WO2021157248A1 - Light-emitting device, manufacturing method of light-emitting device, and display device - Google Patents

Light-emitting device, manufacturing method of light-emitting device, and display device Download PDF

Info

Publication number
WO2021157248A1
WO2021157248A1 PCT/JP2020/048450 JP2020048450W WO2021157248A1 WO 2021157248 A1 WO2021157248 A1 WO 2021157248A1 JP 2020048450 W JP2020048450 W JP 2020048450W WO 2021157248 A1 WO2021157248 A1 WO 2021157248A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
core layer
light
layer
Prior art date
Application number
PCT/JP2020/048450
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 小川
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021157248A1 publication Critical patent/WO2021157248A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present disclosure relates to a light emitting device, a method of manufacturing the light emitting device, and a display device.
  • a light emitting device having a mounted structure in which a light emitting unit including a light emitting element such as a light emitting diode (LED: Light Emitting Diode) and a semiconductor element for driving each light emitting element of the light emitting unit are arranged adjacent to each other on the same substrate.
  • a light emitting unit including a light emitting element such as a light emitting diode (LED: Light Emitting Diode) and a semiconductor element for driving each light emitting element of the light emitting unit are arranged adjacent to each other on the same substrate.
  • the semiconductor element is, for example, an IC (Integrated Circuit) chip or the like.
  • an object of the present disclosure is to provide a light emitting device capable of suppressing the generation of leaked light from a light emitting unit, a method for manufacturing the same, and a display device having the light emitting device.
  • the light emitting device of the present disclosure for achieving the above object is Light emitting part, Semiconductor elements arranged together with the light emitting part on the same substrate, and An optical waveguide formed above the light emitting part, With Optical waveguide A core layer formed as an optical path on the light emitting part, and A clad layer formed around the core layer, Have.
  • a protective layer is formed so as to cover the light emitting portion and the semiconductor element.
  • a clad layer is formed on the protective layer.
  • the clad layer is left in an annular shape along the peripheral wall of the recess, and then a core layer is formed on the protective layer.
  • only the portion of the core layer that functions as an optical path remains.
  • the display device of the present disclosure for achieving the above object is Pixels including a light emitting device are arranged to form
  • the light emitting device is Light emitting part, Semiconductor elements arranged together with the light emitting part on the same substrate, and An optical waveguide formed above the light emitting part, With Optical waveguide A core layer formed as an optical path on the light emitting part, and A clad layer formed around the core layer, Have.
  • FIG. 1 is a cross-sectional view schematically showing a cross section of a mounting structure of a light emitting device according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating the operation of the optical waveguide in the light emitting device according to the first embodiment.
  • 3A, 3B, and 3C are process diagrams (No. 1) showing a flow of a method for manufacturing a light emitting device according to the first embodiment.
  • 4A, 4B, and 4C are process diagrams (No. 2) showing a flow of a manufacturing method of the light emitting device according to the first embodiment.
  • 5A, 5B, and 5C are process diagrams (No. 3) showing a flow of a manufacturing method of the light emitting device according to the first embodiment.
  • FIG. 1 is a cross-sectional view schematically showing a cross section of a mounting structure of a light emitting device according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating the operation of the optical waveguide
  • FIG. 6 is a cross-sectional view schematically showing a cross section of the mounting structure of the light emitting device according to the second embodiment of the present disclosure.
  • FIG. 7 is a schematic view illustrating the operation of the optical waveguide in the light emitting device according to the second embodiment.
  • 8A, 8B, 8C, and 8D are process diagrams (No. 1) showing a flow of a method for manufacturing a light emitting device according to a second embodiment.
  • 9A, 9B, and 9C are process diagrams (No. 2) showing a flow of a method for manufacturing a light emitting device according to a second embodiment.
  • 10A, 10B, and 10C are process charts (No. 3) showing a flow of a method for manufacturing a light emitting device according to a second embodiment.
  • FIG. 3) showing a flow of a method for manufacturing a light emitting device according to a second embodiment.
  • FIG. 11 is a perspective view showing an outline of the configuration of the display device according to the embodiment of the present disclosure.
  • FIG. 12 is a circuit diagram showing an example of a circuit configuration of a part of the pixel array portion of the display device according to the embodiment of the present disclosure.
  • Light emitting device according to the second embodiment of the present disclosure 3-1. Mounting structure of light emitting device according to the second embodiment 3-2. 4. Manufacturing flow of the light emitting device according to the second embodiment. Display device according to the embodiment of the present disclosure 5. Modification example 6. Configuration that can be taken by this disclosure
  • the manufacturing method thereof, and the display device the refractive index of the clad layer may be lower than that of the core layer.
  • the light emitting device and the manufacturing method thereof of the present disclosure including the above-mentioned preferable configuration, and the display device may have a configuration having an outer wall core layer covering the peripheral wall of the light emitting portion.
  • the refractive index of the outer wall core layer can be higher than that of the protective layer that covers the light emitting portion and the semiconductor element.
  • the outer wall core layer may be formed of the same material as the core layer above the light emitting portion.
  • the light emitting device and the manufacturing method thereof of the present disclosure including the above-mentioned preferable configuration, and the display device have a configuration having a light-shielding film formed on a protective layer covering the light emitting portion and the semiconductor element.
  • the semiconductor element may be configured to be a drive IC for driving the light emitting unit.
  • the light emitting device according to the first embodiment is a self-luminous device that constitutes a light emitting unit by using a light emitting element such as a light emitting diode (LED).
  • FIG. 1 is a cross-sectional view schematically showing a cross section of a mounting structure of a light emitting device according to the first embodiment of the present disclosure.
  • the cell substrate 11 is a substrate for mounting a light emitting unit 12 including a light emitting element and a drive IC 13, and includes a plurality of wirings 111.
  • the cell substrate 11 is made of, for example, a glass substrate, a resin substrate, or the like.
  • the cell substrate 11 may be composed of a printed circuit board.
  • the light emitting device 10A according to the first embodiment has a mounting structure in which a light emitting unit 12 including a light emitting element and a drive IC 13 are arranged side by side on a cell substrate 11 (that is, the same substrate). ing.
  • the light emitting unit 12 includes a plurality of light emitting elements that emit light in different wavelength ranges, for example, three light emitting elements 121R, a light emitting element 121G, and a light emitting element 121B.
  • the light emitting element 121R is composed of a light emitting diode that emits light in the red wavelength region
  • the light emitting element 121G emits light that emits light in the green wavelength region
  • the light emitting element 121B is composed of a light emitting diode that emits light in the blue wavelength region.
  • the light emitting element 121R, the light emitting element 121G, and the light emitting element 121B each have, for example, an n-type semiconductor layer, a p-type semiconductor layer, an n-type electrode, and a p-type electrode, and are made of, for example, a resin material.
  • the structure is covered with a protective layer 122 made of the like.
  • One of the electrodes (for example, n-type electrode) of the light emitting element 121R, the light emitting element 121G, and the light emitting element 121B is electrically connected to the drive IC 13 via, for example, a pad electrode (not shown).
  • the other electrodes (for example, p-type electrodes) of the light emitting element 121R, the light emitting element 121G, and the light emitting element 121B are electrically connected to the ground GND via, for example, a pad electrode (not shown).
  • the light emitting element 121R, the light emitting element 121G, and the drive IC 13 electrically connected to the light emitting unit 121B are semiconductor elements for driving the respective light emitting elements 121R, 121G, 121B of the light emitting unit 12.
  • the drive IC 13 has, for example, a multilayer wiring layer 131, a semiconductor layer 132, and an insulating layer 133, and is laminated in this order from the cell substrate 11 side.
  • the drive IC 13 has a very small chip size of, for example, about 200 ⁇ m square.
  • the multilayer wiring layer 131 includes, for example, a plurality of wirings 134 and an interlayer insulating film 135.
  • the plurality of wirings 134 are electrically separated from each other by an interlayer insulating film 135.
  • the wiring 134 of the multilayer wiring layer 131 is electrically connected to, for example, data lines SigG, SigR, SigB, etc., which will be described later.
  • the drive IC 13 is electrically connected to the cell substrate 11 by, for example, the multilayer wiring layer 131.
  • the light emitting device 10A is formed on a protective layer 14 covering the light emitting unit 12 and the driving IC 13 and the protective layer 14 in addition to the light emitting unit 12 and the driving IC 13, and is formed above the light emitting device 10A. It has a light-shielding film 15 that suppresses the incident of light from.
  • the protective layer 14 is provided, for example, over the entire surface of the cell substrate 11 so as to cover the light emitting unit 12 and the drive IC 13.
  • the protective layer 14 is for protecting the light emitting unit 12 and the driving IC 13, and is made of an insulating organic material, an insulating inorganic material, or the like.
  • the insulating organic material include silicone and the like.
  • the insulating inorganic material include silicon oxide (SiO) and silicon nitride (SiN).
  • the light-shielding film 15 is provided so as to face the cell substrate 11 with the protective layer 14 in between (sandwiched).
  • the light-shielding film 15 is a so-called black mask.
  • the light-shielding film 15 is provided with an opening 15A in a region facing the light emitting portion 12.
  • the opening 15A is an opening for emitting the light emitted from the light emitting element 121R, the light emitting element 121G, and the light emitting element 121B of the light emitting unit 12 to the outside.
  • the size of the opening 15A is set to such a size that the light emitted from the light emitting element 121R, the light emitting element 121G, and the light emitting element 121B can be sufficiently taken out of the light emitting device 10A.
  • the light-shielding film 15 is made of, for example, a resin material containing carbon black.
  • the material of the light-shielding film 15 is not limited to the resin material, and is, for example, a metal material such as titanium (Ti), chromium (Cr), nickel (Ni), tungsten (W), or molybdenum (Mo). It may be.
  • the light emitting device 10A further has an optical waveguide 16 formed above the light emitting unit 12.
  • the optical waveguide 16 is composed of a core layer 161 formed as an optical path on the light emitting portion 12 and a clad layer 162 formed around the core layer 161 to reflect light.
  • the refractive index n 2 of the clad layer 162 is set lower than the refractive index n 1 of the core layer 161 (n 2 ⁇ n 1 ).
  • the material of the core layer 161 having a refractive index n 1 for example, silicon oxynitride (SiON) and the like can be exemplified.
  • silicon oxynitride SiON
  • the refractive index n 1 of the core layer 161 is about 2.0.
  • the material of the clad layer 162 having a refractive index of n 2 include silicon oxide (SiO) and the like.
  • the refractive index n 2 of the clad layer 162 is about 1.45 (n 2 ⁇ n 1 ).
  • the light emitting device 10A has a mounting structure in which the light emitting unit 12 and the drive IC 13 are arranged side by side on the same cell substrate 11.
  • an optical waveguide 16 composed of a core layer 161 and a clad layer 162 is formed above the light emitting unit 12.
  • the refractive index n 2 of the clad layer 162 is set lower than the refractive index n 1 of the core layer 161.
  • the mounting structure of the light emitting device 10A according to the first embodiment as shown by the solid arrow in FIG. 2, light reflection occurs at the interface between the core layer 161 and the clad layer 162 of the optical waveguide 16. , The generation of leaked light from the light emitting unit 12 can be suppressed. As a result, the luminous efficiency of the light emitting unit 12 can be improved, and the light leaking from the light emitting unit 12 does not adversely affect the characteristics of the drive IC 13.
  • the light emitted from the light emitting element 121G that emits light in the green wavelength region is shielded from the protective layer 14 as shown by the broken line arrow in FIG. It may be reflected at the interface with the film 15 and incident on the drive IC 13. That is, the leaked light from the light emitting unit 12 may adversely affect the characteristics of the drive IC 13.
  • step 1 shown in FIG. 3A represents, for example, a mounting state in which a light emitting unit 12 and a drive IC 13 are arranged side by side on a cell substrate 11 made of a glass substrate, a resin substrate, or the like.
  • step 2 shown in FIG. 3B the protective layer 14 is formed over the entire surface of the cell substrate 11 with an insulating organic material, an insulating inorganic material, or the like so as to cover the light emitting unit 12 and the driving IC 13.
  • step 3 shown in FIG. 3C the upper portion of the light emitting portion 12 is removed from the protective layer 14 by lithography / etching to form the recess 14A.
  • a clad layer 162 is formed over the entire surface of the protective layer 14 by using a material such as silicon oxide on the protective layer 14 including the recess 14A, and then FIG.
  • the clad layer 162 is left in an annular shape along the peripheral wall of the recess 14A by lithography / etching.
  • a core layer 161 is formed on the protective layer 14 over the entire surface of the protective layer 14 by using a material such as silicon oxynitride.
  • step 7 shown in FIG. 5A only the portion of the core layer 161 that functions as an optical path of the optical waveguide 16 is left by lithography / etching.
  • the optical waveguide 16 is formed by the core layer 161 and the clad layer 162 above the light emitting unit 12.
  • step 8 shown in FIG. 5B a light-shielding film 15 is formed over the entire surface of the protective layer 14 on the protective layer 14 including the optical waveguide 16, and then in step 9 shown in FIG. 5C, by lithography / etching.
  • An opening 15A is formed in a region of the light-shielding film 15 facing the light-emitting portion 12.
