, 손과 팔의 긴장 또는 피로도를 줄일 수 있으며, 직관적인 운전 조작이 가능하여 간편하고 편리하게 운전할 수 있다.According to an embodiment of the present invention, in a manner in which the user controls the footrest using both feet in a sitting state, it is possible to steer in a state where both hands are free, so that an emergency situation can be dealt with using the hands. In addition, it is possible to reduce tension or fatigue in the hands and arms, and intuitive driving operation is possible, making it easy and convenient to drive.
본 발명은 스티어링 휠을 제어하는 조향장치 없이 방향을 제어할 수 있으므로 모빌리티 내에 스티어링 휠 공간이 필요하지 않아 모빌리티의 공간적 효율을 향상시킬 수 있다. Since the present invention can control the direction without a steering device for controlling the steering wheel, there is no need for a steering wheel space in the mobility, and thus the spatial efficiency of mobility can be improved.
이와 같은 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.Although the present invention is described with reference to limited embodiments and drawings, the present invention is not limited thereto, and it is described below with the technical spirit of the present invention by those of ordinary skill in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be made.
도 1 및 도 2는 본 발명의 일 실시 예에 따른 주행 조작용 발판장치에 대한 도면이다.1 and 2 are views of a scaffolding device for driving operation according to an embodiment of the present invention.
도 3은 도 2의 내부 구조에 대한 개략 사시도이다.3 is a schematic perspective view of the internal structure of FIG. 2 ;
도 4는 도 2의 시프트 유니트에 발판 연결부가 결합된 발판 장치에 대한 도면이다.FIG. 4 is a view of a scaffolding device in which a scaffolding connection part is coupled to the shift unit of FIG. 2 .
도 5는 도4의 사시도이다.FIG. 5 is a perspective view of FIG. 4 ;
도 6은 정지 상태의 발판장치를 보인 예시도이다.6 is an exemplary view showing the scaffolding device in a stationary state.
도 7은 후방으로 이동하는 발판장치를 보인 예시도이다.7 is an exemplary view showing a scaffolding device that moves backward.
도 8은 도 7에 따라 후방으로 이동하는 모빌리티를 보인 예시도이다.FIG. 8 is an exemplary view illustrating mobility moving backward according to FIG. 7 .
도 9은 좌측방향으로 회전 이동하는 발판장치를 보인 예시도이다.9 is an exemplary view showing a scaffolding device that rotates in the left direction.
도 10은 도 9에 따라 반시계 방향으로 이동하는 모빌리티를 보인 예시도이다.FIG. 10 is an exemplary diagram illustrating mobility moving in a counterclockwise direction according to FIG. 9 .
도 11은 우측방향으로 회전 이동하는 발판장치를 보인 예시도이다.11 is an exemplary view showing a scaffolding device that rotates in the right direction.
도 12는 도 11에 따라 시계 방향으로 이동하는 모빌리티를 보인 예시도이다.12 is an exemplary diagram illustrating mobility moving in a clockwise direction according to FIG. 11 .
도 13은 후방 및 좌측방향의 이동하는 발판장치를 보인 예시도이다.13 is an exemplary view showing the scaffolding device moving in the rear and left directions.
도 14는 도 13에 따라 후방 및 좌회전 이동하는 모빌리티를 보인 예시도이다.FIG. 14 is an exemplary view showing mobility that moves backward and left according to FIG. 13 .
도 15는 본 발명의 일 실시예에 따른 모빌리티의 제어 방법을 설명하기 위한 순서도이다.15 is a flowchart illustrating a mobility control method according to an embodiment of the present invention.
본 발명의 목적 및 효과, 그리고 그것들을 달성하기 위한 기술적 구성들은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.Objects and effects of the present invention, and technical configurations for achieving them will become clear with reference to the embodiments described below in detail in conjunction with the accompanying drawings. In describing the present invention, if it is determined that a detailed description of a well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다.In addition, the terms described below are terms defined in consideration of functions in the present invention, which may vary according to intentions or customs of users and operators.
그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms. Only the present embodiments are provided so that the disclosure of the present invention is complete, and to fully inform those of ordinary skill in the art to which the present invention belongs, the scope of the invention, the present invention is defined by the scope of the claims will only be Therefore, the definition should be made based on the content throughout this specification.
이하에서는 도면에 도시한 실시 예에 기초하면서 본 발명에 대하여 더욱 상세하게 설명하기로 한다. 그러나, 본원이 이러한 실시 예와 도면에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the embodiments shown in the drawings. However, the present application is not limited to these examples and drawings.
이하, 첨부된 도면을 참조하여 본 발명의 구성에 대하여 상세히 설명한다.Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 모빌리티(1000)은 발판장치(100), 발판 케이스(200), 탑승부(300), 바퀴(400), 제어부(미도시)를 포함한다. 상기 발판장치(100)은 모빌리티(1000)의 주행속도와 방향을 조작하는 장치를 말한다.The mobility 1000 of the present invention includes a scaffold device 100 , a scaffold case 200 , a boarding unit 300 , a wheel 400 , and a control unit (not shown). The scaffolding device 100 refers to a device for manipulating the traveling speed and direction of the mobility 1000 .
모빌리티(1000)은 발판장치(100) 및 발판 케이스(200)와 함께 사용자가 앉을 수 있는 탑승부(300), 모빌리티(1000)의 이동을 위한 구동바퀴(400)가 설치된다. 또한, 탑승부(300)의 좌우측은 사용자가 안전을 위한 파지할 수 있는 손잡이가 형성될 수 있고, 이는 모빌리티(1000)의 이동 중 사용자의 안전을 위한 것이라 할 것이다. 탑승부(300)의 하측에는 모터가 구비되어 모빌리티(1000)의 주행 속도와 방향을 조작할 수 있다.The mobility 1000 includes a boarding unit 300 on which a user can sit together with the scaffolding device 100 and the scaffolding case 200 , and a driving wheel 400 for moving the mobility 1000 . In addition, the left and right sides of the boarding unit 300 may be formed with a handle that the user can grip for safety, which will be said to be for the user's safety while the mobility 1000 is moving. A motor is provided under the boarding unit 300 to control the traveling speed and direction of the mobility 1000 .
