WO2021156977A1 - Space recognition system, space recognition method, information terminal, and server device - Google Patents

Space recognition system, space recognition method, information terminal, and server device Download PDF

Info

Publication number
WO2021156977A1
WO2021156977A1 PCT/JP2020/004388 JP2020004388W WO2021156977A1 WO 2021156977 A1 WO2021156977 A1 WO 2021156977A1 JP 2020004388 W JP2020004388 W JP 2020004388W WO 2021156977 A1 WO2021156977 A1 WO 2021156977A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
coordinate system
space
spatial
data
Prior art date
Application number
PCT/JP2020/004388
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 康宣
尚久 高見澤
秋山 仁
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Priority to US17/797,445 priority Critical patent/US20230089061A1/en
Priority to JP2021575161A priority patent/JPWO2021156977A1/ja
Priority to CN202080095876.2A priority patent/CN115053262A/en
Priority to PCT/JP2020/004388 priority patent/WO2021156977A1/en
Publication of WO2021156977A1 publication Critical patent/WO2021156977A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/20Scenes; Scene-specific elements in augmented reality scenes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Definitions

  • the present invention relates to a technology such as a system for an information terminal to recognize a space.
  • HMDs head-mounted displays
  • smartphones have a function of displaying images (sometimes referred to as virtual images) corresponding to virtual reality (VR), augmented reality (AR), etc. on the display surface.
  • VR virtual reality
  • AR augmented reality
  • the HMD worn by the user displays an AR image at a position matching the actual object such as a wall or a desk in a space such as a room.
  • Patent Document 1 states that a plurality of terminals recognize the same object in real space, for example, a desk surface as an anchor surface based on a camera capture, and each terminal displays a virtual object on the anchor surface. So, the technique of displaying a virtual object at almost the same position is described.
  • the information terminal has a function of detecting and measuring the space around the own machine by using a camera or a sensor for grasping the information terminal.
  • the HMD can detect the reflection point when the light emitted from the sensor of the own machine hits a surrounding object and returns as a feature point, and can acquire a plurality of surrounding feature points as point cloud data.
  • the HMD can use such point cloud data to form spatial data (in other words, data for an information terminal to recognize a space) representing the shape of a space or the like.
  • An object of the present invention is a technique in which an information terminal can measure a space and create / register spatial data, and the information terminal can acquire and use the spatial data, and the space among a plurality of information terminals of a plurality of users. It is to provide technology that can share data and corresponding spatial perceptions.
  • the space recognition system of one embodiment includes an information terminal having a function of measuring space and a function of displaying a virtual image on a display surface and having a terminal coordinate system, and an information processing device that performs processing based on a common coordinate system.
  • the information terminal measures the relationship regarding the position and orientation between the terminal coordinate system and the common coordinate system, and the information terminal measures the relationship between the terminal coordinate system and the common coordinate system, and based on the data representing the measured relationship, the information terminal measures the relationship between the terminal coordinate system and the common coordinate system.
  • the system is adapted, and the information terminal and the information processing device share the recognition of the space.
  • the information terminal can measure the space and create / register the spatial data, the information terminal can acquire and use the spatial data, and a plurality of information of a plurality of users.
  • the spatial data and the corresponding spatial recognition can be shared between the terminals.
  • FIG. 1 It is a figure which shows the structure of the space recognition system of Embodiment 1 of this invention. It is a figure which shows the structure of the space recognition method of Embodiment 1 of this invention. It is a figure which shows the composition example of the space in Embodiment 1.
  • FIG. It is a figure which shows the example of the space sharing measurement in Embodiment 1.
  • FIG. It is a figure which shows the use example of a space in Embodiment 1.
  • FIG. It is a figure which shows the appearance composition example of the HMD which is an information terminal in Embodiment 1.
  • FIG. 5 is an explanatory diagram for position transmission and the like in the first embodiment.
  • FIG. 5 is a diagram showing a processing flow between information terminals in the first embodiment. It is a figure which shows the display example by an information terminal in Embodiment 1.
  • the information terminal device may be referred to as a terminal.
  • the spatial recognition system and method of the first embodiment provides suitable techniques such as spatial measurement by such sharing, creation of spatial data, sharing / reuse of spatial data, and a series of procedures for that purpose. ..
  • This system and method realizes spatial measurement, spatial data creation, spatial data sharing / reuse, etc. efficiently, for example, at high speed.
  • FIG. 31 shows the basic configuration of the present invention.
  • the basic configuration of the present invention processes an information terminal 1 having a function of measuring space 2 and a function of displaying a virtual image on a display surface and having a terminal coordinate system WT, and spatial data 6 described by a common coordinate system WS. It is composed of an information processing device 9 for processing.
  • the information processing device 9 is an information terminal different from the information terminal 1, or a server 4 (FIG. 16 or the like) described later.
  • the information terminal 1 measures the relationship regarding the position and orientation between the terminal coordinate system WT and the common coordinate system WS, and adapts the terminal coordinate system WT and the common coordinate system WS based on the data representing the measured relationship. .. This is called coordinate system pairing (described later). By this coordinate system pairing, the information terminal 1 and the information processing device 9 share the spatial recognition.
  • the sharing of the spatial data 6 is performed through the description of the spatial data 6 by the common coordinate system WS.
  • the information terminal 1 measures the space 2 and acquires the space data 6, and acquires the space data 6 described based on the common coordinate system WS from the information processing device 9.
  • the information terminal 1 converts the spatial data 6 acquired from the information processing device 9 into the terminal coordinate system WT of its own machine, integrates it with the spatial data 6 measured by its own machine, and then uses the spatial data 6.
  • the information terminal 1 converts the spatial data 6 measured by its own machine into a description by the common coordinate system WS and provides it to the information processing device 9.
  • the information processing device 9 integrates the provided spatial data 6 and the retained spatial data 6 and uses the spatial data 6.
  • the space recognition system of the first embodiment shown in FIG. 1 and the like measures the space 2 by the division of the plurality of terminals 1 by a plurality of users, and creates the space data 6 based on the measurement data.
  • the spatial data 6 may include the position of the terminal 1 at the time of measurement (measurement starting point).
  • the spatial data 6 can be provided to each other, shared and used among a plurality of terminals 1 of a plurality of users, and recognition of a position, orientation, etc. in the same space 2 can be shared.
  • the same virtual image 22 can be easily displayed at the same desired position 21 in the space 2 when the AR function or the like is used between the plurality of terminals 1, and work, communication, etc. are suitable. realizable. According to this system, more efficient work can be realized than when the work such as measurement is performed by the terminal of one user.
  • the terminal 1 holds the spatial data 6.
  • the information processing device 9 in FIG. 31 is the terminal 1 in FIG. 1, and the common coordinate system WS is either terminal used as a reference for description when exchanging spatial data 6 between a plurality of terminals 1. It is a terminal coordinate system WT of 1.
  • the space recognition system and method of the first embodiment has a mechanism such as matching between coordinate systems related to the measurement and recognition of the space 2 in the above division.
  • the coordinate system of space sometimes referred to as "spatial coordinate system”
  • the coordinate system of each terminal sometimes referred to as “terminal coordinate system”
  • the operation of associating and matching the terminal coordinate systems of each terminal 1 with each other is performed as "coordinate system pairing".
  • the conversion parameter 7 for the coordinate system conversion is set in the terminal 1.
  • the position, orientation, and the like can be mutually converted between the coordinate systems by the conversion parameter 7.
  • each terminal 1 creates partial spatial data 6 described in each terminal coordinate system by shared measurement.
  • the plurality of partial spatial data described in each terminal coordinate system is a space in units of space 2 described in a certain unified terminal coordinate system by conversion and integration using the conversion parameter 7. It can be configured as data 6.
  • FIG. 1 shows the configuration of the spatial recognition system of the first embodiment.
  • the target space 2 used by the terminal 1 is set as one room in the building and the HMD is particularly used as the terminal 1
  • a plurality of users for example, users U1 and U2 carry or wear a plurality of terminals 1, for example, first terminal 1A and second terminal 1B, and measurement of each terminal 1. It has a space 2 to be used.
  • Each terminal 1 creates and holds spatial data 6 and conversion parameters 7.
  • the terminal 1 may be a device such as a smartphone 1a, 1b or a tablet terminal.
  • Each terminal 1 is connected to a communication network including the Internet, a mobile network, and the like through a wireless LAN access point 23 and the like, and can also communicate with an external device via the communication network.
  • Space 2 is an arbitrary space that is identified and managed separately, for example, one room in a building.
  • the space 2 of this room is the object of creating the space data 6 by sharing, and is the object of recognition sharing by the plurality of terminals 1.
  • the HMD which is the terminal 1, is provided with a transmissive display surface 11, a camera 12, a distance measuring sensor 13, and the like in a housing, and has a function of displaying a virtual image of AR on the display surface 11.
  • the smartphones 1a and 1b are provided with a display surface such as a touch panel, a camera, a distance measuring sensor, and the like, and have a function of displaying a virtual image of AR on the display surface.
  • the user sees a virtual image such as AR displayed on the display surface of a smartphone held in his hand.
  • Each terminal 1 has a function of performing coordinate system pairing between its own terminal and the other terminal 1.
  • Each terminal 1 measures the relationship between its own terminal coordinate system (for example, the first terminal coordinate system WA) and the other party's terminal coordinate system (for example, the second terminal coordinate system WB), and the conversion parameter 7 is based on the relationship. Is generated and set to at least one of the own machine or the other party.
  • the plurality of terminals 1 (1A, 1B) share and measure the target space 2, and create each partial spatial data 6 (may be described as "subspace data").
  • the first terminal 1A creates the spatial data D1A
  • the second terminal 1B creates the spatial data D1B.
  • the plurality of terminals 1 can create spatial data 6 (for example, spatial data D1) in units of spatial 2 from the partial spatial data 6, and can share the recognition of spatial 2 using the spatial data 6.
  • the terminal 1 has a function of measuring the space 2 using the camera 12, the distance measuring sensor 13, and the like, and creating the space data 6 based on the measurement data.
  • the terminal 1 can perform conversion between coordinate systems related to the representation of measurement data and spatial data 6 by using the conversion parameter 7.
  • the relationship between the terminal coordinate systems (WA, WB) is roughly obtained as follows. First, the relationship of rotation between the coordinate systems is obtained based on the measurement of the representation in each terminal coordinate system (WA, WB) in two different specific directions in the real space. Next, the relationship of the origins between the terminal coordinate systems is obtained based on the measurement of the positional relationship between the terminals 1.
  • the conversion parameter 7 can be composed of the rotation parameter and the origin parameter.
  • the terminal coordinate system of one of the terminals 1 (for example, the first terminal coordinate system WA) is used as a common coordinate system among the plurality of terminals 1, and the coordinate system pairing is performed for each pair of the two terminals 1. I do.
  • at least one of the terminals 1 (for example, the first terminal 1A) creates and holds the conversion parameter 7.
  • each terminal 1 shares and measures the space 2, and creates each subspace data described in each terminal coordinate system.
  • Each terminal 1 may exchange / exchange each subspace data with each other terminal 1 as data described based on a common coordinate system.
  • the terminal 1 uses the conversion parameter 7 to convert the subspace data between the description based on the terminal coordinate system of the own machine and the description based on the common coordinate system.
  • the terminal 1 obtains the spatial data 6 in units of the space 2 by integration from the plurality of subspace data described in the unified terminal coordinate system.
  • the plurality of terminals 1 can suitably display the same virtual image 22 at the same position 21 in the same space 2 by using the spatial data 6.
  • the display position of the virtual image displayed on the display surface 11 is set to the other terminal 1. Can be shared with.
  • the coordinate system that serves as a reference for designating the position, orientation, and the like in the real space in each terminal 1 and space 2 is called a world coordinate system.
  • Each terminal 1 has a terminal coordinate system as its own world coordinate system.
  • the first terminal 1A has a first terminal coordinate system WA
  • the second terminal 1B has a second terminal coordinate system WB.
  • Each terminal coordinate system is a coordinate system for recognizing and controlling the position and orientation (in other words, posture, rotation state), image display position, and the like of the terminal 1. Since these terminal coordinate systems are set for each terminal 1, they are basically different coordinate systems and do not match in the initial state.
  • the space 2 has a space coordinate system W1 as a world coordinate system representing the position and orientation of the space 2.
  • the spatial coordinate system W1 is not used for the measurement and creation of the spatial data 6.
  • the spatial data 6 is described in the terminal coordinate system.
  • the first terminal coordinate system WA, the second terminal coordinate system WB, and the spatial coordinate system W1 are different coordinate systems.
  • the origin and direction of each world coordinate system are fixed in the real space (earth, region, etc.).
  • the first terminal coordinate system WA has the origin O A, the axis X A as 3 orthogonal axes, the axis Y A, and a shaft Z A.
  • the second terminal coordinate system WB with the origin O B, the axis X B as 3 orthogonal axes, the axis Y B, and a shaft Z B.
  • Space coordinate system W1 has, as an origin O 1, the axis X 1 as 3 orthogonal axes, the axis Y 1, and a shaft Z 1.
  • the origins O A , B and the origin O 1 are fixed at predetermined positions in the real space, respectively.
  • the position LA of the first terminal 1A in the first terminal coordinate system WA and the position LB of the second terminal 1B in the second terminal coordinate system WB are defined in advance as, for example, the housing center position (FIG. 8).
  • the terminal 1 When the terminal 1 shares the recognition of the space 2, the terminal 1 performs coordinate system pairing with another terminal 1.
  • the sharing terminals 1 (1A, 1B) perform coordinate system pairing with each other.
  • each terminal 1 measures and acquires predetermined quantities from each other (FIG. 8), and obtains a relationship between the terminal coordinate systems (WA, WB) based on the quantities.
  • Each terminal 1 calculates the conversion parameter 7 between the terminal coordinate systems (WA, WB) from the relationship.
  • each terminal 1 can convert the position and the like with each other by using the conversion parameter 7. That is, each terminal 1 can convert the representation such as the position in the spatial data 6 created by the measurement of the space 2 into the representation in the common coordinate system.
  • Each terminal 1 exchanges and exchanges spatial data 6 through spatial data 6 described with reference to a common coordinate system.
  • each terminal 1 can integrate the subspace data measured by each terminal 1 and create the spatial data 6 described in the unified terminal coordinate system.
  • each terminal 1 can perform internal control of its own device not only based on its own terminal coordinate system but also based on the other party's terminal coordinate system. ..
  • FIG. 2 shows an outline of the space recognition method of the first embodiment and a processing example. This method has steps S1 to S9 shown.
  • the first terminal 1A measures the area 2A and the second terminal 1B measures the area 2B as the division of the space 2 (FIG. 3 described later).
  • the conversion parameter 7 is generated by the first terminal 1A, spatial data 6 (6A, 6B) with the space 2 as a unit are configured, and the first terminal 1A is the spatial data in the second terminal 1B. 6B is provided.
  • the second terminal 1B is the information processing device 9 in the basic configuration (FIG. 31), and the second terminal coordinate system WB corresponds to the common coordinate system WS.
  • step S1 the first terminal 1A performs coordinate system pairing with the second terminal 1B (FIG. 8 described later), thereby converting the first terminal coordinate system WA and the second terminal coordinate system WB.
  • the conversion parameter 7 of is generated and set in the own machine.
  • step S2 the first terminal 1A measures the region 2A due to the division and creates the partial spatial data 6 (referred to as the partial spatial data D1A) described in the first terminal coordinate system WA.
  • the * mark in the drawing indicates the coordinate system that describes the spatial data.
  • step S3 the second terminal 1B similarly measures the region 2B due to the division and creates the partial spatial data 6 (referred to as the subspace data D1B) described in the second terminal coordinate system WB. .. Steps S2 and S3 can be executed in parallel at the same time.
  • step S4 the first terminal 1A receives and acquires the subspace data D1B from the second terminal 1B.
  • step S5 the first terminal 1A converts the subspace data D1B into the partial spatial data 6 (referred to as the subspace data D1BA) described in the first terminal coordinate system WA by using the conversion parameter 7. ..
  • step S6 the first terminal 1A integrates the subspace data D1A and the subspace data D1BA into one, and the spatial data 6A (D1) having the space 2 described in the first terminal coordinate system WA as a unit. Get as.
  • the first terminal 1A can obtain the spatial data 6A (D1) in units of the space 2 even if the measurement is performed only in the area 2A.
  • step S7 the first terminal 1A converts the subspace data D1A into the partial spatial data 6 (referred to as the subspace data D1AB) described in the second terminal coordinate system WB by using the conversion parameter 7. ..
  • step S8 the first terminal 1A integrates the subspace data D1B and the subspace data D1AB into one, and describes the spatial data 6B (D1) in the space 2 as a unit described in the second terminal coordinate system WB. ).
  • step S9 the first terminal 1A transmits the spatial data 6B (D1) to the second terminal 1B.
  • the second terminal 1B can obtain the spatial data 6B (D1) in units of the space 2 even if only the area 2B is measured.
  • the first terminal 1A acquires the spatial data 6A (D1) described in the first terminal coordinate system WA, and the second terminal 1B is described in the second terminal coordinate system WB.
  • the spatial data 6B (D1) is acquired. Therefore, the recognition of the space 2 can be shared between the terminals 1 (1A, 1B).
  • the first terminal 1A and the second terminal 1B can display the same virtual image 22 at the same position 21 in the space 2 (FIG. 5 described later).
  • the first terminal 1A displays the virtual image 22 at the position 21 described in the first terminal coordinate system WA based on the spatial data 6A (D1).
  • the second terminal 1B displays the virtual image 22 at the position 21 described in the second terminal coordinate system WB based on the spatial data 6B (D1).
  • the above method can be similarly applied to the case where the conversion parameter 7 is generated by the second terminal 1B and the spatial data 6 is configured.
  • FIG. 3 shows a configuration example of the space 2 and an example in which the space 2 is shared and measured by the terminals 1 of a plurality of users.
  • This space 2 is, for example, one room in a building such as a company, for example, a seventh conference room.
  • a building such as a company
  • a seventh conference room In the space 2, there are arrangements such as walls, floors, ceilings, doors 2d, and arrangements such as desks 2a, whiteboards 2b, and other devices.
  • the arrangement is an arbitrary object that constitutes the space 2.
  • the other space 2 may be a building or area such as a company or a store, or a public space or the like.
  • the spatial data 6 (particularly the spatial shape data described later) that describes the space 2 is, for example, data in an arbitrary format that represents the position and shape of the room.
  • the spatial data 6 includes data representing the boundary of the space 2 and data of an arbitrary object arranged in the space 2.
  • the data representing the boundary of the space 2 includes, for example, data of an arrangement such as a floor, a wall, a ceiling, and a door 2d constituting the room. There may be no placement at the boundary.
  • the data of the object in the space 2 includes, for example, the data of the desk 2a and the whiteboard 2b arranged in the room.
  • the spatial data 6 is, for example, data including at least point cloud data and having position coordinate information for each feature point in a certain terminal coordinate system.
  • the spatial data 6 may be polygon data representing a line, a surface, or the like in the space.
  • the space 2 which is one room is shared and measured by the terminals 1 (1A and 1B) of the users U1 and U2 who are two users, and the space data 6 of the space 2 is created. ..
  • the content of the division can be decided arbitrarily. For example, two users consult and share as shown in the figure.
  • the division can be such that the target space 2 is spatially divided into a plurality of regions (in other words, subspaces) as in this example.
  • the space 2 is divided into half area of the right and left with respect to the center in the lateral direction (axial Y 1 direction) in FIG.
  • the first terminal 1A is in charge of the left area 2A
  • the second terminal 1B is in charge of the right area 2B.
  • FIG. 4 shows an example of measurement by sharing in the overhead space 2 room (e.g. X 1 -Y 1 side) as shown in FIG. 3, terminal 1 of the two users (U1, U2) (1A, 1B) Is shown.
  • FIG. 4 shows an example of a state such as a measurement range (401, 402) at a certain position (L401, L402) and orientation (d401, d402) of the terminal 1 (1A, 1B) which is an HMD at a certain time.
  • the measurement range is an example that depends on the function of the distance measuring sensor 13 and the like provided in the HMD.
  • the measurement range 401 indicates a measurement range using, for example, a distance measuring sensor 13 at the position L401 and the direction d401 of the first terminal 1A.
  • the measurement range 402 indicates the measurement range at the position L402 and the orientation d402 of the second terminal 1B.
  • a sufficient amount of area in the space 2 may be measured according to the function of AR or the like and if necessary. A part of the space 2 that is not measured may occur, or an area that is overlapped and measured may occur due to sharing.
  • the area 491 is an unmeasured area
  • the area 492 is an overlapping measurement area.
  • the measurement ratio (for example, 90%) of the space 2 or the shared area may be set in advance as a condition. For example, the first terminal 1A determines that the measurement is completed when the shared area 2A is measured at a ratio of the condition or more.
  • each terminal 1 After pairing the coordinate system between the terminals 1 (1A, 1B), each terminal 1 measures each measurement range (401, 402) of the shared areas 2A, 2B, and obtains each measurement data.
  • the first terminal 1A measures the measurement range 401 of the region 2A and obtains the measurement data 411.
  • the second terminal 1B measures the measurement range 402 of the region 2B and obtains the measurement data 412.
  • the measurement data is, for example, point cloud data obtained by the distance measuring sensor 13.
  • the point cloud data is data having a position, a direction, a distance, and the like for each point at a plurality of surrounding feature points.
  • Each terminal 1 creates subspace data 420 from the measurement data.
  • the first terminal 1A creates the subspace data D1A described in the first terminal coordinate system WA from the measurement data 411.
  • the second terminal 1B creates the subspace data D1B described in the second terminal coordinate system WB from the measurement data 412.
  • the first terminal 1A creates the spatial data 6A (D1) described in the first terminal coordinate system WA
  • the second terminal 1B creates the spatial data 6B (D1) described in the second terminal coordinate system WB.
  • the case of creating D1) is shown.
  • Each terminal 1 transmits the subspace data 420 created by its own device to the other terminal 1.
  • the first terminal 1A transmits the subspace data D1A to the second terminal 1B.
  • the second terminal 1B transmits the subspace data D1B to the first terminal 1A.
  • Each terminal 1 converts the subspace data 430 obtained from the other terminal 1 into the subspace data 440 in the terminal coordinate system of its own device by using the conversion parameter 7.
  • the first terminal 1A converts the subspace data D1B into the subspace data D1BA described in the first terminal coordinate system WA.
  • the second terminal 1B converts the subspace data D1A into the subspace data D1AB described in the second terminal coordinate system WB.
  • Each terminal 1 converts the subspace data 420 obtained by its own machine and the subspace data 440 obtained from the other party into spatial data 6 (450) in one space 2 in a unified terminal coordinate system. Integrate.
  • the first terminal 1A integrates the subspace data D1A and the subspace data D1BA into one, and obtains the subspace data D1 (6A) described in the first terminal coordinate system WA.
  • the second terminal 1B integrates the subspace data D1B and the subspace data D1AB into one, and obtains the subspace data D1 (6B) described in the second terminal coordinate system WB.
  • which of the two terminals 1 is considered to correspond to the information processing device 9 having the basic configuration (FIG. 31) may be arbitrary.
  • the terminal coordinate system used in the transfer of the spatial data 6 is the common coordinate system in the transfer of the spatial data 6.
  • the time related to the measurement and the acquisition of the spatial data can be shortened and efficiently realized as compared with the case where the space 2 is measured by the terminal 1 of one user.
  • the terminal 1 of the other user when the other user is seen from the terminal 1 of one user and there is a space portion behind the other user, such a space portion is referred to by the terminal 1 of the other user. It is possible to measure by, and it is more efficient to measure by the terminal 1 of the other user.
  • the user and the corresponding terminal 1 can move the position appropriately to change the measurement range.
  • the unmeasured area 491 shown in the figure can also be measured by separately including it in the measurement range from another position.
  • any terminal 1 may automatically determine and determine the sharing. For example, each terminal 1 determines the approximate position / orientation of its own device in the room, the presence / absence of reflection of another user / other device, its position / orientation, and the like based on a camera image or the like. For example, when the second user U2 and the second terminal 1B are not shown in the camera image, the first terminal 1A selects the area / range in the direction at that time as the area / range shared by the first terminal 1A. do.
  • FIG. 5 shows an example of using the space 2 using the space data 6 between the terminals 1 (1A, 1B) of two users (U1, U2) who share the recognition of the space 2 as shown in FIG.
  • the first terminal 1A and the second terminal 1B are the same in the space 2 by the AR function using the spatial data 6 in the state of the coordinate system pairing between the first terminal coordinate system WA and the second terminal coordinate system WB.
  • the same virtual image 22 is displayed at the position 21.
  • the first terminal 1A displays the virtual image 22 on the display surface 11 at the position 21 in the first terminal coordinate system WA
  • the second terminal 1B is the position on the display surface 11 in the second terminal coordinate system WB.
  • the virtual image 22 is displayed on the 21.
  • One terminal 1 for example, the first terminal 1A specifies a position 21 and a virtual image 22 to be displayed, and transmits information such as the position 21 to the second terminal 1B.
  • the first terminal 1A or the second coordinate system WB uses the conversion parameter 7 to convert the position 21 in the first terminal coordinate system WA to the position 21 in the second terminal coordinate system WB.
  • Each terminal 1 can quickly and accurately display the virtual image 22 at a position 21 that matches the position, shape, and the like of the arrangement of the space 2 represented by the space data 6.
  • each terminal 1 can arrange and display the virtual image 22 according to the position 21 at the center of the upper surface of the desk 2a designated by the user U1.
  • User U1 and user U2 can work and communicate while viewing the same virtual image 22.
  • FIG. 6 shows an example of the appearance configuration of the HMD as an example of the terminal 1.
  • This HMD includes a display device including a display surface 11 in a spectacle-shaped housing 10.
  • This display device is, for example, a transmissive display device, and a real image of the outside world is transmitted through the display surface 11, and the image is superimposed and displayed on the real image.
  • a controller, a camera 12, a distance measuring sensor 13, another sensor unit 14, and the like are mounted on the housing 10.
  • the camera 12 has, for example, two cameras arranged on the left and right sides of the housing 10, and captures a range including the front of the HMD to acquire an image.
  • the distance measuring sensor 13 is a sensor that measures the distance between the HMD and an object in the outside world.
  • a TOF (Time Of Flight) type sensor may be used, or a stereo camera or another type may be used.
  • the sensor unit 14 includes a group of sensors for detecting the position and orientation of the HMD.
  • an audio input device 18 including a microphone, an audio output device 19 including a speaker and an earphone terminal, and the like are provided.
  • the terminal 1 may be equipped with an operator such as a remote controller.
  • the HMD performs, for example, short-range wireless communication with the controller.
  • the user can input instructions related to the HMD function, move the cursor on the display surface 11, and the like.
  • the HMD may communicate with an external smartphone, PC, or the like to cooperate.
  • the HMD may receive AR image data from a smartphone application.
  • the terminal 1 includes an application program or the like for displaying a virtual image such as AR on the display surface 11 for work support or entertainment.
  • the terminal 1 generates a virtual image 22 (FIG. 1) for work support by processing an application for work support, and a predetermined position on the display surface 11 near a work object in space 2.
  • a virtual image 22 is arranged and displayed on the 21.
  • FIG. 7 shows an example of a functional block configuration of the terminal 1 (HMD) of FIG.
  • the terminal 1 is a processor 101, a memory 102, a camera 12, a distance measuring sensor 13, a sensor unit 14, a display device 103 including a display surface 11, a communication device 104, a voice input device 18 including a microphone, a voice output device including a speaker, and the like. 19.
  • the operation input unit 105, the battery 106, and the like are provided. These elements are connected to each other through a bus or the like.
  • the processor 101 is composed of a CPU, ROM, RAM, etc., and constitutes an HMD controller.
  • the processor 101 realizes functions such as an OS, middleware, and applications, and other functions by executing processing according to the control program 31 and the application program 32 of the memory 102.
  • the memory 102 is composed of a non-volatile storage device or the like, and stores various data and information handled by the processor 101 and the like.
  • the memory 102 also stores images, detection information, and the like acquired by the camera 12 and the like as temporary information.
  • the camera 12 acquires an image by converting the light incident from the lens into an electric signal by the image sensor.
  • the distance measuring sensor 13 calculates the distance to an object from the time until the light emitted to the outside world hits the object and returns.
  • the sensor unit 14 includes, for example, an acceleration sensor 141, a gyro sensor (angular velocity sensor) 142, a geomagnetic sensor 143, and a GPS receiver 144.
  • the sensor unit 14 detects a state such as the position, orientation, and movement of the HMD by using the detection information of these sensors.
  • the HMD is not limited to this, and may include an illuminance sensor, a proximity sensor, a barometric pressure sensor, and the like.
  • the display device 103 includes a display drive circuit and a display surface 11, and displays a virtual image or the like on the display surface 11 based on the image data of the display information 34.
  • the display device 103 is not limited to the transparent display device, and may be a non-transparent display device or the like.
  • the communication device 104 includes a communication processing circuit, an antenna, and the like corresponding to various predetermined communication interfaces. Examples of communication interfaces include mobile networks, Wi-Fi (registered trademark), Bluetooth (registered trademark), infrared rays and the like.
  • the communication device 104 performs wireless communication processing and the like with another terminal 1 and the access point 23 (FIG. 1).
  • the communication device 104 also performs short-range communication processing with the actuator.
  • the voice input device 18 converts the input voice from the microphone into voice data.
  • the voice output device 19 outputs voice from a speaker or the like based on the voice data.
  • the voice input device may include a voice recognition function.
  • the voice output device may include a voice synthesis function.
  • the operation input unit 105 is a part that receives operation inputs to the HMD, such as power on / off and volume adjustment, and is composed of a hardware button, a touch sensor, and the like.
  • the battery 106 supplies electric power to each part.
  • the controller by the processor 101 has a communication control unit 101A, a display control unit 101B, a data processing unit 101C, and a data acquisition unit 101D as a configuration example of a functional block realized by processing.
  • the memory 102 stores the control program 31, the application program 32, the setting information 33, the display information 34, the coordinate system information 35, the spatial data information 36, and the like.
  • the control program 31 is a program for realizing control including a spatial recognition function.
  • the application program 32 is a program that realizes a function such as AR that uses the spatial data 6.
  • the setting information 33 includes system setting information and user setting information related to each function.
  • the display information 34 includes image data and position coordinate information for displaying an image such as a virtual image 22 on the display surface 11.
  • the coordinate system information 35 is management information related to the space recognition function.
  • the coordinate system information 35 is shared between two users as shown in FIG. 3, for example, the information of the first terminal coordinate system WA of the own machine, the information of the second terminal coordinate system WB of the other party, and the own machine side.
