WO2021157345A1 - Water pressure fluctuation measuring system and water pressure fluctuation measuring method - Google Patents

Water pressure fluctuation measuring system and water pressure fluctuation measuring method Download PDF

Info

Publication number
WO2021157345A1
WO2021157345A1 PCT/JP2021/001729 JP2021001729W WO2021157345A1 WO 2021157345 A1 WO2021157345 A1 WO 2021157345A1 JP 2021001729 W JP2021001729 W JP 2021001729W WO 2021157345 A1 WO2021157345 A1 WO 2021157345A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
water pressure
cable
pressure fluctuation
Prior art date
Application number
PCT/JP2021/001729
Other languages
French (fr)
Japanese (ja)
Inventor
矢野 隆
栄太郎 三隅
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/795,966 priority Critical patent/US20230073833A1/en
Priority to JP2021575696A priority patent/JP7338710B2/en
Publication of WO2021157345A1 publication Critical patent/WO2021157345A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • G01L11/025Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means using a pressure-sensitive optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • G01L11/02Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00 by optical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the present invention relates to a water pressure fluctuation measuring system and a water pressure fluctuation measuring method.
  • a technique called a wire sensor in which a wire that conducts an electric signal is laid on the ground, and a broken wire is detected as an abnormality to monitor a landslide.
  • a technique called an optical wire sensor in which the conductive wire is replaced with an optical fiber cable to perform the same monitoring.
  • Patent Documents 1 to 3 a mechanism for automatically feeding / winding the cable according to the expansion and contraction of the ground is provided at the end point of the optical fiber cable, and a minute loss is given to the optical fiber at each monitoring point.
  • the loss giving point is fixed to the ground, and when the optical fiber cable moves with respect to the ground, the loss giving point moves.
  • This loss addition point is detected by OTDR (Optical Time Domain Reflectometry), which will be described later.
  • FBG Fiber Bragg Grating
  • This FBG can also be provided at various points in the optical fiber cable in the same manner as the loss imparting point described above.
  • the FBG is housed in a package in which the period of the diffraction grating changes due to an external influence (for example, distortion or temperature)
  • the reflection wavelength of the FBG changes according to the environment of the installation location.
  • OTDR As a method for checking the health of an optical fiber transmission line, a technique called OTDR is known in which pulsed light is incident on an optical fiber and the power of the reflected and returned light is measured together with the time until the light returns. .. Since weak reflected light is generated in the optical fiber due to Rayleigh scattering, it is observed as a locus that the reflected light is weakened under the influence of the transmission loss as the pulsed light propagates in the optical fiber. At this time, if the optical fiber has a reflection point, a bending loss, or the like, the power of the reflected light rises or falls at a specific place on the locus, so that the place can be identified. As described above, in the OTDR, the place where the power fluctuation occurs can be distinguished by measuring the time until the reflected light returns (Patent Document 4).
  • a method of applying an OTDR to a configuration in which a plurality of sensor elements are connected to the tip of one optical fiber is also generally used.
  • an optical wire sensor when a plurality of sensor elements whose installation location conditions are reflected in bending loss are provided, the loss generated at each installation location should be monitored separately for each location by observing the OTDR trajectory. Can be done.
  • a technique of using an FBG as a reflecting element in an OTDR is also used.
  • the OTDR used for such multipoint sensing is sometimes referred to as an interrogator.
  • Patent Documents 6 and 7 a technique for monitoring the soundness of an optical amplification repeater by inserting a component that causes partial reflection in the middle of an optical fiber transmission line is known.
  • a technique for identifying a location in combination with an OTDR is also disclosed.
  • there are also known techniques for detecting crustal movements combining GPS and acoustic ranging Patent Document 8 and Non-Patent Document 1), and installing an optical transmitter / receiver for propagating light for ranging into water on the bottom of the water. (Patent Document 9).
  • Non-Patent Document 2 a technique for detecting on land how the submarine cable itself changes under the influence of water pressure is also disclosed.
  • Keiichi Tadokoro "Observation of Seafloor Crustal Movement by GPS / Acoustic Coupling Method", Measurement and Control, Society of Instrument and Control Engineers, June 2014, Vol. 53, No. 6, pp. 473-476 Ichiro Isozaki et al., "Deep Sea Pressure Measurement and Open Ocean Tide Analysis Using It", Meteorological Research Institute Research Report, September 1980, Vol. 31, No. 2, pp. 87-96.
  • the above technology assumes the detection of sudden changes in the ground such as landslides and slope failures, and reflects minute and slow movements of the ground such as crustal movements in changes in the length of optical fibers. It cannot be detected by letting it.
  • Strain sensors such as FBG strain sensors, are used to monitor local strain, such as monitoring strain in buildings such as bridges and structures such as aircraft, while observing long baseline lengths. , It is not suitable for the application of integrating and detecting the expansion and contraction of the ground in a large range such as crustal movement.
  • the above-mentioned OTDR is generally used for measuring the entire length of an optical fiber cable, and it is not possible to monitor the expansion and contraction of the cable in the middle.
  • the above-mentioned method for detecting the offshore tide level and tsunami condition detects the effect of changes in water pressure on the submarine cable with a long optical interferometer, and detects changes in water pressure for each section of the submarine cable.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to detect fluctuations in water pressure.
  • the water pressure fluctuation measuring system includes a first optical fiber, and a cable provided on the ground or in the ground of the sea floor so that the first optical fiber expands and contracts according to the fluctuation of water pressure.
  • An optical output unit that outputs monitoring light to the first optical fiber, a partial reflection unit that is provided on the path of the first optical fiber in the cable and partially reflects the monitoring light, and the portion. Based on the reciprocating propagation time of the light receiving unit that receives the reflected light reflected by the reflecting unit and the received reflected light, the length of the first optical fiber to the partial reflecting unit is measured, and the length thereof is connected. It has a calculation unit that monitors time changes.
  • a cable including a first optical fiber having a partial reflection portion that partially reflects the monitoring light is provided on the path, and the first optical fiber is water pressure. It is provided on the ground or in the ground of the sea floor so as to expand and contract with fluctuations, the monitoring light is output to the first optical fiber, the reflected light reflected by the partial reflection portion is received, and the received reflected light is received.
  • the length of the first optical fiber up to the partial reflection portion is measured based on the reciprocating propagation time of the above, and the change over time is monitored.
  • FIG. It is a figure which shows typically the structure of the surveying system which concerns on Embodiment 1.
  • FIG. It is a figure which shows typically the structural example of the partial reflection part.
  • FIG. shows an example of the acquired OTDR waveform.
  • FIG. It is a figure which magnified the rise of the peak on the 1st and 2nd measurement days at the point 1 where a partial reflection part was installed and the point 2 where a partial reflection part was installed.
  • FIG. It is a figure which shows the example of the fiber length from the point 0 to the point 4 observed on the 1st and 2nd measurement days by the surveying system which concerns on Embodiment 2.
  • FIG. It is a figure which shows the example of the OTDR waveform when the reflectance of a partial reflection part is the same. It is a figure which shows the example of the OTDR waveform when the reflectance of a partial reflection part is increased as the distance from the OTDR apparatus increases.
  • FIG. It is a figure which shows the OTDR waveform obtained by the surveying system which concerns on Embodiment 4.
  • FIG. It is a figure which shows the example of the laying path of this surveying system when the optical fiber cable cannot branch. It is a figure which shows the example of the laying path of this surveying system when an optical fiber cable can be branched. It is a figure which shows typically the structure of the surveying system which concerns on Embodiment 5. It is a figure which shows typically the structure of the modification of the surveying system which concerns on Embodiment 5. It is a figure which shows typically the structure of the surveying system which concerns on Embodiment 6. It is a figure which shows the monitoring result of the optical fiber by the surveying system which concerns on Embodiment 6.
  • Embodiment 1 The surveying system 100 according to the first embodiment will be described.
  • the surveying system 100 is configured to detect the movement of the ground by applying an OTDR (Optical Time Domain Reflectometry) to an optical fiber laid on the ground.
  • FIG. 1 schematically shows the configuration of the surveying system 100 according to the first embodiment.
  • the surveying system 100 includes an OTDR device 1, an optical fiber cable F1, and a partial reflection unit R11.
  • the optical fiber cable F1 is laid so that an appropriate tension acts so as to cross the seabed in a range where the movement of the ground 110 is to be monitored, for example.
  • a partial reflection portion R11 is inserted at a point where the movement of the ground 110 in the observation area is monitored.
  • One end of the optical fiber cable F1 is connected to an OTDR device 1 installed in a land station or the like.
  • the partial reflection unit R11 is configured as a partial reflection unit that reflects a part of the incident light.
  • the configuration of the partial reflection portion R11 will be described with reference to FIG.
  • This is a configuration widely used as a method for realizing a partial reflection portion.
  • the light L is incident from the left direction in the figure, and a part of the light L is reflected to become the reflected light RL and returns to the left direction.
  • the passing light PL which is the majority of the light L not reflected by the partial reflecting portion R11, passes through the partial reflecting portion R11 and exits to the right.
  • the incident light L is demultiplexed by the optical coupler 2 into the passing light PL and the light that is the source of the reflected light.
  • the light that is the source of the reflected light passes through the light attenuation element 3, reaches the total reflection element 4 at the end, is totally reflected, and is combined by the optical coupler 2 through the original path, and becomes the reflected light RL. Is transmitted toward the light source side.
  • the total reflection element 4 a ferrule or the like in which gold is vapor-deposited on the end face can be used.
  • the reflectance and transmittance in this configuration are first roughly determined by the branching ratio of the optical coupler 2. For example, if the branch ratio of the optical coupler is 80:20, the transmittance is attenuated by 80%, that is, about 1 dB, and the reflected light RL is attenuated by at least 4%, that is, about 14 dB because it passes through the optical coupler twice. As will be described later, since it is assumed that a plurality of partial reflection portions are provided on the optical fiber cable, the balance between transmission and reflection is ensured by appropriately selecting the branch ratio of the optical coupler. Next, by adjusting the amount of attenuation of the light attenuation element 3, it can be adjusted in the direction of lowering the reflectance.
  • the optical attenuation element 3 can be realized by fusion-bonding (splicing) the optical fibers with each other by slightly shifting the central axes of the two optical fibers, individual adjustment is easy. With these adjustment parameters, the reflectance of each partial reflection portion can be made different. In this configuration, since it acts as a partial reflection portion in only one direction, it is not necessary to consider the influence of multiple reflections.
  • various forms such as an FBG having a low reflectance and a module configuration using a 2-core ferrule are known as the partial reflecting portion, and are applicable.
  • the OTDR device 1 can execute an OTDR that outputs pulsed light, which is monitoring light, to the optical fiber F1 (first optical fiber), monitors the return light due to Rayleigh scattering, and acquires the trajectory of the reflected light power. It is configured as a device.
  • the OTDR device 1 includes an optical output unit 1A, an optical reception unit 1B, and a calculation unit 1C.
  • the optical output unit 1A outputs pulsed light to the optical fiber F1.
  • the optical receiver 1B converts the return light from the optical fiber F1 into an electric signal.
  • the calculation unit 1C monitors the electric signal output from the light reception unit 1B, calculates and processes the locus drawn by the power of the return light, detects the position of the partial reflection unit on the fiber, and records it.
  • the trajectory drawn by the power of the return light is referred to as an OTDR waveform.
  • the calculation unit 1C can be understood as measuring the length of the optical fiber F1 up to the partial reflection unit R11 based on the reciprocating propagation time of the return light (reflected light) and monitoring the change over time. ..
  • the monitoring of the change in the length of the optical fiber F1 described as being performed by the arithmetic unit 1C may be performed by a control unit or the like provided by an external device provided outside the OTDR device 1. That is, the calculation unit 1C measures the length of the optical fiber F1 up to the partial reflection unit R11 based on the reciprocating propagation time of the return light (reflected light), and according to the measurement result of the measured length of the optical fiber F1. , A control unit of an external device or the like may monitor the change over time.
  • the OTDR device 1 performs OTDR measurement on the optical fiber F1, automatically detects the partial reflection points contained therein, and positions the partial reflection points on the optical fiber, that is, the fiber from the OTDR to each partial reflection point. Record the length.
  • FIG. 3 shows an example of the acquired OTDR waveform.
  • the vertical axis is the power of the return light (for example, logarithmic representation), and the horizontal axis is the fiber length. Since the light pulse is strongly reflected by the partial reflection portion R11 at the point corresponding to the position where the partial reflection portion R11 is provided, the power of the return light is locally increased and the peak P1 11 is generated.
  • the calculation unit 1C automatically detects and outputs the peak.
  • the measurement date By repeatedly measuring the above OTDR measurements at intervals, the relatively slow movement of the ground 110 is detected.
  • the measurement date will be referred to as a first measurement date and a second measurement date.
  • FIG. 4 shows an enlarged view of the rise of the peak corresponding to the partial reflection portion R11 on the first and second measurement days.
  • the waveform on the first measurement day is shown by a broken line
  • the waveform on the second measurement day is shown by a solid line.
  • the peak P2 11 on the second measurement day is slightly shifted to the left of the peak P1 11 on the first measurement day. This indicates that the optical fiber cable F1 is slightly shrunk and the cable length is shortened, and the partial reflection unit R11 is slightly closer to the land station (that is, the OTDR device 1).
  • the movement of the ground at the position where the partial reflection portion is provided can be detected by comparing the peak positions due to the reflected light from the same partial reflection portion on two separated measurement days. ..
  • the optical fiber cable F1 has sufficient friction with the seabed and is laid so that an appropriate tension remains, so that the optical fiber cable F1 expands and contracts in the same manner according to the expansion and contraction of the seabed, that is, the ground 110.
  • the optical fiber cable F1 it is also possible to lay it while checking the residual tension by, for example, measuring the strain of the optical fiber F1 by BOTDR (Brillouin OTDR) on board. Is.
  • FIG. 5 schematically shows the configuration of the surveying system 200 according to the second embodiment.
  • the surveying system 200 is provided with a plurality of partial reflection portions as compared with the surveying system 100.
  • the surveying system 200 has a configuration in which three partial reflection units R12 to R14 are added beyond the partial reflection unit R11.
  • the installation location of the OTDR device 1 is referred to as point 0.
  • the optical fiber cable F1 is installed on the ground as in FIG. 1, the ground is not shown.
  • the surveying system 200 acquires OTDR waveforms on the first and second measurement dates, similarly to the surveying system 100 according to the embodiment.
  • FIG. 6 shows an OTDR waveform on the first measurement day according to the second embodiment.
  • the four peaks P1 11 , P1 12 , and P1 at the four points 1 to 4 corresponding to these are arranged in order. 13 and P1 14 appear in that order.
  • FIG. 7 shows an enlarged view of the rise of peaks on the first and second measurement days at the point 1 where the partial reflection portion R11 is installed and the point 2 where the partial reflection portion R12 is installed.
  • the waveform on the first measurement day is shown by a broken line
  • the waveform on the second measurement day is shown by a solid line.
  • the peak shift amount at point 2 is larger than the peak shift amount at point 1. Therefore, it can be seen that the cable length is shortened in both the OTDR device 1 (point 0) and the point 1 and the point 1 and the point 2. This is because if only the space between the OTDR device 1 and the point 1 contracts and there is no expansion or contraction beyond that point, the shift amount beyond the point 1 is the same as that between the OTDR device 1 and the point 1.
  • FIG. 8 shows an example of measuring the cable length from point 0 to point 4 observed by the surveying system 200 on the first and second measurement days.
  • the interval between the first and second measurement dates is about one year.
  • the influence of temperature and tide has already been removed.
  • the fiber length between points 1 and 2 is referred to as L12
  • the fiber length between points 2 and 3 is referred to as L23.
  • the points 0 to 1 are about 2.3 cm
  • the points 1 to 2 are about 3.2 cm
  • the points 2 to 3 are about 1. It is 0.0 cm
  • points 3 to 4 are shrunk by about 0.3 cm.
  • the partial reflector in the place near the OTDR device 1 where the cumulative loss is small has a low reflectance
  • the partial reflector in the place far from the OTDR device 1 where the cumulative loss is large has a high reflectance.
  • the reflectances of the partially reflecting portions R11 to R14 are Rf1 to Rf4, it is preferable that Rf1 ⁇ Rf2 ⁇ Rf3 ⁇ Rf4.
  • FIG. 9 shows an example of an OTDR waveform when the reflectances of the partial reflection portions R11 to R14 are the same
  • FIG. 10 shows an example of an OTDR waveform when the reflectance of the partial reflection portion is increased as the distance from the OTDR device 1 increases. show.
  • the peaks P1 13 and P1 14 of the partial reflection portions R13 and R14 are buried in the noise level NL, but in FIG. 10, the peaks in a distant place are not buried in the noise level NL and are easy to recognize. ..
  • FIG. 11 schematically shows the configuration of the surveying system 700 into which the technology for suppressing these errors has been introduced.
  • the surveying system 700 includes a DTS (Distributed Temperature Sensor) device 701, a data processing device 702, a polarization scrambler 703, a high-precision clock supply unit 704, a wavelength division multiplexing separator WC0, and an optical fiber in the surveying system 100 in the land station 710. It has a configuration in which F70 is added.
  • DTS Distributed Temperature Sensor
  • the optical fiber cable expands and contracts due to the external environment, especially the temperature change. Therefore, when trying to detect the movement of the ground using this surveying system in an environment where there is a temperature change, it is necessary to eliminate the influence of expansion and contraction of the optical fiber cable due to the temperature change. Therefore, in the present embodiment, the temperature of each location of the optical fiber cable is measured by DTS (Distributed Temperature Sensor).
  • DTS Distributed Temperature Sensor
  • the DTS device 701 distributes the temperature in the longitudinal direction of the optical fiber cable F1 and outputs the data as the DTS output data DAT2.
  • the OTDR device 1 outputs the position of each reflection point on the cable as the OTDR output data DAT1 as described in the above-described embodiment.
  • the data processing device 702 removes the influence of expansion and contraction of the optical fiber cable due to the temperature change based on the OTDR output data DAT1 and the DTS output data DAT2.
  • the data processing device 702 can control the OTDR device 1 by the control signal CON1 and can control the DTS device 701 by the control signal CON2.
  • the measurement light of the DTS device 701 and the measurement light of this surveying system are measured on the same optical fiber by using the wavelength division multiplexing technology (WDM coupler WC10), but the light has no wavelength selectivity. It may be demultiplexed by a coupler and the measurement timings of the OTDR device 1 and the DTS device 701 may be controlled so as not to overlap each other for measurement, or another core wire (optical fiber) in the same cable 720 may be used. Since the temperatures are considered to be almost the same, the same effect can be obtained.
  • WDM coupler WC10 wavelength division multiplexing technology
  • An optical fiber has a phenomenon called polarization mode dispersion in which a slight difference in propagation speed occurs depending on the polarization state of propagating light. Therefore, in this configuration, the polarization scrambler 703 is inserted into the output of the OTDR device 1 to constantly and randomly change the polarization state of the pulsed light. As a result, when the OTDR waveform is measured a plurality of times and the averaging process is performed, the influence of the polarization mode dispersion is also averaged, so that the fluctuation of the measured value depending on the polarization state can be suppressed. Since some old optical fiber cables have a large polarization mode dispersion, they are particularly effective when the old optical cable is reused.
  • the high-precision clock supply unit 704 has been commercially available and used as a device that receives radio waves from a GNSS (Global Navigation Satellite System) satellite to generate and supply a high-precision clock.
  • the clock CLK from the high-precision clock supply unit realized in this way is supplied to the OTDR device 1.
  • the stability of the clock in the low frequency range greatly affects the measurement accuracy.
  • such long-term measurement stability is not required, so there is a high possibility that accuracy will be insufficient as it is.
  • the measurement accuracy of the movement of the ground can be ensured by applying all or part of the DTS, the polarization scrambler, and the high-precision clock supply to the surveying system.
  • Embodiment 3 In the above operating principle of this surveying system, it is assumed that the optical fiber cable is in contact with the ground with sufficient friction. In fact, for example, since a submarine cable is in contact with the seabed for a long distance, the accumulation of friction in the longitudinal direction is enormous, and when a large amplitude elongation occurs locally due to a submarine landslide or the like, the cable In some cases, the slip friction resistance of the cable exceeds the tension limit and the cable is cut.
  • a protrusion having a shape that makes it easier to catch on rocks on the seabed may be provided on the surface of the cable coating.
  • This protrusion may be formed integrally with a member that covers the cable during the manufacture of the cable.
  • a means for firmly fixing the cable to the seabed may be provided in places of the cable. The latter will be described in the third embodiment.
  • FIG. 12 schematically shows the configuration of the surveying system 300 according to the third embodiment.
  • the surveying system 300 has a configuration in which fixtures A1 to A4 are added to the surveying system 200.
  • the optical fiber cable F1 was originally integrated with the seabed due to friction caused by contact with the seabed, but in addition to that, the fixtures A1 to A4 are provided in places to grip the seabed 310 more strongly.
  • a member that can penetrate the ground such as a pile may be used on land, and if it is on the seabed, a fixture shaped to improve catching on rocks on the seabed is wrapped around the cable and laid.
  • a device such as an anchor having an appropriate weight that causes frictional force by settling on the sand on the seabed may be wrapped around the cable.
  • a component generally called a preformed stopper it is possible to attach the cable while laying it. When wrapping and storing a long cable of hundreds of kilometers, the fixture may get in the way or damage the cable, so it is desirable to install it while laying the cable.
  • the position and type of this fixture on the sensor cable may be changed as appropriate according to the condition of the seabed. There are no particular restrictions on the positional relationship between the partial reflector and the fixture. However, it is expected that by equipping the fixture close to the partial reflection part, the reliability of the contact of the partial reflection part with the ground will increase, which will help improve the reliability of the observation data.
  • Embodiment 4 In the first to third embodiments, only one optical fiber, that is, a configuration in which there is no branch in the middle is described, but in the subsequent embodiments, a surveying system in which the optical fiber is branched into a plurality of fibers will be described.
  • FIG. 13 schematically shows the configuration of the surveying system 400 according to the fourth embodiment.
  • the optical fiber cables F2 and F3 are branched from the optical fiber cable F1.
  • the optical fiber F1 is provided with partial reflection portions R11 to R14, ... In order from the side of the OTDR device 1, similarly to the surveying systems 200 and 300.
  • An optical coupler C1 is provided between the partial reflection portion R11 and the partial reflection portion R12, and the optical fiber F2 is branched.
  • the optical fiber F2 is provided with partial reflection portions R21 to R23, ... In order from the side of the optical coupler C1.
  • An optical coupler C2 is provided between the partial reflection portion R13 and the partial reflection portion R14, and the optical fiber F3 is branched.
  • the optical fiber F3 is provided with partial reflection portions R31, R32, ... In order from the side of the optical coupler C2.
  • FIG. 14 shows an OTDR waveform obtained by the surveying system 400.
  • the waveforms from the optical fibers F1, F2, and F3 are drawn separately, but in reality, one waveform is observed by the total of these waveforms.
  • the peaks of the partial reflection portions can be identified as long as the fiber lengths from the OTDR device 1 to the partial reflection portions do not overlap. Assuming that the optical fiber length from the branch point is 50 km, even if one optical fiber cable is provided with about 10 partial reflection portions, the size of each reflection portion is several cm, so that the probability is high. It can be said that the reflection peaks rarely overlap.
  • this branch configuration will be referred to as a passive branch (depending on the coupler).
  • the utility of this branch configuration will be described.
  • the sensor cable arrangement with branching can limit the range affected by the cable failure at the branching destination. This is referred to as the first utility of the branch configuration.
  • the area where you want to place the sensor cable is a place where the movement of the ground is noticeable, and there is a relatively high risk that such a place will naturally cause momentary and large-amplitude displacement, landslide, collapse, etc., and the cable There is also a high risk of being damaged. Therefore, the branch configuration becomes effective. This is because the range of influence of cable failure can be limited.
  • the partial reflection portion in the monitoring area MA is simply represented by a circle, and the branch portion is simply represented by a square mark. If the sensor cable is installed with a single stroke as shown in FIG. 15, no information beyond the location where the cable failure has occurred cannot be obtained. On the other hand, in the case of the branch configuration as shown in FIG. 16, the influence of the cable failure can be limited to the branch cable.
  • Embodiment 5 a branch configuration using wavelength division multiplexing will be described.
  • this branch configuration will be referred to as passive branching (by WDM coupler).
  • FIG. 17 schematically shows a configuration example of the surveying system 500 according to the fifth embodiment. Since each of the optical fiber and the partial reflection portion of the surveying system 500 is the same as that of the surveying system 400, the description thereof will be omitted.
  • the surveying system 500 is provided with a plurality of OTDR devices 11 to 13, in which three OTDR devices 11 to 13 have different transmission wavelengths.
  • the OTDR device 11 is also referred to as a first OTDR device, and the OTDR devices 12 and 13 are also referred to as a second OTDR device.
  • the optical couplers C1 and C2 are replaced with WDM couplers WC1 and WC2, respectively.
  • the OTDR devices 11 to 13 are connected to the optical fiber F1 via the wavelength division multiplexing separator WC0, and output pulsed light having different wavelengths ⁇ 1 to ⁇ 3.
  • the wavelength ⁇ 1 is also referred to as a first wavelength
  • the wavelengths ⁇ 2 and ⁇ 3 are also referred to as a second wavelength.
  • the WDM coupler WC1 selectively branches the pulsed light having a wavelength of ⁇ 2 and outputs it to the optical fiber F2, and returns the reflected return light from the optical fiber F2 to the optical fiber F1.
  • the WDM coupler WC2 selectively branches the pulsed light having a wavelength of ⁇ 3 and outputs it to the optical fiber F3, and the reflected return light from the optical fiber F3 returns to the optical fiber F1 by the WDM coupler WC2.
  • the return light having wavelengths ⁇ 1 to ⁇ 3 returns to the wavelength division multiplexing separator WC0 via the optical fiber F1.
  • the wavelength division multiplexing separator WC0 has bidirectionality, separates the return light for each wavelength, and outputs the return light of wavelengths ⁇ 1 to ⁇ 3 to the OTDR devices 11 to 13, respectively.
  • each of the OTDR devices 11 to 13 can independently monitor the return light from the optical fibers F1 to F3.
  • the partial reflection portion may partially reflect wavelength-independently, and R11, R12, R13, ... Only in the vicinity of ⁇ 1 (first wavelength), R21, R22, R23, ... ⁇ May be a partial reflection portion having wavelength selectivity such that is only in the vicinity of ⁇ 2 (second wavelength), R31, R32, ... Is only in the vicinity of ⁇ 3.
  • the loss of wavelengths other than ⁇ 1 can be reduced, the observable range of ⁇ 2 and ⁇ 3 can be expanded, and the wavelength range other than ⁇ 1, ⁇ 2 and ⁇ 3 of the cable F1 can be used for other purposes such as communication. It will be easier.
  • the optical coupler branching has the advantage that the number of OTDRs does not need to be increased, but has the disadvantage that the observable range is shortened due to the loss due to the branching.
  • the number of branches and the number of reflection points are large, the correspondence between the branch lines and the reflection points may be mistaken, resulting in erroneous observation. That is, although a branch configuration can be realized, the scale is somewhat limited.
  • embodiments 3 and 4 It is also possible to carry out embodiments 3 and 4 together.
  • An example is shown in FIG. Since the contents are the same as those of the third and fourth embodiments, the description thereof will be omitted.
  • the order is optical coupler branching (branching by optical couplers C3 and C4) after the wavelength branching, but the present invention is not limited to this, and wavelength branching is also possible before the optical coupler branching.
  • FIG. 19 schematically shows a configuration example of the surveying system 600 according to the sixth embodiment.
  • the surveying system 600 is an example in which a surveying system is attached to a submarine optical cable system used for data transmission.
  • the method of branching is passive branching (using a WDM coupler). That is, this embodiment is a description of a technique for applying an optical amplifier to the fifth embodiment.
  • the optical amplifier may transmit in only one direction, and in the communication cable including the optical amplifier, the upstream and downstream optical fibers are treated as a pair.
  • a fiber pair FP having an optical fiber FT (third optical fiber) for uplink and an optical fiber FR (fourth optical fiber) for downlink is provided.
  • the communication device 611 which is not directly related to the surveying system, is connected to the optical fiber FT via the wavelength division multiplexing device 612, and is connected to the optical fiber FR via the wavelength separator 613.
  • the wavelength multiplexing device 612 and the wavelength separator 613 for example, AWG (Arrayed Waveguide Grating) and WSS (Wavelength Selective Switch) are generally used.
  • the OTDR device 1 that outputs the pulsed light of ⁇ 1 is also connected to the optical fiber FT via the wavelength multiplexing device 612 and connected to the optical fiber FR via the wavelength separator 613.
  • the OTDR device 1 can output the pulsed light to the optical fiber FT and receive the return light from the optical fiber FR.
  • the wavelength band for the OTDR device 1 and the wavelength band for the communication device 611 are assigned separately.
  • One or more optical amplification repeaters AU are inserted into the fiber pair FP in order to compensate for the loss of the transmitted optical signal.
  • the optical amplification repeater AU is provided with an optical amplifier AT that amplifies the light transmitted through the optical fiber FT for uplink and an optical amplifier AR that amplifies the light transmitted through the optical fiber FR for downlink.
  • the optical amplification repeater AU is provided with a path P such as reflected light that branches the return light propagating in the reverse direction of the upstream optical fiber FT and couples it to the downstream optical fiber FR.
  • an optical coupler is provided on the input side of the optical amplifier AT to branch the return light, and the optical coupler provided on the output side of the optical amplifier AR via the optical fiber transmits the return light to the optical fiber for downlink.
  • the optical amplification repeater AU, the path P, the optical fiber FT, and the optical fiber FR constitute an optical amplification relay system that amplifies and transmits light.
  • a WDM coupler WC is provided at an arbitrary position of the optical fiber FT, but actually at the output of the optical amplifier in the form of being integrated with the optical amplification repeater AU, and the pulsed light having a wavelength of ⁇ 1 is branched to the ground.
  • the return light from the optical fiber cable F1 is coupled to the optical fiber FT by the WDM coupler WC, and then coupled to the optical fiber FR via the path P in the optical amplification repeater AU. After that, the return light is branched by the wavelength separator 613 and returned to the OTDR device 1 for reception.
  • the OTDR device 1 can survey the section from the land to the optical fiber F1.
  • FIG. 20 shows the monitoring result of the optical fiber F1 by the surveying system 600.
  • the surveying system 600 since the transmission loss is periodically compensated by the optical amplification repeater AU, a periodic saw waveform appears.
  • the peak of the reflected light by the partial reflection portions R11 to R14 is observed as a reflection peak before the WDM coupler WC.
  • the movement of the ground can be detected by measuring the reflection peak positions on the first and second measurement days.
  • the route from land to entering the optical fiber F1 is also included in the OTDR measurement, but it hardly contributes to the survey. It is possible to contribute to the survey by incorporating a partial reflection portion of ⁇ 1 in the middle of the path, but it is not preferable because there is a concern that it may affect the communication on the communication device 611 side sharing the cable.
  • the wavelength used for the OTDR survey was only ⁇ 1, but in the form of applying the optical amplifier in FIG. 18, a plurality of wavelengths are assigned to the surveying system, and the passive branching by the WDM coupler is further applied. Needless to say, it is also possible.
  • an optical amplifier can be applied to this surveying system, and it is possible to survey a place away from the land.
  • Embodiment 7 In the sixth embodiment, the optical amplifier can be applied and the area far from the land can be observed, but as can be seen from FIG. 20, the section of less interest is also included in the OTDR measurement. , There is a drawback that there is a lot of waste in measurement. Therefore, in the seventh embodiment, by installing the OTDR device on the seabed, a realization means that enables an observation network closer to the area to be observed is provided.
  • FIG. 21 schematically shows the configuration of the surveying system 601 according to the seventh embodiment.
  • the surveying system 601 is a modification of the surveying system 600 according to the sixth embodiment.
  • the surveying system 601 is also an example of realization in which a surveying system is attached to the submarine optical cable system used for data transmission.
  • the method of the OADM (Optical Add-Drop Multiplexer) node in the wavelength division multiplexing communication system is used to realize the branching.
  • OADM branch node components such as the OTDR installed in the land station of the surveying system described above are arranged. In other words, it has a configuration like an overhanging station installed on the seabed.
  • this branch configuration is called an active branch.
  • the communication between the land and the active branching device is the same as the general wavelength path, and therefore the description of the realization method will be omitted.
  • FIG. 21 An embodiment of FIG. 21 will be described.
  • the components such as the submarine cable communication system (communication device 611, wavelength division multiplexing 612 and wavelength separator 613), optical amplification repeater AU and fiber pair FP are the same as those in FIG. 19, and the OTDR device 1, optical fiber cable F1 ,
  • the components such as the partial reflection units R11, R12, and R13 are the same as those in the above-described embodiment of the survey system, and thus the description thereof will be omitted.
  • the OADM branch node 618 is inserted in the middle of the submarine communication cable, and the sensor cable is branched from there. That is, the OADM branch node corresponds to a device called a BU (Branching Unit) in a submarine cable communication system.
  • BU Brainnching Unit
  • the difference from BU is that it does not supply power to the cable at the branch destination.
  • a general BU a very difficult technique for branching a feeder line is required, but in this surveying system, it is not necessary to supply power to the sensor cable, and there is no burden on it. Therefore, it is not necessary to install power supply switching related equipment that occupies most of the mountable space in the housing in a general BU, and that space can be used to accommodate the OADM branch node, and the optical amplifier repeater AU may also be accommodated integrally. There is also. It is also possible to mount seismic sensors such as acceleration sensors. If optical amplification relay is required at the branch destination, it is desirable to first branch and extend the cable at the communication BU, and then provide a branch BU with the sensor cable.
  • FIG. 21 the feeding line in the cable and the power receiving and feeding functions in each device are not shown. Therefore, in FIG. 22, the part of the OADM branch node 618 is taken out and the power feeding relationship is also shown. The contents will be explained.
  • the OADM branch node 618 a specific wavelength ( ⁇ 1 in FIG. 19, a third wavelength) of the signal light transmitted by wavelength division multiplexing in the backbone cable 620 is added-dropped.
  • the OADM branch node 618 includes optical couplers WC1 and WC2 that have wavelength selectivity for light of wavelength ⁇ 1.
  • a communication control unit (communication device) 615 (also referred to as a second communication device) that controls the OADM branch node is connected via an optical transceiver.
  • Tx and Rx are abbreviations for Transmitter and Receiver, respectively. This Tx can be transmitted at the wavelength ⁇ 1.
  • This communication control unit constantly communicates with 614, which is an opposite device on the land side, through a wavelength path of wavelength ⁇ 1.
  • the optical signal (first optical signal) having a wavelength of ⁇ 1 output from the communication device 614 propagates through the optical fiber FT and is demultiplexed from the optical fiber FT by the optical coupler WC1 (first optical coupler). It is received by Rx (first receiving unit).
  • the optical signal (second optical signal) of wavelength ⁇ 1 output from Tx (first transmitter) is combined with the optical fiber FR by the optical coupler WC2 (second optical coupler), and is combined with the optical fiber FR by the communication device 614.
  • the OTDR device 1 surveys the sensor cable and passes the result to the communication control unit 615.
  • the power feeding unit 616 receives power from the power feeding conductor SL and supplies power to the communication control unit 615, the OTDR device 1, and the like.
  • the communication device 614 (also referred to as the first communication device) has an important role of constantly transmitting the clock from the high-precision clock supply unit to the OTDR placed on the seabed in addition to various control signals. This is because radio waves from the GNSS (Global Navigation Satellite System) satellite, which is a high-precision clock source, cannot be received in the sea.
