WO2021157750A1 - Capacitance-type state measuring device using sensor-mounted wafer - Google Patents

Capacitance-type state measuring device using sensor-mounted wafer Download PDF

Info

Publication number
WO2021157750A1
WO2021157750A1 PCT/KR2020/001588 KR2020001588W WO2021157750A1 WO 2021157750 A1 WO2021157750 A1 WO 2021157750A1 KR 2020001588 W KR2020001588 W KR 2020001588W WO 2021157750 A1 WO2021157750 A1 WO 2021157750A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal electrode
capacitance value
change
capacitance
wafer
Prior art date
Application number
PCT/KR2020/001588
Other languages
French (fr)
Korean (ko)
Inventor
이동석
조승래
Original Assignee
(주)제이디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이디 filed Critical (주)제이디
Priority to PCT/KR2020/001588 priority Critical patent/WO2021157750A1/en
Publication of WO2021157750A1 publication Critical patent/WO2021157750A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present invention relates to a state measuring device for monitoring a semiconductor process, and in particular, a state measuring device for measuring the state of plasma or gas in a chamber in a capacitive manner by providing a metal electrode for forming capacitance on a sensor-mounted wafer is about
  • the semiconductor device manufacturing process includes an ion implantation process, a growth and deposition process, an exposure process, an etching process, and the like. During these processes, it is very important to monitor the state inside the chamber. Accordingly, a technique for monitoring the condition inside the chamber is continuously being studied.
  • the Langmuir probe is the most common technique for measuring the electron density or ion density of plasma used in a semiconductor manufacturing process.
  • the Langmuir probe inserts a probe into the chamber from the outside and measures the plasma characteristics by varying the power (voltage) applied to the probe. On the contrary, when a positive potential is applied to the probe, the electrons in the plasma are collected by the probe, and a current is generated by the electrons. At this time, after measuring the current generated by ions or electrons, the plasma density could be measured by analyzing the correlation with the voltage applied to the probe.
  • plasma oscillation probes and plasma absorption probes have been developed as tools for measuring plasma characteristics, but plasma oscillation probes have limitations in that they can only be measured under operating conditions that can withstand a hot wire at high pressure. There were disadvantages in that it was cumbersome to go through a calibration process and involved a complicated calculation process. After all, this improved technology also had a problem in that the effectiveness was lowered.
  • the SOW sensor and circuit for sensing are built into the wafer, the SOW is loaded into the chamber to directly perform the desired sensing operation inside the chamber.
  • high-frequency power such as plasma in addition to temperature
  • the object of the present invention was devised in consideration of the above points, and in particular, to form a capacitance in a metal electrode provided inside a sensor-mounted wafer, and to measure the capacitance value or its change according to the change in the physical amount of a specific material in the chamber.
  • An object of the present invention is to provide a capacitive state measuring device using a sensor-mounted wafer that calculates and measures the state of plasma or gas in the chamber.
  • a capacitive state measuring apparatus using a sensor-mounted wafer for achieving the above object is characterized by comprising: a first metal electrode disposed on a bottom surface of a first trench formed in the wafer; a second metal electrode disposed on a bottom surface of a second trench formed in the wafer; a third metal electrode spaced apart from the first metal electrode by a predetermined distance and disposed in common on a bottom surface of the first trench and a bottom surface of the second trench to be spaced apart from the second metal electrode by a predetermined distance; a signal generator for generating and applying an excitation signal of a reference frequency to the third metal electrode; a mux for serially outputting discharge signals output in parallel from the first metal electrode and the second metal electrode; a converter for converting the discharge signal for each metal electrode output from the mux into a digital signal; And a first capacitance value induced between the first metal electrode and the third metal electrode is calculated using the digital signal, and the first capacitance value induced between the second metal electrode and the third
  • a first capacitor commonly connected to the first metal electrode and the third metal electrode to adjust the first capacitance value, and the second metal electrode and the third metal electrode are commonly connected to the A second capacitor for adjusting the second capacitance value may be further included.
  • the first capacitor may have a relatively large capacitance value compared to the first capacitance value
  • the second capacitor may have a relatively large capacitance value compared to the second capacitance value
  • a third capacitor connected in series to the first metal electrode to adjust a range of a first capacitance value adjusted by the first capacitor to a range measurable by the control unit;
  • a fourth capacitor connected in series to the electrode to adjust the range of the second capacitance value adjusted by the second capacitor to the range of the value measurable by the controller may be further included.
  • control unit may further include a communication unit for transmitting the first capacitance value, the second capacitance value, the change in the first capacitance value, and the change in the second capacitance value calculated by the control unit to the outside.
  • the first metal electrode, the second metal electrode, the third metal electrode, the signal generator, the converter, the control unit, and the communication unit may be isolated inside the wafer.
  • the controller may calculate a change in the discharge amount of the first and second capacitances according to a change in a physical amount of a specific material in the chamber in which the wafer is loaded.
  • the controller may control the signal generator to adjust the reference frequency of the excitation signal according to the type of the material.
  • the material may include plasma or gas supplied to the interior of the chamber.
  • the present invention there is no physical loss such as contamination or abrasion of the metal electrode used as a probe because the entire circuit as well as the metal electrode is configured to be isolated from the wafer.
  • the change in the value of the capacitance formed by applying a signal to the metal electrode or its change is calculated to measure the change in the physical quantity (plasma density change, gas density change, vacuum state change, etc.) in the chamber.
  • the capacitance value or change thereof is calculated in a plurality of regions of the sensor-mounted waiter and compare them for each region, so that it is possible to monitor the change in the physical amount of the material present in the chamber during the semiconductor process as well as the uniformity in the chamber. As a result, simpler and more accurate monitoring becomes possible.
  • FIG. 1 is a block diagram showing the configuration of a capacitive state measuring device using a sensor-mounted wafer according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a shape in which a metal electrode is provided inside the sensor-mounted wafer in the capacitive state measuring device using the sensor-mounted wafer according to the present invention
  • FIG. 3 is a plan view showing a structure in which a plurality of metal electrodes are disposed on the sensor-mounted wafer in the capacitive type state measuring device using the sensor-mounted wafer according to the present invention
  • FIG. 4 is a diagram showing an example of a configuration in which an apparatus according to the present invention is mounted on a sensor-mounted wafer.
  • FIG. 1 is a block diagram showing the configuration of a capacitive type state measuring apparatus using a sensor mounted wafer according to an embodiment of the present invention
  • FIG. 2 is a capacitive type state measurement using a sensor mounted wafer according to the present invention.
  • FIG. 3 is a capacitive state measuring device using a sensor-mounted wafer according to the present invention, in which a plurality of metal electrodes are disposed on the sensor-mounted wafer
  • FIG. 4 is a diagram showing a configuration example in which the device according to the present invention is mounted on a sensor-mounted wafer.
  • the state measuring device is configured to include metal electrodes 30 , 31 , 32 , a signal generator 40 , a converter 50 , and a controller 60 . .
  • the metal electrodes 30 , 31 , and 32 are formed to be isolated inside the sensor-mounted wafer.
  • the first wafer 10 and the second wafer 20 are bonded in a vacuum atmosphere so that the inside is outside. It is desirable to form a shielded state from
  • the sensor-mounted wafer may be shielded inside to form a vacuum state.
  • the first wafer 10 or the second wafer 20 constituting the sensor-mounted wafer may be a silicon-based wafer or a ceramic-based wafer having good insulation, robustness, and thermal conductivity.
  • FIG. 2 shows a structure in which the metal electrodes 30, 31, and 32 are disposed inside the sensor-mounted wafer.
  • the sensor-mounted wafer includes a first trench 11 and a second trench 12 forming a recess of a predetermined depth, and a first metal electrode 31 and a third metal electrode 30 ) is formed inside the first trench 11 , and the second metal electrode 32 and the third metal electrode 30 are formed inside the second trench 12 .
  • the first metal electrode 31 is disposed on the bottom of the first trench 11 formed in the sensor-mounted wafer, and the second metal electrode 32 is disposed on the bottom of the second trench 12 formed in the sensor-mounted wafer.
  • the third metal electrode 30 is disposed in common in the first trench 11 and the second trench 12 .
  • the third metal electrode 30 is spaced apart from the first metal electrode 31 by a predetermined distance and is spaced apart from the second metal electrode 32 by a predetermined distance.
  • the third metal electrode 30 is commonly disposed on the bottom surface of the first trench 11 and the bottom surface of the second trench 12 .
  • the first metal electrode 31 and the third metal electrode 30 form a pair
  • the second metal electrode 32 and the third metal electrode 30 form a pair
  • the metal electrodes 30 , 31 , and 32 may be formed on either the first wafer 10 or the second wafer 20 constituting the sensor-mounted wafer, and the first wafer 10 or the second wafer ( 20) are disposed to be spaced apart from each other by a predetermined distance from the bottom of the trenches 11 and 12 formed in any one of them.
  • an insulating film (not shown) may be provided between the metal electrodes 30 , 31 , and 32 and the sensor-mounted wafer.
  • trenches 11 and 12 are first formed in the first wafer 10 corresponding to the upper wafer among wafers constituting the sensor-mounted wafer.
  • the metal electrodes 30 , 31 , and 32 may be formed to be spaced apart from each other on the insulating film (not shown).
  • the insulating layer may be a silicon oxide layer (SiO 2 ) or a silicon nitride layer (SiNx).
  • the first metal electrode 31 and the third metal electrode 30 are spaced apart by a predetermined distance from the first trench region 300 in which the first trench 11 is formed, and the second metal electrode 32 and the third metal electrode ( 30 is spaced apart by a predetermined distance from the second trench region 310 in which the second trench 12 is formed. Accordingly, when a signal is applied to the third metal electrode 30 , a first capacitance Cv1 is formed in the first trench region 300 and a second capacitance Cv2 is formed in the second trench region 310 . .
  • the device of the present invention measures the value of the first capacitance Cv1 formed between the first metal electrode 31 and the third metal electrode 30 and the change thereof, and also the second metal electrode 32 and the third metal electrode
  • the state inside the chamber in which the sensor-mounted wafer is loaded is monitored by measuring the value of the second capacitance (Cv2) formed between (30) and its change.
  • the first metal electrode 31 and the third metal electrode ( 30) by measuring the first capacitance value and its change amount induced between the Monitor the condition inside the chamber.
  • Measuring the first and second capacitance values and their changes formed as the device of the present invention applies a signal to the third metal electrode 30 is induced between the first metal electrode 31 and the third metal electrode 30 .
  • the signal generator 40 is configured to form capacitance in the first and second trench regions 300 and 310 , respectively, and generates and applies an excitation signal of a reference frequency to the third metal electrode 30 .
  • the signal generator 40 adjusts the reference frequency of the applied excitation signal according to the type of material to be monitored. That is, the signal generator 40 applies excitation signals of different frequencies to the third metal electrode 30 according to the type of material to be monitored.
  • the control unit 60 controls to adjust the reference frequency of the excitation signal according to the type of material to be monitored, so that the signal generating unit 40 transmits the excitation signal of a different frequency according to the type of material to the third metal electrode 30 . control to apply.
  • the control unit 60 adjusts the reference frequency to an optimal frequency to which the plasma or a specific gas reacts.
  • control unit 60 adjusts the reference frequency of the signal generation unit 40 according to which process is used when the sensor-mounted wafer 100 is loaded into the chamber, and accordingly the signal generation unit 40 controls the control unit. (60) generates an excitation signal of the adjusted frequency.
  • the excitation signal may be an AC waveform such as a sine wave, a square wave, or a triangular wave
  • the signal generator 40 may be implemented as a Field Programmable Gate Array (FPGA) or a Complex Programmable Logic Device (CPLD).
  • FPGA Field Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • the converter 50 converts the discharge signals output from the first and second metal electrodes 31 and 32 into digital signals.
  • the converter 50 converts the discharge signal into a digital signal of a predetermined bit string.
  • the mux 80 is provided at the input end of the converter 50 .
  • the mux 80 converts the discharge signal for each metal electrode into a serial signal and outputs it to the converter 50 . do. That is, the mux 80 serially outputs discharge signals output in parallel from the first metal electrode 31 and the second metal electrode 32 .
  • the converter 50 converts the discharge signal for each metal electrode output from the mux 80 into a digital signal.
  • the control unit 60 calculates the value of the first capacitance Cv1 induced between the first metal electrode 31 and the third metal electrode 30 and the amount of change thereof using the digital signal output from the conversion unit 50 , and Also, the value of the second capacitance Cv2 induced between the second metal electrode 32 and the third metal electrode 30 and the amount of change thereof are calculated.
  • the digital signal used to calculate the first capacitance (Cv1) value and its change amount and the digital signal used to calculate the second capacitance (Cv2) value and its change amount are serially output signals at different timings.
  • the controller 60 uses the discharge information converted into a digital signal, the induced between the first metal electrode 31 and the third metal electrode 30 as the physical amount of a specific material changes in the chamber in which the sensor-mounted wafer is loaded.
  • the discharge amount of the first capacitance and the change in the discharge amount can be calculated, and the discharge amount of the second capacitance induced between the second metal electrode 32 and the third metal electrode 30 and the change in the discharge amount can be calculated.
  • the converter 50 and the controller 60 may be connected to each other by a Serial Peripheral Interconnect (SPI) bus or an Inter-Integrated Circuit (I2C) bus.
  • SPI Serial Peripheral Interconnect
  • I2C Inter-Integrated Circuit
  • control unit 60 calculates a change in the discharge amount of the first and second capacitances formed between the metal electrodes as the physical amount of a specific material changes in the space (inside the chamber) in which the sensor-mounted wafer 100 is loaded, respectively.
  • the material may include plasma or gas supplied to the space (inside the chamber).
  • the device of the present invention further includes a first capacitor (Cd1) and a third capacitor (Cr1) for adjusting the value of the first capacitance (Cv1) induced between the first metal electrode (31) and the third metal electrode (30) and a second capacitor (Cd2) and a fourth capacitor (Cr2) for adjusting the value of the second capacitance (Cv2) induced between the second metal electrode (32) and the third metal electrode (30) .
  • a first capacitor (Cd1) and a third capacitor (Cr1) for adjusting the value of the first capacitance (Cv1) induced between the first metal electrode (31) and the third metal electrode (30)
  • a second capacitor (Cd2) and a fourth capacitor (Cr2) for adjusting the value of the second capacitance (Cv2) induced between the second metal electrode (32) and the third metal electrode (30) .
  • the first capacitor Cd1 is commonly connected to the first metal electrode 31 and the third metal electrode 30 so that a first capacitance induced between the first metal electrode 31 and the third metal electrode 30 ( Cv1) Adjust the value.
  • the first capacitor Cd1 is formed on the first metal electrode 31 so that the value of the first capacitance Cv1 induced between the first metal electrode 31 and the third metal electrode 30 is not calculated as a negative value. It may have a relatively large capacitance value compared to the first capacitance value induced between the and the third metal electrode 30 .
  • the second capacitor Cd2 is commonly connected to the second metal electrode 32 and the third metal electrode 30 so that a second capacitance induced between the second metal electrode 32 and the third metal electrode 30 ( Cv2) Adjust the value.
  • the second capacitor Cd2 is formed by the second metal electrode 32 so that the value of the second capacitance Cv2 induced between the second metal electrode 32 and the third metal electrode 30 is not calculated as a negative value. It may have a relatively large capacitance value compared to the second capacitance value induced between the and the third metal electrode 30 .
  • the controller 60 may calculate the capacitance value adjusted by the first and second capacitors Cd1 and Cd2 and also calculate a change in the adjusted capacitance value.
  • the third capacitor Cr1 is connected in series to the first metal electrode 31 at the rear end of the first capacitor Cd1 to control the range of the first capacitance value adjusted by the first capacitor Cd1 by the controller 60 Adjust to the range of measurable values.
  • the fourth capacitor Cr2 is connected in series to the second metal electrode 32 at the rear end of the second capacitor Cd2 to control the range of the second capacitance value adjusted by the second capacitor Cd2 by the controller 60 Adjust to the range of measurable values.
  • the control unit 60 controls a first capacitance value induced between the first metal electrode 31 and the third metal electrode 30 or a second capacitance induced between the second metal electrode 32 and the third metal electrode 30 . If the capacity value is a fairly large value, it may not be possible to calculate it.
  • the third and fourth capacitors Cr1 and Cr2 allow the controller 60 to calculate respective capacitances regardless of the magnitude of the induced first and second capacitance values.
  • control unit 60 calculates the capacitance value and the amount of change thereof, it is possible to detect a change in the physical amount of the material present in the chamber, and compare the capacitance value in each trench region or compare the change amount of the capacitance in the chamber. The uniformity of the substances present in it can also be detected.
  • the device of the present invention further includes a communication unit 70 for transmitting the result calculated by the control unit 60, that is, the capacitance value calculated by the control unit 60 and the change in the capacitance value, to the outside in conjunction with the control unit 60 can do.
  • an electric field is formed in the chamber as a high-frequency power for forming plasma is applied.
  • a change in the state of the plasma can be measured.
  • an electric field of a certain level is formed in the chamber by the high-frequency power, and in this state, the capacitance induced in the different trench regions 300 and 310 by the signal applied to the third metal electrode 30 is uniform. Charging and discharging can be repeated at high speed.
  • the discharge rate (discharge amount) of the capacitance induced in each trench region 300 and 310 may change, and the rate (discharge amount) at each trench region 300 and 310 is different. may be discharged with
  • By calculating the change in the discharge rate (discharge amount) according to the change of the electric field it is possible to detect the uniformity by comparing the discharge rate (discharge amount) as well as the plasma state change in the chamber.
  • the first metal electrode 31 , the second metal electrode 32 , the third metal electrode 30 , the first capacitor Cd1 and the second capacitor Cd2 ), the third capacitor (Cr1), the fourth capacitor (Cr2), the signal generating unit 40, the mux 80, the converting unit 50, the control unit 60, and the communication unit 60 are inside the sensor-mounted wafer. Isolation is preferred.
  • the high-frequency component is included in the region except for the trench regions 300 and 310 where the metal electrode pair is formed.
  • a metal layer 15 to block the inflow may be further provided.
  • the signal generating unit 40, the converting unit 50, the control unit 60, and the communication unit 70 may be covered with the metal layer 15 formed on the sensor-mounted wafer.
  • the metal layer 15 blocking the inflow of high-frequency components may be formed on at least one of the upper surface and the lower surface of the first wafer 10 .
  • the metal layer may be formed only on the lower surface of the first wafer 10
  • a metal layer may be formed only on the upper surface of the first wafer 10 .
  • the metal layer is formed only on the upper surface of the first wafer 10
  • the passivation layer may be an oxide layer.
  • the insulating layer 16 may be provided between the metal electrodes 30 , 31 , and 32 and the metal layer 15 .
  • the metal layer 15 that blocks the inflow of the high-frequency component is formed in the region except for the trench regions 300 and 310 in which the metal electrode pairs are formed, and is not formed entirely on the upper surface and/or the lower surface of the first wafer 10 .
  • the apparatus of the present invention arranges a plurality of paired metal electrodes on the sensor-mounted wafer to monitor the uniformity as well as the change in the physical amount of the material present in the chamber during the semiconductor process.
  • the apparatus of the present invention can monitor process conditions such as plasma state change, plasma uniformity, gas state change, gas uniformity, vacuum state change, etc. by disposing a plurality of paired metal electrodes in a plurality of regions of the sensor-mounted wafer.
  • a plurality of pairs of metal electrodes are provided in the trench regions 300 and 310 arranged at a uniform spacing as shown in FIG. 4 .
  • the uniformity can be measured from whether an error occurs in the plasma state change measured in the metal electrode pairs formed in the trench regions 300 and 310 .
  • the metal electrode pair may be disposed in multiple regions of the sensor-mounted wafer 100 .
  • the trench regions 300 and 310 are arranged in a plurality of regions to correspond to the arrangement of the metal electrode pair.
  • the arrangement of the trench regions 300 and 310 in which the metal electrode pair is formed is preferably arranged to have a uniform separation distance.
  • control unit 60 may calculate the capacitance induced by the metal electrode pair of the plurality of trench regions 300 and 310 and the change in the discharge amount thereof, respectively.
  • the device may include a battery for supplying power to the circuit, a wireless charging circuit for wireless charging of the battery, and a memory for storing the result calculated by the control unit.
  • the capacitive state measuring apparatus is variously used to measure the state of plasma or gas inside a chamber in a process of manufacturing a semiconductor device such as an ion implantation process, a growth and deposition process, an exposure process, and an etching process. can be applied.