  • the various amount data of the above, the various amount data of the other party (FIG. 8), and the conversion parameter 7 (FIG. 1 and the like) are included.
  • the spatial data information 36 is information corresponding to the spatial data 6 such as FIG. 1, and is information created and held by the terminal 1.
  • the terminal 1 may hold the spatial data 6 relating to each space 2 as a library inside the terminal 1.
  • the terminal 1 may acquire and hold the spatial data 6 from another terminal 1.
  • the terminal 1 may acquire the spatial data 6 held and provided by an external server or the like as described later.
  • the communication control unit 101A controls communication processing using the communication device 104 when communicating with another terminal 1.
  • the display control unit 101B uses the display information 34 to control the display of the virtual image 22 and the like on the display surface 11 of the display device 103.
  • the data processing unit 101C reads and writes the coordinate system information 35, performs processing for managing the terminal coordinate system of the own machine, processing of coordinate system pairing with the terminal coordinate system of the other party, and coordinates using the conversion parameter 7. Performs conversion processing between systems.
  • the data processing unit 101C performs a process of measuring various amount data on the own machine side, a process of acquiring various amount data on the other side, a process of generating conversion parameter 7, and the like.
  • the data acquisition unit 101D acquires each detection data from various sensors such as the camera 12, the distance measuring sensor 13, and the sensor unit 14. At the time of coordinate system pairing, the data acquisition unit 101D measures various quantity data on the own machine side according to the control from the data processing unit 101C.
  • FIG. 8 shows an explanatory diagram in the case of performing coordinate system pairing between the first terminal coordinate system WA of the first terminal 1A and the second terminal coordinate system WB of the second terminal 1B of FIG. 1, and each coordinate system. And the relationship of various quantities.
  • spatial recognition sharing by coordinate system pairing between the first terminal coordinate system WA and the second terminal coordinate system WB between these two terminals 1 will be described.
  • the position and the second terminal 1B of the origin O B of the second terminal coordinate system WB It is different from the position LB, but is not limited to this. In some cases, their positions may match, and in that case, the same applies. In the following, the relationship between the coordinate systems will be described in a general case where the origin of the world coordinate system and the position of the terminal 1 do not match in this way.
  • the first terminal 1A when the first terminal 1A shares the space recognition with the second terminal 1B, the first terminal 1A performs coordinate system pairing as an operation of sharing the world coordinate system information with each other as one pair.
  • the two terminals 1 (1A, 1B) need only perform coordinate system pairing once. Even if there are three or more terminals 1, the coordinate system pairing may be performed for each pair in the same manner.
  • each terminal 1 (1A, 1B) measures a predetermined amount in each terminal coordinate system (WA, WB), and exchanges various amount data with the other terminal 1.
  • the first terminal 1A has, as the amount 801 to be measured by the own apparatus side, measuring the specific direction vector N A, and the vector P BA between terminals, and a coordinate value d A.
  • the first terminal 1A transmits the data of these quantities 801 to the second terminal 1B.
  • the second terminal 1B has, as the amount 802 to be measured by the own apparatus side, measuring the specific direction vector N B, and the vector P AB between the terminals, and a coordinate value d B.
  • the second terminal 1B transmits the data of these quantities 802 to the first terminal 1A.
  • Each terminal 1 can obtain the relationship between the pair of terminal coordinate systems based on the various quantity data measured by the own machine and the various quantity data obtained from the other party, and from the relationship, the relationship between the terminal coordinate systems can be obtained.
  • the conversion parameter 7 for conversion can be calculated.
  • the world coordinate system information can be shared between the terminals 1 by associating each terminal coordinate system with the conversion parameter 7.
  • the first terminal 1A When only one terminal 1 in the coordinate system pairing, for example, the first terminal 1A performs conversion between the coordinate systems, only the first terminal 1A has the various quantities 801 on the own machine side and the other side.
  • the various quantities 802 may be acquired to generate the conversion parameter 7. In this case, it is not necessary to transmit various quantities 801 from the first terminal 1A to the second terminal 1B. Further, the first terminal 1A may transmit the generated conversion parameter 7 to the second terminal 1B. Then, the conversion can be performed on the second terminal 1B side as well.
  • the quantities have a specific direction vector as the first information, a terminal-to-terminal vector as the second information, and a world coordinate value as the third information.
  • Each terminal 1 uses a specific direction vector as information regarding a specific direction in the real space in the world coordinate system. To determine the relationship between the rotational between coordinate systems, the two different specific direction vector (N A, N B, M A, M B) used.
  • Specific direction vector N A is a representation of the first direction vector in the first terminal 1A, the unit direction vector and n A.
  • Specific direction vector N B is the representation of the first direction vector in the second terminal 1B, the unit direction vector and n B.
  • Specific direction vector M A is a representation of the second direction vector of the first terminal 1A, the unit direction vector and m A.
  • Specific direction vector M B is a representation of the second direction vector of the second terminal 1B, the unit direction vector and m B.
  • a vertical downward direction is used as one specific direction (first specific direction), and an inter-terminal vector described later is used as another specific direction (second specific direction).
  • a specific direction vector N A of the vertically downward direction as a first specified direction, using N B.
  • Specific direction vector N A is the direction vector of the vertically downward direction of the first terminal 1A, the unit direction vector and n A.
  • Specific direction vector N B is the direction vector of the vertically downward direction of the second terminal 1B, the unit direction vector and n B.
  • the vertical downward direction can be measured as the direction of gravitational acceleration by using, for example, a three-axis acceleration sensor which is an acceleration sensor 141 (FIG. 7) provided in the terminal 1.
  • a vertically downward direction, Z-axis Z A, Z B
  • the vertical downward direction which is a specific direction, does not change in the world coordinate system, it is not necessary to measure each time the coordinate system pairing is performed.
  • Each terminal 1 has a terminal position (LA, for example) as information indicating a positional relationship from one terminal 1 (for example, the first terminal 1A) to the other terminal 1 (for example, the second terminal 1B).
  • the information of the vector (that is, the direction and the distance) between LB) is used. This information is referred to as "terminal-to-terminal vector".
  • the inter-terminal vectors P BA and P AB are used.
  • the inter-terminal vector P BA is a vector representing the positional relationship in the direction from the position LA to the position LB of the second terminal 1B with reference to the first terminal 1A.
  • the inter-terminal vector PAB is a vector representing the positional relationship in the direction from the position LB to the position LA of the first terminal 1A with reference to the second terminal 1B. From the first terminal 1A to the second terminal 1B, the vector representation of the first terminal coordinate system WA is P BA, from the second terminal 1B to the first terminal 1A, vector representation of the second terminal coordinate system WB Is PAB .
  • the inter-terminal vector contains information about another specific direction (second specific direction) in real space for finding the orientation relationship between the world coordinate systems.
  • second specific direction another specific direction
  • M A, M B specific direction vector
  • P BA, P AB end-to-end vector
  • each terminal 1 measures the vector between terminals up to the other terminal 1 by using, for example, the distance measuring sensor 13 shown in FIG. 1 or the stereo camera 12.
  • the distance measurement of the positional relationship between the terminals 1 may be described in detail as follows.
  • the distance measuring sensor 13 of the first terminal 1A measures the distance to the second terminal 1B seen in front.
  • the first terminal 1A may measure the shape of the housing of the second terminal 1B from the image of the camera 12 for the recognition of the second terminal 1B, or may be formed in the housing of the second terminal 1B. You may measure using a predetermined marker or the like as a feature point.
  • Each terminal 1 uses coordinate value information representing a position in the world coordinate system.
  • the world coordinate values using the coordinate values d B in the coordinate value d A, and a second terminal coordinate system WB in the first terminal coordinate system WA.
  • d A (x A , y A , z A ) be the coordinate value in the first terminal coordinate system WA for the position LA of the first terminal 1A.
  • the coordinate values in the second terminal coordinate system WB for the position LB of the second terminal 1B, d B (x B , y B, z B) and.
  • Terminal position vector V A is the vector from the origin O A to the position LA.
  • Terminal position vector V B is the vector from the origin O B to the position LB.
  • the vector F A corresponding to the terminal position information, a vector representing the position of the second terminal 1B of the first terminal coordinate system WA of the first terminal 1A, the coordinate values of the first terminal 1A It corresponds to a vector obtained by synthesizing d A (vector VA ) and the inter-terminal vector PBA.
  • Vector F B is a vector representing the position of the first terminal 1A on the second terminal coordinate system WB of the second terminal 1B, the coordinate values of the second terminal 1B d B (vector V B) and the terminal between the vectors P AB Corresponds to the vector obtained by synthesizing and.
  • Position vector G A is the vector of position 21 in the first terminal coordinate system WA
  • position coordinates r A is the coordinate value of the position 21.
  • Position vector G B is the vector of position 21 in the second terminal coordinate system WB
  • the position coordinates r B is the coordinate value of the position 21.
  • Origin between the vectors o BA is a vector from the origin O A of the first terminal coordinate system WA to the origin O B of the second terminal coordinate system WB
  • the origin between vectors o AB is the origin O of the second terminal coordinate system WB is a vector from B to the origin O a of the first terminal coordinate system WA.
  • Vector E A is the vector of view the position 21 from the position LA corresponding to the viewpoint of the user U1.
  • Vector E B is the vector of view the position 21 from position LB corresponding to the viewpoint of the user U2.
  • conversion parameter 7 is a parameter for calculating the conversion of the direction of the coordinate system (in other words, rotation) and the difference between the origins of the coordinate system.
  • the first terminal 1A when enabling the coordinate system conversion on the first terminal 1A, the first terminal 1A is located between the terminal coordinate system (WA, WB) from the various quantities 801 on the own machine side and the various quantities 802 on the other side.
  • the relationship is calculated, the conversion parameter 7 is generated, and the conversion parameter 7 is set in the own machine.
  • the conversion parameter 7 includes a conversion parameter 71 that converts a position or the like in the first terminal coordinate system WA into a position or the like in the second terminal coordinate system WB, and a conversion parameter 7 that converts a position or the like in the second terminal coordinate system WB into the position or the like in the first terminal coordinate system WA.
  • Those transformations are inverse transformations of each other. At least one terminal 1 may hold the conversion parameter 7, and both terminals 1 may hold the same conversion parameter 7.
  • FIG. 9 shows a configuration example of position transmission and coordinate system conversion between the two terminals 1 (1A, 1B) after the coordinate system pairing.
  • Four examples are shown as (A) to (D).
  • the same position 21 (FIG. 8) in the space 2 can be designated and shared between the terminals 1 (1A, 1B) by using the conversion parameter 7.
  • One terminal 1 transmits the designated information of the position 21 and the data of the virtual image 22 to be displayed to the other terminal 1.
  • One or the other terminal 1 uses the conversion parameter 7 to convert the position 21 between the coordinate systems.
  • the first terminal 1A uses the conversion parameter 71 to convert the position coordinate value r A , which is the position in the first terminal coordinate system WA (for example, the position 21 of the display target of the virtual image 22), in the second terminal coordinate system WB. Is converted to the position (position coordinate value r B ) of, and transmitted to the second terminal 1B.
  • the first terminal 1A transmits the position coordinate value r A , which is the position in the first terminal coordinate system WA, to the second terminal 1B, and the second terminal 1B converts the received position coordinate value r A into a conversion parameter. 71 is used to convert to the position coordinate value r B in the second terminal coordinate system WB.
  • (C) shows a third example.
  • the second terminal 1B converts the position coordinate value r B , which is the position in the second terminal coordinate system WB , into the position coordinate value r A in the first terminal coordinate system WA by using the conversion parameter 72, and the first terminal 1B converts the position coordinate value r B into the position coordinate value r A in the first terminal coordinate system WA. Send to terminal 1A.
  • (D) shows a fourth example.
  • the second terminal 1B transmits the position coordinate value r B in the second terminal coordinate system WB to the first terminal 1A, and the first terminal 1A uses the received position coordinate value r B with the conversion parameter 72. Then, it is converted into the position coordinate value r A in the first terminal coordinate system WA.
  • the conversion when transmitting the position from the first terminal 1A to the second terminal 1B, the conversion may be performed by the method (A) or (B), and the position is located from the second terminal 1B to the first terminal 1A.
  • the conversion may be performed by the method (C) or (D).
  • (A) and (D) are cases where the second terminal coordinate system is a common coordinate system
  • (B) and (C) are cases where the first terminal coordinate system is used. This is the case when it becomes a common coordinate system.
  • Table 901 of the conversion parameter 71 has the conversion source terminal coordinate system, the conversion destination terminal coordinate system, the rotation, and the origin representation as items.
  • the "conversion source terminal coordinate system” item stores the identification information of the conversion source terminal 1 (corresponding user in parentheses) and the identification information of the terminal coordinate system possessed by the terminal 1.
  • the “conversion destination terminal coordinate system” item stores the identification information of the conversion destination terminal 1 (corresponding user in parentheses) and the identification information of the terminal coordinate system possessed by the terminal 1.
  • the "Rotation” item stores information about the representation of rotation between those terminal coordinate systems.
  • the "origin representation” item stores a representation of the difference in origin between those terminal coordinate systems.
  • the first row of the table 901 of the conversion parameter 71 includes rotation (q AB ) for conversion from the first terminal coordinate system WA of the first terminal 1A to the second terminal coordinate system WB of the second terminal 1B. It has a representation (o BA ) of the origin of the second terminal coordinate system WB as seen in the first terminal coordinate system WA.
  • FIG. 10 shows an example of a processing flow in the case where space 2 is shared and measured between two terminals 1 (1A, 1B) as shown in FIG. 3 and one space data 6 is obtained.
  • FIG. 10 has a flow of the first terminal 1A (steps S1A to S12A) and a flow of the second terminal 1B (steps S1B to S12B).
  • steps S1A and S1B a wireless communication connection related to spatial recognition sharing is established between the first terminal 1A and the second terminal 1B through the processing of the communication device 107 of FIG.
  • the user performs an input operation on the terminal 1 which is the HMD to start the measurement of the space 2.
  • the user U1 inputs a measurement start instruction to the first terminal 1A
  • the user U2 inputs a measurement start instruction to the second terminal 1B.
  • communication related to the start of measurement may be performed between the terminals 1 (1A, 1B).
  • the terminal 1 may display a guide image related to the operation of starting or ending the measurement on the display surface 11.
  • the user performs input operations for starting and ending the measurement accordingly.
  • the input operation may be a hardware button operation, a voice recognition operation, or an operation by detecting a predetermined gesture such as moving a finger.
  • the terminal 1 may control the start and end of the measurement by a preset setting or an automatic determination.
  • steps S2A and S2B the division of the space 2 region and the measurement range as shown in FIGS. 3 and 4 may be set.
  • the terminal 1 may display an image related to the setting of sharing on the display surface 11. The user performs the setting operation according to the image. Based on steps S2A and S2B, each terminal 1 starts the following steps.
  • Steps S3A to S6A and S3B to S6B are steps for performing coordinate system pairing.
  • the method of the first embodiment is a method of measuring the space 2 after pairing the coordinate system. Therefore, the measurement start instruction in steps S2A and S2B is, in other words, a coordinate system pairing start instruction.
  • a coordinate system pairing request is transmitted from one terminal 1 to the other terminal 1.
  • the first terminal 1A transmits a coordinate system pairing request to the second terminal 1B.
  • the second terminal 1B receives the coordinate system pairing request and accepts it, the second terminal 1B transmits a coordinate system pairing response to the effect of accepting the request to the first terminal 1A.
  • each terminal 1 may display an image for guiding the coordinate system pairing (FIG. 11 described later) on the display surface 11.
  • the first terminal 1A and the second terminal 1B measure various quantities (FIG. 8) for coordinate system pairing in time with each other.
  • the first terminal 1A measures various quantities 801 and the second terminal 1B measures various quantities 802.
  • the first terminal 1A and the second terminal 1B exchange various amount data by transmitting various amount data on the own machine side to each other.
  • the first terminal 1A acquires various quantities 802 from the second terminal 1B
  • the second terminal 1B acquires various quantities 801 from the first terminal 1A.
  • the first terminal 1A and the second terminal 1B generate conversion parameters 7 and set them in their own machines.
  • the first terminal 1A generates conversion parameters 7 (for example, both conversion parameters 71 and 72 in FIG. 9) using the quantities 801 on the own machine side and the quantities 802 on the other side and sets them in the own machine.
  • the second terminal 1B generates conversion parameters 7 (for example, both conversion parameters 71 and 72 in FIG. 9) using the quantities 802 on the own machine side and the quantities 801 on the other side and sets them in the own machine.
  • the state of coordinate system pairing is established.
  • the flow may be such that the measurement start instruction input in steps S2A and S2B is performed after the coordinate system pairing is established.
  • each terminal 1 measures the area of space 2 due to sharing (FIGS. 3 and 4).
  • step S7A the first terminal 1A measures the area 2A using the distance measuring sensor 13 or the like to obtain the measurement data 411.
  • step S7B the second terminal 1B measures the area 2B using the distance measuring sensor 13 or the like to obtain the measurement data 412.
  • each terminal 1 configures subspace data based on the measurement data and transmits each other to the other terminal 1 (FIG. 4).
  • the first terminal 1A obtains the subspace data D1A on the own machine side and the subspace data D1B from the other side.
  • the second terminal 1B obtains the subspace data D1B on the own machine side and the subspace data D1A from the other side.
  • each terminal 1 uses the conversion parameter 7 to convert the subspace data described in the terminal coordinate system of the other party into the portion described in the terminal coordinate system of the own machine, if necessary. Convert to spatial data (Fig. 4). For example, as shown in FIG. 9D, the first terminal 1A converts the subspace data D1B into the subspace data D1BA using the conversion parameter 72. As shown in FIG. 9B, the second terminal 1B converts the subspace data D1A into the subspace data D1AB using the conversion parameter 71. Further, each terminal 1 integrates the subspace data obtained from the own machine side and the subspace data obtained from the other side into one to obtain the spatial data 6 in units of the space 2 (FIG. 4). ).
  • the first terminal 1A obtains the spatial data 6A (D1) from the subspace data D1A and the subspace data D1BA.
  • the second terminal 1B obtains the spatial data 6B (D1) from the subspace data D1B and the subspace data D1AB.
  • both terminals 1 create their respective spatial data 6 (6A, 6B) in parallel is shown, but the present invention is not limited to this, and the spatial data 6 created by one terminal 1 is used as the partner. It may be transmitted to the terminal 1 of.
  • each terminal 1 determines whether or not to end the spatial measurement in the coordinate system pairing state.
  • the user may input the measurement end instruction to the terminal 1, or the terminal 1 may end the measurement by automatic determination.
  • the terminal 1 determines that a predetermined rate or more of the target space 2 or the shared area has been measured or created based on the measurement data or the spatial data, the terminal 1 has measured or created the target space 2 or the shared area. It may be determined that the measurement is completed.
  • the rate is a variable set value.
  • each terminal 1 uses the space 2 in a state where the recognition of the space 2 is shared with the other terminal 1 by using the space data 6 created above. If the purpose is to create the spatial data 6, steps S11A and S11B can be omitted.
  • the use of the space 2 is typically performed by displaying the same virtual image 22 at a desired same position 21 in the space 2 and performing work or the like by using the AR function between the terminals 1 (1A, 1B). (Fig. 5).
  • each terminal 1 releases the state of the coordinate system pairing. For example, when the use of the space 2 is temporary, each terminal 1 may delete the conversion parameter 7 or the space data 6. Not limited to this, each terminal 1 may maintain the state of coordinate system pairing thereafter. That is, each terminal 1 may continue to hold the conversion parameter 7 and the spatial data 6 thereafter. In that case, steps S12A and S12B can be omitted. For example, each terminal 1 holds the conversion parameter 7 and the spatial data 6 inside its own machine, so that when the same space 2 is reused thereafter, processing such as re-measurement can be omitted.
  • FIG. 11 shows an image of a graphical user interface (GUI) for a guide or the like on the display surface 11 of the terminal 1 when pairing the coordinate system between the terminals 1 (steps S3A, S3B, etc. in FIG. 10).
  • GUI graphical user interface
  • FIG. 11 is an example of the display surface 11 of the first terminal 1A of the user U1, and the second terminal 1B of the user U2 is visible.
  • the first terminal 1A recognizes another user or the terminal 1 based on, for example, an image of the camera 12. For example, the first terminal 1A superimposes and displays the image 1101 according to the position where the second terminal 1B is recognized.
  • the image 1101 is a virtual image such as a marker indicating the existence and position of the second terminal 1B. Further, the first terminal 1A displays an image 1102 for confirming whether or not to perform coordinate system pairing with the second terminal 1B of the recognized user U2.
  • the image 1102 is a message image such as "Do you want to pair with the user U2? YES / NO".
  • the user U1 performs a YES / NO selection operation on the image 1102, and accordingly, the first terminal 1A determines whether or not to execute the coordinate system pairing with the second terminal 1B, and controls the start.
  • the first terminal 1A displays the image 1103 when measuring various quantities 801 in step S4A.
  • Image 1103 is, for example, a message image such as "Pairing. Please do not move as much as possible.”
  • various quantities can be measured with high accuracy by keeping them as stationary as possible. Therefore, the output of the image 1103 of such a guide is effective.
  • Equation 1 cos ( ⁇ / 2) + n X sin ( ⁇ / 2) i + n Y sin ( ⁇ / 2) j + n Z sin ( ⁇ / 2) k
  • the symbols representing coordinate points and vectors that are not component display are quaternion display. Further, it is assumed that the symbol representing rotation is a normalized quaternion.
  • FIG. 12 shows an explanatory diagram of the coordinate system transformation.
  • Figure (A) in 12 similarly to FIG. 8, between the first terminal coordinate system WA and the second terminal coordinate system WB, and representation of the same position 21 in the real space, the coordinate origin (O A, O B ) is shown as an expression of the difference.
  • the coordinate origin As an expression of the position 21, with a position vector G A, the position coordinates r A, the position vector G B and the position coordinates r B.
  • the inter-origin vectors o BA and o AB are provided as an expression of the difference between the coordinate origins.
  • Origin between the vectors o BA is a representation of the origin O B of the second terminal coordinate system WB in the first terminal coordinate system WA.
  • Origin between the vectors o AB is a representation of the origin O A of the first terminal coordinate system WA in the second terminal coordinate system WB.
  • the terminal coordinate system for the two different specific directions in real space (vectors between corresponding specific direction vector and a terminal) (WA, WB) expressed in (N A , N B, P BA, P AB) is obtained.
  • the rotation operation between the coordinate systems that matches those expressions can be obtained by the above-mentioned operation using the normalized quaternion. Therefore, by combining the information with the information of the origin of each coordinate, it is possible to convert the position coordinates between the terminal coordinate systems.
  • the relationship of the terminal coordinate system (WA, WB) can be calculated as follows. In the following, the calculation for obtaining the rotation and the coordinate origin difference in the case of converting the representation of the coordinate value and the vector value in the second terminal coordinate system WB into the representation in the first terminal coordinate system WA will be described.
  • FIG. 12B shows a rotation operation for aligning the direction between the first terminal coordinate system WA and the second terminal coordinate system WB, for example, each axis (X B , Y B) of the second terminal coordinate system WB. shows each axis (X a of the direction of the Z B) first terminal coordinate system WA, Y a, the image of the rotary q AB to match the direction of the Z a) in a simple manner.
  • a unit direction vector m A between the terminals 1 and m B is the second specific direction, from the first terminal 1A on the real space for the unit vector in the direction toward the second terminal 1B, expressed in the first terminal coordinate system WA and the It is an expression in the two-terminal coordinate system WB.
  • m A [P BA]
  • m B [-P AB ]
  • the angle formed by the direction n A1 and the direction m A1 is equal to the angle formed by the unit vector n B and the unit direction vector m B. Further, since the two specific directions are different directions as a premise, the angle formed by the unit vector n B and the unit direction vector m B is not 0. Therefore, it is possible to construct a rotation q T2 in which the direction n A1, that is, the unit vector n B is used as an axis and the direction m A1 is superimposed on the unit direction vector m B. Specifically, the rotation q T2 is given below.
  • q T2 R ([ PT (n B ) m A1 ], [ PT (n B ) m B ])
  • n A1 is the rotation axis direction n B in the same direction of rotation q T2, invariant This rotation q T2. Further, the direction m A1 is rotated by the rotation q T2 in the unit direction vector m B.
  • n B q T2 n A1 q T2 *
  • m B q T2 m A1 q T2 *
  • coordinate values d A, d B of is quaternion number representation of the coordinate values defined by Equation 3.
  • Figure 12 of (A) expressed in the coordinate values of the origin O B of the second terminal coordinate system WB in the first terminal coordinate system WA is o BA, the origin O A world coordinate system WA in the world coordinate system WB The representation of the coordinate values is o AB .
  • the origin coordinate value representation (o BA, o AB) is determined as shown in Equation A below.
  • the terminal 1 can measure the space 2 and create the spatial data 6, and the spatial data can be created between the plurality of terminals 1 of a plurality of users. 6 can be acquired and used, and the recognition of space 2 can be shared. According to this system and method, the above-mentioned functions and operations can be efficiently realized, the convenience of the user can be improved, and the workload can be reduced. According to this system and method, by using the spatial data 6, various application functions and services can be realized for the user.
  • the terminal 1 of each user may transmit the spatial data 6 described in the terminal coordinate system created by the user to an external device such as a PC or a server and register the data.
  • the terminal 1 may transmit the generated conversion parameter 7 to an external device such as a PC or a server and register it.
  • each terminal 1 measures the space 2 and creates the spatial data 6 described in the terminal coordinate system of the own machine before performing the coordinate system pairing. After that, the terminal 1 performs coordinate system pairing with another terminal 1.
  • the terminal 1 uses the conversion parameter 7 to convert the spatial data 6 into the common terminal coordinate system, that is, the spatial data 6 described in the common coordinate system.
  • FIG. 13 shows an explanatory diagram of coordinate system pairing and the like in the case of sharing the spatial recognition by sharing the measurement of the space 2 among three or more terminals 1 in the modified example 2 of the first embodiment.
  • terminals 1A, 1B, 1C, and 1D are provided as four terminals 1 of four users (UA, UB, UC, UD).
  • These terminals 1 are grouped together to perform measurement and recognition sharing regarding the same space 2.
  • space recognition is performed by performing the coordinate system pairing between the terminals 1. Sharing can be realized.
  • the terminal 1C of the user UC as a own machine.
  • the coordinate system pairing 1301 is established between the terminal 1A and the terminal 1B, for example.
  • the coordinate system pairing 1302 is then performed between the terminal 1B and the terminal 1C.
  • the coordinate system pairing 1303 between the terminal 1C and the terminal 1A can be indirectly realized. This will be described below.
  • the terminal 1B obtains the rotation q BA and the origin expression o AB for conversion between the terminal coordinate system WA and the terminal coordinate system WB as the information 1321 of the conversion parameter.
  • the rotation q BA is a rotation in which the expression in the terminal coordinate system WA is changed to the expression in the terminal coordinate system WB.
  • Origin representation o AB are the coordinate values of the terminal coordinate system WB about the origin O A terminal coordinate system WA.
  • the terminal 1A obtains the rotation q AB and the origin expression o BA as the conversion parameter information 1311.
  • the terminal 1C obtains the rotation q CB and the origin expression o BC as the conversion parameter information 1331.
  • the rotation q CB is a rotation in which the expression in the terminal coordinate system WB is changed to the expression in the terminal coordinate system WC.
  • Origin representation o BC are the coordinate values of the terminal coordinate system WC for the origin O B of the terminal coordinate system WB.
  • the terminal 1B obtains the rotation q BC and the origin expression o CB as the conversion parameter information 1322.
  • the terminal 1C receives the conversion parameter information 1321 (rotation q BA and origin expression o AB ) from the terminal 1B, and holds it as the information 1332.
  • the terminal 1C uses the conversion parameter information 1331 (q CB , o BC ) and information 1332 (q BA , o AB ) to rotate q CA with respect to the indirect coordinate system pairing 1303 with the terminal 1A.
  • the origin expression o AC can be calculated by the following formula.
  • the rotation q CA is a rotation in which the expression in the terminal coordinate system WA is changed to the expression in the terminal coordinate system WC.
  • Origin representation o AC are the coordinate values of the terminal coordinate system WC for the origin O A terminal coordinate system WA.
  • the terminal 1C transmits the information 1333 (q CA , o AC ) of the conversion parameter to the terminal 1A.
  • Terminal 1A holds it as information 1312 (q CA , o AC ).
  • the terminal coordinate system WA and the terminal coordinate system WC can be converted even in the terminal 1A. That is, the terminal 1A holds the information 1313 (q AC , o CA ) of the conversion parameter related to the reverse conversion.
  • each terminal 1 may hold either q IJ or q JI , and may hold one of o JI and o I J.
  • FIG. 14 shows a table 1401 of conversion parameters 7 held by the terminal 1A, a table 1402 of conversion parameters 7 held by the terminal 1B, and a table of conversion parameters 7 held by the terminal 1C in the coordinate system pairing of the group of FIG. 1403 is shown.
  • Each terminal 1 in the group holds conversion parameter information with each other terminal 1 in the group in a table.
  • Each table has a "counterpart" item and stores the identification information of the other party's terminal 1 and the terminal coordinate system of the coordinate system pairing (here, including the direct coordinate system pairing and the indirect coordinate system pairing). ..
  • the terminal 1C holds the conversion parameter information between each pair while exchanging information with each terminal 1 (1A, 1B).
  • the table 1403 has information 1333 (q CA , o AC ) of the conversion parameter with the terminal 1A and information 1331 (q CB , o BC ) of the conversion parameter with the terminal 1B.
  • the spatial recognition can be shared within the group by sequentially performing coordinate system pairing with any two terminals 1 as a pair.
  • a certain terminal 1C performs a coordinate system pairing between the terminal 1A and another terminal 1B that has already been paired with the coordinate system without performing a direct coordinate system pairing process with the certain terminal 1A.
  • indirect coordinate system pairing 1303 is possible.
  • the terminal 1D may perform the same procedure for one terminal 1 in the group, for example, the coordinate system pairing 1304 with the terminal 1C.
  • the processing of coordinate system pairing with the terminal 1 is unnecessary.
  • FIG. 15 shows a configuration example relating to the coordinate system pairing and the conversion parameter 7 in the modification 3 of the first embodiment.
  • one representative terminal 1 (described as “representative terminal”) is provided in a group consisting of a plurality of terminals 1 for sharing spatial recognition.
  • the representative terminal holds the conversion parameter 7 with each terminal 1 of the group.
  • Each terminal 1 other than the representative terminal holds a conversion parameter 7 with the representative terminal.
  • terminal 1A is a representative terminal.
