WO2021157305A1 - Method for manufacturing glass plate - Google Patents

Method for manufacturing glass plate Download PDF

Info

Publication number
WO2021157305A1
WO2021157305A1 PCT/JP2021/000871 JP2021000871W WO2021157305A1 WO 2021157305 A1 WO2021157305 A1 WO 2021157305A1 JP 2021000871 W JP2021000871 W JP 2021000871W WO 2021157305 A1 WO2021157305 A1 WO 2021157305A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
laser
mother glass
mother
manufacturing
Prior art date
Application number
PCT/JP2021/000871
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 奥野
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN202180007156.0A priority Critical patent/CN114845964A/en
Priority to KR1020227019226A priority patent/KR20220137872A/en
Publication of WO2021157305A1 publication Critical patent/WO2021157305A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/033Apparatus for opening score lines in glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/0222Scoring using a focussed radiation beam, e.g. laser
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/02Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
    • C03B33/023Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
    • C03B33/037Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B33/00Severing cooled glass
    • C03B33/09Severing cooled glass by thermal shock
    • C03B33/091Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for manufacturing a glass plate.
  • a 3D-shaped glass plate that is curved vertically and horizontally may be used as the cover glass for smartphone displays and in-vehicle displays.
  • the glass plate is cut out from a curved mother glass plate (a glass plate including a 3D-shaped glass plate for a plurality of surfaces) which is the basis of the glass plate.
  • Patent Document 1 As one of the methods for cutting a glass plate, laser cutting as disclosed in Patent Document 1 is known.
  • a diamond cutter or the like is used to form an initial crack in the glass plate, which is the starting point of the cutting. After that, the glass plate is irradiated with a carbon dioxide laser from the laser head, and the refrigerant (air or the like) is injected toward the portion heated by the laser irradiation. At this time, the glass plate is cut by propagating the crack along the planned cutting line starting from the initial crack by the thermal shock applied to the glass plate.
  • the mother glass plate when the mother glass plate is irradiated with a carbon dioxide gas laser, only the surface layer portion of the mother glass plate (the surface layer portion on the laser incident surface side) is heated by the laser.
  • the carbon dioxide laser that can heat only the surface layer portion as described above, the range of irradiation conditions that can cut the entire thickness of the mother glass plate is extremely narrow. For example, if the distance between the laser head and the mother glass plate is slightly deviated from the optimum distance, the thermal shock is insufficient and cutting becomes difficult. Therefore, it is very difficult to maintain the laser irradiation condition at a condition that enables cutting of the entire thickness from the start to the completion of cutting the curved mother glass plate. As described above, as a result of difficulty in cutting the entire thickness, a separate folding or the like is required for cutting the mother glass plate, and the property of the cut surface of the glass plate cut out from the mother glass plate tends to deteriorate accordingly. was there.
  • the present invention made in view of the above circumstances has a technical problem of improving the properties of the cut surface of the glass plate cut out from the mother glass plate when cutting the curved mother glass plate by laser cutting.
  • the method for manufacturing a glass plate according to the present invention for solving the above problems includes an initial crack forming step of forming an initial crack that is a starting point of fracture in a curved mother glass plate, and a laser from a laser head to the mother glass plate. It is a method including a laser irradiation step in which a crack is propagated along a planned cutting line starting from an initial crack by irradiating. In the laser irradiation step, a laser that heats the surface layer portion and the inside of the mother glass plate is provided. It is characterized in that the crack is propagated along the planned cutting line by the thermal impact accompanying the irradiation of the laser, and the mother glass plate is split by extending along the thickness direction of the mother glass plate.
  • a laser that heats the surface layer and the inside of the mother glass plate is used in the laser irradiation step.
  • a laser that can heat the inside in addition to the surface layer it is possible to apply thermal shock not only to the surface layer but also to the inside, so the range of laser irradiation conditions that can cut the entire thickness of the mother glass plate. Is wide.
  • the laser irradiation condition can be easily maintained at a condition that enables cutting of the entire thickness from the start to the completion of cutting the curved mother glass plate. Therefore, it is possible to cut the entire thickness of the mother glass plate without difficulty in the entire section of the planned cutting line. As a result, the properties of the cut surface of the glass plate cut out from the mother glass plate can be improved.
  • the laser irradiation step it is preferable to move the laser head and the mother glass plate relative to each other after keeping the inclination of the axis of the laser head constant.
  • the range of irradiation conditions that can cut the entire thickness of the mother glass plate is wide. Therefore, when cutting the mother glass plate, when scanning the mother glass plate curved by the laser by moving the laser head and the mother glass plate relative to each other, it is necessary to change the inclination of the axis of the laser head according to the curvature. Even if it is not performed, it is possible to cut the entire thickness. Therefore, the inclination of the shaft may be constant, and as a result, a mechanism for changing the inclination of the shaft of the laser head can be eliminated, so that the equipment cost can be reduced. Further, since it is not necessary to change the inclination of the shaft, the time required for cutting the mother glass plate can be shortened.
  • the laser irradiation step it is preferable to move the laser head and the mother glass plate relative to each other after keeping the position of the laser head in the axial direction constant.
  • the above laser has a wide range of irradiation conditions that can cut the entire thickness of the mother glass plate.
  • the position in the axial direction may be constant, and as a result, a mechanism for changing the position in the axial direction can be eliminated, so that the equipment cost can be further reduced.
  • the time required for cutting the mother glass plate can be further shortened.
  • the output of the CO laser is high and the mother glass plate can be stably irradiated, so that cracks can be stably propagated along the planned cutting line.
  • the laser irradiation step can be executed under the condition that the thermal stress ⁇ T (MPa) of the mother glass plate calculated by the following equation [Equation 1] satisfies the following equation [Equation 2].
  • E is the Young's modulus (MPa) of the mother glass plate
  • is the coefficient of thermal expansion (/ K) of the mother glass plate
  • is the Poisson's ratio of the mother glass plate
  • ⁇ T is the temperature at the laser irradiation position on the mother glass plate. It is the difference between (K) and the temperature (K) at a separated position away from the irradiation position.
  • t is the thickness (mm) of the mother glass plate.
  • the distance between the laser head and the mother glass plate and (2) the angle of incidence of the laser on the surface of the mother glass plate may be changed. ..
  • the above laser has a wide range of irradiation conditions capable of cutting the entire thickness of the mother glass plate, even if one or both of the above (1) and (2) are changed, the total thickness can be changed. Can be cut. That is, in order to cut the entire thickness, it is not necessary to strictly control the above (1) and (2) during the execution of the laser irradiation step.
  • the present invention when cutting a curved mother glass plate by laser cutting, it is possible to improve the properties of the cut surface of the glass plate cut out from the mother glass plate.
  • the X, Y, and Z directions shown in the drawings referred to in the description of the embodiment are directions orthogonal to each other.
  • the X and Y directions are horizontal, and the Z direction is vertical.
  • the method for manufacturing the glass plate according to the embodiment includes an initial crack forming step (FIG. 1) for forming an initial crack 2 which is a starting point of cutting on the curved mother glass plate 1, and a laser head 3 to the mother glass plate 1.
  • an initial crack forming step (FIG. 1) for forming an initial crack 2 which is a starting point of cutting on the curved mother glass plate 1, and a laser head 3 to the mother glass plate 1.
  • the laser irradiation step (FIGS. 2 and 3) for advancing the crack 5 along the planned cutting line 6 starting from the initial crack 2 is provided.
  • the mother glass plate 1 is divided into the first glass plate 7 and the second glass plate 8 by dividing the mother glass plate 1 along the planned division line 6.
  • the planned cutting line 6 is located at the center of the mother glass plate 1 in the Y direction, and the mother glass plate 1 is formed in a symmetrical shape with respect to the planned cutting line 6.
  • One end of the scheduled cutting line 6 is a start point 6a for starting the cutting of the mother glass plate 1, and the other end is an end point 6b for ending the cutting.
  • the mother glass plate 1 is curved in both the X direction and the Y direction, and has a 3D shape in which the upper surface 1a of the upper and lower surfaces 1a and 1b is convex.
  • the mother glass plate 1 has a rectangular shape in a plan view (viewed from the Z direction).
  • the planned division line 6 extends in the X direction in a plan view. Due to the curvature of the mother glass plate 1, a height difference H (difference in height along the Z direction) is generated on the upper surface 1a along the planned cutting line 6.
  • the height of the upper surface 1a is the lowest at the start point 6a and the end point 6b of the scheduled cut line 6, and the height of the upper surface 1a is the highest at the midpoint 6c of the scheduled cut line 6.
  • the height difference H is, for example, 20 mm or less, preferably 10 mm or less. In this embodiment, the height difference H is 10 mm.
  • the thickness of the mother glass plate 1 is 0.05 mm to 5 mm as an example.
  • a CO laser is used as the laser 4 to irradiate the mother glass plate 1, and the mother glass plate 1 having a larger thickness than, for example, a carbon dioxide gas laser is used. It is possible to disconnect. Therefore, the thickness of the mother glass plate 1 is preferably more than 0.1 mm, more preferably more than 0.2 mm, and even more preferably more than 0.3 mm.
  • the thickness of the mother glass plate 1 is preferably 3 mm or less. In the present embodiment, the thickness of the mother glass plate 1 is 0.7 mm.
  • the mother glass plate 1 may be silicate glass, silica glass, borosilicate glass, soda glass, soda-lime glass, aluminosilicate glass, non-alkali glass, or the like.
  • the "non-alkali glass” is a glass that does not substantially contain an alkaline component (alkali metal oxide), and specifically, a glass having a weight ratio of an alkaline component of 3000 ppm or less. ..
  • the weight ratio of the alkaline component is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less.
  • the mother glass plate 1 may be aluminosilicate glass before chemical strengthening, or the glass plate obtained by the initial crack forming step and the laser irradiation step may be chemically strengthened.
  • the mother glass plate 1 is placed in a flat position on a support table 9 having a flat support surface 9a. After that, an initial crack 2 is formed on the placed mother glass plate 1 at a position on the upper surface 1a where the start point 6a of the planned split line 6 is located.
  • the crack forming member 10 When forming the initial crack 2, the crack forming member 10 is used.
  • a tip-shaped scriber sintered diamond cutter or the like