Abstract

The present invention relates to a state measuring device for monitoring a semiconductor process and, in particular, to a state measuring device which has, on a sensor-mounted wafer, metal electrodes for forming a capacitance so as to measure, using a capacitive method, a state of plasma or gas in a chamber. The state measuring device comprises: a first metal electrode disposed on the bottom surface of a first trench formed in a wafer; a second metal electrode disposed on the bottom surface of a second trench formed in the wafer; a third metal electrode disposed on both the bottom surface of the first trench and the bottom surface of the second trench so as to be spaced apart from the first metal electrode at a predetermined distance and spaced apart from the second metal electrode at a predetermined distance; a signal generator which generates and applies an excitation signal of a reference frequency to the third metal electrode; a mux which serially outputs discharge signals outputted in parallel from the first metal electrode and the second metal electrode; a conversion unit which converts the discharge signal for each metal electrode outputted from the mux into a digital signal; and a control unit which calculates a first capacitance value induced between the first metal electrode and the third metal electrode by using the digital signal, calculates a second capacitance value induced between the second metal electrode and the third metal electrode by using the digital signal, and calculates a change in the first capacitance value and a change in the second capacitance value.

Description

센서탑재웨이퍼를 이용하는 정전용량 방식의 상태 측정 장치Capacitive state measuring device using sensor-mounted wafer
본 발명은 반도체공정 모니터링을 위한 상태 측정 장치에 관한 것으로, 특히 정전용량을 형성하기 위한 메탈전극을 센서탑재웨이퍼에 구비하여 챔버 내에서 플라즈마나 기체 등의 상태를 정전용량 방식으로 측정하는 상태 측정 장치에 관한 것이다.The present invention relates to a state measuring device for monitoring a semiconductor process, and in particular, a state measuring device for measuring the state of plasma or gas in a chamber in a capacitive manner by providing a metal electrode for forming capacitance on a sensor-mounted wafer is about
반도체 소자를 제조하는 공정으로는 이온주입공정, 성장 및 증착공정, 노광공정, 그리고 식각공정 등이 있는데, 이러한 공정이 진행되는 동안 챔버 내부의 상태를 모니터링하는 작업은 매우 중요하다. 그에 따라 챔버 내부의 상태를 모니터링하는 기술이 계속 연구되고 있다.The semiconductor device manufacturing process includes an ion implantation process, a growth and deposition process, an exposure process, an etching process, and the like. During these processes, it is very important to monitor the state inside the chamber. Accordingly, a technique for monitoring the condition inside the chamber is continuously being studied.
특히, 최근에는 진공 상태의 챔버 내에 플라즈마를 형성하고 반응가스를 주입하여 물질막을 증착하거나 식각하는 공정에 플라즈마 장비가 널리 사용되고 있는데, 이와 같은 플라즈마를 비롯하여 챔버 내부의 물질이나 기체(가스)가 어떤 상태이고 어떤 상황에서 최적의 성능을 발휘하는지 정확하게 측정하고자 하는 요구가 많다.In particular, in recent years, plasma equipment has been widely used in the process of depositing or etching a material film by forming plasma in a vacuum chamber and injecting a reaction gas. And there is a lot of demand to accurately measure the optimal performance under which circumstances.
랑뮈어 프로브(Langmuir probe)는 반도체 제조공정에서 이용되는 플라즈마의 전자밀도나 이온밀도를 측정하는 가장 일반적인 기술이다.The Langmuir probe is the most common technique for measuring the electron density or ion density of plasma used in a semiconductor manufacturing process.
랑뮈어 프로브는 외부에서 챔버 내에 탐침을 삽입시키고 그 탐침에 인가되는 전원(전압)을 가변하여 플라즈마 특성을 측정하는 것으로, 탐침에 음전위가 인가되면 플라즈마의 양이온이 탐침으로 포집되어 이온에 의한 전류가 발생하며, 반대로 탐침에 양전위가 인가되면 플라즈마의 전자들이 탐침으로 포집되어 전자에 의한 전류가 발생한다. 이때, 이온 또는 전자에 의해 발생된 전류를 측정한 후에 탐침에 인가된 전압과의 상관관계를 분석하여 플라즈마 밀도를 측정할 수 있었다.The Langmuir probe inserts a probe into the chamber from the outside and measures the plasma characteristics by varying the power (voltage) applied to the probe. On the contrary, when a positive potential is applied to the probe, the electrons in the plasma are collected by the probe, and a current is generated by the electrons. At this time, after measuring the current generated by ions or electrons, the plasma density could be measured by analyzing the correlation with the voltage applied to the probe.
이와 같은 종래의 랑뮈어 프로브는 챔버 내에 탐침을 삽입하여 플라즈마의 밀도를 측정하기 때문에, 공정이 진행되는 동안 실시간으로 플라즈마의 밀도를 측정할 수 있다는 장점을 가진다. 그러나 측정을 위해 탐침을 챔버 내에 삽입해야 하기 때문에 증착공정 시에는 증착물질에 의해 탐침이 오염되는 문제가 있을 수 있다. 또한 식각공정 시에는 탐침이 식각되어 마모되는 문제가 발생하였다. 그에 따라 실제 양산공정에 적용하기에는 어려움이 따른다.Since such a conventional Langmuir probe measures the density of plasma by inserting a probe into the chamber, it has the advantage of being able to measure the density of plasma in real time during the process. However, since the probe must be inserted into the chamber for measurement, there may be a problem in that the probe is contaminated by the deposition material during the deposition process. In addition, during the etching process, there was a problem that the probe was etched and abraded. As a result, it is difficult to apply it to the actual mass production process.
그외에 플라즈마 특성을 측정하기 위한 도구들로서, 플라즈마 오실레이션 탐침이나 플라즈마 흡수 탐침 등이 개발되었지만 플라즈마 오실레이션 탐침은 높은 압력에서 열선이 견디는 동작조건에서만 측정이 가능하다는 한계가 있으며 플라즈마 흡수 탐침은 측정 전에 교정과정을 거쳐야 하는 번거로움과 복잡한 계산과정이 수반되는 단점이 있었다. 결국, 이러한 개량된 기술도 실효성이 떨어지는 문제점이 있었다.In addition, plasma oscillation probes and plasma absorption probes have been developed as tools for measuring plasma characteristics, but plasma oscillation probes have limitations in that they can only be measured under operating conditions that can withstand a hot wire at high pressure. There were disadvantages in that it was cumbersome to go through a calibration process and involved a complicated calculation process. After all, this improved technology also had a problem in that the effectiveness was lowered.
그에 따라, 탐침 오염이나 마모와 같은 물리적인 손실 없이 보다 간단하면서도 보다 정확하게 챔버 내의 플라즈마나 기체 상태를 측정하기 위해서는 탐침을 플라즈마나 기체에 노출시키기 않으면서 챔버 내에서 직접 상태를 측정할 수 있는 센싱 기술이 요구된다. 이러한 요구에 부합되는 기술로는 온도 센싱을 위해 개발된 SOW(Sensor On Wafer) 기술이 있다.Accordingly, in order to measure the plasma or gas state in the chamber more simply and more accurately without physical loss such as probe contamination or wear, a sensing technology that can directly measure the state in the chamber without exposing the probe to plasma or gas this is required As a technology that meets this requirement, there is a sensor on wafer (SOW) technology developed for temperature sensing.
SOW는 센싱을 위한 센서와 회로가 웨이퍼에 내장되어 있어서 SOW를 챔버 내부에 로딩하여 직접 챔버 내부에서 원하는 센싱 작업을 수행하도록 해준다. 그러나 SOW가 온도 이외에 플라즈마와 같이 고주파 전력을 인가하여 발생시키는 대상을 센싱하기 위해서는 고주파 전력이 인가될 시에 발생하는 고주파 성분으로 인해 내부 센서나 회로가 오작동하거나 파손되는 문제를 해결해야 한다.Since the SOW sensor and circuit for sensing are built into the wafer, the SOW is loaded into the chamber to directly perform the desired sensing operation inside the chamber. However, in order for SOW to sense an object generated by applying high-frequency power such as plasma in addition to temperature, it is necessary to solve the problem that the internal sensor or circuit malfunctions or is damaged due to high-frequency components generated when high-frequency power is applied.
본 발명의 목적은 상기한 점들을 감안하여 안출한 것으로, 특히 센서탑재웨이퍼의 내부에 구비되는 메탈전극에 정전용량을 형성하고 챔버 내에서 특정 물질의 물리량이 변화함에 따른 정전용량 값이나 그의 변화를 산출하여 챔버 내에서 플라즈마나 기체 등의 상태를 측정하도록 해주는 센서탑재웨이퍼를 이용하는 정전용량 방식의 상태 측정 장치를 제공하는 데 있다.The object of the present invention was devised in consideration of the above points, and in particular, to form a capacitance in a metal electrode provided inside a sensor-mounted wafer, and to measure the capacitance value or its change according to the change in the physical amount of a specific material in the chamber. An object of the present invention is to provide a capacitive state measuring device using a sensor-mounted wafer that calculates and measures the state of plasma or gas in the chamber.
상기한 목적을 달성하기 위한 본 발명에 따른 센서탑재웨이퍼를 이용하는 정전용량 방식의 상태 측정 장치의 특징은, 웨이퍼에 형성된 제1트렌치의 저면에 배치되는 제1메탈전극; 상기 웨이퍼에 형성된 제2트렌치의 저면에 배치되는 제2메탈전극; 상기 제1메탈전극과 일정 거리로 이격되고 상기 제2메탈전극과 일정 거리로 이격되도록 상기 제1트렌치의 저면과 상기 제2트렌치의 저면에 공통으로 배치되는 제3메탈전극; 상기 제3메탈전극에 기준주파수의 여기신호를 생성하여 인가하는 신호생성부; 상기 제1메탈전극과 상기 제2메탈전극에서 병렬로 출력되는 방전신호들을 직렬로 출력시키는 먹스; 상기 먹스에서 출력되는 메탈전극별 방전신호를 디지털신호로 변환하는 변환부; 그리고 상기 디지털신호를 사용하여 상기 제1메탈전극과 상기 제3메탈전극 간에 유도된 제1정전용량 값을 산출하고, 상기 디지털신호를 사용하여 상기 제2메탈전극과 상기 제3메탈전극 간에 유도된 제2정전용량 값을 산출하고, 상기 제1정전용량 값의 변화와 상기 제2정전용량 값의 변화를 산출하는 제어부를 포함하여 구성되는 것이다.A capacitive state measuring apparatus using a sensor-mounted wafer according to the present invention for achieving the above object is characterized by comprising: a first metal electrode disposed on a bottom surface of a first trench formed in the wafer; a second metal electrode disposed on a bottom surface of a second trench formed in the wafer; a third metal electrode spaced apart from the first metal electrode by a predetermined distance and disposed in common on a bottom surface of the first trench and a bottom surface of the second trench to be spaced apart from the second metal electrode by a predetermined distance; a signal generator for generating and applying an excitation signal of a reference frequency to the third metal electrode; a mux for serially outputting discharge signals output in parallel from the first metal electrode and the second metal electrode; a converter for converting the discharge signal for each metal electrode output from the mux into a digital signal; And a first capacitance value induced between the first metal electrode and the third metal electrode is calculated using the digital signal, and the first capacitance value induced between the second metal electrode and the third metal electrode is calculated using the digital signal. and a control unit that calculates a second capacitance value and calculates a change in the first capacitance value and a change in the second capacitance value.