  • the terminal 1A which is a representative terminal, sequentially performs coordinate system pairing (1501, 1502, 1503) with each of the other terminals 1 (1B, 1C, 1D).
  • the terminal coordinate system WA of the representative terminal is used as a reference.
  • a shared position 21 or the like is designated and transmitted between terminals 1.
  • Table 1511 of the conversion parameters 7 held by the terminal 1A has conversion parameter information with each terminal 1 (1B, 1C, 1D) as in the table 1401 of FIG.
  • the table 1512 held by the terminal 1B has conversion parameter information (q BA , o AB ) with the representative terminal.
  • the table 1513 held by the terminal 1C has conversion parameter information (q CA , o AC ) with the representative terminal.
  • the table 1514 held by the terminal 1D has conversion parameter information (q DA , o AD ) with the representative terminal.
  • the terminal 1B is to specify the position 21 (FIG. 13) in the space 2, the terminal 1B, the expression of its position 21 on the terminal coordinate system WB to (r B), using the table 1512, the representative terminal Is converted into the expression (r A ) and transmitted to the representative terminal.
  • the representative terminal uses the table 1511 to express the expression (r A ) in each terminal coordinate system (WC, WD) of each other terminal 1 (1C, 1D) in the group (r C , r D ). Convert to. Then, the representative terminal transmits the position information (r C , r D ) to each of the other terminals 1 (1C, 1D).
  • the representative terminal holds the conversion parameter 7 and performs each conversion.
  • This modification corresponds to, for example, FIG. 15, in which terminals 1B, 1C, and 1D do not hold tables 1512, 1513, and 1514 of conversion parameters 7.
  • terminal 1B representing the position 21 of the terminal coordinate system WB to (r B), and transmits the representative terminal.
  • the representative terminal converts the expression (r B ) into the expression (r A , r C , r D ) in each terminal coordinate system (WA, WC, WD) using the table 1511, and converts it into each terminal 1. introduce.
  • the terminal coordinate system of the representative terminal may be fixed as a common coordinate system in the group, and the position may be transmitted between the terminals 1.
  • the representative terminal does not hold the conversion parameter 7.
  • Each terminal 1 other than the representative terminal holds a conversion parameter 7 for conversion of the representative terminal with the terminal coordinate system.
  • This modification corresponds to, for example, in FIG. 15, a configuration in which terminal 1A, which is a representative terminal, does not hold the table 1511.
  • the terminal 1B converts the representation (r B ) of the position 21 in the terminal coordinate system WB into the representation (r A ) in the representative terminal using the table 1512, and transmits the representation to the representative terminal.
  • the representative terminal transmits the expression (r A ) to each of the other terminals 1 (1C, 1D) in the group.
  • Each terminal 1 (1C, 1D) converts its representation (r A ) into a representation (r C , r D ) in its own terminal coordinate system using its own tables 1513, 1514.
  • the position transmission between the terminals 1 may be performed without going through the representative terminal.
  • the terminal 1B converts the representation (r B ) of the position 21 in the terminal coordinate system WB into the representation (r A ) in the representative terminal using the table 1512, and transmits the representation to the terminal 1C.
  • the terminal 1C converts the expression (r A ) into the expression (r C ) of its own machine using the table 1513.
  • the amount of data of the conversion parameter 7 held in the entire system can be reduced.
  • FIG. 16 and the like a space coordinate system which is a world coordinate system describing the space 2 is used separately from each terminal coordinate system of the plurality of terminals 1 in the first embodiment.
  • the second embodiment deals with coordinate system pairing between the terminal coordinate system and the spatial coordinate system, in other words, association and conversion between those coordinate systems.
  • the spatial coordinate system corresponds to the common coordinate system of the basic configuration (FIG. 31).
  • Each terminal coordinate system of each terminal 1 that shares the measurement of space 2 is associated with each other via a common spatial coordinate system. Further, the spatial data 6 of the space 2 can be described in particular by using a common spatial coordinate system. The terminal 1 creates the spatial data 6 described in the spatial coordinate system. The recognition of the space 2 can be shared between the terminals 1 by using the space data 6.
  • the terminal 1 measures the relationship with a predetermined feature (feature point or feature line) in the space 2 as various quantities.
  • the terminal 1 obtains the relationship between the spatial coordinate system associated with the feature and the terminal coordinate system of the own machine based on the measured value, and calculates the conversion parameter 7 based on the relationship.
  • the terminal 1 may register the created spatial data 6 in the DB 5 of the external server 4.
  • the server 4 corresponds to the information processing device 9 having the basic configuration (FIG. 31).
  • the second embodiment deals with the concept of registering the spatial data 6 from the terminal 1 to an external source such as the server 4.
  • the server 4 holds and manages spatial data 6, which is external data, as an external source for the terminal 1.
  • the spatial data 6 registered as a library in the DB 5 of the server 4 can be appropriately referred to and acquired from each terminal 1 (a terminal that does not perform spatial measurement may be used).
  • the terminal 1 acquires the registered spatial data 6 regarding the space 2 to be used from the server 4, and uses the spatial data 6 to quickly obtain an image such as AR without requiring measurement of the space 2.
  • a certain terminal 1 measures a certain space 2 once, creates spatial data 6, and registers it in the server 4. After that, when the space 2 is used again, the terminal 1 does not need to measure the space 2 again and can use the space data 6 acquired from the server 4.
  • the business operator may use the server 4 to provide the management service of the spatial data 6.
  • FIG. 16 shows the configuration of the space recognition system of the second embodiment, and in particular, illustrates the coordinate system pairing between the first terminal coordinate system WA of the first terminal 1A and the space coordinate system W1 of the space 2. show.
  • the first terminal 1A and the second terminal 1B are provided as the terminal 1 that shares the measurement of the space 2.
  • the second terminal coordinate system WB and the like of the second terminal 1B are not shown.
  • the information of the space coordinate system W1 regarding the space 2 is defined in advance.
  • information such as the position of the space 2 and predetermined features (feature points and feature lines) is also defined.
  • the spatial coordinate system W1 may be, for example, a local coordinate system peculiar to a building, or a coordinate system common to the earth, a region, or the like.
  • Space coordinate system W1 has is fixed in the real space, the origin O 1, the axis X 1 as 3 orthogonal axes, the axis Y 1, and a shaft Z 1.
  • the origin O 1 of the spatial coordinate system W1 is located at a position distant from the space 2 such as a room, but the origin O 1 may be in the space 2.
  • the coordinate system pairing between the terminal coordinate system (WA, WB) of each terminal 1 and the spatial coordinate system W1 of the space 2 is handled.
  • Those terminals 1 (1A, 1B) share the recognition of the space 2 by using the spatial data 6 created by sharing.
  • Each terminal 1 measures the shape and the like of the space 2 in the terminal coordinate system of its own machine and creates the space data 6 (particularly the space shape data) that describes the space 2.
  • each terminal 1 performs coordinate system pairing with the space coordinate system W1 by using a predetermined feature in the space 2 as a clue.
  • the feature points, feature lines, and the like, which are predetermined features in the space 2 are defined in advance.
  • This feature may be, for example, a boundary line such as a wall or a ceiling, or a predetermined arrangement or the like.
  • the feature points in the predetermined features of the space 2 have different meanings from the feature points of the point cloud data obtained by the distance measuring sensor 13 described above.
  • the first terminal 1A recognizes a predetermined feature of the space 2 and measures various quantities to grasp the relationship between the first terminal coordinate system WA and the space coordinate system W1. Based on this relationship, the first terminal 1A generates a conversion parameter 7 between the first terminal coordinate system WA and the spatial coordinate system W1 and sets it in its own machine.
  • Each terminal 1 measures the shared area in the space 2 in the state of the coordinate system pairing.
  • the first terminal 1A measures the region 2A and obtains the measurement data 1601 described in the first terminal coordinate system WA.
  • the first terminal 1A constitutes the subspace data 1602 from the measurement data 1601.
  • the first terminal 1A converts the subspace data 1602 into the subspace data described in the spatial coordinate system W1 by using the conversion parameter 7.
  • the first terminal 1A acquires the subspace data created by the second terminal 1B from the second terminal 1B. Then, the first terminal 1A integrates the subspace data acquired on the own machine side and the subspace data acquired from the other party into one, so that the space 2 described in the spatial coordinate system W1 is used as a unit. Obtain the created spatial data 6.
  • the second terminal 1B side can also obtain the spatial data 6 in the same manner as the first terminal 1A side.
  • the space recognition system of the second embodiment has a server 4 connected to a communication network.
  • the server 4 is a server device managed by a business operator or the like, and is provided on, for example, a data center or a cloud computing system.
  • the server 4 registers and holds the ID and the spatial data 6 as a library in the internal or external database (DB) 5.
  • Spatial data 6 is similarly registered for each of the plurality of spaces 2.
  • the server 4 may manage the spatial data 6 closed in a unit such as a company, or may manage a large number of spatial data 6 in a unit such as the earth or a region.
  • each spatial data 6 relating to each space 2 in the building is registered in the server 4 of a computer system such as a corporate LAN.
  • the spatial data 6 relating to each space 2 in the real space is registered as a library in the DB 5 of the server 4 which is an external source.
  • the space shape data 61 of the space data 6 of the DB 5 is not registered.
  • the spatial data 6 of the DB 5 includes the spatial shape data 61 and the feature data 62.
  • the space shape data 61 is data representing the shape of the space 2 and the like described in the space coordinate system W1, and is a part created by the terminal 1.
  • the feature data 62 includes data that defines various quantities of predetermined features (feature points, feature lines, etc.) in the space 2.
  • the feature data 62 is referred to when the coordinate system is paired by the terminal 1.
  • the spatial data 6 of the DB 5 may be described in a unique spatial coordinate system corresponding to the space 2, or may be described in a common spatial coordinate system in a plurality of related spaces 2 (for example, a building).
  • the common spatial coordinate system may be a common coordinate system within the earth or a region. For example, a coordinate system using latitude, longitude, and altitude in GPS or the like may be used.
  • this spatial data 6 is an example, and the details are not limited.
  • data different from the spatial data 6 there may be predetermined spatial coordinate system W1 and data related to features / quantities.
  • Feature data 62 may be described as part of the spatial shape data 61.
  • the feature data 62 may be held in the terminal 1 in advance.
  • Various types of data may be held in different locations and associated with each other through identification information.
  • the server 4 is not limited to one, and may be a plurality of servers 4, and may be, for example, a server 4 associated with each one or more spaces 2.
  • each terminal 1 can register the spatial data 6 created by the measurement of the space 2 in the DB 5 of the server 4. At that time, the spatial data 6 created by the terminal 1 is registered with respect to the spatial data 6 (particularly the spatial shape data 61) registered in the DB 5 in advance. In other words, the content of the spatial data 6 of the server 4 is appropriately updated according to the registration of the spatial data 6 from the terminal 1. Then, each terminal 1 can appropriately acquire and use the registered spatial data 6 from the DB 5 of the server 4. Each terminal 1 does not have to hold the spatial data 6 inside its own device.
  • the second embodiment is a case where the spatial data 6 of each space 2 is registered as a library in an external source such as a server 4, but the present invention is not limited to this, and the spatial data 6 is held in the terminal 1 as a library. May be good.
  • Each terminal 1 that shares the recognition of the space 2 may only create, exchange, share, and hold the spatial data 6 between the terminals 1.
  • FIG. 17 shows an explanatory diagram of the coordinate system pairing between the terminal coordinate system WA and the spatial coordinate system W1 in the second embodiment.
  • a predetermined feature in other words, a feature
  • a feature point or a feature line in a predetermined object 1700 such as a wall or a ceiling is used.
  • the terminal 1 uses the predetermined feature points and feature lines when pairing the coordinate system with the spatial coordinate system W1.
  • the points at the four corners of the rectangular surface of the object 1700 such as a wall are used.
  • three feature points and two feature lines corresponding to the left and top sides of the surface of the object 1700 are used in particular.
  • the two feature lines correspond to two specific directions.
  • the predetermined feature in the space 2 is defined by the feature data 62 (FIG. 16), and may be arbitrary as long as the terminal 1 can be recognized by a camera, a sensor, or the like.
  • the predetermined feature is not limited to a wall or the like, and may be, for example, a predetermined object set by the user in the room.
  • the position of the origin O A terminal coordinate system WA unlike the first position LA of the terminal 1, also the position of the feature point in the position and space 2 of the origin O 1 space coordinate system W1 It is different from L1 but is not limited to this.
  • L1 the position of the origin of the terminal coordinate system and the position of the terminal 1 do not match
  • the position of the origin of the spatial coordinate system and the position of the feature point in the space 2 do not match will be described.
  • Terminal position vector V A is the vector from the origin O A to the position LA.
  • the feature point position vector V 1 is a vector from the origin O 1 to the position L1.
  • the terminal 1 acquires information on the spatial coordinate system W1 from the server 4 (or the reference terminal in the modified example).
  • the terminal 1 refers to the feature data 62 of the spatial data 6 from the server 4.
  • the feature data 62 includes data of various quantities 1702 relating to features on the space 2 side (corresponding object 1700).
  • the terminal 1 measures various quantities 1701 on the own machine side by using the distance measuring sensor 13 and the like.
  • the terminal 1 obtains the relationship between the terminal coordinate system WA and the space coordinate system W1 based on the quantities 1702 on the space 2 side and the measured quantities 1701 on the own machine side. Based on the relationship, the terminal 1 calculates the conversion parameter 7 between those coordinate systems and sets it in its own machine.
  • the quantities have a specific direction vector as the first information, a world coordinate value as the second information, and a spatial position vector as the third information.
  • a specific direction vector as the first information
  • a world coordinate value as the second information
  • a spatial position vector as the third information.
  • FIG. 17 having a various amount 1701 of own device side, a first specific direction vector N A, a second specific direction vector M A, the coordinate value d A, and the spatial position vector P 1A.
  • As various quantities on the space 2 side it has a first specific direction vector N 1 , a second specific direction vector M 1 , and a coordinate value d 1 .
  • the terminal 1 uses the specific direction vector as information regarding the specific direction in the space 2 in the terminal coordinate system.
  • This specific direction includes a direction measured by a sensor of the terminal 1, such as a vertically downward direction, and a direction corresponding to a feature line in space 2, for example, a direction corresponding to the left side or the upper side of the object 1700.
  • the terminal 1 may use two different unit vectors in a specific direction from a plurality of candidates.
  • the representation in the spatial coordinate system W1 for these unit vectors and n 1, m 1, is a representation of the terminal coordinate system WA n A, and m A.
  • the unit vectors n 1 and m 1 in the spatial coordinate system W1 are defined in advance and can be obtained from the feature data 62 of the server 4.
  • the vertical downward direction can be measured as the direction of gravitational acceleration using an acceleration sensor as described above.
  • a vertically downward direction, Z-axis (Z A, Z 1) may be set as a negative direction. In any case, since this vertical downward direction does not change in the world coordinate system, it is not necessary to measure each coordinate system pairing.
  • the north direction of the geomagnetism can be measured by using the geomagnetism sensor 143 (FIG. 7) provided in the terminal 1. Since the geomagnetism may be affected by the structure, it is preferable to measure each coordinate system pairing. If it is known that the influence of the structure is sufficiently small, the measurement may be omitted and the direction recognized as the north direction of the geomagnetism may be used.
  • the measurement can be performed as follows.
  • the terminal 1 measures the position coordinate values in the terminal coordinate system WA for each of the feature lines for two different feature points constituting the feature line.
  • Terminal 1 the direction vector from the measured values determined (e.g. direction vector N A corresponding to the left side (n A), the direction vector M A corresponding to the upper side (m A)).
  • This coordinate value can be measured by, for example, the distance measuring sensor 13 of the terminal 1.
  • the terminal 1 uses coordinate value information representing a position in the terminal coordinate system.
  • the coordinate values d A at the first terminal coordinate system WA and using the coordinate values d 1 in the spatial coordinate system W1.
  • one feature point on the upper left is set to the position L1 (coordinate value d 1 ).
  • the spatial position vector (spatial position vector P1A ) is a vector from the position LA of the terminal 1 to the position L1 of the feature point in the space 2. From this spatial position vector, information on the positional relationship between the two coordinate systems (WA, W1) can be obtained. This spatial position vector can be measured by, for example, the distance measuring sensor 13 of the terminal 1.
  • the position vector G A is the vector position 21 of the first terminal coordinate system WA
  • position coordinates r A is the coordinate value of the position 21
  • the position vector G 1 is a vector of the position 21 in the spatial coordinate system W1
  • the position coordinate value r 1 is a coordinate value of the position 21.
  • the inter-origin vector o 1A is a vector from the origin O A to the origin O 1 , and is a representation of the origin O 1 in the first terminal coordinate system WA.
  • Origin between the vectors o A1 is a vector from the origin O 1 to the origin O A, is a representation of the origin O A in the spatial coordinate system W1.
  • any world coordinate system may be used for the recognition of the position in the space 2 by the terminal 1.
  • the position in the spatial coordinate system W1 may be converted to the position in the first terminal coordinate system WA by the conversion parameter 73.
  • the position in the first terminal coordinate system WA may be converted to the position in the spatial coordinate system W1 by the conversion parameter 74.
  • the table of transformation parameters 73 in the example of FIG. 17 has spatial coordinate systems, terminal coordinate systems, rotations, and origin representations as items.
  • the "spatial coordinate system” item stores the identification information of the spatial coordinate system.
  • the "terminal coordinate system” item stores the identification information of the terminal coordinate system or the corresponding identification information of the terminal 1 or the user.
  • the "Rotation” item stores information on the representation of rotation between those spatial coordinate systems and the terminal coordinate system (eg q A1 ).
  • the "origin expression” item stores information on the expression of the difference between the origin of the spatial coordinate system and the origin of the terminal coordinate system (example: o 1A ).
  • the conversion parameter 7 in the second embodiment can be configured by the parameters introduced in the above description. In the configuration and retention of the conversion parameter 7, as in the first embodiment, since they can be easily converted to each other, for example , q 1A may be used instead of the rotation q A1.
  • each terminal 1 can create spatial data 6 in accordance with the spatial coordinate system W1 of the space 2 as the common coordinate system and register it in the server 4, and can be registered by a plurality of users.
  • the recognition of space 2 can be shared among a plurality of terminals 1.
  • the terminal 1 measures the space 2 and creates the spatial data 6 described in the terminal coordinate system of the own machine before performing the coordinate system pairing. After that, the terminal 1 performs coordinate system pairing with the spatial coordinate system W1 and uses the conversion parameter 7 to convert the spatial data 6 described in the terminal coordinate system into the spatial data 6 described in the spatial coordinate system W1. Convert.
  • the information provided between the terminals 1 or between the terminals 1 and the server 4 may include data such as a virtual image (AR object) related to a function such as AR and arrangement position information of the virtual image.
  • AR object virtual image
  • FIG. 16 such data may be exchanged between the server 4 and each terminal 1 through the spatial data 6.
  • Data such as an AR object may be provided from the terminal 1 to the server 4 and registered in association with the spatial data 6.
  • Data such as an AR object may be provided from the server 4 to the terminal 1 together with the spatial data 6.
  • the library of DB5 in the spatial data 6, the data of the AR object to be arranged and displayed in the space 2 and the arrangement position information and the like are registered in association with the spatial shape data 61 and the like.
  • various services can be provided to the user through the terminal 1.
  • a store that sells products can provide the terminal 1 with an AR object such as a product advertisement together with the space data 6.
  • FIG. 18 shows the configuration of a modified example (referred to as modified example 4) of the second embodiment.
  • a specific terminal 1 is used as a reference (described as a "reference terminal")
  • the terminal coordinate system of the reference terminal is used as a reference (referred to as a "reference coordinate system"). You may.
  • the reference terminal measures and holds the features (directions of feature points and feature lines) of the space 2 as various quantity data 1800 in the reference coordinate system.
  • the reference terminal performs coordinate system pairing 1801 with the space coordinate system W1 in space 2.
  • Each terminal 1 other than the reference terminal receives various quantity data 1800 from the reference terminal and performs coordinate system pairing 1802 with the reference terminal.
  • This coordinate system pairing 1802 is the same as the coordinate system pairing described in the first embodiment.
  • each terminal 1 that has undergone coordinate system pairing with the reference coordinate system realizes indirect coordinate system pairing with the spatial coordinate system W1 via the reference coordinate system.
  • FIG. 19 and the like are an advanced form of the second embodiment, and the point of handling the coordinate system pairing between the terminal coordinate system and the spatial coordinate system is the same.
  • the unique features of the label 3 are used for measurement and the like.
  • the terminal 1 uses the space coordinate system W1 related to the sign 3 to measure the space 2 and create the space data 6. Further, the terminal 1 may register / store the created spatial data 6 in the DB 5 of the server 4.
  • FIG. 19 shows the configuration of the spatial recognition system and method of the third embodiment.
  • the spatial recognition system of embodiment 3 has a marker 3.
  • a sign 3 associated with the space 2 is installed in the space 2 which is a room, for example, on the outer surface of the entrance wall 1901.
  • the sign 3 (in other words, a marker, a sign, etc.) has a special function for the terminal 1 in addition to a function as a general sign that allows the user to identify the space 2.
  • the sign 3 gives the world coordinate system as a reference for the space 2 as the space coordinate system W1 (may be called a sign coordinate system).
  • the sign 3 is a peculiar object that has predetermined features and can be used for measuring various quantities at the time of coordinate system pairing by the terminal 1. Further, the sign 3 has a function for enabling the terminal 1 to identify the space 2 (corresponding ID) and acquire the space data 6.
  • the position, shape, and the like of the sign 3 are described in the same space coordinate system W1 as that of the space 2.
  • the features in the space 2 in the second embodiment are feature points and feature lines as the features of the sign 3 in the third embodiment.
  • the characteristics of this sign 3 are defined in advance as various quantities.
  • the indicator data 62 is registered in the spatial data 6 of the DB 5 of the server 4.
  • the label data 62 includes various amount data of the label 3 and corresponds to the feature data 62 in the second embodiment.
  • the terminal 1, for example, the first terminal 1A measures the feature of the marker 3 as various quantity data on the own machine side, grasps the relationship between the first terminal coordinate system WA and the spatial coordinate system W1, and is based on the relationship. Then, the conversion parameter 7 between the first terminal coordinate system WA and the spatial coordinate system W1 is generated and set in the own machine.
  • FIG. 20 shows a configuration example of the sign 3.
  • (A) is the first example
  • (B) is the second example
  • (C) is the third example
  • (D) is the fourth example.
  • the sign 3 is composed of a horizontally long rectangular plate or the like, and the surface of the plate or the like (sometimes referred to as a sign surface) indicates the name of the room which is the space 2. "7 meeting room" character string is described.
  • the label surface is arranged in Y 1 -Z 1 side of the spatial coordinate system W1.
  • the ID 2001 of the space 2 and the sign 3 is directly described as a character string in one place on the sign surface.
  • the terminal 1 can recognize the ID 2001 by the camera 12.
  • the feature points and feature lines in the spatial coordinate system W1 are defined in advance on the sign surface of the sign 3.
  • one feature point (point p1) representing the representative position L1 of the marking 3 is defined.
  • two other feature points (points p2 and p3) are defined on the marking surface.
  • Two feature lines (lines v1 and v2 corresponding to the vector) are defined by the three feature points (points p1 to p3).
  • the point p1 is the upper left corner point of the marking surface
  • the point p2 is the lower left corner point
  • the point p3 is the upper right corner point.
  • the line v1 is the left side of the sign plane
  • the line v2 is the upper side.
  • the various quantity data regarding the spatial coordinate system W1 of the marker 3 includes, for example, information of the above-mentioned one feature point (point p1) and two specific directions (lines v1, v2).
  • point p1 one feature point
  • lines v1, v2 two specific directions
  • feature points such as point p1 and feature lines such as line v1 are shown, but they are not actually described.
  • the feature points and feature points may be intentionally described as specific images on the sign surface so that the user and the terminal 1 can recognize them.
  • the terminal 1 measures the relationship with the marker 3 as various quantities at the time of coordinate system pairing. At that time, the terminal 1 measures these three feature points (points p1 to p3) using the distance measuring sensor 13 and the camera 12 based on the marking data 62. In other words, the terminal 1 measures two feature lines (lines v1, v2). When the positions of the three feature points in the terminal coordinate system WA can be grasped, it is the same as when the two feature lines corresponding to the two specific directions can be grasped.
  • the origin O 1 of the space coordinate system W1 may be outside the space 2, inside the space 2, or particularly set on the sign surface of the sign 3.
  • the origin O 1 may be set to match the characteristic points of the marker 3 (point p1).
  • a predetermined code (code image) 2002 is written on the sign 3 at one of the same sign surfaces as in (A), for example, in the vicinity of the upper left point p1.
  • This code 2002 is a code that describes predetermined information.
  • a two-dimensional code such as a QR code (QR: Quick Response, registered trademark) may be used.
  • the terminal 1 extracts the code 2002 from the image of the camera 12 and obtains predetermined information by decoding.
  • the sign 3 is configured as an image or medium of the code 2003.
  • the sign 3 may be a sticking medium on which a QR code is written.
  • the character string of the room name is described on the code 2003 side.
  • the terminal 1 may measure in the same manner, for example, using the three corner points of the code 2003 as feature points. Alternatively, the terminal 1 may measure three cutout symbols for recognizing the QR code as feature points.
  • the sign 3 is composed of a display image of a display device 2004 (for example, a wall-mounted display).
  • the code 2005 is displayed on the screen of the display device 2004 and functions as a sign 3. In this case, the sign 3 can be easily changed.
  • the predetermined information described in the sign 3 may be information including the space 2 and the ID 2001 that identifies the sign 3, or as information including an address and a URL for accessing the space data 6 of the server 4 which is an external source.
  • the configuration may be as follows.
  • the predetermined information may be information including various quantity data (label data 62 in FIG. 19) relating to the spatial coordinate system W1 of the marker 3 and spatial data transmission destination information.
  • the spatial data transmission destination information is external source information, and is transmission destination identification information for spatial data 6 (particularly spatial shape data) measured and created by the terminal 1, for example, an address or URL of a server 4.
  • the predetermined information may be information including a predetermined ID and spatial data transmission destination information. Using this information, the terminal 1 can access the server 4 and acquire the spatial data 6 (particularly the sign data 62) associated with the sign 3. Then, the terminal 1 can acquire various quantity data from the indicator data 62.
  • FIG. 19 As a space recognition method of the third embodiment, a processing flow example in which a plurality of terminals 1 measure the space 2 by sharing, create space data 6 in units of the space 2, and register the space data 6 in the server 6.
  • the terminal 1 (for example, the first terminal 1A) recognizes the sign 3 in the real space by the camera 12 or the like, and measures various quantities for the feature of the sign 3.
  • the terminal 1 performs coordinate system pairing between the terminal coordinate system WA of its own machine and the spatial coordinate system W1 of its marker 3 by using various quantity data which are measured values.
  • the terminal 1 sets the conversion parameter 7 between the terminal coordinate system WA and the spatial coordinate system W1 as the common coordinate system.
  • step S32 the terminal 1 measures the space 2 (the above-mentioned shared area) in the terminal coordinate system WA, and creates the space data 6 described in the space coordinate system W1 using the conversion parameter 7. ..
  • the terminal 1 appropriately converts the position or the like in the terminal coordinate system WA in the measurement data or the subspace data into the position or the like in the spatial coordinate system W1.
  • the details of the process in step S32 are the same as described above.
  • step S33 the terminal 1 transmits the spatial data 6 described in the created spatial coordinate system W1 to the server 4 based on the predetermined information of the sign 3.
  • the terminal 1 may attach identification information of the own device or the user, position information (measurement starting point), measurement date / time information (time stamp), and other related information to the spatial data 6 to be transmitted.
  • the server 4 can grasp the change of the spatial data 6 (state such as the shape of the space 2) on the time axis as data management.
  • the server 4 registers and stores the spatial data 6 (particularly the spatial shape data) received from the terminal 1 in the library of the DB 5.
  • the server 4 registers the spatial data 6 (particularly the spatial shape data 61) in association with information such as the ID of the space 2.
  • the server 4 updates the contents of the spatial data 6.
  • the server 4 manages the measurement date / time, registration date / time, update date / time, etc. of the spatial data 6.
  • steps S32 to S33 the terminal 1 creates the spatial data 6 described in the terminal coordinate system WA of the own machine based on the measurement data. Then, the terminal 1 sets the spatial data 6 described in the terminal coordinate system WA and the conversion parameter 7 (conversion parameter capable of converting the terminal coordinate system WA to the spatial coordinate system W1) as a set of the server 4 Send to. The server 4 registers the data in the DB 5.
  • FIG. 21 shows an example of a processing flow of an exchange regarding registration of spatial data 6 between the terminal 1 and the server 4 in the third embodiment.
  • the communication connection is established between the terminal 1 and the server 4 based on the sign 3, and the coordinate system pairing is established.
  • the terminal 1 measures the space, creates the space data 6, sends it to the server 4, and registers it.
  • the flow is the same for a plurality of terminals 1 of a plurality of users who share the measurement of the space 2.
  • step S301 the terminal 1 recognizes the sign 3 and reads predetermined information (for example, ID, spatial data transmission destination information), and establishes a communication connection with the server 4 based on the predetermined information.
  • step S301b the server 4 establishes a communication connection with the terminal 1.
  • the server 4 may authenticate the user and the terminal 1, confirm the authority regarding the space 2, and permit the terminal 1 for which the authority has been confirmed.
  • the authority for example, measurement authority, registration / update authority of spatial data 6, acquisition / use authority of spatial data 6, and the like may be provided.
  • step S302 the terminal 1 transmits a coordinate system pairing request to the server 4, and in step S302b, the server 4 transmits a coordinate system pairing response to the terminal 1.
  • step S303 the terminal 1 transmits a request for various amounts of data related to the sign 3 to the server 4.
  • step S303b the server 4 transmits the corresponding indicator data 62 to the terminal 1 in response to the quantity data relating to the indicator 3.
  • the terminal 1 acquires various quantity data related to the sign 3.
  • step S304 the terminal 1 measures predetermined features of the sign 3 (points p1 and lines v1 and v2 in FIG. 20) in the terminal coordinate system WA based on the acquired various amount data, and various items on the own machine side. Obtained as quantitative data. The measurement at this time is possible by the distance measuring sensor 13.
  • step S305 the terminal 1 has the various quantities data described in the spatial coordinate system W1 on the marker side obtained in step S303 and the various quantities described in the terminal coordinate system WA on the own machine side obtained in step S304. Using the data, the conversion parameter 7 between the terminal coordinate system WA and the spatial coordinate system W1 is calculated and set in the own machine.
  • step S306 the terminal 1 measures the space 2, obtains the measurement data, and creates the space data 6 (particularly the space shape data) described in the terminal coordinate system WA of the own machine.