  • the data measured by the OTDR device 1 on the seabed is transmitted to the land communication device 614 via the communication control unit 615.
  • GNSS Global Navigation Satellite System
  • the surveying system 601 has been described as including the surveying system 100 in the amplified relay optical transmission system, as shown in FIGS. 23 and 24, the surveying system 400 having a branched configuration is used instead of the surveying system 100.
  • it may be configured to include a surveying system 501 having 500, or both.
  • the illustration of the surveying system including the surveying system 500 having a branched configuration is omitted.
  • the OADM branch node 618 of the survey system 602 is replaced with the OADM branch node 619.
  • the OADM branch node 619 has a configuration in which the OTDR device 1 of the OADM branch node 618 is replaced with the OTDR devices 11 to 13 and the wavelength multiplexing separator WC0 included in the survey system 500. Even in that case, only one communication device 615 and one transmission / reception unit may be used.
  • a synchronization clock can be distributed to a plurality of OTDRs, survey data can be collected, and the data can be time-division-multiplexed into a signal having one wavelength ⁇ 1 and transmitted to the communication device 614.
  • Embodiment 8 In the remote observation network having a plurality of OADM branch nodes as described above, in order to increase the availability of the trunk cable against a failure, both ends of the trunk cable are connected to two land stations to form a route redundancy configuration. It is also possible.
  • FIG. 25 shows a realization example.
  • FIG. 25 is an example of a surveying system 630 in which the trunk cable 620 is provided with OADM branch nodes 631 to 634 corresponding to the OADM branch node 618A.
  • FIG. 26 shows a configuration example of the OADM branch node 618A.
  • the OADM branch node 618A is a modification of the above-mentioned OADM branch node 618.
  • the OADM branch node 618A has two sets of optical transceivers in the communication control unit 615 so that it can communicate with the two land stations 621 and 622, and the OADM filter is extended.
  • the OADM branch node 618A has a configuration in which optical couplers WC3 and WC4 are added to the OADM branch node shown in FIG.
  • the communication control unit 615 is provided with two Tx and two Rx.
  • the communication control unit 615 constantly communicates with the communication devices provided in the land stations 621 and 622, which are opposite devices on the land side, through the wavelength path of the wavelength ⁇ 1.
  • the communication device 614 provided in the land station 621 is referred to as a first communication device
  • the communication device 614 provided in the land station 622 is also referred to as a third communication device.
  • the optical signal (first optical signal) having a wavelength of ⁇ 1 output from the communication device (first communication device) of the land station 621 propagates through the optical fiber FT and is opticald by the optical coupler WC1 (first optical coupler). It is demultiplexed from the fiber FT and received by one Rx (first receiving unit).
  • the optical signal (second optical signal) of wavelength ⁇ 1 output from one Tx (first transmitter) is combined with the optical fiber FR by the optical coupler WC2 (second optical coupler), and the land station 621 It is received by the communication device (third communication device) of.
  • the optical signal (third optical signal) of wavelength ⁇ 1 output from the communication device (third communication device) of the land station 622 propagates through the optical fiber FR and is opticald by the optical coupler WC3 (third optical coupler). It is demultiplexed from the fiber FR and received by the other Rx (second receiver).
  • the optical signal (fourth optical signal) of wavelength ⁇ 1 output from the other Tx (fourth transmitter) is combined with the optical fiber FT by the optical coupler WC4 (fourth optical coupler), and the land station 622 It is received by the communication device (third communication device) of.
  • the OADM branch node 618A is constantly communicating with both the land station 621 (first observation station) and the land station 622 (second observation station).
  • the two land stations 621 and 622 receive survey data from each of the OADM branch nodes 631 to 634 in normal times, and transmit the data to the data center via the data communication network 640.
  • the survey data of the OADM branch node 631 reaches the land stations 621 and 622 and is transmitted to the data center, respectively.
  • the same survey data arrives at the data center in duplicate, so in normal times it is judged that both are normal, and they are aggregated into one for recording and processing.
  • the data from the OADM branch nodes 631 to 633 goes through the land station 621, and the data from the OADM branch node 634 goes through the land station. It reaches the data center via 622. That is, duplication of the communication path between the OADM branch node and the land station is provided. Furthermore, by ensuring communication between the two land stations and between the data center, the data center detects that one of the data has been interrupted when the same data should have arrived, and the data continues to be delivered. Data can be adopted, recorded and processed. By such an operation, it can be made strong against a cable failure and has the effect of increasing availability.
  • Embodiment 9 The utility of the above-mentioned active branch configuration will be described. In short, the role of each cable can be clearly separated in the survey observation network. In the configuration that does not use the active branch, the optical cable also serves as the sensor cable and the communication cable, but the roles of both can be separated by the configuration of the active branch. This is referred to as the third utility of the branch configuration.
  • the cable components of the observation network can be broadly classified into two types.
  • One is the trunk cable 900, which consists of trunk line specification cable types. It is responsible for communication and power supply functions, and is installed avoiding areas with unstable terrain as much as possible.
  • the optical fiber core wire in it is mainly for communication, and its use as a sensor is not the main purpose. From the economical point of view, it is desired to apply the same cable as the communication cable to the cable itself, its connecting parts, and the connecting method.
  • the branch cable consists of a trunk line specification cable type and a sensor specification cable type connected.
  • the feed line is not included in the branch cable.
  • the feeder line is included, it is completely insulated from the feeder line in the backbone cable 900 by making it unused or unconnected. By doing so, it becomes possible to positively install the sensor cable in an area where there is a high risk of the cable being damaged but the observation priority is high. This is because if a failure occurs in the cable to which the feeder is connected, the failure will spread to the entire observation network to which the feeder is connected.
  • the sensor specification cable type sections 925, 945, and 955 in each branch cable are cables for detecting expansion and contraction of the ground, and include a plurality of partial reflection portions Rxx, and are covered so that sufficient friction with the seabed can be obtained.
  • the trunk line specification cable type sections 921 and 951 in each branch cable are sections for connecting the trunk cable and the branch cable.
  • Cables 923 and 953 branched from OADM branch nodes 902 and 905 on the backbone cable 900 are also trunk line specification cable types, but do not include the feeder line, or even if they include the feeder line, they are unused or unconnected. Therefore, it is completely insulated from the power supply line in the trunk cable 900.
  • This cable and sections (replacement repair work assumption area) 922 and 952 consisting of the trunk line specification cable type on the branch cable side are connected using the connection parts and connection method of the trunk line specification cable type.
  • FIG. 27 shows the state of the branch cable 950 after it has been replaced and repaired.
  • the cable between the sensor specification cable type section 945 and the cable 953 is cut by an anchor operation, and the cable of the new sensor specification cable type section 955 is cut.
  • the cable 953 are connected at the connection point 956, and the connection point 956 is gently lowered to the bottom of the sea.
  • the cut end of the cable 953 is once pulled up on the ship, but if the OADM branch node 905 is pulled and moves or is lifted at that time, there is a high possibility that a secondary failure will occur on the trunk cable 900 side.
  • the cable 953 needs to be long enough to prevent this from happening. Specifically, it is desirable that the OADM branch node 905 and the replacement / repair work assumed area 952 be separated from each other by 3 to 5 times or more the water depth.
  • the device of this embodiment that is, the device of properly using the sensor specification cable type and the trunk line specification cable type, is possible even with passive branching, although the effect is limited, and is not limited to active branching.
  • the first utility of the branch configuration that is, the utility that the ripple range when a cable failure occurs can be suppressed in a limited manner as compared with the one-stroke writing.
  • FIG. 28 schematically shows the configuration of the surveying system 201 in which the redundant configuration is applied to the surveying system 200 according to the second embodiment.
  • an OTDR device 10 (second OTDR device) provided at another land station is added to the surveying system 200.
  • the OTDR 10 and the optical coupler C0 are connected by an optical fiber FA, and the optical fiber FA is coupled to the optical fiber F1 by the optical coupler C0.
  • the OTDR device 1 is also referred to as a first OTDR device.
  • the OTDR device 10 can be started up and the measurement of the return light can be continued. At this time, the distance from the OTDR device to each partial reflection portion apparently changes, but in reality, only L01 has changed, and the measurement beyond L12 has not changed and can be continued.
  • the redundant configuration composed of two routes has been described here, it is also possible to apply the redundant configuration by three or more routes.
  • Embodiment 11 In Non-Patent Document 1, the seabed is acoustically measured on board using a mirror transponder installed on the seabed, and the position of the ship is measured using a positioning satellite (Global Navigation Satellite System: GNSS).
  • GNSS Global Navigation Satellite System
  • a technique for grasping fluctuations is disclosed. This method is called a GNSS-acoustic distance measurement coupling method or a GPS / A method.
  • a mirror transponder that receives an acoustic signal from a ship and sends a response acoustic signal is fixedly installed on the seabed.
  • FIG. 29 schematically shows the configuration of the surveying system 800 according to the eleventh embodiment. As shown in FIG. 29, mirror transponders TPD1, TPD2 and TPD4 are installed on the fixtures A1, A2 and A4, respectively.
  • the position of the mirror transponder can be detected by this configuration. Information can be given.
  • the movement detection of the ground by the survey system 800 and the absolute survey by the GNSS-acoustic distance measurement coupling method can be used complementarily.
  • the GNSS-acoustic distance measurement coupling method can grasp the absolute position, it is difficult to realize real-time performance and completeness. In addition, it is difficult to perform high-precision measurement in the deep sea, where the influence of fluctuations in the underwater sound velocity is large.
  • the movement detection of the ground according to this configuration it is difficult to measure the absolute amount of expansion and contraction of the ground, but since it is possible to monitor multiple points in real time regardless of the water depth, mutual complementation can be expected.
  • the submarine cable including the optical fiber and the power supply line may be used as the driving power for the mirror transponder installed on the seabed.
  • Power may be supplied from the power supply line included in the submarine cable, but since it is not desirable to include the power supply line in the optical fiber cable for sensing, optical energy is sent via the optical fiber (optical fiber power supply) to store electricity. , It is preferable to drive by this.
  • Embodiment 12 The configuration for measuring the expansion and contraction of the ground described above can also measure the change in water pressure with the same configuration.
  • the water pressure change measurement in the surveying system 100 of FIG. 1 according to the first embodiment will be described.
  • optical fiber cable F1 and the partial reflector R11 are installed on the seabed.
  • the optical fiber cable F1 has a pressure-resistant structure having sufficient strength to withstand water pressure, but as a result of being slightly compressed by water pressure, the length of the optical fiber cable F1 is slightly extended.
  • the ground expands and contracts due to changes in water pressure on the seabed, and if there is sufficient friction between the seabed and the cable, the cable expands and contracts accordingly.
  • FIG. 30 shows an image of the latter action.
  • the seabed is elastically deformed by being pushed by water pressure, and the method of elastic deformation of the seabed changes according to the change in water pressure. Since the optical fiber cable F1 crawls or is embedded in the seabed, the deformation of the seabed causes expansion and contraction in the longitudinal direction of the optical fiber cable F1. In order for this mechanism to work, friction is required between the optical fiber cable F1 and the seabed. It goes without saying that even if the optical fiber cable F1 is placed on the seabed, it will have friction, but if it is buried, the contact area will increase and it will be easier to obtain friction.
  • the amount of expansion and contraction of the optical fiber cable F1 described here is extremely small, it can be seen based on the wavelength (typically about 1 ⁇ m) of the light used for the measurement, which propagates through the optical fiber in the optical fiber cable F1. Is a sufficiently detectable amount.
  • the length of the optical fiber cable F1 changes slightly when the water pressure changes.
  • the change in water pressure is detected as the change in the length of the optical fiber cable F1.
  • the factor that causes the optical fiber cable F1 to expand and contract is not the crustal movement but the water pressure change, and the detection method is the same. The description of the operation related to the detection of the length of F1 will be omitted.
  • FIG. 31 shows an example of the result of the water pressure measurement according to the twelfth embodiment.
  • the length of the cable from the OTDR device 1 to the partial reflector R11 was about 38 km.
  • the cable section of about 11 km from the landing point was buried at a depth of about 1 m.
  • the measurement resolution of the OTDR used is 5 cm, and data having a resolution finer than 5 cm is obtained by measuring the OTDR many times and obtaining the moving average.
  • Shown on the upper side of the graph in FIG. 31 is the change in the cable length up to the partial reflector R11.
  • Each small circle is a single measurement of the cable length up to the partial reflector R11, and their moving averages are shown by the thick curve MA.
  • the average value of the continuous observation period of about 3 days was used as the reference value, and the amount of change from the reference value was used as the vertical axis.
  • the moving average curve MA it can be seen that a change in cable length of more than 10 cm appears.
  • the measured value fluctuation (drift) of the OTDR has not been sufficiently removed, and fluctuations other than the true cable length change are included.
  • the tide level change ⁇ H at the cable vicinity point shown by the dotted line on the lower side of the graph in FIG. 31 and the cable length change shown by the curve on the upper side of the graph.
  • the tide level graph shows the high tide level at the top and the low tide level at the bottom.
  • the length of the submarine cable changes not only in a slow change of several centimeters a year due to crustal movements, but also in a relatively short time of several hours due to changes in water pressure such as tides. I understand.
  • the change in water pressure can be detected from the change in cable length, but in order to know the amount of change in water pressure, it is necessary to calibrate the coefficient at least for each cable section. This is because the coefficient by which the change in water pressure is converted into the change in cable length differs depending on the cable installation location depending on the method of fixing the cable to the seabed, the cable structure, the type of coating, and the like.
  • a tidal phenomenon as shown in FIG. 31 can be used. Since the tide can be estimated for each sea area, it can be used to calibrate this coefficient. That is, for example, the water depth change ⁇ H0 at the high tide time and the low tide time in the sea area of a certain cable section can be calculated (may be actually measured), and the water pressure change ⁇ P can also be calculated from the water depth change ⁇ H0. On the other hand, from the above observation, it is possible to obtain the cable length change ⁇ L of the cable section between the high tide time and the low tide time. The ratio of these ⁇ L and ⁇ P is a coefficient.
  • the coefficient may be calculated for each of the sections sandwiched between the two adjacent partial reflection portions.
  • the tsunami may be used for coefficient calibration. Since the tsunami height in each offshore sea area can be estimated from the tsunami height observed along the coast, the coefficient for each cable section can be calculated by comparing it with the change in cable length before and after the arrival of the tsunami in each cable section. Is obtained.
  • the tidal phenomenon and crustal movement can be separated by the difference in the speed of change in cable length.
  • the tidal phenomenon is about daily, and the crustal movement is expected to be an extremely slow drift-like change on a yearly basis.
  • the optical transmission line monitoring device has been described as being applied to a submarine optical network system, but this is merely an example. That is, it may be applied to any optical network system such as a land-based optical network system other than the submarine optical network system.
  • the OTDR using Rayleigh scattering has been described, but an OTDR using a non-linear scattering phenomenon such as Brilliant scattering or Raman scattering may be applied.
  • Brilliant scattering and Raman scattering tend to have lower reflectance than Rayleigh scattering, and long-distance measurement is relatively difficult. Therefore, it is desirable to use OTDR by Rayleigh scattering.
  • another reflecting element such as an FBG other than the configuration shown in FIG. 2 may be used as the partial reflecting portion.
  • the number of partially reflecting portions provided on the optical fiber is merely an example, and an arbitrary number of partially reflecting portions may be provided on the optical fiber.
  • an optical fiber cable may be laid on the ground at the bottom of a lake or river other than the sea to detect movement of the ground or fluctuation of water pressure.
  • the optical fiber cable can be buried not only on the seabed but also in the ground below the seabed, but this is not limited to the twelfth embodiment. That is, it goes without saying that in the above-described embodiment including the twelfth embodiment, the optical fiber cable may be laid on the seabed or buried in the ground below the seabed.
  • a water pressure fluctuation measurement system A water pressure fluctuation measurement system.
  • the amount of change in water pressure is obtained by multiplying the amount of change in the length of the first optical fiber by a coefficient, and the coefficient is the high tide in the sea area where the first optical fiber is installed.
  • the water pressure according to Appendix 1 which is obtained by dividing the amount of change in water pressure between time and low tide by the amount of change in the length of the first optical fiber between high tide and low tide. Fluctuation measurement system.
  • the optical output unit outputs the monitoring light at a first measurement timing and a second measurement timing after the first measurement timing, and the calculation unit outputs the monitoring light at the first measurement timing. Based on the difference between the length of the first optical fiber up to the partial reflection portion measured at the measurement timing of the above and the length of the first optical fiber up to the partial reflection portion measured at the second measurement timing. , The water pressure fluctuation measuring system according to Appendix 2, which monitors the fluctuation amount of the water pressure.
  • Appendix 4 A plurality of the partial reflection portions are provided at different positions of the first optical fiber, and the calculation unit is a length of the first optical fiber between two of the plurality of partial reflection portions.
  • Appendix 6 The water pressure according to Appendix 4 or 5, wherein the plurality of partial reflection portions are configured so that the larger the path light loss from the light output portion to the partial reflection portion, the higher the reflectance. Fluctuation measurement system.
  • Appendix 8 The water pressure fluctuation measuring system according to Appendix 7, wherein the fixture is provided in the vicinity of a part or all of the plurality of partial reflection portions.
  • Appendix 9 The water pressure fluctuation measurement according to Appendix 7 or 8, wherein a mirror transponder used for acoustic distance measurement in the sea is fixed to the fixture to output a response acoustic signal by receiving an acoustic signal. system.
  • a means for measuring the temperature of the first optical fiber in a distributed manner in the longitudinal direction is provided, and the length of the optical fiber due to the change over time of the temperature is determined from the amount of change in the length of the first optical fiber with time.
  • the water pressure fluctuation measuring system according to any one of Supplementary note 1 to 9, which excludes the change in temperature.
  • Supplementary note 12 The description in any one of Supplementary note 1 to 11, further comprising a polarization scrambler that changes the polarization plane of the monitoring light in a pseudo-random manner before inputting the monitoring light into the first optical fiber. Water pressure fluctuation measurement system.
  • Appendix 13 The water pressure fluctuation measuring system according to any one of Appendix 1 to 12, wherein the optical output unit, the optical receiving unit, and the arithmetic unit constitute an OTDR (Optical time domain reflectometer) device.
  • OTDR Optical time domain reflectometer
  • Appendix 14 The water pressure fluctuation measuring system according to Appendix 13, wherein the OTDR device synchronizes an internal clock of the OTDR device with a clock signal supplied from the outside.
  • a combined demultiplexing means and a second optical fiber branched from the first optical fiber by the combined demultiplexing means are provided and provided on the path of the second optical fiber.
  • the water pressure fluctuation measurement system according to any one of Supplementary note 1 to 12, wherein a partial reflection unit that partially reflects the monitoring light is provided.
  • a first OTDR device that outputs monitoring light of a first wavelength and a second OTDR device that outputs monitoring light of a second wavelength are provided, and the combined / demultiplexing means is a first.
  • An optical amplification repeater that amplifies and relays light propagating through the third and fourth optical fibers whose forward directions are opposite to each other, and the optical amplification relay.
  • An optical amplification relay system including a path that branches a part of light propagating in the third optical fiber in a direction opposite to the forward direction to reach the vessel and couples the light to the fourth optical fiber.
  • An optical coupler provided on the path of the third optical fiber and having wavelength selectivity for light of the first wavelength, which couples the first optical fiber and the third optical fiber.
  • the optical output unit outputs the monitoring light of the first wavelength in the forward direction of the third optical fiber, and the monitoring light of the first wavelength is transmitted from the third optical fiber by the optical coupler.
  • the light reflected from the partial reflection portion provided in the first optical fiber is frequency-selectively branched into the first optical fiber, and is coupled to the third optical fiber by the optical coupler to obtain the above. It propagates in a direction opposite to the forward direction of the third optical fiber, is coupled to the fourth optical fiber by the path, propagates in the forward direction of the fourth optical fiber, and the optical receiver is said.
  • the water pressure fluctuation measuring system according to any one of Supplementary note 1 to 15, wherein the reflected light from the partial reflecting portion provided in the first optical fiber is received via a fourth optical fiber.
  • the third and fourth optical fibers having opposite forward directions, an optical amplification repeater that amplifies and relays light propagating through the third and fourth optical fibers, and the optical amplification relay.
  • An optical amplification relay system including a path that branches a part of light propagating in the third optical fiber in a direction opposite to the forward direction to reach the vessel and couples the light to the fourth optical fiber.
  • a first optical signal having a third wavelength is transmitted in the forward direction of the third optical fiber and propagates in the forward direction of the fourth optical fiber, and a second optical signal having the third wavelength is transmitted.
  • a first communication device connected to one end of the third and fourth optical fibers, a first receiving unit connected to the OTDR device and receiving the first optical signal, and the above.
  • a second communication device having a first transmission unit for transmitting the second optical signal including the result obtained by the OTDR device, and the third optical fiber provided on the path of the third optical fiber.
  • the path of the first optical coupler and the fourth optical fiber that selectively branch the first optical signal propagating in the forward direction of the optical fiber to the first receiving portion of the second communication device.
  • the wavelength of the second optical signal provided above and output by the first transmitter of the second communication device so that the second optical signal propagates in the forward direction of the fourth optical fiber.
  • the water pressure fluctuation measuring system according to any one of Appendix 13 to 15, further comprising a second optical coupler selectively coupled to the fourth optical fiber.
  • the first optical signal includes a clock signal generated by the first communication device based on a signal received from a satellite of a satellite positioning system and a command for controlling the OTDR device, and includes the OTDR.
  • the water pressure fluctuation measuring system according to Appendix 20, wherein the device synchronizes the internal clock of the OTDR device with the clock signal included in the first optical signal.
  • a third optical signal having the third wavelength which transmits the third optical signal having the third wavelength in the forward direction of the fourth optical fiber and propagates in the forward direction of the third optical fiber.
  • a third communication device connected to the other end of the third and fourth optical fibers for receiving the optical signal of 4, and the fourth optical fiber provided on the path of the fourth optical fiber.
  • a third optical coupler that selectively branches the third optical signal propagating in the forward direction to the second receiving portion of the second communication device, and provided on the path of the third optical fiber.
  • the fourth optical signal output by the second transmitter of the second communication device is wavelength-selectively propagated so that the fourth optical signal propagates in the forward direction of the third optical fiber.
  • the second receiving unit receives the third optical signal and the second transmitting unit receives the third optical signal.
  • 20 is the water pressure fluctuation measuring system according to Appendix 20, which transmits the fourth optical signal including the result obtained by the OTDR apparatus.
  • the second communication device, the first to fourth optical couplers, and the OTDR device form an OADM (Optical add-drop multiplexer) branch node, and include the third and fourth optical fibers.
  • a second optical fiber cable includes the third communication device from the first observation station provided with the first communication device via the observation area in which the first optical fiber is laid.
  • the second communication device is connected to the observation station, communicates with the first observation station by the first and second optical signals, and communicates with the first observation station by the third and fourth optical signals.
  • the water pressure fluctuation measuring system according to Appendix 22, which communicates with an observation station.
  • the cable includes a sensor cable for measuring fluctuations in water pressure and a trunk cable for communication and power supply, and the first optical fiber is included in the sensor cable.
  • the hydraulic pressure fluctuation measuring system according to Appendix 19 or 20, wherein the sensor cable does not include a feeder, or the feeder conductor included is insulated from the feeder of the trunk cable.
  • the cable comprises a backbone cable for the purpose of communication and power supply, and a branch cable branched from the backbone cable by an OADM branch node for measuring fluctuations in water pressure, and the branch cable is the backbone.
  • a cable branched from the cable and a sensor cable for measuring fluctuations in water pressure are connected and configured, and the first optical fiber is included in the sensor cable and branched from the trunk cable.
  • the water pressure fluctuation measuring system according to Appendix 19 or 20, wherein the cable does not include a feeding wire conductor, or the feeding wire conductor included is insulated from the feeding line of the backbone cable.
  • the length of the first portion is the length of the first portion and the first portion so that tension is not transmitted to the OADM branch node when the first portion and the second portion are connected.
  • the first portion and the second portion are characterized in that they are installed in a place where cable replacement work including cable cutting and reconnection by anchor operation from a cable construction ship is performed.
  • the water pressure fluctuation measuring system according to Appendix 26 or 27.
  • a plurality of the OTDR devices are installed at a plurality of points on the first optical fiber via an optical combine demultiplexing means, and the water pressure fluctuates using one of the plurality of OTDR devices. If a failure occurs in the optical fiber cable that connects the one OTDR device and the optical duplexing means corresponding to the one OTDR device by performing measurement and using another OTDR device as a spare, the spare OTDR device.
  • the water pressure fluctuation measurement system according to any one of Appendix 13 to 15, wherein the water pressure fluctuation measurement is continued using any one of the above.
  • a cable including a first optical fiber having a partial reflection portion that partially reflects the monitoring light is provided on the path of the seabed so that the first optical fiber expands and contracts as the water pressure fluctuates.
  • the monitoring light is output to the first optical fiber, the reflected light reflected by the partial reflection unit is received, and the reciprocating propagation time of the received reflected light is used as the basis.
  • a method for measuring water pressure fluctuation which measures the length of the first optical fiber up to a partial reflection portion and monitors the change over time.
  • the amount of change in water pressure is obtained by multiplying the amount of change in the length of the first optical fiber by a coefficient, and the coefficient is the high tide in the sea area where the first optical fiber is installed.
  • the monitoring light is output at the first measurement timing and the second measurement timing after the first measurement timing, and up to the partial reflection portion measured at the first measurement timing.
  • the fluctuation amount of the water pressure is monitored based on the difference between the length of the first optical fiber and the length of the first optical fiber up to the partial reflection portion measured at the second measurement timing. 31. The method for measuring water pressure fluctuation.
  • Appendix 33 A plurality of the partial reflection portions are provided at different positions of the first optical fiber, and are based on a variation in the length of the first optical fiber between two of the plurality of partial reflection portions.
  • the plurality of partial reflection portions are configured so that the larger the path light loss from the output source of the monitoring light to the partial reflection portion, the higher the reflectance. Water pressure fluctuation measurement method.
  • Supplementary note 36 The method for measuring water pressure fluctuation according to any one of Supplementary note 33 to 35, wherein the cable is provided with a fixture for adding a gripping force to the ground or the ground.
  • Appendix 37 The method for measuring water pressure fluctuation according to Appendix 36, wherein the fixture is provided in the vicinity of a part or all of the plurality of partial reflection portions.
  • Appendix 38 The water pressure fluctuation measurement according to Appendix 36 or 37, wherein a mirror transponder used for acoustic distance measurement in the sea is fixed to the fixture to output a response acoustic signal by receiving an acoustic signal. Method.
  • the temperature of the first optical fiber is measured in a distributed manner in the longitudinal direction, and the change in the length of the optical fiber due to the change in the temperature with time is based on the amount of change in the length of the first optical fiber with time.
  • the method for measuring water pressure fluctuation according to any one of Supplementary Provisions 30 to 38, which excludes the above.
  • Supplementary note 41 The method for measuring water pressure fluctuation according to any one of Supplementary note 30 to 40, wherein the plane of polarization of the monitoring light is changed pseudo-randomly before the monitoring light is input to the first optical fiber.
  • the second optical fiber is branched from the first optical fiber by the combined demultiplexing means, and a partial reflection portion that partially reflects the monitoring light is provided on the path of the second optical fiber.
  • the method for measuring water pressure fluctuation according to any one of Supplementary Provisions 30 to 41, which is provided.
  • the first OTDR device outputs the monitoring light of the first wavelength
  • the second OTDR device outputs the monitoring light of the second wavelength
  • the combined / demultiplexing means is the first wavelength.
  • the third and fourth optical fibers having opposite forward directions, an optical amplification repeater that amplifies and relays light propagating through the third and fourth optical fibers, and the optical amplification relay.
  • An optical amplification relay system including a path that branches a part of light propagating in the third optical fiber in a direction opposite to the forward direction to reach the vessel and couples the light to the fourth optical fiber.
  • An optical coupler provided on the path of the third optical fiber, which couples the first optical fiber and the third optical fiber, and has wavelength selectivity for light of the first wavelength.
  • the monitoring light of the first wavelength is output in the forward direction of the third optical fiber, and the monitoring light of the first wavelength is the first light from the third optical fiber by the optical coupler.
  • the light reflected from the partial reflection portion provided in the first optical fiber and branched into the fiber in a wavelength-selective manner is coupled to the third optical fiber by the optical coupler, and the third optical fiber is coupled to the third optical fiber.
  • Propagates in the direction opposite to the forward direction of the above is coupled to the fourth optical fiber by the path, propagates in the forward direction of the fourth optical fiber, and propagates through the fourth optical fiber.
  • An optical amplification repeater that amplifies and relays light propagating through the third and fourth optical fibers whose forward directions are opposite to each other, and the optical amplification relay.
  • An optical amplification relay system including a path that branches a part of light propagating in the third optical fiber in a direction opposite to the forward direction to reach the vessel and couples the light to the fourth optical fiber.
  • the second light having the third wavelength provided, transmitting the first optical signal having the third wavelength in the forward direction of the third optical fiber and propagating in the forward direction of the fourth optical fiber.
  • a first communication device connected to one end of the third and fourth optical fibers for receiving a signal, a first receiving unit connected to the OTDR device and receiving the first optical signal, and a first receiving unit.
  • a second communication device having a first transmission unit for transmitting the second optical signal including the result obtained by the OTDR device, and the third optical fiber provided on the path of the third optical fiber.
  • a first optical coupler that selectively branches the first optical signal propagating in the forward direction of the third optical fiber to a first receiving portion of the second communication device, and the fourth optical fiber.
  • the second optical signal provided on the path and output by the first transmission unit of the second communication device is propagated in the forward direction of the fourth optical fiber so that the second optical signal propagates in the forward direction of the fourth optical fiber.
  • the first optical signal includes a clock signal generated by the first communication device based on a signal received from a satellite of a satellite positioning system and a command for controlling the OTDR device, and includes the OTDR.
  • a third optical signal having the third wavelength which transmits the third optical signal having the third wavelength in the forward direction of the fourth optical fiber and propagates in the forward direction of the third optical fiber.
  • a third communication device connected to the other end of the third and fourth optical fibers for receiving the optical signal of 4, and the fourth optical fiber provided on the path of the fourth optical fiber.
  • a third optical coupler that selectively branches the third optical signal propagating in the forward direction to the second receiving portion of the second communication device, and provided on the path of the third optical fiber.
  • the fourth optical signal output by the second transmitter of the second communication device is wavelength-selectively propagated so that the fourth optical signal propagates in the forward direction of the third optical fiber.
  • a second optical coupler coupled to the third optical fiber is provided, and in the second communication device, the second receiving unit receives the third optical signal, and the second transmitting unit receives the third optical signal. 49.
  • the second communication device, the first to fourth optical couplers, and the OTDR device form an OADM (Optical add-drop multiplexer) branch node, and include the third and fourth optical fibers.
  • a second optical fiber cable includes the third communication device from the first observation station provided with the first communication device via the observation area in which the first optical fiber is laid.
  • the second communication device is connected to the observation station, communicates with the first observation station by the first and second optical signals, and communicates with the first observation station by the third and fourth optical signals.
  • the water pressure fluctuation measuring method according to Appendix 51 which communicates with an observation station.
  • the cable includes a sensor cable for measuring fluctuations in water pressure and a trunk cable for communication and power supply, and the first optical fiber is included in the sensor cable.
  • the cable comprises a backbone cable for the purpose of communication and power supply, and a branch cable branched from the backbone cable by an OADM branch node for measuring fluctuations in water pressure, and the branch cable is the backbone.
  • a cable branched from the cable and a sensor cable for measuring fluctuations in water pressure are connected and configured, and the first optical fiber is included in the sensor cable and branched from the trunk cable.
  • the method for measuring water pressure fluctuation according to Appendix 47 or 48, wherein the cable does not include a power supply line conductor, or the power supply line conductor included is insulated from the power supply line of the backbone cable.
  • the length of the first portion is the length of the first portion and the first portion so that tension is not transmitted to the OADM branch node when the first portion and the second portion are connected.
  • the water pressure fluctuation measuring method according to Appendix 55 wherein the connection point with the portion 2 and the OADM branch node are separated from each other by a length.
  • the first portion and the second portion are characterized in that they are installed in a place where cable replacement work including cable cutting and reconnection by anchor operation from a cable construction ship is performed.
  • the method for measuring water pressure fluctuation according to Appendix 55 or 56.
  • a plurality of the OTDR devices are installed at a plurality of points on the first optical fiber via an optical combine demultiplexing means, and the water pressure fluctuates using one of the plurality of OTDR devices. If a failure occurs in the optical fiber cable that connects the one OTDR device and the optical duplexing means corresponding to the one OTDR device by performing measurement and using another OTDR device as a spare, the spare OTDR device.
  • the method for measuring water pressure fluctuation according to any one of Appendix 42 to 44, wherein the water pressure fluctuation measurement is continued using any one of the above.
  • Optical Fiber Cable (Optical Fiber) FA, FR, FT, F61 to F64
  • Optical fiber FP Fiber pair P Return path of reflected light from transmission line R11 to R14, R21 to R23, R31, R32, R41, R42, R51, R52, Rxx Partial reflector Rx reception Instrument Tx Transmitter TPD1, TPD2, TPD4 Mirror transponder SL Power supply conductor WC, WC1, WC2 WDM coupler WC0 Wavelength division multiplexing separator 1, 10 to 13 OTDR device 1A Optical output unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