바람직하게, 상기 제1메탈전극과 상기 제3메탈전극에 공통되게 연결되어 상기 제1정전용량 값을 조정하는 제1캐패시터와, 상기 제2메탈전극과 상기 제3메탈전극에 공통되게 연결되어 상기 제2정전용량 값을 조정하는 제2캐패시터를 더 포함할 수 있다.Preferably, a first capacitor commonly connected to the first metal electrode and the third metal electrode to adjust the first capacitance value, and the second metal electrode and the third metal electrode are commonly connected to the A second capacitor for adjusting the second capacitance value may be further included.
보다 바람직하게, 상기 제1캐패시터는 상기 제1정전용량 값에 비해 상대적으로 큰 용량 값을 가지고, 상기 제2캐패시터는 상기 제2정전용량 값에 비해 상대적으로 큰 용량 값을 가질 수 있다.More preferably, the first capacitor may have a relatively large capacitance value compared to the first capacitance value, and the second capacitor may have a relatively large capacitance value compared to the second capacitance value.
보다 바람직하게, 상기 제1메탈전극에 직렬로 연결되어 상기 제1캐패시터에 의해 조정된 제1정전용량 값의 범위를 상기 제어부에서 측정 가능한 값의 범위로 조정하는 제3캐패시터와, 상기 제2메탈전극에 직렬로 연결되어 상기 제2캐패시터에 의해 조정된 제2정전용량 값의 범위를 상기 제어부에서 측정 가능한 값의 범위로 조정하는 제4캐패시터를 더 포함할 수 있다.More preferably, a third capacitor connected in series to the first metal electrode to adjust a range of a first capacitance value adjusted by the first capacitor to a range measurable by the control unit; A fourth capacitor connected in series to the electrode to adjust the range of the second capacitance value adjusted by the second capacitor to the range of the value measurable by the controller may be further included.
바람직하게, 상기 제어부에서 산출된 제1정전용량 값, 제2정전용량 값, 제1정전용량 값의 변화, 그리고 제2정전용량 값의 변화를 외부로 송신하는 통신부를 더 구비할 수 있다. Preferably, the control unit may further include a communication unit for transmitting the first capacitance value, the second capacitance value, the change in the first capacitance value, and the change in the second capacitance value calculated by the control unit to the outside.
보다 바람직하게, 상기 제1 메탈전극과 상기 제2메탈전극과 상기 제3메탈전극과 상기 신호생성부와 상기 변환부와 상기 제어부와 상기 통신부는 상기 웨이퍼 내부에 격리될 수 있다.More preferably, the first metal electrode, the second metal electrode, the third metal electrode, the signal generator, the converter, the control unit, and the communication unit may be isolated inside the wafer.
바람직하게, 상기 제어부는 상기 웨이퍼가 로딩된 챔버 내에서 특정 물질의 물리량이 변화함에 따라 상기 제1 및 2 정전용량의 방전량 변화를 산출할 수 있다.Preferably, the controller may calculate a change in the discharge amount of the first and second capacitances according to a change in a physical amount of a specific material in the chamber in which the wafer is loaded.
보다 바람직하게, 상기 제어부는 상기 물질의 종류에 따라 상기 여기신호의 기준주파수를 조절하도록 상기 신호생성부를 제어할 수 있다.More preferably, the controller may control the signal generator to adjust the reference frequency of the excitation signal according to the type of the material.
보다 바람직하게, 상기 물질은 상기 챔버의 내부에 공급된 플라즈마 또는 기체를 포함할 수 있다.More preferably, the material may include plasma or gas supplied to the interior of the chamber.
본 발명에 따르면, 메탈전극은 물론 전체 회로를 웨이퍼에 격리되게 구성하기 때문에 탐침으로 사용되는 메탈전극의 오염이나 마모와 같은 물리적인 손실이 없다. According to the present invention, there is no physical loss such as contamination or abrasion of the metal electrode used as a probe because the entire circuit as well as the metal electrode is configured to be isolated from the wafer.
또한, 메탈전극에 신호를 인가하여 형성되는 정전용량의 값 또는 그의 변화 특히, 방전량의 변화를 산출하여 챔버 내에서의 물리량 변화(플라즈마 밀도 변화나 기체 밀도 변화나 진공 상태 변화 등)를 측정할 수 있다. 또한, 센서탑재웨이터의 다수의 영역에서 정전용량의 값 또는 그의 변화를 산출하고 영역 별로 비교할 수 있어 반도체 공정 중에 챔버 내에 존재하는 물질의 물리량 변화는 물론 챔버 내에서의 균일도도 모니터링할 수 있다. 그로 인해, 보다 간단하면서도 보다 정확한 모니터링이 가능해 진다.In addition, the change in the value of the capacitance formed by applying a signal to the metal electrode or its change, in particular, the change in the discharge amount, is calculated to measure the change in the physical quantity (plasma density change, gas density change, vacuum state change, etc.) in the chamber. can In addition, it is possible to calculate the capacitance value or change thereof in a plurality of regions of the sensor-mounted waiter and compare them for each region, so that it is possible to monitor the change in the physical amount of the material present in the chamber during the semiconductor process as well as the uniformity in the chamber. As a result, simpler and more accurate monitoring becomes possible.
또한, 본 발명의 전체 구성을 챔버 내에서 직접 상태를 측정할 수 있는 SOW(Sensor On Wafer) 기술에 적용하여 센서탑재웨이퍼 내부에 격리시키면서도 고주파 성분에 취약한 센서나 회로들은 메탈층으로 커버하기 때문에, 내부 센서나 회로가 오작동하거나 파손되는 문제를 해결할 수 있다.In addition, by applying the entire configuration of the present invention to SOW (Sensor On Wafer) technology that can measure the state directly in the chamber, while isolating the inside of the sensor-mounted wafer, sensors or circuits vulnerable to high-frequency components are covered with a metal layer, It can solve the problem of malfunctioning or damage to internal sensors or circuits.
도 1은 본 발명의 일 실시 예에 따른 센서탑재웨이퍼를 이용하는 정전용량 방식의 상태 측정 장치의 구성을 도시한 블록다이어그램이고,1 is a block diagram showing the configuration of a capacitive state measuring device using a sensor-mounted wafer according to an embodiment of the present invention;
도 2는 본 발명에 따른 센서탑재웨이퍼를 이용하는 정전용량 방식의 상태 측정 장치에서 메탈전극이 센서탑재웨이퍼 내부에 구비되는 형상을 도시한 단면도이고,2 is a cross-sectional view showing a shape in which a metal electrode is provided inside the sensor-mounted wafer in the capacitive state measuring device using the sensor-mounted wafer according to the present invention;
도 3은 본 발명에 따른 센서탑재웨이퍼를 이용하는 정전용량 방식의 상태 측정 장치에서 다수 개의 메탈전극이 센서탑재웨이퍼에 배치되는 구조를 도시한 평면도이고,3 is a plan view showing a structure in which a plurality of metal electrodes are disposed on the sensor-mounted wafer in the capacitive type state measuring device using the sensor-mounted wafer according to the present invention;
도 4는 본 발명에 따른 장치가 센서탑재웨이퍼에 장착된 구성 예를 도시한 다이어그램이다.4 is a diagram showing an example of a configuration in which an apparatus according to the present invention is mounted on a sensor-mounted wafer.
본 발명의 다른 목적, 특징 및 이점들은 첨부한 도면을 참조한 실시 예들의 상세한 설명을 통해 명백해질 것이다.Other objects, features and advantages of the present invention will become apparent from the detailed description of the embodiments with reference to the accompanying drawings.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예의 구성과 그 작용을 설명하며, 도면에 도시되고 또 이것에 의해서 설명되는 본 발명의 구성과 작용은 적어도 하나의 실시 예로서 설명되는 것이며, 이것에 의해서 상기한 본 발명의 기술적 사상과 그 핵심 구성 및 작용이 제한되지는 않는다.Hereinafter, the configuration and operation of an embodiment of the present invention will be described with reference to the accompanying drawings, and the configuration and operation of the present invention shown in the drawings and described by this will be described as at least one embodiment, and in this The technical idea of the present invention and its core configuration and operation are not limited by the above.
이하, 첨부한 도면을 참조하여 본 발명에 따른 센서탑재웨이퍼를 이용하는 정전용량 방식의 상태 측정 장치의 바람직한 실시 예를 자세히 설명한다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of the capacitive type state measuring apparatus using the sensor-mounted wafer according to the present invention will be described in detail.
도 1은 본 발명의 일 실시 예에 따른 센서탑재웨이퍼를 이용하는 정전용량 방식의 상태 측정 장치의 구성을 도시한 블록다이어그램이고, 도 2는 본 발명에 따른 센서탑재웨이퍼를 이용하는 정전용량 방식의 상태 측정 장치에서 메탈전극이 센서탑재웨이퍼 내부에 구비되는 형상을 도시한 단면도이고, 도 3은 본 발명에 따른 센서탑재웨이퍼를 이용하는 정전용량 방식의 상태 측정 장치에서 다수 개의 메탈전극이 센서탑재웨이퍼에 배치되는 구조를 도시한 평면도이고, 도 4는 본 발명에 따른 장치가 센서탑재웨이퍼에 장착된 구성 예를 도시한 다이어그램이다.1 is a block diagram showing the configuration of a capacitive type state measuring apparatus using a sensor mounted wafer according to an embodiment of the present invention, and FIG. 2 is a capacitive type state measurement using a sensor mounted wafer according to the present invention. A cross-sectional view showing a shape in which a metal electrode is provided inside a sensor-mounted wafer in the device, and FIG. 3 is a capacitive state measuring device using a sensor-mounted wafer according to the present invention, in which a plurality of metal electrodes are disposed on the sensor-mounted wafer It is a plan view showing the structure, and FIG. 4 is a diagram showing a configuration example in which the device according to the present invention is mounted on a sensor-mounted wafer.
도 1 내지 4를 참조하면, 본 발명에 따른 상태 측정 장치는, 메탈전극들(30,31,32)과 신호생성부(40)와 변환부(50)와 제어부(60)를 포함하여 구성된다.1 to 4 , the state measuring device according to the present invention is configured to include metal electrodes 30 , 31 , 32 , a signal generator 40 , a converter 50 , and a controller 60 . .