  • the spatial data 6 is subspace data by sharing.
  • step S307 the terminal 1 converts the spatial data 6 created in step S306 into the spatial data 6 described in the spatial coordinate system W1 using the conversion parameter 7.
  • step S308 the terminal 1 transmits the spatial data 6 obtained in step S307 to the server 4.
  • step S308b the server 4 registers or updates the spatial data 6 received from the terminal 1 with the corresponding spatial data 6 (particularly the spatial shape data 61) in the DB 5.
  • the terminal 1 transmits the spatial data 6 described in the terminal coordinate system WA of the own machine and the conversion parameter 7 as a set to the server 4.
  • the server 4 registers the spatial data 6 and the conversion parameter 7 in association with each other in the DB 5.
  • the server 4 may perform the coordinate conversion process using the conversion parameter 7 of the DB 5.
  • steps S309 and S309b the terminal 1 and the server 4 confirm whether or not to end the coordinate system pairing related to the spatial measurement, and if it ends (Yes), proceed to S310, and if it continues (No), proceed to S310. The process returns to step S306 and repeats in the same manner.
  • the terminal 1 and the server 4 disconnect the communication connection related to the measurement of the space 2.
  • the terminal 1 and the server 4 may explicitly cancel the coordinate system pairing state (for example, delete the conversion parameter 7), or may continue thereafter.
  • the terminal 1 may be connected to the server 4 at all times via communication, or may be connected to the server 4 only when necessary.
  • a method client-server method that does not hold data such as spatial data 6 may be used in the terminal 1.
  • the terminal 1 automatically transmits the created spatial data 6 to the server 4 and registers it.
  • the user may perform an operation for registering spatial data in the terminal 1 and register the spatial data 6 in the server 4 according to the operation.
  • the terminal 1 displays a guide image related to spatial data registration on the display surface 11. The user performs the spatial data registration operation accordingly.
  • each terminal 1 acquires and uses the spatial data 6 by communication, particularly through the sign 3. be able to.
  • the procedure at this time is as follows, for example.
  • the terminal 1 recognizes the corresponding sign 3 for the target space 2, acquires predetermined information (ID, etc.), and determines whether the coordinate system has been paired, whether the space data 6 has been registered, and the like. Check the status. For example, when the spatial data 6 is already registered, the terminal 1 acquires the spatial data 6 (particularly the spatial shape data 61) relating to the target space 2 from the server 4 by using the predetermined information. If the terminal 1 has not been paired with the coordinate system, the terminal 1 performs the coordinate system pairing with the space 2. When the conversion parameter 7 is already held in the terminal 1, the coordinate system pairing can be omitted.
  • the terminal 1 When the terminal 1 recognizes the sign 3, the user is asked whether to measure the space 2 (create the corresponding space data 6), or to acquire and use the registered space data 6 or the like. An image for the options and guides may be displayed on the display surface 11, and the subsequent processing may be determined according to the operation of the user. For example, the terminal 1 transmits a spatial data request to the server 4 when using the spatial data 6 based on the user's operation.
  • the server 4 searches the DB 5 in response to the request, and if there is a target spatial data 6 (particularly the spatial shape data 61), the server 4 transmits the spatial data 6 to the terminal 1 as a response.
  • the terminal 1 can suitably display the virtual image 22 in the space 2 at the position 21 according to the shape of the object in the space 2 by using the acquired space data 6, for example, by the AR function.
  • the spatial data 6 (particularly the spatial shape data 61) can be used for various purposes other than the purpose of displaying the virtual image 22 by the AR function. For example, it can be used for grasping the positions of users and their own machines, and for searching and guiding routes to destinations.
  • the HMD which is the terminal 1, uses the acquired spatial data 6 to display the shape of the space 2 on the display surface 11. At this time, the HMD may superimpose and display the shape of the space 2 in the actual size, for example, by a virtual image of a line drawing.
  • the HMD may display the shape of the space 2 as a virtual image such as a three-dimensional map or a two-dimensional map in a size smaller than the actual one.
  • the HMD may display a virtual image showing the current positions of the user and the own machine on the map.
  • the HMD may display the position of the user's destination or the route from the current position to the position of the destination as a virtual image on the map.
  • the HMD may display a virtual image such as an arrow for route guidance according to the real thing.
  • the second terminal 1B performs the coordinate system pairing with the spatial coordinate system W1 (FIG. 19) of the sign 3, performs the coordinate system pairing with the first terminal 1A for which the coordinate system pairing has already been completed. You may go instead.
  • the second terminal coordinate system WB of the second terminal 1B can realize indirect coordinate system pairing with the spatial coordinate system W1 of the marker 3 via the first terminal coordinate system WA.
  • the terminal 1 relates to the coordinate system pairing (corresponding conversion parameter 7) with respect to the predetermined feature points and feature lines obtained by measuring in the space 2 after the coordinate system pairing with the marker 3. It may be used for calibration (adjustment). Further, a plurality of signs 3 or features may be provided in one space 2. The terminal 1 can use each of the markers 3 or features for coordinate system pairing or adjustment.
  • Modification 5 As a modification of the first to third embodiments (referred to as modification 5), the following is also possible.
  • the division on the time axis in the case of measuring a certain space 2 and creating the space data 6 is dealt with.
  • the number of users may be one or a plurality. Even if there is only one terminal 1 at the same time, sharing on the time axis is possible. In this case, each terminal 1 is in charge of each time in a plurality of times configured by time division.
  • FIG. 22 shows an example of sharing on the time axis in the modified example 5.
  • the space 2 may have a plurality of rooms, areas, and the like.
  • the purpose of the work here is to create spatial data 6 (referred to as D100) in units of space 2 described in the spatial coordinate system W1.
  • (A) indicates the state at the first date and time.
  • the user U1 measures the area 2201 in the space 2 by the first terminal 1A, creates the subspace data D101 representing the shape of the area 2201, and registers it in the library of the DB 5 of the server 4. do.
  • the area 2201 may be an area determined in advance by sharing, or may be an area arbitrarily measured by the user U1 at that time.
  • the region 2202 is a region different from the region 2201 and may include an overlapping region (for example, an overlapping region 2212).
  • the subspace data D102 includes at least data in a region that does not overlap with the subspace data D101.
  • Region 2203 is a region different from regions 2201,202 and may include overlapping regions.
  • the contents of the spatial data 6 are updated at any time on the time axis.
  • the spatial data D100 is composed of subspace data D101, D102, and D103.
  • each subspace data may have measurement date / time information, measurement user / terminal information, status information such as "measured", and the like.
  • each terminal 1 can grasp the measured area in the space 2 by referring to the spatial data 6 from the server 4 before the start of each measurement. Therefore, the terminal 1 can omit the measurement for the measured region and start the measurement for the unmeasured region. Further, when the measured area is measured again, the terminal 1 can update or correct the shape and the like of the area.
  • each subspace data is provided with the data of the overlapping area.
  • the data of the overlapping region 2212 is held.
  • each subspace data does not have the data of the overlapping area.
  • the subspace data D101 or D102 there is no data of the overlapping region 2212.
  • the terminal 1 or the server 4 determines whether or not a certain area in the space 2 has been measured. For example, the determination can be made from the state of the contents of the registered spatial data 6.
  • the second terminal 1B and the server 4 since the subspace data D101 already has the data of the overlapping area 2212, the subspace data D102 does not have the data of the overlapping area 2212.
  • the second terminal 1B and the server 4 overwrite and update the data of the overlapping area 2212 in the subspace data D101 with the data of the overlapping area 2212 of the subspace data D102.
  • the state such as the shape in that area may change on the time axis.
  • an arrangement such as a desk may be moved.
  • the terminal 1 and the server 4 can determine the change by observing the difference between the measurement data or the subspace data for each area on the time axis. Based on this determination, for example, when it is desired to reflect the latest state of the space 2, the terminal 1 and the server 4 may perform overwriting and updating using the subspace data at the newer measurement date and time. Further, the terminal 1 and the server 4 distinguish between a fixed arrangement (for example, a wall, a floor, a ceiling) constituting the space 2 and a position-variable arrangement (for example, a desk) based on such a judgment. You can also judge. Based on this, the terminal 1 and the server 4 may register the attribute information in the spatial data 6 by distinguishing between fixed and variable positions for each part. Further, the spatial data 6 can be configured so that the position-variable arrangement is not a component in the first place.
  • the spatial data of the latest measurement date and time may be retained as the spatial data 6 of the same space 2, but the spatial data for each measurement date and time may be retained as a history. In this case, the change in space 2 on the time axis can be grasped as a history. From the difference in the spatial data of each measurement date and time, it is possible to discriminate between the fixed arrangement and the position-variable arrangement.
  • Modification 6 As a modification of the first to third embodiments (referred to as modification 6), the following is also possible.
  • modification 6 when the space 2 is measured and the space data 6 is created, each terminal 1 does not share the measurement in advance. In this case, the number of users may be one or a plurality.
  • Each terminal 1 provides the measured spatial data to another terminal 1 or registers it in the server 4 if requested.
  • Each terminal 1 searches for and acquires spatial data 6 not owned by its own device from the other terminals 1 and the server 4 and uses it.
  • the flow of the modified example 6 is shown in FIG.
  • the information processing device 9 is a terminal 1 (for example, a second terminal 1B) or a server 4.
  • the terminal 1 measures and holds the spatial data 6, and the server 4 registers the measured spatial data 6 as in the flow of FIG. 21, for example. Further, the server 4 may hold the spatial data 6 as the design data of the wall of the building or the like.
  • the first terminal 1A and the information processing device 9 establish communication.
  • the information processing device 9 is the server 4
  • the first terminal 1A selects the server 4 that manages the spatial data 6 to be acquired when establishing the communication.
  • the selection can be made, for example, from the position information of the spatial data 6.
  • the sign 3 may be recognized to read predetermined information (for example, ID, spatial data acquisition destination information), and a communication connection with the server 4 may be established based on the predetermined information.
  • the information processing device 9 is the second terminal 1B, the device can be specifically specified, so that communication can be established using the communication data held in advance.
  • step S332 the first terminal 1A transmits a coordinate system pairing request to the information processing device 9, and in step S332b, the information processing device 9 transmits a coordinate system pairing response to the first terminal 1A.
  • step S333 the terminal 1 transmits a request for various amounts of data to the information processing device 9.
  • the various amount data is various amount data related to the second terminal 1B.
  • the quantity data is the quantity data related to the marker 3.
  • the information processing apparatus 9 transmits the requested amount of data to the first terminal 1A.
  • the first terminal 1A acquires the various amount data.
  • the first terminal 1A has various quantities such as a marker 3 required for coordinate system pairing with the spatial coordinate system. The data is acquired from the second terminal 1B and others.
  • the first terminal 1A has a predetermined feature of the second terminal 1B or the marker 3 (for example, the point p1 and the line v1 in FIG. 20) necessary for the coordinate system pairing based on the acquired various quantity data.
  • v2 is measured by the terminal coordinate system WA and obtained as various quantity data on the own machine side. The measurement at this time is possible by the distance measuring sensor 13.
  • step S335 the first terminal 1A has the various amount data described in the common coordinate system WS on the second terminal 1B or the sign 3 side obtained in step S333, and the terminal coordinate system on the own machine side obtained in step S334.
  • the conversion parameter 7 between the terminal coordinate system WA and the common coordinate system WS is calculated and set in the own machine.
  • the spatial recognition can be shared between the first terminal 1A and the information processing device 9.
  • the first terminal 1A performs an inquiry for holding the spatial data 6, the information processing apparatus 9 performs an inquiry response, and the spatial data 6 is transmitted.
  • the first terminal 1A transmits the position information described with reference to the common coordinate system of the region for which the spatial data 6 is to be acquired to the information processing device 9.
  • the information processing device 9 replies with a list of spatial data 6 relating to the area for which the inquiry has been received.
  • the region referred to here is a three-dimensional region surrounded by a rectangular parallelepiped defined by coordinate values, as shown in FIG. 24A, for example, and a partial region of space 2 is specified in detail. This may be specified by defining the spatial mesh in advance and specifying the ID of the spatial mesh.
  • the spatial data 6 relating to the region is three-dimensional position information such as an object in which at least a part thereof exists in the region, feature points such as boundaries in the real space, feature lines, and polygon data.
  • the list of spatial data 6 is, for example, as shown in FIG. 24 (B).
  • the position of the area on the list is the range in which the position information of the object or the like exists, and does not necessarily match the area of the query.
  • the region is a rectangular parallelepiped whose sides are parallel to the coordinate axes
  • the region may be specified by the coordinate values at both ends of one diagonal line of the rectangular parallelepiped. If the region is an arbitrary polyhedron, specify it with all vertex coordinate values.
  • the response by the information processing device 9 may include spatial data 6 in the vicinity of the area in which the inquiry was received.
  • the first terminal 1A selects the spatial data 6 to be acquired from the list, and receives the transmission of the spatial data 9 from the information processing device 9.
  • step S337 the first terminal 1A converts the spatial data 6 acquired in step S336 into the spatial data 6 described in the terminal coordinate system WA of the own machine by using the conversion parameter 7, and uses it.
  • the conversion parameter 7 may be transmitted to the information terminal device 9, and the position information may be exchanged based on the terminal coordinate system WA.
  • steps S338 and S338b the first terminal 1A and the information processing device 9 confirm whether or not to end the coordinate system pairing related to the spatial data provision, and if so, proceed to steps S339 and S339b. When continuing (No), the process returns to steps S336 and S336b and is repeated in the same manner.
  • the first terminal 1A and the information processing device 9 disconnect the communication connection related to the provision of spatial data.
  • the first terminal 1A and the information processing device 9 may explicitly cancel the state of the coordinate system pairing (for example, delete the conversion parameter 7), or may continue thereafter.
  • the first terminal 1A may be connected to the information processing device 9 at all times via communication, or may be connected to the information processing device 9 only when necessary.
  • a method client-server method
  • the server in this case is not the server 4 as the information processing device 9.
  • the terminal 1 may integrate the acquired spatial data 6 to create a new spatial data 6, or may simply use the spatial data 6 acquired from the information processing device for displaying an AR object or the like.
  • the measurement of the spatial data 6 by the own machine can be omitted without the trouble of setting the measurement sharing in advance, and the work efficiency can be improved.
  • the space recognition system and the like according to the fourth embodiment will be described with reference to FIG. 25 and the like.
  • the fourth embodiment is a modification of the first to third embodiments, and a function is added.
  • the terminal 1 displays on the display surface 11 an image for guiding or supporting a measurement range or the like related to sharing to the user according to the position or orientation of the terminal 1.
  • the position of the terminal 1 the position on the horizontal plane at the time of pairing the coordinate system is used.
  • FIG. 25 shows a display example of the display surface 11 of the terminal 1 according to the fourth embodiment.
  • the HMD which is the first terminal 1A in the space 2 as shown in FIG.
  • the user U1 is looking toward the wall 2301 where the whiteboard 2b is located through the display surface 11 of the HMD.
  • the region related to the sharing has been set in advance in the first terminal 1A, for example, in step S2A of FIG. 10 described above.
  • This setting may be set for the spatial data 6 of the DB 5 of the server 4.
  • the first terminal 1A of the user U1 is in charge of the area 2A as shown in FIGS. 3 and 4.
  • the first terminal 1A superimposes and displays an image 2300 representing an area 2A (that is, an area to be measured) shared by the own machine, a measurement range, and the like on the display surface 11.
  • the image 2300 indicates that the region in the direction in which the image 2300 can be seen is a shared region.
  • the image 2300 is an image representing the boundary surface of the regions 2A and 2B in the space 2 (an image in which the back can be seen through), but the image 2300 is not limited to this and is an image representing a three-dimensional region 2A and the like. May be.
  • the position of the first terminal 1A (corresponding user U1) in the spatial coordinate system W1 is outside the area 2A and faces the area 2A.
  • the boundary surface of the regions 2A and 2B is displayed as the image 2300. Further, for example, when the position of the first terminal 1A is inside the area 2A and faces the arrangement of the area 2A, an image showing the state is displayed instead of the image 2300.
  • the user U1 can easily grasp the area 2A and easily measure the area 2A by looking at the image 2300.
  • the user U1 may measure the direction in which the image 2300 can be seen.
  • the sensitivity region of the measurement sensor for example, the distance measuring sensor 13
  • the user U1 turns the image 2300 in the direction in which the face is turned for the measurement. It can be used as a guide.
  • the user U1 may turn his / her face so that the line of sight points within the surface region of the image 2300 at the time of measurement.
  • the first terminal 1A represents an area (region 2B) shared by another terminal 1 (for example, the second terminal 1B) in addition to the image 2300, depending on the position and orientation.
  • An image may be displayed.
  • Figure 26 is an example of a sharing process, an overview of a horizontal plane looking down the space 2 (X 1 -Y 1 side).
  • This division shows an example of setting the measurement direction when the target space 2 is measured by a plurality of terminals 1 at the same time.
  • the measurement orientation of each terminal 1 is determined so that the plurality of terminals 1 cover all directions (corresponding regions) of the target space 2.
  • the plurality of terminals 1 to be shared perform coordinate system pairing with each other. After that, the terminals 1 perform processing for sharing while appropriately communicating with each other.
  • each position and orientation (2401,402, 2403) when simultaneously measuring with terminals 1 (1A, 1B, 1C) of three users (U1, U2, U3) are shown.
  • the sharing range is calculated in this state.
  • An intersection (2411,241,2413) is taken between the perpendicular bisector of the line segment connecting the adjacent terminals 1 and the boundary line (four walls in this example) of the space 2. This intersection is defined as the boundary of the sharing range of space 2 (corresponding vertical line).
  • this sharing range may be used as an initial value, and further adjustment may be made so that the sharing is fair (for example, the same size) (for example, the intersection points are shifted in the horizontal direction).
  • intersection is used as a boundary so that the sharing range does not overlap, but the present invention is not limited to this, and the sharing range may be overlapped at the boundary portion including the intersection.
  • the shape of the wall or the like of the room can be measured by the shared measurement as shown in FIG.
  • FIG. 27 shows a display example on the first terminal 1A corresponding to the division of FIG. 26. Images 2501, 502 representing the measurement range boundary lines corresponding to the intersections 2411 and 2413 are displayed on the display surface 11. Further, in this example, a plurality of images 2503 of horizontal line arrows are displayed within the measurement range represented by the images 2501, 502 of the measurement range boundary line. This horizontal line arrow serves as a guide for scanning when the sensor of the terminal 1 (for example, the distance measuring sensor 13) is moved so as to scan during measurement.
  • the sensor of the terminal 1 for example, the distance measuring sensor 13
  • the user U1 can realize efficient and highly accurate measurement by moving the user U1 so as to change the direction of the face (corresponding image 2504) along the image 2503 of the horizontal line arrow.
  • Image 2504 is a display example of an image such as a cursor indicating the orientation of the HMD, the sensor, or the like.
  • the direction and spacing of the horizontal arrows in image 2503 are designed for efficient measurement. For example, the distance between two adjacent horizontal arrows is selected as a distance that minimizes measurement duplication without causing measurement omission.
  • FIG. 28 further shows another display example.
  • the terminal 1 grasps whether or not the measurement (in other words, the acquisition of the measurement data) has been completed for each area in the space 2 or the shared area, so that the measured area and the unmeasured area can be easily understood by the user.
  • An image that distinguishes and represents those areas is displayed on the display surface 11.
  • the terminal 1 may grasp whether or not the area is already registered as the spatial data 6 (particularly the spatial shape data 61) in the library of the DB 5 of the server 4, and display an image representing those areas separately.
  • the image 2601 is a vertical line hatch-like image representing the measured range.
  • Image 2602 is a diagonal hatch-like image representing an unmeasured range.
  • the display state of these images is updated in real time.
  • the image may be displayed with a character string, an icon, or the like indicating the types of "measured”, “unmeasured”, “registered”, and “sharing range”. Not only the image display but also the guide by audio output may be used.
  • FIG. 29 shows another display example.
  • the area of sharing is not determined between the plurality of terminals 1.
  • Each user appropriately measures an arbitrary range with the terminal 1 and spontaneously measures the unmeasured range.
  • each terminal 1 measures a range according to the position and orientation of the user. Similar to FIG. 28, each terminal 1 displays an image so that the user can see the measured range and the unmeasured range by the own device.
  • the first terminal 1A displays images 2601,602.
  • measurement data or information representing a measured area of the own machine is transmitted to another terminal 1.
  • Each terminal 1 grasps a measured area and an unmeasured area by each terminal 1 in the space 2 based on the measurement data or information.
  • each terminal 1 displays an image showing the measured area when there is a measured area by another terminal 1 within the range of the display surface 11.
  • the first terminal 1A displays an image 2701 such as a horizontal line hatch indicating that the measurement has been performed by the second terminal 1B.
  • the user U1 can easily determine the next measurement range by looking at the guide image.
  • two types of images, measured and unmeasured may be collected by all the terminals 1 to be shared.
  • FIG. 30 shows a display example of another image.
  • a guide image representing a surface or the like is displayed in the real space, but the guide image is not limited to this and is displayed so as to match the surface of an object such as a wall or a desk in the space 2.
  • the object 2700 is arranged on the floor 2701 at a corner close to the walls 2702 and 2703 in the space 2 such as a room.
  • the terminal 1 displays an image 2710 such as a broken line indicating that the measurement has been completed.
  • the terminal 1 can display an image 2710 showing the shape of an object in the measured range according to the surface of the object represented by the point cloud based on the point cloud data acquired by the distance measuring sensor 13.
  • the image 2710 may be a line image or a surface image.
  • the present invention has been specifically described above based on the embodiments, the present invention is not limited to the above-described embodiments and can be variously modified without departing from the gist. It is possible to add, delete, replace, and configure various combinations of the components of the embodiment. Some or all of the above-mentioned functions may be implemented by hardware, or may be implemented by software program processing. The programs and data constituting the functions and the like may be stored in a computer-readable storage medium, or may be stored in a device on a communication network.
  • HMD Terminal

Abstract

Provided is a technique with which an information terminal can measure space to create and register spatial data, and can acquire and use the spatial data. This space recognition system comprises: an information terminal having a function of measuring space and a function of displaying a virtual image on a display surface, and having a terminal coordinate system; and an information processing device that performs a process based on a common coordinate system. The information terminal measures a relationship related to the position and orientation between the terminal coordinate system and the common coordinate system, and matches the terminal coordinate system and the common coordinate system, on the basis of data representing the measured relationship, and the information terminal and the information processing device share the recognition of space.

Description

空間認識システム、空間認識方法、情報端末、およびサーバ装置Spatial recognition system, spatial recognition method, information terminal, and server device
 本発明は、情報端末が空間を認識するためのシステム等の技術に関する。 The present invention relates to a technology such as a system for an information terminal to recognize a space.
 ヘッドマウントディスプレイ(HMD)やスマートフォン等の情報端末は、仮想現実(VR)や拡張現実(AR)等に対応した画像(仮想画像等と記載する場合がある)を表示面に表示する機能を有する。例えば、ユーザに装着されたHMDは、部屋等の空間内で、壁や机等の実物に合わせた位置にARの画像を表示する。 Information terminals such as head-mounted displays (HMDs) and smartphones have a function of displaying images (sometimes referred to as virtual images) corresponding to virtual reality (VR), augmented reality (AR), etc. on the display surface. .. For example, the HMD worn by the user displays an AR image at a position matching the actual object such as a wall or a desk in a space such as a room.
 上記技術に係わる先行技術例として、特表2014-514653号公報(特許文献1)が挙げられる。特許文献1には、複数の端末において、カメラのキャプチャに基づいて、実空間内の同一の物体、例えば机面を、アンカー表面として認識し、各端末からそのアンカー表面に仮想物体を表示することで、殆ど同じ位置に仮想物体を表示する旨の技術が記載されている。 As an example of the prior art related to the above technology, Japanese Patent Application Laid-Open No. 2014-514653 (Patent Document 1) can be mentioned. Patent Document 1 states that a plurality of terminals recognize the same object in real space, for example, a desk surface as an anchor surface based on a camera capture, and each terminal displays a virtual object on the anchor surface. So, the technique of displaying a virtual object at almost the same position is described.
特表2014-514653号公報Special Table 2014-514653
 上記情報端末は、AR等の機能において好適に仮想画像を表示できるためには、空間内の壁や机等の実物についての位置・向き・形状等を、なるべく高精度に把握することが好ましい。情報端末は、その把握のために、カメラやセンサを用いて自機の周囲の空間を検出・測定する機能を有する。例えば、HMDは、自機のセンサから出射した光が周囲の物体に当たって戻ってくる際の反射点を、特徴点として検出でき、周囲の複数の特徴点を点群データとして取得できる。HMDは、このような点群データを用いて、空間の形状等を表す空間データ(言い換えると情報端末が空間を認識するためのデータ)を構成できる。 In order for the above information terminal to be able to suitably display a virtual image in a function such as AR, it is preferable to grasp the position, orientation, shape, etc. of a real object such as a wall or a desk in the space with as high accuracy as possible. The information terminal has a function of detecting and measuring the space around the own machine by using a camera or a sensor for grasping the information terminal. For example, the HMD can detect the reflection point when the light emitted from the sensor of the own machine hits a surrounding object and returns as a feature point, and can acquire a plurality of surrounding feature points as point cloud data. The HMD can use such point cloud data to form spatial data (in other words, data for an information terminal to recognize a space) representing the shape of a space or the like.
 しかしながら、ユーザの情報端末が、実世界内の広大な空間や多数の空間を対象として上記測定を行う場合には、効率、ユーザの利便性や作業負荷、等に関して課題がある。例えば、ある建物内の空間を一人のユーザが情報端末で測定する作業を行う場合に、長時間がかかり、負荷が大きい場合がある。 However, when the user's information terminal performs the above measurement on a vast space or a large number of spaces in the real world, there are problems in terms of efficiency, user convenience, workload, and the like. For example, when one user performs a work of measuring a space in a certain building with an information terminal, it may take a long time and a heavy load may occur.
 また、あるユーザの情報端末が、部屋等の空間を1回測定して把握し、AR画像表示等に利用した後、その空間を再度利用する場合に、再度測定しなければならないということでは、効率等が良くない。 In addition, when a user's information terminal measures and grasps a space such as a room once, uses it for AR image display, etc., and then uses the space again, it must be measured again. The efficiency is not good.
 本発明の目的は、情報端末が空間を測定して空間データを作成・登録でき、情報端末がその空間データを取得して利用できる技術、ならびに、複数のユーザの複数の情報端末間でその空間データおよび対応する空間認識を共有することができる技術を提供することである。 An object of the present invention is a technique in which an information terminal can measure a space and create / register spatial data, and the information terminal can acquire and use the spatial data, and the space among a plurality of information terminals of a plurality of users. It is to provide technology that can share data and corresponding spatial perceptions.
 本発明のうち代表的な実施の形態は、以下に示す構成を有する。一実施の形態の空間認識システムは、空間を測定する機能および表示面に仮想画像を表示する機能を有し端末座標系を有する情報端末と、共通座標系に基づいた処理を行う情報処理装置と、を備え、前記情報端末は、前記端末座標系と前記共通座標系との間の、位置および向きに関する関係を測定し、測定した関係を表すデータに基づいて、前記端末座標系と前記共通座標系とを適合させ、前記情報端末と前記情報処理装置は、前記空間の認識の共有を行う。 A typical embodiment of the present invention has the following configuration. The space recognition system of one embodiment includes an information terminal having a function of measuring space and a function of displaying a virtual image on a display surface and having a terminal coordinate system, and an information processing device that performs processing based on a common coordinate system. The information terminal measures the relationship regarding the position and orientation between the terminal coordinate system and the common coordinate system, and the information terminal measures the relationship between the terminal coordinate system and the common coordinate system, and based on the data representing the measured relationship, the information terminal measures the relationship between the terminal coordinate system and the common coordinate system. The system is adapted, and the information terminal and the information processing device share the recognition of the space.
 本発明のうち代表的な実施の形態によれば、情報端末が空間を測定して空間データを作成・登録でき、情報端末がその空間データを取得して利用でき、複数のユーザの複数の情報端末間でその空間データおよび対応する空間認識を共有することができる。 According to a typical embodiment of the present invention, the information terminal can measure the space and create / register the spatial data, the information terminal can acquire and use the spatial data, and a plurality of information of a plurality of users. The spatial data and the corresponding spatial recognition can be shared between the terminals.
本発明の実施の形態1の空間認識システムの構成を示す図である。It is a figure which shows the structure of the space recognition system of Embodiment 1 of this invention. 本発明の実施の形態1の空間認識方法の構成を示す図である。It is a figure which shows the structure of the space recognition method of Embodiment 1 of this invention. 実施の形態1で、空間の構成例を示す図である。It is a figure which shows the composition example of the space in Embodiment 1. FIG. 実施の形態1で、空間の分担測定例を示す図である。It is a figure which shows the example of the space sharing measurement in Embodiment 1. 実施の形態1で、空間の利用例を示す図である。It is a figure which shows the use example of a space in Embodiment 1. FIG. 実施の形態1で、情報端末であるHMDの外観構成例を示す図である。It is a figure which shows the appearance composition example of the HMD which is an information terminal in Embodiment 1. 実施の形態1で、情報端末であるHMDの機能ブロック構成例を示す図である。It is a figure which shows the functional block composition example of the HMD which is an information terminal in Embodiment 1. 実施の形態1で、座標系ペアリングについての説明図である。It is explanatory drawing about the coordinate system pairing in Embodiment 1. 実施の形態1で、位置伝達等についての説明図である。FIG. 5 is an explanatory diagram for position transmission and the like in the first embodiment. 実施の形態1で、情報端末間の処理フローを示す図である。FIG. 5 is a diagram showing a processing flow between information terminals in the first embodiment. 実施の形態1で、情報端末による表示例を示す図である。It is a figure which shows the display example by an information terminal in Embodiment 1. FIG. 実施の形態1で、座標系の回転等についての説明図である。In Embodiment 1, it is explanatory drawing about rotation of a coordinate system and the like. 実施の形態1の変形例2における、座標系ペアリング等についての説明図である。It is explanatory drawing about the coordinate system pairing and the like in the modification 2 of Embodiment 1. 実施の形態1の変形例2における、変換パラメータについての説明図である。It is explanatory drawing about the conversion parameter in the modification 2 of Embodiment 1. 実施の形態1の変形例3における、座標系ペアリング等についての説明図である。It is explanatory drawing about the coordinate system pairing and the like in the modification 3 of Embodiment 1. 本発明の実施の形態2の空間認識システムの構成を示す図である。It is a figure which shows the structure of the space recognition system of Embodiment 2 of this invention. 実施の形態2で、座標系ペアリングについての説明図である。It is explanatory drawing about the coordinate system pairing in Embodiment 2. 実施の形態2の変形例4についての説明図である。It is explanatory drawing about the modification 4 of Embodiment 2. 本発明の実施の形態3の空間認識システムの構成を示す図である。It is a figure which shows the structure of the space recognition system of Embodiment 3 of this invention. 実施の形態3で、標識の構成例を示す図である。It is a figure which shows the structural example of the sign in Embodiment 3. FIG. 実施の形態3で、情報端末とサーバの処理フローを示す図である。It is a figure which shows the processing flow of an information terminal and a server in Embodiment 3. 実施の形態3の変形例5についての説明図である。It is explanatory drawing about the modification 5 of Embodiment 3. 実施の形態3の変形例6に係わる処理フローを示す図である。It is a figure which shows the processing flow which concerns on the modification 6 of Embodiment 3. 実施の形態3の変形例6に係わる説明図である。It is explanatory drawing which concerns on the modification 6 of Embodiment 3. 本発明の実施の形態4の空間認識システムにおける、情報端末による表示例1を示す図である。It is a figure which shows the display example 1 by an information terminal in the space recognition system of Embodiment 4 of this invention. 実施の形態4で、空間の分担例を示す図である。It is a figure which shows the example of the sharing of space in Embodiment 4. 実施の形態4で、情報端末による表示例2を示す図である。It is a figure which shows the display example 2 by the information terminal in Embodiment 4. 実施の形態4で、情報端末による表示例3を示す図である。It is a figure which shows the display example 3 by an information terminal in Embodiment 4. 実施の形態4で、情報端末による表示例4を示す図である。It is a figure which shows the display example 4 by an information terminal in Embodiment 4. 実施の形態4で、情報端末による表示例5を示す図である。It is a figure which shows the display example 5 by an information terminal in Embodiment 4. 本発明の基本構成を示す図である。It is a figure which shows the basic structure of this invention.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、全図面において同一部には原則として同一符号を付し、繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In principle, the same parts are designated by the same reference numerals in all drawings, and repeated description will be omitted.