This water pressure fluctuation measuring system detects fluctuations in water pressure. A cable includes an optical fiber (F1) and is disposed on the surface of or in the sea floor so that the optical fiber (F1) expands and contracts in conjunction with fluctuations in water pressure. A light output unit (1A) outputs monitoring light to the optical fiber (F1). A partial reflection part (R11) is disposed on the path of the optical fiber (F1) in the cable, and partially reflects the monitoring light. A light reception unit (1B) receives the reflected light reflected by the partial reflection part (R11). A calculation unit (1C): measures the length of the optical fiber (F1) to the partial reflection part (R11) on the basis of the round-trip propagation time of the received reflected light; and monitors the changes over time of such length.

Description

水圧変動測定システム及び水圧変動測定方法Water pressure fluctuation measurement system and water pressure fluctuation measurement method
 本発明は、水圧変動測定システム及び水圧変動測定方法に関する。 The present invention relates to a water pressure fluctuation measuring system and a water pressure fluctuation measuring method.
 地面の移動を計測する様々な手法が知られている。例えば、電気信号を導通させたワイヤを地面に敷設しておき、ワイヤが切れたことを異常として検知して地滑り監視などを行うワイヤセンサという技術が知られている。また、この導電性ワイヤを光ファイバケーブルに置き換えて同様の監視を行う光ワイヤセンサという技術が知られている。 Various methods for measuring the movement of the ground are known. For example, there is known a technique called a wire sensor in which a wire that conducts an electric signal is laid on the ground, and a broken wire is detected as an abnormality to monitor a landslide. Further, there is known a technique called an optical wire sensor in which the conductive wire is replaced with an optical fiber cable to perform the same monitoring.
 光ワイヤセンサでは、光ファイバが破断して光の伝搬が阻害されたことを検出する方法や、光ファイバケーブルに加わる張力に応じて曲げ損失が増えるように光ファイバケーブルを敷設し、損失の変化をモニタする方法などが用いられる(特許文献1~3)。例えば特許文献3では、地面の伸縮に応じてケーブルを自動的に繰り出し/巻き取りする仕組みを光ファイバケーブルの端点に設けておき、各監視点では光ファイバに微小な損失が与えられている。損失付与点は地面に固定されており、光ファイバケーブルが地面に対して動くと損失付与点が移動する。この損失付与点を後述するOTDR(Optical Time Domain Reflectometry)により検出している。 In the optical wire sensor, a method of detecting that the optical fiber is broken and the propagation of light is obstructed, or an optical fiber cable is laid so that the bending loss increases according to the tension applied to the optical fiber cable, and the loss changes. (Patent Documents 1 to 3). For example, in Patent Document 3, a mechanism for automatically feeding / winding the cable according to the expansion and contraction of the ground is provided at the end point of the optical fiber cable, and a minute loss is given to the optical fiber at each monitoring point. The loss giving point is fixed to the ground, and when the optical fiber cable moves with respect to the ground, the loss giving point moves. This loss addition point is detected by OTDR (Optical Time Domain Reflectometry), which will be described later.
 また、光ファイバに紫外線照射などで特定の波長を選択的に反射する回折格子を設けるFBG(Fiber Bragg Grating)という光受動素子の技術が知られている。このFBGを上述の損失付与点と同様に光ファイバケーブルの各所に設けることもできる。例えば、FBGを外部の影響(例えば 歪みや温度)によって回折格子の周期が変化するようなパッケージに収納すると、設置場所の環境に応じてFBGの反射波長が変化する。FBGにプローブ光を照射してその反射光を測定することで、FBGが設けられた場所の歪みや温度の情報を得ることができる。1本の光ファイバケーブルに複数のFBGを設ける構成では、例えば、FBGの初期の反射波長を互いに重ならないように配置設計することで、各FBGは反射光の波長によって区別することができる。 Further, there is known a technique of an optical passive element called FBG (Fiber Bragg Grating), which provides an optical fiber with a diffraction grating that selectively reflects a specific wavelength by irradiation with ultraviolet rays or the like. This FBG can also be provided at various points in the optical fiber cable in the same manner as the loss imparting point described above. For example, if the FBG is housed in a package in which the period of the diffraction grating changes due to an external influence (for example, distortion or temperature), the reflection wavelength of the FBG changes according to the environment of the installation location. By irradiating the FBG with probe light and measuring the reflected light, it is possible to obtain information on the distortion and temperature of the place where the FBG is provided. In a configuration in which a plurality of FBGs are provided on one optical fiber cable, for example, by arranging and designing the initial reflection wavelengths of the FBGs so as not to overlap each other, each FBG can be distinguished by the wavelength of the reflected light.
 光ファイバ伝送路の健全性をチェックする手法として、光ファイバにパルス光を入射し、反射して戻ってくる光のパワーを、戻ってくるまでの時間と共に測定するOTDRという技術が知られている。光ファイバにはレイリー散乱による微弱な反射光が生じるので、パルス光が光ファイバを伝搬するにしたがって、伝送損失の影響を受けて反射光が弱まっていく様子が軌跡として観測される。このとき、光ファイバに反射点や曲げ損失などがあると、その軌跡の特定の場所に反射光のパワーが上昇又は下降するので、場所を同定することができる。このように、OTDRでは、反射光が戻ってくるまでの時間を計測することで、パワー変動の生じる場所を区別できる(特許文献4)。 As a method for checking the health of an optical fiber transmission line, a technique called OTDR is known in which pulsed light is incident on an optical fiber and the power of the reflected and returned light is measured together with the time until the light returns. .. Since weak reflected light is generated in the optical fiber due to Rayleigh scattering, it is observed as a locus that the reflected light is weakened under the influence of the transmission loss as the pulsed light propagates in the optical fiber. At this time, if the optical fiber has a reflection point, a bending loss, or the like, the power of the reflected light rises or falls at a specific place on the locus, so that the place can be identified. As described above, in the OTDR, the place where the power fluctuation occurs can be distinguished by measuring the time until the reflected light returns (Patent Document 4).
 1本の光ファイバの先に複数のセンサ素子をつなぐ構成にOTDRを適用する手法も一般に用いられている。例えば光ワイヤセンサにおいて、設置場所の状況が曲げ損失に反映されるセンサ素子が複数設けられている場合、各設置場所で生じる損失はOTDRの軌跡を見ることで、場所ごとに区別してモニタすることができる。また、OTDRにおいてFBGを反射素子として用いる技術も利用されている。このような多点センシングに用いられるOTDRは、Interrogatorと称されることもある。 A method of applying an OTDR to a configuration in which a plurality of sensor elements are connected to the tip of one optical fiber is also generally used. For example, in an optical wire sensor, when a plurality of sensor elements whose installation location conditions are reflected in bending loss are provided, the loss generated at each installation location should be monitored separately for each location by observing the OTDR trajectory. Can be done. Further, a technique of using an FBG as a reflecting element in an OTDR is also used. The OTDR used for such multipoint sensing is sometimes referred to as an interrogator.
 他にも、光ファイバ伝送路の途中に部分的な反射を生じる部品を挿入して光増幅中継器の健全性をモニタする技術(特許文献6及び7)が知られており、特許文献7ではOTDRとの組合せにより場所を同定する技術も開示されている。また、GPSと音響測距とを組み合わせた地殻変動検出(特許文献8、非特許文献1)や、測距用の光を水中に伝搬させる光送受信装置を水底に設置する技術も知られている(特許文献9)。 In addition, a technique (Patent Documents 6 and 7) for monitoring the soundness of an optical amplification repeater by inserting a component that causes partial reflection in the middle of an optical fiber transmission line is known. A technique for identifying a location in combination with an OTDR is also disclosed. Further, there are also known techniques for detecting crustal movements combining GPS and acoustic ranging (Patent Document 8 and Non-Patent Document 1), and installing an optical transmitter / receiver for propagating light for ranging into water on the bottom of the water. (Patent Document 9).
 さらに、沖合の潮位や津波の状態を検知するために、沖合の海底で水圧変化を計測するいくつかの手法が知られている。典型的な方法は、水圧センサを海底に設置して、その測定データを海底ケーブルを通じて陸地に伝送するものである(非特許文献2)。さらにまた、海底ケーブル自体が水圧の影響を受けて変化する様子を陸地で検出する技術も開示されている(特許文献10)。 Furthermore, there are several known methods for measuring changes in water pressure on the seafloor offshore in order to detect offshore tide levels and tsunami conditions. A typical method is to install a water pressure sensor on the seabed and transmit the measurement data to the land through a submarine cable (Non-Patent Document 2). Furthermore, a technique for detecting on land how the submarine cable itself changes under the influence of water pressure is also disclosed (Patent Document 10).
特開平8-14952号公報Japanese Unexamined Patent Publication No. 8-14952 特許第4187866号公報Japanese Patent No. 4187866 特許第3653550号公報Japanese Patent No. 36535550 特表2007-518365号公報Special Table 2007-518365 特許第3440721号公報Japanese Patent No. 3440721 特許第3509748号公報Japanese Patent No. 3509748 特許第3391341号公報Japanese Patent No. 3391341 米国特許第3860900号明細書U.S. Pat. No. 3,860,900 特許第2906232号公報Japanese Patent No. 2906232 特許第2586838号公報Japanese Patent No. 2586838
 しかしながら、上記の技術は、例えば地滑りや斜面崩壊などの地面の急激な変化の検出を想定したものであり、地殻変動のような微少かつ緩慢な地面の動きを光ファイバの長さの変化に反映させて検出することはできない。 However, the above technology assumes the detection of sudden changes in the ground such as landslides and slope failures, and reflects minute and slow movements of the ground such as crustal movements in changes in the length of optical fibers. It cannot be detected by letting it.
 FBG歪みセンサのような歪みセンサは、橋梁などの建築物や航空機などの構造体のひずみをモニタするような局所的なひずみの監視に用いられているのに対し、長い基線長を観測して、地殻変動のような大きな範囲の地面の伸縮を積分して検出する用途には不向きである。 Strain sensors, such as FBG strain sensors, are used to monitor local strain, such as monitoring strain in buildings such as bridges and structures such as aircraft, while observing long baseline lengths. , It is not suitable for the application of integrating and detecting the expansion and contraction of the ground in a large range such as crustal movement.
 上述のOTDRは、一般に、光ファイバケーブルの全体の長さ測定に用いられるものであり、ケーブルの途中の伸縮の様子をモニタすることはできない。 The above-mentioned OTDR is generally used for measuring the entire length of an optical fiber cable, and it is not possible to monitor the expansion and contraction of the cable in the middle.
 また、上述の沖合の潮位や津波の状態を検知する手法は、海底ケーブルが被る水圧変化の影響を、長大な光干渉計を組んで検出するものであり、海底ケーブルの区間ごとの水圧変化を知るには、長大な光干渉計を多数構成しなければならず、多くの心線を必要とし、経済性に難があった。 In addition, the above-mentioned method for detecting the offshore tide level and tsunami condition detects the effect of changes in water pressure on the submarine cable with a long optical interferometer, and detects changes in water pressure for each section of the submarine cable. In order to know, it was necessary to configure a large number of long optical interferometers, which required many core wires, which was economically difficult.
 本発明は、上記の事情に鑑みて成されたものであり、水圧変動を検出することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to detect fluctuations in water pressure.
 本発明の一態様である水圧変動測定システムは、第1の光ファイバを含み、前記第1の光ファイバが水圧の変動に伴い伸縮するように海底の地面上又は地中に設けられたケーブルと、前記第1の光ファイバに監視光を出力する光出力部と、前記ケーブル内の第1の光ファイバの経路上に設けられ、前記監視光を部分的に反射する部分反射部と、前記部分反射部で反射された反射光を受信する光受信部と、受信した前記反射光の往復伝搬時間に基づいて、前記部分反射部までの前記第1の光ファイバの長さを計測し、その継時変化をモニタする演算部と、を有するものである。 The water pressure fluctuation measuring system according to one aspect of the present invention includes a first optical fiber, and a cable provided on the ground or in the ground of the sea floor so that the first optical fiber expands and contracts according to the fluctuation of water pressure. An optical output unit that outputs monitoring light to the first optical fiber, a partial reflection unit that is provided on the path of the first optical fiber in the cable and partially reflects the monitoring light, and the portion. Based on the reciprocating propagation time of the light receiving unit that receives the reflected light reflected by the reflecting unit and the received reflected light, the length of the first optical fiber to the partial reflecting unit is measured, and the length thereof is connected. It has a calculation unit that monitors time changes.
 本発明の一態様である水圧変動測定方法は、監視光を部分的に反射する部分反射部が経路上に設けられた第1の光ファイバを含むケーブルを、前記第1の光ファイバが水圧の変動に伴い伸縮するように海底の地面上又は地中に設け、前記第1の光ファイバに前記監視光を出力し、前記部分反射部で反射された反射光を受信し、受信した前記反射光の往復伝搬時間に基づいて、前記部分反射部までの前記第1の光ファイバの長さを計測し、その継時変化をモニタするものである。 In the water pressure fluctuation measuring method according to one aspect of the present invention, a cable including a first optical fiber having a partial reflection portion that partially reflects the monitoring light is provided on the path, and the first optical fiber is water pressure. It is provided on the ground or in the ground of the sea floor so as to expand and contract with fluctuations, the monitoring light is output to the first optical fiber, the reflected light reflected by the partial reflection portion is received, and the received reflected light is received. The length of the first optical fiber up to the partial reflection portion is measured based on the reciprocating propagation time of the above, and the change over time is monitored.
 本発明によれば、水圧変動を検出することができる。 According to the present invention, fluctuations in water pressure can be detected.
実施の形態1にかかる測量システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the surveying system which concerns on Embodiment 1. FIG. 部分反射部の構成例を模式的に示す図である。It is a figure which shows typically the structural example of the partial reflection part. 取得されるOTDR波形の一例を示す図である。It is a figure which shows an example of the acquired OTDR waveform. 第1及び第2の測定日における部分反射部に対応するピークの立ち上がりを拡大した図である。It is the figure which magnified the rise of the peak corresponding to the partial reflection part on the 1st and 2nd measurement days. 実施の形態2にかかる測量システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the surveying system which concerns on Embodiment 2. 実施の形態2にかかる第1の測定日でのOTDR波形を示す図である。It is a figure which shows the OTDR waveform on the 1st measurement day which concerns on Embodiment 2. FIG. 部分反射部が設置された地点1と部分反射部が設置された地点2とでの第1及び第2の測定日におけるピークの立ち上がりを拡大した図である。It is a figure which magnified the rise of the peak on the 1st and 2nd measurement days at the point 1 where a partial reflection part was installed and the point 2 where a partial reflection part was installed. 実施の形態2にかかる測量システムにより第1及び第2の測定日で観測された地点0~地点4までのファイバ長の例を示す図である。It is a figure which shows the example of the fiber length from the point 0 to the point 4 observed on the 1st and 2nd measurement days by the surveying system which concerns on Embodiment 2. FIG. 部分反射部の反射率が同じである場合のOTDR波形の例を示す図である。It is a figure which shows the example of the OTDR waveform when the reflectance of a partial reflection part is the same. OTDR装置から離れるにつれて部分反射部の反射率を高くした場合のOTDR波形の例を示す図である。It is a figure which shows the example of the OTDR waveform when the reflectance of a partial reflection part is increased as the distance from the OTDR apparatus increases. 誤差の抑制技術が導入された測量システム700の構成を模式的に示す図である。It is a figure which shows typically the structure of the surveying system 700 which introduced the error suppression technique. 実施の形態3にかかる測量システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the surveying system which concerns on Embodiment 3. 実施の形態4にかかる測量システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the surveying system which concerns on Embodiment 4. 実施の形態4にかかる測量システムで得られるOTDR波形を示す図である。It is a figure which shows the OTDR waveform obtained by the surveying system which concerns on Embodiment 4. FIG. 光ファイバケーブルが分岐できない場合の本測量システムの敷設経路の例を示す図である。It is a figure which shows the example of the laying path of this surveying system when the optical fiber cable cannot branch. 光ファイバケーブルが分岐可能な場合の本測量システムの敷設経路の例を示す図である。It is a figure which shows the example of the laying path of this surveying system when an optical fiber cable can be branched. 実施の形態5にかかる測量システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the surveying system which concerns on Embodiment 5. 実施の形態5にかかる測量システムの変形例の構成を模式的に示す図である。It is a figure which shows typically the structure of the modification of the surveying system which concerns on Embodiment 5. 実施の形態6にかかる測量システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the surveying system which concerns on Embodiment 6. 実施の形態6にかかる測量システムによる光ファイバの監視結果を示す図である。It is a figure which shows the monitoring result of the optical fiber by the surveying system which concerns on Embodiment 6. 実施の形態7にかかる測量システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the surveying system which concerns on Embodiment 7. OADM分岐ノードの構成を模式的に示す図である。It is a figure which shows typically the structure of the OADM branch node. 実施の形態7にかかる測量システムの変形例の構成を模式的に示す図である。It is a figure which shows typically the structure of the modification of the surveying system which concerns on Embodiment 7. 実施の形態7にかかる測量システムの変形例の構成を模式的に示す図である。It is a figure which shows typically the structure of the modification of the surveying system which concerns on Embodiment 7. 実施の形態8において各OADM分岐ノードと2つの陸上局間との間でルート冗長ネットワークを構成した例を示す図である。It is a figure which shows the example which configured the route redundant network between each OADM branch node and two land stations in Embodiment 8. ルート冗長ネットワーク構成に対応したOADM分岐ノードの構成を模式的に示す図である。It is a figure which shows typically the configuration of the OADM branch node corresponding to the route redundant network configuration. 実施の形態9にかかる基幹ケーブルから分岐するセンサ用ケーブル(枝線ケーブル)の態様を模式的に示す図である。It is a figure which shows typically the mode of the sensor cable (branch line cable) which branches from the trunk cable which concerns on Embodiment 9. FIG. 実施の形態10にかかる測量システムの構成例を模式的に示す図である。It is a figure which shows typically the configuration example of the surveying system which concerns on Embodiment 10. 実施の形態11にかかる測量システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the surveying system which concerns on Embodiment 11. 海底ケーブルが水圧変動を感じるメカニズムの説明図である。It is explanatory drawing of the mechanism that the submarine cable feels the water pressure fluctuation. 実施の形態12にかかる水圧測定の結果の一例を示す図である。It is a figure which shows an example of the result of the water pressure measurement which concerns on Embodiment 12.
 以下、図面を参照して本発明の実施の形態について説明する。各図面においては、同一要素には同一の符号が付されており、必要に応じて重複説明は省略される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, the same elements are designated by the same reference numerals, and duplicate explanations are omitted as necessary.
 実施の形態1
 実施の形態1にかかる測量システム100について説明する。測量システム100は、地面に敷設した光ファイバにOTDR(Optical Time Domain Reflectometry)を適用することで、地面の移動を検出するものとして構成される。図1に、実施の形態1にかかる測量システム100の構成を模式的に示す。測量システム100は、OTDR装置1、光ファイバケーブルF1、部分反射部R11を有する。
Embodiment 1
The surveying system 100 according to the first embodiment will be described. The surveying system 100 is configured to detect the movement of the ground by applying an OTDR (Optical Time Domain Reflectometry) to an optical fiber laid on the ground. FIG. 1 schematically shows the configuration of the surveying system 100 according to the first embodiment. The surveying system 100 includes an OTDR device 1, an optical fiber cable F1, and a partial reflection unit R11.
 光ファイバケーブルF1は、例えば、地面110の移動をモニタしたい範囲の海底を横断するように、適度に張力が作用するように敷設されている。光ファイバケーブルF1には、観測エリアの地面110の移動をモニタする地点に部分反射部R11が挿入されている。光ファイバケーブルF1の一端は、陸上局などに設置されているOTDR装置1と接続される。この例では、部分反射部R11は、入射する光の一部を反射する部分反射部として構成される。 The optical fiber cable F1 is laid so that an appropriate tension acts so as to cross the seabed in a range where the movement of the ground 110 is to be monitored, for example. In the optical fiber cable F1, a partial reflection portion R11 is inserted at a point where the movement of the ground 110 in the observation area is monitored. One end of the optical fiber cable F1 is connected to an OTDR device 1 installed in a land station or the like. In this example, the partial reflection unit R11 is configured as a partial reflection unit that reflects a part of the incident light.
 ここで、部分反射部R11の構成の一例を、図2を用いて説明する。これは部分反射部の実現方法として広く用いられている構成である。部分反射部R11は、光Lが図の左方向から入射し、光Lの一部が反射されて反射光RLとなり左方向に戻る。また、部分反射部R11で反射されなかった光Lの大部分である通過光PLが部分反射部R11を通過して右方向に抜ける。 Here, an example of the configuration of the partial reflection portion R11 will be described with reference to FIG. This is a configuration widely used as a method for realizing a partial reflection portion. In the partially reflecting portion R11, the light L is incident from the left direction in the figure, and a part of the light L is reflected to become the reflected light RL and returns to the left direction. Further, the passing light PL, which is the majority of the light L not reflected by the partial reflecting portion R11, passes through the partial reflecting portion R11 and exits to the right.
 入射光Lは、光カプラ2によって、通過光PLと、反射光の元になる光に分波される。反射光の元になる光は光減衰素子3を通過して、端部の全反射素子4に達して全反射し、元来た経路を通って光カプラ2で合波され、反射光RLとなって光源側に向かって伝送される。全反射素子4としては、端面に金を蒸着したフェルールなどを用いることができる。 The incident light L is demultiplexed by the optical coupler 2 into the passing light PL and the light that is the source of the reflected light. The light that is the source of the reflected light passes through the light attenuation element 3, reaches the total reflection element 4 at the end, is totally reflected, and is combined by the optical coupler 2 through the original path, and becomes the reflected light RL. Is transmitted toward the light source side. As the total reflection element 4, a ferrule or the like in which gold is vapor-deposited on the end face can be used.
 この構成における反射率及び透過率は、まず光カプラ2の分岐比によっておおよそ決まる。例えば光カプラの分岐比が80:20であれば、透過率は80%すなわち約1dB減衰し、反射光RLは光カプラを2回通過するので少なくとも4%すなわち約14dB減衰する。後述するように、部分反射部を光ファイバケーブル上に複数設けることが想定されるので、透過と反射とのバランスを、光カプラの分岐比を適切に選択することで確保する。次に光減衰素子3の減衰量を調整することで反射率を下げる方向に調整できる。光減衰素子3は、光ファイバ同士を融着接続(スプライス)するときに、2本の光ファイバの中心軸をわずかにずらして融着接続することで実現できるので個別調整しやすい。これらの調整パラメータにより、各部分反射部の反射率を異ならせることができる。この構成では部分反射部として作用するのは一方向のみなので、多重反射の影響を考慮する必要がない。部分反射部としてはこの他にも、低めの反射率を持たせたFBGや、2芯フェルールを用いたモジュール構成など様々な形態が知られており、適用可能である。 The reflectance and transmittance in this configuration are first roughly determined by the branching ratio of the optical coupler 2. For example, if the branch ratio of the optical coupler is 80:20, the transmittance is attenuated by 80%, that is, about 1 dB, and the reflected light RL is attenuated by at least 4%, that is, about 14 dB because it passes through the optical coupler twice. As will be described later, since it is assumed that a plurality of partial reflection portions are provided on the optical fiber cable, the balance between transmission and reflection is ensured by appropriately selecting the branch ratio of the optical coupler. Next, by adjusting the amount of attenuation of the light attenuation element 3, it can be adjusted in the direction of lowering the reflectance. Since the optical attenuation element 3 can be realized by fusion-bonding (splicing) the optical fibers with each other by slightly shifting the central axes of the two optical fibers, individual adjustment is easy. With these adjustment parameters, the reflectance of each partial reflection portion can be made different. In this configuration, since it acts as a partial reflection portion in only one direction, it is not necessary to consider the influence of multiple reflections. In addition to this, various forms such as an FBG having a low reflectance and a module configuration using a 2-core ferrule are known as the partial reflecting portion, and are applicable.
 OTDR装置1は、光ファイバF1(第1の光ファイバ)に監視光であるパルス光を出力し、レイリー散乱などによる戻り光をモニタして反射光のパワーの軌跡を取得するOTDRを実行可能な装置として構成される。OTDR装置1は、光出力部1A、光受信部1B及び演算部1Cを有する。光出力部1Aは、光ファイバF1へパルス光を出力する。光受信部1Bは、光ファイバF1からの戻り光を電気信号に変換する。演算部1Cは、光受信部1Bから出力される電気信号をモニタし、戻り光のパワーが描く軌跡を演算処理して、部分反射部のファイバ上の位置を検出し、記録する。以下では、戻り光のパワーが描く軌跡をOTDR波形と称する。 The OTDR device 1 can execute an OTDR that outputs pulsed light, which is monitoring light, to the optical fiber F1 (first optical fiber), monitors the return light due to Rayleigh scattering, and acquires the trajectory of the reflected light power. It is configured as a device. The OTDR device 1 includes an optical output unit 1A, an optical reception unit 1B, and a calculation unit 1C. The optical output unit 1A outputs pulsed light to the optical fiber F1. The optical receiver 1B converts the return light from the optical fiber F1 into an electric signal. The calculation unit 1C monitors the electric signal output from the light reception unit 1B, calculates and processes the locus drawn by the power of the return light, detects the position of the partial reflection unit on the fiber, and records it. Hereinafter, the trajectory drawn by the power of the return light is referred to as an OTDR waveform.
 換言すれば、演算部1Cは、戻り光(反射光)の往復伝搬時間に基づいて、部分反射部R11までの光ファイバF1の長さを計測し、その継時変化をモニタするものとして理解できる。 In other words, the calculation unit 1C can be understood as measuring the length of the optical fiber F1 up to the partial reflection unit R11 based on the reciprocating propagation time of the return light (reflected light) and monitoring the change over time. ..
 なお、演算部1Cが行うものとして説明した光ファイバF1の長さの継時変化のモニタについては、OTDR装置1の外部に設けられた外部装置が有する制御部などで行ってもよい。つまり、演算部1Cが戻り光(反射光)の往復伝搬時間に基づいて部分反射部R11までの光ファイバF1の長さを計測し、計測された光ファイバF1の長さの計測結果に応じて、外部装置が有する制御部などがその経時変化をモニタしてもよい。 Note that the monitoring of the change in the length of the optical fiber F1 described as being performed by the arithmetic unit 1C may be performed by a control unit or the like provided by an external device provided outside the OTDR device 1. That is, the calculation unit 1C measures the length of the optical fiber F1 up to the partial reflection unit R11 based on the reciprocating propagation time of the return light (reflected light), and according to the measurement result of the measured length of the optical fiber F1. , A control unit of an external device or the like may monitor the change over time.
 測量システム100の地面110の移動の検出について説明する。OTDR装置1は光ファイバF1に対してOTDR測定を行い、その中に含まれる部分反射点を自動検出して、各部分反射点の光ファイバ上の位置、すなわちOTDRから各部分反射点までのファイバ長を記録する。図3に、取得されるOTDR波形の一例を示す。縦軸は戻り光のパワー(例えば、対数表示)であり、横軸はファイバ長である。部分反射部R11が設けられた位置に対応する地点で光パルスが部分反射部R11によって強めに反射されるので、戻り光のパワーが局所的に高くなりピークP111が生じる。演算部1Cはそのピークを自動検出して出力するのである。 The detection of the movement of the ground 110 of the surveying system 100 will be described. The OTDR device 1 performs OTDR measurement on the optical fiber F1, automatically detects the partial reflection points contained therein, and positions the partial reflection points on the optical fiber, that is, the fiber from the OTDR to each partial reflection point. Record the length. FIG. 3 shows an example of the acquired OTDR waveform. The vertical axis is the power of the return light (for example, logarithmic representation), and the horizontal axis is the fiber length. Since the light pulse is strongly reflected by the partial reflection portion R11 at the point corresponding to the position where the partial reflection portion R11 is provided, the power of the return light is locally increased and the peak P1 11 is generated. The calculation unit 1C automatically detects and outputs the peak.
 以上のOTDR測定を、時間を空けて繰り返し測定することで、比較的ゆっくりした地面110の移動を検出する。以降では、その測定日を、第1の測定日、第2の測定日というように称して説明する。 By repeatedly measuring the above OTDR measurements at intervals, the relatively slow movement of the ground 110 is detected. Hereinafter, the measurement date will be referred to as a first measurement date and a second measurement date.
 地面110に移動が生じ、その結果として光ファイバケーブルF1が伸縮すると、第1の測定日と第2の測定日における各部分反射部の位置が移動して見えることとなる。図4に、第1及び第2の測定日における部分反射部R11に対応するピークの立ち上がりを拡大した図を示す。第1の測定日の波形は破線で、第2の測定日の波形は実線で示している。図4を見ると分かるように、第2の測定日でのピークP211は、第1の測定日のピークP111よりも左側にわずかにシフトしている。これは光ファイバケーブルF1がわずかに縮んでケーブル長が短くなり、部分反射部R11が、陸上局(すなわち、OTDR装置1)にわずかに近づいたことを示している。 When the optical fiber cable F1 expands and contracts as a result of movement on the ground 110, the positions of the partial reflection portions on the first measurement day and the second measurement day appear to move. FIG. 4 shows an enlarged view of the rise of the peak corresponding to the partial reflection portion R11 on the first and second measurement days. The waveform on the first measurement day is shown by a broken line, and the waveform on the second measurement day is shown by a solid line. As can be seen in FIG. 4, the peak P2 11 on the second measurement day is slightly shifted to the left of the peak P1 11 on the first measurement day. This indicates that the optical fiber cable F1 is slightly shrunk and the cable length is shortened, and the partial reflection unit R11 is slightly closer to the land station (that is, the OTDR device 1).
 以上、本構成によれば、離隔した2つの測定日で同じ部分反射部からの反射光によるピーク位置を比較することで、部分反射部が設けられた位置の地面の移動を検出することができる。 As described above, according to this configuration, the movement of the ground at the position where the partial reflection portion is provided can be detected by comparing the peak positions due to the reflected light from the same partial reflection portion on two separated measurement days. ..
 光ファイバケーブルF1は、海底面との間に十分な摩擦を有し、また適度な張力が残存するように敷設することで、海底面、すなわち地面110の伸縮に応じて同様に伸縮する。適度な張力が残存するように光ファイバケーブルF1を敷設するために、例えば船上でBOTDR(Brillouin OTDR)によって光ファイバF1のひずみを計測するなどの方法で残存張力を確認しながら敷設することも可能である。 The optical fiber cable F1 has sufficient friction with the seabed and is laid so that an appropriate tension remains, so that the optical fiber cable F1 expands and contracts in the same manner according to the expansion and contraction of the seabed, that is, the ground 110. In order to lay the optical fiber cable F1 so that an appropriate tension remains, it is also possible to lay it while checking the residual tension by, for example, measuring the strain of the optical fiber F1 by BOTDR (Brillouin OTDR) on board. Is.
 実施の形態2
 実施の形態2にかかる測量システム200について説明する。図5に、実施の形態2にかかる測量システム200の構成を模式的に示す。測量システム200は、測量システム100と比較して、部分反射部が複数個設けられている。具体的には、測量システム200では、部分反射部R11の以遠に3つの部分反射部R12~R14を追加した構成を有する。OTDR装置1の設置場所を地点0と称する。なお、図1と同様に光ファイバケーブルF1は地面の上に設置されているが地面は図示を省略する。
Embodiment 2
The surveying system 200 according to the second embodiment will be described. FIG. 5 schematically shows the configuration of the surveying system 200 according to the second embodiment. The surveying system 200 is provided with a plurality of partial reflection portions as compared with the surveying system 100. Specifically, the surveying system 200 has a configuration in which three partial reflection units R12 to R14 are added beyond the partial reflection unit R11. The installation location of the OTDR device 1 is referred to as point 0. Although the optical fiber cable F1 is installed on the ground as in FIG. 1, the ground is not shown.
 測量システム200の地面の移動の検出について説明する。測量システム200は、実施の形態にかかる測量システム100と同様に、第1及び第2の測定日におけるOTDR波形を取得する。図6に、実施の形態2にかかる第1の測定日のOTDR波形を示す。図6では、4つの部分反射部R11~R14がOTDR装置1に近い方から順に配置されているため、これらに対応する4つの地点1~地点4での4つのピークP111、P112、P113及びP114がその順番で現れる。 The detection of the movement of the ground of the surveying system 200 will be described. The surveying system 200 acquires OTDR waveforms on the first and second measurement dates, similarly to the surveying system 100 according to the embodiment. FIG. 6 shows an OTDR waveform on the first measurement day according to the second embodiment. In FIG. 6, since the four partial reflection portions R11 to R14 are arranged in order from the side closest to the OTDR device 1, the four peaks P1 11 , P1 12 , and P1 at the four points 1 to 4 corresponding to these are arranged in order. 13 and P1 14 appear in that order.
 本実施の形態では、実施の形態1と同様に、第1及び第2の測定日での測定結果を比較する。図7に、部分反射部R11が設置された地点1と、部分反射部R12が設置された地点2とでの第1及び第2の測定日におけるピークの立ち上がりを拡大した図を示す。第1の測定日の波形は破線で、第2の測定日の波形は実線で示している。 In the present embodiment, the measurement results on the first and second measurement dates are compared as in the first embodiment. FIG. 7 shows an enlarged view of the rise of peaks on the first and second measurement days at the point 1 where the partial reflection portion R11 is installed and the point 2 where the partial reflection portion R12 is installed. The waveform on the first measurement day is shown by a broken line, and the waveform on the second measurement day is shown by a solid line.
 地点1と地点2の変化の様子を比較すると、地点2でのピークのシフト量は地点1でのピークのシフト量よりも大きい。したがってOTDR装置1(地点0)~地点1間、地点1~地点2間のどちらもケーブル長が縮んだことがわかる。もしOTDR装置1と地点1の間だけが縮み、それ以遠で伸縮がなければ、地点1以遠のシフト量は、OTDR装置1~地点1間と同じになるからである。 Comparing the changes in point 1 and point 2, the peak shift amount at point 2 is larger than the peak shift amount at point 1. Therefore, it can be seen that the cable length is shortened in both the OTDR device 1 (point 0) and the point 1 and the point 1 and the point 2. This is because if only the space between the OTDR device 1 and the point 1 contracts and there is no expansion or contraction beyond that point, the shift amount beyond the point 1 is the same as that between the OTDR device 1 and the point 1.
 図8に、測量システム200により第1及び第2の測定日で観測された地点0~地点4までのケーブル長の測定例を示す。この例では、第1と第2の測定日との間隔は約1年間である。なお、図8のケーブル長測定値では温度や潮汐などの影響は既に取り除かれている。地点1~地点2間のファイバ長をL12、地点2~地点3間のファイバ長をL23、のように称す。 FIG. 8 shows an example of measuring the cable length from point 0 to point 4 observed by the surveying system 200 on the first and second measurement days. In this example, the interval between the first and second measurement dates is about one year. In the cable length measurement value of FIG. 8, the influence of temperature and tide has already been removed. The fiber length between points 1 and 2 is referred to as L12, and the fiber length between points 2 and 3 is referred to as L23.
 図8に示すように、第1から第2の測定日までの期間に、地点0~地点1は約2.3cm、地点1~地点2は約3.2cm、地点2~地点3は約1.0cm、地点3~地点4は約0.3cm縮んでいる。このように、部分反射部を複数設けることで、2つの部分反射部で挟まれた区間を単位とする分解能で、地面の移動の様子を観測できる。 As shown in FIG. 8, during the period from the first measurement date to the second measurement date, the points 0 to 1 are about 2.3 cm, the points 1 to 2 are about 3.2 cm, and the points 2 to 3 are about 1. It is 0.0 cm, and points 3 to 4 are shrunk by about 0.3 cm. By providing a plurality of partial reflection portions in this way, it is possible to observe the movement of the ground with a resolution in units of the section sandwiched between the two partial reflection portions.
 一般に光は光ファイバF1を伝搬するにつれて、伝送損失によりパワーが低下していく。よって、各部分反射部の反射率が同じであれば、OTDR装置1から遠い反射点ほど、OTDR波形に現れるピークが低くなる。一般にOTDRにおける戻り光のパワーは比較的微弱であるため、反射光によるピークが雑音レベルに埋没しやすい傾向がある。 Generally, as light propagates through the optical fiber F1, the power decreases due to transmission loss. Therefore, if the reflectance of each partial reflection portion is the same, the peak appearing in the OTDR waveform becomes lower as the reflection point is farther from the OTDR device 1. In general, the power of the return light in the OTDR is relatively weak, so that the peak due to the reflected light tends to be buried in the noise level.
 そこで、本構成では、OTDR装置1に近くて累積損失が小さい場所の部分反射部は反射率を低くし、OTDR装置1から遠くて累積損失が大きい場所の部分反射部は反射率を高くすることが望ましい。すなわち、部分反射部R11~R14の反射率をRf1~Rf4とすると、Rf1<Rf2<Rf3<Rf4とするとよい。図9に部分反射部R11~R14の反射率が同じである場合のOTDR波形の例を示し、図10にOTDR装置1から離れるにつれて部分反射部の反射率を高くした場合のOTDR波形の例を示す。図9では部分反射部R13及びR14のピークP113及びピークP114が雑音レベルNLに埋没しているが、図10では遠い場所のピークも雑音レベルNLに埋没せず、認識しやすくなっている。 Therefore, in this configuration, the partial reflector in the place near the OTDR device 1 where the cumulative loss is small has a low reflectance, and the partial reflector in the place far from the OTDR device 1 where the cumulative loss is large has a high reflectance. Is desirable. That is, assuming that the reflectances of the partially reflecting portions R11 to R14 are Rf1 to Rf4, it is preferable that Rf1 <Rf2 <Rf3 <Rf4. FIG. 9 shows an example of an OTDR waveform when the reflectances of the partial reflection portions R11 to R14 are the same, and FIG. 10 shows an example of an OTDR waveform when the reflectance of the partial reflection portion is increased as the distance from the OTDR device 1 increases. show. In FIG. 9, the peaks P1 13 and P1 14 of the partial reflection portions R13 and R14 are buried in the noise level NL, but in FIG. 10, the peaks in a distant place are not buried in the noise level NL and are easy to recognize. ..
 これにより、OTDR波形の平均回数削減すなわち測定時間の短縮が可能となる。測定の短縮により、その間の温度変化などの環境要因の影響も自ずと低減できる。 This makes it possible to reduce the average number of OTDR waveforms, that is, the measurement time. By shortening the measurement, the influence of environmental factors such as temperature changes during that period can be naturally reduced.
 ここで本測量システムにおける誤差の抑制技術について説明する。図11に、それら誤差の抑制技術が導入された測量システム700の構成を模式的に示す。測量システム700は、陸上局710内において測量システム100に、DTS(Distributed Temperature Sensor)装置701、データ処理装置702、偏波スクランブラ703、高精度クロック供給部704、波長多重分離器WC0及び光ファイバF70を追加した構成を有する。 Here, the error suppression technology in this surveying system will be explained. FIG. 11 schematically shows the configuration of the surveying system 700 into which the technology for suppressing these errors has been introduced. The surveying system 700 includes a DTS (Distributed Temperature Sensor) device 701, a data processing device 702, a polarization scrambler 703, a high-precision clock supply unit 704, a wavelength division multiplexing separator WC0, and an optical fiber in the surveying system 100 in the land station 710. It has a configuration in which F70 is added.
 外部環境、特に温度変化によって光ファイバケーブルは伸縮することが知られている。そのため、温度変化がある環境で本測量システムを用いて地面の移動を検出しようとする場合、温度変化による光ファイバケーブルの伸縮の影響を除去しなければならない。そこで、本実施の形態では、DTS(Distributed Temperature Sensor)によって光ファイバケーブルの各場所の温度を測定する。 It is known that the optical fiber cable expands and contracts due to the external environment, especially the temperature change. Therefore, when trying to detect the movement of the ground using this surveying system in an environment where there is a temperature change, it is necessary to eliminate the influence of expansion and contraction of the optical fiber cable due to the temperature change. Therefore, in the present embodiment, the temperature of each location of the optical fiber cable is measured by DTS (Distributed Temperature Sensor).
 DTS装置701は、上述したように、光ファイバケーブルF1の長手方向の温度を分布的に測定し、そのデータをDTS出力データDAT2として出力する。OTDR装置1は、上述の実施の形態において説明したように、ケーブル上の各反射点の位置をOTDR出力データDAT1として出力する。データ処理装置702は、OTDR出力データDAT1及びDTS出力データDAT2に基づいて、温度変化による光ファイバケーブルの伸縮の影響を除去する。データ処理装置702は、制御信号CON1によりOTDR装置1を制御可能であり、制御信号CON2によりDTS装置701を制御可能である。この実施例では、DTS装置701の測定光と本測量システムの測定光は波長多重技術(WDMカプラWC10)を用いて同一の光ファイバ上で測定する構成を示したが、波長選択性のない光カプラで合分波し、OTDR装置1とDTS装置701の測定タイミングを互いに重ならないように制御して測定するのでもよいし、同じケーブル720内の別の心線(光ファイバ)を用いても、温度はほぼ同一と考えられるので同じ効果を得ることができる。 As described above, the DTS device 701 distributes the temperature in the longitudinal direction of the optical fiber cable F1 and outputs the data as the DTS output data DAT2. The OTDR device 1 outputs the position of each reflection point on the cable as the OTDR output data DAT1 as described in the above-described embodiment. The data processing device 702 removes the influence of expansion and contraction of the optical fiber cable due to the temperature change based on the OTDR output data DAT1 and the DTS output data DAT2. The data processing device 702 can control the OTDR device 1 by the control signal CON1 and can control the DTS device 701 by the control signal CON2. In this embodiment, the measurement light of the DTS device 701 and the measurement light of this surveying system are measured on the same optical fiber by using the wavelength division multiplexing technology (WDM coupler WC10), but the light has no wavelength selectivity. It may be demultiplexed by a coupler and the measurement timings of the OTDR device 1 and the DTS device 701 may be controlled so as not to overlap each other for measurement, or another core wire (optical fiber) in the same cable 720 may be used. Since the temperatures are considered to be almost the same, the same effect can be obtained.