  • the optical waveguide 16 above the light emitting unit 12 By forming the optical waveguide 16 above the light emitting unit 12 by the series of manufacturing flows described above, it is possible to suppress the generation of leaked light from the light emitting unit 12 and improve the luminous efficiency, and also to improve the luminous efficiency. It is possible to manufacture the light emitting device 10A according to the first embodiment, which can reduce the adverse effect on the characteristics of the drive IC 13.
  • FIG. 6 is a cross-sectional view schematically showing a cross section of the mounting structure of the light emitting device according to the second embodiment of the present disclosure.
  • the light emitting device 10A according to the first embodiment has a core layer 161 as an optical path of an optical waveguide 16 on a light emitting unit 12 including a light emitting element 121R, a light emitting element 121G, and a light emitting element 121B. It was a formed structure.
  • the light emitting device 10B according to the second embodiment has a configuration in which not only the light emitting unit 12 but also the side wall of the light emitting unit 12 is entirely covered with the outer wall core layer 163. It has become.
  • the refractive index of the outer wall core layer 163 is set higher than the refractive index of the protective layer 14.
  • the outer wall core layer 163 can be formed, for example, by using the same material as the core layer 161.
  • the protective layer 14 is made of, for example, an insulating organic material such as silicone or an insulating inorganic material such as silicon oxide (SiO) or silicon nitride (SiN).
  • SiO silicon oxide
  • SiN silicon nitride
  • the refractive index of the outer wall core layer 163 is set higher than the refractive index of the protective layer 14. can do.
  • the light emitting device 10B according to the second embodiment of the present disclosure not only the light emitting unit 12 but also the side wall of the light emitting unit 12 is entirely covered with the outer wall core layer 163, and the outer wall core layer 163 is used.
  • the refractive index of is set higher than the refractive index of the protective layer 14.
  • step 1 shown in FIG. 8A represents, for example, a mounting state in which the light emitting unit 12 and the drive IC 13 are arranged side by side on the cell substrate 11 made of a glass substrate, a resin substrate, or the like.
  • step 2 shown in FIG. 8B the outer wall core layer 163 is formed as a whole so as to cover the side wall of the light emitting portion 12 by using a material such as silicon oxynitride.
  • step 3 shown in FIG. 8C the protective layer 14 is formed over the entire surface of the cell substrate 11 with an insulating organic material, an insulating inorganic material, or the like so as to cover the light emitting unit 12 and the driving IC 13.
  • step 4 shown in FIG. 8D the upper portion of the light emitting portion 12 is removed from the protective layer 14 by lithography / etching to form the recess 14A.
  • a clad layer 162 is formed over the entire surface of the protective layer 14 by using a material such as silicon oxide on the protective layer 14 including the recess 14A, and then FIG.
  • the clad layer 162 is left in an annular shape along the peripheral wall of the recess 14A by lithography / etching.
  • a core layer 161 is formed on the protective layer 14 over the entire surface of the protective layer 14 by using a material such as silicon oxynitride.
  • step 8 shown in FIG. 10A only the portion of the core layer 161 that functions as an optical path of the optical waveguide 16 is left by lithography / etching.
  • the optical waveguide 16 is formed by the core layer 161 and the clad layer 162 above the light emitting unit 12.
  • step 9 shown in FIG. 10B a light-shielding film 15 is formed over the entire surface of the protective layer 14 on the protective layer 14 including the optical waveguide 16, and then in step 10 shown in FIG. 10C, by lithography / etching.
  • An opening 15A is formed in a region of the light-shielding film 15 facing the light-emitting portion 12.
  • the side wall of the light emitting unit 12 is covered with the outer wall core layer 163 to emit light. It is possible to manufacture the light emitting device 10B according to the second embodiment, which can further reduce the adverse effect of the light leaked from the unit 12 on the characteristics of the driving IC 13.
  • FIG. 11 is a perspective view showing an outline of the configuration of the display device according to the embodiment of the present disclosure.
  • the display device 100 according to the embodiment of the present disclosure is a flat panel display device in which a large number of pixels 120 are two-dimensionally arranged in a matrix on a substrate 110, and is used by being attached to, for example, a wall surface inside or outside a building. It is a large screen display device.
  • the light emitting device 10A according to the first embodiment or the light emitting device 10B according to the second embodiment can be used as the pixels 120 arranged in a matrix.
  • a so-called tiling display can be configured by laying the light emitting device 10A according to the first embodiment or the light emitting device 10B according to the second embodiment in a tile shape.
  • a large screen display device tilting display
  • the present invention is not limited to the large screen display device.
  • FIG. 12 shows an example of a partial circuit configuration of the pixel array unit 150 of the display device 100 according to the embodiment of the present disclosure.
  • the display device 100 according to the present embodiment has a pixel array unit 150 in which a plurality of pixels 120 are two-dimensionally arranged in a matrix. Then, the display device 100 according to the present embodiment uses the light emitting device 10A according to the first embodiment or the light emitting device 10B according to the second embodiment as the plurality of pixels 120, including the light emitting unit 12 and the drive IC 13. It is composed of.
  • the display device 100 has, for example, a plurality of data lines 141 extending in the column direction and a plurality of gate lines 142 extending in the row direction, for example. ..
  • As the wiring material for the data line 141 and the gate line 142 for example, copper can be used.
  • the display device 100 further includes a plurality of first voltage lines 143, a plurality of power supply lines 144 and 145, a plurality of second voltage lines 146 and 147, and a plurality of ground lines 148. ing.
  • the plurality of first voltage lines 143 are provided, for example, extending in the row direction.
  • the plurality of power supply lines 144 and 145, the plurality of second voltage lines 146 and 147, and the plurality of ground lines 148 are provided, for example, extending in the row direction.
  • At least one wiring of the first voltage line 143, the power supply line 144, 145, the second voltage line 146, 147, and the ground line 148 can be omitted depending on the drive system.
  • the wiring material for the first voltage line 143, the power supply line 144, 145, the second voltage line 146, 147, and the ground line 148 for example, copper can be used.
  • the plurality of data lines 141 transmit a data signal Sigma corresponding to a video signal supplied from a signal supply unit (not shown) to each pixel 120.
  • the data signal Sigma corresponding to the video signal is, for example, a signal for controlling the emission brightness of the light emitting elements 121R, 121G, 121B.
  • the plurality of data lines 141 are composed of, for example, a type of wiring corresponding to the number of emission colors of the light emitting unit 12.
  • the plurality of data lines 141 are data signals SigR (SigR 1 , SigR 2 , ...) Corresponding to each emission color.
  • the emission color of the light emitting unit 12 is not limited to the three colors of R, G, and B, and may be four or more colors, for example, four colors of R, G, B, and W (white).
  • a plurality of data lines 141 include a plurality of data lines for transmitting data signals SigR, SigG, and SigB corresponding to each emission color
  • a set of data lines consisting of one data line for each emission color. 141 is assigned to, for example, one pixel string.
  • the set of data lines 141 may be assigned to each of a plurality of pixel strings. Further, depending on the drive system, the above-mentioned set of data lines 141 can be replaced with a single data line.
  • the plurality of gate lines 142 are wirings for transmitting selection signals Gate (Gate 1 , Gate 2 , ...) That select each pixel 120 of the pixel array unit 150.
  • the selection signal Gate (Gate 1 , Gate 2 , ...) Is supplied from the scanning unit (not shown) to the plurality of gate lines 142, and starts sampling the data signal Sig transmitted by the data line 141, for example.
  • the sampled signal is input to the light emitting unit 12, and the light emitting unit 12 is started to emit light.
  • One gate line 142 is assigned, for example, for each pixel row.
  • the plurality of first voltage lines 143 are wirings that transmit, for example, a signal Saw having a saw-like waveform supplied from a control unit (not shown) to the drive IC 13.
  • the signal Saw with a sawtooth waveform is compared to the sampled signal Sig. In this comparison process, for example, when the peak value of the signal Saw having a saw-like waveform is higher than the peak value of the sampled signal Sigma, the sampled signal Sigma is sent to the light emitting unit 12 only during the period of being high. Entered.
  • One first voltage line 143 is assigned, for example, every two pixel rows.
  • the plurality of voltage lines 144 and 145 are wirings that supply the power supply voltages V DD1 and V DD2 to the pixel 120.
  • the plurality of second voltage lines 146 and 147 transfer the reference voltages Ref 1 and Ref 2 to the pixel 120. It is the wiring to be supplied to.
  • the plurality of ground wires 148 are wirings that give a ground potential GND to the pixel 120.
  • One power supply line 144 is assigned to, for example, two pixel strings.
  • One power line 145 is assigned to, for example, two pixel strings.
  • One second voltage line 146 is assigned, for example, for each of two pixel trains.
  • One second voltage line 147 is assigned, for example, for each of two pixel trains.
  • One ground line 148 is assigned every two pixel rows, for example.
  • the display device 100 includes the light emitting device 10A according to the first embodiment or the second embodiment, which includes the light emitting unit 12 and the drive IC 13 as each pixel 120 of the pixel array unit 150.
  • the light emitting device 10B according to the above is used.
  • the light emitting device 10A according to the first embodiment or the light emitting device 10B according to the second embodiment has an optical waveguide 16 composed of a core layer 161 and a clad layer 162, so that light leakage from the light emitting unit 12 is generated. It can be suppressed, the luminous efficiency can be improved, and the adverse effect of the leaked light on the characteristics of the drive IC 13 can be reduced. Therefore, by using the light emitting device 10A according to the first embodiment or the light emitting device 10B according to the second embodiment as the pixel 120, it is possible to provide a display device capable of realizing a clearer image display.
  • the display device 100 is applied to a large-screen display device (tiling display) used by being attached to a wall surface inside or outside a building has been described as an example, but this application example has been described. It is not limited to. That is, the technique according to the present disclosure uses, for example, a video signal input from the outside or a video signal generated internally, such as a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a mobile phone, or a video camera. , It can be applied to electronic devices in all fields to be displayed as images or videos.
  • the present disclosure may also have the following configuration.
  • Light emitting device
  • [A-1] Light emitting unit, Semiconductor elements arranged together with the light emitting part on the same substrate, and An optical waveguide formed above the light emitting part, With Optical waveguide A core layer formed as an optical path on the light emitting part, and A clad layer formed around the core layer, Have, Light emitting device.
  • [A-2] The refractive index of the clad layer is lower than that of the core layer.
  • [A-3] It has an outer wall core layer that covers the peripheral wall of the light emitting portion. The light emitting device according to the above [A-2].
  • the refractive index of the outer wall core layer is higher than the refractive index of the protective layer that covers the light emitting portion and the semiconductor element.
  • the outer wall core layer is made of the same material as the core layer above the light emitting part.
  • a light-shielding film formed on a protective layer covering a light emitting portion and a semiconductor element is provided.
  • the semiconductor element is a drive IC that drives a light emitting unit.
  • ⁇ B Manufacturing method of light emitting device ⁇ [B-1] With the light emitting portion and the semiconductor element arranged on the same substrate, a protective layer is formed so as to cover the light emitting portion and the semiconductor element. Next, after removing the upper part of the light emitting portion of the protective layer to form a recess, a clad layer is formed on the protective layer. Next, the clad layer is left in an annular shape along the peripheral wall of the recess, and then a core layer is formed on the protective layer. Next, only the portion of the core layer that functions as an optical path remains. Manufacturing method of light emitting device. [B-2] Before forming the protective layer, the outer wall core layer is formed so as to cover the side wall of the light emitting portion.
  • a protective layer is formed so as to cover the light emitting portion and the semiconductor element, and the protective layer is formed.
  • a clad layer is formed on the protective layer.
  • the clad layer is left in an annular shape along the peripheral wall of the recess, and then a core layer is formed on the protective layer.
  • only the portion of the core layer that functions as an optical path remains.
  • ⁇ C. Display device ⁇ [C-1] Pixels including a light emitting device are arranged and formed.
  • the light emitting device is Light emitting part, Semiconductor elements arranged together with the light emitting part on the same substrate, and An optical waveguide formed above the light emitting part, With Optical waveguide A core layer formed as an optical path on the light emitting part, and A clad layer formed around the core layer, Have, Display device.
  • the refractive index of the clad layer is lower than that of the core layer.
  • [C-3] It has an outer wall core layer that covers the peripheral wall of the light emitting portion.
  • the refractive index of the outer wall core layer is higher than the refractive index of the protective layer that covers the light emitting portion and the semiconductor element.
  • the outer wall core layer is made of the same material as the core layer above the light emitting part.
  • [C-6] A light-shielding film formed on a protective layer covering a light emitting portion and a semiconductor element is provided.
  • the semiconductor element is a drive IC that drives a light emitting unit.
  • 10A Light emitting device according to the first embodiment, 10B ... Light emitting device according to the second embodiment, 11 ... Cell substrate, 12 ... Light emitting unit, 13 ... Drive IC (semiconductor element) , 14 ... protective layer, 15 ... light-shielding film, 16 ... optical waveguide, 100 ... display device, 110 ... substrate, 120 ... pixel, 121R ... light in the red wavelength region Light emitting element that emits light, 121G ... Light emitting element that emits light in the green wavelength region, 121B ... Light emitting element that emits light in the blue wavelength region, 150 ... , 162 ... Clad layer, 163 ... Outer wall core layer