 <実施の形態1>
 図1~図12等を用いて、本発明の実施の形態1の空間認識システムおよび方法等について説明する。以下、情報端末装置を端末と記載する場合がある。
<Embodiment 1>
The space recognition system and method according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 12 and the like. Hereinafter, the information terminal device may be referred to as a terminal.
 従来では、HMD等の端末に関して、利用する対象となる空間を、複数のユーザの複数の端末によって空間的または時間的に分担して測定し、空間データを作成・登録するといった概念や、そのための好適な技術については、検討が不十分であった。実施の形態1の空間認識システムおよび方法は、そのような分担による空間の測定、空間データの作成、空間データの共有・再利用といった概念、ならびにそのための一連の手続き等の好適な技術を提供する。このシステムおよび方法は、空間の測定、空間データの作成、空間データの共有・再利用等を、効率的に、例えば高速に実現する。 Conventionally, with respect to terminals such as HMDs, the concept of creating / registering spatial data by measuring the space to be used by multiple terminals of multiple users in a spatially or temporally manner, and for that purpose. Insufficient studies have been conducted on suitable techniques. The spatial recognition system and method of the first embodiment provides suitable techniques such as spatial measurement by such sharing, creation of spatial data, sharing / reuse of spatial data, and a series of procedures for that purpose. .. This system and method realizes spatial measurement, spatial data creation, spatial data sharing / reuse, etc. efficiently, for example, at high speed.
 まず、本発明の基本構成を図31に示す。本発明の基本構成は、空間2を測定する機能および表示面に仮想画像を表示する機能を有し端末座標系WTを有する情報端末1と、共通座標系WSによって記述された空間データ6を処理する情報処理装置9とからなる。情報処理装置9は、情報端末1とは別の情報端末、または後述するサーバ4(図16等)である。情報端末1は、端末座標系WTと共通座標系WSとの間の、位置および向きに関する関係を測定し、測定した関係を表すデータに基づいて端末座標系WTと共通座標系WSとを適合させる。これを座標系ペアリングと呼ぶ(後述)。この座標系ペアリングにより、情報端末1と情報処理装置9は、空間認識の共有を行う。 First, FIG. 31 shows the basic configuration of the present invention. The basic configuration of the present invention processes an information terminal 1 having a function of measuring space 2 and a function of displaying a virtual image on a display surface and having a terminal coordinate system WT, and spatial data 6 described by a common coordinate system WS. It is composed of an information processing device 9 for processing. The information processing device 9 is an information terminal different from the information terminal 1, or a server 4 (FIG. 16 or the like) described later. The information terminal 1 measures the relationship regarding the position and orientation between the terminal coordinate system WT and the common coordinate system WS, and adapts the terminal coordinate system WT and the common coordinate system WS based on the data representing the measured relationship. .. This is called coordinate system pairing (described later). By this coordinate system pairing, the information terminal 1 and the information processing device 9 share the spatial recognition.
 空間データ6の共有は、共通座標系WSによる空間データ6の記述を媒介にして行われる。例えば、情報端末1は空間2を測定して空間データ6を取得し、情報処理装置9より共通座標系WSに基づいて記述された空間データ6を取得する。情報端末1は、情報処理装置9から取得した空間データ6を自機の端末座標系WTに変換し、自機で測定した空間データ6と統合した上で空間データ6を利用する。あるいは、情報端末1は、自機で測定した空間データ6を共通座標系WSによる記述に変換し、情報処理装置9に提供する。情報処理装置9は、提供された空間データ6と保持していた空間データ6を総合して、これを利用する。 The sharing of the spatial data 6 is performed through the description of the spatial data 6 by the common coordinate system WS. For example, the information terminal 1 measures the space 2 and acquires the space data 6, and acquires the space data 6 described based on the common coordinate system WS from the information processing device 9. The information terminal 1 converts the spatial data 6 acquired from the information processing device 9 into the terminal coordinate system WT of its own machine, integrates it with the spatial data 6 measured by its own machine, and then uses the spatial data 6. Alternatively, the information terminal 1 converts the spatial data 6 measured by its own machine into a description by the common coordinate system WS and provides it to the information processing device 9. The information processing device 9 integrates the provided spatial data 6 and the retained spatial data 6 and uses the spatial data 6.
 図1等に示す実施の形態1の空間認識システムは、複数のユーザの複数の端末1による分担で空間2を測定し、測定データに基づいて空間データ6を作成する。物体の表面方向、物体間の遮蔽関係を明確にするために、空間データ6には、測定時の端末1の位置(測定起点)を含めてもよい。複数のユーザの複数の端末1間では、その空間データ6を互いに提供し、共有して利用でき、同じ空間2内の位置や向き等の認識を共有できる。これにより、複数の端末1間では、例えばAR機能等を用いる際に、空間2内で、所望の同じ位置21に同じ仮想画像22を表示することが容易にでき、作業やコミュニケーション等が好適に実現できる。このシステムによれば、一人のユーザの端末によって測定等の作業を行う場合よりも、効率的な作業が実現できる。なお、実施の形態1では、端末1が空間データ6を保持する。また、図31での情報処理装置9は図1での端末1であり、共通座標系WSは、複数の端末1間で空間データ6の授受を行う際に記述の基準に用いるどちらかの端末1の端末座標系WTである。 The space recognition system of the first embodiment shown in FIG. 1 and the like measures the space 2 by the division of the plurality of terminals 1 by a plurality of users, and creates the space data 6 based on the measurement data. In order to clarify the surface direction of the objects and the shielding relationship between the objects, the spatial data 6 may include the position of the terminal 1 at the time of measurement (measurement starting point). The spatial data 6 can be provided to each other, shared and used among a plurality of terminals 1 of a plurality of users, and recognition of a position, orientation, etc. in the same space 2 can be shared. As a result, the same virtual image 22 can be easily displayed at the same desired position 21 in the space 2 when the AR function or the like is used between the plurality of terminals 1, and work, communication, etc. are suitable. realizable. According to this system, more efficient work can be realized than when the work such as measurement is performed by the terminal of one user. In the first embodiment, the terminal 1 holds the spatial data 6. Further, the information processing device 9 in FIG. 31 is the terminal 1 in FIG. 1, and the common coordinate system WS is either terminal used as a reference for description when exchanging spatial data 6 between a plurality of terminals 1. It is a terminal coordinate system WT of 1.
 実施の形態1の空間認識システムおよび方法は、上記分担での空間2の測定や認識に係わる、座標系間の適合等の仕組みを有する。一般に、空間の有する座標系(「空間座標系」と記載する場合がある)や各端末の有する座標系(「端末座標系」と記載する場合がある)は、基本的にはそれぞれ異なる座標系であり、少なくとも最初は一致していない。そこで、実施の形態では、上記分担の際、各端末1の有する各端末座標系間で、それらを相互に関連付けて適合させる動作を、「座標系ペアリング」として行う。この動作によって、端末1には、座標系変換のための変換パラメータ7が設定される。この座標系ペアリングが確立された状態では、変換パラメータ7によって、座標系間で相互に位置や向き等が変換できる。これにより、分担を行う各端末1間では、同じ空間2についての位置等の認識が共有できる。各端末1は、分担での測定によって各端末座標系で記述された部分的な空間データ6を作成する。そして、各端末座標系で記述された複数の部分的な空間データは、変換パラメータ7を用いた変換、および統合によって、ある統一された端末座標系で記述された、空間2を単位とした空間データ6として構成することができる。 The space recognition system and method of the first embodiment has a mechanism such as matching between coordinate systems related to the measurement and recognition of the space 2 in the above division. In general, the coordinate system of space (sometimes referred to as "spatial coordinate system") and the coordinate system of each terminal (sometimes referred to as "terminal coordinate system") are basically different coordinate systems. And at least initially they don't match. Therefore, in the embodiment, at the time of the above sharing, the operation of associating and matching the terminal coordinate systems of each terminal 1 with each other is performed as "coordinate system pairing". By this operation, the conversion parameter 7 for the coordinate system conversion is set in the terminal 1. In the state where this coordinate system pairing is established, the position, orientation, and the like can be mutually converted between the coordinate systems by the conversion parameter 7. As a result, the recognition of the position and the like with respect to the same space 2 can be shared between the terminals 1 that perform the sharing. Each terminal 1 creates partial spatial data 6 described in each terminal coordinate system by shared measurement. Then, the plurality of partial spatial data described in each terminal coordinate system is a space in units of space 2 described in a certain unified terminal coordinate system by conversion and integration using the conversion parameter 7. It can be configured as data 6.
 [空間認識システム]
 図1は、実施の形態1の空間認識システムの構成を示す。本例では、端末1が使用する対象の空間2を、建物内の1つの部屋とし、端末1として特にHMDを使用する場合を説明する。実施の形態1の空間認識システムは、複数の各ユーザ、例えばユーザU1,U2が携帯または装着する、複数の各端末1、例えば第1端末1Aおよび第2端末1Bと、各端末1の測定や利用の対象となる空間2とを有する。各端末1は、空間データ6や変換パラメータ7を作成し保持する。端末1は、スマートフォン1a,1bやタブレット端末等の装置としてもよい。各端末1は、無線LANのアクセスポイント23等を通じて、インターネットやモバイル網等を含む通信網に接続され、通信網を介して外部装置とも通信できる。
[Spatial recognition system]
FIG. 1 shows the configuration of the spatial recognition system of the first embodiment. In this example, the case where the target space 2 used by the terminal 1 is set as one room in the building and the HMD is particularly used as the terminal 1 will be described. In the space recognition system of the first embodiment, a plurality of users, for example, users U1 and U2 carry or wear a plurality of terminals 1, for example, first terminal 1A and second terminal 1B, and measurement of each terminal 1. It has a space 2 to be used. Each terminal 1 creates and holds spatial data 6 and conversion parameters 7. The terminal 1 may be a device such as a smartphone 1a, 1b or a tablet terminal. Each terminal 1 is connected to a communication network including the Internet, a mobile network, and the like through a wireless LAN access point 23 and the like, and can also communicate with an external device via the communication network.
 空間2は、識別や区分して管理される任意の空間であり、例えば建物内の1つの部屋である。本例では、この部屋の空間2が、分担による空間データ6の作成対象であり、複数の端末1による認識共有対象である。 Space 2 is an arbitrary space that is identified and managed separately, for example, one room in a building. In this example, the space 2 of this room is the object of creating the space data 6 by sharing, and is the object of recognition sharing by the plurality of terminals 1.
 複数の端末1は、例えば、第1ユーザU1の第1端末1A(=第1HMD)と、第2ユーザU2の第2端末1B(=第2HMD)とを有する。端末1であるHMDは、筐体に、透過型の表示面11、カメラ12、測距センサ13等を備え、ARの仮想画像を表示面11に表示する機能等を有する。同様に、スマートフォン1a,1bは、タッチパネル等の表示面、カメラ、測距センサ等を備え、ARの仮想画像を表示面に表示する機能等を有する。なお、端末1としてスマートフォン等を用いる場合も、HMDの場合と概略同様の機能等が実現できる。例えば、ユーザは、手に持ったスマートフォンの表示面に表示されるAR等の仮想画像を見る。 The plurality of terminals 1 have, for example, a first terminal 1A (= first HMD) of the first user U1 and a second terminal 1B (= second HMD) of the second user U2. The HMD, which is the terminal 1, is provided with a transmissive display surface 11, a camera 12, a distance measuring sensor 13, and the like in a housing, and has a function of displaying a virtual image of AR on the display surface 11. Similarly, the smartphones 1a and 1b are provided with a display surface such as a touch panel, a camera, a distance measuring sensor, and the like, and have a function of displaying a virtual image of AR on the display surface. Even when a smartphone or the like is used as the terminal 1, functions and the like substantially the same as those in the case of the HMD can be realized. For example, the user sees a virtual image such as AR displayed on the display surface of a smartphone held in his hand.
 各端末1は、自機と相手の端末1との間で座標系ペアリングを行う機能を有する。各端末1は、自機の端末座標系(例えば第1端末座標系WA)と相手の端末座標系(例えば第2端末座標系WB)との関係を測定し、その関係に基づいて変換パラメータ7を生成し、自機または相手の少なくとも一方に設定する。複数の端末1(1A,1B)は、対象の空間2を分担して測定し、それぞれの部分的な空間データ6(「部分空間データ」と記載する場合がある)を作成する。例えば、第1端末1Aは空間データD1Aを作成し、第2端末1Bは空間データD1Bを作成する。複数の端末1は、それらの部分的な空間データ6から、空間2を単位とした空間データ6(例えば空間データD1)を作成し、この空間データ6を用いて空間2の認識を共有できる。端末1は、カメラ12や測距センサ13等を用いて空間2を測定し、測定データに基づいて空間データ6を作成する機能を有する。端末1は、変換パラメータ7を用いて、測定データや空間データ6の表現に関する座標系間の変換ができる。 Each terminal 1 has a function of performing coordinate system pairing between its own terminal and the other terminal 1. Each terminal 1 measures the relationship between its own terminal coordinate system (for example, the first terminal coordinate system WA) and the other party's terminal coordinate system (for example, the second terminal coordinate system WB), and the conversion parameter 7 is based on the relationship. Is generated and set to at least one of the own machine or the other party. The plurality of terminals 1 (1A, 1B) share and measure the target space 2, and create each partial spatial data 6 (may be described as "subspace data"). For example, the first terminal 1A creates the spatial data D1A, and the second terminal 1B creates the spatial data D1B. The plurality of terminals 1 can create spatial data 6 (for example, spatial data D1) in units of spatial 2 from the partial spatial data 6, and can share the recognition of spatial 2 using the spatial data 6. The terminal 1 has a function of measuring the space 2 using the camera 12, the distance measuring sensor 13, and the like, and creating the space data 6 based on the measurement data. The terminal 1 can perform conversion between coordinate systems related to the representation of measurement data and spatial data 6 by using the conversion parameter 7.
 端末座標系(WA,WB)間の関係は、概略的には以下のように求められる。まず、実空間内における異なる2つの特定方向での、各端末座標系(WA,WB)での表現の測定に基づいて、座標系間の回転の関係が求められる。次に、端末1間の位置の関係の測定に基づいて、各端末座標系間の原点の関係が求められる。変換パラメータ7は、上記回転のパラメータと原点のパラメータとで構成できる。 The relationship between the terminal coordinate systems (WA, WB) is roughly obtained as follows. First, the relationship of rotation between the coordinate systems is obtained based on the measurement of the representation in each terminal coordinate system (WA, WB) in two different specific directions in the real space. Next, the relationship of the origins between the terminal coordinate systems is obtained based on the measurement of the positional relationship between the terminals 1. The conversion parameter 7 can be composed of the rotation parameter and the origin parameter.
 実施の形態1では、複数の端末1間で、いずれかの端末1の端末座標系(例えば第1端末座標系WA)を共通座標系として、2台の端末1のペア毎に座標系ペアリングを行う。これにより、少なくともいずれかの端末1(例えば第1端末1A)は、変換パラメータ7を作成し保持する。その後、各端末1は、空間2を分担して測定し、各端末座標系で記述された各部分空間データを作成する。各端末1は、各部分空間データを、他の各端末1との間で共通座標系に基づいて記述されたデータとして授受・交換してもよい。端末1は、変換パラメータ7を用いて、部分空間データを、自機の端末座標系に基づいた記述と共通座標系に基づいた記述との間で変換する。自機の端末座標系が共通座標系である場合は、この変換は不要である。そして、端末1は、統一された端末座標系で記述された複数の部分空間データから、統合によって空間2を単位とした空間データ6を得る。これにより、複数の端末1は、その空間データ6を用いて、同じ空間2内で同じ位置21に同じ仮想画像22を好適に表示できる。 In the first embodiment, the terminal coordinate system of one of the terminals 1 (for example, the first terminal coordinate system WA) is used as a common coordinate system among the plurality of terminals 1, and the coordinate system pairing is performed for each pair of the two terminals 1. I do. As a result, at least one of the terminals 1 (for example, the first terminal 1A) creates and holds the conversion parameter 7. After that, each terminal 1 shares and measures the space 2, and creates each subspace data described in each terminal coordinate system. Each terminal 1 may exchange / exchange each subspace data with each other terminal 1 as data described based on a common coordinate system. The terminal 1 uses the conversion parameter 7 to convert the subspace data between the description based on the terminal coordinate system of the own machine and the description based on the common coordinate system. If the terminal coordinate system of the own machine is a common coordinate system, this conversion is not necessary. Then, the terminal 1 obtains the spatial data 6 in units of the space 2 by integration from the plurality of subspace data described in the unified terminal coordinate system. As a result, the plurality of terminals 1 can suitably display the same virtual image 22 at the same position 21 in the same space 2 by using the spatial data 6.
 なお、非透過型ディスプレイを備える端末1の場合でも、その端末1の端末座標系が実空間に固定されている間は、表示面11に表示している仮想画像の表示位置を他の端末1と共有できる。 Even in the case of the terminal 1 provided with the non-transparent display, while the terminal coordinate system of the terminal 1 is fixed in the real space, the display position of the virtual image displayed on the display surface 11 is set to the other terminal 1. Can be shared with.
 [座標系]
 実施の形態1では、各端末1や空間2において、実空間内の位置や向き等を指定するための基準となる座標系を、世界座標系と呼ぶ。各端末1は、各自の世界座標系として端末座標系を有する。図1で、第1端末1Aは第1端末座標系WAを有し、第2端末1Bは第2端末座標系WBを有する。各端末座標系は、端末1の位置や向き(言い換えると姿勢、回転の状態)、画像表示位置等を認識し制御するための座標系である。これらの端末座標系は、端末1毎に設定されているため、基本的には異なる座標系であり、最初の状態では一致していない。また、空間2は、その空間2の位置や向きを表す世界座標系として、空間座標系W1を有する。実施の形態1では、空間データ6の測定や作成には空間座標系W1を用いない。実施の形態1では、空間データ6は、端末座標系で記述される。第1端末座標系WA、第2端末座標系WB、および空間座標系W1は、異なる座標系である。各世界座標系の原点および方向は、実空間(地球や地域等)内に固定されている。
[Coordinate system]
In the first embodiment, the coordinate system that serves as a reference for designating the position, orientation, and the like in the real space in each terminal 1 and space 2 is called a world coordinate system. Each terminal 1 has a terminal coordinate system as its own world coordinate system. In FIG. 1, the first terminal 1A has a first terminal coordinate system WA, and the second terminal 1B has a second terminal coordinate system WB. Each terminal coordinate system is a coordinate system for recognizing and controlling the position and orientation (in other words, posture, rotation state), image display position, and the like of the terminal 1. Since these terminal coordinate systems are set for each terminal 1, they are basically different coordinate systems and do not match in the initial state. Further, the space 2 has a space coordinate system W1 as a world coordinate system representing the position and orientation of the space 2. In the first embodiment, the spatial coordinate system W1 is not used for the measurement and creation of the spatial data 6. In the first embodiment, the spatial data 6 is described in the terminal coordinate system. The first terminal coordinate system WA, the second terminal coordinate system WB, and the spatial coordinate system W1 are different coordinate systems. The origin and direction of each world coordinate system are fixed in the real space (earth, region, etc.).
 第1端末座標系WAは、原点Oと、直交する3軸として軸X、軸Y、および軸Zとを有する。第2端末座標系WBは、原点Oと、直交する3軸として軸X、軸Y、および軸Zとを有する。空間座標系W1は、原点Oと、直交する3軸として軸X、軸Y、および軸Zとを有する。原点O,Oおよび原点Oは、それぞれ実空間内の所定の位置に固定されている。第1端末座標系WAにおける第1端末1Aの位置LAや、第2端末座標系WBにおける第2端末1Bの位置LBは、例えば筐体中心位置として予め規定されている(図8)。 The first terminal coordinate system WA has the origin O A, the axis X A as 3 orthogonal axes, the axis Y A, and a shaft Z A. The second terminal coordinate system WB, with the origin O B, the axis X B as 3 orthogonal axes, the axis Y B, and a shaft Z B. Space coordinate system W1 has, as an origin O 1, the axis X 1 as 3 orthogonal axes, the axis Y 1, and a shaft Z 1. The origins O A , B and the origin O 1 are fixed at predetermined positions in the real space, respectively. The position LA of the first terminal 1A in the first terminal coordinate system WA and the position LB of the second terminal 1B in the second terminal coordinate system WB are defined in advance as, for example, the housing center position (FIG. 8).
 端末1は、空間2の認識を共有する場合に、他の端末1との間で座標系ペアリングを行う。例えば、分担する端末1(1A,1B)は、互いに座標系ペアリングを行う。座標系ペアリングの際、各端末1は、互いに所定の諸量を測定・取得し(図8)、その諸量に基づいて端末座標系(WA,WB)間の関係を求める。各端末1は、その関係から、端末座標系(WA,WB)間の変換パラメータ7を計算する。座標系ペアリングが確立された状態では、各端末1は、変換パラメータ7を用いて互いに位置等の変換が可能となる。すなわち、各端末1は、空間2の測定によって作成した空間データ6における位置等の表現を、共通座標系での表現に変換することができる。各端末1は、共通座標系を基準として記述された空間データ6を媒介として、空間データ6の授受を行う。これにより、各端末1は、各端末1で測定された部分空間データを統合し、統一された端末座標系で記述された空間データ6を作成することができる。なお、座標系ペアリング後では、各端末1は、自機の内部制御を、自機の端末座標系を基本として行うことに限らず、相手の端末座標系を基本として行うことも可能である。 When the terminal 1 shares the recognition of the space 2, the terminal 1 performs coordinate system pairing with another terminal 1. For example, the sharing terminals 1 (1A, 1B) perform coordinate system pairing with each other. At the time of coordinate system pairing, each terminal 1 measures and acquires predetermined quantities from each other (FIG. 8), and obtains a relationship between the terminal coordinate systems (WA, WB) based on the quantities. Each terminal 1 calculates the conversion parameter 7 between the terminal coordinate systems (WA, WB) from the relationship. In the state where the coordinate system pairing is established, each terminal 1 can convert the position and the like with each other by using the conversion parameter 7. That is, each terminal 1 can convert the representation such as the position in the spatial data 6 created by the measurement of the space 2 into the representation in the common coordinate system. Each terminal 1 exchanges and exchanges spatial data 6 through spatial data 6 described with reference to a common coordinate system. As a result, each terminal 1 can integrate the subspace data measured by each terminal 1 and create the spatial data 6 described in the unified terminal coordinate system. After pairing the coordinate system, each terminal 1 can perform internal control of its own device not only based on its own terminal coordinate system but also based on the other party's terminal coordinate system. ..
 [空間認識方法]
 図2は、実施の形態1の空間認識方法の概要および処理例を示す。この方法は、図示するステップS1~S9を有する。図2の例では、空間2の分担(後述の図3)として、第1端末1Aが領域2Aを測定し、第2端末1Bが領域2Bを測定する。また、図2の例では、第1端末1Aで変換パラメータ7を生成し、空間2を単位とする空間データ6(6A,6B)を構成し、第1端末1Aが第2端末1Bに空間データ6Bを提供する。ここでは、第2端末1Bが基本構成(図31)における情報処理装置9であり、第2端末座標系WBが共通座標系WSに相当する。
[Spatial recognition method]
FIG. 2 shows an outline of the space recognition method of the first embodiment and a processing example. This method has steps S1 to S9 shown. In the example of FIG. 2, the first terminal 1A measures the area 2A and the second terminal 1B measures the area 2B as the division of the space 2 (FIG. 3 described later). Further, in the example of FIG. 2, the conversion parameter 7 is generated by the first terminal 1A, spatial data 6 (6A, 6B) with the space 2 as a unit are configured, and the first terminal 1A is the spatial data in the second terminal 1B. 6B is provided. Here, the second terminal 1B is the information processing device 9 in the basic configuration (FIG. 31), and the second terminal coordinate system WB corresponds to the common coordinate system WS.
 ステップS1で、第1端末1Aは、第2端末1Bとの座標系ペアリング(後述の図8)を行い、これにより、第1端末座標系WAと第2端末座標系WBとの変換のための変換パラメータ7を生成し、自機に設定する。 In step S1, the first terminal 1A performs coordinate system pairing with the second terminal 1B (FIG. 8 described later), thereby converting the first terminal coordinate system WA and the second terminal coordinate system WB. The conversion parameter 7 of is generated and set in the own machine.
 ステップS2で、第1端末1Aは、分担による領域2Aを測定し、第1端末座標系WAで記述された部分的な空間データ6(部分空間データD1Aとする)を作成する。なお図面中の※印はその空間データを記述する座標系を示す。一方、ステップS3で、第2端末1Bは、同様に、分担による領域2Bを測定し、第2端末座標系WBで記述された部分的な空間データ6(部分空間データD1Bとする)を作成する。ステップS2,S3は同時並列で実行可能である。 In step S2, the first terminal 1A measures the region 2A due to the division and creates the partial spatial data 6 (referred to as the partial spatial data D1A) described in the first terminal coordinate system WA. The * mark in the drawing indicates the coordinate system that describes the spatial data. On the other hand, in step S3, the second terminal 1B similarly measures the region 2B due to the division and creates the partial spatial data 6 (referred to as the subspace data D1B) described in the second terminal coordinate system WB. .. Steps S2 and S3 can be executed in parallel at the same time.
 ステップS4で、第1端末1Aは、第2端末1Bから部分空間データD1Bを受信・取得する。ステップS5で、第1端末1Aは、変換パラメータ7を用いて、部分空間データD1Bを、第1端末座標系WAで記述された部分的な空間データ6(部分空間データD1BAとする)に変換する。 In step S4, the first terminal 1A receives and acquires the subspace data D1B from the second terminal 1B. In step S5, the first terminal 1A converts the subspace data D1B into the partial spatial data 6 (referred to as the subspace data D1BA) described in the first terminal coordinate system WA by using the conversion parameter 7. ..
 ステップS6で、第1端末1Aは、部分空間データD1Aと部分空間データD1BAとを1つに統合して、第1端末座標系WAで記述された空間2を単位とする空間データ6A(D1)として得る。これにより、第1端末1Aは、領域2Aのみの測定でも、空間2を単位とした空間データ6A(D1)が得られる。 In step S6, the first terminal 1A integrates the subspace data D1A and the subspace data D1BA into one, and the spatial data 6A (D1) having the space 2 described in the first terminal coordinate system WA as a unit. Get as. As a result, the first terminal 1A can obtain the spatial data 6A (D1) in units of the space 2 even if the measurement is performed only in the area 2A.
 さらに、以下のステップを有する。ステップS7で、第1端末1Aは、変換パラメータ7を用いて、部分空間データD1Aを、第2端末座標系WBで記述された部分的な空間データ6(部分空間データD1ABとする)に変換する。ステップS8で、第1端末1Aは、部分空間データD1Bと部分空間データD1ABとを1つに統合して、第2端末座標系WBで記述された、空間2を単位とした空間データ6B(D1)として得る。ステップS9で、第1端末1Aは、空間データ6B(D1)を第2端末1Bへ送信する。これにより、第2端末1Bは、領域2Bのみの測定でも、空間2を単位とした空間データ6B(D1)が得られる。 Furthermore, it has the following steps. In step S7, the first terminal 1A converts the subspace data D1A into the partial spatial data 6 (referred to as the subspace data D1AB) described in the second terminal coordinate system WB by using the conversion parameter 7. .. In step S8, the first terminal 1A integrates the subspace data D1B and the subspace data D1AB into one, and describes the spatial data 6B (D1) in the space 2 as a unit described in the second terminal coordinate system WB. ). In step S9, the first terminal 1A transmits the spatial data 6B (D1) to the second terminal 1B. As a result, the second terminal 1B can obtain the spatial data 6B (D1) in units of the space 2 even if only the area 2B is measured.
 上記方法によって、同じ空間2について、第1端末1Aは、第1端末座標系WAで記述された空間データ6A(D1)を取得し、第2端末1Bは、第2端末座標系WBで記述された空間データ6B(D1)を取得する。よって、それらの端末1(1A,1B)間で空間2の認識を共有できる。例えば、第1端末1Aと第2端末1Bは、空間2内の同じ位置21に同じ仮想画像22を表示できる(後述の図5)。その際、第1端末1Aは、空間データ6A(D1)に基づいて第1端末座標系WAで記述された位置21に仮想画像22を表示する。第2端末1Bは、空間データ6B(D1)に基づいて第2端末座標系WBで記述された位置21に仮想画像22を表示する。 By the above method, for the same space 2, the first terminal 1A acquires the spatial data 6A (D1) described in the first terminal coordinate system WA, and the second terminal 1B is described in the second terminal coordinate system WB. The spatial data 6B (D1) is acquired. Therefore, the recognition of the space 2 can be shared between the terminals 1 (1A, 1B). For example, the first terminal 1A and the second terminal 1B can display the same virtual image 22 at the same position 21 in the space 2 (FIG. 5 described later). At that time, the first terminal 1A displays the virtual image 22 at the position 21 described in the first terminal coordinate system WA based on the spatial data 6A (D1). The second terminal 1B displays the virtual image 22 at the position 21 described in the second terminal coordinate system WB based on the spatial data 6B (D1).