 次いで、偏波スクランブラ703について説明する。光ファイバには伝搬する光の偏波状態によって伝搬速度にわずかな差が生じる偏波モード分散という現象がある。そこで、本構成では、OTDR装置1の出力に偏波スクランブラ703を挿入してパルス光の偏波状態を常時ランダムに変化させている。これにより、OTDR波形を複数回測定して平均化処理を行うときに、偏波モード分散の影響も平均化されるので、偏波状態に依存した測定値の揺らぎを抑圧することができる。古い光ファイバケーブルでは偏波モード分散が大きいものが存在するので、古い光ケーブルを再利用するような場合には特に有効である。 Next, the polarization scrambler 703 will be described. An optical fiber has a phenomenon called polarization mode dispersion in which a slight difference in propagation speed occurs depending on the polarization state of propagating light. Therefore, in this configuration, the polarization scrambler 703 is inserted into the output of the OTDR device 1 to constantly and randomly change the polarization state of the pulsed light. As a result, when the OTDR waveform is measured a plurality of times and the averaging process is performed, the influence of the polarization mode dispersion is also averaged, so that the fluctuation of the measured value depending on the polarization state can be suppressed. Since some old optical fiber cables have a large polarization mode dispersion, they are particularly effective when the old optical cable is reused.
 次いで、高精度クロック供給部704について説明する。高精度クロック供給部704は、近年ではGNSS(Global Navigation Satellite System)衛星からの電波を受信して、高精度のクロックを生成して供給する装置が市販され用いられている。このようにして実現されている高精度クロック供給部からのクロックCLKがOTDR装置1に供給される。特に、プレートテクトニクス(plate tectonics)による地面の移動速度は年に数cm程度の緩慢なものなので、低周波域のクロックの安定性が測定精度に大きく影響する。一方で、一般的なOTDRの用途ではそのような長期的な測定安定度は要求されないためそのままでは精度が不足する可能性が高い。本測量システムを実現する上では、このような高精度クロックをOTDR装置に供給することで長期的な測定精度を確保することが重要となる。なお後述するように、本測量システム内にOTDRが複数存在する構成の場合、高精度クロック供給部は1つあればよく、クロックを分配すればよい。これも後述するが、光ケーブルの遠隔、例えば海底にOTDR装置を設置する場合も、1箇所の陸上局に高精度クロック供給部を置き、そこから分配することで、GNSS衛星電波が届かない海底においても高精度クロックを基にした観測が可能となる。 Next, the high-precision clock supply unit 704 will be described. In recent years, the high-precision clock supply unit 704 has been commercially available and used as a device that receives radio waves from a GNSS (Global Navigation Satellite System) satellite to generate and supply a high-precision clock. The clock CLK from the high-precision clock supply unit realized in this way is supplied to the OTDR device 1. In particular, since the moving speed of the ground by plate tectonics is slow, about several centimeters a year, the stability of the clock in the low frequency range greatly affects the measurement accuracy. On the other hand, in general OTDR applications, such long-term measurement stability is not required, so there is a high possibility that accuracy will be insufficient as it is. In order to realize this surveying system, it is important to ensure long-term measurement accuracy by supplying such a high-precision clock to the OTDR device. As will be described later, in the case of a configuration in which a plurality of OTDRs exist in the surveying system, only one high-precision clock supply unit is required, and the clocks may be distributed. As will be described later, even when the OTDR device is installed remotely on the optical cable, for example, on the seabed, a high-precision clock supply unit is placed at one land station and distributed from there, so that the GNSS satellite radio waves do not reach the seabed. It is possible to observe based on a high-precision clock.
 以上、本構成によれば、DTS、偏波スクランブラ、高精度クロック供給の全て又は一部を本測量システムに適用することで、地面の移動の測定精度を確保することができる。 As described above, according to this configuration, the measurement accuracy of the movement of the ground can be ensured by applying all or part of the DTS, the polarization scrambler, and the high-precision clock supply to the surveying system.
 実施の形態3
 以上の本測量システムの動作原理においては、光ファイバケーブルは地面と十分な摩擦をもって接触しているものとしている。実際にも、例えば、海底ケーブルは、長い距離にわたって海底面に接触しているため、長手方向の摩擦の累積が膨大となっており、海底地すべり等で局所的に大振幅の伸びが生じるとケーブルの滑り摩擦抵抗が張力限界を上回ってしまい、切断してしまう事例が起きている。
Embodiment 3
In the above operating principle of this surveying system, it is assumed that the optical fiber cable is in contact with the ground with sufficient friction. In fact, for example, since a submarine cable is in contact with the seabed for a long distance, the accumulation of friction in the longitudinal direction is enormous, and when a large amplitude elongation occurs locally due to a submarine landslide or the like, the cable In some cases, the slip friction resistance of the cable exceeds the tension limit and the cable is cut.
 このことから、特段の固定手段を設けずとも、ケーブルが元々持っている地面との摩擦により、地面とケーブルは一体で伸縮することが期待できる。ただし、特に地面の伸縮の様子を細かく観測したい場合には、ケーブルが局所的に滑って地面の伸縮の細かな情報が平滑化されてしまう可能性もある。そこで、海底への把持力をより強くするためのケーブルへの付加物を設けても構わない。 From this, it can be expected that the ground and the cable will expand and contract together due to the friction that the cable originally has with the ground, even if no special fixing means is provided. However, especially when you want to observe the state of expansion and contraction of the ground in detail, there is a possibility that the cable will slip locally and the detailed information of the expansion and contraction of the ground will be smoothed. Therefore, an additive to the cable may be provided to strengthen the gripping force on the seabed.
 その方法としてはケーブルの被覆の表面に、海底の岩などへの引っ掛かりを良くするような形状の突起を設けてもよい。この突起は、ケーブルの製造時にケーブルを被覆する部材と一体的に形成されてもよい。もしくは、ケーブルの所々に、ケーブルを海底により強固に固定するような手段を設けても構わない。後者を実施の形態3にて説明する。 As a method, a protrusion having a shape that makes it easier to catch on rocks on the seabed may be provided on the surface of the cable coating. This protrusion may be formed integrally with a member that covers the cable during the manufacture of the cable. Alternatively, a means for firmly fixing the cable to the seabed may be provided in places of the cable. The latter will be described in the third embodiment.
 実施の形態3にかかる測量システム300について説明する。図12に、実施の形態3にかかる測量システム300の構成を模式的に示す。測量システム300は、測量システム200に固定具A1~A4を追加した構成を有する。 The surveying system 300 according to the third embodiment will be described. FIG. 12 schematically shows the configuration of the surveying system 300 according to the third embodiment. The surveying system 300 has a configuration in which fixtures A1 to A4 are added to the surveying system 200.
 光ファイバケーブルF1は、元々海底面の接触による摩擦で海底と一体化されているが、それに加えて所々に固定具A1~A4を設けることで海底面310により強く把持している。固定具A1~A4は、陸上では杭などの地面に貫入可能な部材を用いればよいし、海底であれば、海底の岩などへの引っ掛かりを良くするような形状の装具をケーブルに巻き付けて敷設しても良く、または海底の砂などに沈降することで摩擦力を生むような適度な重量を持たせたアンカーのような装具をケーブルに巻き付けてもよい。このような装具とケーブルとの固定には例えば一般にプリフォームドストッパー(preformed stopper)と呼ばれる部品を用いることにより、ケーブルを敷設しながら取り付けることも可能である。何100kmもの長尺のケーブルを巻いて保管する際には固定具は邪魔になったり、ケーブルを傷めるおそれがあるため、ケーブルを敷設しながら取り付けられる方が望ましい。 The optical fiber cable F1 was originally integrated with the seabed due to friction caused by contact with the seabed, but in addition to that, the fixtures A1 to A4 are provided in places to grip the seabed 310 more strongly. For the fixtures A1 to A4, a member that can penetrate the ground such as a pile may be used on land, and if it is on the seabed, a fixture shaped to improve catching on rocks on the seabed is wrapped around the cable and laid. Alternatively, a device such as an anchor having an appropriate weight that causes frictional force by settling on the sand on the seabed may be wrapped around the cable. For fixing such a device and a cable, for example, by using a component generally called a preformed stopper, it is possible to attach the cable while laying it. When wrapping and storing a long cable of hundreds of kilometers, the fixture may get in the way or damage the cable, so it is desirable to install it while laying the cable.
 この固定具のセンサケーブル上の位置や、種類は、海底の状態に応じて適宜変えてよい。部分反射部と固定具との位置関係に特に制約はない。ただし、固定具を部分反射部に近づけて装備することによって、部分反射部の地面との密着の信頼度が上がり、観測データの信頼度の向上に役立つことが期待される。 The position and type of this fixture on the sensor cable may be changed as appropriate according to the condition of the seabed. There are no particular restrictions on the positional relationship between the partial reflector and the fixture. However, it is expected that by equipping the fixture close to the partial reflection part, the reliability of the contact of the partial reflection part with the ground will increase, which will help improve the reliability of the observation data.
 実施の形態4
 実施の形態1~3では光ファイバが1本のみ、すなわち途中に分岐のない構成について説明したが、以降の実施の形態では光ファイバが複数本に分岐している測量システムについて説明する。図13に、実施の形態4にかかる測量システム400の構成を模式的に示す。
Embodiment 4
In the first to third embodiments, only one optical fiber, that is, a configuration in which there is no branch in the middle is described, but in the subsequent embodiments, a surveying system in which the optical fiber is branched into a plurality of fibers will be described. FIG. 13 schematically shows the configuration of the surveying system 400 according to the fourth embodiment.
 測量システム400では、光ファイバケーブルF1から光ファイバケーブルF2及びF3(第2の光ファイバ)が分岐されている。この例では、光ファイバF1には、測量システム200及び300と同様に、OTDR装置1の側から順に、部分反射部R11~R14、・・・が設けられている。 In the surveying system 400, the optical fiber cables F2 and F3 (second optical fiber) are branched from the optical fiber cable F1. In this example, the optical fiber F1 is provided with partial reflection portions R11 to R14, ... In order from the side of the OTDR device 1, similarly to the surveying systems 200 and 300.
 部分反射部R11と部分反射部R12との間には光カプラC1が設けられ、光ファイバF2が分岐されている。光ファイバF2には、光カプラC1の側から順に、部分反射部R21~R23、・・・が設けられている。 An optical coupler C1 is provided between the partial reflection portion R11 and the partial reflection portion R12, and the optical fiber F2 is branched. The optical fiber F2 is provided with partial reflection portions R21 to R23, ... In order from the side of the optical coupler C1.
 部分反射部R13と部分反射部R14との間には光カプラC2が設けられ、光ファイバF3が分岐されている。光ファイバF3には、光カプラC2の側から順に、部分反射部R31、R32、・・・が設けられている。 An optical coupler C2 is provided between the partial reflection portion R13 and the partial reflection portion R14, and the optical fiber F3 is branched. The optical fiber F3 is provided with partial reflection portions R31, R32, ... In order from the side of the optical coupler C2.
 図14に、測量システム400で得られるOTDR波形を示す。説明の便宜上、光ファイバF1、F2、F3からの波形を別々に描いているが、実際には、これらの波形の合計による1つの波形が観測される。図14からわかるように、OTDR装置1から各部分反射部までのファイバ長が重ならない限り、各部分反射部のピークは識別できる。分岐点からの光ファイバ長を50kmと仮定すると、1本の光ファイバケーブルに部分反射部が10個程度設けられていても、各反射部の大きさは数cmであるので、確率的には反射ピークが重なることは稀であると言える。もし反射ピークが重なってしまった場合でも、分岐点に数mのダミー光ファイバを挿入すれば解消可能である。設置前の仮接続状態で反射ピークの重なり度合いを確認して、ダミーファイバを挿入するか、分岐ケーブルの根元を少し短く切ってから分岐部と接続すればよい。 FIG. 14 shows an OTDR waveform obtained by the surveying system 400. For convenience of explanation, the waveforms from the optical fibers F1, F2, and F3 are drawn separately, but in reality, one waveform is observed by the total of these waveforms. As can be seen from FIG. 14, the peaks of the partial reflection portions can be identified as long as the fiber lengths from the OTDR device 1 to the partial reflection portions do not overlap. Assuming that the optical fiber length from the branch point is 50 km, even if one optical fiber cable is provided with about 10 partial reflection portions, the size of each reflection portion is several cm, so that the probability is high. It can be said that the reflection peaks rarely overlap. Even if the reflection peaks overlap, it can be solved by inserting a dummy optical fiber of several meters at the branch point. Check the degree of overlap of the reflection peaks in the temporary connection state before installation, and insert a dummy fiber or cut the root of the branch cable a little short before connecting to the branch.
 よって、本構成によれば、上述の実施の形態と同様に、光ファイバケーブルを敷設した経路の地面の移動を検出することができる。 Therefore, according to this configuration, it is possible to detect the movement of the ground on the path where the optical fiber cable is laid, as in the above-described embodiment.
 以降では、この分岐構成をパッシブ(Passive)分岐(カプラによる)と称する。この分岐構成の効用について説明する。端的に言うと、分岐のない一筆書きのセンサケーブル配置に比べて、分岐を持たせたセンサケーブル配置では、分岐した先のケーブル障害が影響する範囲が限定できるということである。これを分岐構成の第1の効用と称する。 Hereinafter, this branch configuration will be referred to as a passive branch (depending on the coupler). The utility of this branch configuration will be described. In short, compared to the one-stroke sensor cable arrangement without branching, the sensor cable arrangement with branching can limit the range affected by the cable failure at the branching destination. This is referred to as the first utility of the branch configuration.
 センサケーブルを配置したいエリアは、地面の移動が顕著に見られる場所であり、そのような場所は自ずと瞬間的かつ大振幅の変位や、地滑り、崩落などが発生するおそれも相対的に高く、ケーブルがダメージを被るリスクも高い。そこで分岐構成が有効となる。なぜならケーブル障害の影響範囲を限定できるためである。 The area where you want to place the sensor cable is a place where the movement of the ground is noticeable, and there is a relatively high risk that such a place will naturally cause momentary and large-amplitude displacement, landslide, collapse, etc., and the cable There is also a high risk of being damaged. Therefore, the branch configuration becomes effective. This is because the range of influence of cable failure can be limited.
 図15及び16を用いて分岐構成の第1の効用を説明する。ここでは監視エリアMAでの部分反射部を丸印で、分岐部を四角印で簡易的に表している。センサケーブルが図15のように一筆書きで設置されていると、ケーブル障害が起きた箇所より先の情報が一切入手できなくなってしまう。それに対して図16のように分岐構成であれば、ケーブル障害の影響をその分岐ケーブル内に留めることができる。 The first utility of the branch configuration will be described with reference to FIGS. 15 and 16. Here, the partial reflection portion in the monitoring area MA is simply represented by a circle, and the branch portion is simply represented by a square mark. If the sensor cable is installed with a single stroke as shown in FIG. 15, no information beyond the location where the cable failure has occurred cannot be obtained. On the other hand, in the case of the branch configuration as shown in FIG. 16, the influence of the cable failure can be limited to the branch cable.
 実施の形態5
 本実施の形態では、波長多重分離を用いた分岐構成について説明する。以降ではこの分岐構成をパッシブ分岐(WDMカプラによる)と称する。
Embodiment 5
In this embodiment, a branch configuration using wavelength division multiplexing will be described. Hereinafter, this branch configuration will be referred to as passive branching (by WDM coupler).
 図17に、実施の形態5にかかる測量システム500の構成例を模式的に示す。測量システム500は、光ファイバ及び部分反射部のそれぞれは、測量システム400と同様であるので、これらについては説明を省略する。 FIG. 17 schematically shows a configuration example of the surveying system 500 according to the fifth embodiment. Since each of the optical fiber and the partial reflection portion of the surveying system 500 is the same as that of the surveying system 400, the description thereof will be omitted.
 測量システム500は、複数、ここでは3つの、互いに送出波長が異なるOTDR装置11~13が設けられる。OTDR装置11を第1のOTDR装置とも称し、OTDR装置12及び13を第2のOTDR装置とも称する。また、測量システム500では、光カプラC1及びC2がそれぞれWDMカプラWC1及びWC2に置換されている。 The surveying system 500 is provided with a plurality of OTDR devices 11 to 13, in which three OTDR devices 11 to 13 have different transmission wavelengths. The OTDR device 11 is also referred to as a first OTDR device, and the OTDR devices 12 and 13 are also referred to as a second OTDR device. Further, in the surveying system 500, the optical couplers C1 and C2 are replaced with WDM couplers WC1 and WC2, respectively.
 OTDR装置11~13は、波長多重分離器WC0を介して光ファイバF1と接続され、それぞれ異なる波長λ1~λ3のパルス光を出力する。ここでは、波長λ1を第1の波長とも称し、波長λ2及びλ3を第2の波長とも称する。 The OTDR devices 11 to 13 are connected to the optical fiber F1 via the wavelength division multiplexing separator WC0, and output pulsed light having different wavelengths λ1 to λ3. Here, the wavelength λ1 is also referred to as a first wavelength, and the wavelengths λ2 and λ3 are also referred to as a second wavelength.
 WDMカプラWC1は、波長λ2のパルス光を選択的に分岐して光ファイバF2へ出力し、光ファイバF2からの反射戻り光を光ファイバF1に戻す。 The WDM coupler WC1 selectively branches the pulsed light having a wavelength of λ2 and outputs it to the optical fiber F2, and returns the reflected return light from the optical fiber F2 to the optical fiber F1.
 WDMカプラWC2は、波長λ3のパルス光を選択的に分岐して光ファイバF3へ出力し、光ファイバF3からの反射戻り光は、WDMカプラWC2によって光ファイバF1に戻る。 The WDM coupler WC2 selectively branches the pulsed light having a wavelength of λ3 and outputs it to the optical fiber F3, and the reflected return light from the optical fiber F3 returns to the optical fiber F1 by the WDM coupler WC2.
 よって、波長λ1~λ3の戻り光は光ファイバF1を介して波長多重分離器WC0に戻ってくる。この例では波長多重分離器WC0は双方向性を持っており、戻り光を波長ごとに分離して、波長λ1~λ3の戻り光をそれぞれOTDR装置11~13へ出力する。これにより、OTDR装置11~13のそれぞれは、光ファイバF1~F3からの戻り光を独立して監視することができる。 Therefore, the return light having wavelengths λ1 to λ3 returns to the wavelength division multiplexing separator WC0 via the optical fiber F1. In this example, the wavelength division multiplexing separator WC0 has bidirectionality, separates the return light for each wavelength, and outputs the return light of wavelengths λ1 to λ3 to the OTDR devices 11 to 13, respectively. As a result, each of the OTDR devices 11 to 13 can independently monitor the return light from the optical fibers F1 to F3.
 本実施の形態では、部分反射部は波長無依存に部分反射するものでも良いし、R11、R12、R13、・・・はλ1(第1の波長)近傍のみ、R21、R22、R23、・・・はλ2(第2の波長)近傍のみ、R31、R32、・・・はλ3の近傍のみというように波長選択性を持った部分反射部でもよい。後者の場合、λ1以外の波長のロスを少なめにできれば、λ2,λ3の観測可能範囲が拡大するほか、ケーブルF1のλ1、λ2、λ3以外の波長域を、通信など他の用途に用いることもしやすくなる。 In the present embodiment, the partial reflection portion may partially reflect wavelength-independently, and R11, R12, R13, ... Only in the vicinity of λ1 (first wavelength), R21, R22, R23, ... · May be a partial reflection portion having wavelength selectivity such that is only in the vicinity of λ2 (second wavelength), R31, R32, ... Is only in the vicinity of λ3. In the latter case, if the loss of wavelengths other than λ1 can be reduced, the observable range of λ2 and λ3 can be expanded, and the wavelength range other than λ1, λ2 and λ3 of the cable F1 can be used for other purposes such as communication. It will be easier.
 このパッシブ分岐(WDMカプラによる)の効用について説明する。まず、パッシブ分岐(カプラによる)と同じく、分岐構成の第1の効用がある。つまり、センサケーブル障害が生じた時の、障害が影響する範囲を限定できるという効用である。 The utility of this passive branch (by WDM coupler) will be explained. First, as with passive branching (depending on the coupler), there is a first utility of the branching configuration. That is, when a sensor cable failure occurs, the range affected by the failure can be limited.
 WDMカプラによるパッシブ分岐を、カプラによるパッシブ分岐と比較すると、光カプラ分岐は、OTDRの台数を増やさなくてよい長所がある反面、分岐に伴うロスにより観測可能範囲が短くなるという短所がある。また分岐数と反射点の数が多いと枝線と反射点の対応関係を取り違えて、誤った観測をする恐れがある。すなわち分岐構成を実現できるもののその規模にはやや制約がある。 Comparing the passive branching by the WDM coupler with the passive branching by the coupler, the optical coupler branching has the advantage that the number of OTDRs does not need to be increased, but has the disadvantage that the observable range is shortened due to the loss due to the branching. In addition, if the number of branches and the number of reflection points are large, the correspondence between the branch lines and the reflection points may be mistaken, resulting in erroneous observation. That is, although a branch configuration can be realized, the scale is somewhat limited.
 これに対しWDMカプラによるパッシブ分岐は、OTDRが複数台必要になるという短所はあるものの、物理的には枝分かれしているケーブルを、互いに単独したケーブルのごとく管理が可能であり混同誤りが起きにくい。また分岐部のロスを小さくできることから、観測可能範囲の減少も避けることができる。つまりWDMカプラによる構成はカプラによる構成よりも設計自由度の高いパッシブ分岐が実現可能となる。以下ではこれを分岐構成の第2の効用と称する。 On the other hand, passive branching by WDM coupler has the disadvantage that multiple OTDRs are required, but physically branched cables can be managed as if they were independent cables, and confusion errors are unlikely to occur. .. Moreover, since the loss at the branch portion can be reduced, it is possible to avoid a decrease in the observable range. That is, the configuration using the WDM coupler enables passive branching with a higher degree of freedom in design than the configuration using the coupler. Hereinafter, this will be referred to as the second utility of the branch configuration.
 実施の形態3及び4を合わせて実施することも可能である。一例を図18に示す。内容は実施の形態3及び4と同様であるので説明を省略する。図18の例では波長分岐の先に光カプラ分岐(光カプラC3及びC4による分岐)の順であったが、これに限らず、光カプラ分岐の先に波長分岐も可能である。 It is also possible to carry out embodiments 3 and 4 together. An example is shown in FIG. Since the contents are the same as those of the third and fourth embodiments, the description thereof will be omitted. In the example of FIG. 18, the order is optical coupler branching (branching by optical couplers C3 and C4) after the wavelength branching, but the present invention is not limited to this, and wavelength branching is also possible before the optical coupler branching.
 実施の形態6
 以上述べてきた実施の形態では、通信路に光増幅器を入れることができない。なぜなら一般に光増幅器は片方向しか光を通さないので、そこで反射戻り光が阻止されてしまいOTDR測定ができないためである。光増幅器が適用できないと、測量できる範囲は陸地に近い場所に限定され、希望するエリアを観測できない事態が生じてしまう。
 そこで以降では、光増幅器も用いて、陸地から離れたエリアの観測も実現可能とする手段について説明する。図19に、実施の形態6にかかる測量システム600の構成例を模式的に示す。測量システム600は、データ伝送に用いられる海底光ケーブルシステムに、測量システムを付随させた実施例である。分岐の方法はパッシブ分岐(WDMカプラによる)である。つまり本実施例は実施の形態5に光増幅器を適用させる技術の説明である。
Embodiment 6
In the embodiment described above, an optical amplifier cannot be inserted in the communication path. This is because, in general, an optical amplifier transmits light in only one direction, so that the reflected return light is blocked there, and OTDR measurement cannot be performed. If the optical amplifier cannot be applied, the range that can be surveyed is limited to a place close to the land, and the desired area cannot be observed.
Therefore, in the following, a means for enabling observation of an area away from the land by using an optical amplifier will be described. FIG. 19 schematically shows a configuration example of the surveying system 600 according to the sixth embodiment. The surveying system 600 is an example in which a surveying system is attached to a submarine optical cable system used for data transmission. The method of branching is passive branching (using a WDM coupler). That is, this embodiment is a description of a technique for applying an optical amplifier to the fifth embodiment.
 上述のように、光増幅器は一方向にしか伝送しないこともあり、光増幅器を含んだ通信ケーブルでは、上りと下りの光ファイバをペアとして扱う。 As mentioned above, the optical amplifier may transmit in only one direction, and in the communication cable including the optical amplifier, the upstream and downstream optical fibers are treated as a pair.
 海底光ケーブルシステムでは、上り用の光ファイバFT(第3の光ファイバ)と、下り用の光ファイバFR(第4の光ファイバ)とを有するファイバペアFPが設けられている。本測量システムとは直接関係しない通信装置611は、波長多重器612を介して光ファイバFTと接続され、波長分離器613を介して光ファイバFRと接続される。波長多重器612及び波長分離器613としては、例えば、AWG(Arrayed Waveguide Grating)や WSS(Wavelength Selective Switch)などが一般的に用いられる。 In the submarine optical cable system, a fiber pair FP having an optical fiber FT (third optical fiber) for uplink and an optical fiber FR (fourth optical fiber) for downlink is provided. The communication device 611, which is not directly related to the surveying system, is connected to the optical fiber FT via the wavelength division multiplexing device 612, and is connected to the optical fiber FR via the wavelength separator 613. As the wavelength multiplexing device 612 and the wavelength separator 613, for example, AWG (Arrayed Waveguide Grating) and WSS (Wavelength Selective Switch) are generally used.
 本構成では、λ1のパルス光を出力するOTDR装置1も、波長多重器612を介して光ファイバFTと接続され、波長分離器613を介して光ファイバFRと接続される。これにより、OTDR装置1は、光ファイバFTへパルス光を出力し、光ファイバFRからの戻り光を受け取ることができる。OTDR装置1のための波長帯と、通信装置611のための波長帯は区別して割り当てられている。 In this configuration, the OTDR device 1 that outputs the pulsed light of λ1 is also connected to the optical fiber FT via the wavelength multiplexing device 612 and connected to the optical fiber FR via the wavelength separator 613. As a result, the OTDR device 1 can output the pulsed light to the optical fiber FT and receive the return light from the optical fiber FR. The wavelength band for the OTDR device 1 and the wavelength band for the communication device 611 are assigned separately.
 ファイバペアFPには、伝送する光信号の損失を補償するため、1台以上の光増幅中継器AUが挿入される。光増幅中継器AUには、上り用の光ファイバFTを伝送される光を増幅する光増幅器ATと、下り用の光ファイバFRを伝送される光を増幅する光増幅器ARと、が設けられる。また、光増幅中継器AUには、反射光などの、上り用の光ファイバFTを逆方向に伝搬する戻り光を分岐して下り用の光ファイバFRに結合する経路Pが設けられる。経路Pは、例えば、光増幅器ATの入力側に光カプラを設けて戻り光を分岐し、光ファイバを介して光増幅器ARの出力側に設けられた光カプラで戻り光を下り用の光ファイバFRに結合する。以下では、光増幅中継器AU、経路P、光ファイバFT及び光ファイバFRは、光を増幅して伝送する光増幅中継システムを構成している。 One or more optical amplification repeaters AU are inserted into the fiber pair FP in order to compensate for the loss of the transmitted optical signal. The optical amplification repeater AU is provided with an optical amplifier AT that amplifies the light transmitted through the optical fiber FT for uplink and an optical amplifier AR that amplifies the light transmitted through the optical fiber FR for downlink. Further, the optical amplification repeater AU is provided with a path P such as reflected light that branches the return light propagating in the reverse direction of the upstream optical fiber FT and couples it to the downstream optical fiber FR. In the path P, for example, an optical coupler is provided on the input side of the optical amplifier AT to branch the return light, and the optical coupler provided on the output side of the optical amplifier AR via the optical fiber transmits the return light to the optical fiber for downlink. Combine with FR. In the following, the optical amplification repeater AU, the path P, the optical fiber FT, and the optical fiber FR constitute an optical amplification relay system that amplifies and transmits light.
 さらに、光ファイバFTの任意の位置に、ただし実際には光増幅中継器AUに一体化させる形で光増幅器の出力に、WDMカプラWCが設けられ、波長λ1のパルス光を分岐して、地面の移動測量用の光ファイバF1へ出力する。また、光ファイバケーブルF1からの戻り光は、WDMカプラWCによって光ファイバFTに結合され、その後、光増幅中継器AU内の経路Pを介して光ファイバFRに結合される。その後戻り光は波長分離器613によって分岐され、OTDR装置1に戻り受信される。これにより、OTDR装置1は、陸から光ファイバF1までの区間の測量を行うことができる。 Further, a WDM coupler WC is provided at an arbitrary position of the optical fiber FT, but actually at the output of the optical amplifier in the form of being integrated with the optical amplification repeater AU, and the pulsed light having a wavelength of λ1 is branched to the ground. Output to the optical fiber F1 for mobile survey. Further, the return light from the optical fiber cable F1 is coupled to the optical fiber FT by the WDM coupler WC, and then coupled to the optical fiber FR via the path P in the optical amplification repeater AU. After that, the return light is branched by the wavelength separator 613 and returned to the OTDR device 1 for reception. As a result, the OTDR device 1 can survey the section from the land to the optical fiber F1.
 図20に、測量システム600による光ファイバF1の監視結果を示す。図20に示すように、測量システム600では、光増幅中継器AUによって周期的に伝送損失が補償されるので、周期的なのこぎり波形が表れる。部分反射部R11~R14による反射光のピークは、WDMカプラWCより先の反射ピークとして観測される。これにより、上述の実施の形態と同様に、第1及び第2の測定日での反射ピーク位置を測定することで、地面の移動を検出することができる。 FIG. 20 shows the monitoring result of the optical fiber F1 by the surveying system 600. As shown in FIG. 20, in the surveying system 600, since the transmission loss is periodically compensated by the optical amplification repeater AU, a periodic saw waveform appears. The peak of the reflected light by the partial reflection portions R11 to R14 is observed as a reflection peak before the WDM coupler WC. Thereby, as in the above-described embodiment, the movement of the ground can be detected by measuring the reflection peak positions on the first and second measurement days.
 この実施例では、陸から光ファイバF1に入るまでの経路もOTDR測定に含まれるが、測量にはほとんど寄与しない。その経路の途中にλ1の部分反射部を組み込むことで測量に寄与させることも可能ではあるが、ケーブルを共用する通信装置611側の通信に影響することも懸念され、好ましくない。 In this embodiment, the route from land to entering the optical fiber F1 is also included in the OTDR measurement, but it hardly contributes to the survey. It is possible to contribute to the survey by incorporating a partial reflection portion of λ1 in the middle of the path, but it is not preferable because there is a concern that it may affect the communication on the communication device 611 side sharing the cable.
 図19の光ファイバF1の分岐ケーブルに入ってから先でカプラによるパッシブ分岐を適用することも可能であることは言うまでもない。 Needless to say, it is possible to apply passive branching by a coupler after entering the branching cable of the optical fiber F1 shown in FIG.
 図19の実施例ではOTDR測量に用いる波長はλ1のみであったが、図18に光増幅器を適用する形で、本測量システムに複数波長を割り当てて、WDMカプラによるパッシブ分岐をさらに適用することも可能であることは言うまでもない。 In the embodiment of FIG. 19, the wavelength used for the OTDR survey was only λ1, but in the form of applying the optical amplifier in FIG. 18, a plurality of wavelengths are assigned to the surveying system, and the passive branching by the WDM coupler is further applied. Needless to say, it is also possible.
 本実施例のような構成により、本測量システムに光増幅器が適用可能となり、陸から離れた場所の測量が可能となる。 With the configuration as in this embodiment, an optical amplifier can be applied to this surveying system, and it is possible to survey a place away from the land.
 実施の形態7
 実施の形態6で、光増幅器が適用可能となり、陸地から遠く離れたエリアの観測も可能となったが、図20を見ると分かるようにそれほど関心の高くない区間もOTDR測定に含まれてしまい、測定の無駄が多いという欠点がある。そこで、実施の形態7ではOTDR装置を海底に設置することで、より観測したいエリアに寄った観測ネットワークを可能とする実現手段を提供する。図21に、実施の形態7にかかる測量システム601の構成を模式的に示す。測量システム601は、実施の形態6にかかる測量システム600の変形例である。
Embodiment 7
In the sixth embodiment, the optical amplifier can be applied and the area far from the land can be observed, but as can be seen from FIG. 20, the section of less interest is also included in the OTDR measurement. , There is a drawback that there is a lot of waste in measurement. Therefore, in the seventh embodiment, by installing the OTDR device on the seabed, a realization means that enables an observation network closer to the area to be observed is provided. FIG. 21 schematically shows the configuration of the surveying system 601 according to the seventh embodiment. The surveying system 601 is a modification of the surveying system 600 according to the sixth embodiment.
 測量システム601も、データ伝送に用いられる海底光ケーブルシステムに、測量システムを付随させた実現例としている。分岐の実現には、波長多重通信システムにおけるOADM(Optical Add-Drop Multiplexer)ノードの方法を用いる。OADM分岐ノードの中には、これまで述べてきた本測量システムの陸上局に設置したOTDRなどの構成要素が配置される。すなわち海底に張り出し局を設置したような構成である。 The surveying system 601 is also an example of realization in which a surveying system is attached to the submarine optical cable system used for data transmission. The method of the OADM (Optical Add-Drop Multiplexer) node in the wavelength division multiplexing communication system is used to realize the branching. In the OADM branch node, components such as the OTDR installed in the land station of the surveying system described above are arranged. In other words, it has a configuration like an overhanging station installed on the seabed.
 このように、OTDRなどの能動機器を海底に設置して駆動するにはケーブルから受電する必要があることから、この分岐構成をアクティブ(Active)分岐と称する。このような構成においては、陸とアクティブ分岐装置との間の通信は、一般の波長パスと同じであるのでその実現方法の説明は省略する。 In this way, since it is necessary to receive power from the cable in order to install and drive an active device such as an OTDR on the seabed, this branch configuration is called an active branch. In such a configuration, the communication between the land and the active branching device is the same as the general wavelength path, and therefore the description of the realization method will be omitted.
 図21の実施例を説明する。海底ケーブル通信システム(通信装置611、波長多重器612及び波長分離器613)、光増幅中継器AU及びファイバペアFPなどの構成要素は図19と同じであり、またOTDR装置1、光ファイバケーブルF1、部分反射部R11、R12及びR13などの構成要素も上述した本測量システムの実施例と同じであるので、説明を省略する。 An embodiment of FIG. 21 will be described. The components such as the submarine cable communication system (communication device 611, wavelength division multiplexing 612 and wavelength separator 613), optical amplification repeater AU and fiber pair FP are the same as those in FIG. 19, and the OTDR device 1, optical fiber cable F1 , The components such as the partial reflection units R11, R12, and R13 are the same as those in the above-described embodiment of the survey system, and thus the description thereof will be omitted.
 全体を俯瞰すると、海底通信ケーブルの途中にOADM分岐ノード618が挿入されて、そこからセンサケーブルが分岐している形をしている。つまりOADM分岐ノードは海底ケーブル通信システムでBU(Branching Unit)と呼ばれる装置に相当する。 Looking at the whole, the OADM branch node 618 is inserted in the middle of the submarine communication cable, and the sensor cable is branched from there. That is, the OADM branch node corresponds to a device called a BU (Branching Unit) in a submarine cable communication system.
 BUと共通していることは、絶縁と耐水圧である。OTDRや通信装置を海底に設置できるようにするため、省電力設計としたうえで耐圧筐体を通じて放熱可能とし、かつ給電線電位と地電位との確実な絶縁を確保する実装設計が必要となる。 What is common with BU is insulation and water pressure resistance. In order to enable OTDRs and communication devices to be installed on the seabed, it is necessary to design a power-saving design, enable heat dissipation through the pressure-resistant housing, and ensure reliable insulation between the feeder line potential and the ground potential. ..
 BUと異なることは、分岐した先のケーブルに給電しないことである。一般のBUにおいては給電線の分岐に関する非常に難易度の高い技術が要求されるが、本測量システムではセンサケーブルに給電する必要はなく、その負担は無い。したがって一般のBUにおいて筐体内の実装可能空間の大部分を占める給電切り替え関係の機器は搭載不要となり、その空間をOADM分岐ノードの収容に利用できる他、光増幅中継器AUも一体収容できる可能性もある。また加速度センサなどの地震センサ類を搭載することも可能である。もし分岐した先に光増幅中継が必要であれば、まず通信用BUでケーブルを分岐して延長した先に、センサケーブルとの分岐BUを設けることが望ましい。 The difference from BU is that it does not supply power to the cable at the branch destination. In a general BU, a very difficult technique for branching a feeder line is required, but in this surveying system, it is not necessary to supply power to the sensor cable, and there is no burden on it. Therefore, it is not necessary to install power supply switching related equipment that occupies most of the mountable space in the housing in a general BU, and that space can be used to accommodate the OADM branch node, and the optical amplifier repeater AU may also be accommodated integrally. There is also. It is also possible to mount seismic sensors such as acceleration sensors. If optical amplification relay is required at the branch destination, it is desirable to first branch and extend the cable at the communication BU, and then provide a branch BU with the sensor cable.
 図21においては、ケーブル内の給電線および各装置内での受電,給電機能は図示を省略しているので、図22に、OADM分岐ノード618の部分を取り出して給電関係も併せて図示し、その内容を説明する。 In FIG. 21, the feeding line in the cable and the power receiving and feeding functions in each device are not shown. Therefore, in FIG. 22, the part of the OADM branch node 618 is taken out and the power feeding relationship is also shown. The contents will be explained.
 OADM分岐ノード618では、基幹ケーブル620内を波長多重伝送されている信号光のうちの特定の波長(図19ではλ1、第3の波長)がAdd-dropされる。OADM分岐ノード618は、波長λ1の光に対する波長選択性を有する光カプラWC1及びWC2を含んでいる。OADM分岐ノードを司る通信制御部(通信装置)615(第2の通信装置とも称する)が光トランシーバーを介して接続されている。ここでTx及びRxはそれぞれTransmitter及びReceiverの略である。このTxは波長λ1で送信できるものである。この通信制御部は波長λ1の波長パスを通じて、陸側の対向装置である614と常時通信している。具体的には、通信装置614から出力された波長λ1の光信号(第1の光信号)は、光ファイバFTを伝搬し、光カプラWC1(第1の光カプラ)によって光ファイバFTから分波され、Rx(第1の受信部)で受信される。Tx(第1の送信部)から出力された波長λ1の光信号(第2の光信号)は、光カプラWC2(第2の光カプラ)によって光ファイバFRと合波され、通信装置614にて受信される。OTDR装置1は、センサケーブルを測量し、その結果を通信制御部615に渡す。給電部616は、給電導体SLから受電し、通信制御部615やOTDR装置1などに給電する。 In the OADM branch node 618, a specific wavelength (λ1 in FIG. 19, a third wavelength) of the signal light transmitted by wavelength division multiplexing in the backbone cable 620 is added-dropped. The OADM branch node 618 includes optical couplers WC1 and WC2 that have wavelength selectivity for light of wavelength λ1. A communication control unit (communication device) 615 (also referred to as a second communication device) that controls the OADM branch node is connected via an optical transceiver. Here, Tx and Rx are abbreviations for Transmitter and Receiver, respectively. This Tx can be transmitted at the wavelength λ1. This communication control unit constantly communicates with 614, which is an opposite device on the land side, through a wavelength path of wavelength λ1. Specifically, the optical signal (first optical signal) having a wavelength of λ1 output from the communication device 614 propagates through the optical fiber FT and is demultiplexed from the optical fiber FT by the optical coupler WC1 (first optical coupler). It is received by Rx (first receiving unit). The optical signal (second optical signal) of wavelength λ1 output from Tx (first transmitter) is combined with the optical fiber FR by the optical coupler WC2 (second optical coupler), and is combined with the optical fiber FR by the communication device 614. Received. The OTDR device 1 surveys the sensor cable and passes the result to the communication control unit 615. The power feeding unit 616 receives power from the power feeding conductor SL and supplies power to the communication control unit 615, the OTDR device 1, and the like.
 通信装置614(第1の通信装置とも称する)は、各種の制御信号に加えて、高精度クロック供給部からのクロックを海底に置いたOTDRに常時伝えるという重要な役割がある。なぜならば海中では高精度クロック源となるGNSS(Global Navigation Satellite System)衛星からの電波を受信できないためである。海底のOTDR装置1が測定したデータは、通信制御部615を介して陸の通信装置614に伝送される。 The communication device 614 (also referred to as the first communication device) has an important role of constantly transmitting the clock from the high-precision clock supply unit to the OTDR placed on the seabed in addition to various control signals. This is because radio waves from the GNSS (Global Navigation Satellite System) satellite, which is a high-precision clock source, cannot be received in the sea. The data measured by the OTDR device 1 on the seabed is transmitted to the land communication device 614 via the communication control unit 615.
 なお、測量システム601は、増幅中継光伝送システム内に測量システム100を含むものとして説明したが、図23及び図24に示すように、測量システム100に換えて、分岐構成を持った測量システム400又は500、もしくはその両方を有する測量システム501を含むものとして構成してもよい。なお、ここでは、分岐構成を持った測量システム500を含む測量システムについては、図示を省略する。なお、測量システム603においては、測量システム602のOADM分岐ノード618がOADM分岐ノード619に置換されている。OADM分岐ノード619は、OADM分岐ノード618のOTDR装置1を、測量システム500に含まれるOTDR装置11~13及び波長多重分離器WC0に置換した構成を有する。その場合においても通信装置615および送受信部は1つで構わない。複数台のOTDRに同期クロックを配り、測量データを回収し、そのデータを1つの波長λ1の信号に時分割多重して通信装置614に伝送することができる。 Although the surveying system 601 has been described as including the surveying system 100 in the amplified relay optical transmission system, as shown in FIGS. 23 and 24, the surveying system 400 having a branched configuration is used instead of the surveying system 100. Alternatively, it may be configured to include a surveying system 501 having 500, or both. Here, the illustration of the surveying system including the surveying system 500 having a branched configuration is omitted. In the survey system 603, the OADM branch node 618 of the survey system 602 is replaced with the OADM branch node 619. The OADM branch node 619 has a configuration in which the OTDR device 1 of the OADM branch node 618 is replaced with the OTDR devices 11 to 13 and the wavelength multiplexing separator WC0 included in the survey system 500. Even in that case, only one communication device 615 and one transmission / reception unit may be used. A synchronization clock can be distributed to a plurality of OTDRs, survey data can be collected, and the data can be time-division-multiplexed into a signal having one wavelength λ1 and transmitted to the communication device 614.
 実施の形態8
 上記のOADM分岐ノードを複数持つ遠隔に持つ観測ネットワークにおいて、基幹ケーブルの障害に対する可用性(availability)を高めるため、基幹ケーブルの両端を2つの陸上局に接続し、ルート冗長(route diversity)構成とすることも可能である。図25に実現例を示す。図25は、基幹ケーブル620にOADM分岐ノード618Aに対応するOADM分岐ノード631~634が設けられた測量システム630の例である。
Embodiment 8
In the remote observation network having a plurality of OADM branch nodes as described above, in order to increase the availability of the trunk cable against a failure, both ends of the trunk cable are connected to two land stations to form a route redundancy configuration. It is also possible. FIG. 25 shows a realization example. FIG. 25 is an example of a surveying system 630 in which the trunk cable 620 is provided with OADM branch nodes 631 to 634 corresponding to the OADM branch node 618A.
 図26に、OADM分岐ノード618Aの構成例を示す。OADM分岐ノード618Aは、上述のOADM分岐ノード618の変形例である。OADM分岐ノード618Aは2つの陸上局621及び622と通信できるよう、図26に示すように、通信制御部615に2組の光送受信器を有しており、OADMフィルタが拡張されている。 FIG. 26 shows a configuration example of the OADM branch node 618A. The OADM branch node 618A is a modification of the above-mentioned OADM branch node 618. As shown in FIG. 26, the OADM branch node 618A has two sets of optical transceivers in the communication control unit 615 so that it can communicate with the two land stations 621 and 622, and the OADM filter is extended.
