WO2021157689A1 - Control agent for initial stage of g1 phase of cell cycle - Google Patents

Control agent for initial stage of g1 phase of cell cycle Download PDF

Info

Publication number
WO2021157689A1
WO2021157689A1 PCT/JP2021/004293 JP2021004293W WO2021157689A1 WO 2021157689 A1 WO2021157689 A1 WO 2021157689A1 JP 2021004293 W JP2021004293 W JP 2021004293W WO 2021157689 A1 WO2021157689 A1 WO 2021157689A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
phase
c7orf26
cell cycle
early
Prior art date
Application number
PCT/JP2021/004293
Other languages
French (fr)
Japanese (ja)
Inventor
範行 東
匡 横井
卓 田中
恵美子 松坂
幸子 仁科
博史 仁科
Original Assignee
範行 東
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 範行 東 filed Critical 範行 東
Priority to JP2021575880A priority Critical patent/JPWO2021157689A1/ja
Publication of WO2021157689A1 publication Critical patent/WO2021157689A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to the use of a new factor having an activity of arresting the cell cycle in the early G1 phase and shifting from the early G1 phase to the G0 phase.
  • the cell cycle refers to the cell division cycle in eukaryotes, which is the G1 phase, which is the preparatory phase for DNA replication, the S phase, which is the preparatory phase for DNA replication, the G2 phase, which is the preparatory phase for mitosis, and mitosis. It forms one cell cycle in four phases, the M phase, which is the mitotic phase.
  • Cells undergo self-renewal by accurately repeating G1-S-G2-M-G1.
  • differentiated cells such as nerve cells and septal muscle cells and many somatic cells lose their ability to divide and go to the quiescent phase (G0 phase).
  • Cell cycle checkpoints include G1 / S checkpoints, S phase checkpoints, G2 / M checkpoints, and M phase checkpoints.
  • S-phase checkpoint normal replication is performed
  • G2 / M checkpoint DNA replication is completed without problems
  • M-phase checkpoint whether the chromosome is bound to the mitotic spindle, etc. are checked. ..
  • DNA damage is checked in G1, S phase, S phase, and M phase invasion.
  • the cell cycle is stopped or slowed down at checkpoints and adjusted so that the next step does not begin before it is ready. It is the complex of cyclins and cyclin-dependent kinases (CDKs) that are activated by the binding of cyclins that advance the cell cycle.
  • CDKs cyclin-dependent kinases
  • the transition from G1 to S phase is triggered by the cyclin D / CDK4 (or CDK6) complex, which activates the cyclin E / CDK2 complex and the cells transition to S phase.
  • activation of cyclin A / CDK2 causes cells to move from S phase to G2 phase
  • activation of cyclin B / CDK1 causes cells to move to M phase.
  • the present invention identifies a new gene involved in the control mechanism of the cell cycle for canceration and differentiation of cells and its pathway, and utilizes the gene, its translation product, and a conjugate substance to develop a novel mechanism. To provide a cell cycle regulator based on.
  • the present inventors have discovered that a missense mutation (p.A425V) due to a single nucleotide substitution of the C7orf26 gene exists in a large family of congenital abnormalities of the eye, and the function of the C7orf26 gene, which is the causative gene of the congenital abnormality of the eye.
  • the C7orf26 gene was a novel member of the integrator complex and was involved in mRNA maturation.
  • the C7orf26 gene was highly expressed in the M to early G1 phase of the cell cycle, has the activity of arresting the cell cycle in the early G1 phase, and the cell cycle arrest is a tumor suppressor gene.
  • the C7orf26 gene acts as a transcriptional cofactor for the transcription factor E2F family members (E2F4, E2F1, etc.) in the promoter region of p53, increasing p53 expression, and in that case, the integrator.
  • E2F family members E2F4, E2F1, etc.
  • the complex subunit INFRA1
  • each member of INTS also has the above-mentioned cell cycle arresting action of C7orf26 alone.
  • cell death was induced by long-term expression or high expression of p53 in cells in which C7orf26 gene was continuously or highly expressed at a physiological level for a long period of time.
  • iPS cells into which the C7orf26 gene was introduced were induced to differentiate into ectoderm, mesodermal, and endoderm cells, they were transformed from normal iPS cells into ectodermal, mesodermal, and endoderm cells in the early stages of development. In the differentiation, or in the later differentiation into the brain and retina, the number of differentiated cells increased and the specific gene was highly expressed. Therefore, the C7orf26 gene stopped the cell cycle in the early G1 phase and then G0. It was also clarified that it has the activity of shifting to the phase and can promote the differentiation of cells. The present invention has been completed based on such findings.
  • a G1 phase initial regulator of the cell cycle which comprises any of the following proteins (A) to (C).
  • a protein consisting of the amino acid sequence shown in SEQ ID NO: 2;
  • B The amino acid sequence shown in SEQ ID NO: 2 consists of an amino acid sequence in which one or several amino acids are added, deleted, or substituted, and the cell cycle is stopped in the early G1 phase, and from the early G1 phase to the G0 phase. Protein with activity to transfer;
  • C An activity consisting of an amino acid sequence having 90% or more sequence identity with respect to the amino acid sequence shown in SEQ ID NO: 2, arresting the cell cycle in the early G1 phase, and shifting from the early G1 phase to the G0 phase. Protein to have.
  • a differentiation-promoting agent for undifferentiated cells which comprises the G1 phase initial regulator of the cell cycle according to any one of [1] to [3].
  • a method for promoting differentiation of undifferentiated cells which comprises the step of expressing any of the following genes (D) to (F) in undifferentiated cells.
  • the C7orf26 gene which has been newly identified to have an activity of arresting the cell cycle in the early G1 phase and shifting from the early G1 phase to the G0 phase, is used for randomly proliferating cells such as cancer cells.
  • the cell cycle can be stopped in the early G1 phase to induce cell death. Therefore, the C7orf26 gene and its translation products are effective as pharmaceuticals for the prevention and / or treatment of diseases caused by or related to abnormal cell cycle control such as cancer.
  • the C7orf26 gene when the C7orf26 gene is expressed in stem cells and progenitor cells of each cell such as muscle, nerve, and endocrine cells, it stops cell division and proliferation in the state of stem cells and progenitor cells, and shifts to the G0 phase for differentiation. Can be promoted.
  • stem cells and progenitor cells that do not transition to the GO phase are thinned out by cell death, and the expression of the C7orf26 gene allows cells that can preserve or differentiate such thinned stem cells and progenitor cells in a quiescent state. It is expected to be directed to functional cells. Therefore, according to the present invention, the efficient use of stem cells as raw materials for reproductive medical materials, the increase in yield of regenerative medicine / cell medicine materials, the increase in yield of agricultural products / livestock products / marine products, and the efficiency of differentiation of produced cells are used to improve immunological preparations and hormones. It is effective for increasing the yield of preparations, treating fertility by promoting the differentiation of germ cells, promoting the reproduction and reproduction of beneficial organisms, and suppressing the reproduction and / or reproduction of harmful organisms (including harmful insects, beasts, and harmful plants). be.
  • FIG. 1A shows the results of flow cytometry analysis of HeLa cells whose cell cycle was synchronized by administration of hydroxyurea (HU) for 24 hours after 0 hours, 16 hours, and 20 hours.
  • FIG. 1C shows immunostaining of C7orf26 in HeLa cells at each phase of the cell cycle (scale bar: 5 ⁇ m).
  • FIG. 3A shows the C7orf26 gene transposoned into the genome using HeLa / pPB-CuO-C7orf26 cells (PiggyBac Cumate Switch Inducible Vector) cultured in a medium supplemented with cumate continuously (5th, 6th, 8th).
  • the flow cytometric analysis results of (C7orf26 is expressed according to the concentration of cumate added) in the integrated HeLa cells are shown.
  • FIG. 3B shows the results of flow cytometric analysis of HeLa / pPB-CuO-C7orf26 cells tuned with hydroxyurea (HU) or Ro3306.
  • 3C shows HeLa / pPB-CuO-C7orf26 cells tuned with hydroxyurea (HU), Ro3306 treatment, or serum-free medium (serum (-)), and serum-recovered medium after 24-hour serum starvation (serum (-)).
  • the relative expression levels of C7orf26, p53, p21, and Ki67 mRNA at each stage of the cell cycle in HeLa / pPB-CuO-C7orf26 cells cultured in serum recovery) are shown.
  • It is a schematic diagram showing the scheme of C7orf26 expression in the cell cycle and the site where transcriptional regulation by p53 is possible. A and B in FIG.
  • 5-1 are transcriptions of p53 by C7orf26 and integrator complex subunits (INTS1, INTS2, INTS3, INTS4, INTS5, INTS6, INTS7, INTS8, INTS9, INTS10, INTS11, INTS12, INTS13, INTS14).
  • the results of a reporter assay to elucidate the control mechanism are shown.
  • FIG. 5C shows the results of a reporter assay for elucidating that p53 has a transcriptional regulation mechanism of C7orf26 (*: p ⁇ 0.05, Mann-Whitney U-test, error bar: ⁇ SD, in each figure).
  • Figure 5-2 shows C7orf26 and INTS1, INTS2, INTS3, INTS4, INTS5, INTS6, INTS7, INTS8, INTS9, INTS10, INTS11, INTS12, INTS13, INTS14 during the cell cycle in HeLa cells tuned with hydroxyurea (HU).
  • the relative expression level of is shown.
  • a in FIG. 6-1 shows the relative expression levels of E2F1, E2F4, and E2F6 during the cell cycle in HeLa cells tuned with hydroxyurea (HU).
  • C in FIG. 6-1 shows the results of Western blot analysis using an anti-E2F4 antibody (a-E2F4) of a HeLa cell extract transfected with pCMV-GFP or pCMV-C7orf26-Flag.
  • FIG. 7B shows the results of flow cytometry analysis (decrease in live cells and increase in dead cells) of HeLa / pPB-CuO-C7orf26 cells cultured in a medium supplemented with cumate continuously (5 days, 8 days). ..
  • FIG. 8 shows the cell death induction test results of HeLa cells (uterine cancer cell line) and glioma cells U-251MG in which C7orf26 was forcibly expressed [ad: HeLa cells, eg: glioma cells U-251MG, h: C7orf26 non- Mitochondrial staining of introduced HeLa cells (control)].
  • FIG. 9A shows human iPS cells HiPSC / pPB-CuO-C7orf26 cells (human iPS cells in which C7orf26 is incorporated into the genome by PiggyBac Cumate Switch Inducible Vector, and C7orf26 is expressed according to the concentration of cumate added).
  • Relative expression levels of C7orf26, p53, p21, Ki67 mRNA in cells (Cum +) induced to differentiate into ectoderm with (cumate) -added medium and cells (Cum-) induced to differentiate into ectoderm with cumate-free medium The expression level in Cum- is 1).
  • FIG. 1 shows human iPS cells HiPSC / pPB-CuO-C7orf26 cells (human iPS cells in which C7orf26 is incorporated into the genome by PiggyBac Cumate Switch Inducible Vector, and C7orf26 is expressed according to the concentration of cumate added).
  • FIG. 9B shows a group of cells (Cum +) in which HiPSC / pPB-CuO-C7orf26 cells were induced to differentiate into ectoderm in a medium supplemented with cumate, and a group of cells in which differentiation was induced into ectoderm in a medium not supplemented with cumate (cumate).
  • the flow cytometry analysis result of Cum-) is shown.
  • FIG. 9C shows cells in which HiPSC / pPB-CuO-C7orf26 cells were induced to differentiate into ectoderm with a medium supplemented with cumate (Cum +) and cells induced to differentiate into ectoderm with a medium without cumate (Cum-).
  • C7orf26, p53, p21, Ki67 mRNA in cells (Cum +) induced to differentiate into retinal ganglion cells in (cumate) -added medium and cells (Cum-) induced to differentiate into retinal ganglion cells in a medium without cumate (cumate) Indicates the relative expression level (the expression level in Cum- is 1).
  • HiPSC / pPB-CuO-C7orf26 cells were induced to differentiate into retinal ganglion cells (Cum +) in a medium supplemented with cumate, and into retinal ganglion cells in a medium not supplemented with cumate (cumate).
  • FIG. 10C shows cells in which HiPSC / pPB-CuO-C7orf26 cells were induced to differentiate into the brain with a medium supplemented with cumate (Cum +) and cells induced to differentiate into the brain with a medium not supplemented with cumate (Cum-).
  • the relative expression levels of Otx2, En1 and C7orf26 mRNA are shown (the expression level in Cum- is 1).
  • FIG. 11A shows human iPS cells HiPSC / pPB-CuO-C7orf26 cells (human iPS cells in which C7orf26 is incorporated into the genome by PiggyBac Cumate Switch Inducible Vector, and C7orf26 is expressed according to the concentration of cumate added).
  • the flow cytometry analysis results of the cell group (Cum +) induced to differentiate into the mesoderm with the (cumate) -added medium and the cell group (Cum-) induced to differentiate into the mesoderm with the cumate-free medium are shown.
  • the C7orf26 gene used in the present invention may be a C7orf26 gene derived from an animal species other than human, and the C7orf26 gene derived from another animal or a translation product thereof is the nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2
  • the amino acid sequence shown in (1) as a query and searching the genome and / or cDNA database of non-human mammals or the protein database using BLAST or FASTA, etc., it is derived from the desired animal species.
  • the nucleotide sequence and amino acid sequence of C7orf26 can be obtained.
  • the G1 phase initial regulator of the cell cycle of the present invention includes any of the following proteins (sometimes referred to as "C7orf26 protein" in the present specification).
  • a protein consisting of the amino acid sequence shown in SEQ ID NO: 2;
  • B The amino acid sequence shown in SEQ ID NO: 2 consists of an amino acid sequence in which one or several amino acids are added, deleted, or substituted, and the cell cycle is stopped in the early G1 phase, and from the early G1 phase to the G0 phase. Protein with activity to transfer;
  • C An activity consisting of an amino acid sequence having 90% or more sequence identity with respect to the amino acid sequence shown in SEQ ID NO: 2, arresting the cell cycle in the early G1 phase, and shifting from the early G1 phase to the G0 phase. Protein to have.
  • the range of "1 to several" in the "amino acid sequence in which one or several amino acids are added, deleted, or substituted in the amino acid sequence” includes the protein consisting of the amino acid sequence shown in SEQ ID NO: 2.
  • the number is not particularly limited as long as it retains the activity of stopping the cell cycle in the early G1 phase and shifting from the early G1 phase to the G0 phase, but for example, 1 to 10, preferably 1 to 7, and more. It preferably means 1 to 5, and more preferably 1 to 3.
  • Amino acid deletion means that an arbitrary amino acid is selected and deleted from the amino acid sequence shown in SEQ ID NO: 2.
  • the addition of an amino acid means adding one to several amino acids to the N-terminal or C-terminal side of the amino acid sequence shown in SEQ ID NO: 2. Examples of amino acid substitutions include conservative amino acid substitutions.
  • acids and glutamic acids basic amino acids are lysine, arginine and histidine, examples of amino acids with branched side chains are valine, isoleucine and leucine, examples of aromatic amino acids are phenylalanine, tyrosine, tryptophan and histidine.
  • Preferred conservative amino acid substitutions include substitutions between amino acids selected from valine and leucine and isoleucine, phenylalanine and tyrosine, lysine and arginine, alanine and valine, and asparagine and glutamine.
  • Amino acid addition, deletion, or substitution can be performed by modifying the gene encoding the above protein by a method known in the art. Introducing a mutation into a gene can be carried out by a known method such as the Kunkel method or the Gapped duplex method, or a method similar thereto.
  • amino acid sequence having 90% or more sequence identity means that the sequence identity of the amino acid sequence is at least 90% or more, preferably 95% or more, more preferably 97%. As mentioned above, it is most preferably 98% or more.
  • sequence identity of amino acids can be determined by using a method well known to those skilled in the art, sequence analysis software, or the like. For example, the blastp program of the BLAST algorithm and the fasta program of the FASTA algorithm can be mentioned.
  • sequence identity of the amino acid sequence is a value obtained by comparing the amino acid sequence to be evaluated with respect to the amino acid sequence shown in SEQ ID NO: 2 and expressing the frequency of appearance of the same amino acid at the same site in%.
  • the "cell” in the present invention includes all cells of animals including humans, for example, germ cells such as sperm and egg, somatic cells constituting the living body, stem cells, precursor cells, cancer cells, and immortalizing ability separated from the living body. Includes cells (cell lines) that are acquired and stably maintained in vitro, cells that have been isolated from the living body and artificially modified.
  • the "body cells that make up the living body” are, for example, skin, muscle, bone, cartilage, connective tissue, blood vessels, blood (including umbilical cord blood), bone marrow, heart, eye, brain, nerve, thoracic gland, spleen, adrenal gland, lung. , Pancreas, liver, stomach, small intestine, large intestine, liver, bladder, prostate, testis, ovary, uterus, etc.
  • the cells of the present invention also include cells other than animals, such as plant cells and microbial cells.
  • somatic cells constituting the living body include fibroblasts, bone marrow cells, erythrocytes, granulocytes (neutrophils, eosinophils, basophils), monospheres, and lymphocytes (T cells, B cells, NK cells).
  • Thrombosis macrophages, dendritic cells, bone cells, osteoblasts, cartilage cells, epidermal cells, keratinocytes (keratinocytes), fat cells, mesenchymal cells, epithelial cells, endothelial cells, hepatic parenchymal cells, oval cells, Examples thereof include dendritic cells, glial cells, neurons, oligodendrocytes, microglia, stellate glial cells (astrosites), heart cells, muscle cells, pancreatic beta cells, and the like.
  • Stem cells include pluripotent stem cells and somatic stem cells.
  • Somatic stem cells are somatic stem cells present in bone marrow, blood, skin (epidermal, dermal, subcutaneous tissue), fat, hair follicles, brain, nerves, liver, pancreas, kidneys, muscles and other tissues.
  • hematopoietic stem cells vascular endothelial stem cells, mesenchymal stem cells, hepatic stem cells, nerve stem cells, pancreatic stem cells, intestinal stem cells, reproductive stem cells and the like can be mentioned.
  • Cancer cell refers to a cell derived from the somatic cell and acquired infinite proliferative capacity.
  • Progenitor cells refer to cells in the process of differentiating from the stem cells into specific somatic cells or germ cells, and are hematopoietic progenitor cells and myeloid progenitor cells (erythroblasts, myeloid blasts, progenitor cells). , Giant nuclei, etc.), lymphocytic progenitor cells (monoblasts, lymphoblasts, etc.) and the like.
  • Cell line refers to a cell that has acquired infinite proliferative capacity by artificial manipulation in vitro.
  • the "G1 phase early control" in the present invention means that the cell cycle is stopped in the early G1 phase through the upregulation of p53, and the transition from the early G1 phase to the G0 phase is defined as "early G1 phase”.
  • CDK cycloin D-cyclin-dependent kinase
  • the action of Cyclin D-CDK4 / 6 can be suppressed by p53 and p21, and the cell cycle is stopped at this time, which enables the transition to the G0 phase.
  • activity to arrest the cell cycle in the early G1 phase and shift from the early G1 phase to the G0 phase is caused by introducing the C7orf26 gene into cells, overexpressing it, and enhancing the expression of p53 and p21. , PCR and FACS analysis. Further, the above-mentioned stop includes not only a complete stop but also a deceleration. Further, “having an activity of stopping the cell cycle in the early G1 phase and shifting from the early G1 phase to the G0 phase” is substantially the same as the activity retained by the protein consisting of the amino acid sequence shown in SEQ ID NO: 2. It means that they are equivalent.
  • the above C7orf26 protein can be produced by a genetic engineering method using a polynucleotide containing a gene encoding it.
  • a method of preparing RNA by in vitro transcription from a recombinant vector having a polynucleotide containing a gene encoding the C7orf26 protein and performing in vitro translation using this as a template, or a polynucleotide containing a gene encoding the C7orf26 protein is suitable. It can be produced by operably linking to a vector, incorporating it, introducing it into a host cell to prepare a transformed cell, and expressing the target C7orf26 protein from the transformed cell.
  • a vector suitable for the host cell into which the vector is introduced can be appropriately selected and used.
  • the vector contains a polynucleotide containing a gene encoding a C7orf26 protein operably linked to a suitable promoter, and preferably contains a transcription termination signal, that is, a terminator region, downstream of the polynucleotide.
  • a selectable marker gene for selecting transformed cells drug resistance gene, gene complementing auxotrophic mutation, etc.
  • a sequence encoding a tag sequence useful for separating and purifying the expressed protein may be included.
  • the vector may also be integrated into the genome of the host cell.
  • the vector can be introduced into a host cell by a transformation method known per se, such as a competent cell method, a protoplast method, or a calcium phosphate coprecipitation method.
  • the host cell into which the vector is introduced and used for the expression of the recombinant protein may be any cell as long as the vector can be expressed, and commonly used known microorganisms such as bacteria, yeast, fungi, and mammalian cells can be mentioned. Be done. Examples of bacteria include Gram-negative bacteria such as Escherichia coli and Gram-positive bacteria such as Bacillus or Streptomyces. Recombinant cells can be cultured by a method known per se that is suitable for the host cell.
  • the cells collected by centrifugation or the like are ground from the culture supernatant of the host cell by ultrasound or glass beads, and then solid substances such as cell fragments are removed by centrifugation or the like.
  • known methods used for protein and peptide purification such as ammonium sulfate, precipitation separation with an organic solvent (ethanol, methanol, acetone, etc.), ion exchange chromatography, isoelectric point chromatography, Gel filtration chromatography, hydrophobic chromatography, adsorption column chromatography, affinity chromatography using substrate or antibody, reversed-phase column chromatography, chromatography such as HPLC, precision filtration, ultrafiltration, back-penetration filtration, etc. It is possible to purify by using one or more combinations such as filtration treatment.
  • the C7orf26 protein can also be produced by a method of chemically synthesizing based on its amino acid sequence.
  • the C7orf26 protein can be chemically synthesized by a known chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) or the tBoc method (t-butyloxycarbonyl method).
  • the cell cycle G1 phase early regulator of the present invention comprises a gene encoding a C7orf26 protein.
  • the gene include any of the following genes (D) to (F) (may be referred to as "C7orf26 gene" in the present specification).
  • D A gene containing DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1;
  • E It consists of a nucleotide sequence having 90% or more sequence identity with respect to the nucleotide sequence shown in SEQ ID NO: 1, and has an activity of arresting the cell cycle in the early G1 phase and shifting from the G1 phase to the G0 phase.
  • a base sequence having 90% or more sequence identity means that the sequence identity of the base sequence is at least 90% or more, preferably 95% or more, more preferably 97%. As mentioned above, it is most preferably 98% or more.
  • the sequence identity of the base sequence can be determined by using a method well known to those skilled in the art, sequence analysis software, or the like. For example, the blastn program of the BLAST algorithm and the fasta program of the FASTA algorithm can be mentioned.
  • the sequence identity of the base sequence is a value obtained by comparing the base sequence to be evaluated with respect to the base sequence shown in SEQ ID NO: 1 and expressing the frequency of appearance of the same base at the same site in%.
  • the "stringent condition” means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed.
  • stringent conditions can be set by the temperature at the time of Southern hybridization and the salt concentration contained in the solution, and the temperature at the time of the washing step of Southern hybridization and the salt concentration contained in the solution. More specifically, for example, the condition that the reaction temperature of hybridization is in the range of 25 to 70 ° C., preferably 50 to 70 ° C., more preferably 55 to 68 ° C., and / or the formamide concentration in the hybridization solution.
  • the sodium salt concentration in washing the filter after hybridization is 15 to 750 mM, preferably 15 to 500 mM, more preferably 15 to 300 mM, 15 to 200 mM or 15 to 100 mM.
  • the method for obtaining the C7orf26 gene is not particularly limited.
  • a human cDNA library (prepared according to a conventional method from an appropriate cell expressing the gene of the present invention) is synthesized using a known method, and a probe DNA prepared based on the nucleotide sequence of SEQ ID NO: 1 is obtained. It can be used to isolate the cDNA of interest.
  • the obtained cDNA can be amplified by a conventional gene amplification method such as a PCR method, a NASBN method, or a TMA method.
  • cDNA can also be obtained by the RT-PCR method using mRNA isolated from human cells as a template using a primer set prepared based on the nucleotide sequence of SEQ ID NO: 1.
  • Other animals also have homologous genes, which can be used.
  • the cells can be either in vitro cells (cultured cells) or in vivo cells (cells in vivo).
  • the C7orf26 protein can be made into a form that can be introduced into cells without changing its structure or function, for example, by mixing a protein molecule with a pharmacologically acceptable carrier solution and formulating it. ..
  • a drug can be introduced into cells, for example, into in vitro cells by a microinjection method.
  • an intracellular introduction method using lipids can be adopted.
  • the protein can be introduced into the cell by forming a fusion protein in which a cell membrane-passing peptide is linked to the N-terminal side of the C7orf26 protein.
  • a cell membrane-passing peptide is linked to the N-terminal side of the C7orf26 protein.
  • the C7orf26 protein passes through the cell membrane and is taken up into the cell.
  • the cell membrane-transparent peptide PTD (protein transmission domain) of HIV-1 / TAT or PTD of Homeobox protein antennapedia of Drosophila can be used, and a DNA fragment encoding a region corresponding to PTD is referred to as the above-mentioned cDNA.
  • a fused protein in which a PTD peptide is linked to the N-terminal side can be prepared.
  • a fusion protein in which the transmembrane peptide is linked can be prepared by a method of binding the C7orf26 protein and the PTD peptide via a divalent cross-linking agent (for example, EDC, ⁇ -alanine, etc.).
  • the C7orf26 gene or C7orf26 mRNA can be made into a form that can be introduced into cells by, for example, incorporating it into an expression vector.
  • an expression vector a known expression vector for eukaryotic cells having a promoter, splicing region, poly (A) addition site, etc. can be used, and the C7orf26 gene or C7orf26 mRNA should be inserted into the cloning site of this expression vector. Can construct a C7orf26 gene expression vector.
  • This expression vector can be introduced into in vitro cells (cultured cells) by a known method such as an electroporation method, a calcium phosphate method, a liposome method, or a DEAE dextran method.
  • in vivo cells for the purpose of promoting uptake into cells and enhancing the directivity toward target cells, for example, means such as a viral or non-viral gene transfer vector.
  • a viral or non-viral gene transfer vector can be introduced into cells.
  • the drug in such a form can be introduced into a living body for gene therapy.
  • the viral vector include an adenovirus vector, a retrovirus vector, an adeno-associated virus vector, a lentivirus vector, a vaccinia virus vector, a baculovirus vector, and the like.
  • retrovirus vector it is particularly desirable to use a retrovirus vector because the viral genome is integrated into the host chromosome after the cells are infected and the foreign gene incorporated into the vector can be expressed stably and for a long period of time.
  • non-viral vector include liposomes, artificial lipid vesicles, hollow nanoparticles, polymer compounds such as dendrimers, and the like.
  • the G1 phase initial regulator of the cell cycle of the present invention arrests the cell cycle in the early G1 phase of cancer cells and increases the expression of p53, as will be specifically shown in Examples described later. Since it induces cell death, it can be used as a drug for treating and / or preventing a disease caused by or related to cell cycle dysregulation, particularly as a drug for treating cancer.
  • a typical disease caused by dysregulation of the cell cycle is a malignant tumor (cancer), the type of which is not particularly limited, and is gastric cancer, breast cancer, lung cancer, esophageal cancer, prostate cancer, liver cancer, colon cancer.
  • intractable cancers such as glioma and undifferentiated cancers are effective in combination with the well-differentiated stage G0 phase.
  • the presence or absence of cell death induction and its degree can be detected by methods such as TUNEL method, DNA ladder detection method, quantification of DNA fragmentation rate, and measurement of cell size distribution.
  • cell proliferation of diseases in which cells overproliferate can be suppressed.
  • the disease is not particularly limited and includes adenomas such as ptosis, hyperthyroidism, pheochromocytoma, polycystic ovary syndrome and the like.
  • the G1 phase initial regulator of the cell cycle of the present invention When used for the treatment of cancer or cell hyperproliferative disease, it is administered in a therapeutically effective amount to a mammal having cancer or cell hyperproliferative disease.
  • mammals include humans, dogs, cats, sheep, goats, cows, horses, pigs and the like.
  • “Therapeutically effective amount for cancer and hyperproliferative disease” means that administration of this drug to proliferating cancer and hyperproliferative cells stops the growth of cancer and hyperproliferative cells, and reduces or eliminates the size of the tumor. The amount to bring.
  • the specific dose should be appropriately increased or decreased depending on the route of administration, the age and weight of the patient, the type and malignancy of the cancer, the presence or absence of metastasis or recurrence, the type and growth rate of hyperproliferative cells, the size of the tumor, and the like.
  • Examples of the administration form include intravenous, intraarterial, intramuscular, intraperitoneal, subcutaneous, local, intramass, oral, transdermal, rectal, intravaginal, intranasal, and sublingual administration.
  • solid tumors in various organs that can be easily accessed by surgery may be administered by local injection into or near the tumor using a stereotaxic needle or the like, and leukemia.
  • Non-solid tumors such as brain tumors, cancers in sites that are difficult to access by surgical operations such as brain tumors, and metastatic cancers can be administered by intravenous injection.
  • the above-mentioned administration method can be appropriately selected and used depending on the type and site of cancer.
  • the G1 stage initial control agent of the cell cycle of the present invention is formulated as a pharmaceutical for treating cancer
  • the C7orf26 protein, the C7orf26 gene, and the C7orf26 mRNA are mixed with a pharmacologically and pharmaceutically acceptable additive.
  • Tablets, powders, granules, fine granules, capsules, internal liquids (suspendories, syrups, emulsions, etc.), external liquids (injections, sprays / aerosols, inhalants, etc.) by methods known in the field. , Coating agent, etc.), injection, drip, suppository, etc. can be formulated into various formulations.
  • Examples of pharmacologically and pharmacologically acceptable additives include pharmaceutical substrates and carriers, excipients, diluents, binders, preservatives, and coatings that are appropriately selected according to the dosage form and application.
  • Agents, disintegrants or disintegrants, stabilizers, preservatives, preservatives, bulking agents, dispersants, wetting agents, buffers, solubilizers or solubilizers, isotonic agents, pH adjusters, colorants Etc. may be appropriately added to prepare various pharmaceutical forms that can be orally or parenterally administered systemically or topically by various known methods.
  • the drug for treating cancer of the present invention prepared in various pharmaceutical forms can be orally or parenterally administered systemically or topically.
  • the drug for treating cancer of the present invention When the drug for treating cancer of the present invention is orally administered, it is formulated or used in tablets, capsules, granules, powders, pills, liquid solutions for internal use, suspensions, emulsions, syrups, etc. It may be a dry product to be redissolved.
  • the pharmaceutical agent for treating cancer of the present invention is administered parenterally, intravenous injection (including infusion), intramuscular injection, intraperitoneal injection, intrathecal injection, subcutaneous injection, suppository, etc.
  • an injectable formulation it is provided in the form of a unit-dose ampoule or a multi-dose container.
  • in vitro method ex vivo method
  • in vivo method in which a target cell is taken out of the body and a gene is introduced
  • in vivo method in which a gene is introduced into the body.
  • Early stage control agents are applied to any form of treatment.
  • cells derived from the patient may be cultured once in vitro, the above gene transfer process may be performed, and then administered to the patient.
  • the above gene transfer vector may be directly administered into the patient body (organ tissue, skin, muscle, etc.). ) May be administered.
  • cancer and hyperproliferative disease treatments may be combined with well-known cancer and hyperproliferative disease treatment means, including surgery, chemotherapy, and radiation therapy.
  • the G1 phase initial regulator of the cell cycle of the present invention sets the cell cycle to G1 phase with respect to stem cells, as specifically shown in Examples described later. It can be used as a differentiation-promoting agent for undifferentiated cells because it can be stopped in the early stage and then transferred to the G0 phase to induce differentiation into target cells.
  • the "undifferentiated cell” refers to an undifferentiated cell capable of differentiating into ectodermal cells, mesenchymal cells, endometrial cells or promoting their repair, and refers to stem cells, precursor cells, and the like. Includes dedifferentiated (juvenile) cells of mature cells.
  • the stem cells are not particularly limited as long as they meet the object of the present invention, and examples thereof include the above-mentioned somatic stem cells and pluripotent stem cells (ES cells, iPS cells, etc.).
  • the stem cells may be either primary cultured cells, subcultured cells or frozen cells.
  • the ectodermal cells include sensory organ cells (cells of the retina and inner ear), neural cells (nerve cells (for example, forearn nerve cells, middle brain nerve cells, cerebral nerve cells, posterior brain nerve cells, spinal cord nerve cells). Etc.), neural tube cells, neural ridge cells), epidermal cells (epidermal cells, crystalline epithelial cells), and mesenchymal cells include muscular cells (myosblasts, muscle satellite cells, etc.), skeletal system Cells (osteoblasts, bone cells, cartilage cells, etc.), fat cells, dermal cells, cardiovascular cells (myocardial cells, hematopoietic stem cells, erythrocytes, platelets, macrophages, granulocytes, helper T cells, killer T cells, B lymph Spheres, etc.), urogenital cells (tubular cells, mesangial cells, parafilamental cells, testis, ovaries, etc.), connective tissues, etc.
  • neural cells neural cells
  • neural tube cells for example,
  • endometrial cells include digestive cells (hepatocellular, bile duct, etc.)
  • examples include cells of tissues such as cells, pancreatic endocrine cells, adenocarcinoma cells, pancreatic duct cells, absorptive cells, cup cells, panate cells, intestinal endocrine cells, etc.), lungs, and thyroid gland.
  • the differentiation-promoting agent for undifferentiated cells of the present invention can be applied to all undifferentiated cells as long as it has the same characteristics regarding the direction of differentiation and the process of differentiation.
  • the differentiation-promoting agent for undifferentiated cells according to the present invention includes mammals such as humans, monkeys, mice, rats, guinea pigs, rabbits, cats, dogs, horses, cows, sheep, goats, pigs, birds, reptiles, and both sexes. It can exert its effect on undifferentiated cells of species, fish, reptiles, crustaceans, and soft animals.
  • the application of the differentiation-promoting agent for undifferentiated cells according to the present invention to the cells may be in vitro or in vivo, and in either case, the action can be exerted.
  • an expression vector having the target C7orf26 gene downstream of the expression promoter is typically introduced into the undifferentiated cells of interest. It is carried out by the method of culturing.
  • the expression promoter used here examples include CMV promoter, SV40 promoter and the like.
  • a plasmid vector or a liposome can be used as the non-viral vector, and an adenoviral vector, a retroviral vector or the like can be used as the viral vector.
  • Commercially available products from each manufacturer can also be used as these expression vectors.
  • the expression vector may be integrated into the genome of the host cell.
  • a method for introducing the expression vector into cells for example, a lipofection method, an electroporation method, a method of incorporating a gene into a viral vector and infecting the virus vector can be used.
  • the medium and additives used in culturing undifferentiated cells into which the above gene has been introduced are not particularly limited, and for example, media and additives generally used for culturing stem cells may be used.
  • basic media containing components necessary for cell survival and proliferation inorganic salts, carbohydrates, hormones, essential amino acids, non-essential amino acids, vitamins, etc.
  • D-MEM Dulbecco's Modified Eagle Medium
  • MEM Minimum Essential Medium
  • RPMI 1640 Basal Medium Eagle (BME)
  • Dulbecco's Modified Eagle Medium Nutrient Mixture F-12 (D-MEM / F-12), Glassgow Minimum Essential Medium (Glasgow MEM), Hanks Liquid salt solution
  • D-MEM Dulbecco's Modified Eagle Medium
  • MEM Minimum Essential Medium
  • BME Basal Medium Eagle
  • Dulbecco's Modified Eagle Medium Nutrient Mixture F-12
  • Gasgow MEM Glassgow Minimum Essential Medium
  • the medium contains cell growth factors (for example, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), epithelial growth factor (EGF), hepatocellular growth factor (eg,) depending on the target cell for inducing differentiation.
  • FGF fibroblast growth factor
  • PDGF platelet-derived growth factor
  • EGF epithelial growth factor
  • hepatocellular growth factor eg, depending on the target cell for inducing differentiation.
  • HGF vascular endothelial growth factor
  • VEGF vascular endothelial growth factor
  • insulin etc.
  • cytokines eg, interleukins, chemokines, interferons, colony stimulators, tumor necrosis factors, etc.
  • neurotrophic factors nerve growth factor (NGF), Brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), etc.
  • amino acids eg, glycine, phenylalanine, lysine, aspartic acid, glutamate, etc.
  • vitamins etc.
  • serum albumin antibiotics, etc.
  • the incubator used for culturing undifferentiated cells is not particularly limited, and examples thereof include flasks, petri dishes, dishes, plates, chamber slides, tubes, trays, culture bags, and roller bottles.
  • the incubator may be cell non-adhesive or adhesive, and is appropriately selected according to the purpose.
  • the cell adhesion incubator one treated with a cell support substrate or the like using an extracellular matrix or the like may be used for the purpose of improving the adhesion to cells.
  • the cell-supporting substrate include collagen, gelatin, poly-L-lysine, poly-D-lysine, laminin, fibronectin and the like.
  • the culture conditions for undifferentiated cells may follow the usual conditions used for culturing stem cells and the like, and no special control is required.
  • the culture temperature is not particularly limited, but is about 30 to 40 ° C, preferably 36 to 37 ° C.
  • the CO 2 gas concentration is, for example, about 1-10%, preferably about 2-5%.
  • HeLa cells were purchased from ATCC, 293T cells from Takara Bio, glioma cells U-251MG from DS Biofferma Medical, and human iPS 409B02 cells from RIKEN BRC. HeLa cells were grown in DMEM medium (Thermo Fisher Scientific CAT #: 11965092) supplemented with 10% FBS and 1% Pen Strep. 293T cells were grown in DMEM medium (Thermo Fisher Scientific CAT #: 35050061) supplemented with 10% FBS and 1 ⁇ GlutaMAX TM Supplement. Human iPS cells were grown on a feeder layer (inactivated MEFs) in a medium supplemented with Prime ES medium (ReproCELL) at 10 ng / mL and bFGF (Invitrogen).
  • DMEM medium Thermo Fisher Scientific CAT #: 11965092
  • 293T cells were grown in DMEM medium (Thermo Fisher Scientific CAT #: 35050061) supplemented with 10% FBS
  • Cell cycle analysis Cell cycle analysis was performed in combination with FxCycle PI / RNase staining solution (Thermo Fisher Scientific, # F10797) and according to the recommended staining protocol using the Click-iT Plus EdU flow cytometry assay kit (Thermo Fisher Scientific, # C10632). went. HeLa cells were incubated with 10 ⁇ MEdU for 1.5 hours at 37 ° C and harvested. Cells were fixed with Click-iT fixative for 15 minutes, followed by permeabilization with Click-iT saponin-based permeabilization and detergent for 15 minutes in the dark. A click-IT reaction with Alexa Fluor 488 pycolyl azaide was performed in a reaction volume of 0.6 mL for 30 minutes.
  • the cell pellet was suspended in 0.2 mL of FxCycle PI / RNase staining solution and incubated in the dark at room temperature for 30 minutes. The cells were then analyzed with an Attune Acoustic Focusing Cytometer (Thermo Fisher Scientific). EdU was detected using Alexa Fluor 488 pycolyl azaide using 488 nm excitation using a green emission filter (530 / 30 nm), and PI was detected using 488 nm excitation using an orange emission filter (574/26 nm). used. Compensation analysis was performed using unstained HeLa cells and monostained cells with either EdU or PI. The cell cycle population ratio was analyzed using Attune Cytometric Software v2.1.
  • HeLa cells For HeLa cells, the cell cycle was synchronized by culturing in a medium containing 10 mM hydroxyurea (Sigma # H8627) or 10 ⁇ M Ro3306 (Abcam # ab141491) or in a serum-free medium for 24 hours. Then, the HeLa cells tuned with hydroxyurea were continuously cultured in a normal medium, and collected after a lapse of a predetermined time for expression analysis and cell cycle analysis.
  • the luciferase reporter assay was performed using the LightSwitch Luciferase Assay Kit (Active Motif # 32031) according to the manufacturer's protocol.
  • LightSwitch promoter reporter GoClone (Active Motif # S717666, # S721662) containing the c7orf26 and p53 promoter regions and the 3'-RenSP luciferase region downstream was used.
  • the reporter vector was co-transfected into HeLa cells with FuGENE HD transfection reagent (Promega # E2311) together with c7orf26, p53, and the cDNA clone encoding INTS, and 48 hours after transfection, the cells in the 96-well plate were cotransfected. Frozen. After thawing, LightSwitch Luciferase Assay Reagent was added to the wells, and after 30 minutes of reaction, it was transferred to a 1/2 Area Plate-96 plate (PerkinElmer # 6002350). Chemiluminescent signals were read using a 2030 ARVO X multi-label counter device (PerkinElmer). The signal ratio for each promoter activity was calculated in comparison with GFP-transfected cells.
  • Cell death assay HeLa cells were transfected with the pU6-shC7orf26-GFP vector, transfected, cultured in 96-well plates or 8-well glass chambers, and immobilized 36 hours later. Immunostaining with M30 CytoDEATH antibody (Roche # 12140322001) was performed on fixed cells to detect cell death. After washing twice with PBS containing 0.1% Tween 20, cells were incubated with M30 CytoDEATH antibody solution (1:50) for 60 minutes at room temperature.
  • E2F knockdown by siRNA E2F4 specific siRNA (Human E2F4 (1874) siRNA-SMARTpool L-003262-00-0005), E2F6 specific siRNA (Human E2F6 (1876) siRNA-SMARTpool L-003264-00-0005), E2F1 Control siRNAs containing specific siRNA (E2F1 (1869) siRNA-SMARTpool, 5 nmol L-003259-00-0005) and scrambled sequences (ON-TARGETplus Non-targeting Pool, # D-001810-10; NC siRNA) Purchased from Dharmacon. HeLa cells were seeded in 24-well plates 2 days prior to transfection.
  • HeLa cells with a cell density of 50-70% were transfected with 50 ⁇ L Opti-MEMI medium containing 5 pmol of siRNA using Lipofectamine TM RNAiMAX Transfection Reagent (Thermo Fisher Scientific # 13778150) according to the manufacturer's instructions. For analysis, cells were harvested and fixed at different time points after transfection.
  • Immunoprecipitation was performed using EZview TM Red ANTI-FLAG M2 Affinity Gel (Sigma #: F2426) and FLAG Immunoprecipitation Kit (Sigma #: FLAGIPT1).
  • the affinity gel was suspended in 1% BSA wash buffer and allowed to rotate at room temperature for 30 minutes. After washing 4 times with wash buffer, the affinity gel was suspended in cell lysates and rotated at 4 ° C. for 16 hours.
  • the C7orf26 Flag-fusion protein was isolated from the affinity gel by washing 4 times with a wash buffer and then eluting with a 3xFlag peptide solution. After concentrating the volume using Amicon Ultra-0.5 (Millpore #: UFC5003), the amount of protein was measured using Qubit TM R Protein Assay (Thermo Fisher Scientific #: Q33211).
  • the PCR conditions were as follows: after holding at 42 ° C. for 5 minutes, 95 ° C. for 10 seconds, followed by 95 ° C. for 5 seconds and 60 ° C. for 31 seconds for 40 cycles. The expression level of mRNA was evaluated by the Ct (Threshold cycle) value.
  • Example 1 Cell cycle expression fluctuation of C7orf26
  • the cell cycle of HeLa cells was synchronized by adding hydroxyurea (HU) to the medium for 24 hours. Later, the cell cycle was restarted by removing HU from the medium. HeLa cells were analyzed by flow cytometry after a certain period of time after the cell cycle was restarted. At the time of cell cycle resumption (0 hours), it was confirmed that most HeLa cells were in the early S phase, progressed to the G2 / M phase in 16 hours, and the number of cells in the early G1 phase increased in 20 hours (Fig.). 1A).
  • Example 2 Cell cycle control by C7orf26
  • SBI System Biosciences, LLC
  • Water-soluble cumate solution 300 mg / mL, 10,000x
  • HeLa cells were transfected with a pPB-Cuo-C7orf26 vector containing the C7orf26 coding region using a PiggyBac Cumate Switch Inducible Vector (System Biosciences, LLC # PBQM812A-1) to obtain a stable cell line, HeLa / pPB-Cuo-C7orf26.
  • Cloning the cell line expresses C7orf26 depending on the concentration of cumate added).
  • the cell line is seeded in a medium, and on the second day of seeding, 1/1000 amount (final concentration 0.3 mg / ml) of the above-mentioned cumate is added to 10x and cultured to express C7orf26 mRNA. rice field.
  • C7orf26 was expressed in the cells in a concentration-dependent manner of the cumate added to the culture medium.
  • the expression level of p53 increased in response to C7orf26, and the expression level of p21 downstream of p53 also increased in response to the expression of p53.
  • the expression level of Ki67 mRNA which is a cell proliferation marker, was significantly reduced.
  • the expression of p53 and p21 also increased.
  • C7orf26 expression decreased, and p53 and p21 expression also decreased accordingly.
  • Ki67 also decreased in the cell cycle arrested cells by HU in the early S phase, and in the cell cycle arrested cells by Ro3306, it increased only slightly during the cell division in the M phase, and the cells due to serum starvation.
  • cell-cycle arrested cells it decreased in the early G1 phase, and in the late G1 phase due to serum recovery, it was almost the same as that of the control.
  • Example 3 Induction mechanism of cell arrest in G1 phase via the p53 pathway of C7orf26
  • p53 controls the progression of the cell cycle at each checkpoint and the p53 pathway. Is thought to stop the cell cycle. Since C7orf26 was highly expressed from the M phase to the early G1 phase, Ki67 decreased, and the G1 phase was stopped by C7orf26, the main points at which C7orf26 acts on p53 are the start of cyclinD-CDK4 / 6 and cyclinE-CDK2. It was considered (restriction point).
  • the reporter vector containing the promoter region of p53 and pCMV-C7orf26-Flag were co-transfected.
  • a reporter assay was performed on the HeLa cells. Compared with transfection of the control vector pCMV-GFP, the p53-Luc reporter signal was significantly increased by the expression of C7orf26 (Fig. 5-1 and A).
  • the p53-Luc reporter signal is an integrator complex subunit (INTS1, INTS2, INTS3, INTS4, INTS5, INTS6, INTS7, INTS8, INTS9, INTS10, INTS11, INTS12, INTS13. , INTS14) was also significantly increased (Fig. 5-1 and B).
  • the C7orf26-Luc reporter signal was also significantly increased by transfection with pCMV-p53-HA, indicating the presence of positive feedback between C7orf26 and p53 (Fig. 5). -1, C).
  • E2F1 expression gradually decreased from S phase to G2 phase (0 to 8 hours), but E2F4 expression gradually increased in G2 / M phase. This suggests that increased E2F4 may act on the upregulation of C7orf26 during the G2 / M phase.
  • the expression of E2F6 was relatively stable (Fig. 6-1 and A).
  • E2F1, E2F4, E2F6 The change in p53 reporter activity by C7orf26 was investigated by knockdown of E2F (E2F1, E2F4, E2F6) using siRNA. Upregulation of p53 by C7orf26 was significantly reduced by siRNAs of transcription factors E2F1 and E2F4. Therefore, E2F1 and E2F4 were considered to be candidate transcription factors that work in collaboration with C7orf26 and INTS to activate the transcription of p53 (Fig. 6-1 and B).
  • the Flag affinity eluate from HeLa cells transfected with pCMV-GFP or pCMV-C7orf26-Flag was subjected to Western blot analysis using an antibody against human E2F4. As a result, it was confirmed that C7orf26 and E2F4 bind to each other, and it was supported that C7orf26 in FIGS. 6-1 and B is a transcriptional cofactor for E2F4 (Fig. 6-1 and C).
  • E2F4 significantly increased the reporter activity of C7orf26-Luc in HeLa cells overexpressing E2F4 and E2F6 (Fig. 6-2, A).
  • E2F4 and E2F6 siRNAs were allowed to act on HeLa cells whose cell cycle was synchronized, the expression of C7orf26 was suppressed in the G2 and M phases (Fig. 6-2, B). Therefore, the upstream gene that expresses the C7orf26 gene is presumed to be E2F4 / 6.
  • CDK1 is an upstream transcriptional repressor of C7orf26.
  • C7orf26 is suppressed and the expression of p53 does not increase, the cells escape cell cycle arrest, and after entering the G1 phase in which CDK1 is degraded after cell division, C7orf26 It is presumed that the G1 phase early cell cycle arrest function is exerted.
  • the C7orf26 protein is a transcription coactivator of p53 in the M to G1 phase that works together with INTS and E2F1 / E2F4, and rapidly upregulates p53 in the G1 phase with a rapid cell cycle. It was revealed that it would cause an outage and introduction into the G0 phase.
  • the function of C7orf26 is suppressed by CDK1 until the M phase, and the expression increase is released in the G1 phase, and the expression is rapidly increased by the positive feedback of p53.
  • the integrator complex subunit protein which co-operates with the transcription factor E2F4 / 1, is rapidly formed during the M phase (about 30 minutes) and works with C7orf26 in the early G1 phase to arrest the cell cycle in the early G1 phase. .. These are thought to be the mechanism by which C7orf26 specifically arrests the cell cycle at early G1 phase checkpoints.
  • Example 4 Confirmation of cell death induction (1) Cell death induction by continuous expression of C7orf26 HeLa / pPB-Cuo- in which C7orf26 was continuously expressed by cumate supplementation according to the same method as in Example 2 above.
  • the flow cytometry analysis result of C7orf26 is shown in FIG. Positive cells (488 nm) were analyzed after staining for 30 minutes using LIVE / DEAD TM Fixable Red Dead Cell Stain Kit Part No. L34971 manufactured by Thermo Fisher Scientific as a staining reagent. Weak fluorescence (low numbers) indicates cells or cell debris containing dead cells. After 8 consecutive days of continuous expression of C7orf26, cells in G1 phase decreased, accompanied by an increase in dead cells and cell debris (FIG. 7A, arrowhead).
  • HeLa / pPB-Cuo-C7orf26 in which C7orf26 was continuously expressed for 5 days by cumate supplementation, the cells were almost alive except for a few dead cells, and the control (without cumate supplementation) It was the same as HeLa / pPB-CuO-C7orf26 cells (Fig. 7B, upper panel).
  • HeLa / pPB-Cuo-C7orf26 in which C7orf26 was continuously expressed for 8 days by cumate supplementation, was partially alive compared to control (cumate-free) HeLa / pPB-CuO-C7orf26 cells. The cells were contained, whereas most were dead (Fig. 7B, lower panel).
  • Example 5 Confirmation of promotion of stem cell differentiation (1) Induction of differentiation from human iPS cells to ectoderm A pPB-Cuo-C7orf26 vector containing a C7orf26 coding region was used as a PiggyBac Cumate Switch Inducible Vector (System Biosciences, LLC # PBQM812A-). It was introduced into a human iPS 409B02 cell line using 1), and a cumate-induced c7orf26-expressing iPS cell line was obtained by buromycin drug selection.
  • the state of differentiation was evaluated by flow cytometry.
  • Sample preparation was performed using the Human Pluripotent Stem Cell Transcription Factor Analysis Kit (BD # 560589) according to the attached protocol.
  • Alexa Fluor registered trademark
  • 647 Mouse Anti-Human Pax6 (BD Biosciences # 562249) was purchased for ectoderm marker analysis and used for staining.
  • Attune Acoustic Focusing Cytometer (Thermo Fisher Scientific) was used as the measuring device, and the attached analysis software was used for data analysis.
  • the cell group (Cum +) that was induced to differentiate in the medium without cumate showed a peak in the number of cells at high fluorescence intensity, and the ectoderm appeared.
  • the number of differentiated cells increased. From this result, it was shown that iPS cells whose cell cycle was arrested in the G0 phase due to increased expression of C7orf26 transitioned to the G1 phase and differentiated into ectoderm.
  • cultured cells were collected and the expression levels of C7orf26 and Pax6, Pax3, and Sox1 genes were analyzed by quantitative PCR. As a result, the expression levels of Pax6, Pax3, and Sox1 also increased (Fig. 9C).
  • induction of retinal ganglion differentiation was carried out as follows.
  • Commercially available serum-free medium containing 20% KSR (G-MEM, 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential amino acid additive, 1 mM sodium pyruvate, 20 ⁇ M Y-27636,) on a non-adhesive 96-well plate.
  • the above iPS cells suspended in 3 ⁇ M IWR-1e) were seeded at 9,000 per well.
  • the expression level of retinal ganglion markers (Brn3b, Math5) was evaluated by quantitative PCR.
  • the expression level of each gene in the cells (Cum-) induced to differentiate in the cumate-free medium was set to 1
  • the relative expression level of each gene in the cells (Cum +) induced to differentiate in the medium added with cumate was set to 1.
  • the expression levels of p53 and p21 increased in response to the increase in the expression level of C7orf26 by administration of cumate, but the expression level of Ki67 decreased (Fig. 10A).
  • RNA was recovered in the same manner, and the expression level of brain markers (Otx2, En1) was evaluated by a quantitative PCR method using this RNA as a template.
  • Otx2, En1 brain markers
  • the cell group (Cum +) that was induced to differentiate in the medium without cumate showed a peak in the number of cells at high fluorescence intensity, and the mesoderm.
  • the number of cells differentiated into mesoderm increased (Fig. 11A).
  • cells (Cum +) that were induced to differentiate in a medium without cumate were specific to differentiation into mesoderm as C7orf26 increased. It was confirmed that the expression level of TBXT was increased and the differentiation into mesoderm was enhanced (Fig. 11B).
  • the cell group (Cum +) that was induced to differentiate in the medium added with cumate showed a peak in the number of cells at a higher fluorescence intensity and endoderm.
  • the number of cells differentiated into the medium increased (Fig. 12A).
  • cells (Cum +) that were induced to differentiate in a medium without cumate were specific to differentiation into endoderm as C7orf26 increased. It was confirmed that the expression level of Sox17 was increased and the differentiation into endoderm was enhanced (Fig. 12B).
  • the present invention can be used in the fields of manufacturing pharmaceuticals for cancer treatment by controlling the cell cycle and materials for regenerative medicine and cell medicine. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention addresses the problem of providing a cell cycle control agent based on a novel mechanism, by identifying a novel gene involved in a control mechanism of a cell cycle for canceration or differentiation of cells and using the gene and a translation product thereof. The present invention provides a control agent for the initial stage of the G1 phase of the cell cycle, said control agent containing: C7orf26 gene having the activity of arresting the cell cycle at the initial stage of the G1 phase and causing a transition from the G1 phase to the G0 phase; and a translation product thereof.