Abstract

This light-emitting device is provided with a light-emitting unit, a semiconductor element arranged with the light-emitting unit on the same substrate, and an optical waveguide formed above the light-emitting unit. The optical waveguide has a core layer formed as an optical path above the light-emitting unit, and a cladding layer formed around the core layer. In this way, it is possible to suppress light leakage from the light-emitting unit. This display device comprises a light-emitting device of the aforementioned configuration.

Description

発光装置及び発光装置の製造方法、並びに、表示装置Light emitting device, manufacturing method of light emitting device, and display device
 本開示は、発光装置及び発光装置の製造方法、並びに、表示装置に関する。 The present disclosure relates to a light emitting device, a method of manufacturing the light emitting device, and a display device.
 発光ダイオード(LED:Light Emitting Diode)等の発光素子を含む発光部と、当該発光部の各発光素子を駆動する半導体素子とを、同一基板上に隣接して配置した実装構造の発光装置がある(例えば、特許文献1参照)。半導体素子は、例えば、IC(Integrated Circuit)チップ等である。 There is a light emitting device having a mounted structure in which a light emitting unit including a light emitting element such as a light emitting diode (LED: Light Emitting Diode) and a semiconductor element for driving each light emitting element of the light emitting unit are arranged adjacent to each other on the same substrate. (See, for example, Patent Document 1). The semiconductor element is, for example, an IC (Integrated Circuit) chip or the like.
特開2017-98571号公報JP-A-2017-98571
 上記の発光装置のように、発光素子を含む発光部と半導体素子とを、同一基板上に隣接して配置した実装構造の場合、発光部からの漏れ光が半導体素子の特性に悪影響を及ぼす懸念がある。 In the case of a mounting structure in which a light emitting unit including a light emitting element and a semiconductor element are arranged adjacent to each other on the same substrate as in the above light emitting device, there is a concern that light leakage from the light emitting unit adversely affects the characteristics of the semiconductor element. There is.
 そこで、本開示は、発光部からの漏れ光の発生を抑制することができる発光装置及びその製造方法、並びに、当該発光装置を有する表示装置を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a light emitting device capable of suppressing the generation of leaked light from a light emitting unit, a method for manufacturing the same, and a display device having the light emitting device.
 上記の目的を達成するための本開示の発光装置は、
 発光部、
 同一基板上に発光部と共に配置された半導体素子、及び、
 発光部の上方に形成された光導波路、
を備え、
 光導波路は、
 発光部の上に光路として形成されたコア層、及び、
 コア層の周囲に形成されたクラッド層、
を有する。
The light emitting device of the present disclosure for achieving the above object is
Light emitting part,
Semiconductor elements arranged together with the light emitting part on the same substrate, and
An optical waveguide formed above the light emitting part,
With
Optical waveguide
A core layer formed as an optical path on the light emitting part, and
A clad layer formed around the core layer,
Have.
 また、上記の目的を達成するための本開示の発光装置の製造方法は、
 同一基板上に、発光部及び半導体素子を配置した状態で、発光部及び半導体素子を覆うように保護層を形成し、
 次いで、保護層の発光部の上方を除去して凹部を形成した後、保護層の上にクラッド層を成膜し、
 次いで、クラッド層について凹部の周壁に沿って環状に残存させた後、保護層の上にコア層を成膜し、
 次いで、コア層について光路として機能する部分だけを残存させる。
In addition, the method for manufacturing the light emitting device of the present disclosure for achieving the above object is described.
With the light emitting portion and the semiconductor element arranged on the same substrate, a protective layer is formed so as to cover the light emitting portion and the semiconductor element.
Next, after removing the upper part of the light emitting portion of the protective layer to form a recess, a clad layer is formed on the protective layer.
Next, the clad layer is left in an annular shape along the peripheral wall of the recess, and then a core layer is formed on the protective layer.
Next, only the portion of the core layer that functions as an optical path remains.
 また、上記の目的を達成するための本開示の表示装置は、
 発光装置を含む画素が配置されて成り、
 発光装置は、
 発光部、
 同一基板上に発光部と共に配置された半導体素子、及び、
 発光部の上方に形成された光導波路、
を備え、
 光導波路は、
 発光部の上に光路として形成されたコア層、及び、
 コア層の周囲に形成されたクラッド層、
を有する。
In addition, the display device of the present disclosure for achieving the above object is
Pixels including a light emitting device are arranged to form
The light emitting device is
Light emitting part,
Semiconductor elements arranged together with the light emitting part on the same substrate, and
An optical waveguide formed above the light emitting part,
With
Optical waveguide
A core layer formed as an optical path on the light emitting part, and
A clad layer formed around the core layer,
Have.
図1は、本開示の第1実施形態に係る発光装置の実装構造の断面を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a cross section of a mounting structure of a light emitting device according to the first embodiment of the present disclosure. 図2は、第1実施形態に係る発光装置における光導波路の作用について説明する模式図である。FIG. 2 is a schematic diagram illustrating the operation of the optical waveguide in the light emitting device according to the first embodiment. 図3A、図3B、及び、図3Cは、第1実施形態に係る発光装置の製造方法のフローを示す工程図(その1)である。3A, 3B, and 3C are process diagrams (No. 1) showing a flow of a method for manufacturing a light emitting device according to the first embodiment. 図4A、図4B、及び、図4Cは、第1実施形態に係る発光装置の製造方法のフローを示す工程図(その2)である。4A, 4B, and 4C are process diagrams (No. 2) showing a flow of a manufacturing method of the light emitting device according to the first embodiment. 図5A、図5B、及び、図5Cは、第1実施形態に係る発光装置の製造方法のフローを示す工程図(その3)である。5A, 5B, and 5C are process diagrams (No. 3) showing a flow of a manufacturing method of the light emitting device according to the first embodiment. 図6は、本開示の第2実施形態に係る発光装置の実装構造の断面を模式的に表す断面図である。FIG. 6 is a cross-sectional view schematically showing a cross section of the mounting structure of the light emitting device according to the second embodiment of the present disclosure. 図7は、第2実施形態に係る発光装置における光導波路の作用について説明する模式図である。FIG. 7 is a schematic view illustrating the operation of the optical waveguide in the light emitting device according to the second embodiment. 図8A、図8B、図8C、及び、図8Dは、第2実施形態に係る発光装置の製造方法のフローを示す工程図(その1)である。8A, 8B, 8C, and 8D are process diagrams (No. 1) showing a flow of a method for manufacturing a light emitting device according to a second embodiment. 図9A、図9B、及び、図9Cは、第2実施形態に係る発光装置の製造方法のフローを示す工程図(その2)である。9A, 9B, and 9C are process diagrams (No. 2) showing a flow of a method for manufacturing a light emitting device according to a second embodiment. 図10A、図10B、及び、図10Cは、第2実施形態に係る発光装置の製造方法のフローを示す工程図(その3)である。10A, 10B, and 10C are process charts (No. 3) showing a flow of a method for manufacturing a light emitting device according to a second embodiment. 図11は、本開示の実施形態に係る表示装置の構成の概略を示す斜視図である。FIG. 11 is a perspective view showing an outline of the configuration of the display device according to the embodiment of the present disclosure. 図12は、本開示の実施形態に係る表示装置の画素アレイ部の一部の回路構成の一例を示す回路図である。FIG. 12 is a circuit diagram showing an example of a circuit configuration of a part of the pixel array portion of the display device according to the embodiment of the present disclosure.
 以下、本開示の技術を実施するための形態(以下、「実施形態」と記述する)について図面を用いて詳細に説明する。本開示の技術は実施形態に限定されるものではなく、実施形態における種々の数値や材料などは例示である。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。尚、説明は以下の順序で行う。
1.本開示の発光装置及びその製造方法、並びに、表示装置、全般に関する説明
2.本開示の第1実施形態に係る発光装置
 2-1.第1実施形態に係る発光装置の実装構造
 2-2.第1実施形態に係る発光装置の製造フロー
3.本開示の第2実施形態に係る発光装置
 3-1.第2実施形態に係る発光装置の実装構造
 3-2.第2実施形態に係る発光装置の製造フロー
4.本開示の実施形態に係る表示装置
5.変形例
6.本開示がとることができる構成
Hereinafter, embodiments for carrying out the technique of the present disclosure (hereinafter, referred to as “embodiments”) will be described in detail with reference to the drawings. The technique of the present disclosure is not limited to the embodiment, and various numerical values and materials in the embodiment are examples. In the following description, the same reference numerals will be used for the same elements or elements having the same function, and duplicate description will be omitted. The explanation will be given in the following order.
1. 1. Description of the light emitting device of the present disclosure, a method for manufacturing the same, a display device, and the whole. Light emitting device according to the first embodiment of the present disclosure 2-1. Mounting structure of light emitting device according to the first embodiment 2-2. 3. Manufacturing flow of the light emitting device according to the first embodiment. Light emitting device according to the second embodiment of the present disclosure 3-1. Mounting structure of light emitting device according to the second embodiment 3-2. 4. Manufacturing flow of the light emitting device according to the second embodiment. Display device according to the embodiment of the present disclosure 5. Modification example 6. Configuration that can be taken by this disclosure
<本開示の発光装置及びその製造方法、並びに、表示装置、全般に関する説明>
 本開示の発光装置及びその製造方法、並びに、表示装置にあっては、クラッド層の屈折率について、コア層の屈折率よりも低い構成とすることができる。
<Explanation of the light emitting device of the present disclosure, its manufacturing method, a display device, and general information>
In the light emitting device of the present disclosure, the manufacturing method thereof, and the display device, the refractive index of the clad layer may be lower than that of the core layer.
 上述した好ましい構成を含む本開示の発光装置及びその製造方法、並びに、表示装置にあっては、発光部の周壁を覆う外壁コア層を有する構成とすることができる。そして、外壁コア層の屈折率について、発光部及び半導体素子を覆う保護層の屈折率よりも高い構成とすることができる。また、外壁コア層について、発光部の上のコア層と同じ材料で形成されている構成とすることができる。 The light emitting device and the manufacturing method thereof of the present disclosure including the above-mentioned preferable configuration, and the display device may have a configuration having an outer wall core layer covering the peripheral wall of the light emitting portion. The refractive index of the outer wall core layer can be higher than that of the protective layer that covers the light emitting portion and the semiconductor element. Further, the outer wall core layer may be formed of the same material as the core layer above the light emitting portion.
 また、上述した好ましい構成を含む本開示の発光装置及びその製造方法、並びに、表示装置にあっては、発光部及び半導体素子を覆う保護層の上に成膜された遮光膜を有する構成とすることができる。また、半導体素子について、発光部を駆動する駆動ICである構成とすることができる。 Further, the light emitting device and the manufacturing method thereof of the present disclosure including the above-mentioned preferable configuration, and the display device have a configuration having a light-shielding film formed on a protective layer covering the light emitting portion and the semiconductor element. be able to. Further, the semiconductor element may be configured to be a drive IC for driving the light emitting unit.
<本開示の第1実施形態に係る発光装置>
[第1実施形態に係る発光装置の実装構造]
 第1実施形態に係る発光装置は、発光ダイオード(LED)等の発光素子を用いて発光部を構成する自発光装置である。図1は、本開示の第1実施形態に係る発光装置の実装構造の断面を模式的に示す断面図である。
<Light emitting device according to the first embodiment of the present disclosure>
[Mounting structure of the light emitting device according to the first embodiment]
The light emitting device according to the first embodiment is a self-luminous device that constitutes a light emitting unit by using a light emitting element such as a light emitting diode (LED). FIG. 1 is a cross-sectional view schematically showing a cross section of a mounting structure of a light emitting device according to the first embodiment of the present disclosure.
 図1において、セル基板11は、発光素子を含む発光部12及び駆動IC13を実装するための基板であり、複数の配線111を含んでいる。セル基板11は、例えば、ガラス基板又は樹脂基板等から成る。尚、セル基板11は、プリント基板から成る構成であってもよい。第1実施形態に係る発光装置10Aは、セル基板11(即ち、同一の基板)上に、発光素子を含む発光部12と駆動IC13とが、隣接して並んで配置された実装構造を有している。 In FIG. 1, the cell substrate 11 is a substrate for mounting a light emitting unit 12 including a light emitting element and a drive IC 13, and includes a plurality of wirings 111. The cell substrate 11 is made of, for example, a glass substrate, a resin substrate, or the like. The cell substrate 11 may be composed of a printed circuit board. The light emitting device 10A according to the first embodiment has a mounting structure in which a light emitting unit 12 including a light emitting element and a drive IC 13 are arranged side by side on a cell substrate 11 (that is, the same substrate). ing.
 発光部12は、互いに異なる波長域の光を出射する複数の発光素子、例えば、3つの発光素子121R、発光素子121G、及び、発光素子121Bを含んでいる。3つの発光素子121R、発光素子121G、及び、発光素子121Bのうち、発光素子121Rは、赤色波長域の光を出射する発光ダイオードから成り、発光素子121Gは、緑色波長域の光を出射する発光ダイオードから成り、発光素子121Bは、青色波長域の光を出射する発光ダイオードから成る。 The light emitting unit 12 includes a plurality of light emitting elements that emit light in different wavelength ranges, for example, three light emitting elements 121R, a light emitting element 121G, and a light emitting element 121B. Of the three light emitting elements 121R, the light emitting element 121G, and the light emitting element 121B, the light emitting element 121R is composed of a light emitting diode that emits light in the red wavelength region, and the light emitting element 121G emits light that emits light in the green wavelength region. The light emitting element 121B is composed of a light emitting diode that emits light in the blue wavelength region.