 OADM分岐ノード618Aは、図22のOADM分岐ノードに光カプラWC3及びWC4を追加した構成を有する。OADM分岐ノード618Aは、では、通信制御部615には、2つのTx及び2つのRxが設けられる。通信制御部615は波長λ1の波長パスを通じて、陸側の対向装置である陸上局621及び622に設けられた通信装置と常時通信している。ここでは、陸上局621に設けられた通信装置614を第1の通信装置と称し、陸上局622に設けられた通信装置614を第3の通信装置とも称する。 The OADM branch node 618A has a configuration in which optical couplers WC3 and WC4 are added to the OADM branch node shown in FIG. In the OADM branch node 618A, the communication control unit 615 is provided with two Tx and two Rx. The communication control unit 615 constantly communicates with the communication devices provided in the land stations 621 and 622, which are opposite devices on the land side, through the wavelength path of the wavelength λ1. Here, the communication device 614 provided in the land station 621 is referred to as a first communication device, and the communication device 614 provided in the land station 622 is also referred to as a third communication device.
 陸上局621の通信装置(第1の通信装置)から出力された波長λ1の光信号(第1の光信号)は、光ファイバFTを伝搬し、光カプラWC1(第1の光カプラ)によって光ファイバFTから分波され、一方のRx(第1の受信部)で受信される。一方のTx(第1の送信部)から出力された波長λ1の光信号(第2の光信号)は、光カプラWC2(第2の光カプラ)によって光ファイバFRと合波され、陸上局621の通信装置(第3の通信装置)にて受信される。 The optical signal (first optical signal) having a wavelength of λ1 output from the communication device (first communication device) of the land station 621 propagates through the optical fiber FT and is opticald by the optical coupler WC1 (first optical coupler). It is demultiplexed from the fiber FT and received by one Rx (first receiving unit). The optical signal (second optical signal) of wavelength λ1 output from one Tx (first transmitter) is combined with the optical fiber FR by the optical coupler WC2 (second optical coupler), and the land station 621 It is received by the communication device (third communication device) of.
 陸上局622の通信装置(第3の通信装置)から出力された波長λ1の光信号(第3の光信号)は、光ファイバFRを伝搬し、光カプラWC3(第3の光カプラ)によって光ファイバFRから分波され、他方のRx(第2の受信部)で受信される。他方のTx(第4の送信部)から出力された波長λ1の光信号(第4の光信号)は、光カプラWC4(第4の光カプラ)によって光ファイバFTと合波され、陸上局622の通信装置(第3の通信装置)にて受信される。 The optical signal (third optical signal) of wavelength λ1 output from the communication device (third communication device) of the land station 622 propagates through the optical fiber FR and is opticald by the optical coupler WC3 (third optical coupler). It is demultiplexed from the fiber FR and received by the other Rx (second receiver). The optical signal (fourth optical signal) of wavelength λ1 output from the other Tx (fourth transmitter) is combined with the optical fiber FT by the optical coupler WC4 (fourth optical coupler), and the land station 622 It is received by the communication device (third communication device) of.
 これにより、OADM分岐ノード618Aは、陸上局621(第1の観測局)及び陸上局622(第2の観測局)の両方と常時通信している。 As a result, the OADM branch node 618A is constantly communicating with both the land station 621 (first observation station) and the land station 622 (second observation station).
 2つの陸上局621及び622は、平常時は各OADM分岐ノード631~634のそれぞれから測量データを受け取り、データ通信ネットワーク640を介してデータセンタにデータを送信している。例えばOADM分岐ノード631の測量データは陸上局621及び622に届き、それぞれデータセンタに送信している。このようにデータセンタには同じ測量データが重複して届くので、平常時はどちらも正常と判断して1つに集約し、記録及び処理する。 The two land stations 621 and 622 receive survey data from each of the OADM branch nodes 631 to 634 in normal times, and transmit the data to the data center via the data communication network 640. For example, the survey data of the OADM branch node 631 reaches the land stations 621 and 622 and is transmitted to the data center, respectively. In this way, the same survey data arrives at the data center in duplicate, so in normal times it is judged that both are normal, and they are aggregated into one for recording and processing.
 本構成によれば、例えば図25の×印の箇所にケーブル障害が生じた場合、OADM分岐ノード631~633からのデータは陸上局621を経由して、OADM分岐ノード634からのデータは陸上局622を経由して、データセンタに届く。すなわち、OADM分岐ノードと陸上局との間の通信経路の二重化が提供されている。さらに2つの陸上局間とデータセンタ間との通信も各々確保することにより、データセンタでは、本来同一のデータが届くはずの状態において片方が不通となったことを検知し、引き続き届いている一方のデータを採用し、記録及び処理することができる。このような動作により、ケーブル障害に対して強くすることができ、可用性を高める効用を持つ。 According to this configuration, for example, when a cable failure occurs at a location marked with a cross in FIG. 25, the data from the OADM branch nodes 631 to 633 goes through the land station 621, and the data from the OADM branch node 634 goes through the land station. It reaches the data center via 622. That is, duplication of the communication path between the OADM branch node and the land station is provided. Furthermore, by ensuring communication between the two land stations and between the data center, the data center detects that one of the data has been interrupted when the same data should have arrived, and the data continues to be delivered. Data can be adopted, recorded and processed. By such an operation, it can be made strong against a cable failure and has the effect of increasing availability.
 実施の形態9
 上述のアクティブ分岐構成の効用について説明する。端的に述べると、測量観測ネットワークの中で、各ケーブルの役目を明確に分けられることである。アクティブ分岐を用いない構成では、光ケーブルは、センサケーブルと通信ケーブルの役割を兼ねていたが、アクティブ分岐の構成とすることで両者の役割を分離できる。これを分岐構成の第3の効用と称する。
Embodiment 9
The utility of the above-mentioned active branch configuration will be described. In short, the role of each cable can be clearly separated in the survey observation network. In the configuration that does not use the active branch, the optical cable also serves as the sensor cable and the communication cable, but the roles of both can be separated by the configuration of the active branch. This is referred to as the third utility of the branch configuration.
 図27を用いて説明する。この測量観測ネットワークの中では、光ファイバケーブルの種類は大きく2種類ある。一つは基幹ケーブルなどに適用するもので、経済性の面から通信用のケーブルと同種のものを用いるのが望ましい。これを幹線仕様ケーブル種と称する。もう一つはセンサ用ケーブルである。これをセンサ仕様ケーブル種と称する。 This will be described with reference to FIG. 27. In this survey observation network, there are roughly two types of optical fiber cables. One is applied to trunk cables, etc., and it is desirable to use the same type of cable as the communication cable from the economical point of view. This is called a trunk line specification cable type. The other is a sensor cable. This is called a sensor specification cable type.
 一方、観測ネットワークのケーブル構成要素として、大きく2つに分類できる。一つは基幹ケーブル900であり、幹線仕様ケーブル種から成る。通信と給電の機能を担うもので、地勢が不安定なエリアを極力避けて設置される。その中の光ファイバ心線は通信を主目的とし、センサとしての利用は主たる目的とはしない。ケーブル自体もその接続部品も接続工法も通信ケーブルと同様のものを適用することが経済性の面から望まれる。 On the other hand, the cable components of the observation network can be broadly classified into two types. One is the trunk cable 900, which consists of trunk line specification cable types. It is responsible for communication and power supply functions, and is installed avoiding areas with unstable terrain as much as possible. The optical fiber core wire in it is mainly for communication, and its use as a sensor is not the main purpose. From the economical point of view, it is desired to apply the same cable as the communication cable to the cable itself, its connecting parts, and the connecting method.
 もう一つのケーブル構成要素は分岐ケーブル920及び950である。分岐ケーブルは幹線仕様ケーブル種とセンサ仕様ケーブル種が接続されて成る。分岐ケーブル内には給電線を含まない。もしくは給電線を含んでいるとしても未使用、未接続とするなどして、基幹ケーブル900内の給電線とは完全に絶縁されている。こうすることで、ケーブルが傷つくリスクが高いが観測の優先度が高いエリアに、センサケーブルを積極的に設置することが可能となる。なぜなら給電線がつながったケーブルに障害が起きれば給電線がつながっている観測ネットワーク全体に障害が波及するためである。 Another cable component is the branch cables 920 and 950. The branch cable consists of a trunk line specification cable type and a sensor specification cable type connected. The feed line is not included in the branch cable. Alternatively, even if the feeder line is included, it is completely insulated from the feeder line in the backbone cable 900 by making it unused or unconnected. By doing so, it becomes possible to positively install the sensor cable in an area where there is a high risk of the cable being damaged but the observation priority is high. This is because if a failure occurs in the cable to which the feeder is connected, the failure will spread to the entire observation network to which the feeder is connected.
 ここで、各分岐ケーブル内のセンサ仕様ケーブル種区間925、945及び955は、地面の伸縮を検知するためのケーブルであり、複数の部分反射部Rxxを含み、海底との摩擦が十分得られる被覆を持つ。一方の、各分岐ケーブル内の幹線仕様ケーブル種区間921及び951は、基幹ケーブルと分岐ケーブルの接続を行う区間となる。 Here, the sensor specification cable type sections 925, 945, and 955 in each branch cable are cables for detecting expansion and contraction of the ground, and include a plurality of partial reflection portions Rxx, and are covered so that sufficient friction with the seabed can be obtained. have. On the other hand, the trunk line specification cable type sections 921 and 951 in each branch cable are sections for connecting the trunk cable and the branch cable.
 基幹ケーブル900上のOADM分岐ノード902及び905から分岐したケーブル923及び953も幹線仕様ケーブル種であり、ただし給電線を含まないか、給電線を含んでいるとしても未使用、未接続とするなどして、基幹ケーブル900内の給電線とは完全に絶縁されている。このケーブルと、分岐ケーブル側の幹線仕様ケーブル種からなる区間(交換修理作業想定エリア)922及び952が幹線仕様ケーブル種の接続部品、接続工法を用いて接続される。 Cables 923 and 953 branched from OADM branch nodes 902 and 905 on the backbone cable 900 are also trunk line specification cable types, but do not include the feeder line, or even if they include the feeder line, they are unused or unconnected. Therefore, it is completely insulated from the power supply line in the trunk cable 900. This cable and sections (replacement repair work assumption area) 922 and 952 consisting of the trunk line specification cable type on the branch cable side are connected using the connection parts and connection method of the trunk line specification cable type.
 分岐ケーブルに含まれるセンサ仕様ケーブル種の部分は損傷リスクがあるので予め修理方法を用意しておく必要がある。しかしセンサ仕様ケーブル種自体は、張力を残して敷設する必要がある、海底との摩擦が重要である、などセンサとしての性能を重視すべきであり、ケーブルが損傷して測量できなくなった際に損傷箇所を引き上げて修繕することは困難と予想され、分岐ケーブル全体を新たに敷設して交換するのが現実的な復旧方法と考えられる。海底に置かれたケーブルを船上に引き上げて新規ケーブルと接続する技術および部品や工法などは、通信ケーブル(幹線仕様ケーブル種)では確立されているが、センサ仕様ケーブル種用に新たに用意することは不経済である。 There is a risk of damage to the sensor specification cable type part included in the branch cable, so it is necessary to prepare a repair method in advance. However, the sensor specification cable type itself should be laid with tension left, friction with the seabed is important, etc., and the performance as a sensor should be emphasized, and when the cable is damaged and it becomes impossible to survey. It is expected that it will be difficult to pull up the damaged part and repair it, and it is considered that a realistic recovery method is to lay a new branch cable and replace it. The technology, parts, and construction methods for pulling up the cable placed on the seabed to the ship and connecting it to the new cable have been established for the communication cable (main line specification cable type), but it should be newly prepared for the sensor specification cable type. Is uneconomical.
 このような交換作業も考慮して、分岐ケーブルのOADM分岐ノード側に幹線仕様ケーブル種の区間を十分な長さで設けておく。またそのような工事を行うことに支障のない場所にルート取りして敷設する。この工事では、刃の付いたアンカーを走らせて障害点の近傍を故意に切断して(Cutting Drive)、切断点から少し離れた箇所のケーブルをアンカーに引っ掛けて船上に引き上げる。そして、傷ついたり水走りしたケーブル区間を切り飛ばして、修理用スペアケーブルを割入れ、つなぎ直して、海底に戻すということが行われる。この工事のための望ましい作業エリアは、このような工事を行うことに支障の少ない、比較的平坦で開けたエリアである。図27においては模式的に分岐ケーブル側の交換修理作業想定エリア922及び952として示している。 Considering such replacement work, provide a section of the trunk line specification cable type with a sufficient length on the OADM branch node side of the branch cable. In addition, take a route and lay it in a place that does not interfere with such construction. In this construction, an anchor with a blade is run to intentionally cut the vicinity of the obstacle point (Cutting Drive), and the cable at a point slightly away from the cutting point is hooked on the anchor and pulled up on board. Then, the damaged or water-running cable section is cut off, a spare cable for repair is inserted, reconnected, and returned to the seabed. A desirable work area for this work is a relatively flat and open area that does not interfere with such work. In FIG. 27, it is schematically shown as replacement repair work assumption areas 922 and 952 on the branch cable side.
 図27において、分岐ケーブル950は交換修理されたあとの様子を示している。障害が生じて十分な測量ができなくなったセンサ仕様ケーブル種区間945を切り離すため、センサ仕様ケーブル種区間945とケーブル953との間をアンカー操作により切断し、新たなセンサ仕様ケーブル種区間955のケーブルとケーブル953とを接続点956で接続し、接続点956を海底に静かに降ろす。 FIG. 27 shows the state of the branch cable 950 after it has been replaced and repaired. In order to disconnect the sensor specification cable type section 945, which has become unable to perform sufficient measurement due to a failure, the cable between the sensor specification cable type section 945 and the cable 953 is cut by an anchor operation, and the cable of the new sensor specification cable type section 955 is cut. And the cable 953 are connected at the connection point 956, and the connection point 956 is gently lowered to the bottom of the sea.
 この作業で、ケーブル953の切断端を一旦船上に引き上げるが、その際にOADM分岐ノード905が引っ張られて動いたり、持ちあがったりすると基幹ケーブル900側に2次障害が発生する恐れが高い。そのようなことが起きないようにケーブル953は十分な長さが必要である。具体的にはOADM分岐ノード905と交換修理作業想定エリア952とは、水深の3~5倍以上離しておくことが望ましい。 In this work, the cut end of the cable 953 is once pulled up on the ship, but if the OADM branch node 905 is pulled and moves or is lifted at that time, there is a high possibility that a secondary failure will occur on the trunk cable 900 side. The cable 953 needs to be long enough to prevent this from happening. Specifically, it is desirable that the OADM branch node 905 and the replacement / repair work assumed area 952 be separated from each other by 3 to 5 times or more the water depth.
 アクティブ分岐構成を取ることでこのようなケーブルの役割分担が実現容易となり、基幹ケーブルを保護しやすくなると同時に、ケーブル損傷リスクのある観測エリアもカバーしやすくなる。これが分岐構成の第3の効用を最大限に生かした測量観測ネットワーク設計である。 By adopting an active branch configuration, it becomes easier to realize such division of roles of cables, it becomes easier to protect the backbone cable, and at the same time, it becomes easier to cover the observation area where there is a risk of cable damage. This is a survey observation network design that maximizes the third utility of the branch configuration.
 ただしこの実施形態の工夫、すなわちセンサ仕様ケーブル種と幹線仕様ケーブル種の使い分けの工夫は、効果は限定的ではあるがパッシブ分岐でも可能であり、アクティブ分岐に限定されない。 However, the device of this embodiment, that is, the device of properly using the sensor specification cable type and the trunk line specification cable type, is possible even with passive branching, although the effect is limited, and is not limited to active branching.
 この構成では、分岐構成の第1の効用、すなわちケーブル障害発生時の波及範囲が一筆書きに比べて限定的に抑え込める効用もあることは言うまでもない。 Needless to say, in this configuration, the first utility of the branch configuration, that is, the utility that the ripple range when a cable failure occurs can be suppressed in a limited manner as compared with the one-stroke writing.
 実施の形態10
 ここでは、実施の形態2にかかる測量システム200において、パルス光を入力する経路を冗長化する場合について説明する。図28に、実施の形態2にかかる測量システム200に冗長構成を適用した測量システム201の構成を模式的に示す。測量システム201は、測量システム200に別の陸上局に設けられたOTDR装置10(第2のOTDR装置)が追加されている。OTDR10と光カプラC0との間は光ファイバFAで接続され、光ファイバFAは光カプラC0によって光ファイバF1に結合される。なお、ここでは、OTDR装置1を第1のOTDR装置とも称する。
Embodiment 10
Here, in the surveying system 200 according to the second embodiment, a case where the path for inputting the pulsed light is made redundant will be described. FIG. 28 schematically shows the configuration of the surveying system 201 in which the redundant configuration is applied to the surveying system 200 according to the second embodiment. In the surveying system 201, an OTDR device 10 (second OTDR device) provided at another land station is added to the surveying system 200. The OTDR 10 and the optical coupler C0 are connected by an optical fiber FA, and the optical fiber FA is coupled to the optical fiber F1 by the optical coupler C0. Here, the OTDR device 1 is also referred to as a first OTDR device.
 本構成によれば、例えば図28のX印の箇所で光ファイバケーブルF1に障害が生じた場合、OTDR装置10を立ち上げて戻り光の測定を継続できる。このとき、OTDR装置かから各部分反射部までの距離が見かけ上変化するが、実際には変化したのはL01だけで、L12以遠の測定は変わっておらず、継続できる。なお、ここでは、2本の経路で構成した冗長構成について説明したが、3本の以上の経路により冗長構成を適用することも可能である。 According to this configuration, for example, when the optical fiber cable F1 fails at the location marked X in FIG. 28, the OTDR device 10 can be started up and the measurement of the return light can be continued. At this time, the distance from the OTDR device to each partial reflection portion apparently changes, but in reality, only L01 has changed, and the measurement beyond L12 has not changed and can be continued. In addition, although the redundant configuration composed of two routes has been described here, it is also possible to apply the redundant configuration by three or more routes.
 実施の形態11
 非特許文献1には、海底に設置したミラートランスポンダを用いて海底を船上で音響測距し、船の位置を測位衛星(Global Navigation Satellite System:GNSS)を用いて測定することで、海底の地殻変動を把握する技術が開示されている。この方式は、GNSS-音響測距結合方式又はGPS/A方式と呼ばれている。本方式では、船からの音響信号を受け取り、応答音響信号を送出するミラートランスポンダを固定的に海底に設置する。
Embodiment 11
In Non-Patent Document 1, the seabed is acoustically measured on board using a mirror transponder installed on the seabed, and the position of the ship is measured using a positioning satellite (Global Navigation Satellite System: GNSS). A technique for grasping fluctuations is disclosed. This method is called a GNSS-acoustic distance measurement coupling method or a GPS / A method. In this method, a mirror transponder that receives an acoustic signal from a ship and sends a response acoustic signal is fixedly installed on the seabed.
 本構成では、実施の形態3において説明した固定具の一部もしくは全部にミラートランスポンダ機能を組み込むことで、固定具の絶対的な位置を把握可能とする。図29に、実施の形態11にかかる測量システム800の構成を模式的に示す。図29に示すように、固定具A1、A2及びA4に、それぞれミラートランスポンダTPD1、TPD2及びTPD4が設置されている。 In this configuration, the absolute position of the fixture can be grasped by incorporating the mirror transponder function into a part or all of the fixture described in the third embodiment. FIG. 29 schematically shows the configuration of the surveying system 800 according to the eleventh embodiment. As shown in FIG. 29, mirror transponders TPD1, TPD2 and TPD4 are installed on the fixtures A1, A2 and A4, respectively.
 測量システム800のように、GNSS衛星802からの電波を受信する海面820上の船801から音響信号でミラートランスポンダの位置を測量することで、本構成による地面の移動検出に、絶対的な位置の情報を付与することができる。 By measuring the position of the mirror transponder with an acoustic signal from the ship 801 on the sea surface 820 that receives the radio wave from the GNSS satellite 802 like the survey system 800, the position of the mirror transponder can be detected by this configuration. Information can be given.
 また、本構成では、測量システム800による地面の移動検出と、GNSS-音響測距結合方式による絶対測量と、を補完的に用いることができる。GNSS-音響測距結合方式は、絶対的な位置を把握できるものの、リアルタイム性と網羅性を実現することが難しい。また、水中音速の揺らぎの影響が大きい深海などでの高精度測定も難しい。これに対し、本構成にかかる地面の移動検出によれば、地面の伸縮量の絶対量測定は困難であるが、水深によらず多地点をリアルタイムに監視できるので、相互補完が期待できる。 Further, in this configuration, the movement detection of the ground by the survey system 800 and the absolute survey by the GNSS-acoustic distance measurement coupling method can be used complementarily. Although the GNSS-acoustic distance measurement coupling method can grasp the absolute position, it is difficult to realize real-time performance and completeness. In addition, it is difficult to perform high-precision measurement in the deep sea, where the influence of fluctuations in the underwater sound velocity is large. On the other hand, according to the movement detection of the ground according to this configuration, it is difficult to measure the absolute amount of expansion and contraction of the ground, but since it is possible to monitor multiple points in real time regardless of the water depth, mutual complementation can be expected.
 なお、海底設置ミラートランスポンダの駆動電力として、光ファイバと電源線とを含む海底ケーブルから給電してもよい。海底ケーブル内に含めた電源線から給電してもよいが、センシング用の光ファイバケーブル内に電源線を含めるのは望ましくないため、光ファイバ経由で光エネルギーを送って(光ファイバ給電)蓄電し、これにより駆動することが好ましい。 Note that the submarine cable including the optical fiber and the power supply line may be used as the driving power for the mirror transponder installed on the seabed. Power may be supplied from the power supply line included in the submarine cable, but since it is not desirable to include the power supply line in the optical fiber cable for sensing, optical energy is sent via the optical fiber (optical fiber power supply) to store electricity. , It is preferable to drive by this.
 実施の形態12
 以上述べてきた地面の伸縮を測定するための構成は、そのままの構成で水圧変化も測定することができる。本実施の形態では、まず、実施の形態1にかかる図1の測量システム100での水圧変化測定について説明する。
Embodiment 12
The configuration for measuring the expansion and contraction of the ground described above can also measure the change in water pressure with the same configuration. In the present embodiment, first, the water pressure change measurement in the surveying system 100 of FIG. 1 according to the first embodiment will be described.
 本実施の形態では、光ファイバケーブルF1および部分反射器R11は海底に設置されているものとする。光ファイバケーブルF1は水圧に十分耐えられる強度を持った耐圧構造をしているが、水圧によってわずかに圧縮される結果、光ファイバケーブルF1の長さは僅かに伸びる。また、海底も水圧の変化によって地面が伸縮し、海底とケーブルの間に十分な摩擦があればケーブルもそれにあわせて伸縮する。後者の作用をイメージで説明したものが図30である。 In this embodiment, it is assumed that the optical fiber cable F1 and the partial reflector R11 are installed on the seabed. The optical fiber cable F1 has a pressure-resistant structure having sufficient strength to withstand water pressure, but as a result of being slightly compressed by water pressure, the length of the optical fiber cable F1 is slightly extended. In addition, the ground expands and contracts due to changes in water pressure on the seabed, and if there is sufficient friction between the seabed and the cable, the cable expands and contracts accordingly. FIG. 30 shows an image of the latter action.
図30に示すように、水圧により海底面が押されて弾性変形しており、水圧の変化に応じて、海底の弾性変形の仕方も変化する、というものである。光ファイバケーブルF1は海底に這わせるもしくは埋設してあるので、海底面の変形により光ファイバケーブルF1の長手方向に伸縮が生じる。このメカニズムが働くためには、光ファイバケーブルF1と海底面との間に摩擦が必要である。光ファイバケーブルF1が海底面に置かれていても摩擦を持つことは勿論であるが、埋設されていれば接する面積が増え、より摩擦を得やすくなると考えられる。 As shown in FIG. 30, the seabed is elastically deformed by being pushed by water pressure, and the method of elastic deformation of the seabed changes according to the change in water pressure. Since the optical fiber cable F1 crawls or is embedded in the seabed, the deformation of the seabed causes expansion and contraction in the longitudinal direction of the optical fiber cable F1. In order for this mechanism to work, friction is required between the optical fiber cable F1 and the seabed. It goes without saying that even if the optical fiber cable F1 is placed on the seabed, it will have friction, but if it is buried, the contact area will increase and it will be easier to obtain friction.
ここで述べた光ファイバケーブルF1の伸縮量は極めて僅かであるが、測定に用いる光の、光ファイバケーブルF1内の光ファイバを伝播する光の波長(典型的には約1μm)を基準に見れば十分に検知可能な量である。 Although the amount of expansion and contraction of the optical fiber cable F1 described here is extremely small, it can be seen based on the wavelength (typically about 1 μm) of the light used for the measurement, which propagates through the optical fiber in the optical fiber cable F1. Is a sufficiently detectable amount.
 これらの結果として、水圧が変化すると光ファイバケーブルF1の長さが僅かに変化する。OTDR装置1を用いて、OTDR装置1から部分反射器R11までの光ファイバケーブルF1の長さを精密に測定すると、水圧変化が光ファイバケーブルF1の長さの変化として検出される。なお、本実施の形態では、実施の形態1と比較して、光ファイバケーブルF1が伸縮する要因が地殻変動ではなく水圧変化であるだけで、検出手法は同一であるので、以降の光ファイバケーブルF1の長さの検出にかかる動作の説明については、省略する。 As a result of these, the length of the optical fiber cable F1 changes slightly when the water pressure changes. When the length of the optical fiber cable F1 from the OTDR device 1 to the partial reflector R11 is precisely measured using the OTDR device 1, the change in water pressure is detected as the change in the length of the optical fiber cable F1. In the present embodiment, as compared with the first embodiment, the factor that causes the optical fiber cable F1 to expand and contract is not the crustal movement but the water pressure change, and the detection method is the same. The description of the operation related to the detection of the length of F1 will be omitted.
 図31に、実施の形態12にかかる水圧測定の結果の一例を示す。本測定において、OTDR装置1から部分反射器R11までのケーブルを辿った長さは約38kmであった。またそのうち陸揚げ地点から約11kmのケーブル区間は、約1mの深さで埋設されていた。使用したOTDRの測定分解能は5cmであり、多数回測定してその移動平均を求めることにより、5cmよりも細かな分解能のデータを得ている。 FIG. 31 shows an example of the result of the water pressure measurement according to the twelfth embodiment. In this measurement, the length of the cable from the OTDR device 1 to the partial reflector R11 was about 38 km. The cable section of about 11 km from the landing point was buried at a depth of about 1 m. The measurement resolution of the OTDR used is 5 cm, and data having a resolution finer than 5 cm is obtained by measuring the OTDR many times and obtaining the moving average.
図31のグラフの上側に示しているのが部分反射器R11までのケーブル長の変化である。小さな円一つ一つは部分反射器R11までのケーブル長の一回の測定値であり、それらの移動平均は太線の曲線MAで示している。約3日間の連続観測期間の平均値を基準値として当該基準値からの変化量を縦軸とした。 Shown on the upper side of the graph in FIG. 31 is the change in the cable length up to the partial reflector R11. Each small circle is a single measurement of the cable length up to the partial reflector R11, and their moving averages are shown by the thick curve MA. The average value of the continuous observation period of about 3 days was used as the reference value, and the amount of change from the reference value was used as the vertical axis.
移動平均曲線MAを見ると、10cm余のケーブル長変化が表れていることが分かる。本測定では、OTDRの持つ測定値揺らぎ(ドリフト)が十分除去できておらず、真のケーブル長変化以外の変動も含まれている。ただし、図31のグラフ下側に点線で示しているケーブル近隣地点の潮位変化ΔHと、グラフ上側において曲線で示したケーブル長変化とには、少なからぬ相関関係があることが分かる。潮位グラフは上が高潮位、下が低潮位となっている。 Looking at the moving average curve MA, it can be seen that a change in cable length of more than 10 cm appears. In this measurement, the measured value fluctuation (drift) of the OTDR has not been sufficiently removed, and fluctuations other than the true cable length change are included. However, it can be seen that there is a considerable correlation between the tide level change ΔH at the cable vicinity point shown by the dotted line on the lower side of the graph in FIG. 31 and the cable length change shown by the curve on the upper side of the graph. The tide level graph shows the high tide level at the top and the low tide level at the bottom.
 このことから、海底ケーブルの長さは、地殻変動による1年に数cmというゆっくりとした変化だけでなく、潮汐などの水圧変化によって、数時間程度の比較的短い時間でも変化していることが分かる。 From this, it can be seen that the length of the submarine cable changes not only in a slow change of several centimeters a year due to crustal movements, but also in a relatively short time of several hours due to changes in water pressure such as tides. I understand.
 光ファイバケーブル上に部分反射器を複数直列接続した構成、すなわち図5に示した実施の形態2にかかる測量システム200を用いれば、水圧変化を部分反射器の設置区間単位で測定することも可能である。 By using a configuration in which a plurality of partial reflectors are connected in series on an optical fiber cable, that is, the surveying system 200 according to the second embodiment shown in FIG. 5, it is possible to measure the change in water pressure in units of installation sections of the partial reflectors. Is.
 以上述べたようにケーブル長の変化から水圧の変化を検出できるが、水圧変化の量を知るには、少なくともケーブル区間ごとに係数の較正が必要となる。水圧変化がケーブル長の変化に変換される係数は、ケーブルの海底への固定方法や、ケーブル構造、被覆種類などの違いによって、ケーブル設置場所ごとに異なっているためである。 As mentioned above, the change in water pressure can be detected from the change in cable length, but in order to know the amount of change in water pressure, it is necessary to calibrate the coefficient at least for each cable section. This is because the coefficient by which the change in water pressure is converted into the change in cable length differs depending on the cable installation location depending on the method of fixing the cable to the seabed, the cable structure, the type of coating, and the like.
 このような較正手段として、例えば図31にも挙げているような潮汐現象を利用できる。潮汐の様子は海域ごとに推算できるので、この係数の較正に利用できる。すなわち、例えば、あるケーブル区間の海域における満潮時刻と干潮時刻での水深変化ΔH0を計算で求め(実測でもよい)、水深変化ΔH0から水圧変化ΔPも算出できる。一方、上述の観測により、満潮時刻と干潮時刻との間での当該ケーブル区間のケーブル長さ変化ΔLを得ることができる。これらΔLとΔPとの比が係数となる。このような較正作業を予めケーブル区間ごとに行っておくことにより、津波のような異常波が発生した場合に、その高さをより誤差の少ない測定値として得ることが可能となる。なお、例えば図5に示すように、1本のケーブルに複数の部分反射部が設けられる場合には、隣接する2つの部分反射部で挟まれる区間のそれぞれについて、係数を算出してもよい。 As such a calibration means, for example, a tidal phenomenon as shown in FIG. 31 can be used. Since the tide can be estimated for each sea area, it can be used to calibrate this coefficient. That is, for example, the water depth change ΔH0 at the high tide time and the low tide time in the sea area of a certain cable section can be calculated (may be actually measured), and the water pressure change ΔP can also be calculated from the water depth change ΔH0. On the other hand, from the above observation, it is possible to obtain the cable length change ΔL of the cable section between the high tide time and the low tide time. The ratio of these ΔL and ΔP is a coefficient. By performing such calibration work for each cable section in advance, when an abnormal wave such as a tsunami occurs, it is possible to obtain the height as a measured value with less error. For example, as shown in FIG. 5, when a plurality of partial reflection portions are provided on one cable, the coefficient may be calculated for each of the sections sandwiched between the two adjacent partial reflection portions.
 発生頻度は少ないものの、津波を係数の較正に用いても構わない。沿岸で観測された津波高さから、沖合の各海域における津波高さを推算することができるので、各ケーブル区間において津波到達前後のケーブル長さ変化との比をとれば、ケーブル区間ごとの係数が得られる。 Although the frequency of occurrence is low, the tsunami may be used for coefficient calibration. Since the tsunami height in each offshore sea area can be estimated from the tsunami height observed along the coast, the coefficient for each cable section can be calculated by comparing it with the change in cable length before and after the arrival of the tsunami in each cable section. Is obtained.
 潮汐現象と地殻変動とは、ケーブル長変化の速さの違いで分離できる。上述したように、潮汐現象は日単位程度の速さであり、地殻変動は年単位の極めてゆっくりとしたドリフトのような変化と予想されるためである。非特許文献1のような海底基準局の測量による地殻変動観測と組み合わせてデータ分析を行うことで、測定結果の信頼性を相互により高めることができる。 The tidal phenomenon and crustal movement can be separated by the difference in the speed of change in cable length. As mentioned above, the tidal phenomenon is about daily, and the crustal movement is expected to be an extremely slow drift-like change on a yearly basis. By performing data analysis in combination with crustal movement observation by surveying by a seafloor reference station as in Non-Patent Document 1, the reliability of measurement results can be further enhanced.
 地殻変動はもちろん潮汐現象も比較的ゆっくりとした変化のため、OTDR測定を多数回行って平均化処理したり、測定動作自体を間欠的に行うなどの、十分な時間的余裕を確保することができる。しかし、津波を検出して警報の情報源としても利用する場合は、十分短い測定インターバルで、即時に津波を自動検出するアルゴリズムが必要となる。潮汐や地殻変動などのゆっくりとした変化現象、及び、津波のような速い変化現象の両方とも、1つの測定システムに統合することが可能である。津波のように即時の警報通知が必要な現象に対しては、現象ごとの変化の特徴に応じた検知アルゴリズムを別途用意してできるだけ即時に自動検知して、通知する仕組みを備えることも有効である。 Since not only crustal movements but also tidal phenomena change relatively slowly, it is necessary to secure sufficient time margin such as performing OTDR measurements many times for averaging processing and performing measurement operations intermittently. can. However, if a tsunami is detected and used as an alarm information source, an algorithm that automatically detects the tsunami immediately is required at a sufficiently short measurement interval. Both slow-changing phenomena such as tides and crustal movements and fast-changing phenomena such as tsunamis can be integrated into a single measurement system. For phenomena that require immediate warning notification such as tsunami, it is also effective to prepare a separate detection algorithm according to the characteristics of changes in each phenomenon and provide a mechanism to automatically detect and notify as soon as possible. be.
 その他の実施の形態
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、上述の実施の形態では、光伝送路監視装置が海底光ネットワークシステムに適用されるものとして説明したが、これは例示に過ぎない。すなわち、海底光ネットワークシステム以外の陸上の光ネットワークシステムなど、任意の光ネットワークシステムに適用してもよい。
Other Embodiments The present invention is not limited to the above embodiments, and can be appropriately modified without departing from the spirit. For example, in the above-described embodiment, the optical transmission line monitoring device has been described as being applied to a submarine optical network system, but this is merely an example. That is, it may be applied to any optical network system such as a land-based optical network system other than the submarine optical network system.
 上述の実施の形態では、レイリー散乱を用いるOTDRについて説明したが、ブリユアン散乱やラマン散乱のような非線形の散乱現象を用いたOTDRを適用してもよい。ブリユアン散乱やラマン散乱はレイリー散乱に比べて反射率が小さい傾向があり、長距離の測定が比較的難しいので、レイリー散乱によるOTDRを用いることが望ましい。 In the above-described embodiment, the OTDR using Rayleigh scattering has been described, but an OTDR using a non-linear scattering phenomenon such as Brilliant scattering or Raman scattering may be applied. Brilliant scattering and Raman scattering tend to have lower reflectance than Rayleigh scattering, and long-distance measurement is relatively difficult. Therefore, it is desirable to use OTDR by Rayleigh scattering.
 上述の実施の形態は、適宜組み合わせて実施することも可能であることは、言うまでもない。 Needless to say, the above-described embodiments can be combined as appropriate.
 また、所望の反射率を実現できるならば、部分反射部として、図2の構成以外のFBGなどの他の反射素子を用いてもよい。 Further, if a desired reflectance can be achieved, another reflecting element such as an FBG other than the configuration shown in FIG. 2 may be used as the partial reflecting portion.
 上述の実施の形態において、光ファイバに設けられた部分反射部の数は例に過ぎず、任意の数の部分反射部を光ファイバに設けてもよい。 In the above-described embodiment, the number of partially reflecting portions provided on the optical fiber is merely an example, and an arbitrary number of partially reflecting portions may be provided on the optical fiber.
 上述の実施の形態では、光ファイバケーブルが海底の地面上に敷設される例について説明したが、水が湛えられた場所であれば、海以外においてもその底の地面上に光ファイバケーブルを敷設して、地面の移動や水圧の変動を検出してもよい。例えば、海以外の、湖沼及び河川などの底の地面上に光ファイバケーブルを敷設して、地面の移動や水圧の変動を検出してもよい。 In the above-described embodiment, an example in which the optical fiber cable is laid on the ground of the seabed has been described, but if the place is filled with water, the optical fiber cable is laid on the ground of the bottom even outside the sea. Then, the movement of the ground and the fluctuation of the water pressure may be detected. For example, an optical fiber cable may be laid on the ground at the bottom of a lake or river other than the sea to detect movement of the ground or fluctuation of water pressure.
 実施の形態12において、光ファイバケーブルは海底面上に敷設されるだけでなく、海底下の地中に埋設され得ることについて説明したが、これは実施の形態12に限られるものではない。すなわち、実施の形態12を含む上述の実施の形態においては、光ファイバケーブルは海底面上に敷設されてもよく、又は、海底下の地中に埋設されてもよいことは、言うまでもない。 In the twelfth embodiment, it has been explained that the optical fiber cable can be buried not only on the seabed but also in the ground below the seabed, but this is not limited to the twelfth embodiment. That is, it goes without saying that in the above-described embodiment including the twelfth embodiment, the optical fiber cable may be laid on the seabed or buried in the ground below the seabed.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Part or all of the above embodiments may be described as in the following appendix, but are not limited to the following.
 (付記1)第1の光ファイバを含み、前記第1の光ファイバが水圧の変動に伴い伸縮するように海底の地面上又は地中に設けられたケーブルと、前記第1の光ファイバに監視光を出力する光出力部と、前記ケーブル内の第1の光ファイバの経路上に設けられ、前記監視光を部分的に反射する部分反射部と、前記部分反射部で反射された反射光を受信する光受信部と、受信した前記反射光の往復伝搬時間に基づいて、前記部分反射部までの前記第1の光ファイバの長さを計測し、その継時変化をモニタする演算部と、を備える、水圧変動測定システム。 (Appendix 1) A cable provided on or in the ground on the sea floor so that the first optical fiber expands and contracts with fluctuations in water pressure, including the first optical fiber, and the first optical fiber are monitored. An optical output unit that outputs light, a partial reflection unit that is provided on the path of the first optical fiber in the cable and partially reflects the monitoring light, and a reflected light that is reflected by the partial reflection unit. An optical receiving unit to receive, a calculation unit that measures the length of the first optical fiber to the partial reflecting unit based on the reciprocating propagation time of the received reflected light, and monitors the change over time. A water pressure fluctuation measurement system.
 (付記2)前記水圧の変化量は、前記第1の光ファイバの長さの変化量に係数を乗じることで求められ、前記係数は、前記第1の光ファイバが設置されている海域における満潮時と干潮時との間での水圧の変化量を、満潮時と干潮時との間での第1の光ファイバの長さの変化量で除算することで求められる、付記1に記載の水圧変動測定システム。 (Appendix 2) The amount of change in water pressure is obtained by multiplying the amount of change in the length of the first optical fiber by a coefficient, and the coefficient is the high tide in the sea area where the first optical fiber is installed. The water pressure according to Appendix 1, which is obtained by dividing the amount of change in water pressure between time and low tide by the amount of change in the length of the first optical fiber between high tide and low tide. Fluctuation measurement system.
 (付記3)前記光出力部は、第1の測定タイミングと、前記第1の測定タイミングよりも後の第2の測定タイミングと、で前記監視光を出力し、前記演算部は、前記第1の測定タイミングで測定した前記部分反射部までの前記第1の光ファイバの長さと前記第2の測定タイミングで測定した前記部分反射部までの前記第1の光ファイバの長さとの差に基づいて、前記水圧の変動量をモニタする、付記2に記載の水圧変動測定システム。 (Appendix 3) The optical output unit outputs the monitoring light at a first measurement timing and a second measurement timing after the first measurement timing, and the calculation unit outputs the monitoring light at the first measurement timing. Based on the difference between the length of the first optical fiber up to the partial reflection portion measured at the measurement timing of the above and the length of the first optical fiber up to the partial reflection portion measured at the second measurement timing. , The water pressure fluctuation measuring system according to Appendix 2, which monitors the fluctuation amount of the water pressure.
 (付記4)複数の前記部分反射部が前記第1の光ファイバの異なる位置に設けられ、前記演算部は、前記複数の部分反射部のうちの2つの間の前記第1の光ファイバの長さの変動に基づいて、前記水圧の変動をモニタする、付記2又は3に記載の水圧変動測定システム。 (Appendix 4) A plurality of the partial reflection portions are provided at different positions of the first optical fiber, and the calculation unit is a length of the first optical fiber between two of the plurality of partial reflection portions. The water pressure fluctuation measuring system according to Appendix 2 or 3, which monitors the fluctuation of the water pressure based on the fluctuation of the water pressure.
 (付記5)前記複数の部分反射部で区切られる各ケーブル区間について、各ケーブル区間の満潮時と干潮時との間での水圧の変化量及び満潮時と干潮時との間における各ケーブル区間のケーブル長の変化量から、各ケーブル区間の前記係数を求める、 付記4に記載の水圧変動測定システム。 (Appendix 5) For each cable section divided by the plurality of partial reflection portions, the amount of change in water pressure between high tide and low tide and each cable section between high tide and low tide. The water pressure fluctuation measurement system according to Appendix 4, wherein the coefficient of each cable section is obtained from the amount of change in the cable length.
 (付記6)前記複数の部分反射部は、前記光出力部から前記部分反射部までの経路光損失が大きいものほど、反射率が高くなるように構成される、付記4又は5に記載の水圧変動測定システム。 (Appendix 6) The water pressure according to Appendix 4 or 5, wherein the plurality of partial reflection portions are configured so that the larger the path light loss from the light output portion to the partial reflection portion, the higher the reflectance. Fluctuation measurement system.
 (付記7)前記ケーブルには、前記地面又は地中に対する把持力を追加するための固定具が設けられる、付記4乃至6のいずれか一つに記載の水圧変動測定システム。 (Supplementary note 7) The water pressure fluctuation measuring system according to any one of Supplementary note 4 to 6, wherein the cable is provided with a fixture for adding a gripping force to the ground or the ground.
 (付記8)前記固定具は、前記複数の部分反射部のうちの一部又は全部の近傍に設けられる、付記7に記載の水圧変動測定システム。 (Appendix 8) The water pressure fluctuation measuring system according to Appendix 7, wherein the fixture is provided in the vicinity of a part or all of the plurality of partial reflection portions.
 (付記9)前記固定具には、音響信号を受信することで応答音響信号を出力する、海中での音響測距に用いられるミラートランスポンダが固定される、付記7又は8に記載の水圧変動測定システム。 (Appendix 9) The water pressure fluctuation measurement according to Appendix 7 or 8, wherein a mirror transponder used for acoustic distance measurement in the sea is fixed to the fixture to output a response acoustic signal by receiving an acoustic signal. system.