Description

細胞周期のG1期初期制御剤G1 phase initial regulator of cell cycle
 本発明は、細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有する新たな因子の用途に関する。 The present invention relates to the use of a new factor having an activity of arresting the cell cycle in the early G1 phase and shifting from the early G1 phase to the G0 phase.
 細胞周期とは、真核生物における細胞分裂の周期をいい、DNA複製のための準備期であるG1期、DNAの複製が行われるS期、有糸分裂の準備期であるG2期、有糸分裂期であるM期の4つの期で1つの細胞周期を形成する。細胞は、G1-S-G2-M-G1を正確に繰り返すことにより自己複製を行っている。また、神経細胞や横隔筋細胞のような分化した細胞や多くの体細胞は、分裂能を失い、静止期(G0期)に向かう。一般の細胞はG0期において、固有の形態となり本来の活動(幹細胞の分化、内分泌細胞のホルモン産生、神経線維の情報伝達、筋肉の収縮等)を行う。癌細胞は、G0期に移行することはなく、無制限に増殖を続ける異常細胞であり、癌細胞と正常細胞の違いはG0期に移行する能力の違いにあると考えられている。 The cell cycle refers to the cell division cycle in eukaryotes, which is the G1 phase, which is the preparatory phase for DNA replication, the S phase, which is the preparatory phase for DNA replication, the G2 phase, which is the preparatory phase for mitosis, and mitosis. It forms one cell cycle in four phases, the M phase, which is the mitotic phase. Cells undergo self-renewal by accurately repeating G1-S-G2-M-G1. In addition, differentiated cells such as nerve cells and septal muscle cells and many somatic cells lose their ability to divide and go to the quiescent phase (G0 phase). In the G0 phase, general cells become unique morphology and perform their original activities (stem cell differentiation, endocrine cell hormone production, nerve fiber signal transduction, muscle contraction, etc.). Cancer cells are abnormal cells that do not transition to G0 phase and continue to proliferate indefinitely, and it is thought that the difference between cancer cells and normal cells lies in their ability to transition to G0 phase.
 細胞周期には、細胞の秩序のある増殖や分化、細胞が有する遺伝情報の正確な複製のために、細胞が正しく細胞周期を進行させているかどうかを監視する細胞周期チェックポイントがある。細胞周期チェックポイントには、G1/Sチェックポイント、S期チェックポイント、G2/Mチェックポイント、M期チェックポイントがあり、主な役割としては、G1/SチェックポイントではDNAに損傷がないか、S期チェックポイントでは正常な複製がされているか、G2/MチェックポイントではDNA複製が問題なく完了したか、M期チェックポイントでは、染色体が紡錘体に結合しているかどうか、などがチェックされる。このうちDNA損傷のチェックはG1期、S期進入、S期、M期進入で行われる。もしDNAが損傷を受けていたり、複製が不十分であれば、チェックポイントで細胞周期を停止又は減速させ、準備が整う前に次の工程が始まらないように調節される。細胞周期を進行させるのは、サイクリン(cyclin)と、サイクリンが結合して活性化されるサイクリン依存性キナーゼ(CDK)との複合体である。G1期からS期への移行の引き金になるのはサイクリンD/CDK4(又はCDK6)の複合体であり、これによってサイクリンE/CDK2複合体が活性化され、細胞はS期に移行する。その後、サイクリンA/CDK2の活性化により細胞はS期からG2期に移行し、サイクリンB/CDK1の活性化によって細胞はM期へと進む。DNAの損傷等がみつかった場合に、サイクリン-CDK複合体の働きをブロックして細胞周期を停止させるタンパク質がいくつか知られており、p53とその下流のp21はその代表的なもので、上記の4つのチェックポイントにおいて細胞周期を進めることに問題ないかを監視し、異常がみつかれば直ちに細胞周期を停止させる。例えば、G1/Sチェックポイントでは、DNA損傷が確認されると、p53が発現して下流のp21を発現させ、それがサイクリン-CDK複合体へ結合することによってCDKのリン酸化能を失わせ、その結果、細胞周期をG1期で停止させる。細胞周期のチェックポイントの生体反応において遺伝子が転写・翻訳されてタンパク質が新たに作られるのはp53とp21だけであり、p53とp21の生成は「immediately early gene expression」と呼ばれるごく短時間の反応で行われる。生成したp21はサイクリン-CDK複合体に結合してCDKのリン酸化脱リン酸化機能を阻害し、その結果として細胞周期は停止する(非特許文献1)。これらP53、p21、サイクリン-CDK複合体に関わる因子に異常が生じると、チェックポイントの制御ができず、DNAに異常が生じても細胞周期が停止せず、損傷DNAがそのまま複製され、細胞の無秩序な増殖が起こり癌化すると考えられている。したがって、細胞周期の異常により起こる代表的な疾患は癌である。一方で、G1期からG0期への移行の分子機序はこれまで十分に解明されていないが、幹細胞や前駆細胞の分化、臓器や個体の成長と維持、細胞が本来もつ役割を促進する点で重要である。 In the cell cycle, there is a cell cycle checkpoint that monitors whether cells are proceeding correctly in order to achieve orderly proliferation and differentiation of cells and accurate replication of genetic information possessed by cells. Cell cycle checkpoints include G1 / S checkpoints, S phase checkpoints, G2 / M checkpoints, and M phase checkpoints. At the S-phase checkpoint, normal replication is performed, at the G2 / M checkpoint, DNA replication is completed without problems, and at the M-phase checkpoint, whether the chromosome is bound to the mitotic spindle, etc. are checked. .. Of these, DNA damage is checked in G1, S phase, S phase, and M phase invasion. If the DNA is damaged or replicates poorly, the cell cycle is stopped or slowed down at checkpoints and adjusted so that the next step does not begin before it is ready. It is the complex of cyclins and cyclin-dependent kinases (CDKs) that are activated by the binding of cyclins that advance the cell cycle. The transition from G1 to S phase is triggered by the cyclin D / CDK4 (or CDK6) complex, which activates the cyclin E / CDK2 complex and the cells transition to S phase. After that, activation of cyclin A / CDK2 causes cells to move from S phase to G2 phase, and activation of cyclin B / CDK1 causes cells to move to M phase. Several proteins are known that block the action of the cyclin-CDK complex and stop the cell cycle when DNA damage is found, and p53 and its downstream p21 are typical examples. At the four checkpoints, monitor whether there is any problem in advancing the cell cycle, and if any abnormality is found, immediately stop the cell cycle. For example, at the G1 / S checkpoint, when DNA damage is confirmed, p53 is expressed to express downstream p21, which binds to the cyclin-CDK complex and causes the loss of phosphorylation of CDK. As a result, the cell cycle is arrested in the G1 phase. In the biological reaction of the checkpoint of the cell cycle, genes are transcribed and translated to produce new proteins only in p53 and p21, and the production of p53 and p21 is a very short reaction called "immediately early gene expression". It is done in. The generated p21 binds to the cyclin-CDK complex and inhibits the phosphorylation and dephosphorylation function of CDK, and as a result, the cell cycle is arrested (Non-Patent Document 1). When abnormalities occur in these factors related to P53, p21, and cyclin-CDK complex, checkpoints cannot be controlled, and even if DNA abnormalities occur, the cell cycle does not stop, damaged DNA is replicated as it is, and cells It is thought that disordered growth occurs and becomes cancerous. Therefore, a typical disease caused by abnormal cell cycle is cancer. On the other hand, the molecular mechanism of the transition from the G1 phase to the G0 phase has not been fully elucidated so far, but it promotes the differentiation of stem cells and progenitor cells, the growth and maintenance of organs and individuals, and the role that cells originally have. Is important.
 本発明は、細胞の癌化や分化に対する細胞周期の制御機構に関与する新たな遺伝子とその経路(pathway)を同定し、該遺伝子やその翻訳産物、共役物質を利用して、新規機序に基づく細胞周期制御剤を提供することにある。 The present invention identifies a new gene involved in the control mechanism of the cell cycle for canceration and differentiation of cells and its pathway, and utilizes the gene, its translation product, and a conjugate substance to develop a novel mechanism. To provide a cell cycle regulator based on.
 本発明者らは、眼の先天異常の大家系においてC7orf26遺伝子の1塩基置換によるミスセンス変異(p.A425V)が存在することを発見し、当該眼の先天異常の原因遺伝子であるC7orf26遺伝子の機能解析を行ったところ、C7orf26遺伝子はインテグレーター複合体の新規メンバーであり、mRNAの成熟に関わっていた。驚くべきことに、さらに新規の機能として、細胞周期のM期~G1期初期において高発現し、細胞周期をG1期初期で停止させる活性を有し、その細胞周期の停止が、癌抑制遺伝子であるp53のアップレギュレーションを介して達成されること、C7orf26遺伝子は転写因子E2Fファミリーメンバー(E2F4及びE2F1等)の転写補助因子としてp53のプロモーター領域に働き、p53の発現を上昇させ、その際にインテグレーター複合体サブユニット(INTS)も転写補助因子としてC7orf26と共同して働くという知見を得た。また、INTSの各メンバーもまたC7orf26が有する上記細胞周期停止作用を単独で有することが示された。また、C7orf26遺伝子を生理的レベルで長期間発現を継続させた又は高発現させた細胞は、p53の長期間発現ないしは高発現によって細胞死が誘導されることを確認した。さらに、C7orf26遺伝子を導入したiPS細胞を外胚葉系、中胚葉系、内胚葉系細胞へ分化誘導したところ、通常のiPS細胞より発生初期の外胚葉系、中胚葉系、内胚葉系細胞への分化、あるいはさらに後期の脳や網膜への分化において、それぞれに分化した細胞が増加し、特異的な遺伝子が高発現したことから、C7orf26遺伝子はG1期初期で細胞周期を停止させた後、G0期に移行させる活性を有し、細胞の分化を促進させることもできることも明らかにした。本発明はかかる知見により完成されたものである。 The present inventors have discovered that a missense mutation (p.A425V) due to a single nucleotide substitution of the C7orf26 gene exists in a large family of congenital abnormalities of the eye, and the function of the C7orf26 gene, which is the causative gene of the congenital abnormality of the eye. Upon analysis, the C7orf26 gene was a novel member of the integrator complex and was involved in mRNA maturation. Surprisingly, as a new function, it is highly expressed in the M to early G1 phase of the cell cycle, has the activity of arresting the cell cycle in the early G1 phase, and the cell cycle arrest is a tumor suppressor gene. Achieved through certain p53 upregulation, the C7orf26 gene acts as a transcriptional cofactor for the transcription factor E2F family members (E2F4, E2F1, etc.) in the promoter region of p53, increasing p53 expression, and in that case, the integrator. We found that the complex subunit (INTS) also acts as a transcriptional cofactor in collaboration with C7orf26. It was also shown that each member of INTS also has the above-mentioned cell cycle arresting action of C7orf26 alone. In addition, it was confirmed that cell death was induced by long-term expression or high expression of p53 in cells in which C7orf26 gene was continuously or highly expressed at a physiological level for a long period of time. Furthermore, when iPS cells into which the C7orf26 gene was introduced were induced to differentiate into ectoderm, mesodermal, and endoderm cells, they were transformed from normal iPS cells into ectodermal, mesodermal, and endoderm cells in the early stages of development. In the differentiation, or in the later differentiation into the brain and retina, the number of differentiated cells increased and the specific gene was highly expressed. Therefore, the C7orf26 gene stopped the cell cycle in the early G1 phase and then G0. It was also clarified that it has the activity of shifting to the phase and can promote the differentiation of cells. The present invention has been completed based on such findings.
 すなわち、本発明は、以下を包含する。
[1] 以下の(A)~(C)のいずれかのタンパク質を含む、細胞周期のG1期初期制御剤。
(A)配列番号2に示すアミノ酸配列からなるタンパク質;
(B)配列番号2に示すアミノ酸配列において1若しくは数個のアミノ酸が付加、欠失、又は置換したアミノ酸配列からなり、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質;
(C)配列番号2に示すアミノ酸配列に対して90%以上の配列同一性を有するアミノ酸配列からなり、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質。
[2] 以下の(D)~(F)のいずれかの遺伝子を含む、細胞周期のG1期初期制御剤。
(D)配列番号1に示す塩基配列からなるDNAを含む遺伝子;
(E)配列番号1に示す塩基配列に対して90%以上の配列同一性を有する塩基配列からなり、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質をコードするDNAを含む遺伝子;
(F)配列番号1に示す塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質をコードするDNAを含む遺伝子。
[3] 前記遺伝子がベクターに挿入されている、[2]に記載の細胞周期のG1期初期制御剤。
[4] [1]~[3]のいずれかに記載の細胞周期のG1期初期制御剤を含む、癌治療用医薬。
[5] [1]~[3]のいずれかに記載の細胞周期のG1期初期制御剤を含む、未分化細胞の分化促進剤。
[6] 前記未分化細胞が、幹細胞又は前駆細胞である、[5]に記載の未分化細胞の分化促進剤。
[7] 以下の(D)~(F)のいずれかの遺伝子を未分化細胞で発現させる工程を含む、未分化細胞の分化促進方法。
(D)配列番号1に示す塩基配列からなるDNAを含む遺伝子;
(E)配列番号1に示す塩基配列に対して90%以上の配列同一性を有する塩基配列からなり、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質をコードするDNAを含む遺伝子;
(F)配列番号1に示す塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質をコードするDNAを含む遺伝子。
 本願は、2020年2月7日に出願された日本国特許出願2020-020019号の優先権を主張するものであり、当該特許出願の明細書に記載される内容を包含する。
That is, the present invention includes the following.
[1] A G1 phase initial regulator of the cell cycle, which comprises any of the following proteins (A) to (C).
(A) A protein consisting of the amino acid sequence shown in SEQ ID NO: 2;
(B) The amino acid sequence shown in SEQ ID NO: 2 consists of an amino acid sequence in which one or several amino acids are added, deleted, or substituted, and the cell cycle is stopped in the early G1 phase, and from the early G1 phase to the G0 phase. Protein with activity to transfer;
(C) An activity consisting of an amino acid sequence having 90% or more sequence identity with respect to the amino acid sequence shown in SEQ ID NO: 2, arresting the cell cycle in the early G1 phase, and shifting from the early G1 phase to the G0 phase. Protein to have.
[2] A G1 phase early regulator of the cell cycle containing any of the following genes (D) to (F).
(D) A gene containing DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1;
(E) An activity consisting of a nucleotide sequence having 90% or more sequence identity with respect to the nucleotide sequence shown in SEQ ID NO: 1, arresting the cell cycle in the early G1 phase, and shifting from the early G1 phase to the G0 phase. Genes containing DNA encoding the proteins they have;
(F) Hybridizes under stringent conditions with DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1, arrests the cell cycle in the early G1 phase, and shifts from the early G1 phase to the G0 phase. A gene that contains DNA that encodes a protein that has the activity to cause it.
[3] The G1 phase early regulator of the cell cycle according to [2], wherein the gene is inserted into a vector.
[4] A drug for treating cancer, which comprises the G1 phase initial regulator of the cell cycle according to any one of [1] to [3].
[5] A differentiation-promoting agent for undifferentiated cells, which comprises the G1 phase initial regulator of the cell cycle according to any one of [1] to [3].
[6] The agent for promoting differentiation of undifferentiated cells according to [5], wherein the undifferentiated cells are stem cells or progenitor cells.
[7] A method for promoting differentiation of undifferentiated cells, which comprises the step of expressing any of the following genes (D) to (F) in undifferentiated cells.
(D) A gene containing DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1;
(E) An activity consisting of a nucleotide sequence having 90% or more sequence identity with respect to the nucleotide sequence shown in SEQ ID NO: 1, arresting the cell cycle in the early G1 phase, and shifting from the early G1 phase to the G0 phase. Genes containing DNA encoding the proteins they have;
(F) Hybridizes under stringent conditions with DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1, arrests the cell cycle in the early G1 phase, and shifts from the early G1 phase to the G0 phase. A gene that contains DNA that encodes a protein that has the activity to cause it.
This application claims the priority of Japanese Patent Application No. 2020-020019 filed on February 7, 2020, and includes the contents described in the specification of the patent application.
 本発明において、新たに細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有することが同定されたC7orf26遺伝子は、癌細胞等の無秩序に増殖する細胞に対してその細胞周期をG1期初期で停止させ、細胞死を誘導することできる。よって、C7orf26遺伝子及びその翻訳産物は、癌に代表される、細胞周期の制御異常に起因するか、又はこれと関連した疾患の予防及び/又は治療用の医薬として有効である。また、C7orf26遺伝子は、幹細胞や、筋肉・神経・内分泌細胞などの各細胞の前駆細胞で発現させると、幹細胞や前駆細胞の状態での細胞分裂と増殖を停止させ、G0期に移行させて分化を促進させることができる。さらに、GO期に移行しない幹細胞や前駆細胞は細胞死によって間引かれるところ、C7orf26遺伝子の発現より、このような間引きされる運命にある幹細胞や前駆細胞を静止状態で保存する或いは分化しうる細胞や機能する細胞に向けることが期待される。よって、本発明は、再生医療材料の原料となる幹細胞の効率的利用、再生医療・細胞医療材料の収量増大、農産物・畜産物・水産物の収量増大、作製細胞の分化効率化による免疫製剤やホルモン製剤等の収量増大、生殖細胞の分化亢進による不妊治療、有益な生物の生殖・繁殖亢進、害となる生物(害虫や害獣、害植物を含む)の生殖及び/又は繁殖抑制等に有効である。 In the present invention, the C7orf26 gene, which has been newly identified to have an activity of arresting the cell cycle in the early G1 phase and shifting from the early G1 phase to the G0 phase, is used for randomly proliferating cells such as cancer cells. The cell cycle can be stopped in the early G1 phase to induce cell death. Therefore, the C7orf26 gene and its translation products are effective as pharmaceuticals for the prevention and / or treatment of diseases caused by or related to abnormal cell cycle control such as cancer. In addition, when the C7orf26 gene is expressed in stem cells and progenitor cells of each cell such as muscle, nerve, and endocrine cells, it stops cell division and proliferation in the state of stem cells and progenitor cells, and shifts to the G0 phase for differentiation. Can be promoted. Furthermore, stem cells and progenitor cells that do not transition to the GO phase are thinned out by cell death, and the expression of the C7orf26 gene allows cells that can preserve or differentiate such thinned stem cells and progenitor cells in a quiescent state. It is expected to be directed to functional cells. Therefore, according to the present invention, the efficient use of stem cells as raw materials for reproductive medical materials, the increase in yield of regenerative medicine / cell medicine materials, the increase in yield of agricultural products / livestock products / marine products, and the efficiency of differentiation of produced cells are used to improve immunological preparations and hormones. It is effective for increasing the yield of preparations, treating fertility by promoting the differentiation of germ cells, promoting the reproduction and reproduction of beneficial organisms, and suppressing the reproduction and / or reproduction of harmful organisms (including harmful insects, beasts, and harmful plants). be.
図1Aは、ヒドロキシ尿素(HU)の24時間投与により細胞周期を同調したHeLa細胞の、0時間、16時間、20時間後のフローサイトメトリー解析結果を示す。図1Bは、細胞周期の各期でのHeLa細胞におけるC7orf26 mRNA及びKi67 mRNAの相対的発現量を示す(エラーバー±SD、n=3)。図1Cは、細胞周期の各期でのHeLa細胞におけるC7orf26の免疫染色を示す(スケールバー:5 μm)。FIG. 1A shows the results of flow cytometry analysis of HeLa cells whose cell cycle was synchronized by administration of hydroxyurea (HU) for 24 hours after 0 hours, 16 hours, and 20 hours. FIG. 1B shows the relative expression levels of C7orf26 mRNA and Ki67 mRNA in HeLa cells at each stage of the cell cycle (error bars ± SD, n = 3). FIG. 1C shows immunostaining of C7orf26 in HeLa cells at each phase of the cell cycle (scale bar: 5 μm). 図2は、濃度を段階的に増加させたキュメート(cumate)添加培地で培養したHeLa/pPB-CuO-C7orf26細胞(PiggyBac Cumate Switch Inducible Vectorを用いてC7orf26遺伝子をトランスポゾンによってゲノムに組み込んだHeLa細胞で、キュメート(cumate)添加濃度に応じてC7orf26が発現する)におけるC7orf26、p53、p21、Ki67 mRNAの相対的発現量の変化を示す。Figure 2 shows HeLa / pPB-CuO-C7orf26 cells (HeLa cells in which the C7orf26 gene was transposoned into the genome using the PiggyBac Cumate Switch Inducible Vector) cultured in a medium supplemented with a cumate whose concentration was gradually increased. , C7orf26 is expressed depending on the concentration of cumate added) shows the changes in the relative expression levels of C7orf26, p53, p21, and Ki67 mRNA. 図3Aは、キュメート(cumate)を連続補給(5日、6日、8日)した培地で培養したHeLa/pPB-CuO-C7orf26細胞(PiggyBac Cumate Switch Inducible Vectorを用いてC7orf26遺伝子をトランスポゾンによってゲノムに組み込んだHeLa細胞で、キュメート(cumate)添加濃度に応じてC7orf26が発現する)のフローサイトメトリー解析結果を示す。図3Bは、ヒドロキシ尿素(HU)又はRo3306で同調したHeLa/pPB-CuO-C7orf26細胞のフローサイトメトリー解析結果を示す。図3Cは、ヒドロキシ尿素(HU)、Ro3306処理、又は無血清培地(serum (-))で同調したHeLa/pPB-CuO-C7orf26細胞、ならびに24時間の血清飢餓後、血清を回復させた培地(serum recovery)で培養したHeLa/pPB-CuO-C7orf26細胞における細胞周期の各期でのC7orf26、p53、p21、Ki67 mRNAの相対的発現量を示す。FIG. 3A shows the C7orf26 gene transposoned into the genome using HeLa / pPB-CuO-C7orf26 cells (PiggyBac Cumate Switch Inducible Vector) cultured in a medium supplemented with cumate continuously (5th, 6th, 8th). The flow cytometric analysis results of (C7orf26 is expressed according to the concentration of cumate added) in the integrated HeLa cells are shown. FIG. 3B shows the results of flow cytometric analysis of HeLa / pPB-CuO-C7orf26 cells tuned with hydroxyurea (HU) or Ro3306. FIG. 3C shows HeLa / pPB-CuO-C7orf26 cells tuned with hydroxyurea (HU), Ro3306 treatment, or serum-free medium (serum (-)), and serum-recovered medium after 24-hour serum starvation (serum (-)). The relative expression levels of C7orf26, p53, p21, and Ki67 mRNA at each stage of the cell cycle in HeLa / pPB-CuO-C7orf26 cells cultured in serum recovery) are shown. 細胞周期におけるC7orf26発現のスキーム及びp53による転写調節が可能な部位を示す模式図である。It is a schematic diagram showing the scheme of C7orf26 expression in the cell cycle and the site where transcriptional regulation by p53 is possible. 図5-1のA、Bは、C7orf26及びインテグレーター複合体サブユニット(INTS1、INTS2、INTS3、INTS4、INTS5、INTS6、INTS7、INTS8、INTS9、INTS10、INTS11、INTS12、INTS13、INTS14)によるp53の転写制御機構を解明するためのレポーターアッセイの結果を示す。図5Cは逆にp53がC7orf26の転写制御機構をもつことを解明するためのレポーターアッセイの結果を示す(各図において、*:p<0.05、Mann-Whitney U-test、エラーバー:±SD、n=3)A and B in FIG. 5-1 are transcriptions of p53 by C7orf26 and integrator complex subunits (INTS1, INTS2, INTS3, INTS4, INTS5, INTS6, INTS7, INTS8, INTS9, INTS10, INTS11, INTS12, INTS13, INTS14). The results of a reporter assay to elucidate the control mechanism are shown. On the contrary, FIG. 5C shows the results of a reporter assay for elucidating that p53 has a transcriptional regulation mechanism of C7orf26 (*: p <0.05, Mann-Whitney U-test, error bar: ± SD, in each figure). n = 3) 図5-2は、ヒドロキシ尿素(HU)によって同調したHeLa細胞における細胞周期中のC7orf26及びINTS1、INTS2、INTS3、INTS4、INTS5、INTS6、INTS7、INTS8、INTS9、INTS10、INTS11、INTS12、INTS13、INTS14の相対的発現量を示す。Figure 5-2 shows C7orf26 and INTS1, INTS2, INTS3, INTS4, INTS5, INTS6, INTS7, INTS8, INTS9, INTS10, INTS11, INTS12, INTS13, INTS14 during the cell cycle in HeLa cells tuned with hydroxyurea (HU). The relative expression level of is shown. 図6-1のAは、ヒドロキシ尿素(HU)によって同調したHeLa細胞における細胞周期中のE2F1、E2F4、及びE2F6の相対的発現量を示す。図6-1のBは、siRNAを用いてE2FをノックダウンしたHeLa細胞におけるp53発現のリポーターアッセイの結果を示す(*:p<0.05、Mann-Whitney U-test、エラーバー:±SD、n=3)。図6-1のCは、pCMV-GFP又はpCMV-C7orf26-FlagをトランスフェクトしたHeLa細胞抽出液の抗E2F4抗体(a-E2F4)を用いたウェスタンブロット解析結果を示す。A in FIG. 6-1 shows the relative expression levels of E2F1, E2F4, and E2F6 during the cell cycle in HeLa cells tuned with hydroxyurea (HU). B in FIG. 6-1 shows the results of a reporter assay for p53 expression in HeLa cells in which E2F was knocked down using siRNA (*: p <0.05, Mann-Whitney U-test, error bars: ± SD, n). = 3). C in FIG. 6-1 shows the results of Western blot analysis using an anti-E2F4 antibody (a-E2F4) of a HeLa cell extract transfected with pCMV-GFP or pCMV-C7orf26-Flag. 図6-2のAはpCMV-E2F4又はpCMV-E2F6をトランスフェクトしたHeLa細胞におけるC7orf26発現のリポーターアッセイの結果を示す(*:p<0.05、Mann-Whitney U-test、エラーバー:±SD、n=3)。図6-2のBは、ヒドロキシ尿素(HU)によって同調し、E2F4、E2F6 siRNA作用させたHeLa細胞における細胞周期中のC7orf26の相対発現量を示す(*:p<0.05、Mann-Whitney U-test、エラーバー:±SD、n=3)。図6-2のCは、CDK1阻害剤(CDK1 inhibitor)投与によるHeLa細胞における細胞周期中のC7orf26の発現量の変化を示す。A in Figure 6-2 shows the results of a reporter assay for C7orf26 expression in HeLa cells transfected with pCMV-E2F4 or pCMV-E2F6 (*: p <0.05, Mann-Whitney U-test, error bars: ± SD, n = 3). B in FIG. 6-2 shows the relative expression level of C7orf26 during the cell cycle in HeLa cells synchronized with hydroxyurea (HU) and acted on E2F4 and E2F6 siRNA (*: p <0.05, Mann-Whitney U-). test, error bar: ± SD, n = 3). C in FIG. 6-2 shows the change in the expression level of C7orf26 during the cell cycle in HeLa cells by administration of a CDK1 inhibitor (CDK1 inhibitor). 図7Aは、キュメート(cumate)を連続補給(5日、6日、8日)した培地で培養したHeLa/pPB-CuO-C7orf26細胞(PiggyBac Cumate Switch Inducible Vectorを用いてC7orf26遺伝子をトランスポゾンによってゲノムに組み込んだHeLa細胞で、キュメート(cumate)添加濃度に応じてC7orf26が発現する)のフローサイトメトリー解析結果(生細胞の減少と死細胞の増加)を示す。図7Bは、キュメート(cumate)を連続補給(5日、8日)した培地で培養したHeLa/pPB-CuO-C7orf26細胞のフローサイトメトリー解析結果(生細胞の減少と死細胞の増加)を示す。FIG. 7A shows the C7orf26 gene transposoned into the genome using HeLa / pPB-CuO-C7orf26 cells (PiggyBac Cumate Switch Inducible Vector) cultured in a medium supplemented with cumate continuously (5th, 6th, 8th). The flow cytometric analysis results (decrease in live cells and increase in dead cells) of C7orf26 expressed in the integrated HeLa cells depending on the concentration of cumate added are shown. FIG. 7B shows the results of flow cytometry analysis (decrease in live cells and increase in dead cells) of HeLa / pPB-CuO-C7orf26 cells cultured in a medium supplemented with cumate continuously (5 days, 8 days). .. 図8は、C7orf26を強制発現させたHeLa細胞(子宮癌細胞株)及びグリオーマ細胞U-251MGの細胞死誘導試験結果を示す[a-d: HeLa細胞、e-g: グリオーマ細胞U-251MG、h: C7orf26非導入HeLa細胞(コントロール)のミトコンドリア染色]。FIG. 8 shows the cell death induction test results of HeLa cells (uterine cancer cell line) and glioma cells U-251MG in which C7orf26 was forcibly expressed [ad: HeLa cells, eg: glioma cells U-251MG, h: C7orf26 non- Mitochondrial staining of introduced HeLa cells (control)]. 図9Aは、ヒトiPS細胞HiPSC/pPB-CuO-C7orf26細胞(PiggyBac Cumate Switch Inducible VectorによってC7orf26をゲノムに組み込んだヒトiPS細胞で、キュメート(cumate)添加濃度に応じてC7orf26が発現する)を、キュメート(cumate)添加培地で外胚葉に分化誘導した細胞(Cum+)及びキュメート(cumate)無添加培地で外胚葉に分化誘導した細胞(Cum-)におけるC7orf26、p53、p21、Ki67 mRNAの相対的発現量を示す(Cum-における発現量を1とする)。図9Bは、HiPSC/pPB-CuO-C7orf26細胞を、キュメート(cumate)添加培地で外胚葉に分化誘導した細胞群(Cum+)及びキュメート(cumate)無添加培地で外胚葉に分化誘導した細胞群(Cum-)のフローサイトメトリー解析結果を示す。図9Cは、HiPSC/pPB-CuO-C7orf26細胞を、キュメート(cumate)添加培地で外胚葉に分化誘導した細胞(Cum+)、キュメート(cumate)無添加培地で外胚葉に分化誘導した細胞(Cum-)におけるC7orf26、Pax6、Pax3、Sox1 mRNAの相対的発現量を示す(Cum-における発現量を1とする)。FIG. 9A shows human iPS cells HiPSC / pPB-CuO-C7orf26 cells (human iPS cells in which C7orf26 is incorporated into the genome by PiggyBac Cumate Switch Inducible Vector, and C7orf26 is expressed according to the concentration of cumate added). Relative expression levels of C7orf26, p53, p21, Ki67 mRNA in cells (Cum +) induced to differentiate into ectoderm with (cumate) -added medium and cells (Cum-) induced to differentiate into ectoderm with cumate-free medium (The expression level in Cum- is 1). FIG. 9B shows a group of cells (Cum +) in which HiPSC / pPB-CuO-C7orf26 cells were induced to differentiate into ectoderm in a medium supplemented with cumate, and a group of cells in which differentiation was induced into ectoderm in a medium not supplemented with cumate (cumate). The flow cytometry analysis result of Cum-) is shown. FIG. 9C shows cells in which HiPSC / pPB-CuO-C7orf26 cells were induced to differentiate into ectoderm with a medium supplemented with cumate (Cum +) and cells induced to differentiate into ectoderm with a medium without cumate (Cum-). ) Shows the relative expression levels of C7orf26, Pax6, Pax3, and Sox1 mRNA (the expression level in Cum- is 1). 図10Aは、ヒトiPS細胞HiPSC/pPB-CuO-C7orf26細胞(PiggyBac Cumate Switch Inducible VectorによってC7orf26をゲノムに組み込んだヒトiPS細胞で、キュメート(cumate)添加濃度に応じてC7orf26が発現する)を、キュメート(cumate)添加培地で網膜神経節細胞に分化誘導した細胞(Cum+)及びキュメート(cumate)無添加培地で網膜神経節細胞に分化誘導した細胞(Cum-)におけるC7orf26、p53、p21、Ki67 mRNAの相対的発現量を示す(Cum-における発現量を1とする)。図10Bは、HiPSC/pPB-CuO-C7orf26細胞を、キュメート(cumate)添加培地で網膜神経節細胞に分化誘導した細胞(Cum+)、キュメート(cumate)無添加培地で網膜神経節細胞に分化誘導した細胞(Cum-)におけるBrn3B、Math5、C7orf26 mRNAの相対的発現量を示す(Cum-における発現量を1とする)。図10Cは、HiPSC/pPB-CuO-C7orf26細胞を、キュメート(cumate)添加培地で脳に分化誘導した細胞(Cum+)、キュメート(cumate)無添加培地で脳に分化誘導した細胞(Cum-)におけるOtx2、En1、C7orf26 mRNAの相対的発現量を示す(Cum-における発現量を1とする)。FIG. 10A shows human iPS cells HiPSC / pPB-CuO-C7orf26 cells (human iPS cells in which C7orf26 is incorporated into the genome by PiggyBac Cumate Switch Inducible Vector, and C7orf26 is expressed according to the concentration of cumate added). C7orf26, p53, p21, Ki67 mRNA in cells (Cum +) induced to differentiate into retinal ganglion cells in (cumate) -added medium and cells (Cum-) induced to differentiate into retinal ganglion cells in a medium without cumate (cumate) Indicates the relative expression level (the expression level in Cum- is 1). In FIG. 10B, HiPSC / pPB-CuO-C7orf26 cells were induced to differentiate into retinal ganglion cells (Cum +) in a medium supplemented with cumate, and into retinal ganglion cells in a medium not supplemented with cumate (cumate). The relative expression levels of Brn3B, Math5, and C7orf26 mRNA in cells (Cum-) are shown (the expression level in Cum- is 1). FIG. 10C shows cells in which HiPSC / pPB-CuO-C7orf26 cells were induced to differentiate into the brain with a medium supplemented with cumate (Cum +) and cells induced to differentiate into the brain with a medium not supplemented with cumate (Cum-). The relative expression levels of Otx2, En1 and C7orf26 mRNA are shown (the expression level in Cum- is 1). 図11Aは、ヒトiPS細胞HiPSC/pPB-CuO-C7orf26細胞(PiggyBac Cumate Switch Inducible VectorによってC7orf26をゲノムに組み込んだヒトiPS細胞で、キュメート(cumate)添加濃度に応じてC7orf26が発現する)を、キュメート(cumate)添加培地で中胚葉に分化誘導した細胞群(Cum+)及びキュメート(cumate)無添加培地で中胚葉に分化誘導した細胞群(Cum-)のフローサイトメトリー解析結果を示す。図11Bは、HiPSC/pPB-CuO-C7orf26細胞を、キュメート(cumate)添加培地で中胚葉に分化誘導した細胞(Cum+)、キュメート(cumate)無添加培地で中胚葉に分化誘導した細胞(Cum-)におけるC7orf26、TBXT mRNAの相対的発現量を示す(Cum-における発現量を1とする)。FIG. 11A shows human iPS cells HiPSC / pPB-CuO-C7orf26 cells (human iPS cells in which C7orf26 is incorporated into the genome by PiggyBac Cumate Switch Inducible Vector, and C7orf26 is expressed according to the concentration of cumate added). The flow cytometry analysis results of the cell group (Cum +) induced to differentiate into the mesoderm with the (cumate) -added medium and the cell group (Cum-) induced to differentiate into the mesoderm with the cumate-free medium are shown. FIG. 11B shows cells in which HiPSC / pPB-CuO-C7orf26 cells were induced to differentiate into mesoderm in a medium supplemented with cumate (Cum +) and cells induced to differentiate into mesoderm in a medium not supplemented with cumate (Cum-). ) Shows the relative expression levels of C7orf26 and TBXT mRNA (the expression level in Cum- is 1). 図12Aは、ヒトiPS細胞HiPSC/pPB-CuO-C7orf26細胞(PiggyBac Cumate Switch Inducible VectorによってC7orf26をゲノムに組み込んだヒトiPS細胞で、キュメート(cumate)添加濃度に応じてC7orf26が発現する)を、キュメート(cumate)添加培地で内胚葉に分化誘導した細胞群(Cum+)及びキュメート(cumate)無添加培地で内胚葉に分化誘導した細胞群(Cum-)のフローサイトメトリー解析結果を示す。図12Bは、HiPSC/pPB-CuO-C7orf26細胞を、キュメート(cumate)添加培地で内胚葉に分化誘導した細胞(Cum+)、キュメート(cumate)無添加培地で内胚葉に分化誘導した細胞(Cum-)におけるC7orf26、Sox17 mRNAの相対的発現量を示す(Cum-における発現量を1とする)。FIG. 12A shows human iPS cells HiPSC / pPB-CuO-C7orf26 cells (human iPS cells in which C7orf26 is incorporated into the genome by PiggyBac Cumate Switch Inducible Vector, and C7orf26 is expressed according to the concentration of cumate added). The flow cytometry analysis results of the cell group (Cum +) induced to differentiate into endometrial follicle with (cumate) -added medium and the cell group (Cum-) induced to differentiate into endometrial follicle with medium without cumate (cumate) are shown. FIG. 12B shows cells in which HiPSC / pPB-CuO-C7orf26 cells were induced to differentiate into endoderm in a medium supplemented with cumate (Cum +) and cells induced to differentiate into endoderm in a medium without cumate (Cum-). ) Shows the relative expression levels of C7orf26 and Sox17 mRNA (the expression level in Cum- is 1).