메탈전극들(30,31,32)은 센서탑재웨이퍼 내부에 격리되게 형성되는 것으로, 이를 위한 센서탑재웨이퍼는 제1웨이퍼(10)와 제2웨이퍼(20)가 진공 분위기에서 본딩되어 내부가 외부로부터 차폐된 상태를 형성하는 것이 바람직하다. 일예로 센서탑재웨이퍼는 내부가 차폐되어 진공 상태를 형성할 수도 있다. 센서탑재웨이퍼를 구성하는 제1웨이퍼(10)나 제2웨이퍼(20)는 절연성과 견고성과 열전도성 좋은 실리콘 계열 웨이퍼 또는 세라믹 계열 웨이퍼일 수 있다.The metal electrodes 30 , 31 , and 32 are formed to be isolated inside the sensor-mounted wafer. For this purpose, the first wafer 10 and the second wafer 20 are bonded in a vacuum atmosphere so that the inside is outside. It is desirable to form a shielded state from For example, the sensor-mounted wafer may be shielded inside to form a vacuum state. The first wafer 10 or the second wafer 20 constituting the sensor-mounted wafer may be a silicon-based wafer or a ceramic-based wafer having good insulation, robustness, and thermal conductivity.
도 2는 메탈전극들(30,31,32)이 센서탑재웨이퍼의 내부에 배치된 구조를 도시한 것이다.2 shows a structure in which the metal electrodes 30, 31, and 32 are disposed inside the sensor-mounted wafer.
센서탑재웨이퍼는 소정 깊이의 요부를 형성하는 제1트렌치(1st trench)(11)와 제2트렌치(2nd trench)(12)를 구비하며, 제1메탈전극(31)과 제3메탈전극(30)이 제1트렌치(11)의 내부에 형성되고, 제2메탈전극(32)과 제3메탈전극(30)이 제2트렌치(12)의 내부에 형성된다.The sensor-mounted wafer includes a first trench 11 and a second trench 12 forming a recess of a predetermined depth, and a first metal electrode 31 and a third metal electrode 30 ) is formed inside the first trench 11 , and the second metal electrode 32 and the third metal electrode 30 are formed inside the second trench 12 .
제1메탈전극(31)은 센서탑재웨이퍼에 형성된 제1트렌치(11)의 저면에 배치되며, 제2메탈전극(32)은 센서탑재웨이퍼에 형성된 제2트렌치(12)의 저면에 배치된다.The first metal electrode 31 is disposed on the bottom of the first trench 11 formed in the sensor-mounted wafer, and the second metal electrode 32 is disposed on the bottom of the second trench 12 formed in the sensor-mounted wafer.
제3메탈전극(30)은 제1트렌치(11)와 제2트렌치(12)에 공통으로 배치된다. 제3메탈전극(30)은 제1메탈전극(31)과 일정 거리로 이격되고 제2메탈전극(32)과 일정 거리 이격되게 배치된다. 이를 위해 제3메탈전극(30)은 제1트렌치(11)의 저면과 제2트렌치(12)의 저면에 공통으로 배치된다.The third metal electrode 30 is disposed in common in the first trench 11 and the second trench 12 . The third metal electrode 30 is spaced apart from the first metal electrode 31 by a predetermined distance and is spaced apart from the second metal electrode 32 by a predetermined distance. To this end, the third metal electrode 30 is commonly disposed on the bottom surface of the first trench 11 and the bottom surface of the second trench 12 .
그에 따라, 제1메탈전극(31)과 제3메탈전극(30)이 하나의 쌍을 이루고 또한 제2메탈전극(32)과 제3메탈전극(30)이 하나의 쌍을 이룬다.Accordingly, the first metal electrode 31 and the third metal electrode 30 form a pair, and the second metal electrode 32 and the third metal electrode 30 form a pair.
메탈전극들(30,31,32)은 센서탑재웨이퍼를 구성하는 제1웨이퍼(10)나 제2웨이퍼(20) 중 어느 하나에 형성될 수 있으며, 제1웨이퍼(10)나 제2웨이퍼(20) 중 어느 하나에 형성된 트렌치(11,12)의 저면에서 일정 거리 이격되게 배치된다. The metal electrodes 30 , 31 , and 32 may be formed on either the first wafer 10 or the second wafer 20 constituting the sensor-mounted wafer, and the first wafer 10 or the second wafer ( 20) are disposed to be spaced apart from each other by a predetermined distance from the bottom of the trenches 11 and 12 formed in any one of them.
한편, 메탈전극들(30,31,32)과 센서탑재웨이퍼 사이에는 절연막(미도시)을 구비할 수 있다. 보다 상세하게, 센서탑재웨이퍼를 구성하는 웨이퍼들 중에서 상부 웨이퍼에 해당하는 제1웨이퍼(10)에 트렌치들(11,12)을 먼저 형성한다. 그 트렌치들(11,12)의 바닥면에 절연막(미도시)을 형성한 후에 그 절연막(미도시) 상에 서로 이격되게 메탈전극들(30,31,32)을 형성할 수 있다. 여기서, 절연막은 실리콘산화막(SiO2)이나 실리콘질화막(SiNx)일 수 있다. Meanwhile, an insulating film (not shown) may be provided between the metal electrodes 30 , 31 , and 32 and the sensor-mounted wafer. In more detail, trenches 11 and 12 are first formed in the first wafer 10 corresponding to the upper wafer among wafers constituting the sensor-mounted wafer. After an insulating film (not shown) is formed on the bottom surface of the trenches 11 and 12 , the metal electrodes 30 , 31 , and 32 may be formed to be spaced apart from each other on the insulating film (not shown). Here, the insulating layer may be a silicon oxide layer (SiO 2 ) or a silicon nitride layer (SiNx).
제1메탈전극(31)과 제3메탈전극(30)은 제1트렌치(11)가 형성된 제1트렌치영역(300)에서 일정 거리 이격되며, 제2메탈전극(32)과 제3메탈전극(30)은 제2트렌치(12)가 형성된 제2트렌치영역(310)에서 일정 거리 이격된다. 그에 따라 제3메탈전극(30)에 신호를 인가하면 제1트렌치영역(300)에서 제1정전용량(Cv1)을 형성하고 제2트렌치영역(310)에 제2정전용량(Cv2)을 형성한다.The first metal electrode 31 and the third metal electrode 30 are spaced apart by a predetermined distance from the first trench region 300 in which the first trench 11 is formed, and the second metal electrode 32 and the third metal electrode ( 30 is spaced apart by a predetermined distance from the second trench region 310 in which the second trench 12 is formed. Accordingly, when a signal is applied to the third metal electrode 30 , a first capacitance Cv1 is formed in the first trench region 300 and a second capacitance Cv2 is formed in the second trench region 310 . .
본 발명의 장치는 그 제1메탈전극(31)과 제3메탈전극(30) 간에 형성된 제1정전용량(Cv1) 값과 그의 변화를 측정하고 또한 제2메탈전극(32)과 제3메탈전극(30) 간에 형성된 제2정전용량(Cv2) 값과 그의 변화를 측정하여 센서탑재웨이퍼가 로딩된 챔버 내부의 상태를 모니터링한다. The device of the present invention measures the value of the first capacitance Cv1 formed between the first metal electrode 31 and the third metal electrode 30 and the change thereof, and also the second metal electrode 32 and the third metal electrode The state inside the chamber in which the sensor-mounted wafer is loaded is monitored by measuring the value of the second capacitance (Cv2) formed between (30) and its change.
특히, 본 발명의 장치는 센서탑재웨이퍼가 로딩된 챔버 내에서 특정 물질(챔버의 내부에 공급된 플라즈마 또는 기체를 포함)의 물리량이 변화함에 따라 제1메탈전극(31)과 제3메탈전극(30) 간에 유도된 제1정전용량 값과 그의 변화량을 측정하고 제2메탈전극(32)과 제3메탈전극(30) 간에 형성된 제2정전용량 값과 그의 변화를 측정하여 센서탑재웨이퍼가 로딩된 챔버 내부의 상태를 모니터링한다.In particular, in the apparatus of the present invention, the first metal electrode 31 and the third metal electrode ( 30) by measuring the first capacitance value and its change amount induced between the Monitor the condition inside the chamber.
본 발명의 장치가 제3메탈전극(30)에 신호를 인가함에 따라 형성된 제1 및 2정전용량 값과 그들의 변화를 측정한다는 것은 제1메탈전극(31)과 제3메탈전극(30) 간에 유도된 제1정전용량의 방전량과 그 방전량 변화를 산출하고 또한 제2메탈전극(32)과 제3메탈전극(30) 간에 유도된 제2정전용량의 방전량과 그 방전량 변화를 산출한다는 것과 동일하다.Measuring the first and second capacitance values and their changes formed as the device of the present invention applies a signal to the third metal electrode 30 is induced between the first metal electrode 31 and the third metal electrode 30 . Calculating the discharge amount of the first capacitance and the change in the discharge amount, and also calculating the discharge amount and the change in the discharge amount of the second capacitance induced between the second metal electrode 32 and the third metal electrode 30 same as
신호생성부(40)는 제1 및 2 트렌치영역(300,310)에서 각각 정전용량을 형성하기 위한 구성으로, 제3메탈전극(30)에 기준주파수의 여기신호를 생성하여 인가한다. 특히, 신호생성부(40)는 모니터링하고자 하는 물질의 종류에 따라 인가하는 여기신호의 기준주파수를 조절한다. 즉, 신호생성부(40)는 모니터링하고자 하는 물질의 종류에 따라 서로 다른 주파수의 여기신호를 제3메탈전극(30)에 인가한다. 제어부(60)는 모니터링하고자 하는 물질의 종류에 따라 여기신호의 기준주파수를 조절하도록 제어하여 신호생성부(40)가 물질의 종류에 따라 서로 다른 주파수의 여기신호를 제3메탈전극(30)에 인가하도록 제어한다. 제어부(60)는 플라즈마나 특정 기체가 반응하는 최적의 주파수로 기준주파수를 조절하는 것이다.The signal generator 40 is configured to form capacitance in the first and second trench regions 300 and 310 , respectively, and generates and applies an excitation signal of a reference frequency to the third metal electrode 30 . In particular, the signal generator 40 adjusts the reference frequency of the applied excitation signal according to the type of material to be monitored. That is, the signal generator 40 applies excitation signals of different frequencies to the third metal electrode 30 according to the type of material to be monitored. The control unit 60 controls to adjust the reference frequency of the excitation signal according to the type of material to be monitored, so that the signal generating unit 40 transmits the excitation signal of a different frequency according to the type of material to the third metal electrode 30 . control to apply. The control unit 60 adjusts the reference frequency to an optimal frequency to which the plasma or a specific gas reacts.
그에 따라, 제어부(60)는 센서탑재웨이퍼(100)가 챔버에 로딩될 때 어떤 공정에 사용되는지에 따라 신호생성부(40)의 기준주파수를 조절하고, 그에 따라 신호생성부(40)는 제어부(60)에 의해 조절된 주파수의 여기신호를 생성한다. 한편, 여기신호는 사인파, 구형파, 삼각파 등의 교류파형일 수 있으며, 신호생성부(40)는 FPGA(Field Programmable Gate Array) 또는 CPLD(Complex Programmable Logic Device)로 구현될 수 있다Accordingly, the control unit 60 adjusts the reference frequency of the signal generation unit 40 according to which process is used when the sensor-mounted wafer 100 is loaded into the chamber, and accordingly the signal generation unit 40 controls the control unit. (60) generates an excitation signal of the adjusted frequency. Meanwhile, the excitation signal may be an AC waveform such as a sine wave, a square wave, or a triangular wave, and the signal generator 40 may be implemented as a Field Programmable Gate Array (FPGA) or a Complex Programmable Logic Device (CPLD).
변환부(50)는 제 1 및 2 메탈전극(31,32)에서 출력되는 방전신호를 디지털신호로 변환한다. 변환부(50)는 방전신호를 소정 비트열의 디지털신호로 변환한다.The converter 50 converts the discharge signals output from the first and second metal electrodes 31 and 32 into digital signals. The converter 50 converts the discharge signal into a digital signal of a predetermined bit string.
한편, 제1메탈전극(31) 및 제3메탈전극(30)의 한 쌍과 제2메탈전극(32) 및 제3메탈전극(30)의 한 쌍이 센서탑재웨이퍼에 배치됨에 따라, 먹스(80)가 변환부(50)의 입력단에 구비된다.On the other hand, as the pair of the first metal electrode 31 and the third metal electrode 30 and the pair of the second metal electrode 32 and the third metal electrode 30 are disposed on the sensor-mounted wafer, the mux 80 ) is provided at the input end of the converter 50 .