 (付記10)前記第1の光ファイバの温度を長手方向に分布的に測定する手段を備え、前記第1の光ファイバの長さの経時変化量から、前記温度の経時変化による光ファイバの長さの変化を除外する、付記1乃至9のいずれか一つに記載の水圧変動測定システム。 (Appendix 10) A means for measuring the temperature of the first optical fiber in a distributed manner in the longitudinal direction is provided, and the length of the optical fiber due to the change over time of the temperature is determined from the amount of change in the length of the first optical fiber with time. The water pressure fluctuation measuring system according to any one of Supplementary note 1 to 9, which excludes the change in temperature.
 (付記11)前記温度の測定は、前記第1の光ファイバと同一のケーブルに内包される別の光ファイバを用いることを特徴とする、付記10に記載の水圧変動測定システム。 (Appendix 11) The water pressure fluctuation measurement system according to Appendix 10, wherein the temperature measurement uses another optical fiber included in the same cable as the first optical fiber.
 (付記12)前記監視光を前記第1の光ファイバに入力する前に、前記監視光の偏波面を疑似ランダムに変化させる偏波スクランブラを備える、付記1乃至11のいずれか一つに記載の水圧変動測定システム。 (Supplementary note 12) The description in any one of Supplementary note 1 to 11, further comprising a polarization scrambler that changes the polarization plane of the monitoring light in a pseudo-random manner before inputting the monitoring light into the first optical fiber. Water pressure fluctuation measurement system.
 (付記13)前記光出力部、前記光受信部、前記演算部とは、OTDR(Optical time domain reflectometer)装置を構成する、付記1乃至12のいずれか一つに記載の水圧変動測定システム。 (Appendix 13) The water pressure fluctuation measuring system according to any one of Appendix 1 to 12, wherein the optical output unit, the optical receiving unit, and the arithmetic unit constitute an OTDR (Optical time domain reflectometer) device.
 (付記14)前記OTDR装置は、前記OTDR装置の内部クロックを外部から供給されるクロック信号と同期させることを特徴とする、付記13に記載の水圧変動測定システム。 (Appendix 14) The water pressure fluctuation measuring system according to Appendix 13, wherein the OTDR device synchronizes an internal clock of the OTDR device with a clock signal supplied from the outside.
 (付記15)前記外部から供給されるクロック信号は、衛星測位システムの衛星から受信する信号に基づいて生成されることを特徴とする、付記14に記載の水圧変動測定システム。 (Supplementary note 15) The water pressure fluctuation measurement system according to Supplementary note 14, wherein the clock signal supplied from the outside is generated based on a signal received from the satellite of the satellite positioning system.
 (付記16)合分波手段と、前記合分波手段によって前記第1の光ファイバから分岐された第2の光ファイバと、を備え、前記第2の光ファイバの経路上に設けられ、前記監視光を部分的に反射する部分反射部が設けられる、付記1乃至12のいずれか一つに記載の水圧変動測定システム。 (Appendix 16) A combined demultiplexing means and a second optical fiber branched from the first optical fiber by the combined demultiplexing means are provided and provided on the path of the second optical fiber. The water pressure fluctuation measurement system according to any one of Supplementary note 1 to 12, wherein a partial reflection unit that partially reflects the monitoring light is provided.
 (付記17)前記合分波手段は、波長選択性を有しない光カプラであることを特徴とする、付記16に記載の水圧変動測定システム。 (Supplementary note 17) The water pressure fluctuation measuring system according to Supplementary note 16, wherein the combined demultiplexing means is an optical coupler having no wavelength selectivity.
 (付記18)第1の波長の監視光を出力する第1のOTDR装置と、第2の波長の監視光を出力する第2のOTDR装置と、を備え、前記合分波手段は、第1の波長と第2の波長とを合分波する波長選択性を有する光カプラであることを特徴とする、付記17に記載の水圧変動測定システム。 (Appendix 18) A first OTDR device that outputs monitoring light of a first wavelength and a second OTDR device that outputs monitoring light of a second wavelength are provided, and the combined / demultiplexing means is a first. The water pressure fluctuation measuring system according to Appendix 17, wherein the optical coupler has wavelength selectivity to combine and demultiplex the wavelength of the above and the second wavelength.
 (付記19)順方向が互いに反対方向の第3及び第4の光ファイバと、前記第3及び第4の光ファイバを伝搬する光を増幅して中継する光増幅中継器と、前記光増幅中継器に到達する、順方向とは反対の方向に前記第3の光ファイバを伝搬する光の一部を分岐して前記第4の光ファイバに結合させる経路と、を備える、光増幅中継システムと、前記第3の光ファイバの経路上に設けられ、前記第1の光ファイバと前記第3の光ファイバとを結合する、第1の波長の光に対する波長選択性を有する光カプラと、を備え、前記光出力部は、前記第3の光ファイバの順方向に前記第1の波長の監視光を出力し、前記第1の波長の監視光は、前記光カプラにより前記第3の光ファイバから前記第1の光ファイバに波長選択的に分岐され、前記第1の光ファイバに設けられた前記部分反射部からの反射光は、前記光カプラにより前記第3の光ファイバに結合されて、前記第3の光ファイバの順方向とは反対の方向に伝搬し、前記経路によって前記第4の光ファイバに結合され、前記第4の光ファイバの順方向に伝搬し、前記光受信部は、前記第4の光ファイバを介して前記第1の光ファイバに設けられた前記部分反射部からの反射光を受信する、付記1乃至15のいずれか一つに記載の水圧変動測定システム。 (Appendix 19) An optical amplification repeater that amplifies and relays light propagating through the third and fourth optical fibers whose forward directions are opposite to each other, and the optical amplification relay. An optical amplification relay system including a path that branches a part of light propagating in the third optical fiber in a direction opposite to the forward direction to reach the vessel and couples the light to the fourth optical fiber. An optical coupler provided on the path of the third optical fiber and having wavelength selectivity for light of the first wavelength, which couples the first optical fiber and the third optical fiber. The optical output unit outputs the monitoring light of the first wavelength in the forward direction of the third optical fiber, and the monitoring light of the first wavelength is transmitted from the third optical fiber by the optical coupler. The light reflected from the partial reflection portion provided in the first optical fiber is frequency-selectively branched into the first optical fiber, and is coupled to the third optical fiber by the optical coupler to obtain the above. It propagates in a direction opposite to the forward direction of the third optical fiber, is coupled to the fourth optical fiber by the path, propagates in the forward direction of the fourth optical fiber, and the optical receiver is said. The water pressure fluctuation measuring system according to any one of Supplementary note 1 to 15, wherein the reflected light from the partial reflecting portion provided in the first optical fiber is received via a fourth optical fiber.
 (付記20)順方向が互いに反対方向の第3及び第4の光ファイバと、前記第3及び第4の光ファイバを伝搬する光を増幅して中継する光増幅中継器と、前記光増幅中継器に到達する、順方向とは反対の方向に前記第3の光ファイバを伝搬する光の一部を分岐して前記第4の光ファイバに結合させる経路と、を備える、光増幅中継システムと、第3の波長を有する第1の光信号を前記第3の光ファイバの順方向に送信し、前記第4の光ファイバの順方向に伝搬する前記第3の波長を有する第2の光信号を受信する、前記第3及び第4の光ファイバの一端に接続される第1の通信装置と、前記OTDR装置と接続され、前記第1の光信号を受信する第1の受信部と、前記OTDR装置で得た結果を含む前記第2の光信号を送信する第1の送信部と、を有する、第2の通信装置と、前記第3の光ファイバの経路上に設けられ、前記第3の光ファイバの順方向に伝搬する前記第1の光信号を波長選択的に前記第2の通信装置の第1の受信部へ分岐する第1の光カプラと、前記第4の光ファイバの経路上に設けられ、前記第2の通信装置の第1の送信部が出力する前記第2の光信号を、前記第2の光信号が前記第4の光ファイバの順方向に伝搬するように波長選択的に前記第4の光ファイバに結合する第2の光カプラと、を備える、付記13乃至15のいずれか一つに記載の水圧変動測定システム。 (Appendix 20) The third and fourth optical fibers having opposite forward directions, an optical amplification repeater that amplifies and relays light propagating through the third and fourth optical fibers, and the optical amplification relay. An optical amplification relay system including a path that branches a part of light propagating in the third optical fiber in a direction opposite to the forward direction to reach the vessel and couples the light to the fourth optical fiber. , A first optical signal having a third wavelength is transmitted in the forward direction of the third optical fiber and propagates in the forward direction of the fourth optical fiber, and a second optical signal having the third wavelength is transmitted. A first communication device connected to one end of the third and fourth optical fibers, a first receiving unit connected to the OTDR device and receiving the first optical signal, and the above. A second communication device having a first transmission unit for transmitting the second optical signal including the result obtained by the OTDR device, and the third optical fiber provided on the path of the third optical fiber. The path of the first optical coupler and the fourth optical fiber that selectively branch the first optical signal propagating in the forward direction of the optical fiber to the first receiving portion of the second communication device. The wavelength of the second optical signal provided above and output by the first transmitter of the second communication device so that the second optical signal propagates in the forward direction of the fourth optical fiber. The water pressure fluctuation measuring system according to any one of Appendix 13 to 15, further comprising a second optical coupler selectively coupled to the fourth optical fiber.
 (付記21)前記第1の光信号は、前記第1の通信装置が衛星測位システムの衛星から受信する信号に基づいて生成したクロック信号と前記OTDR装置を制御するコマンドと、を含み、前記OTDR装置は、前記OTDR装置の内部クロックを前記第1の光信号に含まれる前記クロック信号と同期させる、付記20に記載の水圧変動測定システム。 (Appendix 21) The first optical signal includes a clock signal generated by the first communication device based on a signal received from a satellite of a satellite positioning system and a command for controlling the OTDR device, and includes the OTDR. The water pressure fluctuation measuring system according to Appendix 20, wherein the device synchronizes the internal clock of the OTDR device with the clock signal included in the first optical signal.
 (付記22)前記第3の波長を有する第3の光信号を前記第4の光ファイバの順方向に送信し、前記第3の光ファイバの順方向に伝搬する前記第3の波長を有する第4の光信号を受信する、前記第3及び第4の光ファイバの他端に接続される第3の通信装置と、前記第4の光ファイバの経路上に設けられ、前記第4の光ファイバの順方向に伝搬する前記第3の光信号を波長選択的に前記第2の通信装置の第2の受信部へ分岐する第3の光カプラと、前記第3の光ファイバの経路上に設けられ、前記第2の通信装置の第2の送信部が出力する前記第4の光信号を、前記第4の光信号が前記第3の光ファイバの順方向に伝搬するように波長選択的に前記第3の光ファイバに結合する第2の光カプラと、を備える、前記第2の通信装置では、前記第2の受信部は前記第3の光信号を受信し、前記第2の送信部は前記OTDR装置で得た結果を含む前記第4の光信号を送信する、付記20に記載の水圧変動測定システム。 (Appendix 22) A third optical signal having the third wavelength, which transmits the third optical signal having the third wavelength in the forward direction of the fourth optical fiber and propagates in the forward direction of the third optical fiber. A third communication device connected to the other end of the third and fourth optical fibers for receiving the optical signal of 4, and the fourth optical fiber provided on the path of the fourth optical fiber. A third optical coupler that selectively branches the third optical signal propagating in the forward direction to the second receiving portion of the second communication device, and provided on the path of the third optical fiber. The fourth optical signal output by the second transmitter of the second communication device is wavelength-selectively propagated so that the fourth optical signal propagates in the forward direction of the third optical fiber. In the second communication device including a second optical coupler coupled to the third optical fiber, the second receiving unit receives the third optical signal and the second transmitting unit receives the third optical signal. 20 is the water pressure fluctuation measuring system according to Appendix 20, which transmits the fourth optical signal including the result obtained by the OTDR apparatus.
 (付記23)前記第2の通信装置、前記第1~第4の光カプラ及び前記OTDR装置がOADM(Optical add-drop multiplexer)分岐ノードを構成し、前記第3及び第4の光ファイバを含む光ファイバケーブルが、前記第1の通信装置が設けられた第1の観測局から、前記第1の光ファイバが敷設される観測エリアを経由して、前記第3の通信装置を含む第2の観測局まで接続されており、前記第2の通信装置は、前記第1及び第2の光信号により前記第1の観測局と通信し、前記第3及び第4の光信号により前記第2の観測局と通信する、付記22に記載の水圧変動測定システム。 (Appendix 23) The second communication device, the first to fourth optical couplers, and the OTDR device form an OADM (Optical add-drop multiplexer) branch node, and include the third and fourth optical fibers. A second optical fiber cable includes the third communication device from the first observation station provided with the first communication device via the observation area in which the first optical fiber is laid. The second communication device is connected to the observation station, communicates with the first observation station by the first and second optical signals, and communicates with the first observation station by the third and fourth optical signals. The water pressure fluctuation measuring system according to Appendix 22, which communicates with an observation station.
 (付記24)前記ケーブルは、水圧の変動の測定を目的とするセンサケーブルと通信と給電とを目的とする幹線ケーブルとからなり、前記第1の光ファイバは、前記センサケーブルに含まれ、前記センサケーブルは、給電線導体を含まない、又は、含まれる給電線導体が前記幹線ケーブルの給電線とは絶縁されていることを特徴とする、付記19又は20に記載の水圧変動測定システム。 (Appendix 24) The cable includes a sensor cable for measuring fluctuations in water pressure and a trunk cable for communication and power supply, and the first optical fiber is included in the sensor cable. The hydraulic pressure fluctuation measuring system according to Appendix 19 or 20, wherein the sensor cable does not include a feeder, or the feeder conductor included is insulated from the feeder of the trunk cable.
 (付記25)前記ケーブルは、通信と給電とを目的とする基幹ケーブルと、水圧の変動の測定のために基幹ケーブルからOADM分岐ノードによって分岐される分岐ケーブルからなり、前記分岐ケーブルは、前記基幹ケーブルから分岐されたケーブルと、水圧の変動の測定を目的とするセンサケーブルと、が接続されて構成され、前記第1の光ファイバは、前記センサケーブルに含まれ、前記基幹ケーブルから分岐されたケーブルは、給電線導体を含まない、又は、含まれる給電線導体が前記基幹ケーブルの給電線とは絶縁されていることを特徴とする、付記19又は20に記載の水圧変動測定システム。 (Appendix 25) The cable comprises a backbone cable for the purpose of communication and power supply, and a branch cable branched from the backbone cable by an OADM branch node for measuring fluctuations in water pressure, and the branch cable is the backbone. A cable branched from the cable and a sensor cable for measuring fluctuations in water pressure are connected and configured, and the first optical fiber is included in the sensor cable and branched from the trunk cable. The water pressure fluctuation measuring system according to Appendix 19 or 20, wherein the cable does not include a feeding wire conductor, or the feeding wire conductor included is insulated from the feeding line of the backbone cable.
 (付記26)前記分岐ケーブルのうちで前記基幹ケーブルから分岐されたケーブルからなる区間は、一端が前記OADM分岐ノードと接続された第1の部分の他端と、一端が前記センサケーブルと接続された第2の部分の他端と、が敷設時に接続されることで構成されることを特徴とする、付記25に記載の水圧変動測定システム。 (Appendix 26) Of the branch cables, a section consisting of a cable branched from the backbone cable is connected to the other end of the first portion whose one end is connected to the OADM branch node and one end to the sensor cable. 25. The water pressure fluctuation measuring system according to Appendix 25, wherein the other end of the second portion is connected to the other end of the second portion at the time of laying.
 (付記27)前記第1の部分の長さは、前記第1の部分と前記第2の部分とを接続するときに前記OADM分岐ノードに張力が伝わらないよう、前記第1の部分と前記第2の部分との接続点と前記OADM分岐ノードとが離隔する長さであることを特徴とする、付記26に記載の水圧変動測定システム。 (Appendix 27) The length of the first portion is the length of the first portion and the first portion so that tension is not transmitted to the OADM branch node when the first portion and the second portion are connected. The water pressure fluctuation measuring system according to Appendix 26, wherein the connection point with the portion 2 and the OADM branch node are separated from each other by a length.
 (付記28)前記第1の部分と前記第2の部分とは、ケーブル工事船からのアンカー操作によるケーブル切断及び再接続を含むケーブル交換作業が行われる場所に設置されることを特徴とする、付記26又は27に記載の水圧変動測定システム。 (Appendix 28) The first portion and the second portion are characterized in that they are installed in a place where cable replacement work including cable cutting and reconnection by anchor operation from a cable construction ship is performed. The water pressure fluctuation measuring system according to Appendix 26 or 27.
 (付記29)前記第1の光ファイバに対して光合分波手段を介して複数の前記OTDR装置が複数の地点に設置され、前記複数のOTDR装置のうちの1つのOTDR装置を用いて水圧変動測定を行い、他のOTDR装置を予備として用い、前記1つのOTDR装置と前記1つのOTDR装置に対応する前記光合分波手段とを接続する光ファイバケーブルに障害が生じた場合、予備のOTDR装置のいずれかを用いて水圧変動測定を継続する、付記13乃至15のいずれか一つに記載の水圧変動測定システム。 (Appendix 29) A plurality of the OTDR devices are installed at a plurality of points on the first optical fiber via an optical combine demultiplexing means, and the water pressure fluctuates using one of the plurality of OTDR devices. If a failure occurs in the optical fiber cable that connects the one OTDR device and the optical duplexing means corresponding to the one OTDR device by performing measurement and using another OTDR device as a spare, the spare OTDR device The water pressure fluctuation measurement system according to any one of Appendix 13 to 15, wherein the water pressure fluctuation measurement is continued using any one of the above.
 (付記30)監視光を部分的に反射する部分反射部が経路上に設けられた第1の光ファイバを含むケーブルを、前記第1の光ファイバが水圧の変動に伴い伸縮するように海底の地面上又は地中に設け、前記第1の光ファイバに前記監視光を出力し、前記部分反射部で反射された反射光を受信し、受信した前記反射光の往復伝搬時間に基づいて、前記部分反射部までの前記第1の光ファイバの長さを計測し、その継時変化をモニタする、水圧変動測定方法。 (Appendix 30) A cable including a first optical fiber having a partial reflection portion that partially reflects the monitoring light is provided on the path of the seabed so that the first optical fiber expands and contracts as the water pressure fluctuates. Provided on the ground or in the ground, the monitoring light is output to the first optical fiber, the reflected light reflected by the partial reflection unit is received, and the reciprocating propagation time of the received reflected light is used as the basis. A method for measuring water pressure fluctuation, which measures the length of the first optical fiber up to a partial reflection portion and monitors the change over time.
 (付記31)前記水圧の変化量は、前記第1の光ファイバの長さの変化量に係数を乗じることで求められ、前記係数は、前記第1の光ファイバが設置されている海域における満潮時と干潮時との間での水圧の変化量を、満潮時と干潮時との間での第1の光ファイバの長さの変化量で除算することで求められる、付記30に記載の水圧変動測定方法。 (Appendix 31) The amount of change in water pressure is obtained by multiplying the amount of change in the length of the first optical fiber by a coefficient, and the coefficient is the high tide in the sea area where the first optical fiber is installed. The water pressure according to Appendix 30, which is obtained by dividing the amount of change in water pressure between time and low tide by the amount of change in the length of the first optical fiber between high tide and low tide. Fluctuation measurement method.
 (付記32)第1の測定タイミングと、前記第1の測定タイミングよりも後の第2の測定タイミングと、で前記監視光を出力し、前記第1の測定タイミングで測定した前記部分反射部までの前記第1の光ファイバの長さと前記第2の測定タイミングで測定した前記部分反射部までの前記第1の光ファイバの長さとの差に基づいて、前記水圧の変動量をモニタする、付記31に記載の水圧変動測定方法。 (Appendix 32) The monitoring light is output at the first measurement timing and the second measurement timing after the first measurement timing, and up to the partial reflection portion measured at the first measurement timing. The fluctuation amount of the water pressure is monitored based on the difference between the length of the first optical fiber and the length of the first optical fiber up to the partial reflection portion measured at the second measurement timing. 31. The method for measuring water pressure fluctuation.
 (付記33)複数の前記部分反射部が前記第1の光ファイバの異なる位置に設けられ、前記複数の部分反射部のうちの2つの間の前記第1の光ファイバの長さの変動に基づいて、前記水圧の変動をモニタする、付記31又は32に記載の水圧変動測定方法。 (Appendix 33) A plurality of the partial reflection portions are provided at different positions of the first optical fiber, and are based on a variation in the length of the first optical fiber between two of the plurality of partial reflection portions. The water pressure fluctuation measuring method according to Appendix 31 or 32, which monitors the fluctuation of the water pressure.
 (付記34)前記複数の部分反射部で区切られる各ケーブル区間について、各ケーブル区間の満潮時と干潮時との間での水圧の変化量及び満潮時と干潮時との間における各ケーブル区間のケーブル長の変化量から、各ケーブル区間の前記係数を求める、付記33に記載の水圧変動測定方法。 (Appendix 34) For each cable section divided by the plurality of partial reflection portions, the amount of change in water pressure between high tide and low tide and each cable section between high tide and low tide. The water pressure fluctuation measuring method according to Appendix 33, wherein the coefficient of each cable section is obtained from the amount of change in the cable length.
 (付記35)前記複数の部分反射部は、前記監視光の出力元から前記部分反射部までの経路光損失が大きいものほど、反射率が高くなるように構成される、付記33又は34に記載の水圧変動測定方法。 (Supplementary note 35) The plurality of partial reflection portions are configured so that the larger the path light loss from the output source of the monitoring light to the partial reflection portion, the higher the reflectance. Water pressure fluctuation measurement method.
 (付記36)前記ケーブルには、前記地面又は地中に対する把持力を追加するための固定具が設けられる、付記33乃至35のいずれか一つに記載の水圧変動測定方法。 (Supplementary note 36) The method for measuring water pressure fluctuation according to any one of Supplementary note 33 to 35, wherein the cable is provided with a fixture for adding a gripping force to the ground or the ground.
 (付記37)前記固定具は、前記複数の部分反射部のうちの一部又は全部の近傍に設けられる、付記36に記載の水圧変動測定方法。 (Appendix 37) The method for measuring water pressure fluctuation according to Appendix 36, wherein the fixture is provided in the vicinity of a part or all of the plurality of partial reflection portions.
 (付記38)前記固定具には、音響信号を受信することで応答音響信号を出力する、海中での音響測距に用いられるミラートランスポンダが固定される、付記36又は37に記載の水圧変動測定方法。 (Appendix 38) The water pressure fluctuation measurement according to Appendix 36 or 37, wherein a mirror transponder used for acoustic distance measurement in the sea is fixed to the fixture to output a response acoustic signal by receiving an acoustic signal. Method.
 (付記39)前記第1の光ファイバの温度を長手方向に分布的に測定し、前記第1の光ファイバの長さの経時変化量から、前記温度の経時変化による光ファイバの長さの変化を除外する、付記30乃至38のいずれか一つに記載の水圧変動測定方法。 (Appendix 39) The temperature of the first optical fiber is measured in a distributed manner in the longitudinal direction, and the change in the length of the optical fiber due to the change in the temperature with time is based on the amount of change in the length of the first optical fiber with time. The method for measuring water pressure fluctuation according to any one of Supplementary Provisions 30 to 38, which excludes the above.
 (付記40)前記温度の測定は、前記第1の光ファイバと同一のケーブルに内包される別の光ファイバを用いることを特徴とする、付記39に記載の水圧変動測定方法。 (Supplementary note 40) The water pressure fluctuation measuring method according to Supplementary note 39, wherein the temperature measurement uses another optical fiber included in the same cable as the first optical fiber.
 (付記41)前記監視光を前記第1の光ファイバに入力する前に、前記監視光の偏波面を疑似ランダムに変化させる、付記30乃至40のいずれか一つに記載の水圧変動測定方法。 (Supplementary note 41) The method for measuring water pressure fluctuation according to any one of Supplementary note 30 to 40, wherein the plane of polarization of the monitoring light is changed pseudo-randomly before the monitoring light is input to the first optical fiber.
 (付記42)前記監視光を出力する光出力部、前記反射光を受信する光受信部及び前記部分反射部までの前記第1の光ファイバの長さを計測してその継時変化をモニタする演算部が、OTDR(Optical time domain reflectometer)装置を構成する、付記30乃至41のいずれか一つに記載の水圧変動測定方法。 (Appendix 42) The length of the first optical fiber up to the optical output unit that outputs the monitoring light, the optical reception unit that receives the reflected light, and the partial reflection unit is measured, and the change over time is monitored. The method for measuring water pressure fluctuation according to any one of Supplementary note 30 to 41, wherein the calculation unit constitutes an OTDR (Optical time domain reflector) device.
 (付記43)前記OTDR装置は、前記OTDR装置の内部クロックを外部から供給されるクロック信号と同期させることを特徴とする、付記42に記載の水圧変動測定方法。 (Supplementary note 43) The water pressure fluctuation measuring method according to Supplementary note 42, wherein the OTDR device synchronizes an internal clock of the OTDR device with a clock signal supplied from the outside.
 (付記44)前記外部から供給されるクロック信号は、衛星測位システムの衛星から受信する信号に基づいて生成されることを特徴とする、付記43に記載の水圧変動測定方法。 (Supplementary note 44) The method for measuring water pressure fluctuation according to Supplementary note 43, wherein the clock signal supplied from the outside is generated based on a signal received from a satellite of a satellite positioning system.
 (付記45)合分波手段によって前記第1の光ファイバから第2の光ファイバが分岐され、前記第2の光ファイバの経路上には、前記監視光を部分的に反射する部分反射部が設けられる、付記30乃至41のいずれか一つに記載の水圧変動測定方法。 (Appendix 45) The second optical fiber is branched from the first optical fiber by the combined demultiplexing means, and a partial reflection portion that partially reflects the monitoring light is provided on the path of the second optical fiber. The method for measuring water pressure fluctuation according to any one of Supplementary Provisions 30 to 41, which is provided.
 (付記46)前記合分波手段は、波長選択性を有しない光カプラであることを特徴とする、付記45に記載の水圧変動測定方法。 (Supplementary note 46) The method for measuring water pressure fluctuation according to Supplementary note 45, wherein the combined demultiplexing means is an optical coupler having no wavelength selectivity.
 (付記47)第1のOTDR装置が第1の波長の監視光を出力し、第2のOTDR装置が第2の波長の監視光を出力し、前記合分波手段は、第1の波長と第2の波長とを合分波する波長選択性を有する光カプラであることを特徴とする、付記46に記載の水圧変動測定方法。 (Appendix 47) The first OTDR device outputs the monitoring light of the first wavelength, the second OTDR device outputs the monitoring light of the second wavelength, and the combined / demultiplexing means is the first wavelength. The water pressure fluctuation measuring method according to Appendix 46, wherein the optical coupler has wavelength selectivity to combine and demultiplex the second wavelength.
 (付記48)順方向が互いに反対方向の第3及び第4の光ファイバと、前記第3及び第4の光ファイバを伝搬する光を増幅して中継する光増幅中継器と、前記光増幅中継器に到達する、順方向とは反対の方向に前記第3の光ファイバを伝搬する光の一部を分岐して前記第4の光ファイバに結合させる経路と、を備える、光増幅中継システムを設け、前記第3の光ファイバの経路上に設けられ、前記第1の光ファイバと前記第3の光ファイバとを結合する、第1の波長の光に対する波長選択性を有する光カプラと、を設け、前記第3の光ファイバの順方向に前記第1の波長の監視光を出力し、前記第1の波長の監視光は、前記光カプラにより前記第3の光ファイバから前記第1の光ファイバに波長選択的に分岐され、前記第1の光ファイバに設けられた前記部分反射部からの反射光は、前記光カプラにより前記第3の光ファイバに結合されて、前記第3の光ファイバの順方向とは反対の方向に伝搬し、前記経路によって前記第4の光ファイバに結合され、前記第4の光ファイバの順方向に伝搬し、前記第4の光ファイバを介して前記第1の光ファイバに設けられた前記部分反射部からの反射光を受信する、付記30乃至44のいずれか一つに記載の水圧変動測定方法。 (Appendix 48) The third and fourth optical fibers having opposite forward directions, an optical amplification repeater that amplifies and relays light propagating through the third and fourth optical fibers, and the optical amplification relay. An optical amplification relay system including a path that branches a part of light propagating in the third optical fiber in a direction opposite to the forward direction to reach the vessel and couples the light to the fourth optical fiber. An optical coupler provided on the path of the third optical fiber, which couples the first optical fiber and the third optical fiber, and has wavelength selectivity for light of the first wavelength. The monitoring light of the first wavelength is output in the forward direction of the third optical fiber, and the monitoring light of the first wavelength is the first light from the third optical fiber by the optical coupler. The light reflected from the partial reflection portion provided in the first optical fiber and branched into the fiber in a wavelength-selective manner is coupled to the third optical fiber by the optical coupler, and the third optical fiber is coupled to the third optical fiber. Propagates in the direction opposite to the forward direction of the above, is coupled to the fourth optical fiber by the path, propagates in the forward direction of the fourth optical fiber, and propagates through the fourth optical fiber. The method for measuring water pressure fluctuation according to any one of Appendix 30 to 44, which receives the reflected light from the partial reflecting portion provided in the optical fiber of the above.
 (付記49)順方向が互いに反対方向の第3及び第4の光ファイバと、前記第3及び第4の光ファイバを伝搬する光を増幅して中継する光増幅中継器と、前記光増幅中継器に到達する、順方向とは反対の方向に前記第3の光ファイバを伝搬する光の一部を分岐して前記第4の光ファイバに結合させる経路と、を備える、光増幅中継システムを設け、第3の波長を有する第1の光信号を前記第3の光ファイバの順方向に送信し、前記第4の光ファイバの順方向に伝搬する前記第3の波長を有する第2の光信号を受信する、前記第3及び第4の光ファイバの一端に接続される第1の通信装置と、前記OTDR装置と接続され、前記第1の光信号を受信する第1の受信部と、前記OTDR装置で得た結果を含む前記第2の光信号を送信する第1の送信部と、を有する、第2の通信装置と、前記第3の光ファイバの経路上に設けられ、前記第3の光ファイバの順方向に伝搬する前記第1の光信号を波長選択的に前記第2の通信装置の第1の受信部へ分岐する第1の光カプラと、前記第4の光ファイバの経路上に設けられ、前記第2の通信装置の第1の送信部が出力する前記第2の光信号を、前記第2の光信号が前記第4の光ファイバの順方向に伝搬するように波長選択的に前記第4の光ファイバに結合する第2の光カプラと、を設ける、付記42乃至44のいずれか一つに記載の水圧変動測定方法。 (Appendix 49) An optical amplification repeater that amplifies and relays light propagating through the third and fourth optical fibers whose forward directions are opposite to each other, and the optical amplification relay. An optical amplification relay system including a path that branches a part of light propagating in the third optical fiber in a direction opposite to the forward direction to reach the vessel and couples the light to the fourth optical fiber. The second light having the third wavelength provided, transmitting the first optical signal having the third wavelength in the forward direction of the third optical fiber and propagating in the forward direction of the fourth optical fiber. A first communication device connected to one end of the third and fourth optical fibers for receiving a signal, a first receiving unit connected to the OTDR device and receiving the first optical signal, and a first receiving unit. A second communication device having a first transmission unit for transmitting the second optical signal including the result obtained by the OTDR device, and the third optical fiber provided on the path of the third optical fiber. A first optical coupler that selectively branches the first optical signal propagating in the forward direction of the third optical fiber to a first receiving portion of the second communication device, and the fourth optical fiber. The second optical signal provided on the path and output by the first transmission unit of the second communication device is propagated in the forward direction of the fourth optical fiber so that the second optical signal propagates in the forward direction of the fourth optical fiber. The method for measuring water pressure fluctuation according to any one of Appendix 42 to 44, wherein a second optical coupler that selectively couples to the fourth optical fiber is provided.
 (付記50)前記第1の光信号は、前記第1の通信装置が衛星測位システムの衛星から受信する信号に基づいて生成したクロック信号と前記OTDR装置を制御するコマンドと、を含み、前記OTDR装置の内部クロックを前記第1の光信号に含まれる前記クロック信号と同期させる、付記49に記載の水圧変動測定方法。 (Appendix 50) The first optical signal includes a clock signal generated by the first communication device based on a signal received from a satellite of a satellite positioning system and a command for controlling the OTDR device, and includes the OTDR. The method for measuring water pressure fluctuation according to Appendix 49, wherein the internal clock of the apparatus is synchronized with the clock signal included in the first optical signal.
 (付記51)前記第3の波長を有する第3の光信号を前記第4の光ファイバの順方向に送信し、前記第3の光ファイバの順方向に伝搬する前記第3の波長を有する第4の光信号を受信する、前記第3及び第4の光ファイバの他端に接続される第3の通信装置と、前記第4の光ファイバの経路上に設けられ、前記第4の光ファイバの順方向に伝搬する前記第3の光信号を波長選択的に前記第2の通信装置の第2の受信部へ分岐する第3の光カプラと、前記第3の光ファイバの経路上に設けられ、前記第2の通信装置の第2の送信部が出力する前記第4の光信号を、前記第4の光信号が前記第3の光ファイバの順方向に伝搬するように波長選択的に前記第3の光ファイバに結合する第2の光カプラと、を設け、前記第2の通信装置では、前記第2の受信部は前記第3の光信号を受信し、前記第2の送信部は前記OTDR装置で得た結果を含む前記第4の光信号を送信する、付記49に記載の水圧変動測定方法。 (Appendix 51) A third optical signal having the third wavelength, which transmits the third optical signal having the third wavelength in the forward direction of the fourth optical fiber and propagates in the forward direction of the third optical fiber. A third communication device connected to the other end of the third and fourth optical fibers for receiving the optical signal of 4, and the fourth optical fiber provided on the path of the fourth optical fiber. A third optical coupler that selectively branches the third optical signal propagating in the forward direction to the second receiving portion of the second communication device, and provided on the path of the third optical fiber. The fourth optical signal output by the second transmitter of the second communication device is wavelength-selectively propagated so that the fourth optical signal propagates in the forward direction of the third optical fiber. A second optical coupler coupled to the third optical fiber is provided, and in the second communication device, the second receiving unit receives the third optical signal, and the second transmitting unit receives the third optical signal. 49. The method for measuring water pressure fluctuation according to Appendix 49, which transmits the fourth optical signal including the result obtained by the OTDR apparatus.
 (付記52)前記第2の通信装置、前記第1~第4の光カプラ及び前記OTDR装置がOADM(Optical add-drop multiplexer)分岐ノードを構成し、前記第3及び第4の光ファイバを含む光ファイバケーブルが、前記第1の通信装置が設けられた第1の観測局から、前記第1の光ファイバが敷設される観測エリアを経由して、前記第3の通信装置を含む第2の観測局まで接続されており、前記第2の通信装置は、前記第1及び第2の光信号により前記第1の観測局と通信し、前記第3及び第4の光信号により前記第2の観測局と通信する、付記51に記載の水圧変動測定方法。 (Appendix 52) The second communication device, the first to fourth optical couplers, and the OTDR device form an OADM (Optical add-drop multiplexer) branch node, and include the third and fourth optical fibers. A second optical fiber cable includes the third communication device from the first observation station provided with the first communication device via the observation area in which the first optical fiber is laid. The second communication device is connected to the observation station, communicates with the first observation station by the first and second optical signals, and communicates with the first observation station by the third and fourth optical signals. The water pressure fluctuation measuring method according to Appendix 51, which communicates with an observation station.
 (付記53)前記ケーブルは、水圧の変動の測定を目的とするセンサケーブルと通信と給電とを目的とする幹線ケーブルとからなり、前記第1の光ファイバは、前記センサケーブルに含まれ、前記センサケーブルは、給電線導体を含まない、又は、含まれる給電線導体が前記幹線ケーブルの給電線とは絶縁されていることを特徴とする、付記47又は48に記載の水圧変動測定方法。 (Appendix 53) The cable includes a sensor cable for measuring fluctuations in water pressure and a trunk cable for communication and power supply, and the first optical fiber is included in the sensor cable. The water pressure fluctuation measuring method according to Appendix 47 or 48, wherein the sensor cable does not include a feeder line conductor, or the feeder line conductor included is insulated from the feeder line of the trunk cable.
 (付記54)前記ケーブルは、通信と給電とを目的とする基幹ケーブルと、水圧の変動の測定のために基幹ケーブルからOADM分岐ノードによって分岐される分岐ケーブルからなり、前記分岐ケーブルは、前記基幹ケーブルから分岐されたケーブルと、水圧の変動の測定を目的とするセンサケーブルと、が接続されて構成され、前記第1の光ファイバは、前記センサケーブルに含まれ、前記基幹ケーブルから分岐されたケーブルは、給電線導体を含まない、又は、含まれる給電線導体が前記基幹ケーブルの給電線とは絶縁されていることを特徴とする、付記47又は48に記載の水圧変動測定方法。 (Appendix 54) The cable comprises a backbone cable for the purpose of communication and power supply, and a branch cable branched from the backbone cable by an OADM branch node for measuring fluctuations in water pressure, and the branch cable is the backbone. A cable branched from the cable and a sensor cable for measuring fluctuations in water pressure are connected and configured, and the first optical fiber is included in the sensor cable and branched from the trunk cable. The method for measuring water pressure fluctuation according to Appendix 47 or 48, wherein the cable does not include a power supply line conductor, or the power supply line conductor included is insulated from the power supply line of the backbone cable.
 (付記55)前記分岐ケーブルのうちで前記基幹ケーブルから分岐されたケーブルからなる区間は、一端が前記OADM分岐ノードと接続された第1の部分の他端と、一端が前記センサケーブルと接続された第2の部分の他端と、が敷設時に接続されることで構成されることを特徴とする、付記54に記載の水圧変動測定方法。 (Appendix 55) Of the branch cables, a section consisting of a cable branched from the backbone cable is connected to the other end of a first portion whose one end is connected to the OADM branch node and one end to the sensor cable. The water pressure fluctuation measuring method according to Appendix 54, wherein the other end of the second portion is connected to the other end of the second portion at the time of laying.
 (付記56)前記第1の部分の長さは、前記第1の部分と前記第2の部分とを接続するときに前記OADM分岐ノードに張力が伝わらないよう、前記第1の部分と前記第2の部分との接続点と前記OADM分岐ノードとが離隔する長さであることを特徴とする、付記55に記載の水圧変動測定方法。 (Appendix 56) The length of the first portion is the length of the first portion and the first portion so that tension is not transmitted to the OADM branch node when the first portion and the second portion are connected. The water pressure fluctuation measuring method according to Appendix 55, wherein the connection point with the portion 2 and the OADM branch node are separated from each other by a length.
 (付記57)前記第1の部分と前記第2の部分とは、ケーブル工事船からのアンカー操作によるケーブル切断及び再接続を含むケーブル交換作業が行われる場所に設置されることを特徴とする、付記55又は56に記載の水圧変動測定方法。 (Appendix 57) The first portion and the second portion are characterized in that they are installed in a place where cable replacement work including cable cutting and reconnection by anchor operation from a cable construction ship is performed. The method for measuring water pressure fluctuation according to Appendix 55 or 56.
 (付記58)前記第1の光ファイバに対して光合分波手段を介して複数の前記OTDR装置が複数の地点に設置され、前記複数のOTDR装置のうちの1つのOTDR装置を用いて水圧変動測定を行い、他のOTDR装置を予備として用い、前記1つのOTDR装置と前記1つのOTDR装置に対応する前記光合分波手段とを接続する光ファイバケーブルに障害が生じた場合、予備のOTDR装置のいずれかを用いて水圧変動測定を継続する、付記42乃至44のいずれか一つに記載の水圧変動測定方法。 (Appendix 58) A plurality of the OTDR devices are installed at a plurality of points on the first optical fiber via an optical combine demultiplexing means, and the water pressure fluctuates using one of the plurality of OTDR devices. If a failure occurs in the optical fiber cable that connects the one OTDR device and the optical duplexing means corresponding to the one OTDR device by performing measurement and using another OTDR device as a spare, the spare OTDR device The method for measuring water pressure fluctuation according to any one of Appendix 42 to 44, wherein the water pressure fluctuation measurement is continued using any one of the above.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the invention of the present application has been described above with reference to the embodiments, the invention of the present application is not limited to the above. Various changes that can be understood by those skilled in the art can be made within the scope of the invention in the configuration and details of the invention of the present application.
 この出願は、2020年2月6日に出願された日本出願特願2020-18851を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2020-18851 filed on February 6, 2020, and incorporates all of its disclosures herein.
A1~A4 固定具
AR、AT 光増幅器
AU 光増幅中継器
C0~C4、C11、C12、C21、C22 光カプラ
CLK クロック
DAT1 OTDR出力データ
DAT2 DTS出力データ
F1~F5 光ファイバケーブル(光ファイバ)
FA、FR、FT、F61~F64 光ファイバ
FP ファイバペア
P 伝送路からの反射光のリターン経路
R11~R14、R21~R23、R31、R32、R41、R42、R51、R52、Rxx 部分反射部
Rx 受信器
Tx 送信器
TPD1、TPD2、TPD4 ミラートランスポンダ
SL      給電導体
WC、WC1、WC2 WDMカプラ
WC0 波長多重分離器
1、10~13 OTDR装置
1A 光出力部
1B 光受信部
1C 演算部
2 光カプラ
3 光減衰素子
4 全反射素子
100、200、201、300、400、500、501、600~603、630、700、800 測量システム
310 海底面
611、614 通信装置
612 波長多重器
613 波長分離器
615 通信制御部
616 給電部
618、618A、619、631~634、902、905 OADM分岐ノード
620 基幹ケーブル
621、622、710 陸上局
640 データ通信ネットワーク
701 DTS装置
702 データ処理装置
703 偏波スクランブラ
704 高精度クロック供給部
720 ケーブル
801 船
802 GNSS衛星
820 海面
900 基幹ケーブル
920、950 分岐ケーブル
921、951 幹線仕様ケーブル種区間
922、952 交換修理作業想定エリア
923、953 ケーブル
925、945、955 センサ仕様ケーブル種区間
956 接続点
A1 to A4 Fixture AR, AT Optical Amplifier AU Optical Amplifier Repeater C0 to C4, C11, C12, C21, C22 Optical Coupler CLK Clock DAT1 OTDR Output Data DAT2 DTS Output Data F1 to F5 Optical Fiber Cable (Optical Fiber)
FA, FR, FT, F61 to F64 Optical fiber FP Fiber pair P Return path of reflected light from transmission line R11 to R14, R21 to R23, R31, R32, R41, R42, R51, R52, Rxx Partial reflector Rx reception Instrument Tx Transmitter TPD1, TPD2, TPD4 Mirror transponder SL Power supply conductor WC, WC1, WC2 WDM coupler WC0 Wavelength division multiplexing separator 1, 10 to 13 OTDR device 1A Optical output unit 1B Optical receiver 1C Calculation unit 2 Optical coupler 3 Optical attenuation Element 4 All-reflecting elements 100, 200, 201, 300, 400, 500, 501, 600 to 603, 630, 700, 800 Survey system 310 Submarine 611, 614 Communication device 612 Wavelength division multiplexing 613 Wavelength separator 615 Communication control unit 616 Power supply unit 618, 618A, 619, 631 to 634, 902, 905 OADM branch node 620 Core cable 621, 622, 710 Land station 640 Data communication network 701 DTS device 702 Data processing device 703 Polarization scrambler 704 High-precision clock supply Part 720 Cable 801 Ship 802 GNSS Satellite 820 Sea surface 900 Trunk cable 920, 950 Branch cable 921, 951 Trunk specification cable type Section 922, 952 Replacement repair work expected area 923, 953 Cable 925, 945, 955 Sensor specification Cable type Section 956 connection point