 以下、本発明について詳細に説明する。
1.細胞周期のG1期初期制御剤
 本発明において、新たに細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有することが同定されたヒトC7orf26遺伝子は、449アミノ酸からなるタンパク質をコードしている。ヒトC7orf26cDNAの塩基配列(配列番号1)及び翻訳産物のアミノ酸配列(配列番号2)は、それぞれNCBI アクセッション番号NM_024067及びNP_076972として、National Center of Biotechnology Information(NCBI)データベースに登録されている。また、本発明において使用するC7orf26遺伝子はヒト以外の動物種由来のC7orf26遺伝子であってもよく、他の動物由来のC7orf26遺伝子又はその翻訳産物は、配列番号1に示される塩基配列又は配列番号2に示されるアミノ酸配列をクエリーにして、ヒト以外の哺乳動物のゲノム及び/又はcDNAのデータベース、あるいはタンパク質のデータベースに対して、BLASTやFASTAを用いて検索を行う等により、所望の動物種由来のC7orf26の塩基配列及びアミノ酸配列を取得することができる。
Hereinafter, the present invention will be described in detail.
1. 1. G1 phase early regulator of the cell cycle In the present invention, the human C7orf26 gene, which was newly identified to have the activity of arresting the cell cycle in the early G1 phase and shifting from the early G1 phase to the G0 phase, is derived from 449 amino acids. Encodes the protein. The nucleotide sequence of human C7orf26 cDNA (SEQ ID NO: 1) and the amino acid sequence of the translation product (SEQ ID NO: 2) are registered in the National Center of Biotechnology Information (NCBI) database as NCBI accession numbers NM_024067 and NP_076972, respectively. Further, the C7orf26 gene used in the present invention may be a C7orf26 gene derived from an animal species other than human, and the C7orf26 gene derived from another animal or a translation product thereof is the nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2 By using the amino acid sequence shown in (1) as a query and searching the genome and / or cDNA database of non-human mammals or the protein database using BLAST or FASTA, etc., it is derived from the desired animal species. The nucleotide sequence and amino acid sequence of C7orf26 can be obtained.
 よって、本発明の細胞周期のG1期初期制御剤は、以下のいずれかのタンパク質(本明細書において「C7orf26タンパク質」と表記する場合がある)を含む。
(A)配列番号2に示すアミノ酸配列からなるタンパク質;
(B)配列番号2に示すアミノ酸配列において1若しくは数個のアミノ酸が付加、欠失、又は置換したアミノ酸配列からなり、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質;
(C)配列番号2に示すアミノ酸配列に対して90%以上の配列同一性を有するアミノ酸配列からなり、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質。
Therefore, the G1 phase initial regulator of the cell cycle of the present invention includes any of the following proteins (sometimes referred to as "C7orf26 protein" in the present specification).
(A) A protein consisting of the amino acid sequence shown in SEQ ID NO: 2;
(B) The amino acid sequence shown in SEQ ID NO: 2 consists of an amino acid sequence in which one or several amino acids are added, deleted, or substituted, and the cell cycle is stopped in the early G1 phase, and from the early G1 phase to the G0 phase. Protein with activity to transfer;
(C) An activity consisting of an amino acid sequence having 90% or more sequence identity with respect to the amino acid sequence shown in SEQ ID NO: 2, arresting the cell cycle in the early G1 phase, and shifting from the early G1 phase to the G0 phase. Protein to have.
 上記(B)に関し、「アミノ酸配列において1若しくは数個のアミノ酸が付加、欠失、又は置換したアミノ酸配列」における「1から数個」の範囲は、配列番号2に示すアミノ酸配列からなるタンパク質が有する細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を保持する限り、その個数は特に限定されないが、例えば、1から10個、好ましくは1から7個、より好ましくは1から5個、さらに好ましくは1から3個程度を意味する。アミノ酸の欠失とは、配列番号2に示されるアミノ酸配列の中から任意のアミノ酸を選択して欠失させることをいう。また、アミノ酸の付加とは、配列番号2に示されるアミノ酸配列のN末端又はC末端側に、1から数個のアミノを付加させることをいう。アミノ酸の置換としては、例えば保存的アミノ酸置換が挙げられる。 Regarding (B) above, the range of "1 to several" in the "amino acid sequence in which one or several amino acids are added, deleted, or substituted in the amino acid sequence" includes the protein consisting of the amino acid sequence shown in SEQ ID NO: 2. The number is not particularly limited as long as it retains the activity of stopping the cell cycle in the early G1 phase and shifting from the early G1 phase to the G0 phase, but for example, 1 to 10, preferably 1 to 7, and more. It preferably means 1 to 5, and more preferably 1 to 3. Amino acid deletion means that an arbitrary amino acid is selected and deleted from the amino acid sequence shown in SEQ ID NO: 2. Further, the addition of an amino acid means adding one to several amino acids to the N-terminal or C-terminal side of the amino acid sequence shown in SEQ ID NO: 2. Examples of amino acid substitutions include conservative amino acid substitutions.
 上記の保存的アミノ酸置換とは、疎水性アミノ酸、極性アミノ酸、酸性アミノ酸、塩基性アミノ酸、分枝状側鎖を有するアミノ酸、芳香族アミノ酸などのように極性、電気的性質、構造的性質などの性質が類似したアミノ酸同士の置換を指す。疎水性(非極性)アミノ酸の例は、グリシン、アラニン、バリン、ロイシン、イソロイシン、プロリンなど、極性アミノ酸の例は、セリン、トレオニン、システイン、メチオニン、アスパラギン、グルタミンなど、酸性アミノ酸の例は、アスパラギン酸とグルタミン酸、塩基性アミノ酸の例は、リジン、アルギニン及びヒスチジン、分枝状側鎖を有するアミノ酸の例は、バリン、イソロイシン及びロイシン、芳香族アミノ酸の例は、フェニルアラニン、チロシン、トリプトファン及びヒスチジンである。好ましい保存的アミノ酸置換としては、バリンとロイシンとイソロイシン、フェニルアラニンとチロシン、リシンとアルギニン、アラニンとバリン、及びアスパラギンとグルタミンから選ばれるアミノ酸相互間の置換が挙げられる。 The above-mentioned conservative amino acid substitutions include polar, electrical, and structural properties such as hydrophobic amino acids, polar amino acids, acidic amino acids, basic amino acids, amino acids having branched side chains, and aromatic amino acids. Refers to the substitution of amino acids with similar properties. Examples of hydrophobic (non-polar) amino acids are glycine, alanine, valine, leucine, isoleucine, proline, etc. Examples of polar amino acids are serine, threonine, cysteine, methionine, aspartic acid, glutamine, etc. Examples of acidic amino acids are aspartic acid. Examples of acids and glutamic acids, basic amino acids are lysine, arginine and histidine, examples of amino acids with branched side chains are valine, isoleucine and leucine, examples of aromatic amino acids are phenylalanine, tyrosine, tryptophan and histidine. be. Preferred conservative amino acid substitutions include substitutions between amino acids selected from valine and leucine and isoleucine, phenylalanine and tyrosine, lysine and arginine, alanine and valine, and asparagine and glutamine.
 アミノ酸の付加、欠失、又は置換は、上記タンパク質をコードする遺伝子を、当該技術分野で公知の手法によって改変することによって行うことができる。遺伝子に変異を導入するには、Kunkel法又はGapped duplex法等の公知手法又はこれに準ずる方法により行うことができる。 Amino acid addition, deletion, or substitution can be performed by modifying the gene encoding the above protein by a method known in the art. Introducing a mutation into a gene can be carried out by a known method such as the Kunkel method or the Gapped duplex method, or a method similar thereto.
 上記(C)に関し、「90%以上の配列同一性を有するアミノ酸配列」とは、アミノ酸配列の配列同一性が少なくとも90%以上であることをいい、好ましくは95%以上、より好ましくは97%以上、最も好ましくは98%以上である。アミノ酸の配列同一性は、当業者に周知の方法、配列解析ソフトウェア等を使用して求めることができる。例えば、BLASTアルゴリズムのblastpプログラムやFASTAアルゴリズムのfastaプログラムが挙げられる。ここで、アミノ酸配列の配列同一性は、配列番号2に示すアミノ酸配列に対して評価対象のアミノ酸配列を比較し、同一部位に同一のアミノ酸が出現する頻度を%で表示した値である。 Regarding (C) above, "amino acid sequence having 90% or more sequence identity" means that the sequence identity of the amino acid sequence is at least 90% or more, preferably 95% or more, more preferably 97%. As mentioned above, it is most preferably 98% or more. The sequence identity of amino acids can be determined by using a method well known to those skilled in the art, sequence analysis software, or the like. For example, the blastp program of the BLAST algorithm and the fasta program of the FASTA algorithm can be mentioned. Here, the sequence identity of the amino acid sequence is a value obtained by comparing the amino acid sequence to be evaluated with respect to the amino acid sequence shown in SEQ ID NO: 2 and expressing the frequency of appearance of the same amino acid at the same site in%.
 本発明における「細胞」には、ヒトを含む動物のあらゆる細胞、例えば、精子や卵子などの生殖細胞、生体を構成する体細胞、幹細胞、前駆細胞、癌細胞、生体から分離され不死化能を獲得して体外で安定して維持される細胞(細胞株)、生体から分離され人為的に遺伝子改変がされた細胞等が含まれる。「生体を構成する体細胞」とは、例えば皮膚、筋肉、骨、軟骨、結合組織、血管、血液(臍帯血を含む)、骨髄、心臓、眼、脳、神経、胸腺、脾臓、副腎、肺、膵臓、肝臓、胃、小腸、大腸、肝臓、膀胱、前立腺、精巣、卵巣、子宮などの任意の組織・器官・臓器から採取される細胞をいう。また、本発明の細胞には、動物以外の細胞、例えば、植物細胞や微生物細胞も含まれる。 The "cell" in the present invention includes all cells of animals including humans, for example, germ cells such as sperm and egg, somatic cells constituting the living body, stem cells, precursor cells, cancer cells, and immortalizing ability separated from the living body. Includes cells (cell lines) that are acquired and stably maintained in vitro, cells that have been isolated from the living body and artificially modified. The "body cells that make up the living body" are, for example, skin, muscle, bone, cartilage, connective tissue, blood vessels, blood (including umbilical cord blood), bone marrow, heart, eye, brain, nerve, thoracic gland, spleen, adrenal gland, lung. , Pancreas, liver, stomach, small intestine, large intestine, liver, bladder, prostate, testis, ovary, uterus, etc. The cells of the present invention also include cells other than animals, such as plant cells and microbial cells.
 生体を構成する体細胞としては、例えば、線維芽細胞、骨髄細胞、赤血球、顆粒球(好中球、好酸球、好塩基球)、単球、リンパ球(T細胞、B細胞、NK細胞)、血小板、マクロファージ、樹状細胞、骨細胞、骨芽細胞、軟骨細胞、表皮細胞、角質細胞(ケラチノサイト)、脂肪細胞、間葉細胞、上皮細胞、内皮細胞、肝実質細胞、卵丘細胞、樹状細胞、グリア細胞、ニューロン、オリゴデンドロサイト、ミクログリア、星状膠細胞(アストロサイト)、心臓細胞、筋肉細胞、膵臓ベータ細胞、等が挙げられる。幹細胞には、多能性幹細胞及び体性幹細胞が含まれる。「多能性幹細胞」とは、外胚葉、中胚葉及び内胚葉に由来する生体に存在するすべての細胞に分化する能力(多分化能)を有し、かつ、増殖能をも併せもつ幹細胞をいう。多能性幹細胞としては、例えば、人工多能性幹細胞(iPS細胞)、胚性幹細胞(ES細胞)、移植により得られるクローン胚由来の胚性幹細胞(ntES細胞)、多能性生殖幹細胞(mGS細胞)、精子幹細胞(GS細胞)、成人型多能性幹細胞(MAPC細胞)、ミューズ細胞(MUSE細胞)などが挙げられるが、iPS細胞、ES細胞が好ましい。「体性幹細胞」とは、骨髄、血液、皮膚(表皮、真皮、皮下組織)、脂肪、毛包、脳、神経、肝臓、膵臓、腎臓、筋肉やその他の組織に存在する体性の幹細胞いい、例えば、造血幹細胞、血管内皮幹細胞、間葉系幹細胞、肝幹細胞、神経幹細胞、膵幹細胞、腸幹細胞、生殖幹細胞等が挙げられる。「癌細胞」とは、前記体細胞から派生して無限の増殖能を獲得した細胞をいう。「前駆細胞」とは、前記幹細胞から特定の体細胞や生殖細胞に分化する途中の段階にある細胞をいい、造血前駆細胞、骨髄球系前駆細胞(赤芽球、骨髄芽球、前骨髄球、巨核球等)、リンパ球系前駆細胞(単芽球、リンパ芽球等)などが挙げられる。「細胞株」とは、生体外での人為的な操作により無限の増殖能を獲得した細胞をいう。 Examples of somatic cells constituting the living body include fibroblasts, bone marrow cells, erythrocytes, granulocytes (neutrophils, eosinophils, basophils), monospheres, and lymphocytes (T cells, B cells, NK cells). ), Thrombosis, macrophages, dendritic cells, bone cells, osteoblasts, cartilage cells, epidermal cells, keratinocytes (keratinocytes), fat cells, mesenchymal cells, epithelial cells, endothelial cells, hepatic parenchymal cells, oval cells, Examples thereof include dendritic cells, glial cells, neurons, oligodendrocytes, microglia, stellate glial cells (astrosites), heart cells, muscle cells, pancreatic beta cells, and the like. Stem cells include pluripotent stem cells and somatic stem cells. "Pluripotent stem cells" are stem cells derived from ectoderm, mesoderm, and endoderm that have the ability to differentiate into all cells existing in the living body (pluripotency) and also have proliferative ability. say. Examples of pluripotent stem cells include induced pluripotent stem cells (iPS cells), embryonic stem cells (ES cells), embryonic stem cells (ntES cells) derived from cloned embryos obtained by transplantation, and pluripotent germ stem cells (mGS). Cells), sperm stem cells (GS cells), adult pluripotent stem cells (MAPC cells), muse cells (MUSE cells) and the like, but iPS cells and ES cells are preferable. "Somatic stem cells" are somatic stem cells present in bone marrow, blood, skin (epidermal, dermal, subcutaneous tissue), fat, hair follicles, brain, nerves, liver, pancreas, kidneys, muscles and other tissues. For example, hematopoietic stem cells, vascular endothelial stem cells, mesenchymal stem cells, hepatic stem cells, nerve stem cells, pancreatic stem cells, intestinal stem cells, reproductive stem cells and the like can be mentioned. "Cancer cell" refers to a cell derived from the somatic cell and acquired infinite proliferative capacity. "Progenitor cells" refer to cells in the process of differentiating from the stem cells into specific somatic cells or germ cells, and are hematopoietic progenitor cells and myeloid progenitor cells (erythroblasts, myeloid blasts, progenitor cells). , Giant nuclei, etc.), lymphocytic progenitor cells (monoblasts, lymphoblasts, etc.) and the like. "Cell line" refers to a cell that has acquired infinite proliferative capacity by artificial manipulation in vitro.
 本発明における「G1期初期制御」とは、細胞周期をp53のアップレギュレーションを介してG1期初期で停止させ、かつG1期初期からG0期へ移行させることをいい、「G1期初期」とは、細胞が有糸分裂するM期を過ぎて次の細胞周期のS期へ向かうためにエンジンとして働くcyclin D-cyclin-dependent kinase(CDK)4/6が働き始めるまでの期間を意味する。Cyclin D-CDK4/6の働きはp53ならびにp21によって抑制することができ、この時期に細胞周期が停止することによってG0期への移行が可能となる。「細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性」は、細胞にC7orf26遺伝子を導入し、過剰発現させ、p53ならびにp21の発現を亢進させることによって起こるもので、PCRならびにFACS分析により確認することができる。また、上記停止には、完全な停止のみならず、減速も含むものとする。また、「細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有する」とは、配列番号2に記載のアミノ酸配列からなるタンパク質が保持する該活性と実質的に同等であることをいう。 The "G1 phase early control" in the present invention means that the cell cycle is stopped in the early G1 phase through the upregulation of p53, and the transition from the early G1 phase to the G0 phase is defined as "early G1 phase". , Means the period until cycloin D-cyclin-dependent kinase (CDK) 4/6, which acts as an engine to move from the M phase of mitosis to the S phase of the next cell cycle, begins to work. The action of Cyclin D-CDK4 / 6 can be suppressed by p53 and p21, and the cell cycle is stopped at this time, which enables the transition to the G0 phase. "Activity to arrest the cell cycle in the early G1 phase and shift from the early G1 phase to the G0 phase" is caused by introducing the C7orf26 gene into cells, overexpressing it, and enhancing the expression of p53 and p21. , PCR and FACS analysis. Further, the above-mentioned stop includes not only a complete stop but also a deceleration. Further, "having an activity of stopping the cell cycle in the early G1 phase and shifting from the early G1 phase to the G0 phase" is substantially the same as the activity retained by the protein consisting of the amino acid sequence shown in SEQ ID NO: 2. It means that they are equivalent.
 上記C7orf26タンパク質は、それをコードする遺伝子を含むポリヌクレオチドを用いて遺伝子工学的方法によって製造することができる。例えば、C7orf26タンパク質をコードする遺伝子を含むポリヌクレオチドを有する組換えベクターからインビトロ転写によってRNAを調製し、これを鋳型としてインビトロ翻訳を行う方法、あるいはC7orf26タンパク質をコードする遺伝子を含むポリヌクレオチドを適当なベクターに作動可能に連結して組込み、これを宿主細胞に導入して形質転換細胞を作製し、当該形質転換細胞より目的とするC7orf26タンパク質を発現させる方法により製造できる。上記ベクターとしては、それを導入する宿主細胞に適したものを適宜選択し、使用することができる。また、ベクターには、適切なプロモーターに作動可能に連結されたC7orf26タンパク質をコードする遺伝子を含むポリヌクレオチドを含み、好ましくは上記ポリヌクレオチドの下流に転写終結シグナル、すなわちターミネーター領域を含む。さらに、形質転換細胞を選択するための選択マーカー遺伝子(薬剤耐性遺伝子、栄養要求性変異を相補する遺伝子等)も含むこともできる。また、発現したタンパク質の分離・精製に有用なタグ配列をコードする配列等を含んでもよい。また、ベクターは、宿主細胞のゲノムに組み込まれるものであってもよい。ベクターの宿主細胞への導入は、コンピテント細胞法、プロトプラスト法、リン酸カルシウム共沈法等、自体公知の形質転換法で行うことができる。 The above C7orf26 protein can be produced by a genetic engineering method using a polynucleotide containing a gene encoding it. For example, a method of preparing RNA by in vitro transcription from a recombinant vector having a polynucleotide containing a gene encoding the C7orf26 protein and performing in vitro translation using this as a template, or a polynucleotide containing a gene encoding the C7orf26 protein is suitable. It can be produced by operably linking to a vector, incorporating it, introducing it into a host cell to prepare a transformed cell, and expressing the target C7orf26 protein from the transformed cell. As the above vector, a vector suitable for the host cell into which the vector is introduced can be appropriately selected and used. In addition, the vector contains a polynucleotide containing a gene encoding a C7orf26 protein operably linked to a suitable promoter, and preferably contains a transcription termination signal, that is, a terminator region, downstream of the polynucleotide. Furthermore, a selectable marker gene for selecting transformed cells (drug resistance gene, gene complementing auxotrophic mutation, etc.) can also be included. In addition, a sequence encoding a tag sequence useful for separating and purifying the expressed protein may be included. The vector may also be integrated into the genome of the host cell. The vector can be introduced into a host cell by a transformation method known per se, such as a competent cell method, a protoplast method, or a calcium phosphate coprecipitation method.
 ベクターを導入し、組換えタンパク質の発現に用いる宿主細胞としては、上記ベクターを発現できれば任意の細胞でよく、通常使用される公知の微生物、例えば、細菌、酵母、真菌、及び哺乳類細胞等が挙げられる。細菌の例としては、大腸菌等のグラム陰性菌や、バチルス又はストレプトマイセス等のグラム陽性菌が挙げられる。組換え細胞は、宿主細胞に適した自体公知の方法により培養することができる。 The host cell into which the vector is introduced and used for the expression of the recombinant protein may be any cell as long as the vector can be expressed, and commonly used known microorganisms such as bacteria, yeast, fungi, and mammalian cells can be mentioned. Be done. Examples of bacteria include Gram-negative bacteria such as Escherichia coli and Gram-positive bacteria such as Bacillus or Streptomyces. Recombinant cells can be cultured by a method known per se that is suitable for the host cell.
 発現させたタンパク質は、宿主細胞の培養上清から、遠心分離等で集菌した菌体を、超音波又はガラスビーズ等で摩砕した後、遠心分離等により細胞片等の固形物を除き、粗酵素液を調製した後、タンパク質やペプチド精製に用いられる公知の方法、例えば、硫安塩析、有機溶媒(エタノール、メタノール、アセトン等)による沈殿分離、イオン交換クロマトグラフィー、等電点クロマトグラフィー、ゲルろ過クロマトグラフィー、疎水性クロマトグラフィー、吸着カラムクロマトグラフィー、基質又は抗体等を利用したアフィニティークロマトグラフィー、逆相カラムクロマトグラフィー、HPLC等のクロマトグラフィー、精密ろ過、限外ろ過、逆浸透ろ過等の濾過処理等を1以上組み合わせて用いて精製することが可能である。 For the expressed protein, the cells collected by centrifugation or the like are ground from the culture supernatant of the host cell by ultrasound or glass beads, and then solid substances such as cell fragments are removed by centrifugation or the like. After preparing the crude enzyme solution, known methods used for protein and peptide purification, such as ammonium sulfate, precipitation separation with an organic solvent (ethanol, methanol, acetone, etc.), ion exchange chromatography, isoelectric point chromatography, Gel filtration chromatography, hydrophobic chromatography, adsorption column chromatography, affinity chromatography using substrate or antibody, reversed-phase column chromatography, chromatography such as HPLC, precision filtration, ultrafiltration, back-penetration filtration, etc. It is possible to purify by using one or more combinations such as filtration treatment.
 C7orf26タンパク質はまた、そのアミノ酸配列に基づいて化学合成する方法により製造することもできる。C7orf26タンパク質を化学合成する場合は、Fmoc法(フルオレニルメチルオキシカルボニル法)、tBoc法(t-ブチルオキシカルボニル法)等の公知の化学合成法により行うことができる。 The C7orf26 protein can also be produced by a method of chemically synthesizing based on its amino acid sequence. The C7orf26 protein can be chemically synthesized by a known chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) or the tBoc method (t-butyloxycarbonyl method).
 また、本発明の別の態様によれば、本発明の細胞周期G1期初期制御剤は、C7orf26タンパク質をコードする遺伝子を含む。当該遺伝子の具体例としては、以下の(D)~(F)のいずれかの遺伝子(本明細書において「C7orf26遺伝子」と表記する場合がある)が挙げられる。
(D)配列番号1に示す塩基配列からなるDNAを含む遺伝子;
(E)配列番号1に示す塩基配列に対して90%以上の配列同一性を有する塩基配列からなり、かつ細胞周期をG1期初期で停止させ、かつG1期からG0期へ移行させる活性を有するタンパク質をコードするDNAを含む遺伝子;
(F)配列番号1に示す塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ細胞周期をG1期初期で停止させ、かつG1期からG0期へ移行させる活性を有するタンパク質をコードするDNAを含む遺伝子。
Further, according to another aspect of the present invention, the cell cycle G1 phase early regulator of the present invention comprises a gene encoding a C7orf26 protein. Specific examples of the gene include any of the following genes (D) to (F) (may be referred to as "C7orf26 gene" in the present specification).
(D) A gene containing DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1;
(E) It consists of a nucleotide sequence having 90% or more sequence identity with respect to the nucleotide sequence shown in SEQ ID NO: 1, and has an activity of arresting the cell cycle in the early G1 phase and shifting from the G1 phase to the G0 phase. Genes containing DNA encoding proteins;
(F) Hybridizes under stringent conditions with DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1, arrests the cell cycle in the early G1 phase, and shifts from the G1 phase to the G0 phase. A gene containing DNA that encodes an active protein.
 上記(E)に関し、「90%以上の配列同一性を有する塩基配列」とは、塩基配列の配列同一性が少なくとも90%以上であることをいい、好ましくは95%以上、より好ましくは97%以上、最も好ましくは98%以上である。 塩基配列の配列同一性は、当業者に周知の方法、配列解析ソフトウェア等を使用して求めることができる。例えば、BLASTアルゴリズムのblastnプログラムやFASTAアルゴリズムのfastaプログラムが挙げられる。ここで、塩基配列の配列同一性は、配列番号1に記載の塩基配列に対して評価対象の塩基配列を比較し、同一部位に同一の塩基が出現する頻度を%で表示した値である。 Regarding (E) above, "a base sequence having 90% or more sequence identity" means that the sequence identity of the base sequence is at least 90% or more, preferably 95% or more, more preferably 97%. As mentioned above, it is most preferably 98% or more. The sequence identity of the base sequence can be determined by using a method well known to those skilled in the art, sequence analysis software, or the like. For example, the blastn program of the BLAST algorithm and the fasta program of the FASTA algorithm can be mentioned. Here, the sequence identity of the base sequence is a value obtained by comparing the base sequence to be evaluated with respect to the base sequence shown in SEQ ID NO: 1 and expressing the frequency of appearance of the same base at the same site in%.
 上記(F)に関し、「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件を意味し、例えばGreen and Sambrook, Molecular Cloning, 4th Ed (2012), Cold Spring Harbor Laboratory Press を参照して適宜決定することができる。具体的には、サザンハイブリダイゼーションの際の温度や溶液に含まれる塩濃度、及びサザンハイブリダイゼーションの洗浄工程の際の温度や溶液に含まれる塩濃度によりストリンジェントな条件を設定することができる。より具体的には、例えば、ハイブリダイゼーションの反応温度が25~70℃、好ましくは50~70℃、より好ましくは55~68℃の範囲内である条件、及び/又はハイブリダイゼーション溶液中のホルムアミド濃度が0~50%、好ましくは20~50%、より好ましくは35~45%の範囲内である条件をいう。また、ハイブリダイゼーション後のフィルターの洗浄におけるナトリウム塩濃度が15~750mM、好ましくは15~500mM、より好ましくは15~300mM、15~200mM又は15~100mMの条件である。 Regarding (F) above, the "stringent condition" means a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed. For example, Green and Sambrook, Molecular Cloning, 4th Ed (2012) , Cold Spring Harbor Laboratory Press can be referred to and determined as appropriate. Specifically, stringent conditions can be set by the temperature at the time of Southern hybridization and the salt concentration contained in the solution, and the temperature at the time of the washing step of Southern hybridization and the salt concentration contained in the solution. More specifically, for example, the condition that the reaction temperature of hybridization is in the range of 25 to 70 ° C., preferably 50 to 70 ° C., more preferably 55 to 68 ° C., and / or the formamide concentration in the hybridization solution. Is in the range of 0 to 50%, preferably 20 to 50%, and more preferably 35 to 45%. Further, the sodium salt concentration in washing the filter after hybridization is 15 to 750 mM, preferably 15 to 500 mM, more preferably 15 to 300 mM, 15 to 200 mM or 15 to 100 mM.
 C7orf26遺伝子の取得方法は特に限定されない。例えば、公知の方法を用いてヒトcDNAライブラリー(本発明の遺伝子が発現される適当な細胞より常法に従い調製したもの)を合成し、配列番号1の塩基配列に基づいて作製したプローブDNAを用いて、目的のcDNAを単離することができる。得られたcDNAは、例えば、PCR法、NASBN法、TMA法等の常套的な遺伝子増幅法により増幅することができる。また、配列番号1の塩基配列に基づいて作製したプライマーセットを用い、ヒト細胞から単離したmRNAを鋳型とするRT-PCR法によってもcDNAを得ることができる。他の動物にも相同遺伝子があり、それを利用することもできる。 The method for obtaining the C7orf26 gene is not particularly limited. For example, a human cDNA library (prepared according to a conventional method from an appropriate cell expressing the gene of the present invention) is synthesized using a known method, and a probe DNA prepared based on the nucleotide sequence of SEQ ID NO: 1 is obtained. It can be used to isolate the cDNA of interest. The obtained cDNA can be amplified by a conventional gene amplification method such as a PCR method, a NASBN method, or a TMA method. In addition, cDNA can also be obtained by the RT-PCR method using mRNA isolated from human cells as a template using a primer set prepared based on the nucleotide sequence of SEQ ID NO: 1. Other animals also have homologous genes, which can be used.