  • a diamond pen, a cemented carbide cutter, sandpaper, or the like may be used as the crack forming member 10.
  • the initial crack 2 is formed by lowering the crack forming member 10 from above and bringing it into contact with the upper surface 1a of the mother glass plate 1.
  • the initial crack 2 is formed on the upper surface 1a (convex surface) of the upper and lower surfaces 1a and 1b of the mother glass plate 1, but this is not limited to this, and the lower surface 1b (concave) is formed.
  • the initial crack 2 may be formed on the surface). Further, the initial crack 2 may be formed on the end surface of the mother glass plate 1.
  • the laser 4 is irradiated toward the initial crack 2 located at the start point 6a of the scheduled cutting line 6, and the mother glass plate 1 is irradiated along the scheduled cutting line 6 from that state. Is scanned by the laser 4.
  • the inclination of the axis of the laser head 3 and the position of the laser head 3 in the axial direction are kept constant, and then the laser head 3 is moved in the X direction. ..
  • the support table 9 on which the mother glass plate 1 is placed is stationary, so that the mother glass plate 1 is in a stationary state.
  • the axis of the laser head 3 extends parallel to the Z direction, and the optical axis of the laser 4 also extends parallel to the Z direction.
  • the laser head 3 when scanning the laser 4, the laser head 3 is moved while the mother glass plate 1 is stationary, but this is not the case.
  • the mother glass plate 1 may be moved while the laser head 3 is stationary.
  • the mother glass plate 1 and the laser head 3 may be moved relative to each other. For example, when scanning the laser 4, both the mother glass plate 1 and the laser head 3 may be moved.
  • the laser 4 a laser that heats the surface layer portion (surface layer portion on the upper surface 1a side) and the inside of the mother glass plate 1 is used, and a CO laser is used in this embodiment.
  • the “surface layer portion” means a region from the upper surface 1a of the mother glass plate 1 to a depth of 10 ⁇ m.
  • “inside” means a region having a depth beyond the surface layer portion.
  • the wavelength of the CO laser is, for example, 5.25 ⁇ m to 5.75 ⁇ m, and 5.5 ⁇ m in this embodiment.
  • the laser 4 may be a pulse oscillation or a continuous oscillation.
  • the laser 4 may be a laser other than the CO laser as long as it can heat the surface layer portion and the inside of the mother glass plate 1.
  • the laser 4 an Er laser (Er: YAG laser), a Ho laser (Ho: YAG laser), an HF laser, or the like can be used.
  • the focal point 4a of the laser 4 is located between the laser head 3 and the upper surface 1a of the mother glass plate 1.
  • the shape of the laser spot 4b is not particularly limited and may be circular, elliptical, oval, rectangular or the like, but in the present embodiment, the laser spot 4b is irradiated so as to have a circular shape.
  • the irradiation diameter the diameter of the laser spot 4b (hereinafter referred to as the irradiation diameter) also changes continuously. More specifically, the irradiation diameter becomes relatively large near the start point 6a and the end point 6b of the planned split line 6, and becomes relatively small near the midpoint 6c.
  • the change in the size of the irradiation diameter is preferably within the range of 1 mm to 8 mm, and more preferably within the range of 2 mm to 6 mm.
  • the output of the laser 4 and the scanning speed (here, the speed at which the laser head 3 moves in the X direction) in the laser irradiation step are determined as follows. ing.
  • the example below is a case where the size of the irradiation diameter changes within the range of 4 mm to 6 mm.
  • a flat glass plate (hereinafter referred to as a flat glass plate) having the same thickness as the curved mother glass plate 1 described above.
  • the output capable of cutting with the size of the irradiation diameter set to 4 mm and the range of the scanning speed are determined.
  • the range of the output and the scanning speed at which the flat glass plate can be cut is determined by setting the size of the irradiation diameter to 6 mm. As a result, as shown in FIG. 4, the range 11 when the irradiation diameter is 4 mm and the range 12 when the irradiation diameter is 6 mm become clear.
  • the output and scanning speed within the range 13 (the range surrounded by the thick line in FIG. 4) where both the range 11 and the range 12 overlap are determined by the output of the laser 4 in the laser irradiation step and the scanning. Determined as speed.
  • the output of the laser 4 is 38 W and the scanning speed is 20 mm / s.
  • the periphery of the laser spot 4b on the mother glass plate 1 may be cooled.
  • the portion may be cooled by blowing a refrigerant (air or the like) toward a portion located behind the scanning direction (X direction) with reference to the laser spot 4b.
  • the mother glass plate calculated by the following equation [Equation 3]
  • the laser irradiation step is executed under the condition that the thermal stress ⁇ T (MPa) of 1 satisfies the following equation [Equation 4].
  • Equation 3 E is the Young's ratio (MPa) of the mother glass plate 1
  • is the coefficient of thermal expansion (/ K) of the mother glass plate 1
  • is the Poisson's ratio of the mother glass plate 1
  • ⁇ T is the mother. It is the difference between the temperature (K) at the irradiation position of the laser 4 with respect to the glass plate 1 and the temperature (K) at the distance position away from the irradiation position.
  • t in the above equation [Equation 4] is the thickness (mm) of the mother glass plate 1.
  • the mother glass plate 1 At each of the irradiation position of the laser 4 and the separated position 10 mm away from the irradiation position in front of the scanning direction (X direction) of the laser 4, the mother glass plate 1 The temperature of the upper surface 1a was measured by a thermography for measuring the glass temperature (manufactured by Optris: PI450G7), and the temperature difference between the two positions was defined as ⁇ T. The temperature of the mother glass plate 1 during irradiation with the laser 4 can be changed by changing the conditions of the output of the laser 4 and the scanning speed. The temperature at the separated position is about the same as room temperature.
  • the thermal stress ⁇ T satisfies the condition of the above equation [Equation 4] from the start to the end of the fracture.
  • the mother glass plate 1 is scanned by the laser 4 from the start point 6a to the end point 6b of the scheduled cutting line 6. At this time, at each position on the scheduled cutting line 6, a thermal shock due to the irradiation of the laser 4 is applied to the surface layer portion and the inside of the mother glass plate 1. As a result, the crack 5 grows along the planned cutting line 6 and grows along the thickness direction of the mother glass plate 1, so that the entire thickness of the mother glass plate 1 is cut.
  • a laser 4 for heating the surface layer portion and the inside of the mother glass plate 1 is used, and it is possible to apply a thermal shock not only to the surface layer portion of the mother glass plate 1 but also to the inside. Therefore, the range of irradiation conditions of the laser 4 capable of cutting the entire thickness of the mother glass plate 1 is widened. Therefore, the irradiation condition can be easily maintained at a condition that enables cutting of the entire thickness from the start to the completion of cutting the curved mother glass plate 1. As a result, the entire thickness of the mother glass plate 1 can be easily cut in the entire section of the planned cutting line 6. As a result, the properties of the cut surfaces of the first glass plate 7 and the second glass plate 8 cut out from the mother glass plate 1 can be improved.
  • the results of calculating the thermal stress ⁇ T are shown in [Table 1].
  • the irradiation diameter and ⁇ T of the laser 4 change due to the curvature of the mother glass plate 1.
  • the irradiation diameter and ⁇ T shown in [Table 1] are the irradiation diameter and ⁇ T when the laser 4 is irradiating the midpoint 6c on the scheduled cutting line 6.
  • the thermal stress ⁇ T at the time of cutting is about 100 MPa regardless of the type of glass. It can be seen that it is desirable to act on the mother glass plate 1.
  • the thermal stress ⁇ T for obtaining a good cut surface differs depending on the thickness of the mother glass plate 1. Therefore, the inventor conducted a test of cutting a plurality of mother glass plates 1 having different thicknesses (thicknesses) with a CO laser. Then, the relationship between the thermal stress ⁇ T for obtaining a good cut surface and the thickness of the mother glass plate 1 was confirmed. In this test, non-alkali glass, soda glass, and borosilicate glass were used as the sample of the mother glass plate 1.
  • FIG. 7 shows the relationship between the thermal stress ⁇ T and the thickness of the mother glass plate 1 in this test.
  • the method for manufacturing a glass plate according to the present invention is not limited to the embodiment described in the above embodiment.
  • the inclination of the axis of the laser head 3 and the position of the laser head 3 in the axial direction are fixed, but this is not the case.
  • the form as shown in FIGS. 5 and 6 is adopted. It may be adopted.
  • the inclination of the axis of the laser head 3 is changed according to the curvature of the mother glass plate 1. More specifically, the inclination of the axis of the laser head 3 is changed for the purpose of reducing the incident angle of the laser 4 with respect to the upper surface 1a of the mother glass plate 1. In this case, the distance between the laser head 3 and the mother glass plate 1 and the angle of incidence of the laser 4 with respect to the upper surface 1a of the mother glass plate 1 are constant.
  • the upper limit of the incident angle is preferably 45 °.
  • the height position of the laser head 3 is also changed.
  • the height position of the laser head 3 is relatively lowered, and the vicinity of the midpoint 6c of the scheduled cutting line 6 is scanned. In some cases, the height position of the laser head 3 is relatively high.
  • the position of the laser head 3 in the axial direction (here, the position in the Z direction) is changed according to the curvature of the mother glass plate 1. I'm letting you. More specifically, the height position of the laser head 3 is set relatively low when scanning the vicinity of the start point 6a and the end point 6b of the scheduled cut line 6 with the laser 4, and the vicinity of the midpoint 6c of the scheduled cut line 6 is set. Is relatively high when scanning. In this case, the distance between the laser head 3 and the mother glass plate 1 is constant, but the incident angle of the laser 4 with respect to the upper surface 1a of the mother glass plate 1 changes continuously.
  • a form may be adopted in which both the inclination of the axis of the laser head 3 and the position of the laser head 3 in the axial direction are changed.
  • a mode may be adopted in which the distance between the laser head 3 and the mother glass plate 1 is continuously changed so that the incident angle of the laser 4 with respect to the upper surface 1a of the mother glass plate 1 is constant.
  • a robot a combination of an articulated robot, a single-axis robot, etc.
  • a linear actuator a rotation mechanism, and the like.
  • the mother glass plate 1 is cut with the convex surface of the curved mother glass plate 1 as the upper surface 1a, but this is not the case.
  • the mother glass plate 1 may be cut by inverting the front and back sides of the mother glass plate 1 so that the concave surface is the upper surface 1a.
  • the surface forming the initial crack 2 may be the upper surface 1a (concave surface), the lower surface 1b (convex surface), or the end surface.
  • the mother glass plate 1 in the flat position is cut, but this is not the case.
  • the mother glass plate 1 in a vertical posture or an inclined posture may be cut by a holding member or the like.
  • the planned division line 6 extends in the X direction in a plan view, but this is not the case.
  • the planned split line 6 may be a meandering line or a line forming a closed loop (for example, a line drawing a circle in a plan view).
  • the mother glass plate 1 curved along the two directions of the X direction and the Y direction is targeted for cutting, but this is not the case.
  • the present invention can also be applied to the case of cutting the mother glass plate 1 which is curved only in one direction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