 発光部12において、発光素子121R、発光素子121G、及び、発光素子121Bはそれぞれ、例えば、n型半導体層、p型半導体層、n型電極、及び、p型電極を有し、例えば、樹脂材料等から成る保護層122によって覆われた構成となっている。発光素子121R、発光素子121G、及び、発光素子121Bの各一方の電極(例えば、n型電極)は、例えば、パッド電極(図示せず)を介して駆動IC13に電気的に接続されている。発光素子121R、発光素子121G、及び、発光素子121Bの各他方の電極(例えば、p型電極)は、例えば、パッド電極(図示せず)を介してグランドGNDに電気的に接続されている。 In the light emitting unit 12, the light emitting element 121R, the light emitting element 121G, and the light emitting element 121B each have, for example, an n-type semiconductor layer, a p-type semiconductor layer, an n-type electrode, and a p-type electrode, and are made of, for example, a resin material. The structure is covered with a protective layer 122 made of the like. One of the electrodes (for example, n-type electrode) of the light emitting element 121R, the light emitting element 121G, and the light emitting element 121B is electrically connected to the drive IC 13 via, for example, a pad electrode (not shown). The other electrodes (for example, p-type electrodes) of the light emitting element 121R, the light emitting element 121G, and the light emitting element 121B are electrically connected to the ground GND via, for example, a pad electrode (not shown).
 発光部12の発光素子121R、発光素子121G、及び、発光素子121Bと電気的に接続された駆動IC13は、発光部12の各発光素子121R,121G,121Bを駆動するための半導体素子である。駆動IC13は、例えば、多層配線層131、半導体層132、及び、絶縁層133を有し、セル基板11側からこの順に積層された構成となっている。駆動IC13は、例えば、200μm四方程度の非常に小さいチップサイズを有している。 The light emitting element 121R, the light emitting element 121G, and the drive IC 13 electrically connected to the light emitting unit 121B are semiconductor elements for driving the respective light emitting elements 121R, 121G, 121B of the light emitting unit 12. The drive IC 13 has, for example, a multilayer wiring layer 131, a semiconductor layer 132, and an insulating layer 133, and is laminated in this order from the cell substrate 11 side. The drive IC 13 has a very small chip size of, for example, about 200 μm square.
 多層配線層131は、例えば、複数の配線134及び層間絶縁膜135を含んでいる。複数の配線134は、層間絶縁膜135によって互いに電気的に分離されている。この多層配線層131の配線134が、例えば、後述するデータ線SigG,SigR,SigB等に電気的に接続されている。駆動IC13は、例えば、多層配線層131によってセル基板11に電気的に接続されている。 The multilayer wiring layer 131 includes, for example, a plurality of wirings 134 and an interlayer insulating film 135. The plurality of wirings 134 are electrically separated from each other by an interlayer insulating film 135. The wiring 134 of the multilayer wiring layer 131 is electrically connected to, for example, data lines SigG, SigR, SigB, etc., which will be described later. The drive IC 13 is electrically connected to the cell substrate 11 by, for example, the multilayer wiring layer 131.
 第1実施形態に係る発光装置10Aは、発光部12及び駆動IC13の他に、発光部12及び駆動IC13を覆う保護層14と、この保護層14の上に成膜され、発光装置10Aの上方からの光の入射を抑制する遮光膜15とを有している。 The light emitting device 10A according to the first embodiment is formed on a protective layer 14 covering the light emitting unit 12 and the driving IC 13 and the protective layer 14 in addition to the light emitting unit 12 and the driving IC 13, and is formed above the light emitting device 10A. It has a light-shielding film 15 that suppresses the incident of light from.
 保護層14は、発光部12及び駆動IC13を覆うように、例えば、セル基板11の全面に亘って設けられている。保護層14は、発光部12及び駆動IC13を保護するためのものであり、絶縁性の有機材料又は絶縁性の無機材料等によって構成されている。絶縁性の有機材料としては、例えば、シリコーン等を例示することができる。絶縁性の無機材料としては、例えば酸化シリコン(SiO)や窒化シリコン(SiN)等を例示することができる。 The protective layer 14 is provided, for example, over the entire surface of the cell substrate 11 so as to cover the light emitting unit 12 and the drive IC 13. The protective layer 14 is for protecting the light emitting unit 12 and the driving IC 13, and is made of an insulating organic material, an insulating inorganic material, or the like. Examples of the insulating organic material include silicone and the like. Examples of the insulating inorganic material include silicon oxide (SiO) and silicon nitride (SiN).
 遮光膜15は、保護層14を間にして(挟んで)セル基板11に対向して設けられている。この遮光膜15は、所謂、ブラックマスクである。遮光膜15には、発光部12に対向する領域に開口部15Aが設けられている。開口部15Aは、発光部12の発光素子121R、発光素子121G、及び、発光素子121Bから出射された光を外部へ放出するための開口である。この開口部15Aの大きさは、発光素子121R、発光素子121G、及び、発光素子121Bから出射された光を、発光装置10A外へ十分に取り出すことができる程度の大きさに設定されている。 The light-shielding film 15 is provided so as to face the cell substrate 11 with the protective layer 14 in between (sandwiched). The light-shielding film 15 is a so-called black mask. The light-shielding film 15 is provided with an opening 15A in a region facing the light emitting portion 12. The opening 15A is an opening for emitting the light emitted from the light emitting element 121R, the light emitting element 121G, and the light emitting element 121B of the light emitting unit 12 to the outside. The size of the opening 15A is set to such a size that the light emitted from the light emitting element 121R, the light emitting element 121G, and the light emitting element 121B can be sufficiently taken out of the light emitting device 10A.
 遮光膜15は、例えば、カーボンブラックを含有する樹脂材料等によって構成されている。遮光膜15の材料については、樹脂材料に限定されるものではなく、例えば、チタン(Ti),クロム(Cr),ニッケル(Ni),タングステン(W)、あるいは、モリブデン(Mo)等の金属材料であってもよい。 The light-shielding film 15 is made of, for example, a resin material containing carbon black. The material of the light-shielding film 15 is not limited to the resin material, and is, for example, a metal material such as titanium (Ti), chromium (Cr), nickel (Ni), tungsten (W), or molybdenum (Mo). It may be.
 第1実施形態に係る発光装置10Aは、更に、発光部12の上方に形成された光導波路16を有する構成となっている。光導波路16は、発光部12の上に光路として形成されたコア層161と、コア層161の周囲に形成されて光を反射させるクラッド層162とから成る構成となっている。そして、クラッド層162の屈折率n2は、コア層161の屈折率n1よりも低く設定されている(n2<n1)。 The light emitting device 10A according to the first embodiment further has an optical waveguide 16 formed above the light emitting unit 12. The optical waveguide 16 is composed of a core layer 161 formed as an optical path on the light emitting portion 12 and a clad layer 162 formed around the core layer 161 to reflect light. The refractive index n 2 of the clad layer 162 is set lower than the refractive index n 1 of the core layer 161 (n 2 <n 1 ).
 屈折率n1のコア層161の材料としては、例えば、酸窒化シリコン(SiON)等を例示することができる。一例として、コア層161の材料として酸窒化シリコンを用いた場合には、コア層161の屈折率n1は、2.0程度である。屈折率n2のクラッド層162の材料としては、例えば、酸化シリコン(SiO)等を例示することができる。一例として、クラッド層162の材料として酸化シリコンを用いた場合には、クラッド層162の屈折率n2は、1.45程度(n2<n1)である。 As the material of the core layer 161 having a refractive index n 1 , for example, silicon oxynitride (SiON) and the like can be exemplified. As an example, when silicon oxynitride is used as the material of the core layer 161, the refractive index n 1 of the core layer 161 is about 2.0. Examples of the material of the clad layer 162 having a refractive index of n 2 include silicon oxide (SiO) and the like. As an example, when silicon oxide is used as the material of the clad layer 162, the refractive index n 2 of the clad layer 162 is about 1.45 (n 2 <n 1 ).
 上述したように、本開示の第1実施形態に係る発光装置10Aは、同一のセル基板11上に、発光部12と駆動IC13とが、隣接して並んで配置された実装構造を有し、当該実装構造において、発光部12の上方に、コア層161及びクラッド層162から成る光導波路16を形成した構成となっている。そして、クラッド層162の屈折率n2が、コア層161の屈折率n1よりも低く設定されている。 As described above, the light emitting device 10A according to the first embodiment of the present disclosure has a mounting structure in which the light emitting unit 12 and the drive IC 13 are arranged side by side on the same cell substrate 11. In the mounting structure, an optical waveguide 16 composed of a core layer 161 and a clad layer 162 is formed above the light emitting unit 12. The refractive index n 2 of the clad layer 162 is set lower than the refractive index n 1 of the core layer 161.
 上記の第1実施形態に係る発光装置10Aの実装構造によれば、図2に実線の矢印で示すように、光導波路16のコア層161とクラッド層162との界面で光反射が生じるために、発光部12からの漏れ光の発生を抑制することができる。その結果、発光部12の発光効率の向上を図ることができるとともに、発光部12からの漏れ光が駆動IC13の特性に悪影響を及ぼすこともない。 According to the mounting structure of the light emitting device 10A according to the first embodiment, as shown by the solid arrow in FIG. 2, light reflection occurs at the interface between the core layer 161 and the clad layer 162 of the optical waveguide 16. , The generation of leaked light from the light emitting unit 12 can be suppressed. As a result, the luminous efficiency of the light emitting unit 12 can be improved, and the light leaking from the light emitting unit 12 does not adversely affect the characteristics of the drive IC 13.
 因みに、光導波路16が無い実装構造の場合には、例えば、緑色波長域の光を出射する発光素子121Gから発せられた光が、図2に破線の矢印で示すように、保護層14と遮光膜15との界面で反射し、駆動IC13に入射する場合がある。すなわち、発光部12からの漏れ光が駆動IC13の特性に悪影響を及ぼす場合がある。 Incidentally, in the case of a mounting structure without the optical waveguide 16, for example, the light emitted from the light emitting element 121G that emits light in the green wavelength region is shielded from the protective layer 14 as shown by the broken line arrow in FIG. It may be reflected at the interface with the film 15 and incident on the drive IC 13. That is, the leaked light from the light emitting unit 12 may adversely affect the characteristics of the drive IC 13.
[第1実施形態に係る発光装置の製造フロー]
 次に、第1実施形態に係る発光装置10Aの製造方法(製造フロー)について、図3の工程図(その1)、図4の工程図(その2)、及び、図5の工程図(その3)を用いて説明する。
[Manufacturing flow of light emitting device according to the first embodiment]
Next, regarding the manufacturing method (manufacturing flow) of the light emitting device 10A according to the first embodiment, the process diagram of FIG. 3 (No. 1), the process diagram of FIG. 4 (No. 2), and the process diagram of FIG. 5 (No. This will be described using 3).
 図3Aに示す工程1の状態は、例えば、ガラス基板又は樹脂基板等から成るセル基板11上に、発光部12及び駆動IC13を隣接して並べて配置した実装状態を表している。図3Bに示す工程2では、発光部12及び駆動IC13を覆うように、絶縁性の有機材料又は絶縁性の無機材料等によってセル基板11の全面に亘って保護層14を形成する。次に、図3Cに示す工程3では、保護層14について、リソグラフィー/エッチングによって発光部12の上方部分を除去し、凹部14Aを形成する。 The state of step 1 shown in FIG. 3A represents, for example, a mounting state in which a light emitting unit 12 and a drive IC 13 are arranged side by side on a cell substrate 11 made of a glass substrate, a resin substrate, or the like. In step 2 shown in FIG. 3B, the protective layer 14 is formed over the entire surface of the cell substrate 11 with an insulating organic material, an insulating inorganic material, or the like so as to cover the light emitting unit 12 and the driving IC 13. Next, in step 3 shown in FIG. 3C, the upper portion of the light emitting portion 12 is removed from the protective layer 14 by lithography / etching to form the recess 14A.
 次に、図4Aに示す工程4では、凹部14Aを含む保護層14の上に、酸化シリコン等の材料を用いて、クラッド層162を保護層14の全面に亘って成膜し、次いで、図4Bに示す工程5では、クラッド層162について、リソグラフィー/エッチングにより、凹部14Aの周壁に沿って環状に残存させる。次に、図4Cに示す工程6では、保護層14の上に、酸窒化シリコン等の材料を用いて、コア層161を保護層14の全面に亘って成膜する。 Next, in step 4 shown in FIG. 4A, a clad layer 162 is formed over the entire surface of the protective layer 14 by using a material such as silicon oxide on the protective layer 14 including the recess 14A, and then FIG. In step 5 shown in 4B, the clad layer 162 is left in an annular shape along the peripheral wall of the recess 14A by lithography / etching. Next, in step 6 shown in FIG. 4C, a core layer 161 is formed on the protective layer 14 over the entire surface of the protective layer 14 by using a material such as silicon oxynitride.
 次に、図5Aに示す工程7では、コア層161について、リソグラフィー/エッチングにより、光導波路16の光路として機能する部分だけを残存させる。これにより、発光部12の上方に、コア層161及びクラッド層162によって光導波路16が形成される。図5Bに示す工程8では、光導波路16を含む保護層14の上に、保護層14の全面に亘って遮光膜15を成膜し、次いで、図5Cに示す工程9では、リソグラフィー/エッチングにより、遮光膜15の発光部12に対向する領域に開口部15Aを形成する。 Next, in step 7 shown in FIG. 5A, only the portion of the core layer 161 that functions as an optical path of the optical waveguide 16 is left by lithography / etching. As a result, the optical waveguide 16 is formed by the core layer 161 and the clad layer 162 above the light emitting unit 12. In step 8 shown in FIG. 5B, a light-shielding film 15 is formed over the entire surface of the protective layer 14 on the protective layer 14 including the optical waveguide 16, and then in step 9 shown in FIG. 5C, by lithography / etching. An opening 15A is formed in a region of the light-shielding film 15 facing the light-emitting portion 12.
 上述した一連の製造フローにより、発光部12の上方に、光導波路16を形成したことで、発光部12からの漏れ光の発生を抑制し、発光効率の向上を図ることができるとともに、漏れ光が駆動IC13の特性に及ぼす悪影響を低減することができる第1実施形態に係る発光装置10Aを作製することができる。 By forming the optical waveguide 16 above the light emitting unit 12 by the series of manufacturing flows described above, it is possible to suppress the generation of leaked light from the light emitting unit 12 and improve the luminous efficiency, and also to improve the luminous efficiency. It is possible to manufacture the light emitting device 10A according to the first embodiment, which can reduce the adverse effect on the characteristics of the drive IC 13.
<本開示の第2実施形態に係る発光装置>
[第2実施形態に係る発光装置の実装構造]
 第2実施形態に係る発光装置も、第1実施形態に係る発光装置と同様に、自発光装置である。図6は、本開示の第2実施形態に係る発光装置の実装構造の断面を模式的に表す断面図である。
<Light emitting device according to the second embodiment of the present disclosure>
[Mounting structure of the light emitting device according to the second embodiment]
The light emitting device according to the second embodiment is also a self-luminous device like the light emitting device according to the first embodiment. FIG. 6 is a cross-sectional view schematically showing a cross section of the mounting structure of the light emitting device according to the second embodiment of the present disclosure.