 上記のC7orf26タンパク質又はC7orf26遺伝子を細胞内に導入可能な形態とするためには、例えば以下の手段がある。ここで、細胞は、in vitro細胞(培養細胞)及びin vivo細胞(生体内の細胞)のいずれをも対象とすることができる。 In order to make the above C7orf26 protein or C7orf26 gene into a form that can be introduced into cells, for example, there are the following means. Here, the cells can be either in vitro cells (cultured cells) or in vivo cells (cells in vivo).
 C7orf26タンパク質は、例えば、その構造や機能を変更することなく、かつ薬理学的に許容される担体溶液にタンパク質分子を混合して製剤化することにより細胞内に導入可能な形態とすることができる。このような薬剤は、例えばin vitro細胞に対してはマイクロインジェクション法により細胞内に導入することができる。あるいは、脂質による細胞内導入法を採用することもできる。 The C7orf26 protein can be made into a form that can be introduced into cells without changing its structure or function, for example, by mixing a protein molecule with a pharmacologically acceptable carrier solution and formulating it. .. Such a drug can be introduced into cells, for example, into in vitro cells by a microinjection method. Alternatively, an intracellular introduction method using lipids can be adopted.
 また別の態様としては、C7orf26タンパク質のN端側に細胞膜通過ペプチドを連結させた融合タンパク質とすることによって、タンパク質を細胞内に導入可能な形態することもできる。この細胞膜通過ペプチドを備えることによって、C7orf26タンパク質は細胞膜を通過して細胞内に取り込まれる。細胞膜通過ペプチドとしては、HIV-1/TATのPTD(protein transduction domain)又はショウジョウバエのホメオボックスタンパク質アンテナペディアのPTD等を使用することができ、PTDに相当する領域をコードするDNA断片を前記cDNAと連結して融合DNA断片を作製し、この融合DNA断片を大腸菌等の宿主細胞で発現させることによって、N末端側にPTDペプチドを連結した融合タンパク質を作製することができる。あるいはまた、2価の架橋剤(例えば、EDCやβ-アラニン等)を介して、C7orf26タンパク質とPTDペプチドを結合させる方法によって細胞膜通過ペプチドを連結した融合タンパク質を作製することもできる。 As another aspect, the protein can be introduced into the cell by forming a fusion protein in which a cell membrane-passing peptide is linked to the N-terminal side of the C7orf26 protein. By including this transmembrane peptide, the C7orf26 protein passes through the cell membrane and is taken up into the cell. As the cell membrane-transparent peptide, PTD (protein transmission domain) of HIV-1 / TAT or PTD of Homeobox protein antennapedia of Drosophila can be used, and a DNA fragment encoding a region corresponding to PTD is referred to as the above-mentioned cDNA. By linking to prepare a fused DNA fragment and expressing this fused DNA fragment in a host cell such as Escherichia coli, a fused protein in which a PTD peptide is linked to the N-terminal side can be prepared. Alternatively, a fusion protein in which the transmembrane peptide is linked can be prepared by a method of binding the C7orf26 protein and the PTD peptide via a divalent cross-linking agent (for example, EDC, β-alanine, etc.).
 一方、C7orf26遺伝子又はC7orf26 mRNAは、例えば、発現ベクターに組み込むことによって細胞内に導入可能な形態とすることができる。発現ベクターは、プロモーター、スプライシング領域、ポリ(A)付加部位等を有する公知の真核細胞用発現ベクターを使用することができ、この発現ベクターのクローニングサイトに、C7orf26遺伝子又はC7orf26 mRNAを挿入することによってC7orf26遺伝子発現ベクターを構築することができる。 On the other hand, the C7orf26 gene or C7orf26 mRNA can be made into a form that can be introduced into cells by, for example, incorporating it into an expression vector. As the expression vector, a known expression vector for eukaryotic cells having a promoter, splicing region, poly (A) addition site, etc. can be used, and the C7orf26 gene or C7orf26 mRNA should be inserted into the cloning site of this expression vector. Can construct a C7orf26 gene expression vector.
 この発現ベクターは、in vitro細胞(培養細胞)に対しては、例えば電気穿孔法、リン酸カルシウム法、リポソーム法、DEAEデキストラン法等の公知の方法によって細胞内に導入することができる。 This expression vector can be introduced into in vitro cells (cultured cells) by a known method such as an electroporation method, a calcium phosphate method, a liposome method, or a DEAE dextran method.
 また、in vivo細胞(生体内の細胞)に対しては、細胞への取り込みの促進や標的細胞への指向性を高める目的で、例えば、ウイルス性又は非ウイルス性の遺伝子導入用ベクターなどの手段により細胞内に導入することができる。このような形態にした薬剤は、遺伝子治療用として生体内に導入することができる。ここで、ウイルス性ベクターとしては、例えばアデノウイルスベクター、レトロウイルスベクター、アデノ随伴ウイルスベクター、レンチウイルスベクター、ワクシニアウイルスベクター、バキュロウイルスベクター等が挙げられる。レトロウイルスベクターは、細胞に感染後、ウイルスゲノムが宿主染色体に組み込まれ、ベクターに組み込んだ外来遺伝子を安定にかつ長期的に発現させる可能であるからレトロウイルスベクターを使用することが特に望ましい。また、非ウイルス性ベクターとしては、リポソーム、人工脂質ベシクル、中空ナノ粒子、デンドリマーなどの高分子化合物等が挙げられる。 In addition, for in vivo cells (cells in vivo), for the purpose of promoting uptake into cells and enhancing the directivity toward target cells, for example, means such as a viral or non-viral gene transfer vector. Can be introduced into cells. The drug in such a form can be introduced into a living body for gene therapy. Here, examples of the viral vector include an adenovirus vector, a retrovirus vector, an adeno-associated virus vector, a lentivirus vector, a vaccinia virus vector, a baculovirus vector, and the like. It is particularly desirable to use a retrovirus vector because the viral genome is integrated into the host chromosome after the cells are infected and the foreign gene incorporated into the vector can be expressed stably and for a long period of time. Examples of the non-viral vector include liposomes, artificial lipid vesicles, hollow nanoparticles, polymer compounds such as dendrimers, and the like.
2.癌治療用医薬
 本発明の細胞周期のG1期初期制御剤は、後述する実施例において具体的に示されるように、癌細胞に対して細胞周期をG1期初期で停止させ、p53の発現上昇によって細胞死を誘導することから、細胞周期の調節異常によって引き起こされる疾患、又はこれと関連した疾患の治療及び/又は予防用の医薬、特に、癌治療用医薬として用いることができる。細胞周期の調節異常によって引き起こされる疾患としては、代表的には、悪性腫瘍(癌)であり、その種類は特に限定はされず、胃癌、乳癌、肺癌、食道癌、前立腺癌、肝癌、大腸癌、腎臓癌、膀胱癌、皮膚癌、子宮癌、脳腫瘍、骨肉種、骨髄腫瘍、白血病、悪性リンパ腫などが含まれる。特にグリオーマのような難治性癌、未分化癌はG0期導入で高分化させることに相まって有効である。細胞死の誘導の有無及びその程度は、TUNEL法、DNAラダー検出法、DNAの断片化率の定量、細胞のサイズ分布測定などの手法により検出することができる。また、細胞が過剰増殖する疾患の細胞増殖を抑制できる。その疾患は特に限定はされず、腺腫、例えば下垂線腫、甲状腺機能亢進症、褐色細胞腫、多嚢胞性卵巣症候群などが含まれる。
2. Drugs for Cancer Treatment The G1 phase initial regulator of the cell cycle of the present invention arrests the cell cycle in the early G1 phase of cancer cells and increases the expression of p53, as will be specifically shown in Examples described later. Since it induces cell death, it can be used as a drug for treating and / or preventing a disease caused by or related to cell cycle dysregulation, particularly as a drug for treating cancer. A typical disease caused by dysregulation of the cell cycle is a malignant tumor (cancer), the type of which is not particularly limited, and is gastric cancer, breast cancer, lung cancer, esophageal cancer, prostate cancer, liver cancer, colon cancer. , Kidney cancer, bladder cancer, skin cancer, uterine cancer, brain tumor, osteosarcoma, bone marrow tumor, leukemia, malignant lymphoma, etc. In particular, intractable cancers such as glioma and undifferentiated cancers are effective in combination with the well-differentiated stage G0 phase. The presence or absence of cell death induction and its degree can be detected by methods such as TUNEL method, DNA ladder detection method, quantification of DNA fragmentation rate, and measurement of cell size distribution. In addition, cell proliferation of diseases in which cells overproliferate can be suppressed. The disease is not particularly limited and includes adenomas such as ptosis, hyperthyroidism, pheochromocytoma, polycystic ovary syndrome and the like.
 本発明の細胞周期のG1期初期制御剤を癌や細胞の過剰増殖疾患の治療を目的として使用する場合、癌や細胞の過剰増殖疾患を有する哺乳動物に対して治療上有効な量で投与する。ここで、哺乳動物としては、ヒト、イヌ、ネコ、ヒツジ、ヤギ、ウシ、ウマ、ブタ等が挙げられる。「癌や細胞の過剰増殖疾患の治療上有効な量」とは、増殖中の癌や過剰増殖細胞に対する本剤の投与によって、癌や過剰増殖細胞の増殖の停止、腫瘤サイズの縮小又は消失をもたらす量をいう。具体的な投与量は、投与経路、患者の年齢及び体重、癌の種類及び悪性度、転移又は再発の有無、過剰増殖細胞の種類や増殖速度、腫瘤のサイズなどにより適宜増減すべきである。 When the G1 phase initial regulator of the cell cycle of the present invention is used for the treatment of cancer or cell hyperproliferative disease, it is administered in a therapeutically effective amount to a mammal having cancer or cell hyperproliferative disease. .. Here, examples of mammals include humans, dogs, cats, sheep, goats, cows, horses, pigs and the like. "Therapeutically effective amount for cancer and hyperproliferative disease" means that administration of this drug to proliferating cancer and hyperproliferative cells stops the growth of cancer and hyperproliferative cells, and reduces or eliminates the size of the tumor. The amount to bring. The specific dose should be appropriately increased or decreased depending on the route of administration, the age and weight of the patient, the type and malignancy of the cancer, the presence or absence of metastasis or recurrence, the type and growth rate of hyperproliferative cells, the size of the tumor, and the like.
 投与形態としては、静脈内、動脈内、筋肉内、腹腔内、皮下、局所、腫瘤内、経口、経皮、直腸内、膣内、鼻腔内、舌下投与等が挙げられる。具体的には、例えば、外科手術により容易に接近可能な各種臓器内の固形腫瘍に対しては腫瘍内に又はその近傍に定位固定針などを用いて局所注入することによって投与すればよく、白血病などの非固形腫瘍、脳腫瘍などの外科的手術により接近しにくい部位の癌、転移性癌については、静脈内注射によって投与することができる。その他、癌の種類や部位によって、上記の投与方法を適宜選択して使用することができる。 Examples of the administration form include intravenous, intraarterial, intramuscular, intraperitoneal, subcutaneous, local, intramass, oral, transdermal, rectal, intravaginal, intranasal, and sublingual administration. Specifically, for example, solid tumors in various organs that can be easily accessed by surgery may be administered by local injection into or near the tumor using a stereotaxic needle or the like, and leukemia. Non-solid tumors such as brain tumors, cancers in sites that are difficult to access by surgical operations such as brain tumors, and metastatic cancers can be administered by intravenous injection. In addition, the above-mentioned administration method can be appropriately selected and used depending on the type and site of cancer.
 本発明の細胞周期のG1期初期制御剤を癌治療用医薬として製剤化する場合は、C7orf26タンパク質又はC7orf26遺伝子、C7orf26 mRNAを薬理学的及び製剤学的に許容しうる添加物と混合し、当分野において公知の手法にて、錠剤、散剤、顆粒剤、細粒剤、カプセル剤、内用液剤(懸濁剤、シロップ剤、乳剤など)、外用液剤(注入剤、噴霧・エアゾール剤、吸入剤、塗布剤など)、注射剤、点滴剤、坐剤等の各種製剤に製剤化することができる。薬理学的及び製剤学的に許容しうる添加物としては、その剤形、用途に応じて、適宜選択した製剤用基材や担体、賦形剤、希釈剤、結合剤、滑沢剤、コーティング剤、崩壊剤又は崩壊補助剤、安定化剤、保存剤、防腐剤、増量剤、分散剤、湿潤化剤、緩衝剤、溶解剤又は溶解補助剤、等張化剤、pH調節剤、着色剤等を適宜添加し、公知の種々の方法にて経口又は非経口的に全身又は局所投与することができる各種製剤形態に調製すればよい。各種製剤形態に調製した本発明の癌治療用医薬は、経口又は非経口的に全身又は局所投与することができる。本発明の癌治療用医薬を経口投与する場合は、錠剤、カプセル剤、顆粒剤、散剤、丸剤、内用水剤、懸濁剤、乳剤、シロップ剤等に製剤化するか、使用する際に再溶解させる乾燥生成物にしてもよい。また、本発明の癌治療用医薬を非経口投与する場合は、静脈内注射剤(点滴を含む)、筋肉内注射剤、腹腔内注射剤、髄腔内注射剤、皮下注射剤、坐剤などに製剤化し、注射用製剤の場合は単位投与量アンプル又は多投与量容器の状態で提供される。 When the G1 stage initial control agent of the cell cycle of the present invention is formulated as a pharmaceutical for treating cancer, the C7orf26 protein, the C7orf26 gene, and the C7orf26 mRNA are mixed with a pharmacologically and pharmaceutically acceptable additive. Tablets, powders, granules, fine granules, capsules, internal liquids (suspendories, syrups, emulsions, etc.), external liquids (injections, sprays / aerosols, inhalants, etc.) by methods known in the field. , Coating agent, etc.), injection, drip, suppository, etc. can be formulated into various formulations. Examples of pharmacologically and pharmacologically acceptable additives include pharmaceutical substrates and carriers, excipients, diluents, binders, preservatives, and coatings that are appropriately selected according to the dosage form and application. Agents, disintegrants or disintegrants, stabilizers, preservatives, preservatives, bulking agents, dispersants, wetting agents, buffers, solubilizers or solubilizers, isotonic agents, pH adjusters, colorants Etc. may be appropriately added to prepare various pharmaceutical forms that can be orally or parenterally administered systemically or topically by various known methods. The drug for treating cancer of the present invention prepared in various pharmaceutical forms can be orally or parenterally administered systemically or topically. When the drug for treating cancer of the present invention is orally administered, it is formulated or used in tablets, capsules, granules, powders, pills, liquid solutions for internal use, suspensions, emulsions, syrups, etc. It may be a dry product to be redissolved. When the pharmaceutical agent for treating cancer of the present invention is administered parenterally, intravenous injection (including infusion), intramuscular injection, intraperitoneal injection, intrathecal injection, subcutaneous injection, suppository, etc. In the case of an injectable formulation, it is provided in the form of a unit-dose ampoule or a multi-dose container.
 遺伝子治療の形態としては、標的細胞を体外に取り出して遺伝子導入を行う体外法(ex vivo法)、体内に遺伝子を導入する体内法(in vivo法)があるが、本発明の細胞周期のG1期初期制御剤はいずれの治療形態にも適用される。体外法では患者由来の細胞を一旦体外で培養し、上記遺伝子の導入処理をした後に患者に投与すればよいし、体内法では上記の遺伝子導入ベクターを直接患者体内(臓器組織、皮膚、筋肉など)へ投与すればよい。また、かかる癌や過剰増殖疾患治療は、外科的手術、化学療法、及び放射線治療を含む、周知の癌や過剰増殖疾患治療手段と併用してもよい。 As a form of gene therapy, there are an in vitro method (ex vivo method) in which a target cell is taken out of the body and a gene is introduced, and an in vivo method (in vivo method) in which a gene is introduced into the body. Early stage control agents are applied to any form of treatment. In the in vitro method, cells derived from the patient may be cultured once in vitro, the above gene transfer process may be performed, and then administered to the patient. In the in vitro method, the above gene transfer vector may be directly administered into the patient body (organ tissue, skin, muscle, etc.). ) May be administered. In addition, such cancer and hyperproliferative disease treatments may be combined with well-known cancer and hyperproliferative disease treatment means, including surgery, chemotherapy, and radiation therapy.
3.未分化細胞の分化促進剤及び未分化細胞の分化促進方法
 本発明の細胞周期のG1期初期制御剤は、後述する実施例において具体的に示されるように、幹細胞に対して細胞周期をG1期初期で停止させた後、G0期に移行させ、目的細胞への分化を誘導できることから、未分化細胞の分化促進剤として使用することができる。
3. 3. Differentiation promoter for undifferentiated cells and method for promoting differentiation of undifferentiated cells The G1 phase initial regulator of the cell cycle of the present invention sets the cell cycle to G1 phase with respect to stem cells, as specifically shown in Examples described later. It can be used as a differentiation-promoting agent for undifferentiated cells because it can be stopped in the early stage and then transferred to the G0 phase to induce differentiation into target cells.
 本発明において「未分化細胞」とは、外胚葉系細胞、中胚葉系細胞、内胚葉系細胞へと分化しうる又はそれらの修復を促進しうる未分化な細胞をいい、幹細胞、前駆細胞、成熟細胞の脱分化(幼若化)した細胞が含まれる。幹細胞としては、本発明の目的に沿うものであれば特に限定されず、前述の体性幹細胞や多能性幹細胞(ES細胞やiPS細胞等)が挙げられる。幹細胞は、初代培養細胞、継代培養細胞又は凍結細胞のいずれであってもよい。ここで、外胚葉系細胞としては、感覚器系細胞(網膜や内耳の細胞)、神経系細胞(神経細胞(例えば、前脳神経細胞、中脳神経細胞、小脳神経細胞、後脳神経細胞、脊髄神経細胞等)、神経管細胞、神経堤細胞)、表皮系細胞(表皮細胞、水晶体上皮細胞)が挙げられ、中胚葉系細胞としては、筋肉系細胞(筋芽細胞、筋衛星細胞等)、骨格系細胞(骨芽細胞、骨細胞、軟骨細胞等)、脂肪細胞、真皮細胞、循環器系細胞(心筋細胞、造血幹細胞、赤血球、血小板、マクロファージ、顆粒球、ヘルパーT細胞、キラーT細胞、Bリンパ球等)、泌尿生殖器系細胞(尿細管細胞、メサンギウム細胞、傍糸球体細胞、精巣、卵巣等)、結合組織等が挙げられ、内胚葉系細胞としては、消化器系細胞(肝細胞、胆管細胞、膵内分泌細胞、腺房細胞、膵導管細胞、吸収細胞、杯細胞、パネート細胞、腸内分泌細胞等)、肺、甲状腺等の組織の細胞が挙げられる。 In the present invention, the "undifferentiated cell" refers to an undifferentiated cell capable of differentiating into ectodermal cells, mesenchymal cells, endometrial cells or promoting their repair, and refers to stem cells, precursor cells, and the like. Includes dedifferentiated (juvenile) cells of mature cells. The stem cells are not particularly limited as long as they meet the object of the present invention, and examples thereof include the above-mentioned somatic stem cells and pluripotent stem cells (ES cells, iPS cells, etc.). The stem cells may be either primary cultured cells, subcultured cells or frozen cells. Here, the ectodermal cells include sensory organ cells (cells of the retina and inner ear), neural cells (nerve cells (for example, forearn nerve cells, middle brain nerve cells, cerebral nerve cells, posterior brain nerve cells, spinal cord nerve cells). Etc.), neural tube cells, neural ridge cells), epidermal cells (epidermal cells, crystalline epithelial cells), and mesenchymal cells include muscular cells (myosblasts, muscle satellite cells, etc.), skeletal system Cells (osteoblasts, bone cells, cartilage cells, etc.), fat cells, dermal cells, cardiovascular cells (myocardial cells, hematopoietic stem cells, erythrocytes, platelets, macrophages, granulocytes, helper T cells, killer T cells, B lymph Spheres, etc.), urogenital cells (tubular cells, mesangial cells, parafilamental cells, testis, ovaries, etc.), connective tissues, etc. Examples of endometrial cells include digestive cells (hepatocellular, bile duct, etc.) Examples include cells of tissues such as cells, pancreatic endocrine cells, adenocarcinoma cells, pancreatic duct cells, absorptive cells, cup cells, panate cells, intestinal endocrine cells, etc.), lungs, and thyroid gland.
 本発明の未分化細胞の分化促進剤は、分化の方向性及び分化の過程等について同等の特性を持っていれば、全ての未分化細胞に応用が可能である。例えば、本発明に係る未分化細胞の分化促進剤は、ヒト、サル、マウス、ラット、モルモット、ウサギ、ネコ、イヌ、ウマ、ウシ、ヒツジ、ヤギ、ブタ等の哺乳動物、鳥類、爬虫類、両性類、魚類、昆虫類、甲殻類、軟体動物の未分化細胞に対して効果を発揮することができる。 The differentiation-promoting agent for undifferentiated cells of the present invention can be applied to all undifferentiated cells as long as it has the same characteristics regarding the direction of differentiation and the process of differentiation. For example, the differentiation-promoting agent for undifferentiated cells according to the present invention includes mammals such as humans, monkeys, mice, rats, guinea pigs, rabbits, cats, dogs, horses, cows, sheep, goats, pigs, birds, reptiles, and both sexes. It can exert its effect on undifferentiated cells of species, fish, reptiles, crustaceans, and soft animals.
 本発明に係る未分化細胞の分化促進剤の当該細胞への適用は、生体外であっても生体内であってもよく、いずれの場合もその作用を発揮できる。例えば、本発明の未分化細胞の分化促進剤を生体外で適用する場合は、典型的には、発現プロモーターの下流に目的のC7orf26遺伝子を有する発現ベクターを対象となる未分化細胞に導入し、培養する方法によって行う。 The application of the differentiation-promoting agent for undifferentiated cells according to the present invention to the cells may be in vitro or in vivo, and in either case, the action can be exerted. For example, when the differentiation-promoting agent for undifferentiated cells of the present invention is applied in vitro, an expression vector having the target C7orf26 gene downstream of the expression promoter is typically introduced into the undifferentiated cells of interest. It is carried out by the method of culturing.
 ここで使用される発現プロモーターとしては、例えば、CMVプロモーター、SV40プロモーター等が挙げられる。また、発現ベクターとしては、例えば、非ウイルスベクターとしてプラスミドベクターやリポソーム等、ウイルスベクターとしてアデノウイルスベクター、レトロウイルスベクター等を用いることができる。これらの発現ベクターは、各メーカーからの市販品を利用することもできる。発現ベクターは、宿主細胞のゲノム内に組み込まれていてもよい。また、細胞への発現ベクターの導入方法としては、例えば、リポフェクション法、エレクトロポレーション法、ウイルスベクターに遺伝子を組み込み感染させる方法等を用いることができる。 Examples of the expression promoter used here include CMV promoter, SV40 promoter and the like. Further, as the expression vector, for example, a plasmid vector or a liposome can be used as the non-viral vector, and an adenoviral vector, a retroviral vector or the like can be used as the viral vector. Commercially available products from each manufacturer can also be used as these expression vectors. The expression vector may be integrated into the genome of the host cell. Further, as a method for introducing the expression vector into cells, for example, a lipofection method, an electroporation method, a method of incorporating a gene into a viral vector and infecting the virus vector can be used.
 上記遺伝子を導入した未分化細胞の培養において用いる培地や添加剤としては、特に限定はされず、例えば、幹細胞の培養に一般的に使用されている培地及び添加剤を用いればよい。具体的には、細胞の生存及び増殖に必要な成分(無機塩、炭水化物、ホルモン、必須アミノ酸、非必須アミノ酸、ビタミン等)を含む基本培地、例えば、Dulbecco's Modified Eagle Medium(D-MEM)、Minimum Essential Medium(MEM) 、RPMI 1640、Basal Medium Eagle(BME)、Dulbecco’s Modified Eagle Medium:Nutrient Mixture F-12(D-MEM/F-12)、Glasgow Minimum Essential Medium(Glasgow MEM)、ハンクス液(Hank's balanced salt solution)等が挙げられる。また、培地には、分化誘導の目的細胞に応じて、細胞増殖因子(例えば、線維芽細胞増殖因子(FGF)、血小板由来増殖因子(PDGF)、上皮増殖因子(EGF)、肝細胞増殖因子(HGF)、血管内皮増殖因子(VEGF)、インスリン等)、サイトカイン(例えば、インターロイキン類、ケモカイン類、インターフェロン類、コロニー刺激因子、腫瘍壊死因子等)、神経栄養因子(神経成長因子(NGF)、脳由来神経栄養因子(BDNF)、グリア細胞株由来神経栄養因子(GDNF)等)、その他の生理活性物質として、例えば、アミノ酸(例えば、グリシン、フェニルアラニン、リジン、アスパラギン酸、グルタミン酸等)、ビタミン類(例えば、ビオチン、パントテン酸、ビタミンD等)、血清アルブミン、抗生物質等を含有してもよい。 The medium and additives used in culturing undifferentiated cells into which the above gene has been introduced are not particularly limited, and for example, media and additives generally used for culturing stem cells may be used. Specifically, basic media containing components necessary for cell survival and proliferation (inorganic salts, carbohydrates, hormones, essential amino acids, non-essential amino acids, vitamins, etc.), such as Dulbecco's Modified Eagle Medium (D-MEM), Minimum Essential Medium (MEM), RPMI 1640, Basal Medium Eagle (BME), Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 (D-MEM / F-12), Glassgow Minimum Essential Medium (Glasgow MEM), Hanks Liquid salt solution) etc. In addition, the medium contains cell growth factors (for example, fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), epithelial growth factor (EGF), hepatocellular growth factor (eg,) depending on the target cell for inducing differentiation. HGF), vascular endothelial growth factor (VEGF), insulin, etc.), cytokines (eg, interleukins, chemokines, interferons, colony stimulators, tumor necrosis factors, etc.), neurotrophic factors (nerve growth factor (NGF), Brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), etc.) and other physiologically active substances, such as amino acids (eg, glycine, phenylalanine, lysine, aspartic acid, glutamate, etc.), vitamins, etc. (For example, biotin, pantothenic acid, vitamin D, etc.), serum albumin, antibiotics, etc. may be contained.
 未分化細胞の培養に用いる培養器は、特に限定されないが、例えば、フラスコ、シャーレ、ディッシュ、プレート、チャンバースライド、チューブ、トレイ、培養バッグ、ローラーボトルなどが挙げられる。 The incubator used for culturing undifferentiated cells is not particularly limited, and examples thereof include flasks, petri dishes, dishes, plates, chamber slides, tubes, trays, culture bags, and roller bottles.
 培養器は、細胞非接着性であっても接着性であってもよく、目的に応じて適宜選択される。細胞接着性の培養器は、細胞との接着性を向上させる目的で、細胞外マトリックス等による細胞支持用基質などで処理したものを用いてもよい。細胞支持用基質としては、例えば、コラーゲン、ゼラチン、ポリ-L-リジン、ポリ-D-リジン、ラミニン、フィブロネクチンなどが挙げられる。 The incubator may be cell non-adhesive or adhesive, and is appropriately selected according to the purpose. As the cell adhesion incubator, one treated with a cell support substrate or the like using an extracellular matrix or the like may be used for the purpose of improving the adhesion to cells. Examples of the cell-supporting substrate include collagen, gelatin, poly-L-lysine, poly-D-lysine, laminin, fibronectin and the like.
 未分化細胞の培養条件は、幹細胞等の培養に用いられる通常の条件に従えばよく、特別な制御は必要ではない。例えば、培養温度は、特に限定されるものではないが約30~40℃、好ましくは36~37℃である。CO2ガス濃度は、例えば約1~10%、好ましくは約2~5%である。 The culture conditions for undifferentiated cells may follow the usual conditions used for culturing stem cells and the like, and no special control is required. For example, the culture temperature is not particularly limited, but is about 30 to 40 ° C, preferably 36 to 37 ° C. The CO 2 gas concentration is, for example, about 1-10%, preferably about 2-5%.
 以下、実施例によって本発明を更に具体的に説明する。ただし、これらの実施例は本発明を限定するものでない。
 各実施例において用いた材料及び試験方法を示す。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples do not limit the present invention.
The materials and test methods used in each example are shown.
(ベクター)
 C末端Myc-DKKタグを有するヒトC7orf26(NM_024067)ORFクローン(Origene#:RC219786; pCMV C7orf26-Flag)及びネガティブコントロールGFP発現クローン(TaKaRa#Z2470N;pAcGFP1-C1)を購入した。これらの発現ベクターは、EndoFree Plasmid Maxi Kit(QIAGEN#:12362)を用いて調製した。
(vector)
Human C7orf26 (NM_024067) ORF clones (Origene #: RC219786; pCMV C7orf26-Flag) and negative control GFP-expressing clones (TaKaRa # Z2470N; pAcGFP1-C1) with a C-terminal Myc-DKK tag were purchased. These expression vectors were prepared using the EndoFree plasmid Maxi Kit (QIAGEN #: 12362).
(プライマー)
 定量PCR(リアルタイムRT-PCR)による遺伝子発現解析に用いたプライマーのリストを以下に示す。
C7orf26_F: 5'-CCGAGATTCTGCTGCCAGTTC-3'(配列番号3)
C7orf26_R: 5'-GTGACAATCATTTCAAGCAAGTCCA-3'(配列番号4)
p53_F: 5'-CAGCACATGACGGAGGTTGT-3' (配列番号5)
p53_R: 5'-TCATCCAAATACTCCACACGC-3' (配列番号6)
P21_F: 5'-TGTCCGTCAGAACCCATGC-3' (配列番号7)
P21_R: 5'-AAAGTCGAAGTTCCATCGCTC-3' (配列番号8)
Ki67_F: 5'-GCCTGCTCGACCCTACAGA-3' (配列番号9)
Ki67_R: 5'-GCTTGTCAACTGCGGTTGC-3' (配列番号10)
Pax6_F: 5'-TTTAAAGATCCTGGAGGTGGACATA-3' (配列番号11)
Pax6_R: 5'-GCTCAGGTGCTCGGGTTCTA-3' (配列番号12)
Brn3b_F: 5'-TGACACATGAGCGCTCTCACTTAC-3' (配列番号13)
Brn3b_R: 5'-ACCAAGTGGCAAATGCACCTA-3' (配列番号14)
Math5_F: 5'-CCCTAAATTTGGGCAAGTGAAGA-3'(配列番号15)
Math5_R: 5'-CAAAGCAACTCACGTGCAATC-3'(配列番号16)
Pax3_F: 5'-CCATACGTCCTGGTGCCATC-3'(配列番号17)
Pax3_R: 5'-TGAACATGCCCGGGTTCTC-3' (配列番号18)
Sox1_F: 5'-ATGCACAACTCGGAGATCA-3' (配列番号19)
Sox1_R: 5'-GCGAGTACTTGTCCTTCTTG-3'(配列番号20)
En1 F: 5'-GAGCGCAGGGCACCAAATA-3' (配列番号21)
En1_R: 5'-CGAGTCAGTTTTGACCACGG-3' (配列番号22)
Otx2_F: 5'-CAAAGTGAGACCTGCCAAAAAGA-3'(配列番号23)
Otx2_R: 5'-TGGACAAGGGATCTGACAGTG-3'(配列番号24)
TBXT_F: 5'-TATGAGCCTCGAATCCACATAGT-3'(配列番号25)
TBXT_R: 5'-CCTCGTTCTGATAAGCAGTCAC-3'(配列番号26)
Sox17_F: 5'-AGCAGAATCCAGACCTGCACAA-3'(配列番号27)
Sox17_R: 5'-TCAGCGCCTTCCACGACTT-3' (配列番号28)
(Primer)
The following is a list of primers used for gene expression analysis by quantitative PCR (real-time RT-PCR).
C7orf26_F: 5'-CCGAGATTCTGCTGCCAGTTC-3' (SEQ ID NO: 3)
C7orf26_R: 5'-GTGACAATCATTTCAAGCAAGTCCA-3' (SEQ ID NO: 4)
p53_F: 5'-CAGCACATGACGGAGGTTGT-3' (SEQ ID NO: 5)
p53_R: 5'-TCATCCAAATACTCCACACGC-3' (SEQ ID NO: 6)
P21_F: 5'-TGTCCGTCAGAACCCATGC-3' (SEQ ID NO: 7)
P21_R: 5'-AAAGTCGAAGTTCCATCGCTC-3' (SEQ ID NO: 8)
Ki67_F: 5'-GCCTGCTCGACCCTACAGA-3' (SEQ ID NO: 9)
Ki67_R: 5'-GCTTGTCAACTGCGGTTGC-3' (SEQ ID NO: 10)
Pax6_F: 5'-TTTAAAGATCCTGGAGGTGGACATA-3' (SEQ ID NO: 11)
Pax6_R: 5'-GCTCAGGTGCTCGGGTTCTA-3' (SEQ ID NO: 12)
Brn3b_F: 5'-TGACACATGAGCGCTCTCACTTAC-3' (SEQ ID NO: 13)
Brn3b_R: 5'-ACCAAGTGGCAAATGCACCTA-3' (SEQ ID NO: 14)
Math5_F: 5'-CCCTAAATTTGGGCAAGTGAAGA-3' (SEQ ID NO: 15)
Math5_R: 5'-CAAAGCAACTCACGTGCAATC-3' (SEQ ID NO: 16)
Pax3_F: 5'-CCATACGTCCTGGTGCCATC-3' (SEQ ID NO: 17)
Pax3_R: 5'-TGAACATGCCCGGGTTCTC-3' (SEQ ID NO: 18)
Sox1_F: 5'-ATGCACAACTCGGAGATCA-3' (SEQ ID NO: 19)
Sox1_R: 5'-GCGAGTACTTGTCCTTCTTG-3' (SEQ ID NO: 20)
En1 F: 5'-GAGCGCAGGGCACCAAATA-3' (SEQ ID NO: 21)
En1_R: 5'-CGAGTCAGTTTTGACCACGG-3' (SEQ ID NO: 22)
Otx2_F: 5'-CAAAGTGAGACCTGCCAAAAAGA-3' (SEQ ID NO: 23)
Otx2_R: 5'-TGGACAAGGGATCTGACAGTG-3' (SEQ ID NO: 24)
TBXT_F: 5'-TATGAGCCTCGAATCCACATAGT-3' (SEQ ID NO: 25)
TBXT_R: 5'-CCTCGTTCTGATAAGCAGTCAC-3' (SEQ ID NO: 26)
Sox17_F: 5'-AGCAGAATCCAGACCTGCACAA-3' (SEQ ID NO: 27)
Sox17_R: 5'-TCAGCGCCTTCCACGACTT-3' (SEQ ID NO: 28)
(細胞培養)
 HeLa細胞はATCCから入手し、293T細胞はTakara Bioから、グリオーマ細胞U-251MGはDS バイオファーマメディカルから、ヒトiPS 409B02細胞はRIKEN BRCから購入した。HeLa細胞は、10%FBS及び1%Pen Strepを添加したDMEM培地(Thermo Fisher Scientific CAT#:11965092)中で生育させた。293T細胞は10%FBS及び1×GlutaMAXTM Supplementを添加したDMEM培地(Thermo Fisher Scientific CAT#:35050061)中で生育させた。ヒトiPS細胞はfeeder layer(不活性化したMEFs)上でPrimate ES medium (ReproCELL) に10 ng/mL, bFGF(Invitrogen)を添加した培地で生育させた。