A method for manufacturing a glass plate, comprising an initial crack formation step for forming an initial crack 2 which serves as a starting point for cleavage in a curved mother glass plate 1, and a laser irradiation step for radiating a laser 4 to the mother glass plate 1 from a laser head 3 and thereby causing a crack 5 to develop along an intended cleavage line 6, starting at the initial crack 2, wherein, in the laser irradiation step, using the laser 4 for heating the inside and a surface section of the mother glass plate 1, the crack 5 is caused to develop along the intended cleavage line 6 by thermal shock that accompanies laser 4 irradiation, and the crack 5 is caused to develop along the thickness direction of the mother glass plate 1, thereby cleaving the mother glass plate 1.

Description

ガラス板の製造方法Glass plate manufacturing method
 本発明は、ガラス板の製造方法に関する。 The present invention relates to a method for manufacturing a glass plate.
 スマートフォンのディスプレイや車載ディスプレイ等のカバーガラスとして、縦横に湾曲した3D形状のガラス板が採用される場合がある。このようなガラス板を製造するにあたっては、一例として、当該ガラス板の元となる湾曲したマザーガラス板(複数面分の3D形状のガラス板を含んだガラス板)から切り出して製造する。 A 3D-shaped glass plate that is curved vertically and horizontally may be used as the cover glass for smartphone displays and in-vehicle displays. In manufacturing such a glass plate, as an example, the glass plate is cut out from a curved mother glass plate (a glass plate including a 3D-shaped glass plate for a plurality of surfaces) which is the basis of the glass plate.
 ここで、ガラス板を切断するための手法の一つとして、特許文献1に開示されるようなレーザー割断が知られている。 Here, as one of the methods for cutting a glass plate, laser cutting as disclosed in Patent Document 1 is known.
 レーザー割断においては、設定した割断予定線に沿ってガラス板を割断するに際し、まず、ダイヤモンドカッター等を用いて、ガラス板に割断の起点となる初期クラックを形成する。その後、レーザーヘッドからガラス板に炭酸ガスレーザーを照射すると共に、レーザーの照射により加熱された部位に向けて冷媒(空気等)を噴射する。この際にガラス板に加えられる熱衝撃により初期クラックを起点にクラックを割断予定線に沿って進展させることで、ガラス板を割断する。 In laser cutting, when cutting a glass plate along a set scheduled cutting line, first, a diamond cutter or the like is used to form an initial crack in the glass plate, which is the starting point of the cutting. After that, the glass plate is irradiated with a carbon dioxide laser from the laser head, and the refrigerant (air or the like) is injected toward the portion heated by the laser irradiation. At this time, the glass plate is cut by propagating the crack along the planned cutting line starting from the initial crack by the thermal shock applied to the glass plate.
特開2011-116611号公報Japanese Unexamined Patent Publication No. 2011-116611
 ところで、上記の湾曲したマザーガラス板を切断するにあたって、上記の形態のレーザー割断を用いた場合には、以下のような解決すべき問題が生じていた。 By the way, when the above-mentioned form of laser cutting is used in cutting the above-mentioned curved mother glass plate, the following problems to be solved have occurred.
 すなわち、マザーガラス板に炭酸ガスレーザーを照射すると、レーザーによりマザーガラス板の表層部(レーザー入射面側の表層部)のみが加熱される。このように表層部のみしか加熱できない炭酸ガスレーザーにおいては、マザーガラス板の全厚みを切断できる照射条件の範囲が極めて狭い。例えば、レーザーヘッドとマザーガラス板との相互間距離が最適距離から僅かにずれるだけで、熱衝撃が不足して切断は困難なものとなる。そのため、湾曲したマザーガラス板の切断開始から完了までの間に亘って、レーザーの照射条件を全厚みの切断が可能となる条件に維持することが非常に難しい。このとおり全厚みの切断が困難である結果、マザーガラス板の切断のために別途折割り等が必要となり、それに伴ってマザーガラス板から切り出されるガラス板の切断面の性状が悪化しやすいという問題があった。 That is, when the mother glass plate is irradiated with a carbon dioxide gas laser, only the surface layer portion of the mother glass plate (the surface layer portion on the laser incident surface side) is heated by the laser. In the carbon dioxide laser that can heat only the surface layer portion as described above, the range of irradiation conditions that can cut the entire thickness of the mother glass plate is extremely narrow. For example, if the distance between the laser head and the mother glass plate is slightly deviated from the optimum distance, the thermal shock is insufficient and cutting becomes difficult. Therefore, it is very difficult to maintain the laser irradiation condition at a condition that enables cutting of the entire thickness from the start to the completion of cutting the curved mother glass plate. As described above, as a result of difficulty in cutting the entire thickness, a separate folding or the like is required for cutting the mother glass plate, and the property of the cut surface of the glass plate cut out from the mother glass plate tends to deteriorate accordingly. was there.
 上述の事情に鑑みなされた本発明は、湾曲したマザーガラス板をレーザー割断により切断するに際して、マザーガラス板から切り出されるガラス板の切断面の性状を向上させることを技術的な課題とする。 The present invention made in view of the above circumstances has a technical problem of improving the properties of the cut surface of the glass plate cut out from the mother glass plate when cutting the curved mother glass plate by laser cutting.
 上記の課題を解決するための本発明に係るガラス板の製造方法は、湾曲したマザーガラス板に割断の起点となる初期クラックを形成する初期クラック形成工程と、レーザーヘッドからマザーガラス板にレーザーを照射することで、初期クラックを起点にクラックを割断予定線に沿って進展させるレーザー照射工程と、を備えた方法であって、レーザー照射工程では、マザーガラス板の表層部および内部を加熱するレーザーを用いて、レーザーの照射に伴う熱衝撃によりクラックを割断予定線に沿って進展させると共に、マザーガラス板の厚み方向に沿って進展させることで、マザーガラス板を割断することを特徴とする。 The method for manufacturing a glass plate according to the present invention for solving the above problems includes an initial crack forming step of forming an initial crack that is a starting point of fracture in a curved mother glass plate, and a laser from a laser head to the mother glass plate. It is a method including a laser irradiation step in which a crack is propagated along a planned cutting line starting from an initial crack by irradiating. In the laser irradiation step, a laser that heats the surface layer portion and the inside of the mother glass plate is provided. It is characterized in that the crack is propagated along the planned cutting line by the thermal impact accompanying the irradiation of the laser, and the mother glass plate is split by extending along the thickness direction of the mother glass plate.
 本方法においては、レーザー照射工程にて、マザーガラス板の表層部および内部を加熱するレーザーを用いている。このように表層部に加えて内部も加熱できるレーザーにおいては、表層部のみでなく内部にも熱衝撃を加えることが可能であるため、マザーガラス板の全厚みを切断できるレーザーの照射条件の範囲が広い。これにより、湾曲したマザーガラス板の切断開始から完了までの間に亘って、レーザーの照射条件を全厚みの切断が可能となる条件に容易に維持できる。従って、割断予定線の全区間においてマザーガラス板の全厚みを難なく切断することが可能となる。その結果、マザーガラス板から切り出されるガラス板の切断面の性状を向上させることができる。 In this method, a laser that heats the surface layer and the inside of the mother glass plate is used in the laser irradiation step. In this way, in a laser that can heat the inside in addition to the surface layer, it is possible to apply thermal shock not only to the surface layer but also to the inside, so the range of laser irradiation conditions that can cut the entire thickness of the mother glass plate. Is wide. As a result, the laser irradiation condition can be easily maintained at a condition that enables cutting of the entire thickness from the start to the completion of cutting the curved mother glass plate. Therefore, it is possible to cut the entire thickness of the mother glass plate without difficulty in the entire section of the planned cutting line. As a result, the properties of the cut surface of the glass plate cut out from the mother glass plate can be improved.
 上記の方法において、レーザー照射工程では、レーザーヘッドの軸の傾きを一定にした上で、レーザーヘッドとマザーガラス板とを相対移動させることが好ましい。 In the above method, in the laser irradiation step, it is preferable to move the laser head and the mother glass plate relative to each other after keeping the inclination of the axis of the laser head constant.
 上述のごとく、マザーガラス板の表層部および内部を加熱するレーザーにおいては、マザーガラス板の全厚みを切断できる照射条件の範囲が広い。従って、マザーガラス板の切断に際し、レーザーヘッドとマザーガラス板とを相対移動させてレーザーで湾曲したマザーガラス板を走査するにあたり、湾曲に合わせてレーザーヘッドの軸の傾きを変化させるようなことを行わなくても、全厚みの切断が可能となる。そのため、軸の傾きは一定にしてよく、これに起因してレーザーヘッドの軸の傾きを変化させるための機構を不要にできるので、設備コストを削減することが可能となる。また、軸の傾きを変化させる必要がないことに伴い、マザーガラス板の切断に要する時間を短縮することもできる。 As mentioned above, in the laser that heats the surface layer and the inside of the mother glass plate, the range of irradiation conditions that can cut the entire thickness of the mother glass plate is wide. Therefore, when cutting the mother glass plate, when scanning the mother glass plate curved by the laser by moving the laser head and the mother glass plate relative to each other, it is necessary to change the inclination of the axis of the laser head according to the curvature. Even if it is not performed, it is possible to cut the entire thickness. Therefore, the inclination of the shaft may be constant, and as a result, a mechanism for changing the inclination of the shaft of the laser head can be eliminated, so that the equipment cost can be reduced. Further, since it is not necessary to change the inclination of the shaft, the time required for cutting the mother glass plate can be shortened.
 上記の方法において、レーザー照射工程では、レーザーヘッドのその軸方向における位置を一定にした上で、レーザーヘッドとマザーガラス板とを相対移動させることが好ましい。 In the above method, in the laser irradiation step, it is preferable to move the laser head and the mother glass plate relative to each other after keeping the position of the laser head in the axial direction constant.
 上記のレーザーでは、既述のとおりマザーガラス板の全厚みを切断できる照射条件の範囲が広い。これにより、マザーガラス板の切断に際し、マザーガラス板の湾曲に合わせてレーザーヘッドのその軸方向における位置を変化させるようなことを行わなくても、全厚みの切断が可能となる。従って、軸方向における位置は一定にしてよく、これに起因して軸方向における位置を変化させるための機構を不要にできるため、設備コストを更に削減することが可能となる。加えて、軸方向における位置を変化させる必要がないので、マザーガラス板の切断に要する時間を更に短縮することもできる。 As mentioned above, the above laser has a wide range of irradiation conditions that can cut the entire thickness of the mother glass plate. As a result, when cutting the mother glass plate, it is possible to cut the entire thickness without changing the position of the laser head in the axial direction according to the curvature of the mother glass plate. Therefore, the position in the axial direction may be constant, and as a result, a mechanism for changing the position in the axial direction can be eliminated, so that the equipment cost can be further reduced. In addition, since it is not necessary to change the position in the axial direction, the time required for cutting the mother glass plate can be further shortened.
 上記の方法において、レーザー照射工程では、レーザーとしてCOレーザーを用いることが好ましい。 In the above method, it is preferable to use a CO laser as the laser in the laser irradiation step.
 このようにすれば、COレーザーの出力が高く、安定してマザーガラス板に照射できることから、割断予定線に沿ってクラックを安定して進展させることができる。 In this way, the output of the CO laser is high and the mother glass plate can be stably irradiated, so that cracks can be stably propagated along the planned cutting line.
 上記の方法において、下記の[数1]式で算出されるマザーガラス板の熱応力σT(MPa)が、下記の[数2]式を満足する条件で、レーザー照射工程を実行することが好ましい。
Figure JPOXMLDOC01-appb-M000003
 ただし、Eはマザーガラス板のヤング率(MPa)、αはマザーガラス板の熱膨張係数(/K)、νはマザーガラス板のポアソン比、ΔTは、マザーガラス板に対するレーザーの照射位置における温度(K)と、照射位置から離れた離間位置における温度(K)との差である。
Figure JPOXMLDOC01-appb-M000004
 ただし、tはマザーガラス板の厚み(mm)である。
In the above method, the laser irradiation step can be executed under the condition that the thermal stress σ T (MPa) of the mother glass plate calculated by the following equation [Equation 1] satisfies the following equation [Equation 2]. preferable.