도 1 내지 도 5에 도시된 바와 같이, 발판장치(100)은 발판부 프레임(110), 샤트프(120), 샤프트 유니트(130a, 130b), 거리센서 반사판(140a, 140b), 거리센서(150a, 150b), 발판 연결부(160), 탄성부재(170a ~ 170d), 고정홀더(180), 베어링(190)를 포함할 수 있다.1 to 5, the scaffold device 100 includes a scaffold frame 110, a shaft 120, a shaft unit 130a, 130b, a distance sensor reflector 140a, 140b), a distance sensor ( 150a, 150b), a footrest connection part 160 , elastic members 170a to 170d, a fixing holder 180 , and a bearing 190 may be included.
발판부 프레임(110)에는 발판장치(100)를 지지하며, 내부에 각종 구성들이 장착되는 공간이 형성된다. 실시 예에서 발판부 프레임(110)은 대략 직육면체 형상으로 형성되고 있지만, 반드시 이러한 형상에 국한되지는 않는다. The scaffolding frame 110 supports the scaffolding device 100, and a space in which various components are mounted is formed. In the embodiment, the scaffold frame 110 is formed in a substantially rectangular parallelepiped shape, but is not necessarily limited to this shape.
도면과 같이 내부 공간부에 긴 길이 방향으로 한 쌍의 샤프트(120)가 설치된다. 샤프트(120)는 소정 간격 이격되게 설치되며, 바람직하게 사용자가 자신의 두 발을 이용하여 쉽게 운전할 수 있는 간격이 바람직할 것이다. 이러한 샤프트(120)의 양 끝단에는 고정홀더(180)가 각각 구비되어 발판부 프레임(110)의 내면과 샤프트(120)가 결합하도록 한다.As shown in the figure, a pair of shafts 120 are installed in the long longitudinal direction in the inner space. The shaft 120 is installed to be spaced apart from each other by a predetermined interval, and preferably, the interval at which the user can easily drive the vehicle using his or her two feet is preferable. Fixing holders 180 are respectively provided at both ends of the shaft 120 so that the inner surface of the scaffolding frame 110 and the shaft 120 are coupled.
각각의 샤프트(120)에는 샤프트(120)의 축 방향에 따라 이동하는 샤프트 유니트(130a, 130b)가 설치된다. 그래서 샤프트 유니트(130a, 130b)에는 샤프트(120)가 끼워지도록 관통홀이 형성된다. 샤프트 유니트(130a, 130b)는 샤프트(120)의 축 방향을 따라 각각 상이하게 움직임으로써 모빌리티의 운전방향을 결정하는 역할을 한다. 이는 아래에서 상세하게 설명한다. Shaft units 130a and 130b moving along the axial direction of the shaft 120 are installed on each shaft 120 . Therefore, a through hole is formed in the shaft unit (130a, 130b) to fit the shaft (120). The shaft units 130a and 130b respectively move differently along the axial direction of the shaft 120 to determine the driving direction of the mobility. This is described in detail below.
샤프트 유니트(130a, 130b)에는 발판 연결부(160)를 회전하기 위해 상면에 베어링(190)이 구비될 수 있다. 그리고 상기 샤프트 유니트(130a, 130b)가 상기 샤프트(120)의 중앙에 위치하도록 샤프트 유니트(130a, 130b)을 중심으로 양쪽 축에는 탄성부재(170a 내지 170d)가 구비된다. The shaft unit (130a, 130b) may be provided with a bearing 190 on the upper surface to rotate the footrest connecting portion (160). And elastic members 170a to 170d are provided on both shafts around the shaft units 130a and 130b so that the shaft units 130a and 130b are located in the center of the shaft 120 .
도 3에 도시된 바와 같이, 탄성부재(170a 내지 170d)는 제1 탄성부재(170a), 제2 탄성부재(170b), 제3 탄성부재(170c), 제4 탄성부재(170d)로 구분할 수 있다. 샤프트(120)의 중앙에 샤프트 유니트(130a, 130b)가 위치할 때 모빌리티(1000)는 정지상태이고, 그 상태에서 샤트프 유니트(130a, 130b)의 이동에 따라 모빌리티(1000)는 전진, 후진, 좌회전, 우회전 구동할 수 있다. 따라서 샤프트(120)의 중앙이 기준점일 수 있다. 3, the elastic members 170a to 170d can be divided into a first elastic member 170a, a second elastic member 170b, a third elastic member 170c, and a fourth elastic member 170d. there is. When the shaft units 130a and 130b are positioned in the center of the shaft 120, the mobility 1000 is in a stationary state, and in that state, the mobility 1000 moves forward and backward according to the movement of the shaft units 130a and 130b. , left turn and right turn can be driven. Therefore, the center of the shaft 120 may be a reference point.
본 실시 예에서 상기 탄성부재(170a 내지 170d)는 용수철을 채택하고 있지만, 상기 샤프트 유니트(130a, 130b)가 샤프트(120)의 중앙에 위치하도록 할 수 있는 다른 탄성부재가 사용될 수도 있다.In the present embodiment, the elastic members 170a to 170d employ a spring, but other elastic members capable of allowing the shaft units 130a and 130b to be located in the center of the shaft 120 may be used.