(Cell culture)
HeLa cells were purchased from ATCC, 293T cells from Takara Bio, glioma cells U-251MG from DS Biofferma Medical, and human iPS 409B02 cells from RIKEN BRC. HeLa cells were grown in DMEM medium (Thermo Fisher Scientific CAT #: 11965092) supplemented with 10% FBS and 1% Pen Strep. 293T cells were grown in DMEM medium (Thermo Fisher Scientific CAT #: 35050061) supplemented with 10% FBS and 1 × GlutaMAX TM Supplement. Human iPS cells were grown on a feeder layer (inactivated MEFs) in a medium supplemented with Prime ES medium (ReproCELL) at 10 ng / mL and bFGF (Invitrogen).
(細胞周期分析)
 細胞周期分析は、FxCycle PI/RNase染色溶液(Thermo Fisher Scientific、#F10797)と組み合わせて、Click-iT Plus EdUフローサイトメトリーアッセイキット(Thermo Fisher Scientific、#C10632)を用いて推奨される染色プロトコルに従って行った。HeLa細胞を37℃で1.5時間、10μMEdUとインキュベートし、回収した。細胞を15分間Click-iT固定剤を用いて固定し、続いてClick-iT saponin-based permeabilization及び洗浄剤を用いて暗所で15分間透過処理を行った。Alexa Fluor 488 pycolyl azaideとのクリック-IT反応を、0.6mLの反応容量で30分間行った。洗浄後、細胞のペレットを0.2mLのFxCycle PI/RNase染色溶液に懸濁し、暗所にて室温で30分間インキュベートした。続いて、細胞をAttune Acoustic Focusing Cytometer(Thermo Fisher Scientific)で分析した。Alexa Fluor 488 pycolyl azaideを用いたEdUの検出には緑色発光フィルター(530/30nm)を用いた488nm励起を使用し、PIの検出にはオレンジ色発光フィルター(574/26nm)を用いた488nm励起を使用した。未染色のHeLa細胞及びEdU又はPIのいずれかを用いた単染色細胞を用いてコンペンセーション分析を実施した。細胞周期の集団比はAttune Cytometric Software v2.1を用いて分析した。
(Cell cycle analysis)
Cell cycle analysis was performed in combination with FxCycle PI / RNase staining solution (Thermo Fisher Scientific, # F10797) and according to the recommended staining protocol using the Click-iT Plus EdU flow cytometry assay kit (Thermo Fisher Scientific, # C10632). went. HeLa cells were incubated with 10 μMEdU for 1.5 hours at 37 ° C and harvested. Cells were fixed with Click-iT fixative for 15 minutes, followed by permeabilization with Click-iT saponin-based permeabilization and detergent for 15 minutes in the dark. A click-IT reaction with Alexa Fluor 488 pycolyl azaide was performed in a reaction volume of 0.6 mL for 30 minutes. After washing, the cell pellet was suspended in 0.2 mL of FxCycle PI / RNase staining solution and incubated in the dark at room temperature for 30 minutes. The cells were then analyzed with an Attune Acoustic Focusing Cytometer (Thermo Fisher Scientific). EdU was detected using Alexa Fluor 488 pycolyl azaide using 488 nm excitation using a green emission filter (530 / 30 nm), and PI was detected using 488 nm excitation using an orange emission filter (574/26 nm). used. Compensation analysis was performed using unstained HeLa cells and monostained cells with either EdU or PI. The cell cycle population ratio was analyzed using Attune Cytometric Software v2.1.
(細胞周期の同調)
 HeLa細胞については10mMヒドロキシ尿素(Sigma#H8627)又は10μM Ro3306(Abcam#ab141491)を含む培地、又は無血清培地中で24時間培養することによって細胞周期を同調させた。その後、ヒドロキシ尿素で同調させたHeLa細胞を通常の培地で培養を続け、発現分析及び細胞周期分析のために所定時間経過後に回収した。
(Synchronization of cell cycle)
For HeLa cells, the cell cycle was synchronized by culturing in a medium containing 10 mM hydroxyurea (Sigma # H8627) or 10 μM Ro3306 (Abcam # ab141491) or in a serum-free medium for 24 hours. Then, the HeLa cells tuned with hydroxyurea were continuously cultured in a normal medium, and collected after a lapse of a predetermined time for expression analysis and cell cycle analysis.
(ルシフェラーゼレポーターアッセイ)
 ルシフェラーゼレポーターアッセイは、LightSwitch Luciferase Assay Kit(Active Motif#32031)を用いて製造業者のプロトコルに従って行った。レポーターベクターは、c7orf26及びp53プロモーター領域と、下流に3'-RenSPルシフェラーゼ領域を含むLightSwitchプロモーターレポーターGoClone(Active Motif#S717666、#S721662)を用いた。当該レポーターベクターを、c7orf26、p53、及びINTSをコードするcDNAクローンともにFuGENE HDトランスフェクション試薬(Promega#E2311)を用いてHeLa細胞にコトランスフェクトし、トランスフェクション48時間後に96ウェルプレート中の細胞を凍結させた。解凍後、LightSwitch Luciferase Assay Reagentをウェルに添加し、30分反応後に1/2 AreaPlate-96プレート(PerkinElmer#6002350)に移した。化学発光シグナルを2030 ARVO Xマルチラベルカウンター機器(PerkinElmer)を使用して読み取った。各プロモーター活性に対するシグナル比は、GFPトランスフェクト細胞と比較して算出した。
(Luciferase Reporter Assay)
The luciferase reporter assay was performed using the LightSwitch Luciferase Assay Kit (Active Motif # 32031) according to the manufacturer's protocol. As a reporter vector, LightSwitch promoter reporter GoClone (Active Motif # S717666, # S721662) containing the c7orf26 and p53 promoter regions and the 3'-RenSP luciferase region downstream was used. The reporter vector was co-transfected into HeLa cells with FuGENE HD transfection reagent (Promega # E2311) together with c7orf26, p53, and the cDNA clone encoding INTS, and 48 hours after transfection, the cells in the 96-well plate were cotransfected. Frozen. After thawing, LightSwitch Luciferase Assay Reagent was added to the wells, and after 30 minutes of reaction, it was transferred to a 1/2 Area Plate-96 plate (PerkinElmer # 6002350). Chemiluminescent signals were read using a 2030 ARVO X multi-label counter device (PerkinElmer). The signal ratio for each promoter activity was calculated in comparison with GFP-transfected cells.
(細胞死アッセイ)
 HeLa細胞にpU6-shC7orf26-GFP ベクターをトランスフェクトし、トランスフェクション後、96ウェルプレート又は8ウェルガラスチャンバーにて培養し、36時間後に固定化した。細胞死の検出のために、M30 CytoDEATH 抗体 (Roche # 12140322001)を用いた免疫染色を、固定した細胞に対して行った。0.1% Tween 20を含むPBSで2回洗浄した後、細胞をM30 CytoDEATH 抗体溶液(1:50)と60分間室温でインキュベートした。細胞を2回洗浄し、Goat anti-Mouse IgG(H+L)二次抗体及びAlexa Fluor Plus 555 溶液 (1:500) (Thermo Fisher Scientific #A32727)と30分間室温でインキュベートした。DAPI入りのProLong Gold Antifade 試薬(Thermo Fisher Scientific #A32727)でマウンティングした後、M30 CytoDEATH 陽性細胞をDeltaVision ELITE (CORNES Technologies)で観察した。
(Cell death assay)
HeLa cells were transfected with the pU6-shC7orf26-GFP vector, transfected, cultured in 96-well plates or 8-well glass chambers, and immobilized 36 hours later. Immunostaining with M30 CytoDEATH antibody (Roche # 12140322001) was performed on fixed cells to detect cell death. After washing twice with PBS containing 0.1% Tween 20, cells were incubated with M30 CytoDEATH antibody solution (1:50) for 60 minutes at room temperature. Cells were washed twice and incubated with Goat anti-Mouse IgG (H + L) secondary antibody and Alexa Fluor Plus 555 solution (1: 500) (Thermo Fisher Scientific # A32727) for 30 minutes at room temperature. ProLong with DAPI After mounting with Gold Antifade reagent (Thermo Fisher Scientific # A32727), M30 CytoDEATH-positive cells were observed with DeltaVision ELITE (CORNES Technologies).
(免疫蛍光)
 検体を4%パラホルムアルヒド(pH 7.0)にて室温で20分間固定した。PBSで2回すすいだ後、検体を0.1%Triton X-100と室温で15分間インキュベートし、PBSで2回すすいだ。次に、検体を室温で60分間、3%BSAとインキュベートし、その後、4℃で16時間、一次抗体反応を行った。PBSで5分間3回洗浄した後、対応する種-種特異的なAlexa Fluorコンジュゲート抗体と室温で1時間、暗所でインキュベートすることにより、二次抗体反応を行った。PBSで5分間4回洗浄した後、検体を、DAPI入りのProLong Gold Antifade Reagent(Thermo Fisher Scientific#A32727)でマウントし、DeltaVision ELITE(CORNES Technologies)で観察した。
(Immunofluorescence)
Specimens were fixed in 4% paraformaldehyde (pH 7.0) at room temperature for 20 minutes. After rinsing twice with PBS, the specimen was incubated with 0.1% Triton X-100 at room temperature for 15 minutes and rinsed twice with PBS. The sample was then incubated with 3% BSA for 60 minutes at room temperature, followed by a primary antibody reaction at 4 ° C. for 16 hours. After washing 3 times with PBS for 5 minutes, a secondary antibody reaction was carried out by incubating with the corresponding species-species-specific Alexa Fluor-conjugated antibody at room temperature for 1 hour in the dark. After washing 4 times with PBS for 5 minutes, the sample was mounted with ProLong Gold Antifade Reagent (Thermo Fisher Scientific # A32727) containing DAPI and observed with DeltaVision ELITE (CORNES Technologies).
(siRNAによるE2Fのノックダウン)
 E2F4に特異的なsiRNA(Human E2F4 (1874) siRNA-SMARTpool L-003262-00-0005)、E2F6に特異的なsiRNA(Human E2F6 (1876) siRNA- SMARTpool L-003264-00-0005) 、E2F1に特異的なsiRNA (E2F1 (1869) siRNA-SMARTpool, 5 nmol L-003259-00-0005)及びスクランブル配列を含むコントロールsiRNA(ON-TARGETplus Non-targeting Pool、#D-001810-10 ; NC siRNA)はDharmaconから購入した。トランスフェクションの2日前に24ウェルプレートにHeLa細胞を播種した。細胞密度が50~70%のHeLa細胞に、5 pmolのsiRNAを含む50μLのOpti-MEMI培地をLipofectamineTMRNAiMAX Transfection Reagent(Thermo Fisher Scientific#13778150)を使用して製造業者の指示に従いトランスフェクトした。分析のために、トランスフェクション後の異なる時点で細胞を回収し固定した。
(E2F knockdown by siRNA)
E2F4 specific siRNA (Human E2F4 (1874) siRNA-SMARTpool L-003262-00-0005), E2F6 specific siRNA (Human E2F6 (1876) siRNA-SMARTpool L-003264-00-0005), E2F1 Control siRNAs containing specific siRNA (E2F1 (1869) siRNA-SMARTpool, 5 nmol L-003259-00-0005) and scrambled sequences (ON-TARGETplus Non-targeting Pool, # D-001810-10; NC siRNA) Purchased from Dharmacon. HeLa cells were seeded in 24-well plates 2 days prior to transfection. HeLa cells with a cell density of 50-70% were transfected with 50 μL Opti-MEMI medium containing 5 pmol of siRNA using Lipofectamine TM RNAiMAX Transfection Reagent (Thermo Fisher Scientific # 13778150) according to the manufacturer's instructions. For analysis, cells were harvested and fixed at different time points after transfection.
(免疫沈降)
 10cmディッシュにおいてコンフルエンシーが70~80%の293T細胞に、15μgのpC7orf26-myc-Flagを含む1.5 mLのOpti-MEM I培地をLipofectamine 3000 Transfection Reagent(Thermo Fisher Scientific#L3000001)を用いてトランスフェクトした。培養72時間後、製造業者の指示に従ってプロテアーゼ阻害剤カクテル(ロシュ#:04693116001)を含むCelLytic M Cell Lysis Reagent(Sigma#:C2978)を用いて細胞からタンパク質を抽出した。
(Immunoprecipitation)
293 T cells with 70-80% confluency in a 10 cm dish were transfected with 1.5 mL Opti-MEM I medium containing 15 μg pC7orf26-myc-Flag using Lipofectamine 3000 Transfection Reagent (Thermo Fisher Scientific # L3000001). .. After 72 hours of culturing, proteins were extracted from cells using CelLytic M Cell Lysis Reagent (Sigma #: C2978) containing a protease inhibitor cocktail (Roche #: 04693116001) according to the manufacturer's instructions.
 EZviewTM Red ANTI-FLAG M2 Affinity Gel(Sigma#:F2426)及びFLAG Immunoprecipitation Kit(Sigma#:FLAGIPT1)を用いて免疫沈降を行った。アフィニティーゲルを1%BSA洗浄バッファーで懸濁し、室温で30分間回転させた。洗浄バッファーで4回洗浄した後、アフィニティーゲルを細胞ライセートで懸濁し、4℃で16時間回転させた。洗浄バッファーで4回洗浄した後、3xFlagペプチド溶液で溶出することにより、C7orf26 Flag-融合タンパク質をアフィニティーゲルから単離した。Amicon Ultra-0.5 (Millpore#:UFC5003)を用いてその容量を濃縮した後、QubitTM R Protein Assay(Thermo Fisher Scientific#:Q33211)を使用してタンパク質量を測定した。 Immunoprecipitation was performed using EZview TM Red ANTI-FLAG M2 Affinity Gel (Sigma #: F2426) and FLAG Immunoprecipitation Kit (Sigma #: FLAGIPT1). The affinity gel was suspended in 1% BSA wash buffer and allowed to rotate at room temperature for 30 minutes. After washing 4 times with wash buffer, the affinity gel was suspended in cell lysates and rotated at 4 ° C. for 16 hours. The C7orf26 Flag-fusion protein was isolated from the affinity gel by washing 4 times with a wash buffer and then eluting with a 3xFlag peptide solution. After concentrating the volume using Amicon Ultra-0.5 (Millpore #: UFC5003), the amount of protein was measured using Qubit TM R Protein Assay (Thermo Fisher Scientific #: Q33211).
(免疫ブロット分析)
 約5μgの抽出物と1μgの清澄化した溶出液を95℃で5分間煮沸し、7.5%アクリルアミドSDS-PAGEゲルで分離し、PVDF膜(Bio-Rad#1620174)に湿式転写によってトランスファーした。膜をBlocking One(NAKARAI#03953)でブロックし、室温で20分間インキュベートし、TBSTで洗浄した。膜を一次抗体(抗E2F4抗体)とともに4℃で一晩インキュベートした後、TBSTで洗浄し、HRP結合二次抗体と室温で1時間インキュベートし、Blocking Oneで溶出した。免疫反応によるバンドは、SuperSignal West Femto Chemiluminescent Substrate (Thermo Fisher Scientifi #34095)で可視化した。
(Immune blot analysis)
Approximately 5 μg of the extract and 1 μg of the clarified eluate were boiled at 95 ° C. for 5 minutes, separated by 7.5% acrylamide SDS-PAGE gel, and transferred to a PVDF membrane (Bio-Rad # 1620174) by wet transfer. Membranes were blocked with Blocking One (NAKARAI # 03953), incubated for 20 minutes at room temperature, and washed with TBST. Membranes were incubated overnight with a primary antibody (anti-E2F4 antibody) at 4 ° C., washed with TBST, incubated with HRP-conjugated secondary antibody for 1 hour at room temperature, and eluted with Blocking One. Immune response bands were visualized with SuperSignal West Femto Chemiluminescent Substrate (Thermo Fisher Scientifi # 34095).
(リアルタイムRT-PCR)
 全RNA をRNeasy Mini Kit (キアゲン)を用いて細胞から抽出した。各RNA 試料中のmRNAの発現量をStepONE Sequence Detection System (アプライドバイオシステムズ社)を用いて測定した。逆転写ポリメラーゼ鎖反応(RT-PCR)をOne Step SYBRTM PrimeScriptTM PLUS RT-PCR Kit (タカラバイオ)を用いて行った。前記プライマーを用いてリアルタイムPCRを行い、各遺伝子の発現量を測定した。PCRの条件は、42℃5分保持後、95℃10秒、続いて、95℃5秒、60℃31秒を40サイクルとした。mRNAの発現量は、Ct(Threshold cycle)値によって評価した。
(Real-time RT-PCR)
Total RNA was extracted from cells using the RNeasy Mini Kit (Qiagen). The expression level of mRNA in each RNA sample was measured using the Step ONE Sequence Detection System (Applied Biosystems). Reverse transcription polymerase chain reaction (RT-PCR) was performed using the One Step SYBR TM PrimeScript TM PLUS RT-PCR Kit (Takara Bio). Real-time PCR was performed using the primers to measure the expression level of each gene. The PCR conditions were as follows: after holding at 42 ° C. for 5 minutes, 95 ° C. for 10 seconds, followed by 95 ° C. for 5 seconds and 60 ° C. for 31 seconds for 40 cycles. The expression level of mRNA was evaluated by the Ct (Threshold cycle) value.
(実施例1)C7orf26の細胞周期中の発現変動
 細胞周期中のC7orf26の発現変動を解析するために、ヒドロキシ尿素(HU)を24時間培地に添加することによってHeLa細胞の細胞周期を同調させた後、培地からHUを除去することによって細胞周期を再開させた。細胞周期再開後、一定時間経過後にフローサイトメトリーによりHeLa細胞を解析した。細胞周期再開時(0時間)では、ほとんどのHeLa細胞がS期初期にあり、16時間でG2/M期に進行し、20時間でG1期初期の細胞が増加することが確認された(図1A)。C7orf26 mRNAの発現は、細胞周期の進行とともに徐々に増加し、HU除去16時間後のM期でピークに達し、HU除去20時間後のG1期初期でも高い発現は続いた。一方、細胞増殖マーカーKi67 mRNAの発現は、HU除去12時間後のG2期でピークに達し、M期では徐々に減少した(図1B)。細胞周期の各期でHeLa細胞を免疫染色したところ、C7orf26は、予想されたように核内に存在し(図1C;左上パネル、白色の点)、M期中期では細胞質内に顕著に発現した(図1C;右上パネル、白色部分)。C7orf26の高発現はM期終期まで続き(図1C;左下パネル、白色部分)、G1期まで依然として染色が確認された(図1C;右下パネル、白色部分)。これらの結果から、細胞周期の間、ハウスキーピング遺伝子は安定に発現するのに対し、C7orf26遺伝子の発現は劇的に変動することが示された。有糸分裂の動的な細胞挙動には様々なオルタナティブ転写変異体とその成熟が必要であるため、C7orf26発現がG2期からM期に高いことは予想されたが、細胞分裂がすでに終了し、多数の転写変異体が不要となるG1期初期まで高発現が継続する点において、C7orf26の細胞周期における役割は着目すべきである。
(Example 1) Cell cycle expression fluctuation of C7orf26 In order to analyze the expression fluctuation of C7orf26 during the cell cycle, the cell cycle of HeLa cells was synchronized by adding hydroxyurea (HU) to the medium for 24 hours. Later, the cell cycle was restarted by removing HU from the medium. HeLa cells were analyzed by flow cytometry after a certain period of time after the cell cycle was restarted. At the time of cell cycle resumption (0 hours), it was confirmed that most HeLa cells were in the early S phase, progressed to the G2 / M phase in 16 hours, and the number of cells in the early G1 phase increased in 20 hours (Fig.). 1A). The expression of C7orf26 mRNA gradually increased with the progress of the cell cycle, reached a peak in the M phase 16 hours after HU removal, and continued to be highly expressed in the early G1 phase 20 hours after HU removal. On the other hand, the expression of the cell proliferation marker Ki67 mRNA peaked in the G2 phase 12 hours after HU removal and gradually decreased in the M phase (Fig. 1B). Immunostaining of HeLa cells at each phase of the cell cycle revealed that C7orf26 was present in the nucleus as expected (Fig. 1C; upper left panel, white dot) and was prominently expressed in the cytoplasm during metaphase M. (Fig. 1C; upper right panel, white part). High expression of C7orf26 continued until the end of M phase (Fig. 1C; lower left panel, white part), and staining was still confirmed until G1 stage (Fig. 1C; lower right panel, white part). These results indicate that the housekeeping gene is stably expressed during the cell cycle, whereas the expression of the C7orf26 gene fluctuates dramatically. C7orf26 expression was expected to be high from G2 to M phase because various alternative transcriptional variants and their maturation are required for dynamic cell behavior in mitosis, but cell division has already ended and cell division has already ended. The role of C7orf26 in the cell cycle should be noted in that high expression continues until early G1 phase, when many transcriptional variants are no longer needed.
(実施例2)C7orf26による細胞周期の制御
 G1期でも高発現するという特徴を有するC7orf26の細胞周期における役割を調べるために、生理的レベルのC7orf26増加が達成されるCumate-Switch Systemを用いて機能獲得実験を行った。起動薬キュメート(cumate)は、SBI (System Biosciences,LLC)社のWater-soluble cumate solution (300mg/mL, 10,000x) 品番 QM150A-1を使用した。
(Example 2) Cell cycle control by C7orf26 In order to investigate the role of C7orf26 in the cell cycle, which is characterized by high expression even in the G1 phase, it functions using the Cumate-Switch System in which a physiological level of C7orf26 increase is achieved. An acquisition experiment was conducted. The starting agent cumate used was SBI (System Biosciences, LLC) Water-soluble cumate solution (300 mg / mL, 10,000x), product number QM150A-1.
 HeLa細胞に、C7orf26コード領域を含むpPB-Cuo-C7orf26ベクターをPiggyBac Cumate Switch Inducible Vector(System Biosciences, LLC#PBQM812A-1)を用いてトランスフェクトし、安定な細胞株HeLa/pPB-Cuo-C7orf26をクローニングした(当該細胞株はキュメート(cumate)添加濃度に応じてC7orf26が発現する)。当該細胞株を培地に播種し、播種2日目に上記キュメート(cumate)を10xになるように培地の1/1000量(終濃度0.3mg/ml)添加して培養し、C7orf26 mRNAを発現させた。その結果、図2に示すように、C7orf26は、培養液に添加したキュメート(cumate)の濃度依存的に当該細胞で発現した。また、p53はC7orf26に対応して発現量が増加し、p53の下流にあるp21の発現量もまた、p53の発現に対応して増加した。一方、C7orf26によってアップレギュレートされたp53及びp21の発現とは反対に、細胞増殖マーカーであるKi67 mRNAの発現量は有意に減少した。このように、C7orf26は、細胞周期を抑制する転写因子であるp53、その下流にあるp21の発現を増加させ、Ki67減少に見られる細胞周期を停止させることが確認された。 HeLa cells were transfected with a pPB-Cuo-C7orf26 vector containing the C7orf26 coding region using a PiggyBac Cumate Switch Inducible Vector (System Biosciences, LLC # PBQM812A-1) to obtain a stable cell line, HeLa / pPB-Cuo-C7orf26. Cloning (the cell line expresses C7orf26 depending on the concentration of cumate added). The cell line is seeded in a medium, and on the second day of seeding, 1/1000 amount (final concentration 0.3 mg / ml) of the above-mentioned cumate is added to 10x and cultured to express C7orf26 mRNA. rice field. As a result, as shown in FIG. 2, C7orf26 was expressed in the cells in a concentration-dependent manner of the cumate added to the culture medium. In addition, the expression level of p53 increased in response to C7orf26, and the expression level of p21 downstream of p53 also increased in response to the expression of p53. On the other hand, in contrast to the expression of p53 and p21 up-regulated by C7orf26, the expression level of Ki67 mRNA, which is a cell proliferation marker, was significantly reduced. Thus, it was confirmed that C7orf26 increases the expression of p53, which is a transcription factor that suppresses the cell cycle, and p21, which is downstream of it, and arrests the cell cycle seen in the decrease in Ki67.
 キュメート(cumate)の連続補給によってC7orf26をHeLa/pPB-Cuo-C7orf26において連続発現させた細胞をフローサイトメトリーにより解析した。図3Aに示すように、cumateを補給しない対照(コントロール)に対し、キュメート(cumate)の連続補給によるC7orf26の5日間の連続発現により、M期の細胞の相対量が増加した。6日間の連続発現では、G1期の細胞数が増加し、S期及びG2/M期の細胞の相対量は減少した。8日間の連続発現では、G1期、S期、及びG2/M期のすべての期で細胞数は減少したが、殆どはG1期の細胞のみとなり、細胞周期が進行することなくG1期で細胞周期が停止した。 Cells in which C7orf26 was continuously expressed in HeLa / pPB-Cuo-C7orf26 by continuous supplementation with cumate were analyzed by flow cytometry. As shown in FIG. 3A, continuous expression of C7orf26 by continuous supplementation of cumate for 5 days increased the relative amount of cells in the M phase with respect to the control without supplementation with cumate. After 6 days of continuous expression, the number of cells in G1 phase increased and the relative amount of cells in S phase and G2 / M phase decreased. After 8 days of continuous expression, the number of cells decreased in all stages of G1, S, and G2 / M, but most of them were only cells in G1 and cells in G1 without cell cycle progression. The cycle has stopped.
 細胞周期の各期でのC7orf26、p53、p21、及びKi67の発現プロファイルを解析した。各期で細胞周期を停止させるために、細胞周期停止剤を添加した培地、又は無血清培地を用いてHeLa細胞を培養し、同調させた後、洗浄して細胞周期を再開させた。細胞周期停止剤として細胞周期S期で停止させるヒドロキシ尿素(HU)、細胞周期をM期で停止させるRo3306を用いた。フローサイトメトリーでHeLa細胞を解析したところ、対照(control)(図3B、上のパネル)と比較して、HeLa細胞の細胞周期は、HUによってS期初期で停止し(図3B、中央のパネル)、Ro3306によってM期で停止した(図3B、下のパネル)。 The expression profiles of C7orf26, p53, p21, and Ki67 at each stage of the cell cycle were analyzed. In order to arrest the cell cycle at each phase, HeLa cells were cultured in a medium supplemented with a cell cycle arresting agent or a serum-free medium, synchronized, and then washed to restart the cell cycle. As the cell cycle terminator, hydroxyurea (HU), which arrests the cell cycle in the S phase, and Ro3306, which arrests the cell cycle in the M phase, were used. When HeLa cells were analyzed by flow cytometry, the cell cycle of HeLa cells was stopped by HU in the early S phase (Fig. 3B, central panel) compared to the control (Fig. 3B, upper panel). ), Ro3306 stopped in phase M (Fig. 3B, lower panel).
 図3Cに示すように、C7orf26の発現は、対照(control)と比較して、細胞周期をHUによりS期で停止させた後、再開した細胞では、S期初期で最小となり、p53及びp21の発現の減少を伴っていた。細胞周期をRo3306によりM期で停止させた後、再開した細胞では、C7orf26の発現はM期で最大であり、C7orf26の増加とともに、p53、p21もアップレギュレートされた。また、ヒト線維芽細胞におけるG0期での強制的停止への誘導の条件である24時間の血清飢餓(G1期初期での細胞周期の停止に相当)もまた、C7orf26の発現を誘導し、C7orf26の発現の増加に対応して、p53とp21の発現も増加した。血清飢餓状態から細胞周期を再開して4時間後のG1期後期では、C7orf26の発現が減少し、p53及びp21の発現もまた追随して減少した。一方、Ki67の発現も同様に、HUによる細胞周期停止細胞においてはS期初期で減少し、Ro3306による細胞周期停止細胞ではM期の細胞分裂の最中でも軽度な増加のみであり、血清飢餓による細胞周期停止細胞においてはG1期初期で減少し、血清回復によるG1期後期では、対照(control)とほぼ同じであった。 As shown in FIG. 3C, expression of C7orf26 was minimal in early S phase in cells that resumed cell cycle after arresting in S phase with HU, compared to control, at p53 and p21. It was accompanied by a decrease in expression. In cells in which the cell cycle was stopped in the M phase by Ro3306 and then resumed, the expression of C7orf26 was the highest in the M phase, and p53 and p21 were up-regulated as C7orf26 increased. In addition, 24-hour serum starvation (corresponding to cell cycle arrest in early G1 phase), which is a condition for inducing forced arrest in G0 phase in human fibroblasts, also induces C7orf26 expression and C7orf26. Corresponding to the increased expression of p53, the expression of p53 and p21 also increased. In the late G1 phase, 4 hours after resuming the cell cycle from serum starvation, C7orf26 expression decreased, and p53 and p21 expression also decreased accordingly. On the other hand, the expression of Ki67 also decreased in the cell cycle arrested cells by HU in the early S phase, and in the cell cycle arrested cells by Ro3306, it increased only slightly during the cell division in the M phase, and the cells due to serum starvation. In cell-cycle arrested cells, it decreased in the early G1 phase, and in the late G1 phase due to serum recovery, it was almost the same as that of the control.
(実施例3)C7orf26のp53経路を介したG1期における細胞停止の誘導機構
 細胞周期には4つの細胞周期チェックポイントがあるが、p53は各チェックポイントで細胞周期の進行を制御し、p53経路が細胞周期を停止させると考えられている。C7orf26は、M期からG1期初期で高発現したこと、Ki67が減少し、C7orf26によりG1期が停止したことから、C7orf26がp53に働く主要ポイントは、cyclinD-CDK4/6の開始及びcyclinE-CDK2(制限点)と考えられた。2つのポイントのうち、cyclinD-CDK4/6の開始が、免疫組織化学においてG1期初期にC7orf26タンパク質の顕著な発現を示したため、C7orf26はG1期初期で特異的にp53に強く影響する可能性が最も高い(図4)。
(Example 3) Induction mechanism of cell arrest in G1 phase via the p53 pathway of C7orf26 There are four cell cycle checkpoints in the cell cycle, and p53 controls the progression of the cell cycle at each checkpoint and the p53 pathway. Is thought to stop the cell cycle. Since C7orf26 was highly expressed from the M phase to the early G1 phase, Ki67 decreased, and the G1 phase was stopped by C7orf26, the main points at which C7orf26 acts on p53 are the start of cyclinD-CDK4 / 6 and cyclinE-CDK2. It was considered (restriction point). Of the two points, initiation of cyclinD-CDK4 / 6 showed significant expression of the C7orf26 protein in early G1 phase in immunohistochemistry, suggesting that C7orf26 may have a strong effect on p53 specifically in early G1 phase. The highest (Fig. 4).
 実施例2で確認されたC7orf26によるp53の用量依存的アップレギュレーションは、直接的な転写調節によるものであると考えられたため、p53のプロモーター領域を含むレポーターベクターとpCMV-C7orf26-Flagを同時トランスフェクトしたHeLa細胞においてレポーターアッセイを行った。コントロールベクターpCMV-GFPのトランスフェクションと比較して、p53-LucレポーターシグナルはC7orf26の発現によって有意に増加した(図5-1、A)。 Since the dose-dependent upregulation of p53 by C7orf26 confirmed in Example 2 was considered to be due to direct transcriptional regulation, the reporter vector containing the promoter region of p53 and pCMV-C7orf26-Flag were co-transfected. A reporter assay was performed on the HeLa cells. Compared with transfection of the control vector pCMV-GFP, the p53-Luc reporter signal was significantly increased by the expression of C7orf26 (Fig. 5-1 and A).
 また、HeLa細胞に、p53のプロモーター領域を含むレポーターベクターとpCMV-INTSX-FLAG(X=1~14) を同時トランスフェクトした。コントロールベクターpCMV-GFPのトランスフェクションと比較して、p53-Lucレポーターシグナルはインテグレーター複合体サブユニット(INTS1、INTS2、INTS3、INTS4、INTS5、INTS6、INTS7、INTS8、INTS9、INTS10、INTS11、INTS12、INTS13、INTS14)の発現によってもまた有意に増加した(図5-1、B)。 In addition, HeLa cells were co-transfected with a reporter vector containing the promoter region of p53 and pCMV-INTSX-FLAG (X = 1-14). Compared to transfection of the control vector pCMV-GFP, the p53-Luc reporter signal is an integrator complex subunit (INTS1, INTS2, INTS3, INTS4, INTS5, INTS6, INTS7, INTS8, INTS9, INTS10, INTS11, INTS12, INTS13. , INTS14) was also significantly increased (Fig. 5-1 and B).
 これらの結果から、C7orf26はインテグレーター複合体サブユニットと共同して、p53をアップレギュレートすることが示された。インテグレーター複合体サブユニットもC7orf26も既知のプロモーター結合ドメインを含まないため、これらは、p53の転写を調節する未知の転写因子の転写コアクチベーターである可能性が示唆された。 These results indicate that C7orf26 upregulates p53 in collaboration with the integrator complex subunit. Neither the integrator complex subunit nor C7orf26 contained a known promoter-binding domain, suggesting that they may be transcription coactivators of unknown transcription factors that regulate the transcription of p53.
 また、驚くべきことに、C7orf26-LucレポーターシグナルもまたpCMV-p53-HAのトランスフェクションによって有意に増加したことから、C7orf26とp53の間に正のフィードバックが存在することが示された(図5-1、C)。 Surprisingly, the C7orf26-Luc reporter signal was also significantly increased by transfection with pCMV-p53-HA, indicating the presence of positive feedback between C7orf26 and p53 (Fig. 5). -1, C).
 また、インテグレーター複合体サブユニット(INTS1、INTS2、INTS3、INTS4、INTS5、INTS6、INTS7、INTS8、INTS9、INTS10、INTS11、INTS12、INTS13、INTS14)の細胞周期中の発現変動解析を実施例1に記載と同様に行った。インテグレーター複合体サブユニットの各メンバーのmRNAの発現は、C7orf26と同様に、細胞周期の進行とともに徐々に増加し、HU除去16時間後のM期で大部分はピークに達し、HU除去20時間後のG1期初期でも高い発現は続いた(図5-2)。 In addition, the expression variation analysis of the integrator complex subunits (INTS1, INTS2, INTS3, INTS4, INTS5, INTS6, INTS7, INTS8, INTS9, INTS10, INTS11, INTS12, INTS13, INTS14) during the cell cycle is described in Example 1. I went in the same way. Similar to C7orf26, the expression of mRNA in each member of the integrator complex subunit gradually increased with the progression of the cell cycle, most peaked in the M phase 16 hours after HU removal, and 20 hours after HU removal. High expression continued even in the early G1 phase (Fig. 5-2).