Figure JPOXMLDOC01-appb-M000003
However, E is the Young's modulus (MPa) of the mother glass plate, α is the coefficient of thermal expansion (/ K) of the mother glass plate, ν is the Poisson's ratio of the mother glass plate, and ΔT is the temperature at the laser irradiation position on the mother glass plate. It is the difference between (K) and the temperature (K) at a separated position away from the irradiation position.
Figure JPOXMLDOC01-appb-M000004
However, t is the thickness (mm) of the mother glass plate.
 このようにすれば、マザーガラス板から切り出されるガラス板の切断面の性状を更に向上させることが可能となる。 By doing so, it is possible to further improve the properties of the cut surface of the glass plate cut out from the mother glass plate.
 上記の方法において、レーザー照射工程では、(1)レーザーヘッドとマザーガラス板との相互間距離、及び、(2)マザーガラス板の表面に対するレーザーの入射角、の少なくとも一方を変化させてもよい。 In the above method, in the laser irradiation step, at least one of (1) the distance between the laser head and the mother glass plate and (2) the angle of incidence of the laser on the surface of the mother glass plate may be changed. ..
 上記のレーザーでは、マザーガラス板の全厚みを切断できる照射条件の範囲が広いことから、上記の(1)、(2)の一方、或いは、双方が変化した場合であっても、全厚みの切断が可能である。つまり、全厚みを切断するために、レーザー照射工程の実行中に上記の(1)や(2)の管理を厳密に行うような必要性が無い。 Since the above laser has a wide range of irradiation conditions capable of cutting the entire thickness of the mother glass plate, even if one or both of the above (1) and (2) are changed, the total thickness can be changed. Can be cut. That is, in order to cut the entire thickness, it is not necessary to strictly control the above (1) and (2) during the execution of the laser irradiation step.
 本発明によれば、湾曲したマザーガラス板をレーザー割断により切断するに際して、マザーガラス板から切り出されるガラス板の切断面の性状を向上させることが可能となる。 According to the present invention, when cutting a curved mother glass plate by laser cutting, it is possible to improve the properties of the cut surface of the glass plate cut out from the mother glass plate.
ガラス板の製造方法における初期クラック形成工程を示す斜視図である。It is a perspective view which shows the initial crack formation process in the manufacturing method of a glass plate. ガラス板の製造方法におけるレーザー照射工程を示す斜視図である。It is a perspective view which shows the laser irradiation process in the manufacturing method of a glass plate. ガラス板の製造方法におけるレーザー照射工程を示す断面図である。It is sectional drawing which shows the laser irradiation process in the manufacturing method of a glass plate. レーザー照射工程におけるレーザーの照射条件を示す図である。It is a figure which shows the laser irradiation condition in a laser irradiation process. ガラス板の製造方法におけるレーザー照射工程を示す断面図である。It is sectional drawing which shows the laser irradiation process in the manufacturing method of a glass plate. ガラス板の製造方法におけるレーザー照射工程を示す断面図である。It is sectional drawing which shows the laser irradiation process in the manufacturing method of a glass plate. 熱応力とマザーガラス板の厚みとの関係を示す図である。It is a figure which shows the relationship between the thermal stress and the thickness of a mother glass plate.
 以下、本発明の実施形態に係るガラス板の製造方法について、添付の図面を参照しながら説明する。なお、実施形態の説明で参照する図面に示したX方向、Y方向、及びZ方向は、相互に直交する方向である。そして、X方向およびY方向は水平方向であり、Z方向は上下方向である。 Hereinafter, the method for manufacturing a glass plate according to the embodiment of the present invention will be described with reference to the attached drawings. The X, Y, and Z directions shown in the drawings referred to in the description of the embodiment are directions orthogonal to each other. The X and Y directions are horizontal, and the Z direction is vertical.
 実施形態に係るガラス板の製造方法は、湾曲したマザーガラス板1に割断の起点となる初期クラック2を形成するための初期クラック形成工程(図1)と、レーザーヘッド3からマザーガラス板1にレーザー4を照射することで、初期クラック2を起点にクラック5を割断予定線6に沿って進展させるためのレーザー照射工程(図2及び図3)とを備えている。 The method for manufacturing the glass plate according to the embodiment includes an initial crack forming step (FIG. 1) for forming an initial crack 2 which is a starting point of cutting on the curved mother glass plate 1, and a laser head 3 to the mother glass plate 1. By irradiating the laser 4, the laser irradiation step (FIGS. 2 and 3) for advancing the crack 5 along the planned cutting line 6 starting from the initial crack 2 is provided.
 本実施形態では、マザーガラス板1を割断予定線6に沿って割断することにより、マザーガラス板1を第一ガラス板7と第二ガラス板8とに分断する。なお、割断予定線6はマザーガラス板1のY方向における中央に位置しており、マザーガラス板1は割断予定線6を基準として対称な形状に形成されている。割断予定線6の一端はマザーガラス板1の割断を開始する始点6aとなり、他端は割断を終了する終点6bとなる。 In the present embodiment, the mother glass plate 1 is divided into the first glass plate 7 and the second glass plate 8 by dividing the mother glass plate 1 along the planned division line 6. The planned cutting line 6 is located at the center of the mother glass plate 1 in the Y direction, and the mother glass plate 1 is formed in a symmetrical shape with respect to the planned cutting line 6. One end of the scheduled cutting line 6 is a start point 6a for starting the cutting of the mother glass plate 1, and the other end is an end point 6b for ending the cutting.
 図1に示すように、マザーガラス板1は、X方向およびY方向のいずれに沿っても湾曲していると共に、上下面1a,1bのうちの上面1aが凸となった3D形状を有する。このマザーガラス板1は、平面視(Z方向から視て)においては矩形状をなしている。本実施形態では、平面視で割断予定線6がX方向に延びている。マザーガラス板1の湾曲により割断予定線6に沿って上面1aには高低差H(Z方向に沿った高さの差)が生じている。詳述すると、割断予定線6の始点6aおよび終点6bにおいて上面1aの高さが最も低く、割断予定線6の中点6cにおいて上面1aの高さが最も高くなっている。高低差Hは、一例として20mm以下であり、好ましくは10mm以下である。本実施形態では、高低差Hが10mmである。 As shown in FIG. 1, the mother glass plate 1 is curved in both the X direction and the Y direction, and has a 3D shape in which the upper surface 1a of the upper and lower surfaces 1a and 1b is convex. The mother glass plate 1 has a rectangular shape in a plan view (viewed from the Z direction). In the present embodiment, the planned division line 6 extends in the X direction in a plan view. Due to the curvature of the mother glass plate 1, a height difference H (difference in height along the Z direction) is generated on the upper surface 1a along the planned cutting line 6. More specifically, the height of the upper surface 1a is the lowest at the start point 6a and the end point 6b of the scheduled cut line 6, and the height of the upper surface 1a is the highest at the midpoint 6c of the scheduled cut line 6. The height difference H is, for example, 20 mm or less, preferably 10 mm or less. In this embodiment, the height difference H is 10 mm.
 マザーガラス板1の厚みは、一例として0.05mm~5mmである。なお、後に詳述するが、本実施形態では、マザーガラス板1に照射するレーザー4としてCOレーザーを用いており、例えば炭酸ガスレーザーを用いた場合と比較して、厚みの大きいマザーガラス板1を切断することが可能である。そのため、マザーガラス板1の厚みは、0.1mmを上回ることが好ましく、0.2mmを上回ることがより好ましく、0.3mmを上回ることが更に好ましい。一方、マザーガラス板1の厚みは、3mm以下であることが好ましい。本実施形態では、マザーガラス板1の厚みは0.7mmである。 The thickness of the mother glass plate 1 is 0.05 mm to 5 mm as an example. As will be described in detail later, in the present embodiment, a CO laser is used as the laser 4 to irradiate the mother glass plate 1, and the mother glass plate 1 having a larger thickness than, for example, a carbon dioxide gas laser is used. It is possible to disconnect. Therefore, the thickness of the mother glass plate 1 is preferably more than 0.1 mm, more preferably more than 0.2 mm, and even more preferably more than 0.3 mm. On the other hand, the thickness of the mother glass plate 1 is preferably 3 mm or less. In the present embodiment, the thickness of the mother glass plate 1 is 0.7 mm.
 マザーガラス板1は、ケイ酸塩ガラス、シリカガラス、ホウ珪酸ガラス、ソーダガラス、ソーダライムガラス、アルミノ珪酸塩ガラス、無アルカリガラス等であってよい。ここで、「無アルカリガラス」とは、アルカリ成分(アルカリ金属酸化物)を実質的に含まないガラスのことであり、具体的には、アルカリ成分の重量比が3000ppm以下のガラスのことである。アルカリ成分の重量比は、好ましくは1000ppm以下であり、より好ましくは500ppm以下であり、最も好ましくは300ppm以下である。なお、マザーガラス板1は、化学強化前のアルミノシリケートガラスであってもよく、初期クラック形成工程及びレーザー照射工程によって得られたガラス板に化学強化処理を施してもよい。 The mother glass plate 1 may be silicate glass, silica glass, borosilicate glass, soda glass, soda-lime glass, aluminosilicate glass, non-alkali glass, or the like. Here, the "non-alkali glass" is a glass that does not substantially contain an alkaline component (alkali metal oxide), and specifically, a glass having a weight ratio of an alkaline component of 3000 ppm or less. .. The weight ratio of the alkaline component is preferably 1000 ppm or less, more preferably 500 ppm or less, and most preferably 300 ppm or less. The mother glass plate 1 may be aluminosilicate glass before chemical strengthening, or the glass plate obtained by the initial crack forming step and the laser irradiation step may be chemically strengthened.
 図1に示した初期クラック形成工程では、まず、平坦な支持面9aを有する支持テーブル9の上にマザーガラス板1を平置き姿勢で載置する。その後、載置したマザーガラス板1に対し、その上面1aにおける割断予定線6の始点6aが位置する箇所に初期クラック2を形成する。 In the initial crack forming step shown in FIG. 1, first, the mother glass plate 1 is placed in a flat position on a support table 9 having a flat support surface 9a. After that, an initial crack 2 is formed on the placed mother glass plate 1 at a position on the upper surface 1a where the start point 6a of the planned split line 6 is located.
 初期クラック2の形成に際しては、クラック形成部材10を使用する。本実施形態では、クラック形成部材10として、尖端状のスクライバー(焼結ダイヤモンドカッター等)を採用している。勿論この限りではなく、クラック形成部材10として、ダイヤモンドペン、超硬合金カッター、サンドペーパー等を採用してもよい。このクラック形成部材10を上方から降下させてマザーガラス板1の上面1aに接触させることで、初期クラック2が形成される。 When forming the initial crack 2, the crack forming member 10 is used. In this embodiment, a tip-shaped scriber (sintered diamond cutter or the like) is used as the crack forming member 10. Of course, this is not limited to this, and a diamond pen, a cemented carbide cutter, sandpaper, or the like may be used as the crack forming member 10. The initial crack 2 is formed by lowering the crack forming member 10 from above and bringing it into contact with the upper surface 1a of the mother glass plate 1.
 ここで、本実施形態では、マザーガラス板1の上下面1a,1bのうちの上面1a(凸となる面)に初期クラック2を形成しているが、この限りではなく、下面1b(凹となる面)に初期クラック2を形成するようにしてもよい。また、マザーガラス板1の端面に初期クラック2を形成してもよい。 Here, in the present embodiment, the initial crack 2 is formed on the upper surface 1a (convex surface) of the upper and lower surfaces 1a and 1b of the mother glass plate 1, but this is not limited to this, and the lower surface 1b (concave) is formed. The initial crack 2 may be formed on the surface). Further, the initial crack 2 may be formed on the end surface of the mother glass plate 1.
 図2及び図3に示したレーザー照射工程では、割断予定線6の始点6aに位置した初期クラック2に向けてレーザー4を照射すると共に、その状態から割断予定線6に沿ってマザーガラス板1をレーザー4で走査する。 In the laser irradiation step shown in FIGS. 2 and 3, the laser 4 is irradiated toward the initial crack 2 located at the start point 6a of the scheduled cutting line 6, and the mother glass plate 1 is irradiated along the scheduled cutting line 6 from that state. Is scanned by the laser 4.