먹스(80)는 제1 및 2 트렌치영역(300,310)에 구비된 메탈전극 쌍들로부터 출력되는 방전신호가 병렬 출력됨에 따라, 그 메탈전극별 방전신호를 직렬신호로 변환하여 변환부(50)로 출력한다. 즉, 먹스(80)는 제1메탈전극(31)과 제2메탈전극(32)에서 병렬로 출력되는 방전신호들을 직렬로 출력시킨다.As the discharge signals output from the metal electrode pairs provided in the first and second trench regions 300 and 310 are output in parallel, the mux 80 converts the discharge signal for each metal electrode into a serial signal and outputs it to the converter 50 . do. That is, the mux 80 serially outputs discharge signals output in parallel from the first metal electrode 31 and the second metal electrode 32 .
변환부(50)는 먹스(80)에서 출력되는 메탈전극별 방전신호를 디지털신호로 변환한다.The converter 50 converts the discharge signal for each metal electrode output from the mux 80 into a digital signal.
제어부(60)는 변환부(50)에서 출력되는 디지털신호를 사용하여 제1메탈전극(31)과 제3메탈전극(30) 간에 유도된 제1정전용량(Cv1) 값과 그의 변화량을 산출하고 또한 제2메탈전극(32)과 제3메탈전극(30) 간에 유도된 제2정전용량(Cv2) 값과 그의 변화량을 산출한다. 제1정전용량(Cv1) 값과 그의 변화량을 산출하는데 사용되는 디지털신호와 제2정전용량(Cv2) 값과 그의 변화량을 산출하는데 사용되는 디지털신호는 서로 다른 타이밍에 직렬 출력되는 신호이다.The control unit 60 calculates the value of the first capacitance Cv1 induced between the first metal electrode 31 and the third metal electrode 30 and the amount of change thereof using the digital signal output from the conversion unit 50 , and Also, the value of the second capacitance Cv2 induced between the second metal electrode 32 and the third metal electrode 30 and the amount of change thereof are calculated. The digital signal used to calculate the first capacitance (Cv1) value and its change amount and the digital signal used to calculate the second capacitance (Cv2) value and its change amount are serially output signals at different timings.
제어부(60)는 디지털신호로 변환된 방전정보를 사용하므로 센서탑재웨이퍼가 로딩된 챔버 내에서 특정 물질의 물리량이 변화함에 따라 제1메탈전극(31)과 제3메탈전극(30) 간에 유도된 제1정전용량의 방전량과 그 방전량의 변화를 산출할 수 있고 또한 제2메탈전극(32)과 제3메탈전극(30) 간에 유도된 제2정전용량의 방전량과 그 방전량의 변화를 산출할 수 있다.Since the controller 60 uses the discharge information converted into a digital signal, the induced between the first metal electrode 31 and the third metal electrode 30 as the physical amount of a specific material changes in the chamber in which the sensor-mounted wafer is loaded. The discharge amount of the first capacitance and the change in the discharge amount can be calculated, and the discharge amount of the second capacitance induced between the second metal electrode 32 and the third metal electrode 30 and the change in the discharge amount can be calculated.
변환부(50)와 제어부(60)는 SPI(Serial Peripheral Interconnect) 버스나 I2C(Inter-Integrated Circuit) 버스로 연결될 수 있다.The converter 50 and the controller 60 may be connected to each other by a Serial Peripheral Interconnect (SPI) bus or an Inter-Integrated Circuit (I2C) bus.
특히, 제어부(60)는 센서탑재웨이퍼(100)가 로딩된 공간(챔버 내부)에서 특정 물질의 물리량이 변화함에 따라 메탈전극들 간에 형성된 제1 및 2 정전용량의 방전량 변화를 각각 산출한다. 여기서, 물질은 공간(챔버 내부)에 공급된 플라즈마 또는 기체를 포함할 수 있다.In particular, the control unit 60 calculates a change in the discharge amount of the first and second capacitances formed between the metal electrodes as the physical amount of a specific material changes in the space (inside the chamber) in which the sensor-mounted wafer 100 is loaded, respectively. Here, the material may include plasma or gas supplied to the space (inside the chamber).
한편, 메탈전극들 간에 유도된 제1 및 2 정전용량 값과 그의 변화량을 각각 산출할 시에, 제1 및 2 정전용량 값을 조정하고 그 제1 및 2 정전용량 값의 측정 범위를 조정하기 위한 구성이 요구된다. 이는 온도나 유전율 등의 원인으로 인해 음의 정전용량 값이 산출될 수 있고 또한 챔버 내의 물질에 따라 제어부(60)에서 산출할 수 없는 범위의 정전용량이 유도될 수 있기 때문이다.Meanwhile, when calculating the first and second capacitance values induced between the metal electrodes and the amount of change thereof, respectively, for adjusting the first and second capacitance values and adjusting the measurement range of the first and second capacitance values configuration is required. This is because a negative capacitance value may be calculated due to causes such as temperature or dielectric constant, and a capacitance in a range that cannot be calculated by the controller 60 may be induced depending on the material in the chamber.
본 발명의 장치는 제1메탈전극(31)과 제3메탈전극(30) 간에 유도된 제1정전용량(Cv1) 값을 조정하기 위한 제1캐패시터(Cd1)와 제3캐패시터(Cr1)을 더 구비하고 또한 제2메탈전극(32)과 제3메탈전극(30) 간에 유도된 제2정전용량(Cv2) 값을 조정하기 위한 제2캐패시터(Cd2)와 제4캐패시터(Cr2)을 더 구비한다.The device of the present invention further includes a first capacitor (Cd1) and a third capacitor (Cr1) for adjusting the value of the first capacitance (Cv1) induced between the first metal electrode (31) and the third metal electrode (30) and a second capacitor (Cd2) and a fourth capacitor (Cr2) for adjusting the value of the second capacitance (Cv2) induced between the second metal electrode (32) and the third metal electrode (30) .
제1캐패시터(Cd1)는 제1메탈전극(31)과 제3메탈전극(30)에 공통되게 연결되어 제1메탈전극(31)과 제3메탈전극(30) 간에 유도된 제1정전용량(Cv1) 값을 조정한다. 특히 제1캐패시터(Cd1)는 제1메탈전극(31)과 제3메탈전극(30) 간에 유도된 제1정전용량(Cv1) 값이 음의 값으로 산출되지 않도록, 제1메탈전극(31)과 제3메탈전극(30) 간에 유도되는 제1정전용량 값에 비해 상대적으로 큰 용량 값을 가질 수 있다.The first capacitor Cd1 is commonly connected to the first metal electrode 31 and the third metal electrode 30 so that a first capacitance induced between the first metal electrode 31 and the third metal electrode 30 ( Cv1) Adjust the value. In particular, the first capacitor Cd1 is formed on the first metal electrode 31 so that the value of the first capacitance Cv1 induced between the first metal electrode 31 and the third metal electrode 30 is not calculated as a negative value. It may have a relatively large capacitance value compared to the first capacitance value induced between the and the third metal electrode 30 .
제2캐패시터(Cd2)는 제2메탈전극(32)과 제3메탈전극(30)에 공통되게 연결되어 제2메탈전극(32)과 제3메탈전극(30) 간에 유도된 제2정전용량(Cv2) 값을 조정한다. 특히 제2캐패시터(Cd2)는 제2메탈전극(32)과 제3메탈전극(30) 간에 유도된 제2정전용량(Cv2) 값이 음의 값으로 산출되지 않도록, 제2메탈전극(32)과 제3메탈전극(30) 간에 유도되는 제2정전용량 값에 비해 상대적으로 큰 용량 값을 가질 수 있다.The second capacitor Cd2 is commonly connected to the second metal electrode 32 and the third metal electrode 30 so that a second capacitance induced between the second metal electrode 32 and the third metal electrode 30 ( Cv2) Adjust the value. In particular, the second capacitor Cd2 is formed by the second metal electrode 32 so that the value of the second capacitance Cv2 induced between the second metal electrode 32 and the third metal electrode 30 is not calculated as a negative value. It may have a relatively large capacitance value compared to the second capacitance value induced between the and the third metal electrode 30 .
그에 따라, 제어부(60)는 제1 및 2 캐패시터(Cd1,Cd2)에 의해 조정된 정전용량 값을 산출하고 또한 그 조정된 정전용량 값의 변화를 산출할 수 있다.Accordingly, the controller 60 may calculate the capacitance value adjusted by the first and second capacitors Cd1 and Cd2 and also calculate a change in the adjusted capacitance value.
제3캐패시터(Cr1)는 제1캐패시터(Cd1)의 후단에서 제1메탈전극(31)에 직렬로 연결되어 제1캐패시터(Cd1)에 의해 조정된 제1정전용량 값의 범위를 제어부(60)에서 측정 가능한 값의 범위로 조정한다. The third capacitor Cr1 is connected in series to the first metal electrode 31 at the rear end of the first capacitor Cd1 to control the range of the first capacitance value adjusted by the first capacitor Cd1 by the controller 60 Adjust to the range of measurable values.
제4캐패시터(Cr2)는 제2캐패시터(Cd2)의 후단에서 제2메탈전극(32)에 직렬로 연결되어 제2캐패시터(Cd2)에 의해 조정된 제2정전용량 값의 범위를 제어부(60)에서 측정 가능한 값의 범위로 조정한다. The fourth capacitor Cr2 is connected in series to the second metal electrode 32 at the rear end of the second capacitor Cd2 to control the range of the second capacitance value adjusted by the second capacitor Cd2 by the controller 60 Adjust to the range of measurable values.
제어부(60)는 제1메탈전극(31)과 제3메탈전극(30) 간에 유도된 제1정전용량 값이나 제2메탈전극(32)과 제3메탈전극(30) 간에 유도된 제2정전용량 값이 상당히 큰 값일 경우 산출이 불가능할 수 있다. 제3 및 4 캐패시터(Cr1,Cr2)는 유도된 제1 및 2 정전용량 값의 크기에 상관없이 제어부(60)가 각각의 정전용량을 산출하도록 해준다.The control unit 60 controls a first capacitance value induced between the first metal electrode 31 and the third metal electrode 30 or a second capacitance induced between the second metal electrode 32 and the third metal electrode 30 . If the capacity value is a fairly large value, it may not be possible to calculate it. The third and fourth capacitors Cr1 and Cr2 allow the controller 60 to calculate respective capacitances regardless of the magnitude of the induced first and second capacitance values.
이와 같이 제어부(60)가 정전용량 값과 그의 변화량을 산출함에 따라 챔버 내에 존재하는 물질의 물리량 변화를 검출할 수 있고, 각 트렌치영역에서의 정전용량 값을 비교하거나 정전용량의 변화량을 비교하여 챔버 내에 존재하는 물질의 균일도도 검출할 수 있다.As such, as the control unit 60 calculates the capacitance value and the amount of change thereof, it is possible to detect a change in the physical amount of the material present in the chamber, and compare the capacitance value in each trench region or compare the change amount of the capacitance in the chamber. The uniformity of the substances present in it can also be detected.
본 발명의 장치는 제어부(60)와 연동하여 제어부(60)에서 산출된 결과 즉, 제어부(60)에서 산출된 정전용량 값과 정전용량 값의 변화를 외부로 송신하는 통신부(70)를 더 구비할 수 있다.The device of the present invention further includes a communication unit 70 for transmitting the result calculated by the control unit 60, that is, the capacitance value calculated by the control unit 60 and the change in the capacitance value, to the outside in conjunction with the control unit 60 can do.