 第1実施形態に係る発光装置10Aは、図1に示すように、発光素子121R、発光素子121G、及び、発光素子121Bを含む発光部12の上に、光導波路16の光路としてコア層161を形成した構成となっていた。これに対して、第2実施形態に係る発光装置10Bは、図6に示すように、発光部12の上だけでなく、発光部12の側壁についても全体的に、外壁コア層163で覆う構成となっている。そして、外壁コア層163の屈折率は、保護層14の屈折率よりも高く設定されている。 As shown in FIG. 1, the light emitting device 10A according to the first embodiment has a core layer 161 as an optical path of an optical waveguide 16 on a light emitting unit 12 including a light emitting element 121R, a light emitting element 121G, and a light emitting element 121B. It was a formed structure. On the other hand, as shown in FIG. 6, the light emitting device 10B according to the second embodiment has a configuration in which not only the light emitting unit 12 but also the side wall of the light emitting unit 12 is entirely covered with the outer wall core layer 163. It has become. The refractive index of the outer wall core layer 163 is set higher than the refractive index of the protective layer 14.
 発光素子121R、発光素子121G、及び、発光素子121Bを含む発光部12を、コア層161及び外壁コア層163で全体的に覆うようにした構成以外の第2実施形態に係る発光装置10Bの構成については、基本的に、第1実施形態に係る発光装置10Aの構成と同じである。 Configuration of the light emitting device 10B according to the second embodiment other than the configuration in which the light emitting unit 121R, the light emitting element 121G, and the light emitting unit 12 including the light emitting element 121B are totally covered with the core layer 161 and the outer wall core layer 163. Is basically the same as the configuration of the light emitting device 10A according to the first embodiment.
 外壁コア層163については、例えば、コア層161と同じ材料を用いて形成することができる。第1実施形態に係る発光装置10Aの場合、保護層14は、例えば、シリコーン等の絶縁性の有機材料、又は、酸化シリコン(SiO)や窒化シリコン(SiN)等の絶縁性の無機材料によって構成されている。従って、外壁コア層163の材料として、コア層161と同じ材料、例えば、酸窒化シリコン(SiON)等を用いることで、外壁コア層163の屈折率を、保護層14の屈折率よりも高く設定することができる。 The outer wall core layer 163 can be formed, for example, by using the same material as the core layer 161. In the case of the light emitting device 10A according to the first embodiment, the protective layer 14 is made of, for example, an insulating organic material such as silicone or an insulating inorganic material such as silicon oxide (SiO) or silicon nitride (SiN). Has been done. Therefore, by using the same material as the core layer 161 such as silicon oxynitride (SiON) as the material of the outer wall core layer 163, the refractive index of the outer wall core layer 163 is set higher than the refractive index of the protective layer 14. can do.
 上述したように、本開示の第2実施形態に係る発光装置10Bは、発光部12の上だけでなく、発光部12の側壁についても全体的に、外壁コア層163で覆い、外壁コア層163の屈折率を、保護層14の屈折率よりも高く設定した構成となっている。この第2実施形態に係る発光装置10Bによれば、第1実施形態に係る発光装置10Aの作用、効果の他に、図7に実線の矢印で示すように、発光部12の側壁からの漏れ光を減衰させることができるために、発光部12からの漏れ光が駆動IC13の特性に及ぼす悪影響を更に低減させることができる。 As described above, in the light emitting device 10B according to the second embodiment of the present disclosure, not only the light emitting unit 12 but also the side wall of the light emitting unit 12 is entirely covered with the outer wall core layer 163, and the outer wall core layer 163 is used. The refractive index of is set higher than the refractive index of the protective layer 14. According to the light emitting device 10B according to the second embodiment, in addition to the action and effect of the light emitting device 10A according to the first embodiment, as shown by the solid arrow in FIG. 7, leakage from the side wall of the light emitting unit 12 Since the light can be attenuated, the adverse effect of the light leaked from the light emitting unit 12 on the characteristics of the drive IC 13 can be further reduced.
[第2実施形態に係る発光装置の製造フロー]
 次に、第2実施形態に係る発光装置10の製造方法(製造フロー)について、図8の工程図(その1)、図9の工程図(その2)、及び、図10の工程図(その3)を用いて説明する。
[Manufacturing flow of light emitting device according to the second embodiment]
Next, regarding the manufacturing method (manufacturing flow) of the light emitting device 10 according to the second embodiment, the process diagram of FIG. 8 (No. 1), the process diagram of FIG. 9 (No. 2), and the process diagram of FIG. 10 (No. This will be described using 3).
 図8Aに示す工程1の状態は、例えば、ガラス基板又は樹脂基板等から成るセル基板11上に、発光部12及び駆動IC13を隣接して並べて配置した実装状態を表している。図8Bに示す工程2では、酸窒化シリコン等の材料を用いて、外壁コア層163を発光部12の側壁を覆うように全体的に成膜する。 The state of step 1 shown in FIG. 8A represents, for example, a mounting state in which the light emitting unit 12 and the drive IC 13 are arranged side by side on the cell substrate 11 made of a glass substrate, a resin substrate, or the like. In step 2 shown in FIG. 8B, the outer wall core layer 163 is formed as a whole so as to cover the side wall of the light emitting portion 12 by using a material such as silicon oxynitride.
 次に、図8Cに示す工程3では、発光部12及び駆動IC13を覆うように、絶縁性の有機材料又は絶縁性の無機材料等によってセル基板11の全面に亘って保護層14を形成する。次に、図8Dに示す工程4では、保護層14について、リソグラフィー/エッチングによって発光部12の上方部分を除去し、凹部14Aを形成する。 Next, in step 3 shown in FIG. 8C, the protective layer 14 is formed over the entire surface of the cell substrate 11 with an insulating organic material, an insulating inorganic material, or the like so as to cover the light emitting unit 12 and the driving IC 13. Next, in step 4 shown in FIG. 8D, the upper portion of the light emitting portion 12 is removed from the protective layer 14 by lithography / etching to form the recess 14A.
 次に、図9Aに示す工程5では、凹部14Aを含む保護層14の上に、酸化シリコン等の材料を用いて、クラッド層162を保護層14の全面に亘って成膜し、次いで、図9Bに示す工程6では、クラッド層162について、リソグラフィー/エッチングにより、凹部14Aの周壁に沿って環状に残存させる。次に、図9Cに示す工程7では、保護層14の上に、酸窒化シリコン等の材料を用いて、コア層161を保護層14の全面に亘って成膜する。 Next, in step 5 shown in FIG. 9A, a clad layer 162 is formed over the entire surface of the protective layer 14 by using a material such as silicon oxide on the protective layer 14 including the recess 14A, and then FIG. In step 6 shown in 9B, the clad layer 162 is left in an annular shape along the peripheral wall of the recess 14A by lithography / etching. Next, in step 7 shown in FIG. 9C, a core layer 161 is formed on the protective layer 14 over the entire surface of the protective layer 14 by using a material such as silicon oxynitride.
 次に、図10Aに示す工程8では、コア層161について、リソグラフィー/エッチングにより、光導波路16の光路として機能する部分だけを残存させる。これにより、発光部12の上方に、コア層161及びクラッド層162によって光導波路16が形成される。図10Bに示す工程9では、光導波路16を含む保護層14の上に、遮光膜15を保護層14の全面に亘って成膜し、次いで、図10Cに示す工程10では、リソグラフィー/エッチングにより、遮光膜15の発光部12に対向する領域に開口部15Aを形成する。 Next, in step 8 shown in FIG. 10A, only the portion of the core layer 161 that functions as an optical path of the optical waveguide 16 is left by lithography / etching. As a result, the optical waveguide 16 is formed by the core layer 161 and the clad layer 162 above the light emitting unit 12. In step 9 shown in FIG. 10B, a light-shielding film 15 is formed over the entire surface of the protective layer 14 on the protective layer 14 including the optical waveguide 16, and then in step 10 shown in FIG. 10C, by lithography / etching. An opening 15A is formed in a region of the light-shielding film 15 facing the light-emitting portion 12.
 上述した一連の製造フローにより、発光部12の上方に、コア層161及びクラッド層162から成る光導波路16を有する構成に加えて、発光部12の側壁を外壁コア層163で覆う構成により、発光部12からの漏れ光が駆動IC13の特性に及ぼす悪影響を更に低減することができる第2実施形態に係る発光装置10Bを作製することができる。 According to the series of manufacturing flows described above, in addition to the configuration having the optical waveguide 16 composed of the core layer 161 and the clad layer 162 above the light emitting unit 12, the side wall of the light emitting unit 12 is covered with the outer wall core layer 163 to emit light. It is possible to manufacture the light emitting device 10B according to the second embodiment, which can further reduce the adverse effect of the light leaked from the unit 12 on the characteristics of the driving IC 13.
<本開示の実施形態に係る表示装置>
 図11は、本開示の実施形態に係る表示装置の構成の概略を示す斜視図である。本開示の実施形態に係る表示装置100は、基板110上に多数の画素120が行列状に2次元配置されて成るフラットパネルの表示装置であり、例えば、ビルの内外の壁面等に取り付けて用いられる大画面の表示装置である。
<Display device according to the embodiment of the present disclosure>
FIG. 11 is a perspective view showing an outline of the configuration of the display device according to the embodiment of the present disclosure. The display device 100 according to the embodiment of the present disclosure is a flat panel display device in which a large number of pixels 120 are two-dimensionally arranged in a matrix on a substrate 110, and is used by being attached to, for example, a wall surface inside or outside a building. It is a large screen display device.
 この表示装置100において、行列状に配置された画素120として、先述した第1実施形態に係る発光装置10A、又は、第2実施形態に係る発光装置10Bを用いることができる。例えば、第1実施形態に係る発光装置10A、又は、第2実施形態に係る発光装置10Bを、タイル状に敷き詰めることで、所謂、タイリングディスプレイを構成することができる。 In this display device 100, as the pixels 120 arranged in a matrix, the light emitting device 10A according to the first embodiment or the light emitting device 10B according to the second embodiment can be used. For example, a so-called tiling display can be configured by laying the light emitting device 10A according to the first embodiment or the light emitting device 10B according to the second embodiment in a tile shape.
 尚、ここでは、本実施形態に係る表示装置100として、大画面の表示装置(タイリングディスプレイ)を例に挙げているが、大画面の表示装置に限られるものではない。 Although a large screen display device (tiling display) is given as an example of the display device 100 according to the present embodiment, the present invention is not limited to the large screen display device.
 本開示の実施形態に係る表示装置100の画素アレイ部150の一部の回路構成の一例を図12に示す。 FIG. 12 shows an example of a partial circuit configuration of the pixel array unit 150 of the display device 100 according to the embodiment of the present disclosure.
 本実施形態に係る表示装置100は、複数の画素120が行列状に2次元配置されて成る画素アレイ部150を有している。そして、本実施形態に係る表示装置100は、複数の画素120として、発光部12及び駆動IC13を含む、第1実施形態に係る発光装置10A、又は、第2実施形態に係る発光装置10Bを用いて構成される。 The display device 100 according to the present embodiment has a pixel array unit 150 in which a plurality of pixels 120 are two-dimensionally arranged in a matrix. Then, the display device 100 according to the present embodiment uses the light emitting device 10A according to the first embodiment or the light emitting device 10B according to the second embodiment as the plurality of pixels 120, including the light emitting unit 12 and the drive IC 13. It is composed of.
 本実施形態に係る表示装置100は、例えば列方向に延在して設けられた複数のデータ線141と、例えば行方向に延在して設けられた複数のゲート線142とを有している。データ線141及びゲート線142の配線材料としては、例えば、銅を用いることができる。 The display device 100 according to the present embodiment has, for example, a plurality of data lines 141 extending in the column direction and a plurality of gate lines 142 extending in the row direction, for example. .. As the wiring material for the data line 141 and the gate line 142, for example, copper can be used.
 本実施形態に係る表示装置100は、更に、複数の第1の電圧線143、複数の電源線144,145、複数の第2の電圧線146,147、及び、複数のグランド線148を有している。複数の第1の電圧線143は、例えば、行方向に延在して設けられている。複数の電源線144,145、複数の第2の電圧線146,147、及び、複数のグランド線148は、それぞれ、例えば、列方向に延在して設けられている。 The display device 100 according to the present embodiment further includes a plurality of first voltage lines 143, a plurality of power supply lines 144 and 145, a plurality of second voltage lines 146 and 147, and a plurality of ground lines 148. ing. The plurality of first voltage lines 143 are provided, for example, extending in the row direction. The plurality of power supply lines 144 and 145, the plurality of second voltage lines 146 and 147, and the plurality of ground lines 148 are provided, for example, extending in the row direction.
 第1の電圧線143、電源線144,145、第2の電圧線146,147、及び、グランド線148の少なくとも1つの配線については、駆動方式によっては省略することができる。第1の電圧線143、電源線144,145、第2の電圧線146,147、及び、グランド線148の配線材料としては、例えば、銅を用いることができる。 At least one wiring of the first voltage line 143, the power supply line 144, 145, the second voltage line 146, 147, and the ground line 148 can be omitted depending on the drive system. As the wiring material for the first voltage line 143, the power supply line 144, 145, the second voltage line 146, 147, and the ground line 148, for example, copper can be used.
 複数のデータ線141は、信号供給部(図示せず)から供給される映像信号に応じたデータ信号Sigを各画素120に伝送する。映像信号に応じたデータ信号Sigは、例えば、発光素子121R,121G,121Bの発光輝度を制御する信号である。複数のデータ線141は、例えば、発光部12の発光色数に対応した種類の配線からなる。 The plurality of data lines 141 transmit a data signal Sigma corresponding to a video signal supplied from a signal supply unit (not shown) to each pixel 120. The data signal Sigma corresponding to the video signal is, for example, a signal for controlling the emission brightness of the light emitting elements 121R, 121G, 121B. The plurality of data lines 141 are composed of, for example, a type of wiring corresponding to the number of emission colors of the light emitting unit 12.
 発光部12の発光色が、例えばR,G,Bの3色である場合には、複数のデータ線141は、各発光色に対応したデータ信号SigR(SigR1,SigR2,・・・),SigG(SigG1,SigG2,・・・),SigB(SigB1,SigB2,・・・)を伝送するデータ線をそれぞれ複数本ずつ含む。発光部12の発光色については、R,G,Bの3色に限られるものではなく、4色以上、例えば、R,G,B,W(白色)の4色であってもよい。 When the emission colors of the light emitting unit 12 are, for example, three colors of R, G, and B, the plurality of data lines 141 are data signals SigR (SigR 1 , SigR 2 , ...) Corresponding to each emission color. , SigG (SigG 1 , SigG 2 , ...), SigB (SigB 1 , SigB 2 , ...) Each includes a plurality of data lines. The emission color of the light emitting unit 12 is not limited to the three colors of R, G, and B, and may be four or more colors, for example, four colors of R, G, B, and W (white).