 次に、C7orf26のターゲットとなるp53のプロモーター領域を用いてWebデータベース、JASPARを検索したところ、候補転写因子の中に、E2Fファミリーのメンバー(E2F1, E2F4, E2F6)が見つかった。そこで、細胞周期の各期での転写因子E2Fファミリーの発現プロファイルを解析した。各期で細胞周期を停止させるために、細胞周期停止剤を添加した培地、又は無血清培地を用いてHeLa細胞を培養し、同調させた後、洗浄して細胞周期を再開させた。細胞周期停止剤として細胞周期をS期で停止させるヒドロキシ尿素(HU)を用いた。HUの除去による細胞周期の再開後、E2F1の発現はS期からG2期(0時間から8時間)に徐々に減少したが、E2F4の発現はG2/M期で徐々に増加した。これは、増加したE2F4がG2/M期中のC7orf26のアップレギュレーションに働く可能性があることを示唆した。E2F6の発現は比較的安定していた(図6-1、A)。 Next, when the Web database and JASPAR were searched using the promoter region of p53, which is the target of C7orf26, members of the E2F family (E2F1, E2F4, E2F6) were found among the candidate transcription factors. Therefore, we analyzed the expression profile of the transcription factor E2F family at each stage of the cell cycle. In order to arrest the cell cycle at each phase, HeLa cells were cultured in a medium supplemented with a cell cycle arresting agent or a serum-free medium, synchronized, and then washed to restart the cell cycle. Hydroxyurea (HU), which arrests the cell cycle in the S phase, was used as the cell cycle terminator. After resumption of the cell cycle by removal of HU, E2F1 expression gradually decreased from S phase to G2 phase (0 to 8 hours), but E2F4 expression gradually increased in G2 / M phase. This suggests that increased E2F4 may act on the upregulation of C7orf26 during the G2 / M phase. The expression of E2F6 was relatively stable (Fig. 6-1 and A).
 siRNAを使用したE2F(E2F1, E2F4, E2F6)のノックダウンによって、C7orf26によるp53レポーター活性の変化を調べた。C7orf26によるp53のアップレギュレーションは、転写因子E2F1及びE2F4のsiRNAによって有意に減少した。よって、E2F1とE2F4は、C7orf26及びINTSと共同してp53の転写を活性化するために働く候補転写因子であると考えられた(図6-1、B)。pCMV-GFP又はpCMV-C7orf26-FlagをトランスフェクトしたHeLa細胞からのFlagアフィニティー溶出液について、ヒトE2F4に対する抗体を用いてウェスタンブロット解析を行った。その結果、C7orf26とE2F4が結合することが確認され、図6-1、BにおけるC7orf26がE2F4の転写補助因子であることが支持された(図6-1、C)。 The change in p53 reporter activity by C7orf26 was investigated by knockdown of E2F (E2F1, E2F4, E2F6) using siRNA. Upregulation of p53 by C7orf26 was significantly reduced by siRNAs of transcription factors E2F1 and E2F4. Therefore, E2F1 and E2F4 were considered to be candidate transcription factors that work in collaboration with C7orf26 and INTS to activate the transcription of p53 (Fig. 6-1 and B). The Flag affinity eluate from HeLa cells transfected with pCMV-GFP or pCMV-C7orf26-Flag was subjected to Western blot analysis using an antibody against human E2F4. As a result, it was confirmed that C7orf26 and E2F4 bind to each other, and it was supported that C7orf26 in FIGS. 6-1 and B is a transcriptional cofactor for E2F4 (Fig. 6-1 and C).
 C7orf26の遺伝子を発現させるE2Fについては、E2F4とE2F6の過剰発現させたHeLa細胞において、E2F4はE2F6よりもより有意にC7orf26-Lucのレポーター活性を増加させた(図6-2、A)。また、細胞周期を同調させたHeLa細胞においてE2F4及びE2F6のsiRNAを作用させたところ、C7orf26の発現がG2期およびM期で抑制された(図6-2、B)。したがって、C7orf26の遺伝子を発現させる上流遺伝子はE2F4/6であると推測される。 Regarding E2F expressing the C7orf26 gene, E2F4 significantly increased the reporter activity of C7orf26-Luc in HeLa cells overexpressing E2F4 and E2F6 (Fig. 6-2, A). In addition, when E2F4 and E2F6 siRNAs were allowed to act on HeLa cells whose cell cycle was synchronized, the expression of C7orf26 was suppressed in the G2 and M phases (Fig. 6-2, B). Therefore, the upstream gene that expresses the C7orf26 gene is presumed to be E2F4 / 6.
 細胞周期を同調させたHeLa細胞において、C7orf26 mRNAが細胞周期依存性の発現パターンを示し、C7orf26のmRNAとタンパク質の発現がM期でピークに達したので(図1B及び図1C)、CDK1がC7orf26の上流の転写抑制因子であることが予想された。そこで、CDK1阻害剤添加又は無添加の培地でHeLa細胞を培養し、HUによってS期に同調し、24時間後にHUを培地から除去して細胞周期を再開すると、CDK1阻害剤添加培地で培養した細胞では、HU除去後12時間及び16時間にC7orf26 mRNAレベルが明らかに増加した(図6-2、C)。この結果から、CDK1はC7orf26の上流転写抑制因子であることが示された。これによって、M期初期のチェックポイントにおいては、C7orf26が抑制されてp53の発現上昇が起こらず、細胞は細胞周期停止を免れ、細胞分裂後にCDK1が分解されたG1期に入ってから、C7orf26のG1期初期細胞周期停止機能が発揮されると推測される。 In HeLa cells whose cell cycle was synchronized, C7orf26 mRNA showed a cell cycle-dependent expression pattern, and C7orf26 mRNA and protein expression peaked in the M phase (FIGS. 1B and 1C), so CDK1 was C7orf26. It was expected to be a transcriptional repressor upstream of. Therefore, HeLa cells were cultured in a medium containing or without a CDK1 inhibitor, synchronized with the S phase by HU, and after 24 hours, the HU was removed from the medium and the cell cycle was restarted, and the cells were cultured in a medium containing a CDK1 inhibitor. In cells, C7orf26 mRNA levels were clearly increased 12 and 16 hours after HU removal (Fig. 6-2, C). From this result, it was shown that CDK1 is an upstream transcriptional repressor of C7orf26. As a result, at the checkpoint in the early stage of M, C7orf26 is suppressed and the expression of p53 does not increase, the cells escape cell cycle arrest, and after entering the G1 phase in which CDK1 is degraded after cell division, C7orf26 It is presumed that the G1 phase early cell cycle arrest function is exerted.
 以上の一連の実験により、C7orf26タンパク質は、INTS及びE2F1/E2F4と共に働くM期からG1期におけるp53の転写コアクチベーターであり、p53を急激にアップレギュレーションして、細胞周期の急激なG1期における停止とG0期への導入を引き起こすことが明らかとなった。C7orf26の機能はCDK1によってM期までは抑制されており、G1期に入ると発現上昇が開放されるとともに、p53のpositive feedbackによって急速に発現上昇する。また、転写因子E2F4/1蛋白と共同するインテグレーター複合体サブユニット蛋白はM期(30分程度)のうちに急速に形成され、G1期初期にC7orf26とともに働いて細胞周期をG1期初期で停止させる。これらがC7orf26が特異的にG1期初期のチェックポイントで細胞周期を停止させる機序と考えられる。 Based on the above series of experiments, the C7orf26 protein is a transcription coactivator of p53 in the M to G1 phase that works together with INTS and E2F1 / E2F4, and rapidly upregulates p53 in the G1 phase with a rapid cell cycle. It was revealed that it would cause an outage and introduction into the G0 phase. The function of C7orf26 is suppressed by CDK1 until the M phase, and the expression increase is released in the G1 phase, and the expression is rapidly increased by the positive feedback of p53. In addition, the integrator complex subunit protein, which co-operates with the transcription factor E2F4 / 1, is rapidly formed during the M phase (about 30 minutes) and works with C7orf26 in the early G1 phase to arrest the cell cycle in the early G1 phase. .. These are thought to be the mechanism by which C7orf26 specifically arrests the cell cycle at early G1 phase checkpoints.
(実施例4)細胞死誘導の確認
(1)C7orf26の連続的発現による細胞死誘導
 前記実施例2と同様の方法に従い、キュメート(cumate)補給によりC7orf26を連続発現させたHeLa/pPB-Cuo-C7orf26のフローサイトメトリー解析結果を図7に示す。染色試薬には、Thermo Fisher Scientific社のLIVE/DEADTMFixable Red Dead Cell Stain Kit 品番 L34971を用いて30分間染色後、陽性細胞(488nm)を解析した。弱い蛍光(低い数値)は、死滅細胞を含む細胞又は細胞破片(デブリ)を示す。C7orf26の8日間の連続発現後、G1期の細胞は減少し、死細胞及び細胞破片(デブリ)の増加を伴った(図7A、矢頭)。
(Example 4) Confirmation of cell death induction (1) Cell death induction by continuous expression of C7orf26 HeLa / pPB-Cuo- in which C7orf26 was continuously expressed by cumate supplementation according to the same method as in Example 2 above. The flow cytometry analysis result of C7orf26 is shown in FIG. Positive cells (488 nm) were analyzed after staining for 30 minutes using LIVE / DEAD TM Fixable Red Dead Cell Stain Kit Part No. L34971 manufactured by Thermo Fisher Scientific as a staining reagent. Weak fluorescence (low numbers) indicates cells or cell debris containing dead cells. After 8 consecutive days of continuous expression of C7orf26, cells in G1 phase decreased, accompanied by an increase in dead cells and cell debris (FIG. 7A, arrowhead).
 また、キュメート(cumate)補給によりC7orf26を5日間連続発現させたHeLa/pPB-Cuo-C7orf26では、細胞は少数の死滅細胞を除いてほとんど生存しており、コントロール(キュメート(cumate)無補給)のHeLa/pPB-CuO-C7orf26細胞と同じであった(図7B、上のパネル)。キュメート(cumate)補給によりC7orf26を8日間連続発現させたHeLa/pPB-Cuo-C7orf26は、コントロール(キュメート(cumate)無補給)のHeLa/pPB-CuO-C7orf26細胞と比較して、一部に生細胞が含まれていたのに対し、大部分が死滅していた(図7B、下のパネル)。 In HeLa / pPB-Cuo-C7orf26, in which C7orf26 was continuously expressed for 5 days by cumate supplementation, the cells were almost alive except for a few dead cells, and the control (without cumate supplementation) It was the same as HeLa / pPB-CuO-C7orf26 cells (Fig. 7B, upper panel). HeLa / pPB-Cuo-C7orf26, in which C7orf26 was continuously expressed for 8 days by cumate supplementation, was partially alive compared to control (cumate-free) HeLa / pPB-CuO-C7orf26 cells. The cells were contained, whereas most were dead (Fig. 7B, lower panel).
 これらの結果から、C7orf26がHeLa/pPB-CuO-C7orf26細胞においてG1停止を誘導し、それが最終的に細胞死を誘導することが示された。 From these results, it was shown that C7orf26 induces G1 arrest in HeLa / pPB-CuO-C7orf26 cells, which ultimately induces cell death.
(2)C7orf26の強制発現による癌細胞の細胞死誘導
 HeLa細胞(子宮癌細胞株)、グリオーマ細胞株251(脳の悪性腫瘍株)にC7orf26遺伝子を導入し強制発現させた。HeLa細胞においてC7orf26を強制発現させると、24時間後(図8a, b;aはC7orf26単独染色、bはDAPIによる核染色とのマージ)にC7orf26(図中、白色部分)は核に集簇し、36時間後(図8c, d)に核はオートファジー(nucleophagy)によって細胞死に至って萎縮することが確認された。グリオーマ細胞株251でも同様に、24時間後(図8e, f;eはC7orf26単独染色、fはDAPIによる核染色とのマージ)にC7orf26(図中、白色部分)は核に高度に集簇し、36時間(図8g)に核はオートファジー(nucleophagy)によって融解した。同時に、細胞質内のミトコンドリア等のオルガネラもオートファジーによって融解し、細胞死に至ることが確認された(図中、破線で囲った部分)。これに対し、C7orf26遺伝子に代わりGFP遺伝子を強制発現させHeLa細胞(コントロール)のミトコンドリア染色によれば、生存している細胞では、ミトコンドリアは綺麗な顆粒として並んでいることが観察された(図8h、白色点)。
(2) Induction of cell death of cancer cells by forced expression of C7orf26 The C7orf26 gene was introduced into HeLa cells (uterine cancer cell line) and glioma cell line 251 (malignant tumor line of the brain) and forcedly expressed. When C7orf26 is forcibly expressed in HeLa cells, C7orf26 (white part in the figure) is collected in the nucleus 24 hours later (Fig. 8a, b; a is C7orf26 single staining, b is merged with nuclear staining by DAPI). After 36 hours (Fig. 8c, d), it was confirmed that the nucleus was atrophied by autophagy leading to cell death. Similarly, in the glioma cell line 251 after 24 hours (Fig. 8e, f; e is C7orf26 single staining, f is merged with nuclear staining by DAPI), C7orf26 (white part in the figure) is highly concentrated in the nucleus. At 36 hours (Fig. 8g), the nuclei were thawed by autophagy. At the same time, it was confirmed that organelles such as mitochondria in the cytoplasm were also thawed by autophagy, leading to cell death (the part surrounded by the broken line in the figure). On the other hand, according to the mitochondrial staining of HeLa cells (control) by forcibly expressing the GFP gene instead of the C7orf26 gene, it was observed that the mitochondria were arranged as beautiful granules in the living cells (Fig. 8h). , White point).
(実施例5)幹細胞の分化促進の確認
(1)ヒトiPS細胞から外胚葉への分化誘導
 C7orf26コード領域を含むpPB-Cuo-C7orf26ベクターを、PiggyBac Cumate Switch Inducible Vector(System Biosciences, LLC#PBQM812A-1)を用いてヒトiPS 409B02細胞株に導入し、ビューロマイシン薬剤選択により、cumate誘導c7orf26発現iPS細胞株を取得した。Stem Fit培地(味の素#AK02N)を使用したフィダーフリー培養により増殖させたキュメート(cumate)誘導c7orf26発現iPS細胞株を、iMatrix-511溶液 (0.5mg/mL PBS ニッピ #892012)でコーティングした6cm 接着培養用ディシュ(BD Falcon)に40000個播種し、24時間培養後、10,000x Cumate Solution(System Biosciences, LLC #PBQM100A-1)を終濃度2xになるように投与した。翌日、細胞をSTEMdiff Trilineage differentiation kit(STEMCELL Technologies #ST-05230)の外胚葉誘導培地に培地交換し、誘導を開始した(Day 0)。その後、毎日培地交換を行い、7日目(Day 7)に細胞を回収して固定した。
(Example 5) Confirmation of promotion of stem cell differentiation (1) Induction of differentiation from human iPS cells to ectoderm A pPB-Cuo-C7orf26 vector containing a C7orf26 coding region was used as a PiggyBac Cumate Switch Inducible Vector (System Biosciences, LLC # PBQM812A-). It was introduced into a human iPS 409B02 cell line using 1), and a cumate-induced c7orf26-expressing iPS cell line was obtained by buromycin drug selection. 6 cm adhesive culture in which a cumate-induced c7orf26-expressing iPS cell line grown by feeder-free culture using Stem Fit medium (Ajinomoto # AK02N) was coated with iMatrix-511 solution (0.5 mg / mL PBS Nippi # 892012). 40,000 seeds were sown in a BD Falcon, and after culturing for 24 hours, 10,000x Cumate Solution (System Biosciences, LLC # PBQM100A-1) was administered to a final concentration of 2x. The next day, the cells were exchanged with the ectoderm induction medium of the STEM diff Trilineage differentiation kit (STEMCELL Technologies # ST-05230), and induction was started (Day 0). Then, the medium was changed every day, and the cells were collected and fixed on the 7th day (Day 7).
 キュメート(cumate)投与5日目 (分化誘導開始から4日目)に、培養細胞を回収し、C7orf26、p53、及びp21遺伝子の発現量を定量PCRで解析した。結果は、キュメート(cumate)無添加培地で分化誘導した細胞(Cum-)における各遺伝子発現量を1とし、キュメート(cumate)添加培地で分化誘導した細胞(Cum+)の各遺伝子の相対発現量を示した。キュメート(cumate)投与によるC7orf26の発現量の増加に対応して、p53及びp21の発現量も増加したが、Ki67の発現量は減少した(図9A)。本結果は、前述のHela細胞における遺伝子発現プロフィールと同じであった。 On the 5th day after administration of cumate (4th day from the start of differentiation induction), cultured cells were collected and the expression levels of C7orf26, p53, and p21 genes were analyzed by quantitative PCR. As a result, the expression level of each gene in the cells (Cum-) induced to differentiate in the cumate-free medium was set to 1, and the relative expression level of each gene in the cells (Cum +) induced to differentiate in the medium added with cumate was set to 1. Indicated. The expression levels of p53 and p21 increased in response to the increase in the expression level of C7orf26 by administration of cumate, but the expression level of Ki67 decreased (Fig. 9A). This result was the same as the gene expression profile in Hela cells described above.
 分化状態はフローサイトメトリーにより評価した。サンプル調製はHuman Pluripotent Stem Cell Transcription Factor Analysis Kit (BD #560589)を使用して、付属のプロトコルに従って行った。別途、外胚葉マーカー解析用として、Alexa Fluor(登録商標)647 Mouse Anti-Human Pax6 (BD Biosciences # 562249)を購入して染色に使用した。測定機器はAttune Acoustic Focusing Cytometer (Thermo Fisher Scientific)を使用し、データ解析は付属の解析ソフトを使用した。 The state of differentiation was evaluated by flow cytometry. Sample preparation was performed using the Human Pluripotent Stem Cell Transcription Factor Analysis Kit (BD # 560589) according to the attached protocol. Separately, Alexa Fluor (registered trademark) 647 Mouse Anti-Human Pax6 (BD Biosciences # 562249) was purchased for ectoderm marker analysis and used for staining. Attune Acoustic Focusing Cytometer (Thermo Fisher Scientific) was used as the measuring device, and the attached analysis software was used for data analysis.
 キュメート(cumate)無添加培地で分化誘導した細胞群(Cum-)に比べ、キュメート(cumate)添加培地で分化誘導した細胞群(Cum+)では、細胞数のピークが高い蛍光強度において現れ、外胚葉に分化した細胞数が増加した。この結果より、C7orf26の発現上昇により細胞周期がG0期で停止したiPS細胞が、G1期に移行して外胚葉への分化が亢進することが示された。また、分化誘導開始から7日目に、培養細胞を回収し、C7orf26及びPax6、Pax3、Sox1遺伝子の発現量を定量PCRで解析したところ、キュメート(cumate)投与によるC7orf26の発現量の増加に対応して、Pax6、Pax3、Sox1の発現量も増加した(図9C)。 Compared to the cell group (Cum-) that was induced to differentiate in the medium without cumate, the cell group (Cum +) that was induced to differentiate in the medium without cumate showed a peak in the number of cells at high fluorescence intensity, and the ectoderm appeared. The number of differentiated cells increased. From this result, it was shown that iPS cells whose cell cycle was arrested in the G0 phase due to increased expression of C7orf26 transitioned to the G1 phase and differentiated into ectoderm. In addition, on the 7th day from the start of differentiation induction, cultured cells were collected and the expression levels of C7orf26 and Pax6, Pax3, and Sox1 genes were analyzed by quantitative PCR. As a result, the expression levels of Pax6, Pax3, and Sox1 also increased (Fig. 9C).
(2)ヒトiPS細胞から網膜神経節細胞及び脳への分化誘導
 C7orf26コード領域を含むpPB-Cuo-C7orf26ベクターを、PiggyBac Cumate Switch Inducible Vector(System Biosciences, LLC#PBQM812A-1)を用いてヒトiPS 409B02細胞株に導入し、ビューロマイシン薬剤選択により、キュメート(cumate)誘導C7orf26発現iPS細胞株を取得した。Stem Fit培地(味の素#AK02N)を使用したフィダーフリー培養により増殖させたキュメート(cumate)誘導C7orf26発現iPS細胞株を使用して、文献(Tanaka T et al., Sci Rep. 2015 Feb 10;5:834410.103)の方法に従い、以下のようにして網膜神経節分化誘導を実施した。非接着処理を施した96ウェルプレートに、市販のKSR20%添加した無血清培地(G-MEM、0.1mM 2-メルカプトエタノール、0.1mM非必須アミノ酸添加物、1mM ピルビン酸ナトリウム、20μM Y-27636、3μM IWR-1e)に懸濁した上記iPS細胞を1ウェル当たり9000個播種した。播種から2日目にマトリゲルを終濃度0.5%になるように添加し、12日目に先の培地組成でIWR-1eを除いて、FBS(終濃度1%)を新たに加えた培地に交換した。15日目にCHIR99021(終濃度3μM)、SAG(終濃度100nM)を加えて3日間培養した。18日目に無血清網膜培養培地(組成: GlutaMAX入りD-MEM/F12、N2サプリメント)に交換し、6日間培養後、24日目に血清網膜成熟培地(組成: GlutaMAX入りD-MEM/F12、N2サプリメント、1%FBS、0.5 μMレチノイン酸)に切り替え、その後3日間培養を継続した。27日目に、ポリ-D-リシンとラミニンをコーティングしたプレートに細胞を移して網膜神経節細胞への分化誘導を開始すると同時に10,000x Cumate Solution(System Biosciences, LLC #PBQM100A-1)を終濃度2xになるよう投与し、cumate存在下で培養した。分化誘導開始から7日目にコロニーを回収してRNAを抽出した。
(2) Induction of differentiation of human iPS cells into retinal ganglion cells and brain A pPB-Cuo-C7orf26 vector containing the C7orf26 coding region was used in human iPS using the PiggyBac Cumate Switch Inducible Vector (System Biosciences, LLC # PBQM812A-1). The iPS cell line was introduced into a 409B02 cell line, and a cumate-induced C7orf26-expressing iPS cell line was obtained by buromycin drug selection. Using iPS cell lines expressing cumate-induced C7orf26 grown by feeder-free culture in Stem Fit medium (Ajinomoto # AK02N), literature (Tanaka T et al., Sci Rep. 2015 Feb 10; 5: According to the method of 834410.103), induction of retinal ganglion differentiation was carried out as follows. Commercially available serum-free medium containing 20% KSR (G-MEM, 0.1 mM 2-mercaptoethanol, 0.1 mM non-essential amino acid additive, 1 mM sodium pyruvate, 20 μM Y-27636,) on a non-adhesive 96-well plate. The above iPS cells suspended in 3 μM IWR-1e) were seeded at 9,000 per well. On the 2nd day after sowing, Matrigel was added to a final concentration of 0.5%, and on the 12th day, IWR-1e was removed from the previous medium composition and replaced with a medium to which FBS (final concentration 1%) was newly added. did. On the 15th day, CHIR99021 (final concentration 3 μM) and SAG (final concentration 100 nM) were added and cultured for 3 days. Replaced with serum-free retinal culture medium (composition: D-MEM / F12 with GlutaMAX, N2 supplement) on the 18th day, and after culturing for 6 days, serum retinal maturation medium (composition: D-MEM / F12 with GlutaMAX) on the 24th day. , N2 supplement, 1% FBS, 0.5 μM retinoic acid), and then the culture was continued for 3 days. On day 27, cells were transferred to a plate coated with poly-D-lysine and laminin to initiate differentiation into retinal ganglion cells, and at the same time, a final concentration of 10,000x Cumate Solution (System Biosciences, LLC # PBQM100A-1) was applied. It was administered to 2x and cultured in the presence of cumate. On the 7th day from the start of differentiation induction, colonies were collected and RNA was extracted.
 このRNAを鋳型に定量PCR法で網膜神経節マーカー(Brn3b、Math5)の発現レベルを評価した。結果は、キュメート(cumate)無添加培地で分化誘導した細胞(Cum-)における各遺伝子発現量を1とし、キュメート(cumate)添加培地で分化誘導した細胞(Cum+)の各遺伝子の相対発現量を示した。キュメート(cumate)投与によるC7orf26の発現量の増加に対応して、p53及びp21の発現量も増加したが、Ki67の発現量は減少した(図10A)。また、キュメート(cumate)無添加培地で分化誘導した細胞(Cum-)に比べ、キュメート(cumate)添加培地で分化誘導した細胞(Cum+)では、C7orf26が上昇に伴い、網膜神経節細胞の分化に特異的なBrn3b及びMath5、特にMath5の発現量が増加し、網膜神経節細胞への分化が亢進していることが確認できた(図10B)。 Using this RNA as a template, the expression level of retinal ganglion markers (Brn3b, Math5) was evaluated by quantitative PCR. As a result, the expression level of each gene in the cells (Cum-) induced to differentiate in the cumate-free medium was set to 1, and the relative expression level of each gene in the cells (Cum +) induced to differentiate in the medium added with cumate was set to 1. Indicated. The expression levels of p53 and p21 increased in response to the increase in the expression level of C7orf26 by administration of cumate, but the expression level of Ki67 decreased (Fig. 10A). In addition, compared to cells (Cum-) that were induced to differentiate in a medium without cumate, cells (Cum +) that were induced to differentiate in a medium without cumate increased C7orf26, resulting in differentiation of retinal ganglion cells. It was confirmed that the expression levels of specific Brn3b and Math5, especially Math5, were increased, and the differentiation into retinal ganglion cells was enhanced (Fig. 10B).
 上記の分化したコロニーの中心を回収して同様にしてRNA回収し、このRNAを鋳型に定量PCR法で脳マーカー(Otx2、En1)の発現レベルを評価した。キュメート(cumate)無添加培地で分化誘導した細胞(Cum-)に比べ、キュメート(cumate)添加培地で分化誘導した細胞(Cum+)では、C7orf26が上昇に伴い、脳の分化に特異的なOtx2、En1の発現量が増加し、脳への分化が亢進していることが確認できた(図10C)。 The center of the above differentiated colonies was recovered and RNA was recovered in the same manner, and the expression level of brain markers (Otx2, En1) was evaluated by a quantitative PCR method using this RNA as a template. Compared to cells (Cum-) that were induced to differentiate in a medium without cumate, cells (Cum +) that were induced to differentiate in a medium without cumate increased C7orf26, and Otx2, which is specific to brain differentiation, It was confirmed that the expression level of En1 was increased and the differentiation into the brain was enhanced (Fig. 10C).
(3)ヒトiPS細胞から中胚葉への分化誘導
 Stem Fit培地(味の素#AK02N)を使用したフィダーフリー培養により増殖させたCumate誘導C7orf26発現iPS細胞株をiMatrix-511溶液 (0.5mg/mL PBS  ニッピ #892012)でコーティングした24ウェルマルチプレート (BD Falcon)に15000個の細胞を播種し、3日間培養後、STEMdiff Trilineage differentiation kit(STEMCELL Technologies #ST-05230)の中胚葉誘導培地に培地交換し、誘導を開始した(Day 0)。また、同時に10,000x Cumate Solution(System Biosciences, LLC #PBQM100A-1)を終濃度5 xになるよう投与した。その後、毎日培地交換を行い、5日目(Day5)に細胞を回収し、RNA抽出を行った。定量PCRにより、中胚葉マーカーTBXTの発現を解析し、分化の進行を確認した。また同様にFACSを行い、中胚葉マーカーTBXTによって中胚葉に分化した細胞数を測定した。キュメート(cumate)無添加培地で分化誘導した細胞群(Cum-)に比べ、キュメート(cumate)添加培地で分化誘導した細胞群(Cum+)では、細胞数のピークが高い蛍光強度において現れ、中胚葉に分化した細胞数が増加した(図11A)。また、キュメート(cumate)無添加培地で分化誘導した細胞(Cum-)に比べ、キュメート(cumate)添加培地で分化誘導した細胞(Cum+)では、C7orf26が上昇に伴い、中胚葉への分化に特異的なTBXTの発現量が増加し、中胚葉への分化が亢進していることが確認できた(図11B)。
(3) Induction of differentiation of human iPS cells into mesoderm Cumate-induced C7orf26-expressing iPS cell lines grown by feeder-free culture using Stem Fit medium (Ajinomoto # AK02N) in iMatrix-511 solution (0.5 mg / mL PBS nippi) 15,000 cells were seeded on a 24-well multiplate (BD Falcon) coated with # 892012), cultured for 3 days, and then replaced with a mesoderm-inducing medium of STEMdiff Trilineage differentiation kit (STEMCELL Technologies # ST-05230). Induction was started (Day 0). At the same time, 10,000 x Cumate Solution (System Biosciences, LLC # PBQM100A-1) was administered to a final concentration of 5 x. After that, the medium was changed every day, and on the 5th day (Day 5), the cells were collected and RNA was extracted. The expression of the mesoderm marker TBXT was analyzed by quantitative PCR, and the progress of differentiation was confirmed. In addition, FACS was performed in the same manner, and the number of cells differentiated into mesoderm was measured by the mesoderm marker TBXT. Compared to the cell group (Cum-) that was induced to differentiate in the medium without cumate, the cell group (Cum +) that was induced to differentiate in the medium without cumate showed a peak in the number of cells at high fluorescence intensity, and the mesoderm. The number of cells differentiated into mesoderm increased (Fig. 11A). In addition, compared to cells (Cum-) that were induced to differentiate in a medium without cumate, cells (Cum +) that were induced to differentiate in a medium without cumate were specific to differentiation into mesoderm as C7orf26 increased. It was confirmed that the expression level of TBXT was increased and the differentiation into mesoderm was enhanced (Fig. 11B).
(4)ヒトiPS細胞から内胚葉への分化誘導
 Stem Fit培地(味の素#AK02N)を使用したフィダーフリー培養により増殖させたCumate誘導C7orf26発現iPS細胞株をiMatrix-511溶液 (0.5mg/mL PBS  ニッピ #892012)でコーティングした24ウェルマルチプレート (BD Falcon)に15000個の細胞を播種し、3日間培養後、STEMdiff Trilineage differentiation kit(STEMCELL Technologies #ST-05230)の内胚葉誘導培地に培地交換し、誘導を開始した(Day 0)。また、同時に10,000x Cumate Solution(System Biosciences, LLC #PBQM100A-1)を終濃度5 xになるよう投与した。その後、毎日培地交換を行い、5日目(Day5)に細胞を回収し、RNA抽出を行った。定量PCRにより、内胚葉マーカーSox17の発現を解析し、分化の進行を確認した。また同様にFACSを行い、内胚葉マーカーSox17によって内胚葉に分化した細胞数を測定した。キュメート(cumate)無添加培地で分化誘導した細胞群(Cum-)に比べ、キュメート(cumate)添加培地で分化誘導した細胞群(Cum+)では、細胞数のピークが高い蛍光強度において現れ、内胚葉に分化した細胞数が増加した(図12A)。また、キュメート(cumate)無添加培地で分化誘導した細胞(Cum-)に比べ、キュメート(cumate)添加培地で分化誘導した細胞(Cum+)では、C7orf26が上昇に伴い、内胚葉への分化に特異的なSox17の発現量が増加し、内胚葉への分化が亢進していることが確認できた(図12B)。
(4) Induction of differentiation of human iPS cells into endoderm A Cumate-induced C7orf26-expressing iPS cell line grown by feeder-free culture using Stem Fit medium (Ajinomoto # AK02N) was used in iMatrix-511 solution (0.5 mg / mL PBS nippi). 15,000 cells were seeded on a 24-well multiplate (BD Falcon) coated with # 892012), cultured for 3 days, and then replaced with endoderm induction medium of STEMdiff Trilineage differentiation kit (STEMCELL Technologies # ST-05230). Induction was started (Day 0). At the same time, 10,000 x Cumate Solution (System Biosciences, LLC # PBQM100A-1) was administered to a final concentration of 5 x. After that, the medium was changed every day, and on the 5th day (Day 5), the cells were collected and RNA was extracted. The expression of the endoblast marker Sox17 was analyzed by quantitative PCR, and the progress of differentiation was confirmed. FACS was also performed in the same manner, and the number of cells differentiated into endoderm was measured by the endoderm marker Sox17. Compared to the cell group (Cum-) that was induced to differentiate in the medium without added cumate, the cell group (Cum +) that was induced to differentiate in the medium added with cumate showed a peak in the number of cells at a higher fluorescence intensity and endoderm. The number of cells differentiated into the medium increased (Fig. 12A). In addition, compared to cells (Cum-) that were induced to differentiate in a medium without cumate, cells (Cum +) that were induced to differentiate in a medium without cumate were specific to differentiation into endoderm as C7orf26 increased. It was confirmed that the expression level of Sox17 was increased and the differentiation into endoderm was enhanced (Fig. 12B).
 本発明は、細胞周期制御による癌治療用医薬、再生医療・細胞医療材料の製造分野において利用できる。
 本明細書で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書に組み入れるものとする。
INDUSTRIAL APPLICABILITY The present invention can be used in the fields of manufacturing pharmaceuticals for cancer treatment by controlling the cell cycle and materials for regenerative medicine and cell medicine.
All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (7)