 上記方法は、第2端末1Bで変換パラメータ7を生成し、空間データ6を構成する場合にも、同様に適用できる。 The above method can be similarly applied to the case where the conversion parameter 7 is generated by the second terminal 1B and the spatial data 6 is configured.
 [空間例]
 図3は、空間2の構成例、および空間2を複数のユーザの端末1で分担して測定する例を示す。この空間2は、例えば会社等の建物内の1つの部屋、例えば第7会議室である。空間2には、壁、床、天井、ドア2d等の配置物、机2aやホワイトボード2bや他の機器等の配置物がある。配置物とは、空間2を構成する任意の実物である。他の空間2としては、会社や店舗等の建物やエリアとしてもよいし、公共空間等でもよい。
[Spatial example]
FIG. 3 shows a configuration example of the space 2 and an example in which the space 2 is shared and measured by the terminals 1 of a plurality of users. This space 2 is, for example, one room in a building such as a company, for example, a seventh conference room. In the space 2, there are arrangements such as walls, floors, ceilings, doors 2d, and arrangements such as desks 2a, whiteboards 2b, and other devices. The arrangement is an arbitrary object that constitutes the space 2. The other space 2 may be a building or area such as a company or a store, or a public space or the like.
 空間2を記述する空間データ6(特に後述の空間形状データ)は、例えばその部屋の位置や形状等を表す任意の形式のデータである。空間データ6は、空間2の境界を表すデータと、空間2内に配置されている任意の物体のデータとを含む。空間2の境界を表すデータは、例えば部屋を構成する床、壁、天井、ドア2d等の配置物のデータがある。境界に配置物が無い場合もある。空間2内の物体のデータは、例えば部屋内に配置されている机2aやホワイトボード2b等のデータがある。空間データ6は、例えば、少なくとも点群データを含み、ある端末座標系において特徴点毎の位置座標情報を持つデータである。空間データ6は、空間内の線や面等を表すポリゴンデータとしてもよい。 The spatial data 6 (particularly the spatial shape data described later) that describes the space 2 is, for example, data in an arbitrary format that represents the position and shape of the room. The spatial data 6 includes data representing the boundary of the space 2 and data of an arbitrary object arranged in the space 2. The data representing the boundary of the space 2 includes, for example, data of an arrangement such as a floor, a wall, a ceiling, and a door 2d constituting the room. There may be no placement at the boundary. The data of the object in the space 2 includes, for example, the data of the desk 2a and the whiteboard 2b arranged in the room. The spatial data 6 is, for example, data including at least point cloud data and having position coordinate information for each feature point in a certain terminal coordinate system. The spatial data 6 may be polygon data representing a line, a surface, or the like in the space.
 本例では、1つの部屋である空間2を、二人のユーザであるユーザU1,U2のそれぞれの端末1(1A,1B)で分担して測定し、この空間2の空間データ6を作成する。分担の内容は任意に決定できる。例えば二人のユーザで相談して図示のように分担する。分担は、本例のように、対象の空間2を空間的に複数の領域(言い換えると部分空間)に分割すること、とすることができる。本例では、空間2は、図3での左右方向(軸Y方向)での中央に対し左右の半分の領域に分割されている。第1端末1Aは、左側の領域2Aを担当し、第2端末1Bは、右側の領域2Bを担当する。 In this example, the space 2 which is one room is shared and measured by the terminals 1 (1A and 1B) of the users U1 and U2 who are two users, and the space data 6 of the space 2 is created. .. The content of the division can be decided arbitrarily. For example, two users consult and share as shown in the figure. The division can be such that the target space 2 is spatially divided into a plurality of regions (in other words, subspaces) as in this example. In this example, the space 2 is divided into half area of the right and left with respect to the center in the lateral direction (axial Y 1 direction) in FIG. The first terminal 1A is in charge of the left area 2A, and the second terminal 1B is in charge of the right area 2B.
 [分担測定例]
 図4は、図3のような部屋の空間2の俯瞰(例えばX-Y面)において、二人のユーザ(U1,U2)の端末1(1A,1B)での分担による測定の例を示す。図4は、ある時における、HMDである端末1(1A,1B)のある位置(L401,L402)および向き(d401,d402)での測定範囲(401,402)等の状態の例を示す。測定範囲は、HMDに備える測距センサ13等の機能に依存する一例である。測定範囲401は、第1端末1Aの位置L401および向きd401における例えば測距センサ13を用いた測定範囲を示す。測定範囲402は、同様に、第2端末1Bの位置L402および向きd402における測定範囲を示す。
[Example of shared measurement]
Figure 4 shows an example of measurement by sharing in the overhead space 2 room (e.g. X 1 -Y 1 side) as shown in FIG. 3, terminal 1 of the two users (U1, U2) (1A, 1B) Is shown. FIG. 4 shows an example of a state such as a measurement range (401, 402) at a certain position (L401, L402) and orientation (d401, d402) of the terminal 1 (1A, 1B) which is an HMD at a certain time. The measurement range is an example that depends on the function of the distance measuring sensor 13 and the like provided in the HMD. The measurement range 401 indicates a measurement range using, for example, a distance measuring sensor 13 at the position L401 and the direction d401 of the first terminal 1A. Similarly, the measurement range 402 indicates the measurement range at the position L402 and the orientation d402 of the second terminal 1B.
 なお、対象の空間2の測定の際には、100%の領域をカバーする必要は無い。AR等の機能や必要に応じて、空間2のうち十分な量の領域が測定されればよい。空間2のうち、測定されない一部の領域が生じてもよいし、分担によって重複して測定された領域が生じてもよい。図4の例では、領域491は未測定領域であり、領域492は重複測定領域である。予め、空間2または分担領域の測定の割合(例えば90%等)が条件として設定されてもよい。例えば、第1端末1Aは、分担の領域2Aをその条件の割合以上で測定した場合、測定終了と判断する。 It is not necessary to cover 100% of the area when measuring the target space 2. A sufficient amount of area in the space 2 may be measured according to the function of AR or the like and if necessary. A part of the space 2 that is not measured may occur, or an area that is overlapped and measured may occur due to sharing. In the example of FIG. 4, the area 491 is an unmeasured area, and the area 492 is an overlapping measurement area. The measurement ratio (for example, 90%) of the space 2 or the shared area may be set in advance as a condition. For example, the first terminal 1A determines that the measurement is completed when the shared area 2A is measured at a ratio of the condition or more.
 端末1(1A,1B)間での座標系ペアリング後、各端末1は、分担された領域2A,2Bの各測定範囲(401,402)を測定し、各測定データを得る。第1端末1Aは、領域2Aの測定範囲401を測定し、測定データ411を得る。第2端末1Bは、領域2Bの測定範囲402を測定し、測定データ412を得る。測定データは、例えば測距センサ13によって得られる点群データである。点群データは、周囲の複数の特徴点における点毎に位置、方向、および距離等を持つデータである。各端末1は、測定データから、部分空間データ420を作成する。第1端末1Aは、測定データ411から、第1端末座標系WAで記述されている部分空間データD1Aを作成する。第2端末1Bは、測定データ412から、第2端末座標系WBで記述されている部分空間データD1Bを作成する。 After pairing the coordinate system between the terminals 1 (1A, 1B), each terminal 1 measures each measurement range (401, 402) of the shared areas 2A, 2B, and obtains each measurement data. The first terminal 1A measures the measurement range 401 of the region 2A and obtains the measurement data 411. The second terminal 1B measures the measurement range 402 of the region 2B and obtains the measurement data 412. The measurement data is, for example, point cloud data obtained by the distance measuring sensor 13. The point cloud data is data having a position, a direction, a distance, and the like for each point at a plurality of surrounding feature points. Each terminal 1 creates subspace data 420 from the measurement data. The first terminal 1A creates the subspace data D1A described in the first terminal coordinate system WA from the measurement data 411. The second terminal 1B creates the subspace data D1B described in the second terminal coordinate system WB from the measurement data 412.
 図4の例では、第1端末1Aが第1端末座標系WAで記述された空間データ6A(D1)を作成し、第2端末1Bが第2端末座標系WBで記述された空間データ6B(D1)を作成する場合を示す。各端末1は、相手の端末1に、自機で作成した部分空間データ420を送信する。第1端末1Aは、部分空間データD1Aを第2端末1Bに送信する。第2端末1Bは、部分空間データD1Bを第1端末1Aに送信する。 In the example of FIG. 4, the first terminal 1A creates the spatial data 6A (D1) described in the first terminal coordinate system WA, and the second terminal 1B creates the spatial data 6B (D1) described in the second terminal coordinate system WB. The case of creating D1) is shown. Each terminal 1 transmits the subspace data 420 created by its own device to the other terminal 1. The first terminal 1A transmits the subspace data D1A to the second terminal 1B. The second terminal 1B transmits the subspace data D1B to the first terminal 1A.
 各端末1は、相手の端末1から得た部分空間データ430を、変換パラメータ7を用いて、自機の端末座標系での部分空間データ440に変換する。第1端末1Aは、部分空間データD1Bを、第1端末座標系WAで記述された部分空間データD1BAに変換する。第2端末1Bは、部分空間データD1Aを、第2端末座標系WBで記述された部分空間データD1ABに変換する。 Each terminal 1 converts the subspace data 430 obtained from the other terminal 1 into the subspace data 440 in the terminal coordinate system of its own device by using the conversion parameter 7. The first terminal 1A converts the subspace data D1B into the subspace data D1BA described in the first terminal coordinate system WA. The second terminal 1B converts the subspace data D1A into the subspace data D1AB described in the second terminal coordinate system WB.
 各端末1は、自機で得た部分空間データ420と、相手から得た部分空間データ440とを、統一された端末座標系での1つの空間2を単位とした空間データ6(450)に統合する。第1端末1Aは、部分空間データD1Aと、部分空間データD1BAとを1つに統合して、第1端末座標系WAで記述された空間データD1(6A)として得る。第2端末1Bは、部分空間データD1Bと、部分空間データD1ABとを1つに統合して、第2端末座標系WBで記述された空間データD1(6B)として得る。この例の場合、2つの端末1のうち、どちらが基本構成(図31)の情報処理装置9に相当すると考えるかは任意でよい。空間データ6の授受で使用する端末座標系がその空間データ6の授受における共通座標系である。 Each terminal 1 converts the subspace data 420 obtained by its own machine and the subspace data 440 obtained from the other party into spatial data 6 (450) in one space 2 in a unified terminal coordinate system. Integrate. The first terminal 1A integrates the subspace data D1A and the subspace data D1BA into one, and obtains the subspace data D1 (6A) described in the first terminal coordinate system WA. The second terminal 1B integrates the subspace data D1B and the subspace data D1AB into one, and obtains the subspace data D1 (6B) described in the second terminal coordinate system WB. In the case of this example, which of the two terminals 1 is considered to correspond to the information processing device 9 having the basic configuration (FIG. 31) may be arbitrary. The terminal coordinate system used in the transfer of the spatial data 6 is the common coordinate system in the transfer of the spatial data 6.
 上記方法によれば、空間2を一人のユーザの端末1で測定する場合よりも、測定および空間データの取得に係わる時間を短くして効率的に実現できる。 According to the above method, the time related to the measurement and the acquisition of the spatial data can be shortened and efficiently realized as compared with the case where the space 2 is measured by the terminal 1 of one user.
 なお、空間2のうち、一方のユーザの端末1から見て他ユーザが写っていて他ユーザの奥側の陰になる空間部分が生じる場合、そのような空間部分については、他ユーザの端末1によって測定可能であり、その他ユーザの端末1による測定とした方が効率的である。 In addition, in the space 2, when the other user is seen from the terminal 1 of one user and there is a space portion behind the other user, such a space portion is referred to by the terminal 1 of the other user. It is possible to measure by, and it is more efficient to measure by the terminal 1 of the other user.
 測定の際には、ユーザおよび対応する端末1が適宜に位置を移動し、測定範囲を変えることもできる。図示の未測定領域491についても、別途、他の位置からの測定範囲に含めることで測定できる。 At the time of measurement, the user and the corresponding terminal 1 can move the position appropriately to change the measurement range. The unmeasured area 491 shown in the figure can also be measured by separately including it in the measurement range from another position.
 分担に関するより高度な方法として、いずれかの端末1が、分担を自動的に判断して決定してもよい。例えば、各端末1は、カメラ画像等に基づいて、部屋内における自機の概略的な位置・向き、他ユーザ・他機の写り込みの有無やその位置・向き等を判断する。例えば、第1端末1Aは、カメラ画像に第2ユーザU2および第2端末1Bが写っていない状態の時、その時の向きにある領域・範囲を、第1端末1Aの分担する領域・範囲として選択する。 As a more advanced method for sharing, any terminal 1 may automatically determine and determine the sharing. For example, each terminal 1 determines the approximate position / orientation of its own device in the room, the presence / absence of reflection of another user / other device, its position / orientation, and the like based on a camera image or the like. For example, when the second user U2 and the second terminal 1B are not shown in the camera image, the first terminal 1A selects the area / range in the direction at that time as the area / range shared by the first terminal 1A. do.
 [利用例]
 図5は、図3のように空間2の認識を共有する二人のユーザ(U1,U2)の端末1(1A,1B)間における空間データ6を用いた空間2の利用例を示す。第1端末1Aと第2端末1Bは、第1端末座標系WAと第2端末座標系WBとの座標系ペアリングの状態で、空間データ6を用いて、AR機能によって、空間2内の同じ位置21に同じ仮想画像22を表示する。その際、第1端末1Aは、表示面11で第1端末座標系WAでの位置21に仮想画像22を表示し、第2端末1Bは、表示面11で第2端末座標系WBでの位置21に仮想画像22を表示する。一方の端末1、例えば第1端末1Aは、位置21と表示対象の仮想画像22を指定し、その位置21等の情報を第2端末1Bに伝える。その際、第1端末1Aまたは第2座標系WBは、変換パラメータ7を用いて、第1端末座標系WAでの位置21を、第2端末座標系WBでの位置21に変換する。各端末1は、空間データ6で表す空間2の配置物の位置や形状等に合わせた位置21に仮想画像22を速やかに高精度に表示できる。例えば、各端末1は、ユーザU1によって指定された机2a上面の中心の位置21に合わせて仮想画像22を配置し表示できる。ユーザU1とユーザU2は、同じ仮想画像22を見ながら作業やコミュニケーションができる。
[Usage example]
FIG. 5 shows an example of using the space 2 using the space data 6 between the terminals 1 (1A, 1B) of two users (U1, U2) who share the recognition of the space 2 as shown in FIG. The first terminal 1A and the second terminal 1B are the same in the space 2 by the AR function using the spatial data 6 in the state of the coordinate system pairing between the first terminal coordinate system WA and the second terminal coordinate system WB. The same virtual image 22 is displayed at the position 21. At that time, the first terminal 1A displays the virtual image 22 on the display surface 11 at the position 21 in the first terminal coordinate system WA, and the second terminal 1B is the position on the display surface 11 in the second terminal coordinate system WB. The virtual image 22 is displayed on the 21. One terminal 1, for example, the first terminal 1A specifies a position 21 and a virtual image 22 to be displayed, and transmits information such as the position 21 to the second terminal 1B. At that time, the first terminal 1A or the second coordinate system WB uses the conversion parameter 7 to convert the position 21 in the first terminal coordinate system WA to the position 21 in the second terminal coordinate system WB. Each terminal 1 can quickly and accurately display the virtual image 22 at a position 21 that matches the position, shape, and the like of the arrangement of the space 2 represented by the space data 6. For example, each terminal 1 can arrange and display the virtual image 22 according to the position 21 at the center of the upper surface of the desk 2a designated by the user U1. User U1 and user U2 can work and communicate while viewing the same virtual image 22.
 [情報端末装置(HMD)]
 図6は、端末1の一例としてのHMDの外観構成例を示す。このHMDは、眼鏡状の筐体10に、表示面11を含む表示デバイスを備える。この表示デバイスは、例えば透過型表示デバイスであり、表示面11には外界の実像が透過され、その実像上に画像が重畳表示される。筐体10には、コントローラ、カメラ12、測距センサ13、他のセンサ部14等が実装されている。
[Information terminal device (HMD)]
FIG. 6 shows an example of the appearance configuration of the HMD as an example of the terminal 1. This HMD includes a display device including a display surface 11 in a spectacle-shaped housing 10. This display device is, for example, a transmissive display device, and a real image of the outside world is transmitted through the display surface 11, and the image is superimposed and displayed on the real image. A controller, a camera 12, a distance measuring sensor 13, another sensor unit 14, and the like are mounted on the housing 10.
 カメラ12は、例えば筐体10の左右両側に配置された2つのカメラを有し、HMDの前方を含む範囲を撮影して画像を取得する。測距センサ13は、HMDと外界の物体との距離を測定するセンサである。測距センサ13は、TOF(Time Of Flight)方式のセンサを用いてもよいし、ステレオカメラや他の方式を用いてもよい。センサ部14は、HMDの位置および向きの状態を検出するためのセンサ群を含む。筐体10の左右には、マイクを含む音声入力装置18、スピーカやイヤホン端子を含む音声出力装置19等を備える。 The camera 12 has, for example, two cameras arranged on the left and right sides of the housing 10, and captures a range including the front of the HMD to acquire an image. The distance measuring sensor 13 is a sensor that measures the distance between the HMD and an object in the outside world. As the distance measuring sensor 13, a TOF (Time Of Flight) type sensor may be used, or a stereo camera or another type may be used. The sensor unit 14 includes a group of sensors for detecting the position and orientation of the HMD. On the left and right sides of the housing 10, an audio input device 18 including a microphone, an audio output device 19 including a speaker and an earphone terminal, and the like are provided.
 端末1には、リモートコントローラ等の操作器が付属していてもよい。その場合、HMDは、その操作器との間で例えば近距離無線通信を行う。ユーザは、手で操作器を操作することで、HMDの機能に関する指示入力や表示面11でのカーソル移動等ができる。HMDは、外部のスマートフォンやPC等と通信して連携を行ってもよい。例えば、HMDは、スマートフォンのアプリケーションからARの画像データを受信してもよい。 The terminal 1 may be equipped with an operator such as a remote controller. In that case, the HMD performs, for example, short-range wireless communication with the controller. By manually operating the operating device, the user can input instructions related to the HMD function, move the cursor on the display surface 11, and the like. The HMD may communicate with an external smartphone, PC, or the like to cooperate. For example, the HMD may receive AR image data from a smartphone application.
 端末1は、作業支援や娯楽のためにAR等の仮想画像を表示面11に表示させるアプリケーションプログラム等を備える。例えば、端末1は、作業支援のためのアプリケーションの処理によって、作業支援のための仮想画像22(図1)を生成し、表示面11において、空間2内の作業対象物の付近の所定の位置21に仮想画像22を配置し表示させる。 The terminal 1 includes an application program or the like for displaying a virtual image such as AR on the display surface 11 for work support or entertainment. For example, the terminal 1 generates a virtual image 22 (FIG. 1) for work support by processing an application for work support, and a predetermined position on the display surface 11 near a work object in space 2. A virtual image 22 is arranged and displayed on the 21.
 図7は、図6の端末1(HMD)の機能ブロック構成例を示す。端末1は、プロセッサ101、メモリ102、カメラ12、測距センサ13、センサ部14、表示面11を含む表示デバイス103、通信デバイス104、マイクを含む音声入力装置18、スピーカ等を含む音声出力装置19、操作入力部105、およびバッテリ106等を備える。これらの要素はバス等を通じて相互に接続されている。 FIG. 7 shows an example of a functional block configuration of the terminal 1 (HMD) of FIG. The terminal 1 is a processor 101, a memory 102, a camera 12, a distance measuring sensor 13, a sensor unit 14, a display device 103 including a display surface 11, a communication device 104, a voice input device 18 including a microphone, a voice output device including a speaker, and the like. 19. The operation input unit 105, the battery 106, and the like are provided. These elements are connected to each other through a bus or the like.
 プロセッサ101は、CPU、ROM、RAM等で構成され、HMDのコントローラを構成する。プロセッサ101は、メモリ102の制御プログラム31やアプリケーションプログラム32に従った処理を実行することにより、OS、ミドルウェア、アプリケーション等の機能や他の機能を実現する。メモリ102は、不揮発性記憶装置等で構成され、プロセッサ101等が扱う各種のデータや情報を記憶する。メモリ102には、一時的な情報として、カメラ12等によって取得した画像や検出情報等も格納される。 The processor 101 is composed of a CPU, ROM, RAM, etc., and constitutes an HMD controller. The processor 101 realizes functions such as an OS, middleware, and applications, and other functions by executing processing according to the control program 31 and the application program 32 of the memory 102. The memory 102 is composed of a non-volatile storage device or the like, and stores various data and information handled by the processor 101 and the like. The memory 102 also stores images, detection information, and the like acquired by the camera 12 and the like as temporary information.
 カメラ12は、レンズから入射した光を撮像素子で電気信号に変換して画像を取得する。測距センサ13は、例えばTOFセンサを用いる場合、外界に出射した光が物体に当たって戻ってくるまでの時間から、その物体までの距離を計算する。センサ部14は、例えば、加速度センサ141、ジャイロセンサ(角速度センサ)142、地磁気センサ143、GPS受信器144を含む。センサ部14は、これらのセンサの検出情報を用いて、HMDの位置、向き、動き等の状態を検出する。HMDは、これに限らず、照度センサ、近接センサ、気圧センサ等を備えてもよい。 The camera 12 acquires an image by converting the light incident from the lens into an electric signal by the image sensor. When a TOF sensor is used, for example, the distance measuring sensor 13 calculates the distance to an object from the time until the light emitted to the outside world hits the object and returns. The sensor unit 14 includes, for example, an acceleration sensor 141, a gyro sensor (angular velocity sensor) 142, a geomagnetic sensor 143, and a GPS receiver 144. The sensor unit 14 detects a state such as the position, orientation, and movement of the HMD by using the detection information of these sensors. The HMD is not limited to this, and may include an illuminance sensor, a proximity sensor, a barometric pressure sensor, and the like.
 表示デバイス103は、表示駆動回路や表示面11を含み、表示情報34の画像データに基づいて、表示面11に仮想画像等を表示する。なお、表示デバイス103は、透過型表示デバイスに限らず、非透過型表示デバイス等としてもよい。 The display device 103 includes a display drive circuit and a display surface 11, and displays a virtual image or the like on the display surface 11 based on the image data of the display information 34. The display device 103 is not limited to the transparent display device, and may be a non-transparent display device or the like.
 通信デバイス104は、所定の各種の通信インタフェースに対応する通信処理回路やアンテナ等を含む。通信インタフェースの例は、モバイル網、Wi-Fi(登録商標)、BlueTooth(登録商標)、赤外線等が挙げられる。通信デバイス104は、他の端末1やアクセスポイント23(図1)との間での無線通信処理等を行う。通信デバイス104は、操作器との近距離通信処理も行う。 The communication device 104 includes a communication processing circuit, an antenna, and the like corresponding to various predetermined communication interfaces. Examples of communication interfaces include mobile networks, Wi-Fi (registered trademark), Bluetooth (registered trademark), infrared rays and the like. The communication device 104 performs wireless communication processing and the like with another terminal 1 and the access point 23 (FIG. 1). The communication device 104 also performs short-range communication processing with the actuator.
 音声入力装置18は、マイクからの入力音声を音声データに変換する。音声出力装置19は、音声データに基づいてスピーカ等から音声を出力する。音声入力装置は、音声認識機能を備えてもよい。音声出力装置は、音声合成機能を備えてもよい。操作入力部105は、HMDに対する操作入力、例えば電源オン/オフや音量調整等を受け付ける部分であり、ハードウェアボタンやタッチセンサ等で構成される。バッテリ106は、各部に電力を供給する。 The voice input device 18 converts the input voice from the microphone into voice data. The voice output device 19 outputs voice from a speaker or the like based on the voice data. The voice input device may include a voice recognition function. The voice output device may include a voice synthesis function. The operation input unit 105 is a part that receives operation inputs to the HMD, such as power on / off and volume adjustment, and is composed of a hardware button, a touch sensor, and the like. The battery 106 supplies electric power to each part.
 プロセッサ101によるコントローラは、処理によって実現される機能ブロックの構成例として、通信制御部101A、表示制御部101B、データ処理部101C、およびデータ取得部101Dを有する。 The controller by the processor 101 has a communication control unit 101A, a display control unit 101B, a data processing unit 101C, and a data acquisition unit 101D as a configuration example of a functional block realized by processing.
 メモリ102には、制御プログラム31、アプリケーションプログラム32、設定情報33、表示情報34、座標系情報35、空間データ情報36等が格納されている。制御プログラム31は、空間認識機能を含む制御を実現するためのプログラムである。アプリケーションプログラム32は、空間データ6を利用するAR等の機能を実現するプログラムである。設定情報33は、各機能に係わるシステム設定情報やユーザ設定情報を含む。表示情報34は、仮想画像22等の画像を表示面11に表示するための画像データや位置座標情報を含む。 The memory 102 stores the control program 31, the application program 32, the setting information 33, the display information 34, the coordinate system information 35, the spatial data information 36, and the like. The control program 31 is a program for realizing control including a spatial recognition function. The application program 32 is a program that realizes a function such as AR that uses the spatial data 6. The setting information 33 includes system setting information and user setting information related to each function. The display information 34 includes image data and position coordinate information for displaying an image such as a virtual image 22 on the display surface 11.
 座標系情報35は、空間認識機能に係わる管理情報である。座標系情報35は、例えば図3のように二人のユーザ間で分担する場合、自機の第1端末座標系WAの情報と、相手の第2端末座標系WBの情報と、自機側の諸量データおよび相手側の諸量データ(図8)と、変換パラメータ7(図1等)と、を含む。 The coordinate system information 35 is management information related to the space recognition function. When the coordinate system information 35 is shared between two users as shown in FIG. 3, for example, the information of the first terminal coordinate system WA of the own machine, the information of the second terminal coordinate system WB of the other party, and the own machine side. The various amount data of the above, the various amount data of the other party (FIG. 8), and the conversion parameter 7 (FIG. 1 and the like) are included.
 空間データ情報36は、図1等の空間データ6に対応する情報であり、端末1が作成して保持する情報である。端末1は、自機内部にライブラリーとして各空間2に関する空間データ6を保持してもよい。端末1は、他の端末1から空間データ6を取得して保持してもよい。端末1は、後述のように外部のサーバ等が保持し、提供する空間データ6を取得してもよい。 The spatial data information 36 is information corresponding to the spatial data 6 such as FIG. 1, and is information created and held by the terminal 1. The terminal 1 may hold the spatial data 6 relating to each space 2 as a library inside the terminal 1. The terminal 1 may acquire and hold the spatial data 6 from another terminal 1. The terminal 1 may acquire the spatial data 6 held and provided by an external server or the like as described later.
 通信制御部101Aは、他の端末1との通信の際等に、通信デバイス104を用いた通信処理を制御する。表示制御部101Bは、表示情報34を用いて、表示デバイス103の表示面11への仮想画像22等の表示を制御する。 The communication control unit 101A controls communication processing using the communication device 104 when communicating with another terminal 1. The display control unit 101B uses the display information 34 to control the display of the virtual image 22 and the like on the display surface 11 of the display device 103.
 データ処理部101Cは、座標系情報35を読み書きし、自機の端末座標系の管理のための処理や、相手の端末座標系との座標系ペアリングの処理や、変換パラメータ7を用いた座標系間の変換処理等を行う。データ処理部101Cは、座標系ペアリングの際には、自機側の諸量データを測定する処理、相手側の諸量データを取得する処理、変換パラメータ7を生成する処理等を行う。 The data processing unit 101C reads and writes the coordinate system information 35, performs processing for managing the terminal coordinate system of the own machine, processing of coordinate system pairing with the terminal coordinate system of the other party, and coordinates using the conversion parameter 7. Performs conversion processing between systems. At the time of coordinate system pairing, the data processing unit 101C performs a process of measuring various amount data on the own machine side, a process of acquiring various amount data on the other side, a process of generating conversion parameter 7, and the like.
 データ取得部101Dは、カメラ12、測距センサ13、およびセンサ部14等の各種のセンサから各検出データを取得する。データ取得部101Dは、座標系ペアリングの際には、データ処理部101Cからの制御に従って自機側の諸量データを測定する。 The data acquisition unit 101D acquires each detection data from various sensors such as the camera 12, the distance measuring sensor 13, and the sensor unit 14. At the time of coordinate system pairing, the data acquisition unit 101D measures various quantity data on the own machine side according to the control from the data processing unit 101C.
 [座標系ペアリング]
 次に、座標系ペアリングの詳細について説明する。図8は、図1の第1端末1Aの第1端末座標系WAと第2端末1Bの第2端末座標系WBとの間で座標系ペアリングを行う場合の説明図を示し、各座標系や諸量の関係等を示す。以下、これらの2台の端末1間における、第1端末座標系WAと第2端末座標系WBとの間の座標系ペアリングによる空間認識共有について記述する。
[Coordinate system pairing]
Next, the details of the coordinate system pairing will be described. FIG. 8 shows an explanatory diagram in the case of performing coordinate system pairing between the first terminal coordinate system WA of the first terminal 1A and the second terminal coordinate system WB of the second terminal 1B of FIG. 1, and each coordinate system. And the relationship of various quantities. Hereinafter, spatial recognition sharing by coordinate system pairing between the first terminal coordinate system WA and the second terminal coordinate system WB between these two terminals 1 will be described.
 なお、図8の例では、第1端末座標系WAの原点Oの位置と第1端末1Aの位置LAとは異なり、第2端末座標系WBの原点Oの位置と第2端末1Bの位置LBとは異なるが、これに限定するものではない。それらの位置が一致する場合もあり、その場合でも同様に適用可能である。以下では、このように世界座標系の原点と端末1の位置とが一致していない一般的な場合について、座標系間の関係を説明する。 In the example of FIG. 8, unlike the position of the origin O A of the first terminal coordinate system WA and the position LA of the first terminal 1A, the position and the second terminal 1B of the origin O B of the second terminal coordinate system WB It is different from the position LB, but is not limited to this. In some cases, their positions may match, and in that case, the same applies. In the following, the relationship between the coordinate systems will be described in a general case where the origin of the world coordinate system and the position of the terminal 1 do not match in this way.