플라즈마의 경우, 플라즈마를 형성하기 위한 고주파 전력이 인가됨에 따라 챔버 내에 전기장이 형성되는데, 그 전기장의 변화를 측정하면 플라즈마의 상태 변화를 측정할 수 있다. 예를 들어, 고주파 전력에 의해 일정 수준의 전기장이 챔버 내에 형성되는데, 그 상태에서 제3메탈전극(30)에 인가된 신호에 의해 서로 다른 트렌치영역(300,310)에 각각 유도된 정전용량은 균일한 속도로 충방전을 반복할 수 있다. 그러나 어떠한 원인으로 인해 챔버 내에 전기장의 변화가 발생하면 각 트렌치영역(300,310)에 유도된 정전용량은 방전속도(방전량)가 변화할 수도 있고 각 트렌치영역(300,310)에서 서로 다른 속도(방전량)로 방전될 수도 있다. 전기장의 변화에 따른 방전속도(방전량)의 변화를 산출함으로써 챔버 내의 플라즈마 상태 변화는 물론 방전속도(방전량)를 비교하여 균일도를 검출할 수 있다.In the case of plasma, an electric field is formed in the chamber as a high-frequency power for forming plasma is applied. By measuring a change in the electric field, a change in the state of the plasma can be measured. For example, an electric field of a certain level is formed in the chamber by the high-frequency power, and in this state, the capacitance induced in the different trench regions 300 and 310 by the signal applied to the third metal electrode 30 is uniform. Charging and discharging can be repeated at high speed. However, if an electric field changes in the chamber for some reason, the discharge rate (discharge amount) of the capacitance induced in each trench region 300 and 310 may change, and the rate (discharge amount) at each trench region 300 and 310 is different. may be discharged with By calculating the change in the discharge rate (discharge amount) according to the change of the electric field, it is possible to detect the uniformity by comparing the discharge rate (discharge amount) as well as the plasma state change in the chamber.
한편, 본 발명의 장치를 구성하는 모든 요소들 즉, 제1메탈전극(31)과 제2메탈전극(32)과 제3메탈전극(30)과 제1캐패시터(Cd1)와 제2캐패시터(Cd2)와 제3캐패시터(Cr1)와 제4캐패시터(Cr2)와 신호생성부(40)와 먹스(80)와 변환부(50)와 제어부(60)와 통신부(60)는 센서탑재웨이퍼의 내부에 격리되는 것이 바람직하다.Meanwhile, all elements constituting the device of the present invention, that is, the first metal electrode 31 , the second metal electrode 32 , the third metal electrode 30 , the first capacitor Cd1 and the second capacitor Cd2 ), the third capacitor (Cr1), the fourth capacitor (Cr2), the signal generating unit 40, the mux 80, the converting unit 50, the control unit 60, and the communication unit 60 are inside the sensor-mounted wafer. Isolation is preferred.
또한, 본 발명의 장치는 플라즈마의 형성을 위한 고주파 전력이 인가됨에 따라 발생하는 고주파 성분이 내부 회로에 악영향을 미치는 것을 방지하기 위해, 메탈전극 쌍이 형성된 트렌치영역(300,310)을 제외한 영역으로 고주파 성분이 유입되는 것을 차단하는 메탈층(15)을 더 구비할 수 있다.In addition, in the device of the present invention, in order to prevent the high-frequency component generated by the application of high-frequency power for plasma formation from adversely affecting the internal circuit, the high-frequency component is included in the region except for the trench regions 300 and 310 where the metal electrode pair is formed. A metal layer 15 to block the inflow may be further provided.
보다 상세하게, 서로 대향하는 제1메탈전극(31)의 종단과 제3메탈전극(30)의 일 종단을 제외하고 또한 서로 대향하는 제2메탈전극(32)의 종단과 제3메탈전극(30)의 타 종단을 제외하고 신호생성부(40)와 변환부(50)와 제어부(60)와 통신부(70)는 센서탑재웨이퍼에 형성된 메탈층(15)으로 커버될 수 있다.In more detail, except for the end of the first metal electrode 31 and the one end of the third metal electrode 30 that are opposed to each other, the end of the second metal electrode 32 and the third metal electrode 30 that face each other ), the signal generating unit 40, the converting unit 50, the control unit 60, and the communication unit 70 may be covered with the metal layer 15 formed on the sensor-mounted wafer.
고주파 성분의 유입을 차단하는 메탈층(15)은 제1웨이퍼(10)의 상면과 하면 중 적어도 하나에 형성될 수 있는데, 일예로 제1웨이퍼(10)의 하면에만 메탈층이 형성될 수도 있고, 제1웨이퍼(10)의 상면에만 메탈층이 형성될 수도 있다. 한편, 제1웨이퍼(10)의 상면에만 메탈층이 형성되는 경우에는 메탈층을 보호하기 위한 보호막(미도시)을 제1웨이퍼(10)의 전면에 형성하는 것이 바람직하다. 일예로, 보호막은 산화막 계열일 수 있다. 또한, 제1웨이퍼(10)의 하면에 메탈층이 형성될 경우에는 메탈전극들(30,31,32)과 메탈층(15) 사이에 절연막(16)을 구비할 수 있다. The metal layer 15 blocking the inflow of high-frequency components may be formed on at least one of the upper surface and the lower surface of the first wafer 10 . For example, the metal layer may be formed only on the lower surface of the first wafer 10 , , a metal layer may be formed only on the upper surface of the first wafer 10 . On the other hand, when the metal layer is formed only on the upper surface of the first wafer 10 , it is preferable to form a protective film (not shown) for protecting the metal layer on the entire surface of the first wafer 10 . For example, the passivation layer may be an oxide layer. In addition, when the metal layer is formed on the lower surface of the first wafer 10 , the insulating layer 16 may be provided between the metal electrodes 30 , 31 , and 32 and the metal layer 15 .
고주파 성분의 유입을 차단하는 메탈층(15)은 메탈전극 쌍들이 형성된 트렌치영역들(300,310)을 제외한 영역에 형성되어, 제1웨이퍼(10)의 상면 및/또는 하면에 전면적으로 형성되는 것이 아니라 제1메탈전극(31)과 제3메탈전극(30)이 이격되게 형성된 제1트렌치영역(300)과 제2메탈전극(32)과 제3메탈전극(30)이 이격되게 형성된 제2트렌치영역(310)에서는 오픈된 구조로 형성되는 것이 바람직하다.The metal layer 15 that blocks the inflow of the high-frequency component is formed in the region except for the trench regions 300 and 310 in which the metal electrode pairs are formed, and is not formed entirely on the upper surface and/or the lower surface of the first wafer 10 . A first trench region 300 in which the first metal electrode 31 and the third metal electrode 30 are spaced apart, and a second trench region in which the second metal electrode 32 and the third metal electrode 30 are spaced apart In 310, it is preferable to have an open structure.
본 발명의 장치는 쌍을 이루는 다수의 메탈전극들을 센서탑재웨이퍼에 배치하여 반도체 공정 중에 챔버 내에 존재하는 물질의 물리량 변화는 물론 균일도도 모니터링할 수 있다.The apparatus of the present invention arranges a plurality of paired metal electrodes on the sensor-mounted wafer to monitor the uniformity as well as the change in the physical amount of the material present in the chamber during the semiconductor process.
본 발명의 장치는 쌍을 이루는 다수의 메탈전극들을 센서탑재웨이퍼의 다수 영역에 배치하여 플라즈마 상태 변화, 플라즈마 균일도, 기체 상태 변화, 기체 균일도, 진공 상태 변화 등의 공정 조건을 모니터링할 수 있다.The apparatus of the present invention can monitor process conditions such as plasma state change, plasma uniformity, gas state change, gas uniformity, vacuum state change, etc. by disposing a plurality of paired metal electrodes in a plurality of regions of the sensor-mounted wafer.
예를들어, 플라즈마 균일도를 모니터링하는 경우, 도 4에서와 같이 균일한 이격거리로 배치된 트렌치영역(300,310)에 다수의 메탈전극 쌍들이 구비된다. 그 트렌치영역(300,310)에 형성된 메탈전극 쌍들에서 측정되는 플라즈마 상태 변화에서 오차가 발생하는 지의 여부로부터 균일도를 측정할 수 있다. For example, in the case of monitoring plasma uniformity, a plurality of pairs of metal electrodes are provided in the trench regions 300 and 310 arranged at a uniform spacing as shown in FIG. 4 . The uniformity can be measured from whether an error occurs in the plasma state change measured in the metal electrode pairs formed in the trench regions 300 and 310 .
본 발명에 따른 장치에서 메탈전극 쌍은 센서탑재웨이퍼(100)의 다수 영역에 배치될 수 있다. 메탈전극 쌍의 배치에 대응되게 트렌치영역(300,310)이 다수 영역에 배치된다. 메탈전극 쌍이 형성되는 트렌치영역(300,310)의 배치 형태는 균일한 이격거리를 갖도록 배치되는 것이 바람직하다.In the device according to the present invention, the metal electrode pair may be disposed in multiple regions of the sensor-mounted wafer 100 . The trench regions 300 and 310 are arranged in a plurality of regions to correspond to the arrangement of the metal electrode pair. The arrangement of the trench regions 300 and 310 in which the metal electrode pair is formed is preferably arranged to have a uniform separation distance.
그에 따라, 제어부(60)는 다수 트렌치영역(300,310)의 메탈전극 쌍에 의해 유도된 정전용량과 그의 방전량 변화를 각각 산출할 수 있다.Accordingly, the control unit 60 may calculate the capacitance induced by the metal electrode pair of the plurality of trench regions 300 and 310 and the change in the discharge amount thereof, respectively.
또한, 본 발명에서 장치는 회로에 전원을 공급하는 배터리, 배터리의 무선 충전을 위한 무선충전회로, 제어부에서 산출된 결과를 저장하는 메모리를 포함할 수 있다.In addition, in the present invention, the device may include a battery for supplying power to the circuit, a wireless charging circuit for wireless charging of the battery, and a memory for storing the result calculated by the control unit.
지금까지 본 발명의 바람직한 실시 예에 대해 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성을 벗어나지 않는 범위 내에서 변형된 형태로 구현할 수 있을 것이다. Although preferred embodiments of the present invention have been described so far, those of ordinary skill in the art to which the present invention pertains will be able to implement it in a modified form without departing from the essential characteristics of the present invention.
그러므로 여기서 설명한 본 발명의 실시 예는 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 범위는 상술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함되는 것으로 해석되어야 한다.Therefore, the embodiments of the present invention described herein should be considered from an illustrative rather than a limiting standpoint, and the scope of the present invention is indicated in the claims rather than in the above description, and all differences within the equivalent scope are the present invention. should be construed as being included in
본 발명에 따른 정전용량 방식의 상태 측정 장치는 이온주입공정, 성장 및 증착공정, 노광공정, 그리고 식각공정 등의 반도체 소자를 제조하는 공정에서 챔버 내부의 플라즈마나 기체 등의 상태를 측정하는데 다양하게 적용될 수 있다.The capacitive state measuring apparatus according to the present invention is variously used to measure the state of plasma or gas inside a chamber in a process of manufacturing a semiconductor device such as an ion implantation process, a growth and deposition process, an exposure process, and an etching process. can be applied.