Claims (58)

  1.  第1の光ファイバを含み、前記第1の光ファイバが水圧の変動に伴い伸縮するように海底の地面上又は地中に設けられたケーブルと、
     前記第1の光ファイバに監視光を出力する光出力部と、
     前記ケーブル内の第1の光ファイバの経路上に設けられ、前記監視光を部分的に反射する部分反射部と、
     前記部分反射部で反射された反射光を受信する光受信部と、
     受信した前記反射光の往復伝搬時間に基づいて、前記部分反射部までの前記第1の光ファイバの長さを計測し、その継時変化をモニタする演算部と、を備える、
     水圧変動測定システム。
    A cable including a first optical fiber and provided on the ground or in the ground of the seabed so that the first optical fiber expands and contracts as the water pressure fluctuates.
    An optical output unit that outputs monitoring light to the first optical fiber,
    A partial reflection portion provided on the path of the first optical fiber in the cable and partially reflecting the monitoring light, and a partial reflection portion.
    A light receiving unit that receives the reflected light reflected by the partial reflecting unit, and
    A calculation unit that measures the length of the first optical fiber up to the partial reflection unit based on the reciprocating propagation time of the received reflected light and monitors the change over time is provided.
    Water pressure fluctuation measurement system.
  2.  前記水圧の変化量は、前記第1の光ファイバの長さの変化量に係数を乗じることで求められ、
     前記係数は、前記第1の光ファイバが設置されている海域における満潮時と干潮時との間での水圧の変化量を、満潮時と干潮時との間での第1の光ファイバの長さの変化量で除算することで求められる、
     請求項1に記載の水圧変動測定システム。
    The amount of change in water pressure is obtained by multiplying the amount of change in the length of the first optical fiber by a coefficient.
    The coefficient is the amount of change in water pressure between high tide and low tide in the sea area where the first optical fiber is installed, and the length of the first optical fiber between high tide and low tide. Obtained by dividing by the amount of change in the coefficient,
    The water pressure fluctuation measuring system according to claim 1.
  3.  前記光出力部は、第1の測定タイミングと、前記第1の測定タイミングよりも後の第2の測定タイミングと、で前記監視光を出力し、
     前記演算部は、前記第1の測定タイミングで測定した前記部分反射部までの前記第1の光ファイバの長さと前記第2の測定タイミングで測定した前記部分反射部までの前記第1の光ファイバの長さとの差に基づいて、前記水圧の変動量をモニタする、
     請求項2に記載の水圧変動測定システム。
    The optical output unit outputs the monitoring light at the first measurement timing and the second measurement timing after the first measurement timing.
    The calculation unit includes the length of the first optical fiber up to the partial reflection unit measured at the first measurement timing and the first optical fiber up to the partial reflection unit measured at the second measurement timing. The fluctuation amount of the water pressure is monitored based on the difference from the length of the water pressure.
    The water pressure fluctuation measuring system according to claim 2.
  4.  複数の前記部分反射部が前記第1の光ファイバの異なる位置に設けられ、
     前記演算部は、前記複数の部分反射部のうちの2つの間の前記第1の光ファイバの長さの変動に基づいて、前記水圧の変動をモニタする、
     請求項2又は3に記載の水圧変動測定システム。
    A plurality of the partial reflection portions are provided at different positions of the first optical fiber.
    The calculation unit monitors the fluctuation of the water pressure based on the fluctuation of the length of the first optical fiber between two of the plurality of partial reflection portions.
    The water pressure fluctuation measuring system according to claim 2 or 3.
  5.  前記複数の部分反射部で区切られる各ケーブル区間について、
     各ケーブル区間の満潮時と干潮時との間での水圧の変化量及び満潮時と干潮時との間における各ケーブル区間のケーブル長の変化量から、各ケーブル区間の前記係数を求める、
      請求項4に記載の水圧変動測定システム。
    For each cable section separated by the plurality of partial reflection portions,
    The coefficient of each cable section is obtained from the amount of change in water pressure between high tide and low tide of each cable section and the amount of change in cable length of each cable section between high tide and low tide.
    The water pressure fluctuation measuring system according to claim 4.
  6.  前記複数の部分反射部は、前記光出力部から前記部分反射部までの経路光損失が大きいものほど、反射率が高くなるように構成される、
     請求項4又は5に記載の水圧変動測定システム。
    The plurality of partial reflecting portions are configured so that the larger the path light loss from the light output portion to the partially reflecting portion, the higher the reflectance.
    The water pressure fluctuation measuring system according to claim 4 or 5.
  7.  前記ケーブルには、前記地面又は地中に対する把持力を追加するための固定具が設けられる、
     請求項4乃至6のいずれか一項に記載の水圧変動測定システム。
    The cable is provided with a fixture for adding a gripping force on the ground or in the ground.
    The water pressure fluctuation measuring system according to any one of claims 4 to 6.
  8.  前記固定具は、前記複数の部分反射部のうちの一部又は全部の近傍に設けられる、
     請求項7に記載の水圧変動測定システム。
    The fixture is provided in the vicinity of a part or all of the plurality of partial reflection portions.
    The water pressure fluctuation measuring system according to claim 7.
  9.  前記固定具には、音響信号を受信することで応答音響信号を出力する、海中での音響測距に用いられるミラートランスポンダが固定される、
     請求項7又は8に記載の水圧変動測定システム。
    A mirror transponder used for acoustic distance measurement in the sea, which outputs a response acoustic signal by receiving an acoustic signal, is fixed to the fixture.
    The water pressure fluctuation measuring system according to claim 7 or 8.
  10.  前記第1の光ファイバの温度を長手方向に分布的に測定する手段を備え、
     前記第1の光ファイバの長さの経時変化量から、前記温度の経時変化による光ファイバの長さの変化を除外する、
     請求項1乃至9のいずれか一項に記載の水圧変動測定システム。
    A means for measuring the temperature of the first optical fiber in a distributed manner in the longitudinal direction is provided.
    From the amount of change in the length of the first optical fiber with time, the change in the length of the optical fiber due to the change in temperature with time is excluded.
    The water pressure fluctuation measuring system according to any one of claims 1 to 9.
  11.  前記温度の測定は、前記第1の光ファイバと同一のケーブルに内包される別の光ファイバを用いることを特徴とする、
     請求項10に記載の水圧変動測定システム。
    The temperature measurement is characterized by using another optical fiber included in the same cable as the first optical fiber.
    The water pressure fluctuation measuring system according to claim 10.
  12.  前記監視光を前記第1の光ファイバに入力する前に、前記監視光の偏波面を疑似ランダムに変化させる偏波スクランブラを備える、
     請求項1乃至11のいずれか一項に記載の水圧変動測定システム。
    A polarization scrambler that changes the polarization plane of the monitoring light in a pseudo-random manner before inputting the monitoring light into the first optical fiber is provided.
    The water pressure fluctuation measuring system according to any one of claims 1 to 11.
  13.  前記光出力部、前記光受信部、前記演算部とは、OTDR(Optical time domain reflectometer)装置を構成する、
     請求項1乃至12のいずれか一項に記載の水圧変動測定システム。
    The optical output unit, the optical receiving unit, and the arithmetic unit constitute an OTDR (Optical time domain reflectometer) device.
    The water pressure fluctuation measuring system according to any one of claims 1 to 12.
  14.  前記OTDR装置は、前記OTDR装置の内部クロックを外部から供給されるクロック信号と同期させることを特徴とする、
     請求項13に記載の水圧変動測定システム。
    The OTDR device is characterized in that the internal clock of the OTDR device is synchronized with a clock signal supplied from the outside.
    The water pressure fluctuation measuring system according to claim 13.
  15.  前記外部から供給されるクロック信号は、衛星測位システムの衛星から受信する信号に基づいて生成されることを特徴とする、
     請求項14に記載の水圧変動測定システム。
    The clock signal supplied from the outside is generated based on a signal received from a satellite of a satellite positioning system.
    The water pressure fluctuation measuring system according to claim 14.
  16.  合分波手段と、
     前記合分波手段によって前記第1の光ファイバから分岐された第2の光ファイバと、を備え、
     前記第2の光ファイバの経路上に設けられ、前記監視光を部分的に反射する部分反射部が設けられる、
     請求項1乃至12のいずれか一項に記載の水圧変動測定システム。
    Combined demultiplexing means and
    A second optical fiber branched from the first optical fiber by the combined demultiplexing means is provided.
    A partial reflection portion provided on the path of the second optical fiber and partially reflecting the monitoring light is provided.
    The water pressure fluctuation measuring system according to any one of claims 1 to 12.
  17.  前記合分波手段は、波長選択性を有しない光カプラであることを特徴とする、
     請求項16に記載の水圧変動測定システム。
    The combined demultiplexing means is an optical coupler having no wavelength selectivity.
    The water pressure fluctuation measuring system according to claim 16.
  18.  第1の波長の監視光を出力する第1のOTDR装置と、
     第2の波長の監視光を出力する第2のOTDR装置と、を備え、
     前記合分波手段は、第1の波長と第2の波長とを合分波する波長選択性を有する光カプラであることを特徴とする、
     請求項17に記載の水圧変動測定システム。
    A first OTDR device that outputs monitoring light of the first wavelength,
    A second OTDR device that outputs monitoring light of a second wavelength is provided.
    The combined demultiplexing means is an optical coupler having wavelength selectivity for combining and demultiplexing a first wavelength and a second wavelength.
    The water pressure fluctuation measuring system according to claim 17.
  19.  順方向が互いに反対方向の第3及び第4の光ファイバと、
     前記第3及び第4の光ファイバを伝搬する光を増幅して中継する光増幅中継器と、
     前記光増幅中継器に到達する、順方向とは反対の方向に前記第3の光ファイバを伝搬する光の一部を分岐して前記第4の光ファイバに結合させる経路と、を備える、光増幅中継システムと、
     前記第3の光ファイバの経路上に設けられ、前記第1の光ファイバと前記第3の光ファイバとを結合する、第1の波長の光に対する波長選択性を有する光カプラと、を備え、
     前記光出力部は、前記第3の光ファイバの順方向に前記第1の波長の監視光を出力し、
     前記第1の波長の監視光は、前記光カプラにより前記第3の光ファイバから前記第1の光ファイバに波長選択的に分岐され、
     前記第1の光ファイバに設けられた前記部分反射部からの反射光は、
      前記光カプラにより前記第3の光ファイバに結合されて、前記第3の光ファイバの順方向とは反対の方向に伝搬し、
      前記経路によって前記第4の光ファイバに結合され、前記第4の光ファイバの順方向に伝搬し、
     前記光受信部は、前記第4の光ファイバを介して前記第1の光ファイバに設けられた前記部分反射部からの反射光を受信する、
     請求項1乃至15のいずれか一項に記載の水圧変動測定システム。
    With the third and fourth optical fibers whose forward directions are opposite to each other,
    An optical amplification repeater that amplifies and relays light propagating through the third and fourth optical fibers.
    An optical beam having a path that reaches the optical amplifier repeater and branches a part of the light propagating in the third optical fiber in a direction opposite to the forward direction to be coupled to the fourth optical fiber. Amplification relay system and
    An optical coupler provided on the path of the third optical fiber and having wavelength selectivity for light of the first wavelength, which couples the first optical fiber and the third optical fiber, is provided.
    The optical output unit outputs the monitoring light of the first wavelength in the forward direction of the third optical fiber, and outputs the monitoring light of the first wavelength.
    The monitoring light of the first wavelength is wavelength-selectively branched from the third optical fiber to the first optical fiber by the optical coupler.
    The reflected light from the partial reflection portion provided in the first optical fiber is
    It is coupled to the third optical fiber by the optical coupler and propagates in a direction opposite to the forward direction of the third optical fiber.
    It is coupled to the fourth optical fiber by the path and propagates in the forward direction of the fourth optical fiber.
    The optical receiving unit receives the reflected light from the partial reflecting unit provided on the first optical fiber via the fourth optical fiber.
    The water pressure fluctuation measuring system according to any one of claims 1 to 15.
  20.  順方向が互いに反対方向の第3及び第4の光ファイバと、
     前記第3及び第4の光ファイバを伝搬する光を増幅して中継する光増幅中継器と、
     前記光増幅中継器に到達する、順方向とは反対の方向に前記第3の光ファイバを伝搬する光の一部を分岐して前記第4の光ファイバに結合させる経路と、を備える、光増幅中継システムと、
     第3の波長を有する第1の光信号を前記第3の光ファイバの順方向に送信し、前記第4の光ファイバの順方向に伝搬する前記第3の波長を有する第2の光信号を受信する、前記第3及び第4の光ファイバの一端に接続される第1の通信装置と、
     前記OTDR装置と接続され、前記第1の光信号を受信する第1の受信部と、前記OTDR装置で得た結果を含む前記第2の光信号を送信する第1の送信部と、を有する、第2の通信装置と、
     前記第3の光ファイバの経路上に設けられ、前記第3の光ファイバの順方向に伝搬する前記第1の光信号を波長選択的に前記第2の通信装置の第1の受信部へ分岐する第1の光カプラと、
     前記第4の光ファイバの経路上に設けられ、前記第2の通信装置の第1の送信部が出力する前記第2の光信号を、前記第2の光信号が前記第4の光ファイバの順方向に伝搬するように波長選択的に前記第4の光ファイバに結合する第2の光カプラと、を備える、
     請求項13乃至15のいずれか一項に記載の水圧変動測定システム。
    With the third and fourth optical fibers whose forward directions are opposite to each other,
    An optical amplification repeater that amplifies and relays light propagating through the third and fourth optical fibers.
    An optical beam having a path that reaches the optical amplifier repeater and branches a part of the light propagating in the third optical fiber in a direction opposite to the forward direction to be coupled to the fourth optical fiber. Amplification relay system and
    A first optical signal having a third wavelength is transmitted in the forward direction of the third optical fiber, and a second optical signal having the third wavelength propagating in the forward direction of the fourth optical fiber is transmitted. A first communication device connected to one end of the third and fourth optical fibers to receive, and
    It has a first receiving unit that is connected to the OTDR device and receives the first optical signal, and a first transmitting unit that transmits the second optical signal including the result obtained by the OTDR device. , The second communication device,
    The first optical signal provided on the path of the third optical fiber and propagating in the forward direction of the third optical fiber is wavelength-selectively branched to the first receiving portion of the second communication device. The first optical coupler to do
    The second optical signal provided on the path of the fourth optical fiber and output by the first transmitting unit of the second communication device is the second optical signal of the fourth optical fiber. A second optical coupler that wavelength-selectively couples to the fourth optical fiber so as to propagate in the forward direction is provided.
    The water pressure fluctuation measuring system according to any one of claims 13 to 15.
  21.  前記第1の光信号は、前記第1の通信装置が衛星測位システムの衛星から受信する信号に基づいて生成したクロック信号と前記OTDR装置を制御するコマンドと、を含み、
     前記OTDR装置は、前記OTDR装置の内部クロックを前記第1の光信号に含まれる前記クロック信号と同期させる、
     請求項20に記載の水圧変動測定システム。
    The first optical signal includes a clock signal generated by the first communication device based on a signal received from a satellite of a satellite positioning system and a command for controlling the OTDR device.
    The OTDR device synchronizes the internal clock of the OTDR device with the clock signal included in the first optical signal.
    The water pressure fluctuation measuring system according to claim 20.
  22.  前記第3の波長を有する第3の光信号を前記第4の光ファイバの順方向に送信し、前記第3の光ファイバの順方向に伝搬する前記第3の波長を有する第4の光信号を受信する、前記第3及び第4の光ファイバの他端に接続される第3の通信装置と、
     前記第4の光ファイバの経路上に設けられ、前記第4の光ファイバの順方向に伝搬する前記第3の光信号を波長選択的に前記第2の通信装置の第2の受信部へ分岐する第3の光カプラと、
     前記第3の光ファイバの経路上に設けられ、前記第2の通信装置の第2の送信部が出力する前記第4の光信号を、前記第4の光信号が前記第3の光ファイバの順方向に伝搬するように波長選択的に前記第3の光ファイバに結合する第2の光カプラと、を備える、
     前記第2の通信装置では、前記第2の受信部は前記第3の光信号を受信し、前記第2の送信部は前記OTDR装置で得た結果を含む前記第4の光信号を送信する、
     請求項20に記載の水圧変動測定システム。
    A fourth optical signal having the third wavelength that transmits the third optical signal having the third wavelength in the forward direction of the fourth optical fiber and propagates in the forward direction of the third optical fiber. A third communication device connected to the other end of the third and fourth optical fibers, which receives
    The third optical signal provided on the path of the fourth optical fiber and propagating in the forward direction of the fourth optical fiber is wavelength-selectively branched to the second receiving portion of the second communication device. With the third optical coupler
    The fourth optical signal provided on the path of the third optical fiber and output by the second transmission unit of the second communication device is the fourth optical signal of the third optical fiber. A second optical coupler that wavelength-selectively couples to the third optical fiber so as to propagate in the forward direction is provided.
    In the second communication device, the second receiving unit receives the third optical signal, and the second transmitting unit transmits the fourth optical signal including the result obtained by the OTDR device. ,
    The water pressure fluctuation measuring system according to claim 20.
  23.  前記第2の通信装置、前記第1~第4の光カプラ及び前記OTDR装置がOADM(Optical add-drop multiplexer)分岐ノードを構成し、
     前記第3及び第4の光ファイバを含む光ファイバケーブルが、前記第1の通信装置が設けられた第1の観測局から、前記第1の光ファイバが敷設される観測エリアを経由して、前記第3の通信装置を含む第2の観測局まで接続されており、
     前記第2の通信装置は、前記第1及び第2の光信号により前記第1の観測局と通信し、前記第3及び第4の光信号により前記第2の観測局と通信する、
     請求項22に記載の水圧変動測定システム。
    The second communication device, the first to fourth optical couplers, and the OTDR device constitute an OADM (Optical add-drop multiplexer) branch node.
    An optical fiber cable including the third and fourth optical fibers is transmitted from a first observation station provided with the first communication device via an observation area in which the first optical fiber is laid. It is connected to the second observation station including the third communication device, and is connected to the second observation station.
    The second communication device communicates with the first observation station by the first and second optical signals, and communicates with the second observation station by the third and fourth optical signals.
    The water pressure fluctuation measuring system according to claim 22.
  24.  前記ケーブルは、水圧の変動の測定を目的とするセンサケーブルと通信と給電とを目的とする幹線ケーブルとからなり、
     前記第1の光ファイバは、前記センサケーブルに含まれ、
     前記センサケーブルは、給電線導体を含まない、又は、含まれる給電線導体が前記幹線ケーブルの給電線とは絶縁されていることを特徴とする、
     請求項19又は20に記載の水圧変動測定システム。
    The cable consists of a sensor cable for measuring fluctuations in water pressure and a trunk cable for communication and power supply.
    The first optical fiber is included in the sensor cable.
    The sensor cable does not include a feeder, or the feeder conductor included is insulated from the feeder of the trunk cable.
    The water pressure fluctuation measuring system according to claim 19 or 20.
  25.  前記ケーブルは、通信と給電とを目的とする基幹ケーブルと、水圧の変動の測定のために基幹ケーブルからOADM分岐ノードによって分岐される分岐ケーブルからなり、
     前記分岐ケーブルは、前記基幹ケーブルから分岐されたケーブルと、水圧の変動の測定を目的とするセンサケーブルと、が接続されて構成され、
     前記第1の光ファイバは、前記センサケーブルに含まれ、
     前記基幹ケーブルから分岐されたケーブルは、給電線導体を含まない、又は、含まれる給電線導体が前記基幹ケーブルの給電線とは絶縁されていることを特徴とする、
     請求項19又は20に記載の水圧変動測定システム。
    The cable consists of a backbone cable for communication and power supply, and a branch cable branched from the backbone cable by an OADM branch node for measuring fluctuations in water pressure.
    The branch cable is configured by connecting a cable branched from the backbone cable and a sensor cable for measuring fluctuations in water pressure.
    The first optical fiber is included in the sensor cable.
    The cable branched from the backbone cable does not include a feeder, or the feeder conductor included is insulated from the feeder of the backbone cable.
    The water pressure fluctuation measuring system according to claim 19 or 20.
  26.  前記分岐ケーブルのうちで前記基幹ケーブルから分岐されたケーブルからなる区間は、一端が前記OADM分岐ノードと接続された第1の部分の他端と、一端が前記センサケーブルと接続された第2の部分の他端と、が敷設時に接続されることで構成されることを特徴とする、
     請求項25に記載の水圧変動測定システム。
    Among the branch cables, the section consisting of the cable branched from the backbone cable has one end connected to the other end of the first portion connected to the OADM branch node and one end connected to the sensor cable. It is characterized in that it is configured by being connected to the other end of the portion at the time of laying.
    The water pressure fluctuation measuring system according to claim 25.
  27.  前記第1の部分の長さは、前記第1の部分と前記第2の部分とを接続するときに前記OADM分岐ノードに張力が伝わらないよう、前記第1の部分と前記第2の部分との接続点と前記OADM分岐ノードとが離隔する長さであることを特徴とする、
     請求項26に記載の水圧変動測定システム。
    The length of the first portion includes the first portion and the second portion so that tension is not transmitted to the OADM branch node when the first portion and the second portion are connected. The length is such that the connection point of the OADM branch node and the OADM branch node are separated from each other.
    The water pressure fluctuation measuring system according to claim 26.
  28.  前記第1の部分と前記第2の部分とは、ケーブル工事船からのアンカー操作によるケーブル切断及び再接続を含むケーブル交換作業が行われる場所に設置されることを特徴とする、
     請求項26又は27に記載の水圧変動測定システム。
    The first portion and the second portion are characterized in that they are installed in a place where cable replacement work including cable cutting and reconnection by anchor operation from a cable construction ship is performed.
    The water pressure fluctuation measuring system according to claim 26 or 27.
  29.  前記第1の光ファイバに対して光合分波手段を介して複数の前記OTDR装置が複数の地点に設置され、
     前記複数のOTDR装置のうちの1つのOTDR装置を用いて水圧変動測定を行い、他のOTDR装置を予備として用い、
     前記1つのOTDR装置と前記1つのOTDR装置に対応する前記光合分波手段とを接続する光ファイバケーブルに障害が生じた場合、予備のOTDR装置のいずれかを用いて水圧変動測定を継続する、
     請求項13乃至15のいずれか一項に記載の水圧変動測定システム。
    A plurality of the OTDR devices are installed at a plurality of points on the first optical fiber via photosynthetic demultiplexing means.
    Water pressure fluctuation measurement was performed using one of the plurality of OTDR devices, and the other OTDR device was used as a spare.
    If the optical fiber cable connecting the one OTDR device and the photosynthetic demultiplexing means corresponding to the one OTDR device fails, the water pressure fluctuation measurement is continued using one of the spare OTDR devices.
    The water pressure fluctuation measuring system according to any one of claims 13 to 15.
  30.  監視光を部分的に反射する部分反射部が経路上に設けられた第1の光ファイバを含むケーブルを、前記第1の光ファイバが水圧の変動に伴い伸縮するように海底の地面上又は地中に設け、
     前記第1の光ファイバに前記監視光を出力し、
     前記部分反射部で反射された反射光を受信し、
     受信した前記反射光の往復伝搬時間に基づいて、前記部分反射部までの前記第1の光ファイバの長さを計測し、その継時変化をモニタする、
     水圧変動測定方法。
    A cable containing a first optical fiber having a partial reflection portion that partially reflects the monitoring light is provided on the path, and the first optical fiber expands and contracts as the water pressure fluctuates on the ground or on the seabed. Provided inside
    The monitoring light is output to the first optical fiber, and the monitoring light is output.
    Receives the reflected light reflected by the partial reflection unit,
    Based on the reciprocating propagation time of the received reflected light, the length of the first optical fiber to the partial reflection portion is measured, and the change over time is monitored.
    Water pressure fluctuation measurement method.
  31.  前記水圧の変化量は、前記第1の光ファイバの長さの変化量に係数を乗じることで求められ、
     前記係数は、前記第1の光ファイバが設置されている海域における満潮時と干潮時との間での水圧の変化量を、満潮時と干潮時との間での第1の光ファイバの長さの変化量で除算することで求められる、
     請求項30に記載の水圧変動測定方法。
    The amount of change in water pressure is obtained by multiplying the amount of change in the length of the first optical fiber by a coefficient.
    The coefficient is the amount of change in water pressure between high tide and low tide in the sea area where the first optical fiber is installed, and the length of the first optical fiber between high tide and low tide. Obtained by dividing by the amount of change in the coefficient,
    The method for measuring water pressure fluctuation according to claim 30.
  32.  第1の測定タイミングと、前記第1の測定タイミングよりも後の第2の測定タイミングと、で前記監視光を出力し、
     前記第1の測定タイミングで測定した前記部分反射部までの前記第1の光ファイバの長さと前記第2の測定タイミングで測定した前記部分反射部までの前記第1の光ファイバの長さとの差に基づいて、前記水圧の変動量をモニタする、
     請求項31に記載の水圧変動測定方法。
    The monitoring light is output at the first measurement timing and the second measurement timing after the first measurement timing.
    The difference between the length of the first optical fiber up to the partial reflection portion measured at the first measurement timing and the length of the first optical fiber up to the partial reflection portion measured at the second measurement timing. To monitor the fluctuation amount of the water pressure based on
    The method for measuring water pressure fluctuation according to claim 31.
  33.  複数の前記部分反射部が前記第1の光ファイバの異なる位置に設けられ、
     前記複数の部分反射部のうちの2つの間の前記第1の光ファイバの長さの変動に基づいて、前記水圧の変動をモニタする、
     請求項31又は32に記載の水圧変動測定方法。
    A plurality of the partial reflection portions are provided at different positions of the first optical fiber.
    The fluctuation of the water pressure is monitored based on the fluctuation of the length of the first optical fiber between two of the plurality of partial reflection portions.
    The method for measuring water pressure fluctuation according to claim 31 or 32.
  34.  前記複数の部分反射部で区切られる各ケーブル区間について、
     各ケーブル区間の満潮時と干潮時との間での水圧の変化量及び満潮時と干潮時との間における各ケーブル区間のケーブル長の変化量から、各ケーブル区間の前記係数を求める、
      請求項33に記載の水圧変動測定方法。
    For each cable section separated by the plurality of partial reflection portions,
    The coefficient of each cable section is obtained from the amount of change in water pressure between high tide and low tide of each cable section and the amount of change in cable length of each cable section between high tide and low tide.
    The method for measuring water pressure fluctuation according to claim 33.
  35.  前記複数の部分反射部は、前記監視光の出力元から前記部分反射部までの経路光損失が大きいものほど、反射率が高くなるように構成される、
     請求項33又は34に記載の水圧変動測定方法。
    The plurality of partial reflection portions are configured such that the larger the path light loss from the output source of the monitoring light to the partial reflection portion, the higher the reflectance.
    The method for measuring water pressure fluctuation according to claim 33 or 34.
  36.  前記ケーブルには、前記地面又は地中に対する把持力を追加するための固定具が設けられる、
     請求項33乃至35のいずれか一項に記載の水圧変動測定方法。
    The cable is provided with a fixture for adding a gripping force on the ground or in the ground.
    The method for measuring water pressure fluctuation according to any one of claims 33 to 35.
  37.  前記固定具は、前記複数の部分反射部のうちの一部又は全部の近傍に設けられる、
     請求項36に記載の水圧変動測定方法。
    The fixture is provided in the vicinity of a part or all of the plurality of partial reflection portions.
    The method for measuring water pressure fluctuation according to claim 36.
  38.  前記固定具には、音響信号を受信することで応答音響信号を出力する、海中での音響測距に用いられるミラートランスポンダが固定される、
     請求項36又は37に記載の水圧変動測定方法。
    A mirror transponder used for acoustic distance measurement in the sea, which outputs a response acoustic signal by receiving an acoustic signal, is fixed to the fixture.
    The method for measuring water pressure fluctuation according to claim 36 or 37.
  39.  前記第1の光ファイバの温度を長手方向に分布的に測定し、
     前記第1の光ファイバの長さの経時変化量から、前記温度の経時変化による光ファイバの長さの変化を除外する、
     請求項30乃至38のいずれか一項に記載の水圧変動測定方法。
    The temperature of the first optical fiber was measured in a longitudinal direction and distributed.
    From the amount of change in the length of the first optical fiber with time, the change in the length of the optical fiber due to the change in temperature with time is excluded.
    The method for measuring water pressure fluctuation according to any one of claims 30 to 38.
  40.  前記温度の測定は、前記第1の光ファイバと同一のケーブルに内包される別の光ファイバを用いることを特徴とする、
     請求項39に記載の水圧変動測定方法。
    The temperature measurement is characterized by using another optical fiber included in the same cable as the first optical fiber.
    The method for measuring water pressure fluctuation according to claim 39.
  41.  前記監視光を前記第1の光ファイバに入力する前に、前記監視光の偏波面を疑似ランダムに変化させる、
     請求項30乃至40のいずれか一項に記載の水圧変動測定方法。
    Before the monitoring light is input to the first optical fiber, the plane of polarization of the monitoring light is changed in a pseudo-random manner.
    The method for measuring water pressure fluctuation according to any one of claims 30 to 40.
  42.  前記監視光を出力する光出力部、前記反射光を受信する光受信部及び前記部分反射部までの前記第1の光ファイバの長さを計測してその継時変化をモニタする演算部が、OTDR(Optical time domain reflectometer)装置を構成する、
     請求項30乃至41のいずれか一項に記載の水圧変動測定方法。
    An optical output unit that outputs the monitoring light, an optical reception unit that receives the reflected light, and a calculation unit that measures the length of the first optical fiber up to the partial reflection unit and monitors the change over time. Configure an OTDR (Optical time domain reflectometer) device,
    The method for measuring water pressure fluctuation according to any one of claims 30 to 41.
  43.  前記OTDR装置は、前記OTDR装置の内部クロックを外部から供給されるクロック信号と同期させることを特徴とする、
     請求項42に記載の水圧変動測定方法。
    The OTDR device is characterized in that the internal clock of the OTDR device is synchronized with a clock signal supplied from the outside.
    The method for measuring water pressure fluctuation according to claim 42.
  44.  前記外部から供給されるクロック信号は、衛星測位システムの衛星から受信する信号に基づいて生成されることを特徴とする、
     請求項43に記載の水圧変動測定方法。
    The clock signal supplied from the outside is generated based on a signal received from a satellite of a satellite positioning system.
    The method for measuring water pressure fluctuation according to claim 43.
  45.  合分波手段によって前記第1の光ファイバから第2の光ファイバが分岐され、
     前記第2の光ファイバの経路上には、前記監視光を部分的に反射する部分反射部が設けられる、
     請求項30乃至41のいずれか一項に記載の水圧変動測定方法。
    The second optical fiber is branched from the first optical fiber by the demultiplexing means, and the second optical fiber is branched.
    A partial reflection portion that partially reflects the monitoring light is provided on the path of the second optical fiber.
    The method for measuring water pressure fluctuation according to any one of claims 30 to 41.
  46.  前記合分波手段は、波長選択性を有しない光カプラであることを特徴とする、
     請求項45に記載の水圧変動測定方法。
    The combined demultiplexing means is an optical coupler having no wavelength selectivity.
    The method for measuring water pressure fluctuation according to claim 45.
  47.  第1のOTDR装置が第1の波長の監視光を出力し、
     第2のOTDR装置が第2の波長の監視光を出力し、
     前記合分波手段は、第1の波長と第2の波長とを合分波する波長選択性を有する光カプラであることを特徴とする、
     請求項46に記載の水圧変動測定方法。
    The first OTDR device outputs the monitoring light of the first wavelength,
    The second OTDR device outputs the monitoring light of the second wavelength,
    The combined demultiplexing means is an optical coupler having wavelength selectivity for combining and demultiplexing a first wavelength and a second wavelength.
    The method for measuring water pressure fluctuation according to claim 46.
  48.  順方向が互いに反対方向の第3及び第4の光ファイバと、
     前記第3及び第4の光ファイバを伝搬する光を増幅して中継する光増幅中継器と、
     前記光増幅中継器に到達する、順方向とは反対の方向に前記第3の光ファイバを伝搬する光の一部を分岐して前記第4の光ファイバに結合させる経路と、を備える、光増幅中継システムを設け、
     前記第3の光ファイバの経路上に設けられ、前記第1の光ファイバと前記第3の光ファイバとを結合する、第1の波長の光に対する波長選択性を有する光カプラと、を設け、
     前記第3の光ファイバの順方向に前記第1の波長の監視光を出力し、
     前記第1の波長の監視光は、前記光カプラにより前記第3の光ファイバから前記第1の光ファイバに波長選択的に分岐され、
     前記第1の光ファイバに設けられた前記部分反射部からの反射光は、
      前記光カプラにより前記第3の光ファイバに結合されて、前記第3の光ファイバの順方向とは反対の方向に伝搬し、
      前記経路によって前記第4の光ファイバに結合され、前記第4の光ファイバの順方向に伝搬し、
     前記第4の光ファイバを介して前記第1の光ファイバに設けられた前記部分反射部からの反射光を受信する、
     請求項30乃至44のいずれか一項に記載の水圧変動測定方法。
    With the third and fourth optical fibers whose forward directions are opposite to each other,
    An optical amplification repeater that amplifies and relays light propagating through the third and fourth optical fibers.
    An optical beam having a path that reaches the optical amplifier repeater and branches a part of the light propagating in the third optical fiber in a direction opposite to the forward direction to be coupled to the fourth optical fiber. Amplification relay system is provided
    An optical coupler provided on the path of the third optical fiber and having wavelength selectivity for light of the first wavelength, which couples the first optical fiber and the third optical fiber, is provided.
    The monitoring light of the first wavelength is output in the forward direction of the third optical fiber, and the monitoring light is output.
    The monitoring light of the first wavelength is wavelength-selectively branched from the third optical fiber to the first optical fiber by the optical coupler.
    The reflected light from the partial reflection portion provided in the first optical fiber is
    It is coupled to the third optical fiber by the optical coupler and propagates in a direction opposite to the forward direction of the third optical fiber.
    It is coupled to the fourth optical fiber by the path and propagates in the forward direction of the fourth optical fiber.
    The reflected light from the partial reflection portion provided in the first optical fiber is received via the fourth optical fiber.
    The method for measuring water pressure fluctuation according to any one of claims 30 to 44.
  49.  順方向が互いに反対方向の第3及び第4の光ファイバと、
     前記第3及び第4の光ファイバを伝搬する光を増幅して中継する光増幅中継器と、
     前記光増幅中継器に到達する、順方向とは反対の方向に前記第3の光ファイバを伝搬する光の一部を分岐して前記第4の光ファイバに結合させる経路と、を備える、光増幅中継システムを設け、
     第3の波長を有する第1の光信号を前記第3の光ファイバの順方向に送信し、前記第4の光ファイバの順方向に伝搬する前記第3の波長を有する第2の光信号を受信する、前記第3及び第4の光ファイバの一端に接続される第1の通信装置と、
     前記OTDR装置と接続され、前記第1の光信号を受信する第1の受信部と、前記OTDR装置で得た結果を含む前記第2の光信号を送信する第1の送信部と、を有する、第2の通信装置と、
     前記第3の光ファイバの経路上に設けられ、前記第3の光ファイバの順方向に伝搬する前記第1の光信号を波長選択的に前記第2の通信装置の第1の受信部へ分岐する第1の光カプラと、
     前記第4の光ファイバの経路上に設けられ、前記第2の通信装置の第1の送信部が出力する前記第2の光信号を、前記第2の光信号が前記第4の光ファイバの順方向に伝搬するように波長選択的に前記第4の光ファイバに結合する第2の光カプラと、を設ける、
     請求項42乃至44のいずれか一項に記載の水圧変動測定方法。
    With the third and fourth optical fibers whose forward directions are opposite to each other,
    An optical amplification repeater that amplifies and relays light propagating through the third and fourth optical fibers.
    An optical beam having a path that reaches the optical amplifier repeater and branches a part of the light propagating in the third optical fiber in a direction opposite to the forward direction to be coupled to the fourth optical fiber. Amplification relay system is provided
    A first optical signal having a third wavelength is transmitted in the forward direction of the third optical fiber, and a second optical signal having the third wavelength propagating in the forward direction of the fourth optical fiber is transmitted. A first communication device connected to one end of the third and fourth optical fibers to receive, and
    It has a first receiving unit that is connected to the OTDR device and receives the first optical signal, and a first transmitting unit that transmits the second optical signal including the result obtained by the OTDR device. , The second communication device,
    The first optical signal provided on the path of the third optical fiber and propagating in the forward direction of the third optical fiber is wavelength-selectively branched to the first receiving portion of the second communication device. The first optical coupler to do
    The second optical signal provided on the path of the fourth optical fiber and output by the first transmitting unit of the second communication device is the second optical signal of the fourth optical fiber. A second optical coupler that wavelength-selectively couples to the fourth optical fiber so as to propagate in the forward direction is provided.
    The method for measuring water pressure fluctuation according to any one of claims 42 to 44.
  50.  前記第1の光信号は、前記第1の通信装置が衛星測位システムの衛星から受信する信号に基づいて生成したクロック信号と前記OTDR装置を制御するコマンドと、を含み、
     前記OTDR装置の内部クロックを前記第1の光信号に含まれる前記クロック信号と同期させる、
     請求項49に記載の水圧変動測定方法。
    The first optical signal includes a clock signal generated by the first communication device based on a signal received from a satellite of a satellite positioning system and a command for controlling the OTDR device.
    Synchronize the internal clock of the OTDR device with the clock signal included in the first optical signal.
    The method for measuring water pressure fluctuation according to claim 49.
  51.  前記第3の波長を有する第3の光信号を前記第4の光ファイバの順方向に送信し、前記第3の光ファイバの順方向に伝搬する前記第3の波長を有する第4の光信号を受信する、前記第3及び第4の光ファイバの他端に接続される第3の通信装置と、
     前記第4の光ファイバの経路上に設けられ、前記第4の光ファイバの順方向に伝搬する前記第3の光信号を波長選択的に前記第2の通信装置の第2の受信部へ分岐する第3の光カプラと、
     前記第3の光ファイバの経路上に設けられ、前記第2の通信装置の第2の送信部が出力する前記第4の光信号を、前記第4の光信号が前記第3の光ファイバの順方向に伝搬するように波長選択的に前記第3の光ファイバに結合する第2の光カプラと、を設け、
     前記第2の通信装置では、前記第2の受信部は前記第3の光信号を受信し、前記第2の送信部は前記OTDR装置で得た結果を含む前記第4の光信号を送信する、
     請求項49に記載の水圧変動測定方法。
    A fourth optical signal having the third wavelength that transmits the third optical signal having the third wavelength in the forward direction of the fourth optical fiber and propagates in the forward direction of the third optical fiber. A third communication device connected to the other end of the third and fourth optical fibers, which receives
    The third optical signal provided on the path of the fourth optical fiber and propagating in the forward direction of the fourth optical fiber is wavelength-selectively branched to the second receiving portion of the second communication device. With the third optical coupler
    The fourth optical signal provided on the path of the third optical fiber and output by the second transmission unit of the second communication device is the fourth optical signal of the third optical fiber. A second optical coupler that is wavelength-selectively coupled to the third optical fiber so as to propagate in the forward direction is provided.
    In the second communication device, the second receiving unit receives the third optical signal, and the second transmitting unit transmits the fourth optical signal including the result obtained by the OTDR device. ,
    The method for measuring water pressure fluctuation according to claim 49.
  52.  前記第2の通信装置、前記第1~第4の光カプラ及び前記OTDR装置がOADM(Optical add-drop multiplexer)分岐ノードを構成し、
     前記第3及び第4の光ファイバを含む光ファイバケーブルが、前記第1の通信装置が設けられた第1の観測局から、前記第1の光ファイバが敷設される観測エリアを経由して、前記第3の通信装置を含む第2の観測局まで接続されており、
     前記第2の通信装置は、前記第1及び第2の光信号により前記第1の観測局と通信し、前記第3及び第4の光信号により前記第2の観測局と通信する、
     請求項51に記載の水圧変動測定方法。
    The second communication device, the first to fourth optical couplers, and the OTDR device constitute an OADM (Optical add-drop multiplexer) branch node.
    An optical fiber cable including the third and fourth optical fibers is transmitted from a first observation station provided with the first communication device via an observation area in which the first optical fiber is laid. It is connected to the second observation station including the third communication device, and is connected to the second observation station.
    The second communication device communicates with the first observation station by the first and second optical signals, and communicates with the second observation station by the third and fourth optical signals.
    The method for measuring water pressure fluctuation according to claim 51.
  53.  前記ケーブルは、水圧の変動の測定を目的とするセンサケーブルと通信と給電とを目的とする幹線ケーブルとからなり、
     前記第1の光ファイバは、前記センサケーブルに含まれ、
     前記センサケーブルは、給電線導体を含まない、又は、含まれる給電線導体が前記幹線ケーブルの給電線とは絶縁されていることを特徴とする、
     請求項47又は48に記載の水圧変動測定方法。
    The cable consists of a sensor cable for measuring fluctuations in water pressure and a trunk cable for communication and power supply.
    The first optical fiber is included in the sensor cable.
    The sensor cable does not include a feeder, or the feeder conductor included is insulated from the feeder of the trunk cable.
    The method for measuring water pressure fluctuation according to claim 47 or 48.
  54.  前記ケーブルは、通信と給電とを目的とする基幹ケーブルと、水圧の変動の測定のために基幹ケーブルからOADM分岐ノードによって分岐される分岐ケーブルからなり、
     前記分岐ケーブルは、前記基幹ケーブルから分岐されたケーブルと、水圧の変動の測定を目的とするセンサケーブルと、が接続されて構成され、
     前記第1の光ファイバは、前記センサケーブルに含まれ、
     前記基幹ケーブルから分岐されたケーブルは、給電線導体を含まない、又は、含まれる給電線導体が前記基幹ケーブルの給電線とは絶縁されていることを特徴とする、
     請求項47又は48に記載の水圧変動測定方法。
    The cable consists of a backbone cable for communication and power supply, and a branch cable branched from the backbone cable by an OADM branch node for measuring fluctuations in water pressure.
    The branch cable is configured by connecting a cable branched from the backbone cable and a sensor cable for measuring fluctuations in water pressure.
    The first optical fiber is included in the sensor cable.
    The cable branched from the backbone cable does not include a feeder, or the feeder conductor included is insulated from the feeder of the backbone cable.
    The method for measuring water pressure fluctuation according to claim 47 or 48.
  55.  前記分岐ケーブルのうちで前記基幹ケーブルから分岐されたケーブルからなる区間は、一端が前記OADM分岐ノードと接続された第1の部分の他端と、一端が前記センサケーブルと接続された第2の部分の他端と、が敷設時に接続されることで構成されることを特徴とする、
     請求項54に記載の水圧変動測定方法。
    Among the branch cables, the section consisting of the cable branched from the backbone cable has one end connected to the other end of the first portion connected to the OADM branch node and one end connected to the sensor cable. It is characterized in that it is configured by being connected to the other end of the portion at the time of laying.
    The method for measuring water pressure fluctuation according to claim 54.
  56.  前記第1の部分の長さは、前記第1の部分と前記第2の部分とを接続するときに前記OADM分岐ノードに張力が伝わらないよう、前記第1の部分と前記第2の部分との接続点と前記OADM分岐ノードとが離隔する長さであることを特徴とする、
     請求項55に記載の水圧変動測定方法。
    The length of the first portion includes the first portion and the second portion so that tension is not transmitted to the OADM branch node when the first portion and the second portion are connected. The length is such that the connection point of the OADM branch node and the OADM branch node are separated from each other.
    The method for measuring water pressure fluctuation according to claim 55.
  57.  前記第1の部分と前記第2の部分とは、ケーブル工事船からのアンカー操作によるケーブル切断及び再接続を含むケーブル交換作業が行われる場所に設置されることを特徴とする、
     請求項55又は56に記載の水圧変動測定方法。
    The first portion and the second portion are characterized in that they are installed in a place where cable replacement work including cable cutting and reconnection by anchor operation from a cable construction ship is performed.
    The method for measuring water pressure fluctuation according to claim 55 or 56.
  58.  前記第1の光ファイバに対して光合分波手段を介して複数の前記OTDR装置が複数の地点に設置され、
     前記複数のOTDR装置のうちの1つのOTDR装置を用いて水圧変動測定を行い、他のOTDR装置を予備として用い、
     前記1つのOTDR装置と前記1つのOTDR装置に対応する前記光合分波手段とを接続する光ファイバケーブルに障害が生じた場合、予備のOTDR装置のいずれかを用いて水圧変動測定を継続する、
     請求項42乃至44のいずれか一項に記載の水圧変動測定方法。
    A plurality of the OTDR devices are installed at a plurality of points on the first optical fiber via photosynthetic demultiplexing means.
    Water pressure fluctuation measurement was performed using one of the plurality of OTDR devices, and the other OTDR device was used as a spare.
    If the optical fiber cable connecting the one OTDR device and the photosynthetic demultiplexing means corresponding to the one OTDR device fails, the water pressure fluctuation measurement is continued using one of the spare OTDR devices.
    The method for measuring water pressure fluctuation according to any one of claims 42 to 44.
PCT/JP2021/001729 2020-02-06 2021-01-19 Water pressure fluctuation measuring system and water pressure fluctuation measuring method WO2021157345A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/795,966 US20230073833A1 (en) 2020-02-06 2021-01-19 Water pressure fluctuation measuring system and water pressure fluctuation measuring method
JP2021575696A JP7338710B2 (en) 2020-02-06 2021-01-19 Water pressure fluctuation measuring system and water pressure fluctuation measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-018851 2020-02-06
JP2020018851 2020-02-06