도 4에 도시된 바와 같이, 샤프트 유니트(130a, 130b) 상측에는 발판 연결부(160)가 설치된다. 바람직하게 발판 연결부(160)에는 한 쌍의 베어링이 끼워지도록 대응하는 위치에 장공이 각각 형성된다. 장공이 아니고 베어링(190)의 형상과 일치하는 일반적인 원형의 홀 모양으로 형성된다면, 발판 연결부(160)는 단지 전진 및 후진만 할 수 있다. 이처럼 일 방향으로 긴 모양의 장공으로 형성되며, 사용자의 발판 조작에 따라 장공 내에서 베어링이 이동할 수 있어 모빌리티가 전/후 방향 이외에 좌/우 방향으로도 주행이 가능하게 된다.As shown in Figure 4, the shaft unit (130a, 130b) is installed on the upper side of the footrest connecting portion (160). Preferably, a long hole is formed in the footrest connection part 160 at corresponding positions so that a pair of bearings are fitted. If it is not a long hole and is formed in a general circular hole shape that matches the shape of the bearing 190 , the footrest connection unit 160 can only move forward and backward. As such, it is formed as a long hole in one direction, and the bearing can move in the long hole according to the user's operation of the footrest, so that mobility is possible in the left/right direction in addition to the front/rear direction.
이러한 발판 연결부(160) 상부에는 발판 케이스(200)가 결합된다. 발판 케이스(200)는 사용자의 발 부분을 지지하는 것이고, 발판 케이스(200)의 조작에 따라 발판 연결부(160)도 같이 조작된다.The footrest case 200 is coupled to the upper portion of the footrest connection part 160 . The footrest case 200 supports the user's foot, and the footrest connection part 160 is also operated according to the operation of the footrest case 200 .
한편, 샤프트 유니트(130a, 130b)에는 거리센서 반사판(140a, 140b)가 설치된다. 거리센서 반사판(140a, 140b)는 샤프트 유니트(130a, 130b)의 측면에 돌출되어 설치된다. 그러나 샤프트 유니트(130a, 130b)의 일면(즉, 거리센서와 마주보는 면)에 거리센서 반사판(140a, 140b)이 구비되는 것도 가능하다. 거리센서(150a, 150b)가 샤프트 유니트(130a, 130b)의 이동량을 감지할 수 있기만 하면 되기 때문이다.On the other hand, the shaft units (130a, 130b) are provided with distance sensor reflectors (140a, 140b). The distance sensor reflectors 140a and 140b are installed to protrude from the side surfaces of the shaft units 130a and 130b. However, it is also possible that the distance sensor reflectors 140a and 140b are provided on one surface (ie, the surface facing the distance sensor) of the shaft units 130a and 130b. This is because the distance sensors 150a and 150b only need to be able to detect the amount of movement of the shaft units 130a and 130b.
그리고 상기 반사판(140a, 140b)과 마주보는 샤프트 프레임(110)의 내면에는 거리센서(150a, 150b)가 설치된다. 거리센서(150a, 150b)는 샤프트 유니트(130a, 130b)의 이동으로 변경된 거리센서 반사판(140a, 140b)까지의 거리를 감지하는 역할을 한다. 이때 거리센서 반사판(140a, 140b)는 동시에 동일하게 이동하거나 서로 다르게 이동하기 때문에, 거리센서(150a, 150b)가 감지하는 거리센서 반사판(140a 140b)과의 거리는 서로 상이할 수 있다.In addition, distance sensors 150a and 150b are installed on the inner surface of the shaft frame 110 facing the reflecting plates 140a and 140b. The distance sensors 150a and 150b serve to detect the distance to the distance sensor reflectors 140a and 140b changed by the movement of the shaft units 130a and 130b. In this case, since the distance sensor reflectors 140a and 140b move at the same time or move differently from each other, the distance from the distance sensor reflectors 140a and 140b detected by the distance sensors 150a and 150b may be different from each other.
거리센서(150a, 150b)는 거리센서 반사판(140a, 140b)까지의 거리를 측정하며, 이렇게 측정된 거리값은 제어부(미도시)가 해당 거리 값에 따라 전진, 후진, 좌회전, 우회전으로의 운전방향을 결정하기 위한 정보가 된다. The distance sensors 150a and 150b measure the distances to the distance sensor reflectors 140a and 140b, and the measured distance values are driven by the controller (not shown) in forward, backward, left turn, or right turn according to the corresponding distance value. information to determine the direction.
제어부는 모빌리티(1000)의 전체 구동을 제어하는 프로세서이며, 거리센서(150a, 150b)가 감지한 값을 용이하게 전달받을 수 있는 장소에 장착되는 것이 좋다.The controller is a processor that controls the overall driving of the mobility 1000, and it is preferable to be mounted at a place where the values sensed by the distance sensors 150a and 150b can be easily transmitted.
한편, 본 실시 예는 샤프트(120)에 끼워진 샤프트 유니트(130a, 130b)의 이동속도를 감지하는 센서가 더 구비될 수 있다. 이러한 센서는 모빌리티의 속도와 관련된다.Meanwhile, in the present embodiment, a sensor for detecting the moving speed of the shaft units 130a and 130b fitted to the shaft 120 may be further provided. These sensors relate to the speed of mobility.
따라서 제어부는 거리센서(150a, 150b)의 거리값에 따른 변화값과 샤프트 유니트(130a, 130b)가 움직이는 속도에 따라 모터의 방향 및 속도를 제어할 수 있는 것이다. Accordingly, the controller can control the direction and speed of the motor according to the change value according to the distance value of the distance sensors 150a and 150b and the speed at which the shaft units 130a and 130b move.
또한, 모빌리티(1000)은 사용자가 탑승부(300)에 탑승하는 지를 감지하는 탑승 감지센서(미도시)를 포함할 수 있다. 탑승 감지센서는 감지센서, 적외선 센서, 레이다 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.Also, the mobility 1000 may include a boarding detection sensor (not shown) that detects whether the user boards the boarding unit 300 . The boarding detection sensor may include, but is not limited to, a detection sensor, an infrared sensor, a radar, and the like.