Claims (9)

  1. 웨이퍼에 형성된 제1트렌치의 저면에 배치되는 제1메탈전극;a first metal electrode disposed on a bottom surface of the first trench formed in the wafer;
    상기 웨이퍼에 형성된 제2트렌치의 저면에 배치되는 제2메탈전극;a second metal electrode disposed on a bottom surface of a second trench formed in the wafer;
    상기 제1메탈전극과 일정 거리로 이격되고 상기 제2메탈전극과 일정 거리로 이격되도록 상기 제1트렌치의 저면과 상기 제2트렌치의 저면에 공통으로 배치되는 제3메탈전극;a third metal electrode spaced apart from the first metal electrode by a predetermined distance and disposed in common on a bottom surface of the first trench and a bottom surface of the second trench to be spaced apart from the second metal electrode by a predetermined distance;
    상기 제3메탈전극에 기준주파수의 여기신호를 생성하여 인가하는 신호생성부;a signal generator for generating and applying an excitation signal of a reference frequency to the third metal electrode;
    상기 제1메탈전극과 상기 제2메탈전극에서 병렬로 출력되는 방전신호들을 직렬로 출력시키는 먹스;a mux for serially outputting discharge signals output in parallel from the first metal electrode and the second metal electrode;
    상기 먹스에서 출력되는 메탈전극별 방전신호를 디지털신호로 변환하는 변환부; 그리고 a converter for converting the discharge signal for each metal electrode output from the mux into a digital signal; And
    상기 디지털신호를 사용하여 상기 제1메탈전극과 상기 제3메탈전극 간에 유도된 제1정전용량 값을 산출하고, 상기 디지털신호를 사용하여 상기 제2메탈전극과 상기 제3메탈전극 간에 유도된 제2정전용량 값을 산출하고, 상기 제1정전용량 값의 변화와 상기 제2정전용량 값의 변화를 산출하는 제어부를 포함하여 구성되는 것을 특징으로 하는 정전용량 방식의 상태 측정 회로.A first capacitance value induced between the first metal electrode and the third metal electrode is calculated using the digital signal, and a first capacitance value induced between the second metal electrode and the third metal electrode is calculated using the digital signal. and a control unit for calculating two capacitance values and calculating a change in the first capacitance value and a change in the second capacitance value.
    상기 제1 및 2 정전용량 값의 변화를 산출하여 챔버 내의 물리량 변화를 검출하기 위한 정전용량 방식의 상태 측정 회로. A capacitive state measuring circuit for detecting a change in a physical quantity in a chamber by calculating a change in the first and second capacitance values.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제1메탈전극과 상기 제3메탈전극에 공통되게 연결되어 상기 제1정전용량 값을 조정하는 제1캐패시터와,a first capacitor commonly connected to the first metal electrode and the third metal electrode to adjust the first capacitance value;
    상기 제2메탈전극과 상기 제3메탈전극에 공통되게 연결되어 상기 제2정전용량 값을 조정하는 제2캐패시터를 더 포함하는 것을 특징으로 하는 정전용량 방식의 상태 측정 회로.and a second capacitor commonly connected to the second metal electrode and the third metal electrode to adjust the second capacitance value.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 제1캐패시터는 상기 제1정전용량 값에 비해 상대적으로 큰 용량 값을 가지고, 상기 제2캐패시터는 상기 제2정전용량 값에 비해 상대적으로 큰 용량 값을 가지는 것을 특징으로 하는 정전용량 방식의 상태 측정 회로.The first capacitor has a relatively large capacitance value compared to the first capacitance value, and the second capacitor has a relatively large capacitance value compared to the second capacitance value. measuring circuit.
  4. 제 2 항에 있어서,3. The method of claim 2,
    상기 제1메탈전극에 직렬로 연결되어 상기 제1캐패시터에 의해 조정된 제1정전용량 값의 범위를 상기 제어부에서 측정 가능한 값의 범위로 조정하는 제3캐패시터와,a third capacitor connected in series to the first metal electrode to adjust a range of a first capacitance value adjusted by the first capacitor to a range measurable by the control unit;
    상기 제2메탈전극에 직렬로 연결되어 상기 제2캐패시터에 의해 조정된 제2정전용량 값의 범위를 상기 제어부에서 측정 가능한 값의 범위로 조정하는 제4캐패시터를 더 포함하는 것을 특징으로 하는 정전용량 방식의 상태 측정 회로.and a fourth capacitor connected in series to the second metal electrode to adjust the range of the second capacitance adjusted by the second capacitor to the range of values measurable by the controller. The state measurement circuit of the scheme.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제어부에서 산출된 제1정전용량 값, 제2정전용량 값, 제1정전용량 값의 변화, 그리고 제2정전용량 값의 변화를 외부로 송신하는 통신부를 더 구비하는 것을 특징으로 하는 정전용량 방식의 상태 측정 회로.The capacitive method further comprising a communication unit for transmitting the first capacitance value, the second capacitance value, the change of the first capacitance value, and the change of the second capacitance value calculated by the control unit to the outside of the state measurement circuit.
  6. 제 5 항에 있어서,6. The method of claim 5,
    상기 제1 메탈전극과 상기 제2메탈전극과 상기 제3메탈전극과 상기 신호생성부와 상기 변환부와 상기 제어부와 상기 통신부는 상기 웨이퍼 내부에 격리되는 것을 특징으로 하는 정전용량 방식의 상태 측정 회로.The first metal electrode, the second metal electrode, the third metal electrode, the signal generating unit, the converting unit, the control unit, and the communication unit are separated inside the wafer. .
  7. 제 1 항에 있어서,The method of claim 1,
    상기 제어부는,The control unit is
    상기 웨이퍼가 로딩된 챔버 내에서 특정 물질의 물리량이 변화함에 따라 상기 제1 및 2 정전용량의 방전량 변화를 산출하는 것을 특징으로 하는 정전용량 방식의 상태 측정 회로.Capacitive state measurement circuit, characterized in that the change in the discharge amount of the first and second capacitance is calculated according to a change in a physical amount of a specific material in the chamber in which the wafer is loaded.
  8. 제 7 항에 있어서,8. The method of claim 7,
    상기 제어부는,The control unit is
    상기 물질의 종류에 따라 상기 여기신호의 기준주파수를 조절하도록 상기 신호생성부를 제어하는 것을 특징으로 하는 정전용량 방식의 상태 측정 회로.A capacitive state measuring circuit, characterized in that the signal generator is controlled to adjust a reference frequency of the excitation signal according to the type of the material.
  9. 제 7 항에 있어서,8. The method of claim 7,
    상기 물질은 상기 챔버의 내부에 공급된 플라즈마 또는 기체를 포함하는 것을 특징으로 하는 정전용량 방식의 상태 측정 회로.The material is a capacitive state measuring circuit, characterized in that it contains plasma or gas supplied to the inside of the chamber.
PCT/KR2020/001588 2020-02-03 2020-02-03 Capacitance-type state measuring device using sensor-mounted wafer WO2021157750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/001588 WO2021157750A1 (en) 2020-02-03 2020-02-03 Capacitance-type state measuring device using sensor-mounted wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/001588 WO2021157750A1 (en) 2020-02-03 2020-02-03 Capacitance-type state measuring device using sensor-mounted wafer