 複数のデータ線141が、各発光色に対応したデータ信号SigR,SigG,SigBを伝送するデータ線をそれぞれ複数本ずつ含む場合には、各発光色の1つのデータ線から成る一組のデータ線141が、例えば、1つの画素列毎に割り当てられる。駆動方式によっては、上記の一組のデータ線141は、複数の画素列毎に割り当てられる場合がある。また、駆動方式によっては、上記の一組のデータ線141は、単一のデータ線に置き換えることができる。 When a plurality of data lines 141 include a plurality of data lines for transmitting data signals SigR, SigG, and SigB corresponding to each emission color, a set of data lines consisting of one data line for each emission color. 141 is assigned to, for example, one pixel string. Depending on the drive system, the set of data lines 141 may be assigned to each of a plurality of pixel strings. Further, depending on the drive system, the above-mentioned set of data lines 141 can be replaced with a single data line.
 複数のゲート線142は、画素アレイ部150の各画素120を選択する選択信号Gate(Gate1,Gate2,・・・)を伝送する配線である。選択信号Gate(Gate1,Gate2,・・・)は、走査部(図示せず)から複数のゲート線142に供給され、例えば、データ線141によって伝送されたデータ信号Sigのサンプリングを開始するとともに、サンプリングした信号を発光部12に入力させ、発光部12の発光を開始させる信号である。1つのゲート線142が、例えば、1画素行毎に割り当てられる。 The plurality of gate lines 142 are wirings for transmitting selection signals Gate (Gate 1 , Gate 2 , ...) That select each pixel 120 of the pixel array unit 150. The selection signal Gate (Gate 1 , Gate 2 , ...) Is supplied from the scanning unit (not shown) to the plurality of gate lines 142, and starts sampling the data signal Sig transmitted by the data line 141, for example. At the same time, the sampled signal is input to the light emitting unit 12, and the light emitting unit 12 is started to emit light. One gate line 142 is assigned, for example, for each pixel row.
 複数の第1の電圧線143は、例えば、制御部(図示せず)から供給される、のこぎり状の波形を有する信号Sawを駆動IC13に伝送する配線である。のこぎり状の波形を有する信号Sawは、サンプリングされた信号Sigと比較される。この比較処理において、例えば、のこぎり状の波形を有する信号Sawの波高値が、サンプリングされた信号Sigの波高値よりも高いとき、高くなっている期間だけ、サンプリングされた信号Sigが発光部12に入力される。1つの第1の電圧線143が、例えば、2画素行毎に割り当てられる。 The plurality of first voltage lines 143 are wirings that transmit, for example, a signal Saw having a saw-like waveform supplied from a control unit (not shown) to the drive IC 13. The signal Saw with a sawtooth waveform is compared to the sampled signal Sig. In this comparison process, for example, when the peak value of the signal Saw having a saw-like waveform is higher than the peak value of the sampled signal Sigma, the sampled signal Sigma is sent to the light emitting unit 12 only during the period of being high. Entered. One first voltage line 143 is assigned, for example, every two pixel rows.
 複数の電圧線144,145は、電源電圧VDD1,VDD2を画素120に対して供給する配線である複数の第2の電圧線146,147は、参照電圧Ref1,Ref2を画素120に対して供給する配線である。複数のグランド線148は、接地電位GNDを画素120に対して与える配線である。 The plurality of voltage lines 144 and 145 are wirings that supply the power supply voltages V DD1 and V DD2 to the pixel 120. The plurality of second voltage lines 146 and 147 transfer the reference voltages Ref 1 and Ref 2 to the pixel 120. It is the wiring to be supplied to. The plurality of ground wires 148 are wirings that give a ground potential GND to the pixel 120.
 1つの電源線144は、例えば、2つの画素列毎に割り当てられている。1つの電源線145は、例えば、2つの画素列毎に割り当てられている。1つの第2の電圧線146は、例えば、2つの画素列毎に割り当てられている。1つの第2の電圧線147は、例えば、2つの画素列毎に割り当てられている。1つのグランド線148は、例えば、2画素列毎に割り当てられている。 One power supply line 144 is assigned to, for example, two pixel strings. One power line 145 is assigned to, for example, two pixel strings. One second voltage line 146 is assigned, for example, for each of two pixel trains. One second voltage line 147 is assigned, for example, for each of two pixel trains. One ground line 148 is assigned every two pixel rows, for example.
 上述したように、本実施形態に係る表示装置100は、画素アレイ部150の各画素120として、発光部12及び駆動IC13を含む、第1実施形態に係る発光装置10A、又は、第2実施形態に係る発光装置10Bを用いた構成となっている。第1実施形態に係る発光装置10A、又は、第2実施形態に係る発光装置10Bは、コア層161及びクラッド層162から成る光導波路16を有することで、発光部12からの漏れ光の発生を抑制し、発光効率の向上を図ることができるとともに、漏れ光が駆動IC13の特性に及ぼす悪影響を低減することができる。従って、画素120として、第1実施形態に係る発光装置10A、又は、第2実施形態に係る発光装置10Bを用いることで、より鮮明な画像表示を実現できる表示装置を提供することができる。 As described above, the display device 100 according to the present embodiment includes the light emitting device 10A according to the first embodiment or the second embodiment, which includes the light emitting unit 12 and the drive IC 13 as each pixel 120 of the pixel array unit 150. The light emitting device 10B according to the above is used. The light emitting device 10A according to the first embodiment or the light emitting device 10B according to the second embodiment has an optical waveguide 16 composed of a core layer 161 and a clad layer 162, so that light leakage from the light emitting unit 12 is generated. It can be suppressed, the luminous efficiency can be improved, and the adverse effect of the leaked light on the characteristics of the drive IC 13 can be reduced. Therefore, by using the light emitting device 10A according to the first embodiment or the light emitting device 10B according to the second embodiment as the pixel 120, it is possible to provide a display device capable of realizing a clearer image display.
<変形例>
 以上、本開示に係る技術について、好ましい実施形態に基づき説明したが、本開示に係る技術は当該実施形態に限定されるものではない。上記の実施形態において説明した発光素子及び表示装置の構成、構造は例示であり、適宜、変更することができる。
<Modification example>
The technique according to the present disclosure has been described above based on the preferred embodiment, but the technique according to the present disclosure is not limited to the embodiment. The configurations and structures of the light emitting element and the display device described in the above embodiment are examples, and can be changed as appropriate.
 例えば、上記の実施形態では、表示装置100として、ビルの内外の壁面等に取り付けて用いられる大画面の表示装置(タイリングディスプレイ)に適用する場合を例に挙げて説明したが、この適用例に限られるものではない。すなわち、本開示に係る技術は、例えば、テレビジョン装置,デジタルカメラ,ノート型パーソナルコンピュータ、携帯電話等の携帯端末装置あるいはビデオカメラなど、外部から入力された映像信号あるいは内部で生成した映像信号を、画像あるいは映像として表示するあらゆる分野の電子機器に適用することが可能である。 For example, in the above embodiment, the case where the display device 100 is applied to a large-screen display device (tiling display) used by being attached to a wall surface inside or outside a building has been described as an example, but this application example has been described. It is not limited to. That is, the technique according to the present disclosure uses, for example, a video signal input from the outside or a video signal generated internally, such as a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a mobile phone, or a video camera. , It can be applied to electronic devices in all fields to be displayed as images or videos.
<本開示がとることができる構成>
 尚、本開示は、以下のような構成をとることもできる。
<Structure that can be taken by this disclosure>
The present disclosure may also have the following configuration.
≪A.発光装置≫
[A-1]発光部、
 同一基板上に発光部と共に配置された半導体素子、及び、
 発光部の上方に形成された光導波路、
を備え、
 光導波路は、
 発光部の上に光路として形成されたコア層、及び、
 コア層の周囲に形成されたクラッド層、
を有する、
発光装置。
[A-2]クラッド層の屈折率は、コア層の屈折率よりも低い、
上記[A-1]に記載の発光装置。
[A-3]発光部の周壁を覆う外壁コア層を有する、
上記[A-2]に記載の発光装置。
[A-4]外壁コア層の屈折率は、発光部及び半導体素子を覆う保護層の屈折率よりも高い、
上記[A-3]に記載の発光装置。
[A-5]外壁コア層は、発光部の上のコア層と同じ材料で形成されている、
上記[A-4]に記載の発光装置。
[A-6]発光部及び半導体素子を覆う保護層の上に成膜された遮光膜を有する、
上記[A-1]乃至上記[A-5]のいずれかに記載の発光装置。
[A-7]半導体素子は、発光部を駆動する駆動ICである、
上記[A-1]乃至上記[A-6]のいずれかに記載の発光装置。
≪A. Light emitting device ≫
[A-1] Light emitting unit,
Semiconductor elements arranged together with the light emitting part on the same substrate, and
An optical waveguide formed above the light emitting part,
With
Optical waveguide
A core layer formed as an optical path on the light emitting part, and
A clad layer formed around the core layer,
Have,
Light emitting device.
[A-2] The refractive index of the clad layer is lower than that of the core layer.
The light emitting device according to the above [A-1].
[A-3] It has an outer wall core layer that covers the peripheral wall of the light emitting portion.
The light emitting device according to the above [A-2].
[A-4] The refractive index of the outer wall core layer is higher than the refractive index of the protective layer that covers the light emitting portion and the semiconductor element.
The light emitting device according to the above [A-3].
[A-5] The outer wall core layer is made of the same material as the core layer above the light emitting part.
The light emitting device according to the above [A-4].
[A-6] A light-shielding film formed on a protective layer covering a light emitting portion and a semiconductor element is provided.
The light emitting device according to any one of the above [A-1] to the above [A-5].
[A-7] The semiconductor element is a drive IC that drives a light emitting unit.
The light emitting device according to any one of the above [A-1] to the above [A-6].
≪B.発光装置の製造方法≫
[B-1]同一基板上に、発光部及び半導体素子を配置した状態で、発光部及び半導体素子を覆うように保護層を形成し、
 次いで、保護層の発光部の上方を除去して凹部を形成した後、保護層の上にクラッド層を成膜し、
 次いで、クラッド層について凹部の周壁に沿って環状に残存させた後、保護層の上にコア層を成膜し、
 次いで、コア層について光路として機能する部分だけを残存させる、
発光装置の製造方法。
[B-2]保護層を形成する前に、発光部の側壁を覆うように外壁コア層を形成し、
 しかる後、発光部及び半導体素子を覆うように保護層を形成し、
 次いで、保護層の発光部の上方を除去して凹部を形成した後、保護層の上にクラッド層を成膜し、
 次いで、クラッド層について凹部の周壁に沿って環状に残存させた後、保護層の上にコア層を成膜し、
 次いで、コア層について光路として機能する部分だけを残存させる、
上記[B-1]に記載の発光装置の製造方法。
≪B. Manufacturing method of light emitting device ≫
[B-1] With the light emitting portion and the semiconductor element arranged on the same substrate, a protective layer is formed so as to cover the light emitting portion and the semiconductor element.
Next, after removing the upper part of the light emitting portion of the protective layer to form a recess, a clad layer is formed on the protective layer.
Next, the clad layer is left in an annular shape along the peripheral wall of the recess, and then a core layer is formed on the protective layer.
Next, only the portion of the core layer that functions as an optical path remains.
Manufacturing method of light emitting device.
[B-2] Before forming the protective layer, the outer wall core layer is formed so as to cover the side wall of the light emitting portion.
After that, a protective layer is formed so as to cover the light emitting portion and the semiconductor element, and the protective layer is formed.
Next, after removing the upper part of the light emitting portion of the protective layer to form a recess, a clad layer is formed on the protective layer.
Next, the clad layer is left in an annular shape along the peripheral wall of the recess, and then a core layer is formed on the protective layer.
Next, only the portion of the core layer that functions as an optical path remains.
The method for manufacturing a light emitting device according to the above [B-1].
≪C.表示装置≫
[C-1]発光装置を含む画素が配置されて成り、
 発光装置は、
 発光部、
 同一基板上に発光部と共に配置された半導体素子、及び、
 発光部の上方に形成された光導波路、
を備え、
 光導波路は、
 発光部の上に光路として形成されたコア層、及び、
 コア層の周囲に形成されたクラッド層、
を有する、
表示装置。
[C-2]クラッド層の屈折率は、コア層の屈折率よりも低い、
上記[C-1]に記載の表示装置。
[C-3]発光部の周壁を覆う外壁コア層を有する、
上記[C-2]に記載の表示装置。
[C-4]外壁コア層の屈折率は、発光部及び半導体素子を覆う保護層の屈折率よりも高い、
上記[C-3]に記載の表示装置。
[C-5]外壁コア層は、発光部の上のコア層と同じ材料で形成されている、
上記[C-4]に記載の表示装置。
[C-6]発光部及び半導体素子を覆う保護層の上に成膜された遮光膜を有する、
上記[C-1]乃至上記[C-5]のいずれかに記載の表示装置。
[C-7]半導体素子は、発光部を駆動する駆動ICである、
上記[C-1]乃至上記[C-6]のいずれかに記載の表示装置。
≪C. Display device ≫
[C-1] Pixels including a light emitting device are arranged and formed.
The light emitting device is
Light emitting part,
Semiconductor elements arranged together with the light emitting part on the same substrate, and
An optical waveguide formed above the light emitting part,
With
Optical waveguide
A core layer formed as an optical path on the light emitting part, and
A clad layer formed around the core layer,
Have,
Display device.
[C-2] The refractive index of the clad layer is lower than that of the core layer.
The display device according to the above [C-1].
[C-3] It has an outer wall core layer that covers the peripheral wall of the light emitting portion.
The display device according to the above [C-2].
[C-4] The refractive index of the outer wall core layer is higher than the refractive index of the protective layer that covers the light emitting portion and the semiconductor element.
The display device according to the above [C-3].
[C-5] The outer wall core layer is made of the same material as the core layer above the light emitting part.
The display device according to the above [C-4].
[C-6] A light-shielding film formed on a protective layer covering a light emitting portion and a semiconductor element is provided.
The display device according to any one of the above [C-1] to the above [C-5].
[C-7] The semiconductor element is a drive IC that drives a light emitting unit.
The display device according to any one of the above [C-1] to the above [C-6].
 10A・・・第1実施形態に係る発光装置、10B・・・第2実施形態に係る発光装置、11・・・セル基板、12・・・発光部、13・・・駆動IC(半導体素子)、14・・・保護層、15・・・遮光膜、16・・・光導波路、100・・・表示装置、110・・・基板、120・・・画素、121R・・・赤色波長域の光を出射する発光素子、121G・・・緑色波長域の光を出射する発光素子、121B・・・青色波長域の光を出射する発光素子、150・・・画素アレイ部、161・・・コア層、162・・・クラッド層、163・・・外壁コア層 10A ... Light emitting device according to the first embodiment, 10B ... Light emitting device according to the second embodiment, 11 ... Cell substrate, 12 ... Light emitting unit, 13 ... Drive IC (semiconductor element) , 14 ... protective layer, 15 ... light-shielding film, 16 ... optical waveguide, 100 ... display device, 110 ... substrate, 120 ... pixel, 121R ... light in the red wavelength region Light emitting element that emits light, 121G ... Light emitting element that emits light in the green wavelength region, 121B ... Light emitting element that emits light in the blue wavelength region, 150 ... , 162 ... Clad layer, 163 ... Outer wall core layer