  1.  以下の(A)~(C)のいずれかのタンパク質を含む、細胞周期のG1期初期制御剤。
    (A)配列番号2に示すアミノ酸配列からなるタンパク質;
    (B)配列番号2に示すアミノ酸配列において1若しくは数個のアミノ酸が付加、欠失、又は置換したアミノ酸配列からなり、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質;
    (C)配列番号2に示すアミノ酸配列に対して90%以上の配列同一性を有するアミノ酸配列からなり、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質。
    A G1 phase initial regulator of the cell cycle containing any of the following proteins (A) to (C).
    (A) A protein consisting of the amino acid sequence shown in SEQ ID NO: 2;
    (B) The amino acid sequence shown in SEQ ID NO: 2 consists of an amino acid sequence in which one or several amino acids are added, deleted, or substituted, and the cell cycle is stopped in the early G1 phase, and from the early G1 phase to the G0 phase. Protein with activity to transfer;
    (C) An activity consisting of an amino acid sequence having 90% or more sequence identity with respect to the amino acid sequence shown in SEQ ID NO: 2, arresting the cell cycle in the early G1 phase, and shifting from the early G1 phase to the G0 phase. Protein to have.
  2.  以下の(D)~(F)のいずれかの遺伝子を含む、細胞周期のG1期初期制御剤。
    (D)配列番号1に示す塩基配列からなるDNAを含む遺伝子;
    (E)配列番号1に示す塩基配列に対して90%以上の配列同一性を有する塩基配列からなり、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質をコードするDNAを含む遺伝子;
    (F)配列番号1に示す塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質をコードするDNAを含む遺伝子。
    A G1 phase initial regulator of the cell cycle containing any of the following genes (D) to (F).
    (D) A gene containing DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1;
    (E) An activity consisting of a nucleotide sequence having 90% or more sequence identity with respect to the nucleotide sequence shown in SEQ ID NO: 1, arresting the cell cycle in the early G1 phase, and shifting from the early G1 phase to the G0 phase. Genes containing DNA encoding the proteins they have;
    (F) Hybridizes under stringent conditions with DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1, arrests the cell cycle in the early G1 phase, and shifts from the early G1 phase to the G0 phase. A gene that contains DNA that encodes a protein that has the activity to cause it.
  3.  前記遺伝子がベクターに挿入されている、請求項2に記載の細胞周期のG1期初期制御剤。 The G1 phase initial regulator of the cell cycle according to claim 2, wherein the gene is inserted into a vector.
  4.  請求項1~3のいずれか1項に記載の細胞周期のG1期初期制御剤を含む、癌治療用医薬。 A drug for treating cancer, which comprises the G1 phase initial control agent for the cell cycle according to any one of claims 1 to 3.
  5.  請求項1~3のいずれか1項に記載の細胞周期のG1期初期制御剤を含む、未分化細胞の分化促進剤。 An agent for promoting differentiation of undifferentiated cells, which comprises the G1 phase initial regulator of the cell cycle according to any one of claims 1 to 3.
  6.  前記未分化細胞が、幹細胞又は前駆細胞である、請求項5に記載の未分化細胞の分化促進剤。 The differentiation-promoting agent for undifferentiated cells according to claim 5, wherein the undifferentiated cells are stem cells or progenitor cells.
  7.  以下の(D)~(F)のいずれかの遺伝子を未分化細胞において発現する工程を含む、未分化細胞の分化促進方法。
    (D)配列番号1に示す塩基配列からなるDNAを含む遺伝子;
    (E)配列番号1に示す塩基配列に対して90%以上の配列同一性を有する塩基配列からなり、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質をコードするDNAを含む遺伝子;
    (F)配列番号1に示す塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ細胞周期をG1期初期で停止させ、かつG1期初期からG0期へ移行させる活性を有するタンパク質をコードするDNAを含む遺伝子。
    A method for promoting differentiation of undifferentiated cells, which comprises the step of expressing any of the following genes (D) to (F) in undifferentiated cells.
    (D) A gene containing DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1;
    (E) An activity consisting of a nucleotide sequence having 90% or more sequence identity with respect to the nucleotide sequence shown in SEQ ID NO: 1, arresting the cell cycle in the early G1 phase, and shifting from the early G1 phase to the G0 phase. Genes containing DNA encoding the proteins they have;
    (F) Hybridizes under stringent conditions with DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 1, arrests the cell cycle in the early G1 phase, and shifts from the early G1 phase to the G0 phase. A gene that contains DNA that encodes a protein that has the activity to cause it.
PCT/JP2021/004293 2020-02-07 2021-02-05 Control agent for initial stage of g1 phase of cell cycle WO2021157689A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021575880A JPWO2021157689A1 (en) 2020-02-07 2021-02-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020020019 2020-02-07
JP2020-020019 2020-02-07