 例えば第1端末1Aは、第2端末1Bとの空間認識共有を行う場合、それらを1つのペアとして、互いに世界座標系情報の共有を行う動作として、座標系ペアリングを行う。2台の端末1(1A,1B)は、1回座標系ペアリングを行えばよい。3台以上の端末1がある場合でも、同様にペア毎に座標系ペアリングを行えばよい。 For example, when the first terminal 1A shares the space recognition with the second terminal 1B, the first terminal 1A performs coordinate system pairing as an operation of sharing the world coordinate system information with each other as one pair. The two terminals 1 (1A, 1B) need only perform coordinate system pairing once. Even if there are three or more terminals 1, the coordinate system pairing may be performed for each pair in the same manner.
 座標系ペアリングの際、各端末1(1A,1B)は、各端末座標系(WA,WB)で所定の諸量を測定し、相手の端末1との間で諸量データを交換する。第1端末1Aは、自機側で測定する諸量801として、特定方向ベクトルNと、端末間ベクトルPBAと、座標値dとを測定する。第1端末1Aは、それらの諸量801のデータを第2端末1Bに送信する。第2端末1Bは、自機側で測定する諸量802として、特定方向ベクトルNと、端末間ベクトルPABと、座標値dとを測定する。第2端末1Bは、それらの諸量802のデータを第1端末1Aに送信する。 At the time of coordinate system pairing, each terminal 1 (1A, 1B) measures a predetermined amount in each terminal coordinate system (WA, WB), and exchanges various amount data with the other terminal 1. The first terminal 1A has, as the amount 801 to be measured by the own apparatus side, measuring the specific direction vector N A, and the vector P BA between terminals, and a coordinate value d A. The first terminal 1A transmits the data of these quantities 801 to the second terminal 1B. The second terminal 1B has, as the amount 802 to be measured by the own apparatus side, measuring the specific direction vector N B, and the vector P AB between the terminals, and a coordinate value d B. The second terminal 1B transmits the data of these quantities 802 to the first terminal 1A.
 各端末1は、自機で測定した諸量データと、相手から得た諸量データとに基づいて、ペアの端末座標系間の関係を求めることができ、その関係から、端末座標系間の変換のための変換パラメータ7を計算できる。これにより、端末1間では、変換パラメータ7を用いて、各端末座標系を関連付けて、世界座標系情報の共有ができる。 Each terminal 1 can obtain the relationship between the pair of terminal coordinate systems based on the various quantity data measured by the own machine and the various quantity data obtained from the other party, and from the relationship, the relationship between the terminal coordinate systems can be obtained. The conversion parameter 7 for conversion can be calculated. As a result, the world coordinate system information can be shared between the terminals 1 by associating each terminal coordinate system with the conversion parameter 7.
 なお、座標系ペアリングにおける一方の端末1、例えば第1端末1Aのみが、座標系間の変換を行う場合には、その第1端末1Aのみが、自機側の諸量801と相手側の諸量802を取得して変換パラメータ7を生成すればよい。この場合、第1端末1Aから第2端末1Bへ諸量801を送信する必要は無い。また、その第1端末1Aが、生成した変換パラメータ7を第2端末1Bへ送信してもよい。そうすれば、第2端末1B側でも変換が可能となる。 When only one terminal 1 in the coordinate system pairing, for example, the first terminal 1A performs conversion between the coordinate systems, only the first terminal 1A has the various quantities 801 on the own machine side and the other side. The various quantities 802 may be acquired to generate the conversion parameter 7. In this case, it is not necessary to transmit various quantities 801 from the first terminal 1A to the second terminal 1B. Further, the first terminal 1A may transmit the generated conversion parameter 7 to the second terminal 1B. Then, the conversion can be performed on the second terminal 1B side as well.
 実施の形態1では、座標系ペアリングの際の諸量として、以下の3つの要素の情報を有する。諸量は、第1情報として特定方向ベクトルと、第2情報として端末間ベクトルと、第3情報として世界座標値とを有する。 In the first embodiment, there is information on the following three elements as various quantities at the time of coordinate system pairing. The quantities have a specific direction vector as the first information, a terminal-to-terminal vector as the second information, and a world coordinate value as the third information.
 (1)特定方向ベクトルについて: 各端末1は、世界座標系における実空間内の特定方向に関する情報として、特定方向ベクトルを用いる。座標系間の回転の関係を求めるために、異なる2つの特定方向ベクトル(N,N,M,M)を用いる。特定方向ベクトルNは、第1端末1Aにおける第1の方向ベクトルの表現であり、単位方向ベクトルをnとする。特定方向ベクトルNは、第2端末1Bにおける第1の方向ベクトルの表現であり、単位方向ベクトルをnとする。特定方向ベクトルMは、第1端末1Aにおける第2の方向ベクトルの表現であり、単位方向ベクトルをmとする。特定方向ベクトルMは、第2端末1Bにおける第2の方向ベクトルの表現であり、単位方向ベクトルをmとする。 (1) Specific direction vector: Each terminal 1 uses a specific direction vector as information regarding a specific direction in the real space in the world coordinate system. To determine the relationship between the rotational between coordinate systems, the two different specific direction vector (N A, N B, M A, M B) used. Specific direction vector N A is a representation of the first direction vector in the first terminal 1A, the unit direction vector and n A. Specific direction vector N B is the representation of the first direction vector in the second terminal 1B, the unit direction vector and n B. Specific direction vector M A is a representation of the second direction vector of the first terminal 1A, the unit direction vector and m A. Specific direction vector M B is a representation of the second direction vector of the second terminal 1B, the unit direction vector and m B.
 実施の形態1では、特に、1つの特定方向(第1特定方向)として、鉛直下方向を用い、もう1つの特定方向(第2特定方向)として、後述の端末間ベクトルを用いる。図8の例では、第1特定方向として鉛直下方向の特定方向ベクトルN,Nを用いる。特定方向ベクトルNは、第1端末1Aの鉛直下方向の方向ベクトルであり、単位方向ベクトルをnとする。特定方向ベクトルNは、第2端末1Bの鉛直下方向の方向ベクトルであり、単位方向ベクトルをnとする。 In the first embodiment, in particular, a vertical downward direction is used as one specific direction (first specific direction), and an inter-terminal vector described later is used as another specific direction (second specific direction). In the example of FIG. 8, a specific direction vector N A of the vertically downward direction as a first specified direction, using N B. Specific direction vector N A is the direction vector of the vertically downward direction of the first terminal 1A, the unit direction vector and n A. Specific direction vector N B is the direction vector of the vertically downward direction of the second terminal 1B, the unit direction vector and n B.
 鉛直下方向は、例えば端末1に備える加速度センサ141(図7)である3軸加速度センサを用いて、重力加速度の方向として測定できる。あるいは、世界座標系(WA,WB)の設定において、鉛直下方向を、Z軸(Z,Z)の負方向として設定してもよい。いずれにせよ、この特定方向である鉛直下方向は、世界座標系において変化しないので、座標系ペアリング毎に毎回測定しなくてもよい。 The vertical downward direction can be measured as the direction of gravitational acceleration by using, for example, a three-axis acceleration sensor which is an acceleration sensor 141 (FIG. 7) provided in the terminal 1. Alternatively, in the setting of the world coordinate system (WA, WB), a vertically downward direction, Z-axis (Z A, Z B) may be set as a negative direction. In any case, since the vertical downward direction, which is a specific direction, does not change in the world coordinate system, it is not necessary to measure each time the coordinate system pairing is performed.
 (2)端末間ベクトルについて: 各端末1は、一方の端末1(例えば第1端末1A)から他方の端末1(例えば第2端末1B)への位置関係を表す情報として、端末位置(LA,LB)間のベクトル(すなわち方向と距離)の情報を用いる。この情報を「端末間ベクトル」と記載する。図8の例では、端末間ベクトルPBA,PABを用いる。端末間ベクトルPBAは、第1端末1Aを基準として位置LAから第2端末1Bの位置LBをみた方向での位置関係を表すベクトルである。端末間ベクトルPABは、第2端末1Bを基準として位置LBから第1端末1Aの位置LAをみた方向での位置関係を表すベクトルである。第1端末1Aから第2端末1Bまでの、第1端末座標系WAでのベクトル表現がPBAであり、第2端末1Bから第1端末1Aまでの、第2端末座標系WBでのベクトル表現がPABである。 (2) Regarding inter-terminal vector: Each terminal 1 has a terminal position (LA, for example) as information indicating a positional relationship from one terminal 1 (for example, the first terminal 1A) to the other terminal 1 (for example, the second terminal 1B). The information of the vector (that is, the direction and the distance) between LB) is used. This information is referred to as "terminal-to-terminal vector". In the example of FIG. 8, the inter-terminal vectors P BA and P AB are used. The inter-terminal vector P BA is a vector representing the positional relationship in the direction from the position LA to the position LB of the second terminal 1B with reference to the first terminal 1A. The inter-terminal vector PAB is a vector representing the positional relationship in the direction from the position LB to the position LA of the first terminal 1A with reference to the second terminal 1B. From the first terminal 1A to the second terminal 1B, the vector representation of the first terminal coordinate system WA is P BA, from the second terminal 1B to the first terminal 1A, vector representation of the second terminal coordinate system WB Is PAB .
 端末間ベクトルは、世界座標系間の向きの関係を求めるための、実空間内のもう1つの特定方向(第2特定方向)に関する情報を含む。ここで、特定方向ベクトル(M,M)と端末間ベクトル(PBA,PAB)については、下記の対応関係がある。
 PBA=M
 PAB=-M
The inter-terminal vector contains information about another specific direction (second specific direction) in real space for finding the orientation relationship between the world coordinate systems. Here, the specific direction vector (M A, M B) and end-to-end vector (P BA, P AB) for the corresponding relationship below.
P BA = M A
P AB = -M B
 座標系ペアリングの際、各端末1は、相手の端末1までの端末間ベクトルを、例えば図1等の測距センサ13あるいはステレオ方式のカメラ12を用いて測定する。なお、端末1間の位置関係の測距については、詳しくは以下のようにしてもよい。例えば、第1端末1Aの測距センサ13は、前方に見える第2端末1Bとの距離を測定する。この際、第1端末1Aは、第2端末1Bの認識のために、カメラ12の画像から第2端末1Bの筐体の形状を測定してもよいし、第2端末1Bの筐体に形成されている所定のマーカ等を特徴点として測定してもよい。 At the time of coordinate system pairing, each terminal 1 measures the vector between terminals up to the other terminal 1 by using, for example, the distance measuring sensor 13 shown in FIG. 1 or the stereo camera 12. The distance measurement of the positional relationship between the terminals 1 may be described in detail as follows. For example, the distance measuring sensor 13 of the first terminal 1A measures the distance to the second terminal 1B seen in front. At this time, the first terminal 1A may measure the shape of the housing of the second terminal 1B from the image of the camera 12 for the recognition of the second terminal 1B, or may be formed in the housing of the second terminal 1B. You may measure using a predetermined marker or the like as a feature point.
 (3)世界座標値について: 各端末1は、世界座標系における位置を表す座標値の情報を用いる。図8の例では、世界座標値として、第1端末座標系WAでの座標値d、および第2端末座標系WBでの座標値dを用いる。第1端末1Aの位置LAについての第1端末座標系WAにおける座標値を、d=(x,y,z)とする。第2端末1Bの位置LBについての第2端末座標系WBにおける座標値を、d=(x,y,z)とする。これらの座標値は、世界座標系の設定に応じて定まる。端末位置ベクトルVは、原点Oから位置LAまでのベクトルである。端末位置ベクトルVは、原点Oから位置LBまでのベクトルである。 (3) World coordinate values: Each terminal 1 uses coordinate value information representing a position in the world coordinate system. In the example of FIG. 8, the world coordinate values, using the coordinate values d B in the coordinate value d A, and a second terminal coordinate system WB in the first terminal coordinate system WA. Let d A = (x A , y A , z A ) be the coordinate value in the first terminal coordinate system WA for the position LA of the first terminal 1A. The coordinate values in the second terminal coordinate system WB for the position LB of the second terminal 1B, d B = (x B , y B, z B) and. These coordinate values are determined according to the settings of the world coordinate system. Terminal position vector V A is the vector from the origin O A to the position LA. Terminal position vector V B is the vector from the origin O B to the position LB.
 なお、図8で、ベクトルFは、端末位置情報に相当する、第1端末1Aの第1端末座標系WAでの第2端末1Bの位置を表すベクトルであり、第1端末1Aの座標値d(ベクトルV)と端末間ベクトルPBAとを合成したベクトルに相当する。ベクトルFは、第2端末1Bの第2端末座標系WBでの第1端末1Aの位置を表すベクトルであり、第2端末1Bの座標値d(ベクトルV)と端末間ベクトルPABとを合成したベクトルに相当する。位置ベクトルGは、第1端末座標系WAにおける位置21のベクトルであり、位置座標値rは、その位置21の座標値である。位置ベクトルGは、第2端末座標系WBにおける位置21のベクトルであり、位置座標値rは、その位置21の座標値である。原点間ベクトルoBAは、第1端末座標系WAの原点Oから第2端末座標系WBの原点Oへのベクトルであり、原点間ベクトルoABは、第2端末座標系WBの原点Oから第1端末座標系WAの原点Oへのベクトルである。ベクトルEは、ユーザU1の視点に対応する位置LAから位置21を見る場合のベクトルである。ベクトルEは、ユーザU2の視点に対応する位置LBから位置21を見る場合のベクトルである。 In FIG. 8, the vector F A, corresponding to the terminal position information, a vector representing the position of the second terminal 1B of the first terminal coordinate system WA of the first terminal 1A, the coordinate values of the first terminal 1A It corresponds to a vector obtained by synthesizing d A (vector VA ) and the inter-terminal vector PBA. Vector F B is a vector representing the position of the first terminal 1A on the second terminal coordinate system WB of the second terminal 1B, the coordinate values of the second terminal 1B d B (vector V B) and the terminal between the vectors P AB Corresponds to the vector obtained by synthesizing and. Position vector G A is the vector of position 21 in the first terminal coordinate system WA, position coordinates r A is the coordinate value of the position 21. Position vector G B is the vector of position 21 in the second terminal coordinate system WB, the position coordinates r B is the coordinate value of the position 21. Origin between the vectors o BA is a vector from the origin O A of the first terminal coordinate system WA to the origin O B of the second terminal coordinate system WB, the origin between vectors o AB is the origin O of the second terminal coordinate system WB is a vector from B to the origin O a of the first terminal coordinate system WA. Vector E A is the vector of view the position 21 from the position LA corresponding to the viewpoint of the user U1. Vector E B is the vector of view the position 21 from position LB corresponding to the viewpoint of the user U2.
 [変換パラメータ]
 上記座標系ペアリングによって、端末1(1A,1B)間での世界座標系(WA,WB)の関係が分かり、互いに位置や向きの変換が可能となる。すなわち、第2端末座標系WBを第1端末座標系WAに合わせるようにするための変換、あるいは、その逆の変換が可能となる。この世界座標系間の変換は、所定の変換パラメータ7で表される。変換パラメータ7は、座標系の方向の変換(言い換えると回転)と、座標系の原点の差との計算用のパラメータである。
[Conversion parameter]
By the above coordinate system pairing, the relationship of the world coordinate system (WA, WB) between the terminals 1 (1A, 1B) can be understood, and the position and orientation can be converted to each other. That is, a conversion for matching the second terminal coordinate system WB with the first terminal coordinate system WA, or vice versa is possible. The conversion between the world coordinate systems is represented by a predetermined conversion parameter 7. The conversion parameter 7 is a parameter for calculating the conversion of the direction of the coordinate system (in other words, rotation) and the difference between the origins of the coordinate system.
 例えば、第1端末1Aで座標系変換ができるようにする場合、第1端末1Aは、自機側の諸量801と相手側の諸量802とから、端末座標系(WA,WB)間の関係を計算して、変換パラメータ7を生成し、自機に設定する。第2端末1B側でも同様のことが可能である。変換パラメータ7は、第1端末座標系WAでの位置等を第2端末座標系WBの位置等に変換する変換パラメータ71と、第2端末座標系WBでの位置等を第1端末座標系WAでの位置等に変換する変換パラメータ72とがある。それらの変換は互いに逆変換である。少なくとも一方の端末1が変換パラメータ7を保持すればよく、両方の端末1が同じ変換パラメータ7を保持してもよい。 For example, when enabling the coordinate system conversion on the first terminal 1A, the first terminal 1A is located between the terminal coordinate system (WA, WB) from the various quantities 801 on the own machine side and the various quantities 802 on the other side. The relationship is calculated, the conversion parameter 7 is generated, and the conversion parameter 7 is set in the own machine. The same can be done on the second terminal 1B side. The conversion parameter 7 includes a conversion parameter 71 that converts a position or the like in the first terminal coordinate system WA into a position or the like in the second terminal coordinate system WB, and a conversion parameter 7 that converts a position or the like in the second terminal coordinate system WB into the position or the like in the first terminal coordinate system WA. There is a conversion parameter 72 that converts to the position in. Those transformations are inverse transformations of each other. At least one terminal 1 may hold the conversion parameter 7, and both terminals 1 may hold the same conversion parameter 7.
 [位置変換]
 図9は、座標系ペアリング後の2台の端末1(1A,1B)間での位置伝達および座標系変換の構成例を示す。4つの例を(A)~(D)として示す。端末1(1A,1B)間では、変換パラメータ7を用いて、空間2内の同じ位置21(図8)を指定して共有できる。一方の端末1は、他方の端末1に、位置21の指定の情報や表示対象の仮想画像22のデータ等を伝達する。一方または他方の端末1は、変換パラメータ7を用いて、座標系間で位置21を変換する。
[Position conversion]
FIG. 9 shows a configuration example of position transmission and coordinate system conversion between the two terminals 1 (1A, 1B) after the coordinate system pairing. Four examples are shown as (A) to (D). The same position 21 (FIG. 8) in the space 2 can be designated and shared between the terminals 1 (1A, 1B) by using the conversion parameter 7. One terminal 1 transmits the designated information of the position 21 and the data of the virtual image 22 to be displayed to the other terminal 1. One or the other terminal 1 uses the conversion parameter 7 to convert the position 21 between the coordinate systems.
 (A)は第1例を示す。第1端末1Aは、第1端末座標系WAでの位置(例えば仮想画像22の表示対象の位置21)である位置座標値rを、変換パラメータ71を用いて、第2端末座標系WBでの位置(位置座標値r)に変換し、第2端末1Bに送信する。 (A) shows the first example. The first terminal 1A uses the conversion parameter 71 to convert the position coordinate value r A , which is the position in the first terminal coordinate system WA (for example, the position 21 of the display target of the virtual image 22), in the second terminal coordinate system WB. Is converted to the position (position coordinate value r B ) of, and transmitted to the second terminal 1B.
 (B)は第2例を示す。第1端末1Aは、第1端末座標系WAでの位置である位置座標値rを、第2端末1Bに送信し、第2端末1Bは、受信したその位置座標値rを、変換パラメータ71を用いて、第2端末座標系WBでの位置座標値rに変換する。 (B) shows a second example. The first terminal 1A transmits the position coordinate value r A , which is the position in the first terminal coordinate system WA, to the second terminal 1B, and the second terminal 1B converts the received position coordinate value r A into a conversion parameter. 71 is used to convert to the position coordinate value r B in the second terminal coordinate system WB.
 (C)は第3例を示す。第2端末1Bは、第2端末座標系WBでの位置である位置座標値rを、変換パラメータ72を用いて、第1端末座標系WAでの位置座標値rに変換し、第1端末1Aに送信する。 (C) shows a third example. The second terminal 1B converts the position coordinate value r B , which is the position in the second terminal coordinate system WB , into the position coordinate value r A in the first terminal coordinate system WA by using the conversion parameter 72, and the first terminal 1B converts the position coordinate value r B into the position coordinate value r A in the first terminal coordinate system WA. Send to terminal 1A.
 (D)は第4例を示す。第2端末1Bは、第2端末座標系WBでの位置座標値rを、第1端末1Aに送信し、第1端末1Aは、受信したその位置座標値rを、変換パラメータ72を用いて、第1端末座標系WAでの位置座標値rに変換する。 (D) shows a fourth example. The second terminal 1B transmits the position coordinate value r B in the second terminal coordinate system WB to the first terminal 1A, and the first terminal 1A uses the received position coordinate value r B with the conversion parameter 72. Then, it is converted into the position coordinate value r A in the first terminal coordinate system WA.
 上記のように、例えば第1端末1Aから第2端末1Bに位置を伝える場合には、(A)か(B)の方法で変換を行えばよく、第2端末1Bから第1端末1Aに位置を伝える場合には、(C)か(D)の方法で変換を行えばよい。基本構成(図31)との対応で言えば、(A)と(D)は第2端末座標系が共通座標系になる場合であり、(B)と(C)は第1端末座標系が共通座標系になる場合である。 As described above, for example, when transmitting the position from the first terminal 1A to the second terminal 1B, the conversion may be performed by the method (A) or (B), and the position is located from the second terminal 1B to the first terminal 1A. In the case of transmitting, the conversion may be performed by the method (C) or (D). In terms of correspondence with the basic configuration (FIG. 31), (A) and (D) are cases where the second terminal coordinate system is a common coordinate system, and (B) and (C) are cases where the first terminal coordinate system is used. This is the case when it becomes a common coordinate system.
 図9の下側には、変換パラメータ7のテーブル構成例を示す。変換パラメータ71のテーブル901は、項目として、変換元端末座標系、変換先端末座標系、回転、および原点表現を有する。「変換元端末座標系」項目は、変換元の端末1(括弧内は対応するユーザ)の識別情報と、その端末1が有する端末座標系の識別情報とを格納する。「変換先端末座標系」項目は、変換先の端末1(括弧内は対応するユーザ)の識別情報と、その端末1が有する端末座標系の識別情報とを格納する。「回転」項目は、それらの端末座標系間の回転の表現の情報を格納する。「原点表現」項目は、それらの端末座標系間の原点の差の表現を格納する。例えば、変換パラメータ71のテーブル901の第1行は、第1端末1Aの第1端末座標系WAから第2端末1Bの第2端末座標系WBへの変換のための回転(qAB)と、第1端末座標系WAでみた第2端末座標系WBの原点の表現(oBA)とを有する。 A table configuration example of the conversion parameter 7 is shown at the lower side of FIG. Table 901 of the conversion parameter 71 has the conversion source terminal coordinate system, the conversion destination terminal coordinate system, the rotation, and the origin representation as items. The "conversion source terminal coordinate system" item stores the identification information of the conversion source terminal 1 (corresponding user in parentheses) and the identification information of the terminal coordinate system possessed by the terminal 1. The "conversion destination terminal coordinate system" item stores the identification information of the conversion destination terminal 1 (corresponding user in parentheses) and the identification information of the terminal coordinate system possessed by the terminal 1. The "Rotation" item stores information about the representation of rotation between those terminal coordinate systems. The "origin representation" item stores a representation of the difference in origin between those terminal coordinate systems. For example, the first row of the table 901 of the conversion parameter 71 includes rotation (q AB ) for conversion from the first terminal coordinate system WA of the first terminal 1A to the second terminal coordinate system WB of the second terminal 1B. It has a representation (o BA ) of the origin of the second terminal coordinate system WB as seen in the first terminal coordinate system WA.
 [処理フロー]
 図10は、図3のような2台の端末1(1A,1B)間で空間2を分担して測定し、1つの空間データ6を得る場合の処理フロー例を示す。図10は、第1端末1Aのフロー(ステップS1A~S12A)と、第2端末1Bのフロー(ステップS1B~S12B)とを有する。
[Processing flow]
FIG. 10 shows an example of a processing flow in the case where space 2 is shared and measured between two terminals 1 (1A, 1B) as shown in FIG. 3 and one space data 6 is obtained. FIG. 10 has a flow of the first terminal 1A (steps S1A to S12A) and a flow of the second terminal 1B (steps S1B to S12B).
 ステップS1A,S1Bでは、第1端末1Aと第2端末1Bとの間で、図7の通信デバイス107の処理を通じて、空間認識共有に係わる無線通信接続を確立する。 In steps S1A and S1B, a wireless communication connection related to spatial recognition sharing is established between the first terminal 1A and the second terminal 1B through the processing of the communication device 107 of FIG.
 ステップS2A,S2Bでは、ユーザは、HMDである端末1に、空間2の測定を開始するための入力操作を行う。例えば、ユーザU1は、第1端末1Aに測定開始指示を入力し、ユーザU2は、第2端末1Bに測定開始指示を入力する。なお、端末1(1A,1B)間で、測定開始に係わる通信を行ってもよい。また、例えば、端末1は、測定の開始や終了の操作に係わるガイド画像を表示面11に表示してもよい。ユーザは、それに従って測定の開始や終了の入力操作を行う。入力操作は、ハードウェアボタン操作でもよいし、音声認識による操作でもよいし、手指を動かす等の所定のジェスチャの検出による操作でもよい。また、他の方式としては、端末1が予めの設定や自動的な判断によって、測定の開始や終了等を制御する方式としてもよい。 In steps S2A and S2B, the user performs an input operation on the terminal 1 which is the HMD to start the measurement of the space 2. For example, the user U1 inputs a measurement start instruction to the first terminal 1A, and the user U2 inputs a measurement start instruction to the second terminal 1B. In addition, communication related to the start of measurement may be performed between the terminals 1 (1A, 1B). Further, for example, the terminal 1 may display a guide image related to the operation of starting or ending the measurement on the display surface 11. The user performs input operations for starting and ending the measurement accordingly. The input operation may be a hardware button operation, a voice recognition operation, or an operation by detecting a predetermined gesture such as moving a finger. Further, as another method, the terminal 1 may control the start and end of the measurement by a preset setting or an automatic determination.
 また、ステップS2A,S2Bでは、図3,図4のような空間2の領域や測定範囲に関する分担の設定を行ってもよい。端末1は、分担の設定に係わる画像を表示面11に表示してもよい。ユーザは、その画像に従って設定の操作を行う。ステップS2A,S2Bに基づいて、各端末1は、以降のステップを開始する。 Further, in steps S2A and S2B, the division of the space 2 region and the measurement range as shown in FIGS. 3 and 4 may be set. The terminal 1 may display an image related to the setting of sharing on the display surface 11. The user performs the setting operation according to the image. Based on steps S2A and S2B, each terminal 1 starts the following steps.
 ステップS3A~S6AおよびS3B~S6Bは、座標系ペアリングを行うステップである。なお、実施の形態1の方法は、座標系ペアリング後に空間2の測定を行う方法である。そのため、ステップS2A,S2Bの測定開始指示は、言い換えると、座標系ペアリング開始指示である。 Steps S3A to S6A and S3B to S6B are steps for performing coordinate system pairing. The method of the first embodiment is a method of measuring the space 2 after pairing the coordinate system. Therefore, the measurement start instruction in steps S2A and S2B is, in other words, a coordinate system pairing start instruction.
 ステップS3A,S3Bでは、一方の端末1から他方の端末1に、座標系ペアリングの要求を送信する。例えば、第1端末1Aは、第2端末1Bに、座標系ペアリング要求を送信する。第2端末1Bは、座標系ペアリング要求を受信し、受け入れる場合には、受け入れる旨の座標系ペアリング応答を、第1端末1Aに送信する。ステップS3A,S3Bでは、各端末1は、表示面11に、座標系ペアリングのガイドのための画像(後述の図11)を表示してもよい。 In steps S3A and S3B, a coordinate system pairing request is transmitted from one terminal 1 to the other terminal 1. For example, the first terminal 1A transmits a coordinate system pairing request to the second terminal 1B. When the second terminal 1B receives the coordinate system pairing request and accepts it, the second terminal 1B transmits a coordinate system pairing response to the effect of accepting the request to the first terminal 1A. In steps S3A and S3B, each terminal 1 may display an image for guiding the coordinate system pairing (FIG. 11 described later) on the display surface 11.
 ステップS4A,S4Bでは、第1端末1Aと第2端末1Bは、互いにタイミングを合わせて、座標系ペアリングのための諸量(図8)を測定する。第1端末1Aは、諸量801を測定し、第2端末1Bは、諸量802を測定する。 In steps S4A and S4B, the first terminal 1A and the second terminal 1B measure various quantities (FIG. 8) for coordinate system pairing in time with each other. The first terminal 1A measures various quantities 801 and the second terminal 1B measures various quantities 802.
 ステップS5A,S5Bでは、第1端末1Aと第2端末1Bは、互いに自機側の諸量データを相手側に送信することで、諸量データを交換する。第1端末1Aは、第2端末1Bから諸量802を取得し、第2端末1Bは、第1端末1Aから諸量801を取得する。 In steps S5A and S5B, the first terminal 1A and the second terminal 1B exchange various amount data by transmitting various amount data on the own machine side to each other. The first terminal 1A acquires various quantities 802 from the second terminal 1B, and the second terminal 1B acquires various quantities 801 from the first terminal 1A.
 ステップS6A,S6Bでは、第1端末1Aおよび第2端末1Bは、それぞれ変換パラメータ7を生成して自機に設定する。第1端末1Aは、自機側の諸量801と相手側の諸量802とを用いて変換パラメータ7(例えば図9の変換パラメータ71,72の両方)を生成して自機に設定する。第2端末1Bは、自機側の諸量802と相手側の諸量801とを用いて変換パラメータ7(例えば図9の変換パラメータ71,72の両方)を生成して自機に設定する。これにより、座標系ペアリングの状態が確立する。 In steps S6A and S6B, the first terminal 1A and the second terminal 1B generate conversion parameters 7 and set them in their own machines. The first terminal 1A generates conversion parameters 7 (for example, both conversion parameters 71 and 72 in FIG. 9) using the quantities 801 on the own machine side and the quantities 802 on the other side and sets them in the own machine. The second terminal 1B generates conversion parameters 7 (for example, both conversion parameters 71 and 72 in FIG. 9) using the quantities 802 on the own machine side and the quantities 801 on the other side and sets them in the own machine. As a result, the state of coordinate system pairing is established.
 なお、座標系ペアリング確立後にステップS2A,S2Bの測定開始指示入力を行うフローとしてもよい。 Note that the flow may be such that the measurement start instruction input in steps S2A and S2B is performed after the coordinate system pairing is established.
 ステップS6A,S6Bまでで座標系ペアリングが確立された後、ステップS7A,S7B以降のループでは、各端末1は、分担による空間2の領域を測定する(図3,図4)。ステップS7Aで、第1端末1Aは、測距センサ13等を用いて領域2Aを対象に測定して測定データ411を得る。ステップS7Bで、第2端末1Bは、測距センサ13等を用いて領域2Bを対象に測定して測定データ412を得る。 After the coordinate system pairing is established up to steps S6A and S6B, in the loops after steps S7A and S7B, each terminal 1 measures the area of space 2 due to sharing (FIGS. 3 and 4). In step S7A, the first terminal 1A measures the area 2A using the distance measuring sensor 13 or the like to obtain the measurement data 411. In step S7B, the second terminal 1B measures the area 2B using the distance measuring sensor 13 or the like to obtain the measurement data 412.