Claims (10)

  1.  発光部、
     同一基板上に発光部と共に配置された半導体素子、及び、
     発光部の上方に形成された光導波路、
    を備え、
     光導波路は、
     発光部の上に光路として形成されたコア層、及び、
     コア層の周囲に形成されたクラッド層、
    を有する、
    発光装置。
    Light emitting part,
    Semiconductor elements arranged together with the light emitting part on the same substrate, and
    An optical waveguide formed above the light emitting part,
    With
    Optical waveguide
    A core layer formed as an optical path on the light emitting part, and
    A clad layer formed around the core layer,
    Have,
    Light emitting device.
  2.  クラッド層の屈折率は、コア層の屈折率よりも低い、
    請求項1に記載の発光装置。
    The refractive index of the clad layer is lower than that of the core layer,
    The light emitting device according to claim 1.
  3.  発光部の周壁を覆う外壁コア層を有する、
    請求項2に記載の発光装置。
    It has an outer wall core layer that covers the peripheral wall of the light emitting part.
    The light emitting device according to claim 2.
  4.  外壁コア層の屈折率は、発光部及び半導体素子を覆う保護層の屈折率よりも高い、
    請求項3に記載の発光装置。
    The refractive index of the outer wall core layer is higher than the refractive index of the protective layer that covers the light emitting portion and the semiconductor element.
    The light emitting device according to claim 3.
  5.  外壁コア層は、発光部の上のコア層と同じ材料で形成されている、
    請求項4に記載の発光装置。
    The outer wall core layer is made of the same material as the core layer above the light emitting part,
    The light emitting device according to claim 4.
  6.  発光部及び半導体素子を覆う保護層の上に成膜された遮光膜を有する、
    請求項1に記載の発光装置。
    It has a light-shielding film formed on a protective layer that covers the light emitting portion and the semiconductor element.
    The light emitting device according to claim 1.
  7.  半導体素子は、発光部を駆動する駆動ICである、
    請求項1に記載の発光装置。
    The semiconductor element is a drive IC that drives the light emitting unit.
    The light emitting device according to claim 1.
  8.  同一基板上に、発光部及び半導体素子を配置した状態で、発光部及び半導体素子を覆うように保護層を形成し、
     次いで、保護層の発光部の上方を除去して凹部を形成した後、保護層の上にクラッド層を成膜し、
     次いで、クラッド層について凹部の周壁に沿って環状に残存させた後、保護層の上にコア層を成膜し、
     次いで、コア層について光路として機能する部分だけを残存させる、
    発光装置の製造方法。
    With the light emitting portion and the semiconductor element arranged on the same substrate, a protective layer is formed so as to cover the light emitting portion and the semiconductor element.
    Next, after removing the upper part of the light emitting portion of the protective layer to form a recess, a clad layer is formed on the protective layer.
    Next, the clad layer is left in an annular shape along the peripheral wall of the recess, and then a core layer is formed on the protective layer.
    Next, only the portion of the core layer that functions as an optical path remains.
    Manufacturing method of light emitting device.
  9.  保護層を形成する前に、発光部の側壁を覆うように外壁コア層を形成し、
     しかる後、発光部及び半導体素子を覆うように保護層を形成し、
     次いで、保護層の発光部の上方を除去して凹部を形成した後、保護層の上にクラッド層を成膜し、
     次いで、クラッド層について凹部の周壁に沿って環状に残存させた後、保護層の上にコア層を成膜し、
     次いで、コア層について光路として機能する部分だけを残存させる、
    請求項8に記載の発光装置の製造方法。
    Before forming the protective layer, the outer wall core layer is formed so as to cover the side wall of the light emitting portion.
    After that, a protective layer is formed so as to cover the light emitting portion and the semiconductor element, and the protective layer is formed.
    Next, after removing the upper part of the light emitting portion of the protective layer to form a recess, a clad layer is formed on the protective layer.
    Next, the clad layer is left in an annular shape along the peripheral wall of the recess, and then a core layer is formed on the protective layer.
    Next, only the portion of the core layer that functions as an optical path remains.
    The method for manufacturing a light emitting device according to claim 8.
  10.  発光装置を含む画素が配置されて成り、
     発光装置は、
     発光部、
     同一基板上に発光部と共に配置された半導体素子、及び、
     発光部の上方に形成された光導波路、
    を備え、
     光導波路は、
     発光部の上に光路として形成されたコア層、及び、
     コア層の周囲に形成されたクラッド層、
    を有する、
    表示装置。
    Pixels including a light emitting device are arranged to form
    The light emitting device is
    Light emitting part,
    Semiconductor elements arranged together with the light emitting part on the same substrate, and
    An optical waveguide formed above the light emitting part,
    With
    Optical waveguide
    A core layer formed as an optical path on the light emitting part, and
    A clad layer formed around the core layer,
    Have,
    Display device.
PCT/JP2020/048450 2020-02-07 2020-12-24 Light-emitting device, manufacturing method of light-emitting device, and display device WO2021157248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-019499 2020-02-07
JP2020019499A JP7467146B2 (en) 2020-02-07 2020-02-07 Light-emitting device, method for manufacturing light-emitting device, and display device