도 6에 도시된 바와 같이, 발판 연결부(160)가 발판 프레임(110)의 중앙에 위치할 경우 모빌리티(1000)는 정지 상태로 인식할 수 있다. 본 발명의 일 실시예로, 초기 위치를 설정하기 위해 정지 상태의 발판장치(100)에서 거리센서(150a, 150b)와 거리센서 반사판(140a, 140b)과의 거리값 (
Figure PCTKR2020011098-appb-img-000017
), 거리센서(150a, 150b)가 실시간으로 측정한 거리값 (
Figure PCTKR2020011098-appb-img-000018
)을 구할 수 있고, 이를 통해 [수학식 1]의 수식으로 거리 변화값 (
Figure PCTKR2020011098-appb-img-000019
)이 산출된다.
As shown in FIG. 6 , when the scaffold connection unit 160 is located in the center of the scaffold frame 110 , the mobility 1000 may be recognized as a stationary state. In an embodiment of the present invention, in order to set the initial position, the distance value (
Figure PCTKR2020011098-appb-img-000017
), the distance value measured in real time by the distance sensors 150a and 150b (
Figure PCTKR2020011098-appb-img-000018
) can be obtained, and through this, the distance change value (
Figure PCTKR2020011098-appb-img-000019
) is calculated.
Figure PCTKR2020011098-appb-img-000020
Figure PCTKR2020011098-appb-img-000020
제어부(미도시)는 거리센서(150a, 150b)의 변화값 (
Figure PCTKR2020011098-appb-img-000021
)에 모터의 제어 신호가 [수학식 2]의 수식으로 산출된다. 모터의 제어 신호는 따라 모빌리티의 주행방향 및 속도를 결정하기 위한 정보이다.
The control unit (not shown) controls the change value of the distance sensors 150a and 150b (
Figure PCTKR2020011098-appb-img-000021
), the control signal of the motor is calculated by the formula of [Equation 2]. The control signal of the motor is information for determining the driving direction and speed of the mobility.
Figure PCTKR2020011098-appb-img-000022
Figure PCTKR2020011098-appb-img-000022
여기서,
Figure PCTKR2020011098-appb-img-000023
= 모터 제어 신호 (Motor Control Signal),
Figure PCTKR2020011098-appb-img-000024
= 속도 제어 상수(Velocity-Control Constant),
Figure PCTKR2020011098-appb-img-000025
= 거리센서의 변화값을 나타낸다. 초기 위치값
Figure PCTKR2020011098-appb-img-000026
은 좌측의 초기 위치값 (
Figure PCTKR2020011098-appb-img-000027
), 우측의 초기 위치값 (
Figure PCTKR2020011098-appb-img-000028
)으로 설정될 수 있다. 또한, 좌측 거리센서(150a)가 거리센서 반사판(140a)과의 측정된 거리값은 '
Figure PCTKR2020011098-appb-img-000029
', 우측 거리센서(150b)가 거리센서 반사판(140b)과의 측정된 거리값은 '
Figure PCTKR2020011098-appb-img-000030
', 좌측 변화값은 '
Figure PCTKR2020011098-appb-img-000031
', 우측 변화값은 '
Figure PCTKR2020011098-appb-img-000032
' 으로 설정될 수 있다.
here,
Figure PCTKR2020011098-appb-img-000023
= Motor Control Signal,
Figure PCTKR2020011098-appb-img-000024
= Velocity-Control Constant,
Figure PCTKR2020011098-appb-img-000025
= Indicates the change value of the distance sensor. initial position value
Figure PCTKR2020011098-appb-img-000026
is the initial position value on the left (
Figure PCTKR2020011098-appb-img-000027
), the initial position value on the right (
Figure PCTKR2020011098-appb-img-000028
) can be set. In addition, the measured distance value of the left distance sensor 150a and the distance sensor reflector 140a is '
Figure PCTKR2020011098-appb-img-000029
', the measured distance value of the right distance sensor 150b and the distance sensor reflector 140b is '
Figure PCTKR2020011098-appb-img-000030
', the left change value is '
Figure PCTKR2020011098-appb-img-000031
', the right change value is '
Figure PCTKR2020011098-appb-img-000032
' can be set.
본 발명의 일 실시예에 따르면, 모빌리티(1000)은 전진방향으로 운전할 수 있다. 사용자가 발판 케이스(200)를 전방으로 밀어 이동시키면 이와 연결된 발판 연결부(160)도 전방으로 이동하게 된다. 그러면 전방의 제 1 탄성부재(170a) 및 제 3 탄성부재(170c)는 압축되며, 후방의 제 2 탄성부재(170b) 및 제 4 탄성부재(170d)는 팽창된다. 이때, 좌측 거리센서(150a)의 거리값(
Figure PCTKR2020011098-appb-img-000033
) 및 우측 거리센서(150b) 의 거리값(
Figure PCTKR2020011098-appb-img-000034
)은 늘어나게 되고, [수학식 1]의 수식으로 좌측 변화값(
Figure PCTKR2020011098-appb-img-000035
) 및 우측 변화값(
Figure PCTKR2020011098-appb-img-000036
)은 양수가 된다.
According to an embodiment of the present invention, the mobility 1000 may drive in a forward direction. When the user pushes and moves the footrest case 200 forward, the footrest connection unit 160 connected thereto also moves forward. Then, the first elastic member 170a and the third elastic member 170c at the front are compressed, and the second elastic member 170b and the fourth elastic member 170d at the rear are expanded. At this time, the distance value of the left distance sensor 150a (
Figure PCTKR2020011098-appb-img-000033
) and the distance value of the right distance sensor 150b (
Figure PCTKR2020011098-appb-img-000034
) is increased, and the left change value (
Figure PCTKR2020011098-appb-img-000035
) and the right change value (
Figure PCTKR2020011098-appb-img-000036
) is a positive number.
Figure PCTKR2020011098-appb-img-000037
,
Figure PCTKR2020011098-appb-img-000038
Figure PCTKR2020011098-appb-img-000037
,
Figure PCTKR2020011098-appb-img-000038
Figure PCTKR2020011098-appb-img-000039
Figure PCTKR2020011098-appb-img-000039
따라서, 발판 장치(100)가 전진하게 되며 모빌리티(1000)은 전방으로 이동하게 된다.Accordingly, the scaffolding device 100 moves forward and the mobility 1000 moves forward.