Publications (1)

Publication Number Publication Date
WO2021157345A1 true WO2021157345A1 (en) 2021-08-12

Family

ID=77199968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001729 WO2021157345A1 (en) 2020-02-06 2021-01-19 Water pressure fluctuation measuring system and water pressure fluctuation measuring method

Country Status (3)

Country Link
US (1) US20230073833A1 (en)
JP (1) JP7338710B2 (en)
WO (1) WO2021157345A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117109465B (en) * 2023-08-31 2024-04-12 交通运输部天津水运工程科学研究所 Decoupling calibration method for multi-physical-field strain sensing signals

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486510A (en) * 1990-07-30 1992-03-19 Sumitomo Electric Ind Ltd Measuring method for strain
JPH08128869A (en) * 1994-10-28 1996-05-21 Nec Corp Device and system for detecting tsunami
US5649035A (en) * 1995-11-03 1997-07-15 Simula Inc. Fiber optic strain gauge patch
JPH09210740A (en) * 1996-01-31 1997-08-15 Nec Corp Submarine observation system
JP2012063146A (en) * 2010-09-14 2012-03-29 Neubrex Co Ltd Distributed optical fiber sensor
US20180216979A1 (en) * 2015-07-31 2018-08-02 Nuron Limited Monitoring of fluid flow in an open channel using an optical fibre sensor
WO2020203373A1 (en) * 2019-04-05 2020-10-08 日本電気株式会社 Measurement system and measurement method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0486510A (en) * 1990-07-30 1992-03-19 Sumitomo Electric Ind Ltd Measuring method for strain
JPH08128869A (en) * 1994-10-28 1996-05-21 Nec Corp Device and system for detecting tsunami
US5649035A (en) * 1995-11-03 1997-07-15 Simula Inc. Fiber optic strain gauge patch
JPH09210740A (en) * 1996-01-31 1997-08-15 Nec Corp Submarine observation system
JP2012063146A (en) * 2010-09-14 2012-03-29 Neubrex Co Ltd Distributed optical fiber sensor
US20180216979A1 (en) * 2015-07-31 2018-08-02 Nuron Limited Monitoring of fluid flow in an open channel using an optical fibre sensor
WO2020203373A1 (en) * 2019-04-05 2020-10-08 日本電気株式会社 Measurement system and measurement method

Also Published As

Publication number Publication date
US20230073833A1 (en) 2023-03-09
JPWO2021157345A1 (en) 2021-08-12
JP7338710B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2020203373A1 (en) Measurement system and measurement method
US8064286B2 (en) Seismic streamer array
CA2587191C (en) Ocean bottom seismic system
EP2807461B1 (en) Location and monitoring of undersea cables
EP2550550B1 (en) Sensor array
EP2684077B1 (en) Sensor array
WO2021157345A1 (en) Water pressure fluctuation measuring system and water pressure fluctuation measuring method
CN111181631A (en) Relay submarine optical cable disturbance monitoring system based on time division space division multiplexing
Eriksrud Towards the optical seismic era in reservoir monitoring
Fujihashi et al. Development of seafloor seismic and tsunami observation system
EP4106227A1 (en) Extending dynamic acoustic sensing range and localization in undersea cables using loopbacks
JP7347538B2 (en) Optical fiber sensing system, measuring device and measuring method
CN210518332U (en) Relay submarine optical cable disturbance monitoring system based on shore-based detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750425

Country of ref document: EP

Kind code of ref document: A1