Publications (1)

Publication Number Publication Date
WO2021157689A1 true WO2021157689A1 (en) 2021-08-12

Family

ID=77200242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004293 WO2021157689A1 (en) 2020-02-07 2021-02-05 Control agent for initial stage of g1 phase of cell cycle

Country Status (2)

Country Link
JP (1) JPWO2021157689A1 (en)
WO (1) WO2021157689A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088388A (en) * 2001-09-14 2003-03-25 Herikkusu Kenkyusho:Kk NEW FULL-LENGTH cDNA
US20100190656A1 (en) * 2008-08-08 2010-07-29 Integrated Diagnostics, Inc. Breast Cancer Specific Markers and Methods of Use
JP2014513138A (en) * 2011-05-04 2014-05-29 インテリカイン, エルエルシー Combined pharmaceutical composition and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088388A (en) * 2001-09-14 2003-03-25 Herikkusu Kenkyusho:Kk NEW FULL-LENGTH cDNA
US20100190656A1 (en) * 2008-08-08 2010-07-29 Integrated Diagnostics, Inc. Breast Cancer Specific Markers and Methods of Use
JP2014513138A (en) * 2011-05-04 2014-05-29 インテリカイン, エルエルシー Combined pharmaceutical composition and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE UniProtKB [online] 1 December 2001 (2001-12-01), "RecName: Full=Uncharacterized protein C7orf26", XP055845880, retrieved from UniProt Database accession no. Q96N11 *
PARK, SUNG-HOON ET AL.: "Investigating the genetic variations of antiphospholipid syndrome by high-throughput exome sequencing", 2016 ACR/ARHP ANNUAL MEETING, 2016, pages 1 - 2, XP055845870 *

Also Published As

Publication number Publication date
JPWO2021157689A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
Braga et al. Testosterone inhibits transforming growth factor-β signaling during myogenic differentiation and proliferation of mouse satellite cells: potential role of follistatin in mediating testosterone action
JP7501824B2 (en) Methods for inducing cells into a more undifferentiated state
JP7471084B2 (en) Stem cell derived astrocytes, methods of making and using
US20200009197A1 (en) Compositions and methods for the reprogramming of cells into cardiomyocytes
CN111094548A (en) Methods of increasing cone or rod cells based on dorsalized or ventrolateral signaling
JP6885598B2 (en) Method for promoting differentiation of pluripotent stem cells by reducing undifferentiation
Sautchuk et al. Transcriptional regulation of cyclophilin D by BMP/Smad signaling and its role in osteogenic differentiation
Liu et al. A reciprocal antagonism between miR‐376c and TGF‐β signaling regulates neural differentiation of human pluripotent stem cells
US20210395692A1 (en) Method For Reducing Differentiation Resistance Of Pluripotent Stem Cells
Garcia-Tuñon et al. Association of Rex-1 to target genes supports its interaction with Polycomb function
Sun et al. HIF2α induces cardiomyogenesis via Wnt/β-catenin signaling in mouse embryonic stem cells
CA2929990A1 (en) Cell differentiation
AU2013295811A1 (en) NME variant species expression and suppression
WO2021157689A1 (en) Control agent for initial stage of g1 phase of cell cycle
Wang et al. Oligodendrocyte differentiation from human neural stem cells: a novel role for c-Src
Saeki et al. Critical roles of FGF, RA, and WNT signalling in the development of the human otic placode and subsequent lineages in a dish
KR101647030B1 (en) Compositions comprising a mitofusin inhibitor for promoting cell reprogramming and the use thereof
AU2020282343A1 (en) Compositions and methods for cellular reprogramming
de Souza Martins et al. Dynamic expression of synemin isoforms in mouse embryonic stem cells and neural derivatives
Sato et al. The scaffold protein JSAP1 regulates proliferation and differentiation of cerebellar granule cell precursors by modulating JNK signaling
KR101436127B1 (en) Cancer Stem Cell and The Method of Preparing the Same
Cui et al. Overexpression of suppressors of cytokine signaling 1 regulate the proliferation and differentiation of rat-derived neural stem cells
JP7140400B2 (en) Methods for obtaining artificial neuromuscular junctions from pluripotent stem cells
AU2017313847A1 (en) Methods of differentiating stem cells into endoderm
Lau Role of Mouse PinX1 in Maintaining the Characteristics of Mouse Embryonic Stem Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575880

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750072

Country of ref document: EP

Kind code of ref document: A1