Publications (1)

Publication Number Publication Date
WO2021157248A1 true WO2021157248A1 (en) 2021-08-12

Family

ID=77200164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048450 WO2021157248A1 (en) 2020-02-07 2020-12-24 Light-emitting device, manufacturing method of light-emitting device, and display device

Country Status (2)

Country Link
JP (1) JP7467146B2 (en)
WO (1) WO2021157248A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129481A (en) * 1983-01-17 1984-07-25 Oki Electric Ind Co Ltd Light-emitting and receiving device
JP2001237411A (en) * 2000-02-21 2001-08-31 Sony Corp Optoelectric integrated circuit device
US20030036213A1 (en) * 2001-08-16 2003-02-20 Motorola, Inc. Optical switch with multiplexed data and control signals separated by group velocity dispersion
JP2004170668A (en) * 2002-11-20 2004-06-17 Sony Corp Optical transmitting/receiving module, its manufacturing method and optical communication system
JP2008205006A (en) * 2007-02-16 2008-09-04 Hitachi Ltd Semiconductor light-emitting element, optoelectronic integrated circuit using the same, and method for manufacturing optoelectronic integrated circuit
JP2017073411A (en) * 2015-10-05 2017-04-13 ソニー株式会社 Light emitting device
JP2018025795A (en) * 2016-08-05 2018-02-15 株式会社半導体エネルギー研究所 Display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332253A (en) 2005-05-25 2006-12-07 Ngk Spark Plug Co Ltd Photoelectric conversion device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129481A (en) * 1983-01-17 1984-07-25 Oki Electric Ind Co Ltd Light-emitting and receiving device
JP2001237411A (en) * 2000-02-21 2001-08-31 Sony Corp Optoelectric integrated circuit device
US20030036213A1 (en) * 2001-08-16 2003-02-20 Motorola, Inc. Optical switch with multiplexed data and control signals separated by group velocity dispersion
JP2004170668A (en) * 2002-11-20 2004-06-17 Sony Corp Optical transmitting/receiving module, its manufacturing method and optical communication system
JP2008205006A (en) * 2007-02-16 2008-09-04 Hitachi Ltd Semiconductor light-emitting element, optoelectronic integrated circuit using the same, and method for manufacturing optoelectronic integrated circuit
JP2017073411A (en) * 2015-10-05 2017-04-13 ソニー株式会社 Light emitting device
JP2018025795A (en) * 2016-08-05 2018-02-15 株式会社半導体エネルギー研究所 Display device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOU FANGWANG, HSIANG EN-LIN, TAN GUANJUN, LAN YI-FEN, TSAI CHENG-YEH, WU SHIN-TSON: "Tripling the optical efficiency of color-converted micro-LED displays with funnel-tube array", CRYSTALS, vol. 9, no. 1, 14 January 2019 (2019-01-14), pages 39, XP055844799 *

Also Published As

Publication number Publication date
JP7467146B2 (en) 2024-04-15
JP2021125629A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
KR101913455B1 (en) Display device and electronic device
JP5364227B2 (en) Display device with reading function and electronic device using the same
US20220376028A1 (en) Display substrate and display device
CN108267901A (en) Display device and the multi-display apparatus using the display device
WO2021244251A1 (en) Display substrate and display device
JP2006201421A (en) Optoelectronic device and its manufacturing method, and electronic apparatus
JP2017062941A (en) Display device and manufacturing method for the same
JP2007234301A (en) Electroluminescence device and electronic apparatus
JP2010073841A (en) Optical package element, display device, and electronic apparatus
JP7101149B2 (en) Display device
WO2014175681A1 (en) Organic light-emitting display apparatus and method for manufacturing the same
KR20210138842A (en) Display apparatus
CN114497143A (en) Display device
CN114067695A (en) Spliced display device
CN113764477A (en) Display device
WO2021157248A1 (en) Light-emitting device, manufacturing method of light-emitting device, and display device
CN111492271B (en) Light emitting module, display device, and methods of manufacturing light emitting module and display device
TWI784612B (en) Display device
WO2021258911A1 (en) Display substrate and display device
CN113675324A (en) Micro light-emitting diode display device
JP7420725B2 (en) Light emitting device and display device
TWI784681B (en) Micro light-emitting diode display device
CN112868100A (en) Light unit and display device including the same
KR20230060601A (en) Display device and manufacturing method thereof
KR20230142077A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917968

Country of ref document: EP

Kind code of ref document: A1