 レーザー4の走査に際しては、レーザーヘッド3の軸の傾き、及び、レーザーヘッド3のその軸方向における位置(ここではZ方向における位置)を一定にした上で、レーザーヘッド3をX方向に移動させる。なお、マザーガラス板1を載置した支持テーブル9は静止しており、これによりマザーガラス板1は静止した状態にある。本実施形態では、レーザーヘッド3の軸はZ方向と平行に延びており、レーザー4の光軸もまたZ方向と平行に延びている。 When scanning the laser 4, the inclination of the axis of the laser head 3 and the position of the laser head 3 in the axial direction (here, the position in the Z direction) are kept constant, and then the laser head 3 is moved in the X direction. .. The support table 9 on which the mother glass plate 1 is placed is stationary, so that the mother glass plate 1 is in a stationary state. In this embodiment, the axis of the laser head 3 extends parallel to the Z direction, and the optical axis of the laser 4 also extends parallel to the Z direction.
 ここで、本実施形態では、レーザー4の走査に際して、マザーガラス板1を静止させた状態でレーザーヘッド3を移動させているが、この限りではない。逆にレーザーヘッド3を静止させた状態でマザーガラス板1を移動させてもよい。なお、マザーガラス板1とレーザーヘッド3とは、両者が相対移動していればよく、例えばレーザー4の走査に際して、マザーガラス板1とレーザーヘッド3との両者を移動させてもよい。 Here, in the present embodiment, when scanning the laser 4, the laser head 3 is moved while the mother glass plate 1 is stationary, but this is not the case. On the contrary, the mother glass plate 1 may be moved while the laser head 3 is stationary. The mother glass plate 1 and the laser head 3 may be moved relative to each other. For example, when scanning the laser 4, both the mother glass plate 1 and the laser head 3 may be moved.
 レーザー4としては、マザーガラス板1の表層部(上面1a側の表層部)および内部を加熱するレーザーを用い、本実施形態ではCOレーザーを用いている。ここで、「表層部」とは、マザーガラス板1の上面1aから深さ10μmまでの領域を意味する。これに対して、「内部」とは、表層部を超えた深さの領域を意味する。COレーザーの波長は、一例として5.25μm~5.75μmであり、本実施形態では5.5μmである。レーザー4はパルス発振であってもよいし、連続発振であってもよい。 As the laser 4, a laser that heats the surface layer portion (surface layer portion on the upper surface 1a side) and the inside of the mother glass plate 1 is used, and a CO laser is used in this embodiment. Here, the “surface layer portion” means a region from the upper surface 1a of the mother glass plate 1 to a depth of 10 μm. On the other hand, "inside" means a region having a depth beyond the surface layer portion. The wavelength of the CO laser is, for example, 5.25 μm to 5.75 μm, and 5.5 μm in this embodiment. The laser 4 may be a pulse oscillation or a continuous oscillation.
 ここで、レーザー4は、マザーガラス板1の表層部および内部を加熱できるレーザーであれば、COレーザー以外であってもよい。例えば、レーザー4として、Erレーザー(Er:YAGレーザー)、Hoレーザー(Ho:YAGレーザー)又はHFレーザー等を用いることが可能である。 Here, the laser 4 may be a laser other than the CO laser as long as it can heat the surface layer portion and the inside of the mother glass plate 1. For example, as the laser 4, an Er laser (Er: YAG laser), a Ho laser (Ho: YAG laser), an HF laser, or the like can be used.
 以下、レーザー照射工程におけるレーザー4の照射条件の詳細について説明する。 The details of the irradiation conditions of the laser 4 in the laser irradiation step will be described below.
 レーザー4の焦点4aは、レーザーヘッド3とマザーガラス板1の上面1aとの間に位置させている。レーザースポット4bの形状は特に限定されるものではなく、円形、楕円形、長円形、長方形等としてよいが、本実施形態では、レーザースポット4bの形状が円形となるように照射している。 The focal point 4a of the laser 4 is located between the laser head 3 and the upper surface 1a of the mother glass plate 1. The shape of the laser spot 4b is not particularly limited and may be circular, elliptical, oval, rectangular or the like, but in the present embodiment, the laser spot 4b is irradiated so as to have a circular shape.
 ここで、マザーガラス板1が湾曲していることから、レーザーヘッド3のX方向への移動中において、レーザーヘッド3とマザーガラス板1との相互間距離、及び、マザーガラス板1の上面1aに対するレーザー4の入射角は連続的に変化する。これにより、レーザースポット4bの直径(以下、照射径と表記)もまた連続的に変化する。詳述すると、照射径は、割断予定線6の始点6aおよび終点6bの付近で相対的に大きくなり、中点6cの付近で相対的に小さくなる。照射径の大きさの変化は、1mm~8mmの範囲内に収めることが好ましく、2mm~6mmの範囲内に収めることがより好ましい。 Here, since the mother glass plate 1 is curved, the distance between the laser head 3 and the mother glass plate 1 and the upper surface 1a of the mother glass plate 1 while the laser head 3 is moving in the X direction. The incident angle of the laser 4 with respect to the laser 4 changes continuously. As a result, the diameter of the laser spot 4b (hereinafter referred to as the irradiation diameter) also changes continuously. More specifically, the irradiation diameter becomes relatively large near the start point 6a and the end point 6b of the planned split line 6, and becomes relatively small near the midpoint 6c. The change in the size of the irradiation diameter is preferably within the range of 1 mm to 8 mm, and more preferably within the range of 2 mm to 6 mm.
 上述の照射径の変化を考慮して、本実施形態では、レーザー照射工程におけるレーザー4の出力、及び、走査速度(ここではレーザーヘッド3がX方向に移動する速度)を以下のように決定している。なお、以下に例示するのは、照射径の大きさが4mm~6mmの範囲内で変化する場合である。 In consideration of the above-mentioned change in irradiation diameter, in the present embodiment, the output of the laser 4 and the scanning speed (here, the speed at which the laser head 3 moves in the X direction) in the laser irradiation step are determined as follows. ing. In addition, the example below is a case where the size of the irradiation diameter changes within the range of 4 mm to 6 mm.
 最初に、上記の湾曲したマザーガラス板1と同じ厚みを有すると共に、平坦に形成されたガラス板(以下、平坦ガラス板と表記)を準備する。次に、平坦ガラス板を上記のレーザー4(レーザーヘッド3)を用いて切断する場合に、照射径の大きさを4mmとして切断が可能となる出力、及び、走査速度の範囲を割り出す。さらに、同様にして、照射径の大きさを6mmとして平坦ガラス板の切断が可能となる出力、及び、走査速度の範囲を割り出す。これにより、図4に示すように、照射径を4mmとした場合の範囲11と、照射径を6mmとした場合の範囲12とが明らかとなる。最後に、範囲11と範囲12との両者が重複する範囲13(図4において太線で囲った範囲)内に収まった出力、及び、走査速度を、レーザー照射工程におけるレーザー4の出力、及び、走査速度として決定する。なお、本実施形態では、レーザー4の出力を38Wとし、走査速度を20mm/sとした。 First, prepare a flat glass plate (hereinafter referred to as a flat glass plate) having the same thickness as the curved mother glass plate 1 described above. Next, when the flat glass plate is cut using the above laser 4 (laser head 3), the output capable of cutting with the size of the irradiation diameter set to 4 mm and the range of the scanning speed are determined. Further, in the same manner, the range of the output and the scanning speed at which the flat glass plate can be cut is determined by setting the size of the irradiation diameter to 6 mm. As a result, as shown in FIG. 4, the range 11 when the irradiation diameter is 4 mm and the range 12 when the irradiation diameter is 6 mm become clear. Finally, the output and scanning speed within the range 13 (the range surrounded by the thick line in FIG. 4) where both the range 11 and the range 12 overlap are determined by the output of the laser 4 in the laser irradiation step and the scanning. Determined as speed. In this embodiment, the output of the laser 4 is 38 W and the scanning speed is 20 mm / s.
 ここで、レーザー4の照射に伴ってマザーガラス板1に加えられる熱衝撃を顕著にするため、マザーガラス板1におけるレーザースポット4bの周辺を冷却してもよい。具体例としては、レーザースポット4bを基準として走査方向(X方向)の後方に位置する部位に向かって冷媒(空気等)を吹き付けることで、当該部位を冷却してもよい。 Here, in order to make the thermal shock applied to the mother glass plate 1 with the irradiation of the laser 4 remarkable, the periphery of the laser spot 4b on the mother glass plate 1 may be cooled. As a specific example, the portion may be cooled by blowing a refrigerant (air or the like) toward a portion located behind the scanning direction (X direction) with reference to the laser spot 4b.
 上述のレーザー4の照射条件に加え、本実施形態では、第一ガラス板7および第二ガラス板8の切断面の性状を向上させるため、下記の[数3]式で算出されるマザーガラス板1の熱応力σT(MPa)が、下記の[数4]式を満足する条件で、レーザー照射工程を実行する。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
In addition to the above-mentioned irradiation conditions of the laser 4, in the present embodiment, in order to improve the properties of the cut surfaces of the first glass plate 7 and the second glass plate 8, the mother glass plate calculated by the following equation [Equation 3] The laser irradiation step is executed under the condition that the thermal stress σ T (MPa) of 1 satisfies the following equation [Equation 4].
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 上記の[数3]式におけるEはマザーガラス板1のヤング率(MPa)、αはマザーガラス板1の熱膨張係数(/K)、νはマザーガラス板1のポアソン比、ΔTは、マザーガラス板1に対するレーザー4の照射位置における温度(K)と、照射位置から離れた離間位置における温度(K)との差である。また、上記の[数4]式におけるtはマザーガラス板1の厚み(mm)である。 In the above equation [Equation 3], E is the Young's ratio (MPa) of the mother glass plate 1, α is the coefficient of thermal expansion (/ K) of the mother glass plate 1, ν is the Poisson's ratio of the mother glass plate 1, and ΔT is the mother. It is the difference between the temperature (K) at the irradiation position of the laser 4 with respect to the glass plate 1 and the temperature (K) at the distance position away from the irradiation position. Further, t in the above equation [Equation 4] is the thickness (mm) of the mother glass plate 1.
 ここで、上記のΔTについて詳述すると、レーザー4の照射位置と、当該照射位置からレーザー4の走査方向(X方向)の前方に10mmだけ離れた離間位置との各々において、マザーガラス板1の上面1aの温度をガラス温度測定用サーモグラフィ(Optris社製:PI450G7)で測定し、両位置間の温度差をΔTとした。レーザー4の照射中におけるマザーガラス板1の温度は、上記のレーザー4の出力や走査速度の条件を変更することで変化させることが可能である。なお、離間位置の温度は、室温と同程度となる。ここで、上述のごとくレーザーヘッド3の移動中において、レーザーヘッド3とマザーガラス板1との相互間距離、及び、マザーガラス板1の上面1aに対するレーザー4の入射角は連続的に変化する。これにより、レーザー4の照射位置における温度、ひいては、上記のΔTもまた変化する。そのため、これらの変化を考慮し、熱応力σTが割断の開始から終了までの間に亘って、上記の[数4]式の条件を満たすようにすることが好ましい。 Here, the above-mentioned ΔT will be described in detail. At each of the irradiation position of the laser 4 and the separated position 10 mm away from the irradiation position in front of the scanning direction (X direction) of the laser 4, the mother glass plate 1 The temperature of the upper surface 1a was measured by a thermography for measuring the glass temperature (manufactured by Optris: PI450G7), and the temperature difference between the two positions was defined as ΔT. The temperature of the mother glass plate 1 during irradiation with the laser 4 can be changed by changing the conditions of the output of the laser 4 and the scanning speed. The temperature at the separated position is about the same as room temperature. Here, as described above, while the laser head 3 is moving, the distance between the laser head 3 and the mother glass plate 1 and the incident angle of the laser 4 with respect to the upper surface 1a of the mother glass plate 1 continuously change. As a result, the temperature at the irradiation position of the laser 4, and thus the above-mentioned ΔT, also changes. Therefore, in consideration of these changes, it is preferable that the thermal stress σ T satisfies the condition of the above equation [Equation 4] from the start to the end of the fracture.
 以上に説明した条件の下、マザーガラス板1を割断予定線6の始点6aから終点6bまでレーザー4で走査する。このとき、割断予定線6上の各位置において、レーザー4の照射に伴う熱衝撃がマザーガラス板1の表層部および内部に加えられる。これにより、クラック5が割断予定線6に沿って進展すると共に、マザーガラス板1の厚み方向に沿って進展し、マザーガラス板1の全厚みが切断される。 Under the conditions described above, the mother glass plate 1 is scanned by the laser 4 from the start point 6a to the end point 6b of the scheduled cutting line 6. At this time, at each position on the scheduled cutting line 6, a thermal shock due to the irradiation of the laser 4 is applied to the surface layer portion and the inside of the mother glass plate 1. As a result, the crack 5 grows along the planned cutting line 6 and grows along the thickness direction of the mother glass plate 1, so that the entire thickness of the mother glass plate 1 is cut.
 以下、上記のガラス板の製造方法による主たる作用・効果について説明する。 Hereinafter, the main actions and effects of the above glass plate manufacturing method will be described.