도 7은 후진 방향으로 이동하는 발판장치(100)를 보인 예시도이다. 도 7에 도시된 바와 같이, 사용자가 발판 케이스(200)를 후방으로 당기게 되면 이와 연결된 발판 연결부(160)도 후방으로 이동하게 된다. 그러면 후방의 제 2 탄성부재(170b) 및 제 4 탄성부재(170d)는 압축되며, 전방의 제 1 탄성부재(170a) 및 제 3 탄성부재(170c)는 팽창된다.7 is an exemplary view showing the scaffolding device 100 moving in the backward direction. As shown in FIG. 7 , when the user pulls the footrest case 200 rearward, the footrest connection part 160 connected thereto also moves rearward. Then, the second elastic member 170b and the fourth elastic member 170d at the rear are compressed, and the first elastic member 170a and the third elastic member 170c at the front are expanded.
각 거리센서(150a, 150b)의 거리값인 '
Figure PCTKR2020011098-appb-img-000040
' 및 '
Figure PCTKR2020011098-appb-img-000041
'은 줄어들게 되고, 거리센서(150a, 150b)의 변화값인 '
Figure PCTKR2020011098-appb-img-000042
'및 '
Figure PCTKR2020011098-appb-img-000043
'은 음수가 된다.
', which is the distance value of each distance sensor (150a, 150b)
Figure PCTKR2020011098-appb-img-000040
' and '
Figure PCTKR2020011098-appb-img-000041
' is reduced, and ' is the change value of the distance sensors 150a and 150b.
Figure PCTKR2020011098-appb-img-000042
'and '
Figure PCTKR2020011098-appb-img-000043
' becomes negative.
Figure PCTKR2020011098-appb-img-000044
,
Figure PCTKR2020011098-appb-img-000045
Figure PCTKR2020011098-appb-img-000044
,
Figure PCTKR2020011098-appb-img-000045
Figure PCTKR2020011098-appb-img-000046
Figure PCTKR2020011098-appb-img-000046
따라서, 좌측 바퀴와 우측 바퀴가 모두 역회전하여 발판 장치(100)가 후진하게 된다. 즉, 도 8에 도시된 바와 같이, 모빌리티(1000)은 후진 방향으로 이동하게 된다.Accordingly, both the left wheel and the right wheel rotate in reverse so that the scaffolding device 100 moves backward. That is, as shown in FIG. 8 , the mobility 1000 moves in the backward direction.
도 9은 모빌리티(1000)를 좌측방향으로 회전 이동하는 발판장치(100)을 보인 예시도이다. 도 9에 도시된 바와 같이, 사용자가 발판 케이스(200)의 오른쪽 부분을 밀게 되면, 우측 샤프트 유니트(130b)가 전방으로 이동하게 된다. 이때, 좌측 샤프트 유니트(130a)은 중앙에 위치하거나 약간 후방으로 이동하게 된다.9 is an exemplary view showing the scaffolding device 100 for rotationally moving the mobility 1000 in the left direction. As shown in FIG. 9 , when the user pushes the right part of the footrest case 200 , the right shaft unit 130b moves forward. At this time, the left shaft unit (130a) is located in the center or is moved slightly rearward.
그러면 도면과 같이 좌측 거리센서(150a)의 거리값(
Figure PCTKR2020011098-appb-img-000047
)은 기준점(
Figure PCTKR2020011098-appb-img-000048
)보다 줄어들게 되며, 우측 거리센서(150b)의 거리값(
Figure PCTKR2020011098-appb-img-000049
)은 기준점(
Figure PCTKR2020011098-appb-img-000050
)보다 늘어난게 된다. 이로 인해, 우측 바퀴는 전진하여 모빌리티(1000)는 좌회전 될 수 있다. 이때, 좌측 바퀴는 좌측 샤프트 유니트(130a)의 이동에 따라 원위치 유지하거나 약간 후진할 수도 있을 것이다.
Then, as shown in the figure, the distance value (
Figure PCTKR2020011098-appb-img-000047
) is the reference point (
Figure PCTKR2020011098-appb-img-000048
), and the distance value (
Figure PCTKR2020011098-appb-img-000049
) is the reference point (
Figure PCTKR2020011098-appb-img-000050
) will be greater than Due to this, the right wheel moves forward and the mobility 1000 may turn left. At this time, the left wheel may be maintained at its original position or slightly backward according to the movement of the left shaft unit 130a.
Figure PCTKR2020011098-appb-img-000051
,
Figure PCTKR2020011098-appb-img-000052
Figure PCTKR2020011098-appb-img-000051
,
Figure PCTKR2020011098-appb-img-000052
즉, 도 10에 도시된 바와 같이, 우측 바퀴가 정회전하여 모빌리티(1000)가 반시계 방향으로 회전하게 된다.That is, as shown in FIG. 10 , the right wheel rotates forward and the mobility 1000 rotates counterclockwise.
도 11은 모빌리티(1000)를 우측방향으로 회전 이동하는 발판장치(100)을 보인 예시도이다. 도 11에 도시된 바와 같이, 사용자가 발판 케이스(200)의 왼쪽 부분을 밀게 되면, 좌측 샤프트 유니트(130a)가 전방으로 이동하게 되고 이때, 우측 샤프트 유니트(130b)는 중앙에 위치하거나 약간 후방으로 이동하게 된다.11 is an exemplary view showing the scaffolding device 100 for rotating and moving the mobility 1000 in the right direction. 11, when the user pushes the left part of the footrest case 200, the left shaft unit 130a moves forward. At this time, the right shaft unit 130b is located in the center or slightly rearward. will move
도 11에 도시된 바와 같이, 좌측 거리센서(150a) 거리값(
Figure PCTKR2020011098-appb-img-000053
)은 기준점(
Figure PCTKR2020011098-appb-img-000054
)보다 큰 값을 가지며, 오른쪽의 거리센서(150b) 거리값(
Figure PCTKR2020011098-appb-img-000055
)는 기준점(
Figure PCTKR2020011098-appb-img-000056
)보다 작은 값을 나타낸다. 이로 인해, 좌측 바퀴는 전진을 하게 되고 모빌리티(1000)이 우회전 될 수 있다. 이때, 우측 바퀴는 우측 샤프트 유니트(130b)의 이동에 따라 원위치 유지하거나 약간 후진할 수도 있을 것이다.