Publications (1)

Publication Number Publication Date
WO2021157750A1 true WO2021157750A1 (en) 2021-08-12

Family

ID=77200692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/001588 WO2021157750A1 (en) 2020-02-03 2020-02-03 Capacitance-type state measuring device using sensor-mounted wafer

Country Status (1)

Country Link
WO (1) WO2021157750A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070098588A (en) * 2006-03-30 2007-10-05 동경 엘렉트론 주식회사 Plasma processing apparatus and plasma processing method
JP2009054993A (en) * 2007-08-02 2009-03-12 Tokyo Electron Ltd Tool for detecting position
KR20160118080A (en) * 2015-04-01 2016-10-11 세메스 주식회사 Detection unit, substrate treating apparatus including the same and detecting method
KR20170059720A (en) * 2015-11-23 2017-05-31 주식회사 원익아이피에스 Method of fabricating semiconductor device and apparatus of fabricating the same
KR20180050467A (en) * 2016-11-04 2018-05-15 (주)제이디 Process monitoring circuit being embeded on wafer
KR20200013885A (en) * 2018-07-31 2020-02-10 (주)제이디 apparatus for measuring status in capacitive using sensor mounted wafer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070098588A (en) * 2006-03-30 2007-10-05 동경 엘렉트론 주식회사 Plasma processing apparatus and plasma processing method
JP2009054993A (en) * 2007-08-02 2009-03-12 Tokyo Electron Ltd Tool for detecting position
KR20160118080A (en) * 2015-04-01 2016-10-11 세메스 주식회사 Detection unit, substrate treating apparatus including the same and detecting method
KR20170059720A (en) * 2015-11-23 2017-05-31 주식회사 원익아이피에스 Method of fabricating semiconductor device and apparatus of fabricating the same
KR20180050467A (en) * 2016-11-04 2018-05-15 (주)제이디 Process monitoring circuit being embeded on wafer
KR20200013885A (en) * 2018-07-31 2020-02-10 (주)제이디 apparatus for measuring status in capacitive using sensor mounted wafer

Similar Documents

Publication Publication Date Title
US5377071A (en) Sensor apparatus and method for real-time in-situ measurements of sheet resistance and its uniformity pattern in semiconductor processing equipment
WO2010110589A2 (en) Insulation resistance measuring circuit free from influence of battery voltage
US5382911A (en) Reaction chamber interelectrode gap monitoring by capacitance measurement
WO2020111896A1 (en) Device and method for measuring battery cell resistance
WO2019066278A1 (en) Method for measuring entropy of battery using kalman filter
US20120232817A1 (en) Sensor for measuring plasma parameters
WO2021149842A1 (en) State measurement apparatus employing capacitive scheme
KR101071940B1 (en) Apparatus for measuring cell voltage of battery
WO2021157750A1 (en) Capacitance-type state measuring device using sensor-mounted wafer
WO2018097512A1 (en) Battery charge control algorithm
KR102121877B1 (en) apparatus for measuring status in capacitive using sensor mounted wafer
WO2018124518A1 (en) Apparatus for detecting internal defect in transformer
WO2015046702A1 (en) Device for detecting charging current accuracy of charger and discharger
KR100620304B1 (en) Process monitor and system for producing semiconductor
WO2020204462A1 (en) Device for measuring water level by using capacitive technique, and method therefor
KR102103949B1 (en) apparatus for measuring status in capacitive using contactless metal electrode
KR102137414B1 (en) apparatus for measuring status in capacitive
KR102103947B1 (en) apparatus for measuring status using capacity
WO2019221413A1 (en) Wafer for plasma measurement
WO2021080089A1 (en) Diagnostic method and apparatus for non-invasive plasma process
WO2023158227A1 (en) Plasma process monitoring method, plasma process monitoring device, and plasma generation device
WO2010087648A2 (en) Inductively coupled plasma-generating source electrode and substrate-processing apparatus comprising same
CN110505742A (en) Crystal column surface charge eliminating device and method
WO2023022572A1 (en) Method and apparatus for measuring entropy of electrochemical device
KR20190130864A (en) wafer for measuring plasma condition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918019

Country of ref document: EP

Kind code of ref document: A1