 上記の製造方法では、マザーガラス板1の表層部および内部を加熱するレーザー4を用いており、マザーガラス板1の表層部のみでなく内部にも熱衝撃を加えることが可能である。このため、マザーガラス板1の全厚みを切断できるレーザー4の照射条件の範囲が広くなる。従って、湾曲したマザーガラス板1の切断開始から完了までの間に亘って、照射条件を全厚みの切断が可能となる条件に容易に維持できる。これにより、割断予定線6の全区間においてマザーガラス板1の全厚みを難なく切断することが可能となる。その結果、マザーガラス板1から切り出される第一ガラス板7および第二ガラス板8の切断面の性状を向上させることができる。 In the above manufacturing method, a laser 4 for heating the surface layer portion and the inside of the mother glass plate 1 is used, and it is possible to apply a thermal shock not only to the surface layer portion of the mother glass plate 1 but also to the inside. Therefore, the range of irradiation conditions of the laser 4 capable of cutting the entire thickness of the mother glass plate 1 is widened. Therefore, the irradiation condition can be easily maintained at a condition that enables cutting of the entire thickness from the start to the completion of cutting the curved mother glass plate 1. As a result, the entire thickness of the mother glass plate 1 can be easily cut in the entire section of the planned cutting line 6. As a result, the properties of the cut surfaces of the first glass plate 7 and the second glass plate 8 cut out from the mother glass plate 1 can be improved.
 以下、本発明の熱応力σTに係る実施例について説明する。 Hereinafter, examples relating to the thermal stress σ T of the present invention will be described.
 上記の実施形態と同様の形態により、下記の[表1]に示した種々のマザーガラス板1を切断した。そして、特に性状の優れた切断面(以下、優良切断面と表記)が得られた場合について、マザーガラス板1に作用させた熱応力σT(MPa)を上記の[数3]式により算出した。なお、切断面の性状の良否については、目視で観察を行うことにより判定を行った。 Various mother glass plates 1 shown in the following [Table 1] were cut in the same manner as in the above embodiment. Then, in the case where a cut surface having particularly excellent properties (hereinafter referred to as a good cut surface) is obtained, the thermal stress σ T (MPa) applied to the mother glass plate 1 is calculated by the above equation [Equation 3]. did. The quality of the cut surface was judged by visually observing.
 熱応力σTを算出した結果を[表1]に示す。ここで、上述のごとく、マザーガラス板1の湾曲に起因してレーザー4の照射径およびΔTは変化する。[表1]に示した照射径およびΔTは、割断予定線6上の中点6cにレーザー4が照射されている際における照射径およびΔTである。
Figure JPOXMLDOC01-appb-T000007
The results of calculating the thermal stress σ T are shown in [Table 1]. Here, as described above, the irradiation diameter and ΔT of the laser 4 change due to the curvature of the mother glass plate 1. The irradiation diameter and ΔT shown in [Table 1] are the irradiation diameter and ΔT when the laser 4 is irradiating the midpoint 6c on the scheduled cutting line 6.
Figure JPOXMLDOC01-appb-T000007
 [表1]に示す結果のとおり、厚みが0.5mm程度であるマザーガラス板1について、優良切断面を得るためには、ガラスの種類によらず、切断時におよそ100MPa程度の熱応力σTをマザーガラス板1に作用させることが望ましいことが分かる。 As shown in the results shown in [Table 1], in order to obtain a good cut surface for the mother glass plate 1 having a thickness of about 0.5 mm, the thermal stress σ T at the time of cutting is about 100 MPa regardless of the type of glass. It can be seen that it is desirable to act on the mother glass plate 1.
 ここで、優良切断面を得るための熱応力σTは、マザーガラス板1の厚みにより相違することが判明している。そこで、発明者は、厚み(肉厚)の異なる複数のマザーガラス板1をCOレーザーによって切断する試験を行った。そして、優良切断面を得るための熱応力σTとマザーガラス板1の厚みとの関係を確認した。本試験では、マザーガラス板1の試料として、無アルカリガラス、ソーダガラス、ホウケイ酸ガラスを用いた。本試験における熱応力σTとマザーガラス板1の厚みとの関係を図7に示す。 Here, it has been found that the thermal stress σ T for obtaining a good cut surface differs depending on the thickness of the mother glass plate 1. Therefore, the inventor conducted a test of cutting a plurality of mother glass plates 1 having different thicknesses (thicknesses) with a CO laser. Then, the relationship between the thermal stress σ T for obtaining a good cut surface and the thickness of the mother glass plate 1 was confirmed. In this test, non-alkali glass, soda glass, and borosilicate glass were used as the sample of the mother glass plate 1. FIG. 7 shows the relationship between the thermal stress σ T and the thickness of the mother glass plate 1 in this test.
 図7に示した結果から、発明者は、COレーザーでマザーガラス板1を切断する場合に、優良切断面を得るためには、上記の[数3]式により算出されるマザーガラス板1の熱応力σT(MPa)が上記の[数4]式を満足するように、レーザー照射工程を実行するのが望ましいということを見出した。 From the results shown in FIG. 7, the inventor of the mother glass plate 1 calculated by the above equation [Equation 3] in order to obtain a good cut surface when cutting the mother glass plate 1 with a CO laser. It has been found that it is desirable to carry out the laser irradiation step so that the thermal stress σ T (MPa) satisfies the above equation [Equation 4].
 ここで、本発明に係るガラス板の製造方法は、上記の実施形態で説明した形態に限定されるものではない。 Here, the method for manufacturing a glass plate according to the present invention is not limited to the embodiment described in the above embodiment.
 例えば、上記の実施形態では、レーザー4の走査に際して、レーザーヘッド3の軸の傾き、及び、レーザーヘッド3のその軸方向における位置を一定にしているが、この限りではない。割断予定線6に沿ってマザーガラス板1の上面1aに生じている高低差Hが大きい場合(例えば、高低差Hが20mmを超える場合)には、図5や図6に示すような形態を採用してもよい。 For example, in the above embodiment, when scanning the laser 4, the inclination of the axis of the laser head 3 and the position of the laser head 3 in the axial direction are fixed, but this is not the case. When the height difference H generated on the upper surface 1a of the mother glass plate 1 along the planned cutting line 6 is large (for example, when the height difference H exceeds 20 mm), the form as shown in FIGS. 5 and 6 is adopted. It may be adopted.
 図5に示す形態では、マザーガラス板1の湾曲に合わせて、レーザーヘッド3の軸の傾きを変化させている。詳述すると、マザーガラス板1の上面1aに対するレーザー4の入射角を小さくすることを目的として、レーザーヘッド3の軸の傾きを変化させている。この場合、レーザーヘッド3とマザーガラス板1との相互間距離、及び、マザーガラス板1の上面1aに対するレーザー4の入射角は一定である。なお、上記の入射角の上限値は45°とすることが好ましい。さらに、同図に示す形態では、レーザーヘッド3の軸の傾きを変化させることに加え、レーザーヘッド3の高さ位置についても変化させている。すなわち、レーザー4で割断予定線6の始点6aおよび終点6bの付近を走査する際には相対的にレーザーヘッド3の高さ位置を低くし、割断予定線6の中点6cの付近を走査する際には相対的にレーザーヘッド3の高さ位置を高くしている。 In the form shown in FIG. 5, the inclination of the axis of the laser head 3 is changed according to the curvature of the mother glass plate 1. More specifically, the inclination of the axis of the laser head 3 is changed for the purpose of reducing the incident angle of the laser 4 with respect to the upper surface 1a of the mother glass plate 1. In this case, the distance between the laser head 3 and the mother glass plate 1 and the angle of incidence of the laser 4 with respect to the upper surface 1a of the mother glass plate 1 are constant. The upper limit of the incident angle is preferably 45 °. Further, in the form shown in the figure, in addition to changing the inclination of the axis of the laser head 3, the height position of the laser head 3 is also changed. That is, when scanning the vicinity of the start point 6a and the end point 6b of the scheduled cutting line 6 with the laser 4, the height position of the laser head 3 is relatively lowered, and the vicinity of the midpoint 6c of the scheduled cutting line 6 is scanned. In some cases, the height position of the laser head 3 is relatively high.
 図6に示す形態では、レーザーヘッド3の軸の傾きを一定にする一方で、マザーガラス板1の湾曲に合わせて、レーザーヘッド3のその軸方向における位置(ここではZ方向における位置)を変化させている。詳述すると、レーザーヘッド3の高さ位置について、レーザー4で割断予定線6の始点6aおよび終点6bの付近を走査する際には相対的に低くし、割断予定線6の中点6cの付近を走査する際には相対的に高くしている。この場合、レーザーヘッド3とマザーガラス板1との相互間距離は一定であるが、マザーガラス板1の上面1aに対するレーザー4の入射角は連続的に変化する。 In the embodiment shown in FIG. 6, while the inclination of the axis of the laser head 3 is made constant, the position of the laser head 3 in the axial direction (here, the position in the Z direction) is changed according to the curvature of the mother glass plate 1. I'm letting you. More specifically, the height position of the laser head 3 is set relatively low when scanning the vicinity of the start point 6a and the end point 6b of the scheduled cut line 6 with the laser 4, and the vicinity of the midpoint 6c of the scheduled cut line 6 is set. Is relatively high when scanning. In this case, the distance between the laser head 3 and the mother glass plate 1 is constant, but the incident angle of the laser 4 with respect to the upper surface 1a of the mother glass plate 1 changes continuously.
 勿論ではあるが、レーザー4の走査に際して、レーザーヘッド3の軸の傾きと、レーザーヘッド3のその軸方向における位置との双方を変化させる形態を採用してもよい。例えば、レーザーヘッド3とマザーガラス板1との相互間距離を連続的に変化させ、マザーガラス板1の上面1aに対するレーザー4の入射角を一定にする形態を採用してもよい。このような形態や図5や図6に示す形態は、ロボット(多関節ロボット、単軸ロボットの組み合わせ等)、直動アクチュエータ、回転機構等を用いて実現することが可能である。 Of course, when scanning the laser 4, a form may be adopted in which both the inclination of the axis of the laser head 3 and the position of the laser head 3 in the axial direction are changed. For example, a mode may be adopted in which the distance between the laser head 3 and the mother glass plate 1 is continuously changed so that the incident angle of the laser 4 with respect to the upper surface 1a of the mother glass plate 1 is constant. Such a form and the form shown in FIGS. 5 and 6 can be realized by using a robot (a combination of an articulated robot, a single-axis robot, etc.), a linear actuator, a rotation mechanism, and the like.
 また、上記の実施形態では、湾曲したマザーガラス板1の凸となる面を上面1aとした上でマザーガラス板1を切断しているが、この限りではない。マザーガラス板1の表裏を反転させ、凹となる面を上面1aとした上でマザーガラス板1を切断してもよい。この場合、初期クラック2を形成する面は、上面1a(凹となる面)であってもよいし、下面1b(凸となる面)であってもよいし、端面であってもよい。さらに、上記の実施形態では、平置き姿勢にしたマザーガラス板1を切断しているが、この限りではない。保持部材等によって縦置き姿勢や傾斜姿勢にしたマザーガラス板1を切断してもよい。 Further, in the above embodiment, the mother glass plate 1 is cut with the convex surface of the curved mother glass plate 1 as the upper surface 1a, but this is not the case. The mother glass plate 1 may be cut by inverting the front and back sides of the mother glass plate 1 so that the concave surface is the upper surface 1a. In this case, the surface forming the initial crack 2 may be the upper surface 1a (concave surface), the lower surface 1b (convex surface), or the end surface. Further, in the above embodiment, the mother glass plate 1 in the flat position is cut, but this is not the case. The mother glass plate 1 in a vertical posture or an inclined posture may be cut by a holding member or the like.
 また、上記の実施形態では、平面視で割断予定線6がX方向に延びているが、この限りではない。割断予定線6は蛇行した線であってもよいし、閉ループをなすような線(例えば、平面視で円を描くような線)であってもよい。 Further, in the above embodiment, the planned division line 6 extends in the X direction in a plan view, but this is not the case. The planned split line 6 may be a meandering line or a line forming a closed loop (for example, a line drawing a circle in a plan view).
 また、上記の実施形態では、X方向およびY方向の二方向に沿って湾曲したマザーガラス板1を切断の対象としているが、この限りではない。一方向に沿ってのみ湾曲したマザーガラス板1を切断する場合においても、本発明を適用することが可能である。 Further, in the above embodiment, the mother glass plate 1 curved along the two directions of the X direction and the Y direction is targeted for cutting, but this is not the case. The present invention can also be applied to the case of cutting the mother glass plate 1 which is curved only in one direction.
 1      マザーガラス板
 1a     マザーガラス板の上面
 2      初期クラック
 3      レーザーヘッド
 4      レーザー
 5      クラック
 6      割断予定線
1 Mother glass plate 1a Top surface of mother glass plate 2 Initial crack 3 Laser head 4 Laser 5 Crack 6 Split scheduled line