As shown in FIG. 11 , the distance value of the left distance sensor 150a (
Figure PCTKR2020011098-appb-img-000053
) is the reference point (
Figure PCTKR2020011098-appb-img-000054
), and the distance value of the distance sensor 150b on the right (
Figure PCTKR2020011098-appb-img-000055
) is the reference point (
Figure PCTKR2020011098-appb-img-000056
) is smaller than the value. Due to this, the left wheel may move forward and the mobility 1000 may turn right. At this time, the right wheel may be maintained at the original position or slightly backward according to the movement of the right shaft unit (130b).
Figure PCTKR2020011098-appb-img-000057
,
Figure PCTKR2020011098-appb-img-000058
Figure PCTKR2020011098-appb-img-000057
,
Figure PCTKR2020011098-appb-img-000058
즉, 도 12에 도시된 바와 같이, 좌측 바퀴는 정회전하여 모빌리티(1000)은 시계방향으로 회전한다. That is, as shown in FIG. 12 , the left wheel rotates forward and the mobility 1000 rotates clockwise.
도 13은 모빌리티(1000)를 후진 및 좌측방향으로 운전하기 위해 발판장치(100)를 보인 예시도이다. 도 13에 도시된 바와 같이, 사용자가 발판 케이스(200)의 후방 왼쪽 부분을 당기게 되면, 좌측 샤프트 유니트(130a)만 후방으로 이동하게 되고 우측 샤프트 유니트(130b)는 샤프트(120) 중앙에 위치하게 된다.13 is an exemplary view showing the scaffolding device 100 for driving the mobility 1000 in the reverse and left directions. 13, when the user pulls the rear left part of the footrest case 200, only the left shaft unit 130a moves backward and the right shaft unit 130b is located in the center of the shaft 120. do.
그러면 도면과 같이 왼쪽의 거리센서(150a) 거리값(
Figure PCTKR2020011098-appb-img-000059
)는 기준점(
Figure PCTKR2020011098-appb-img-000060
)보다 작은 값을 나타내고 오른쪽의 거리센서(150b) 거리값(
Figure PCTKR2020011098-appb-img-000061
)는 초기 위치(
Figure PCTKR2020011098-appb-img-000062
)와 일치하게 된다. 이로 인해, 좌측 바퀴는 후방으로 이동하고 우측 바퀴는 정지상태가 되어 모빌리티(1000)은 후진하며 좌회전할 수 있다.
Then, as shown in the figure, the distance sensor 150a on the left
Figure PCTKR2020011098-appb-img-000059
) is the reference point (
Figure PCTKR2020011098-appb-img-000060
) and the distance value of the distance sensor 150b on the right (
Figure PCTKR2020011098-appb-img-000061
) is the initial position (
Figure PCTKR2020011098-appb-img-000062
) will match. For this reason, the left wheel moves backward and the right wheel becomes stationary, so that the mobility 1000 may reverse and turn left.
Figure PCTKR2020011098-appb-img-000063
,
Figure PCTKR2020011098-appb-img-000064
Figure PCTKR2020011098-appb-img-000063
,
Figure PCTKR2020011098-appb-img-000064
즉, 도 14에 도시된 바와 같이, 모빌리티(1000)는 좌측 바퀴와 우측 바퀴의 속도차이에 후진하며 좌회전한다.That is, as shown in FIG. 14 , the mobility 1000 moves backward and turns left at the speed difference between the left wheel and the right wheel.
한편, 사용자가 발판장치(100)를 더 이상 밀거나 당기게 되지 않게 되면, 시트프 유니트(130a, 130b)는 제 1 내지 제 4 탄성부재(170a ~ 170d)에 의해 샤프트(120) 중앙에 위치된다. 이때, 모빌리티(1000)은 정지상태가 되며 사용자는 모빌리티(1000)에서 하차할 수 있다.On the other hand, when the user no longer pushes or pulls the footrest device 100, the seat units 130a and 130b are located in the center of the shaft 120 by the first to fourth elastic members 170a to 170d. . At this time, the mobility 1000 is in a stationary state, and the user can get off the mobility 1000 .
도 15는 본 발명의 일 실시예에 따른 모빌리티(1000)의 제어 방법을 설명하기 위한 순서도이다. 15 is a flowchart illustrating a method of controlling the mobility 1000 according to an embodiment of the present invention.
사용자가 탑승부(300)에 탑승하면 탑승 감지센서(미도시)는 사용자의 탑승 여부를 검출한다. 이때, 사용자의 발은 발판 케이스(200)에 위치한다. 탑승 감지센서는 탑승부(300)에 사용자가 탑승한 것을 감지한 경우, 모빌리티(1000)은 운전이 가능한 상태가 되며 사용자는 발판 케이스(200)를 밀거나 당겨 움직일 수 있다. 사용자의 발판 케이스(200) 조작에 따라 발판 연결부(160)는 이동하게 된다.When the user boards the boarding unit 300 , a boarding detection sensor (not shown) detects whether the user boards. At this time, the user's feet are located on the footrest case 200 . When the boarding sensor detects that the user boards the boarding unit 300 , the mobility 1000 becomes a driving state and the user can push or pull the footrest case 200 . The footrest connection unit 160 moves according to the user's manipulation of the footrest case 200 .