Claims (6)

  1.  湾曲したマザーガラス板に割断の起点となる初期クラックを形成する初期クラック形成工程と、
     レーザーヘッドから前記マザーガラス板にレーザーを照射することで、前記初期クラックを起点にクラックを割断予定線に沿って進展させるレーザー照射工程と、を備えたガラス板の製造方法であって、
     前記レーザー照射工程では、前記マザーガラス板の表層部および内部を加熱する前記レーザーを用いて、前記レーザーの照射に伴う熱衝撃により前記クラックを前記割断予定線に沿って進展させると共に、前記マザーガラス板の厚み方向に沿って進展させることで、前記マザーガラス板を割断することを特徴とするガラス板の製造方法。
    An initial crack forming step of forming an initial crack that is a starting point of cutting on a curved mother glass plate, and
    A method for manufacturing a glass plate, comprising a laser irradiation step of irradiating the mother glass plate with a laser from a laser head to advance the cracks along a planned cutting line starting from the initial cracks.
    In the laser irradiation step, the laser that heats the surface layer portion and the inside of the mother glass plate is used to develop the crack along the planned cutting line by the thermal shock accompanying the irradiation of the laser, and the mother glass. A method for producing a glass plate, which comprises cutting the mother glass plate by extending the plate along the thickness direction of the plate.
  2.  前記レーザー照射工程では、前記レーザーヘッドの軸の傾きを一定にした上で、前記レーザーヘッドと前記マザーガラス板とを相対移動させることを特徴とする請求項1に記載のガラス板の製造方法。 The method for manufacturing a glass plate according to claim 1, wherein in the laser irradiation step, the inclination of the axis of the laser head is kept constant and then the laser head and the mother glass plate are relatively moved.
  3.  前記レーザー照射工程では、前記レーザーヘッドのその軸方向における位置を一定にした上で、前記レーザーヘッドと前記マザーガラス板とを相対移動させることを特徴とする請求項1又は2に記載のガラス板の製造方法。 The glass plate according to claim 1 or 2, wherein in the laser irradiation step, the position of the laser head in the axial direction is fixed, and then the laser head and the mother glass plate are relatively moved. Manufacturing method.
  4.  前記レーザー照射工程では、前記レーザーとしてCOレーザーを用いることを特徴とする請求項1~3のいずれかに記載のガラス板の製造方法。 The method for manufacturing a glass plate according to any one of claims 1 to 3, wherein a CO laser is used as the laser in the laser irradiation step.
  5.  下記の[数1]式で算出される前記マザーガラス板の熱応力σT(MPa)が、下記の[数2]式を満足する条件で、前記レーザー照射工程を実行することを特徴とする請求項1~4のいずれかに記載のガラス板の製造方法。
    Figure JPOXMLDOC01-appb-M000001
     ただし、Eは前記マザーガラス板のヤング率(MPa)、αは前記マザーガラス板の熱膨張係数(/K)、νは前記マザーガラス板のポアソン比、ΔTは、前記マザーガラス板に対する前記レーザーの照射位置における温度(K)と、前記照射位置から離れた離間位置における温度(K)との差である。
    Figure JPOXMLDOC01-appb-M000002
     ただし、tは前記マザーガラス板の厚み(mm)である。
    The laser irradiation step is executed under the condition that the thermal stress σ T (MPa) of the mother glass plate calculated by the following equation [Equation 1] satisfies the following equation [Equation 2]. The method for manufacturing a glass plate according to any one of claims 1 to 4.
    Figure JPOXMLDOC01-appb-M000001
    However, E is the Young's modulus (MPa) of the mother glass plate, α is the coefficient of thermal expansion (/ K) of the mother glass plate, ν is the Poisson's ratio of the mother glass plate, and ΔT is the laser with respect to the mother glass plate. It is the difference between the temperature (K) at the irradiation position and the temperature (K) at the distance position away from the irradiation position.
    Figure JPOXMLDOC01-appb-M000002
    However, t is the thickness (mm) of the mother glass plate.
  6.  前記レーザー照射工程では、(1)前記レーザーヘッドと前記マザーガラス板との相互間距離、及び、(2)前記マザーガラス板の表面に対する前記レーザーの入射角、の少なくとも一方を変化させることを特徴とする請求項1~5のいずれかに記載のガラス板の製造方法。 The laser irradiation step is characterized in that at least one of (1) the distance between the laser head and the mother glass plate and (2) the angle of incidence of the laser on the surface of the mother glass plate is changed. The method for manufacturing a glass plate according to any one of claims 1 to 5.
PCT/JP2021/000871 2020-02-05 2021-01-13 Method for manufacturing glass plate WO2021157305A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180007156.0A CN114845964A (en) 2020-02-05 2021-01-13 Method for manufacturing glass plate
KR1020227019226A KR20220137872A (en) 2020-02-05 2021-01-13 Method for manufacturing a glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-018017 2020-02-05
JP2020018017A JP2021123518A (en) 2020-02-05 2020-02-05 Method for manufacturing glass sheet