S100단계에서, 서로 이격된 샤프트(120)에는 샤프트 유니트(130a, 130b)가 각각 끼워져 있으며, 발판 연결부(160)의 이동에 따라 샤프트 유니트(130a, 130b)가 이동하게 된다. 이때, 샤프트 유니트(130a, 130b)와 결합된 거리센서 반사판(150a, 150b)의 위치도 이동하게 된다.In step S100 , the shaft units 130a and 130b are respectively fitted to the shafts 120 spaced apart from each other, and the shaft units 130a and 130b move according to the movement of the footrest connection part 160 . At this time, the positions of the distance sensor reflectors 150a and 150b coupled to the shaft units 130a and 130b are also moved.
S200단계에서, 프레임의 일 단면에 설치된 한 쌍의 거리센서(150a, 150b)가 상기 제1, 제2 샤프트 유니트(130a, 130b)의 이동에 따른 각각의 거리값을 감지한다. 구체적으로, 상기 거리센서(150a, 150b)는 샤프트 유니트(130a, 130b)과 결합된 거리센서 반사판(140a, 140b)까지의 거리값 (
Figure PCTKR2020011098-appb-img-000065
)을 감지한다.
In step S200 , a pair of distance sensors 150a and 150b installed on one end face of the frame senses respective distance values according to the movement of the first and second shaft units 130a and 130b. Specifically, the distance sensors 150a and 150b are distance values (
Figure PCTKR2020011098-appb-img-000065
) is detected.
S300단계에서, 감지된 거리값 (
Figure PCTKR2020011098-appb-img-000066
)을 이용하여 변화값 (
Figure PCTKR2020011098-appb-img-000067
)을 연산하고 상기 변화값에 따라 전진, 후진, 좌회전, 우회전으로의 운전방향을 결정하여 모빌리티(1000)의 운전을 제어한다.
In step S300, the detected distance value (
Figure PCTKR2020011098-appb-img-000066
) using the change value (
Figure PCTKR2020011098-appb-img-000067
) and control the operation of the mobility 1000 by determining the driving directions of forward, backward, left turn, and right turn according to the change value.
한편, 본 발명의 모빌리티(1000)는 잠재적인 사용자를 위해 자율주행 시스템을 포함할 수 있다. 잠재적 사용자가 모빌리티(1000) 근방에 접근하면, 모빌리티(1000)는 정지하게 되며 탑승 감지센서가 사용자의 탑승 여부를 검출할 수 있다.Meanwhile, the mobility 1000 of the present invention may include an autonomous driving system for potential users. When a potential user approaches the vicinity of the mobility 1000 , the mobility 1000 stops and the occupancy sensor may detect whether the user is on board.
또한, 본 발명의 모빌리티(1000)는 발판장치(100)를 상부에 위치시켜 손으로 판을 제어할 수도 있다.In addition, the mobility 1000 of the present invention may control the plate by hand by placing the scaffolding device 100 on the upper portion.
이상과 같이 본 발명의 도시된 실시 예를 참고하여 설명하고 있으나, 이는 예시적인 것들에 불과하며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자라면 본 발명의 요지 및 범위에 벗어나지 않으면서도 다양한 변형, 변경 및 균등한 타 실시 예들이 가능하다는 것을 명백하게 알 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적인 사상에 의해 정해져야 할 것이다.Although described with reference to the illustrated embodiments of the present invention as described above, these are merely exemplary, and those of ordinary skill in the art to which the present invention pertains can use various functions without departing from the spirit and scope of the present invention. It will be apparent that modifications, variations, and other equivalent embodiments are possible. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.
양발로 주행방향을 조정하면서 운전할 수 있는 퍼스널 모빌리티 등의 기술 분야에 사용될 수 있다.It can be used in technical fields such as personal mobility that can be driven while controlling the driving direction with both feet.

Claims (8)

  1. 발판부 프레임;scaffold frame;
    상기 발판부 프레임 상에 설치되어 있는 한 개 이상의 샤프트;one or more shafts installed on the scaffolding frame;
    상기 샤프트의 축 방향을 따라 이동하는 한 개 이상의 샤프트 유니트; one or more shaft units moving along an axial direction of the shaft;
    상기 샤프트 유니트에 연결되어 있는 한 개 이상의 거리센서 반사판; one or more distance sensor reflectors connected to the shaft unit;
    운전방향을 결정하도록 상기 거리센서 반사판과의 거리 값을 감지하는 복수의 거리센서;a plurality of distance sensors for detecting a distance value with the distance sensor reflector to determine a driving direction;
    상기 샤프트 유니트가 끼워지도록 한 개 이상의 장공이 형성되며, 상부에 발판 케이스와 결합하는 발판 연결부;One or more long holes are formed so that the shaft unit is fitted, the footrest connection portion coupled to the footrest case on the upper portion;
    상기 샤프트에 설치되며 상기 발판 연결부가 기준점에 유지되도록 하는 제1 내지 제4 탄성부재;first to fourth elastic members installed on the shaft and configured to maintain the footrest connection part at a reference point;
    상기 거리 센서의 변화값에 따라 바퀴의 모터 속도를 제어하는 제어부; 를 포함하는 모빌리티.a controller for controlling the motor speed of the wheel according to the change value of the distance sensor; Mobility that includes.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 발판부 프레임에 상기 샤프트를 고정시키기 위한 샤프트 고정홀더;를 더 포함하는 모빌리티.Mobility further comprising a; shaft fixing holder for fixing the shaft to the scaffold frame.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제1 내지 제4 탄성부재는The first to fourth elastic members are
    탄성력을 가진 물체로 상기 샤프트의 축에 구비되는 것을 특징으로 하는 모빌리티.Mobility, characterized in that provided on the shaft of the shaft as an object having an elastic force.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 발판 연결부가 회전할 수 있도록 상기 샤프트 유니트와 연결되어 있는 베어링;을 더 포함하는 모빌리티.Mobility further comprising a; bearing connected to the shaft unit so that the footrest connection part rotates.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 발판부 프레임의 일측에 결합되며, 사용자를 지지하는 탑승부;를 포함하는 모빌리티.Mobility including; a boarding unit coupled to one side of the scaffolding frame and supporting the user.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 거리센서의 거리값에 따라 전진, 후진, 좌회전, 우회전으로의 운전방향이 결정되는 것을 특징으로 하는 모빌리티.Mobility, characterized in that the driving direction of forward, backward, left turn, and right turn is determined according to the distance value of the distance sensor.