Publications (1)

Publication Number Publication Date
WO2021157305A1 true WO2021157305A1 (en) 2021-08-12

Family

ID=77199276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000871 WO2021157305A1 (en) 2020-02-05 2021-01-13 Method for manufacturing glass plate

Country Status (5)

Country Link
JP (1) JP2021123518A (en)
KR (1) KR20220137872A (en)
CN (1) CN114845964A (en)
TW (1) TW202138321A (en)
WO (1) WO2021157305A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113933122B (en) * 2021-10-11 2022-05-13 水利部交通运输部国家能源局南京水利科学研究院 Method for manufacturing three-dimensional axisymmetric smooth curved surface internal crack

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263623A (en) * 2004-03-13 2005-09-29 Schott Ag Method for free-form cutting bent substrate made of brittle material
JP2006256944A (en) * 2005-03-14 2006-09-28 Lemi Ltd Method and device for cutting brittle material
WO2014010600A1 (en) * 2012-07-11 2014-01-16 旭硝子株式会社 Curved plate manufacturing method
WO2018092520A1 (en) * 2016-11-18 2018-05-24 旭硝子株式会社 Curved plate machining device, and method for manufacturing curved plate with machined outer circumference

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127224A (en) * 2006-11-17 2008-06-05 Lemi Ltd Method for fully cutting brittle material
JP5522516B2 (en) 2009-12-07 2014-06-18 日本電気硝子株式会社 Sheet glass cutting method and apparatus
JP2016128365A (en) * 2013-04-26 2016-07-14 旭硝子株式会社 Cutting method of glass plate
JP2016069223A (en) * 2014-09-30 2016-05-09 三星ダイヤモンド工業株式会社 Breaking method and breaking device
DE102015104801A1 (en) * 2015-03-27 2016-09-29 Schott Ag Method and apparatus for continuous separation of glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263623A (en) * 2004-03-13 2005-09-29 Schott Ag Method for free-form cutting bent substrate made of brittle material
JP2006256944A (en) * 2005-03-14 2006-09-28 Lemi Ltd Method and device for cutting brittle material
WO2014010600A1 (en) * 2012-07-11 2014-01-16 旭硝子株式会社 Curved plate manufacturing method
WO2018092520A1 (en) * 2016-11-18 2018-05-24 旭硝子株式会社 Curved plate machining device, and method for manufacturing curved plate with machined outer circumference

Also Published As

Publication number Publication date
JP2021123518A (en) 2021-08-30
TW202138321A (en) 2021-10-16
CN114845964A (en) 2022-08-02
KR20220137872A (en) 2022-10-12

Similar Documents

Publication Publication Date Title
JP5702785B2 (en) Laser cutting method of glass substrate
US8584490B2 (en) Laser cutting method
JP5533668B2 (en) Fragile material substrate cleaving method, apparatus and vehicle window glass
JP5609870B2 (en) Cleaving method and cleaving apparatus for brittle material substrate, and vehicle window glass obtained by the cleaving method
JP6397821B2 (en) Method and apparatus for workpiece separation
WO2012172960A1 (en) Method for cutting glass plate
JP2011502948A (en) High speed / low residual stress laser scoring of glass sheets
WO2014175147A1 (en) Method for cutting glass plate
JP7318651B2 (en) Glass plate manufacturing method
WO2021157305A1 (en) Method for manufacturing glass plate
KR20090079342A (en) Glass cutting method utilizing a laser beam
WO2021157300A1 (en) Glass plate and method for manufacturing glass plate
US20230068194A1 (en) Glass plate manufacturing method
WO2021157289A1 (en) Method for manufacturing glass sheet
WO2014175146A1 (en) Method for cutting glass plate
WO2023228617A1 (en) Method for producing glass plate
WO2014171396A1 (en) Method for cutting glass sheet
WO2014175145A1 (en) Method for cutting glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750258

Country of ref document: EP

Kind code of ref document: A1