  7. 주행 속도 및 방향 조작 장치를 포함하는 모빌리티이고,Mobility including a driving speed and direction control device,
    한 개 이상의 샤프트에 끼워진 샤프트 유니트가 이동하는 단계;moving a shaft unit fitted to one or more shafts;
    프레임의 일 단면에 설치된 복수의 거리센서가 샤프트 유니트의 이동에 따른 각각의 거리값을 감지하는 단계;detecting, by a plurality of distance sensors installed on one end face of the frame, respective distance values according to the movement of the shaft unit;
    상기 거리값에 따라 상기 모빌리티의 운전을 제어하는 단계;를 포함하는 모빌리티 제어방법.and controlling the operation of the mobility according to the distance value.
  8. 제 7 항에 있어서,8. The method of claim 7,
    상기 샤프트의 중앙에 상기 샤프트 유니트가 위치한 경우 상기 모빌리티는 정지상태인 단계를 포함하고, When the shaft unit is located in the center of the shaft, the mobility comprises the step of being in a stationary state,
    상기 모빌리티 정지상태에서 상기 샤프트 유니트를 중심으로 상기 샤프트에 끼워진 제1 내지 제4 탄성부재는 탄성율을 가지는 것을 특징으로 하는 모빌리티 제어방법.Mobility control method, characterized in that the first to fourth elastic members fitted to the shaft with the shaft unit as a center in the mobility stop state have a modulus of elasticity.
PCT/KR2020/011098 2020-02-07 2020-08-20 Mobility device comprising driving speed and direction control device and controlling method therefor WO2021157802A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200014799 2020-02-07
KR10-2020-0014799 2020-02-07
KR10-2020-0069113 2020-06-08
KR1020200069113A KR102288041B1 (en) 2020-02-07 2020-06-08 Mobility including driving speed and direction control device and control method of the same

Publications (1)

Publication Number Publication Date
WO2021157802A1 true WO2021157802A1 (en) 2021-08-12

Family

ID=77200033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011098 WO2021157802A1 (en) 2020-02-07 2020-08-20 Mobility device comprising driving speed and direction control device and controlling method therefor

Country Status (1)

Country Link
WO (1) WO2021157802A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030205881A1 (en) * 2001-05-04 2003-11-06 Shapiro Richard N. Wheeled personal mobility devices with collapsible wheel axle assemblies and integrated steering and propulsion linkages
JP4816058B2 (en) * 2005-12-16 2011-11-16 トヨタ自動車株式会社 Traveling apparatus and control method thereof
KR101105667B1 (en) * 2009-11-18 2012-01-18 한국생산기술연구원 A standing-up type ride robot directed by recognizing passenger's posture
KR20160069780A (en) * 2014-12-09 2016-06-17 현대자동차주식회사 Personal transportation
US20170072989A1 (en) * 2014-05-14 2017-03-16 Aissam MOUJOUD Foot-operated personal vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030205881A1 (en) * 2001-05-04 2003-11-06 Shapiro Richard N. Wheeled personal mobility devices with collapsible wheel axle assemblies and integrated steering and propulsion linkages
JP4816058B2 (en) * 2005-12-16 2011-11-16 トヨタ自動車株式会社 Traveling apparatus and control method thereof
KR101105667B1 (en) * 2009-11-18 2012-01-18 한국생산기술연구원 A standing-up type ride robot directed by recognizing passenger's posture
US20170072989A1 (en) * 2014-05-14 2017-03-16 Aissam MOUJOUD Foot-operated personal vehicle
KR20160069780A (en) * 2014-12-09 2016-06-17 현대자동차주식회사 Personal transportation

Similar Documents

Publication Publication Date Title
WO2017131292A1 (en) Attachable/detachable electric device and wheelchair including same
WO2016103729A1 (en) Dual arm robot teaching system and dual arm robot teaching method
WO2018026180A1 (en) Driving control method of in-wheel drive for electric bicycle
WO2017007135A1 (en) Elderly walking aid apparatus having forearm rest
WO2020209393A1 (en) Handle assembly of cart having power assist function and cart
WO2021157802A1 (en) Mobility device comprising driving speed and direction control device and controlling method therefor
WO2015060534A1 (en) Steering system and method for controlling steering system
WO2021246635A1 (en) Mobile robot
WO2019117481A1 (en) Kickboard device
WO2018120534A1 (en) Electric-assist skateboard and control method therefor
WO2011096693A2 (en) Leg stretching exercise machine
WO2020262997A2 (en) Manual wheelchair propulsion aid device using mechanical self-energizing action
WO2022039296A1 (en) Treatment assistance equipment
WO2014192991A1 (en) Apparatus for adjusting height and angle of footrest support for construction equipment
WO2020111629A1 (en) Drifting electric scooter
WO2012062082A1 (en) Rocker controlled engineering vehicle with independently driven double sides wheel groups
WO2015083967A1 (en) Probe structure for thermotherapy device
WO2021104091A1 (en) Electric walking stick, posture detection device and robot
WO2022114706A1 (en) Car-shaped travel trolley for children
WO2013085220A1 (en) Dual processor-based robot system capable of changing driving structure
WO2021091196A1 (en) One-wheeled electric skateboard
KR102288041B1 (en) Mobility including driving speed and direction control device and control method of the same
WO2020149482A1 (en) Underwater thruster having underwater data transmission device attached thereto
WO2022092366A1 (en) Two-wheeler and ignition control method thereof
WO2022145915A1 (en) Exoskeleton-type rehabilitation robot system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917451

Country of ref document: EP

Kind code of ref document: A1