 ステップS8A,S8Bでは、各端末1は、測定データに基づいて部分空間データを構成し、互いに相手の端末1に送信する(図4)。第1端末1Aは、自機側の部分空間データD1Aと、相手側からの部分空間データD1Bとを得る。第2端末1Bは、自機側の部分空間データD1Bと、相手側からの部分空間データD1Aとを得る。 In steps S8A and S8B, each terminal 1 configures subspace data based on the measurement data and transmits each other to the other terminal 1 (FIG. 4). The first terminal 1A obtains the subspace data D1A on the own machine side and the subspace data D1B from the other side. The second terminal 1B obtains the subspace data D1B on the own machine side and the subspace data D1A from the other side.
 ステップS9A,S9Bでは、各端末1は、必要に応じて、相手側の端末座標系で記述された部分空間データを、変換パラメータ7を用いて、自機側の端末座標系で記述された部分空間データに変換する(図4)。例えば、図9の(D)のように、第1端末1Aは、部分空間データD1Bを、変換パラメータ72を用いて、部分空間データD1BAに変換する。図9の(B)のように、第2端末1Bは、部分空間データD1Aを、変換パラメータ71を用いて、部分空間データD1ABに変換する。また、各端末1は、自機側で得た部分空間データと、相手側から得た部分空間データとを、1つに統合して、空間2を単位とした空間データ6を得る(図4)。例えば、第1端末1Aは、部分空間データD1Aと、部分空間データD1BAとから、空間データ6A(D1)を得る。第2端末1Bは、部分空間データD1Bと、部分空間データD1ABとから、空間データ6B(D1)を得る。なお、本例は、両方の端末1が同時並行でそれぞれの空間データ6(6A,6B)を作成する場合を示したが、これに限らず、一方の端末1が作成した空間データ6を相手の端末1に送信してもよい。 In steps S9A and S9B, each terminal 1 uses the conversion parameter 7 to convert the subspace data described in the terminal coordinate system of the other party into the portion described in the terminal coordinate system of the own machine, if necessary. Convert to spatial data (Fig. 4). For example, as shown in FIG. 9D, the first terminal 1A converts the subspace data D1B into the subspace data D1BA using the conversion parameter 72. As shown in FIG. 9B, the second terminal 1B converts the subspace data D1A into the subspace data D1AB using the conversion parameter 71. Further, each terminal 1 integrates the subspace data obtained from the own machine side and the subspace data obtained from the other side into one to obtain the spatial data 6 in units of the space 2 (FIG. 4). ). For example, the first terminal 1A obtains the spatial data 6A (D1) from the subspace data D1A and the subspace data D1BA. The second terminal 1B obtains the spatial data 6B (D1) from the subspace data D1B and the subspace data D1AB. In this example, the case where both terminals 1 create their respective spatial data 6 (6A, 6B) in parallel is shown, but the present invention is not limited to this, and the spatial data 6 created by one terminal 1 is used as the partner. It may be transmitted to the terminal 1 of.
 ステップS10A,S10Bでは、各端末1は、上記座標系ペアリング状態での空間測定を終了するかどうかを判断する。この際、ユーザが端末1に測定終了指示の入力操作をしてもよいし、端末1が自動的な判断によって測定終了としてもよい。例えば、端末1は、測定データまたは空間データ等に基づいて、対象の空間2または分担の領域のうちの所定の率以上が測定済みまたは作成済みとなったと判断した場合には、自機での測定終了と判断してもよい。その率は可変設定値である。端末1は、測定終了と判断した場合(Yes)には次のステップへ進み、未終了と判断した場合(No)にはステップS7A,S7Bに戻って同様に処理を繰り返す。 In steps S10A and S10B, each terminal 1 determines whether or not to end the spatial measurement in the coordinate system pairing state. At this time, the user may input the measurement end instruction to the terminal 1, or the terminal 1 may end the measurement by automatic determination. For example, when the terminal 1 determines that a predetermined rate or more of the target space 2 or the shared area has been measured or created based on the measurement data or the spatial data, the terminal 1 has measured or created the target space 2 or the shared area. It may be determined that the measurement is completed. The rate is a variable set value. When the terminal 1 determines that the measurement is completed (Yes), the terminal 1 proceeds to the next step, and when it is determined that the measurement is not completed (No), the terminal 1 returns to steps S7A and S7B and repeats the same process.
 ステップS11A,S11Bでは、各端末1は、上記作成した空間データ6を用いて、相手の端末1との間で空間2の認識を共有した状態で空間2を利用する。なお、空間データ6の作成までが目的の場合には、ステップS11A,S11Bを省略できる。空間2の利用は、典型的には、端末1(1A,1B)間で、AR機能を用いて、空間2内の所望の同じ位置21に同じ仮想画像22を表示し、作業等を行うことが挙げられる(図5)。 In steps S11A and S11B, each terminal 1 uses the space 2 in a state where the recognition of the space 2 is shared with the other terminal 1 by using the space data 6 created above. If the purpose is to create the spatial data 6, steps S11A and S11B can be omitted. The use of the space 2 is typically performed by displaying the same virtual image 22 at a desired same position 21 in the space 2 and performing work or the like by using the AR function between the terminals 1 (1A, 1B). (Fig. 5).
 ステップS12A,S12Bでは、各端末1は、上記座標系ペアリングの状態を解除する。例えば、空間2の利用が一時的である場合に、各端末1は、変換パラメータ7を削除してもよいし、空間データ6を削除してもよい。これに限らず、各端末1は、その後も座標系ペアリングの状態を維持してもよい。すなわち、各端末1は、その後も変換パラメータ7や空間データ6を保持し続けてもよい。その場合、ステップS12A,S12Bを省略できる。例えば、各端末1は、変換パラメータ7や空間データ6を自機内部に保持しておくことで、その後に同じ空間2を再利用する場合に、再度の測定等の処理を省略できる。 In steps S12A and S12B, each terminal 1 releases the state of the coordinate system pairing. For example, when the use of the space 2 is temporary, each terminal 1 may delete the conversion parameter 7 or the space data 6. Not limited to this, each terminal 1 may maintain the state of coordinate system pairing thereafter. That is, each terminal 1 may continue to hold the conversion parameter 7 and the spatial data 6 thereafter. In that case, steps S12A and S12B can be omitted. For example, each terminal 1 holds the conversion parameter 7 and the spatial data 6 inside its own machine, so that when the same space 2 is reused thereafter, processing such as re-measurement can be omitted.
 [ガイド表示例]
 図11は、端末1間での座標系ペアリングの際(図10のステップS3A,S3B等)に、端末1の表示面11にガイド等のためのグラフィカル・ユーザ・インタフェース(GUI)の画像を表示する例を示す。図11の例は、ユーザU1の第1端末1Aの表示面11の例であり、ユーザU2の第2端末1Bが見えている。第1端末1Aは、例えばカメラ12の画像等に基づいて、他のユーザや端末1を認識する。例えば、第1端末1Aは、第2端末1Bを認識した位置に合わせて、画像1101を重畳表示する。画像1101は、第2端末1Bの存在および位置を表すマーカのような仮想画像である。また、第1端末1Aは、認識したユーザU2の第2端末1Bとの座標系ペアリングを行うかどうかの確認のための画像1102を表示する。画像1102は、例えば「ユーザU2とのペアリングを行いますか? YES/NO」といったメッセージ画像である。ユーザU1は、画像1102に対し、YES/NOの選択操作を行い、それに応じて、第1端末1Aは、第2端末1Bとの座標系ペアリングの実行有無を決め、開始を制御する。
[Guide display example]
FIG. 11 shows an image of a graphical user interface (GUI) for a guide or the like on the display surface 11 of the terminal 1 when pairing the coordinate system between the terminals 1 (steps S3A, S3B, etc. in FIG. 10). An example to display is shown. The example of FIG. 11 is an example of the display surface 11 of the first terminal 1A of the user U1, and the second terminal 1B of the user U2 is visible. The first terminal 1A recognizes another user or the terminal 1 based on, for example, an image of the camera 12. For example, the first terminal 1A superimposes and displays the image 1101 according to the position where the second terminal 1B is recognized. The image 1101 is a virtual image such as a marker indicating the existence and position of the second terminal 1B. Further, the first terminal 1A displays an image 1102 for confirming whether or not to perform coordinate system pairing with the second terminal 1B of the recognized user U2. The image 1102 is a message image such as "Do you want to pair with the user U2? YES / NO". The user U1 performs a YES / NO selection operation on the image 1102, and accordingly, the first terminal 1A determines whether or not to execute the coordinate system pairing with the second terminal 1B, and controls the start.
 また、第1端末1Aは、ステップS4Aで諸量801を測定する際には、画像1103を表示する。画像1103は、例えば「ペアリング中。なるべく動かないでください。」といったメッセージ画像である。端末1間での直接的な座標系ペアリングの際には、互いになるべく静止した状態とすることで、諸量を高精度に測定できる。そのため、このようなガイドの画像1103の出力が有効である。 Further, the first terminal 1A displays the image 1103 when measuring various quantities 801 in step S4A. Image 1103 is, for example, a message image such as "Pairing. Please do not move as much as possible." In the case of direct coordinate system pairing between terminals 1, various quantities can be measured with high accuracy by keeping them as stationary as possible. Therefore, the output of the image 1103 of such a guide is effective.
 [座標変換]
 以下では、座標変換の詳細について補足説明する。まず、座標系の関係を説明するための記法をまとめる。実施の形態では、座標系は右手系に統一し、座標系の回転を表すために正規化四元数を用いる。正規化四元数とは、ノルムが1の四元数であり、軸の回りの回転を表すことができる。任意の座標系の回転はこのような正規化四元数で表現できる。単位ベクトル(n,n,n)を回転軸とした角度ηの回転を表す正規化四元数qは、下記の式1となる。i,j,kは四元数の単位である。単位ベクトル(n,n,n)の方向に向いた場合の右回りの回転が、ηが正の回転方向である。
 式1: q=cos(η/2)+nsin(η/2)i+nsin(η/2)j+nsin(η/2)k
[Coordinate transformation]
The details of the coordinate transformation will be supplementarily described below. First, the notation for explaining the relationship of the coordinate system is summarized. In the embodiment, the coordinate system is unified to the right-handed system, and a normalized quaternion is used to represent the rotation of the coordinate system. A normalized quaternion is a quaternion with a norm of 1 and can represent rotation around an axis. The rotation of any coordinate system can be represented by such a normalized quaternion. The normalized quaternion q representing the rotation of the angle η with the unit vector (n X , n Y , n Z ) as the rotation axis is given by the following equation 1. i, j, and k are units of quaternions. The clockwise rotation when facing the direction of the unit vector (n X , n Y , n Z ) is the positive rotation direction of η.
Equation 1: q = cos (η / 2) + n X sin (η / 2) i + n Y sin (η / 2) j + n Z sin (η / 2) k
 四元数qの実数部分をSc(q)で表す。四元数qの共役四元数をq*とする。四元数qのノルムを1に正規化する演算子を[・]で定義する。四元数qを任意の四元数とすると、式2が[・]の定義である。式2の右辺の分母が四元数qのノルムである。
 式2: [q]=q/(qq*)1/2
The real part of the quaternion q is represented by Sc (q). Let q * be the conjugate quaternion of the quaternion q. An operator that normalizes the norm of the quaternion q to 1 is defined by [・]. Assuming that the quaternion q is an arbitrary quaternion, Equation 2 is the definition of [・]. The denominator on the right side of Equation 2 is the norm of the quaternion q.
Equation 2: [q] = q / (qq *) 1/2
 次に、座標点あるいはベクトル(p,p,p)を表現する四元数pを、式3で定義する。
 式3: p=pi+pj+p
Next, the quaternion p representing the coordinate points or vectors (p X , p Y , p Z ) is defined by Equation 3.
Equation 3: p = p X i + p Y j + p Z k
 本明細書においては、特に断りが無い限り、成分表示でない座標点やベクトルを表す記号は四元数表示であるとする。また、回転を表す記号は正規化四元数であるとする。 In this specification, unless otherwise specified, the symbols representing coordinate points and vectors that are not component display are quaternion display. Further, it is assumed that the symbol representing rotation is a normalized quaternion.
 単位ベクトルnの方向と垂直な平面へのベクトルの射影演算子を、P(n)とする。ベクトルpの射影は、式4で表される。
 式4: P(n)p=p+nSc(np)
Let PT (n) be a vector projection operator on a plane perpendicular to the direction of the unit vector n. The projection of the vector p is represented by Equation 4.
Equation 4: PT (n) p = p + nSc (np)
 座標点あるいは方向ベクトルpが四元数qで表される原点中心の回転操作により座標点あるいは方向ベクトルpに変換されたとすると、方向ベクトルpは式5で計算できる。
 式5: p=qpq*
Assuming that the coordinate point or direction vector p 1 is converted into the coordinate point or direction vector p 2 by the rotation operation of the origin center represented by the quaternion q, the direction vector p 2 can be calculated by Equation 5.
Equation 5: p 2 = qp 1 q *
 単位ベクトルnを単位ベクトルnに重ねるように、単位ベクトルnと単位ベクトルnとを含む平面に垂直な軸回りに回転させる正規化四元数R(n,n)は、下記の式6となる。
 式6: R(n,n)=[1-n
To overlap the unit vector n 1 to a unit vector n 2, a normalized quaternion to rotate around an axis perpendicular to a plane including the unit vector n 1 and the unit vector n 2 R (n 1, n 2) is, It becomes the following formula 6.
Equation 6: R (n 1 , n 2 ) = [1-n 2 n 1 ]
 図12は、座標系変換についての説明図を示す。図12の(A)は、図8と同様に、第1端末座標系WAと第2端末座標系WBとの間で、実空間内の同じ位置21に関する表現と、座標原点(O,O)の差の表現とを示す。位置21の表現として、位置ベクトルG、位置座標値r、位置ベクトルGおよび位置座標値rを有する。座標原点の差の表現として、原点間ベクトルoBA,oABを有する。原点間ベクトルoBAは、第1端末座標系WAでの第2端末座標系WBの原点Oの表現である。原点間ベクトルoABは、第2端末座標系WBでの第1端末座標系WAの原点Oの表現である。 FIG. 12 shows an explanatory diagram of the coordinate system transformation. Figure (A) in 12, similarly to FIG. 8, between the first terminal coordinate system WA and the second terminal coordinate system WB, and representation of the same position 21 in the real space, the coordinate origin (O A, O B ) is shown as an expression of the difference. As an expression of the position 21, with a position vector G A, the position coordinates r A, the position vector G B and the position coordinates r B. As an expression of the difference between the coordinate origins, the inter-origin vectors o BA and o AB are provided. Origin between the vectors o BA is a representation of the origin O B of the second terminal coordinate system WB in the first terminal coordinate system WA. Origin between the vectors o AB is a representation of the origin O A of the first terminal coordinate system WA in the second terminal coordinate system WB.
 前述の諸量(図8)に基づいて、実空間内での異なる2つの特定方向(対応する特定方向ベクトルと端末間ベクトル)についての各端末座標系(WA,WB)での表現(N,N,PBA,PAB)が得られる。そうすれば、それらの表現を一致させるような座標系間の回転操作を、前述の正規化四元数を用いた演算によって求めることができる。よって、それらの情報と、各座標原点の情報とを合わせることで、端末座標系間での位置座標の変換が可能となる。 Based on the various quantities of the aforementioned (FIG. 8), the terminal coordinate system for the two different specific directions in real space (vectors between corresponding specific direction vector and a terminal) (WA, WB) expressed in (N A , N B, P BA, P AB) is obtained. Then, the rotation operation between the coordinate systems that matches those expressions can be obtained by the above-mentioned operation using the normalized quaternion. Therefore, by combining the information with the information of the origin of each coordinate, it is possible to convert the position coordinates between the terminal coordinate systems.
 端末座標系(WA,WB)の関係は、以下のように計算できる。以下では、第2端末座標系WBでの座標値およびベクトル値の表現を、第1端末座標系WAでの表現に変換する場合における、回転と座標原点差を求める計算について説明する。 The relationship of the terminal coordinate system (WA, WB) can be calculated as follows. In the following, the calculation for obtaining the rotation and the coordinate origin difference in the case of converting the representation of the coordinate value and the vector value in the second terminal coordinate system WB into the representation in the first terminal coordinate system WA will be described.
 図12の(B)は、第1端末座標系WAと第2端末座標系WBとの間で方向を合わせる回転の操作について示し、例えば第2端末座標系WBの各軸(X,Y,Z)の方向を第1端末座標系WAの各軸(X,Y,Z)の方向に合わせる回転qABのイメージを簡易的に示す。 FIG. 12B shows a rotation operation for aligning the direction between the first terminal coordinate system WA and the second terminal coordinate system WB, for example, each axis (X B , Y B) of the second terminal coordinate system WB. shows each axis (X a of the direction of the Z B) first terminal coordinate system WA, Y a, the image of the rotary q AB to match the direction of the Z a) in a simple manner.
 まず、第1端末座標系WAの方向と第2端末座標系WBの方向とを合わせるための回転を求める。前述(図8)の端末間ベクトルPBA,PABに基づいて、端末1間の単位方向ベクトルm,mを、下記のように定義する。単位方向ベクトルm,mは、第2の特定方向である、実空間で第1端末1Aから第2端末1Bに向かう方向の単位ベクトルについての、第1端末座標系WAでの表現および第2端末座標系WBでの表現である。
 m=[PBA
 m=[-PAB
First, the rotation for matching the direction of the first terminal coordinate system WA and the direction of the second terminal coordinate system WB is obtained. Terminal between the vectors P BA in the foregoing (FIG. 8), based on P AB, a unit direction vector m A between the terminals 1 and m B, defined as follows. Unit vector m A, m B is the second specific direction, from the first terminal 1A on the real space for the unit vector in the direction toward the second terminal 1B, expressed in the first terminal coordinate system WA and the It is an expression in the two-terminal coordinate system WB.
m A = [P BA]
m B = [-P AB ]
 最初に、第1端末座標系WAの表現における回転において、第1の特定方向の単位ベクトルnを単位ベクトルnに重ねる回転qT1を考える。回転qT1は、具体的には下記となる。
 qT1=R(n,n
First, in the rotation in the representation of the first terminal coordinate system WA, consider the rotation q T1 in which the unit vector n A in the first specific direction is superimposed on the unit vector n B. Specifically, the rotation q T1 is as follows.
q T1 = R (n A , n B )
 次に、この回転qT1によって特定方向の単位ベクトルn,mが回転された方向を、nA1,mA1とする。
 nA1=qT1T1*=n
 mA1=qT1T1*
Next, a direction unit vector n A in a particular direction, the m A is rotated by the rotation q T1, and n A1, m A1.
n A1 = q T1 n A q T1 * = n B
m A1 = q T1 m A q T1 *
 実空間において同じ方向間の角度であるから、方向nA1と方向mA1との成す角度は、単位ベクトルnと単位方向ベクトルmとの成す角度に等しい。また、前提として2つの特定方向は異なる方向としているので、単位ベクトルnと単位方向ベクトルmとの成す角度は0ではない。従って、方向nA1すなわち単位ベクトルnを軸とし、方向mA1を単位方向ベクトルmに重ねる回転qT2を構成できる。具体的に、回転qT2は下記で与えられる。
 qT2=R([P(n)mA1],[P(n)m])
Since the angles are between the same directions in the real space, the angle formed by the direction n A1 and the direction m A1 is equal to the angle formed by the unit vector n B and the unit direction vector m B. Further, since the two specific directions are different directions as a premise, the angle formed by the unit vector n B and the unit direction vector m B is not 0. Therefore, it is possible to construct a rotation q T2 in which the direction n A1, that is, the unit vector n B is used as an axis and the direction m A1 is superimposed on the unit direction vector m B. Specifically, the rotation q T2 is given below.
q T2 = R ([ PT (n B ) m A1 ], [ PT (n B ) m B ])
 方向nA1は回転qT2の回転軸方向nと同一方向であるので、この回転qT2により不変である。また、方向mA1は、この回転qT2により単位方向ベクトルmに回転される。
 n=qT2A1T2*
 m=qT2A1T2*
Since the direction n A1 is the rotation axis direction n B in the same direction of rotation q T2, invariant This rotation q T2. Further, the direction m A1 is rotated by the rotation q T2 in the unit direction vector m B.
n B = q T2 n A1 q T2 *
m B = q T2 m A1 q T2 *
 あらためて、回転qBAを下記で定義する。
 qBA=qT2T1
Again, the rotation q BA is defined below.
q BA = q T2 q T1
 この回転qBAにより、単位ベクトルnと単位方向ベクトルmは、単位ベクトルnと単位方向ベクトルmに回転される。
 n=qBABA*
 m=qBABA
This rotation q BA, the unit vector n A and the unit direction vector m A is rotated to a unit vector n B and the unit direction vector m B.
n B = q BA n A q BA *
m B = q BA m A q BA
 単位ベクトルnと単位方向ベクトルmは異なる2つの方向として選ばれているので、この回転qBAが、第1端末座標系WAでの方向表現を第2端末座標系WBでの方向表現に変換する回転である。逆に、第2端末座標系WBでの方向表現を第1端末座標系WAでの方向表現に変換する回転を回転qABとすると、回転qABは同様に以下となる。
 qAB=qBA*
Since the unit vector n A and the unit direction vector m A is selected as two different directions, the rotary q BA is, the direction represented by the first terminal coordinate system WA in the direction represented by the second terminal coordinate system WB The rotation to convert. Conversely, when the rotation of converting the direction represented by the second terminal coordinate system WB in the direction represented by the first terminal coordinate system WA and rotated q AB, rotating q AB is as follows similarly.
q AB = q BA *
 次に、座標値d,d(図8)の変換式を求める。ここでの座標値d,dは、式3により定義される座標値の四元数表現である。まず、一方の座標系から見て他方の座標系の原点の座標値を求める。図12の(A)のように、第1端末座標系WAにおける第2端末座標系WBの原点Oの座標値の表現がoBA、世界座標系WBにおける世界座標系WAの原点Oの座標値の表現がoABである。各座標系における端末1の位置の座標値d,dは分かっているので、原点座標値表現(oBA,oAB)は、下記の式Aのように求まる。
 式A:
 oBA=d+PBA-qABAB*
 oAB=d+PAB-qBABA*
Next, determine the conversion formula of coordinate values d A, d B (FIG. 8). Here coordinate values d A, d B of is quaternion number representation of the coordinate values defined by Equation 3. First, the coordinate value of the origin of the other coordinate system when viewed from one coordinate system is obtained. As Figure 12 of (A), expressed in the coordinate values of the origin O B of the second terminal coordinate system WB in the first terminal coordinate system WA is o BA, the origin O A world coordinate system WA in the world coordinate system WB The representation of the coordinate values is o AB . Knowing the coordinates d A, d B of the position of the terminal 1 in each coordinate system, the origin coordinate value representation (o BA, o AB) is determined as shown in Equation A below.
Formula A:
o BA = d A + P BA -q AB d B q AB *
o AB = d B + P AB -q BA d A q BA *
 また、容易に分かるように、下記の関係がある。
 oAB=-qBABABA*
In addition, as can be easily understood, there are the following relationships.
o AB = -q BA o BA q BA *
 最後に、実空間内の任意の点(位置21)についての第1端末座標系WAでの座標値rと、第2端末座標系WBでの座標値rとの変換式は、以下のように与えられる。
 r=qBA(r-oBA)qBA* =qBABA*+oAB
 r=qAB(r-oAB)qAB* =qABAB*+oBA
Finally, the coordinate values r A of the first terminal coordinate system WA for any point in the real space (position 21), conversion formula between the coordinate values r B in the second terminal coordinate system WB is the following Given.
r B = q BA (r A- o BA ) q BA * = q BA r A q BA * + o AB
r A = q AB (r B- o AB ) q AB * = q AB r B q AB * + o BA
 上記のように、例えば第1端末座標系WAで見た特定の位置21(座標値r)を、第2端末座標系WBで見た場合の位置21(座標値r)に変換したい場合、回転qBA、座標値r、および原点表現oABを用いて計算できる。逆の変換も同様に計算できる。前述の図8,図9の変換パラメータ7(71,72)は、上記説明で登場したパラメータで構成できる。なお、上記のように容易に相互に変換ができるので、変換パラメータ7の構成および保持においては、回転qABの代わりにqBAを保持してもよく、原点表現oBAの代わりにoABを保持してもよく、それらの逆でもよい。 As described above, for example, when it is desired to convert a specific position 21 (coordinate value r A ) seen in the first terminal coordinate system WA to a position 21 (coordinate value r B ) seen in the second terminal coordinate system WB. , Rotation q BA , coordinate value r A , and origin representation o AB . The reverse transformation can be calculated in the same way. The conversion parameters 7 (71, 72) of FIGS. 8 and 9 described above can be configured by the parameters introduced in the above description. Since they can be easily converted to each other as described above, in the configuration and holding of the conversion parameter 7 , q BA may be held instead of the rotation q AB , and o AB may be used instead of the origin expression o BA. It may be retained or vice versa.
 [効果等(1)]
 上記のように、実施の形態1の空間認識システムおよび方法等によれば、端末1が空間2を測定して空間データ6を作成でき、複数のユーザの複数の端末1間で、互いに空間データ6を取得して利用でき、空間2の認識を共有できる。このシステムおよび方法によれば、上記のような機能や動作を効率的に実現でき、ユーザの利便性を高め、作業負荷を低減できる。このシステムおよび方法によれば、空間データ6を利用することで、ユーザに対し、様々なアプリケーションの機能やサービス等が実現できる。
[Effects (1)]
As described above, according to the spatial recognition system and method of the first embodiment, the terminal 1 can measure the space 2 and create the spatial data 6, and the spatial data can be created between the plurality of terminals 1 of a plurality of users. 6 can be acquired and used, and the recognition of space 2 can be shared. According to this system and method, the above-mentioned functions and operations can be efficiently realized, the convenience of the user can be improved, and the workload can be reduced. According to this system and method, by using the spatial data 6, various application functions and services can be realized for the user.
 実施の形態1の変形例として以下も可能である。変形例で、各ユーザの端末1は、自機で作成した、端末座標系で記述された空間データ6を、外部のPCやサーバ等の装置に送信して登録してもよい。端末1は、生成した変換パラメータ7を、外部のPCやサーバ等の装置に送信して登録してもよい。 The following is also possible as a modification of the first embodiment. In the modified example, the terminal 1 of each user may transmit the spatial data 6 described in the terminal coordinate system created by the user to an external device such as a PC or a server and register the data. The terminal 1 may transmit the generated conversion parameter 7 to an external device such as a PC or a server and register it.
 [変形例1]
 実施の形態1の変形例1では、各端末1は、座標系ペアリングを行う前に、空間2を測定し、自機の端末座標系で記述された空間データ6を作成する。その後、端末1は、他の端末1との座標系ペアリングを行う。端末1は、変換パラメータ7を用いて、空間データ6を、共通の端末座標系、すなわち共通座標系で記述された空間データ6に変換する。
[Modification 1]
In the first modification of the first embodiment, each terminal 1 measures the space 2 and creates the spatial data 6 described in the terminal coordinate system of the own machine before performing the coordinate system pairing. After that, the terminal 1 performs coordinate system pairing with another terminal 1. The terminal 1 uses the conversion parameter 7 to convert the spatial data 6 into the common terminal coordinate system, that is, the spatial data 6 described in the common coordinate system.
 [変形例2]
 図13は、実施の形態1の変形例2における、3台以上の端末1で空間2の測定を分担し空間認識を共有する場合の座標系ペアリング等についての説明図を示す。本例では、四人のユーザ(UA,UB,UC,UD)の4台の端末1として端末1A,1B,1C,1Dを有する。各端末1の端末座標系を、端末座標系WA,WB,WC,WDとし、各原点を原点O,O,O,Oとする。これらの端末1を1つのグループとして、同じ空間2に関する測定および認識共有を行う。実施の形態1で説明した2台の端末1間の座標系ペアリングを基本として、3台以上の端末1によるグループの場合でも、各端末1間で座標系ペアリングを行うことで、空間認識共有を実現できる。
[Modification 2]
FIG. 13 shows an explanatory diagram of coordinate system pairing and the like in the case of sharing the spatial recognition by sharing the measurement of the space 2 among three or more terminals 1 in the modified example 2 of the first embodiment. In this example, terminals 1A, 1B, 1C, and 1D are provided as four terminals 1 of four users (UA, UB, UC, UD). The terminal coordinate system of each terminal 1, and the terminal coordinate system WA, WB, WC, and WD, the respective origin origin O A, O B, O C , and O D. These terminals 1 are grouped together to perform measurement and recognition sharing regarding the same space 2. Based on the coordinate system pairing between the two terminals 1 described in the first embodiment, even in the case of a group consisting of three or more terminals 1, space recognition is performed by performing the coordinate system pairing between the terminals 1. Sharing can be realized.
 例えばユーザUCの端末1Cを自機として考える。まず、実施の形態1と同様に、例えば端末1Aと端末1Bとの間で座標系ペアリング1301が確立されたとする。この状態から、次に、端末1Bと端末1Cとの間で座標系ペアリング1302が行われるとする。これにより、間接的に、端末1Cと端末1Aとの間での座標系ペアリング1303が実現できる。このことを以下に説明する。 For example, consider the terminal 1C of the user UC as a own machine. First, as in the first embodiment, it is assumed that the coordinate system pairing 1301 is established between the terminal 1A and the terminal 1B, for example. From this state, it is assumed that the coordinate system pairing 1302 is then performed between the terminal 1B and the terminal 1C. Thereby, the coordinate system pairing 1303 between the terminal 1C and the terminal 1A can be indirectly realized. This will be described below.
 まず、座標系ペアリング1301により、端末1Bは、変換パラメータの情報1321として、端末座標系WAと端末座標系WBとの間の変換のための回転qBAと原点表現oABとを得る。回転qBAは、端末座標系WAでの表現を端末座標系WBでの表現にする回転である。原点表現oABは、端末座標系WAの原点Oについての端末座標系WBでの座標値である。逆に、端末1Aは、変換パラメータの情報1311として、回転qABと原点表現oBAとを得る。 First, by the coordinate system pairing 1301, the terminal 1B obtains the rotation q BA and the origin expression o AB for conversion between the terminal coordinate system WA and the terminal coordinate system WB as the information 1321 of the conversion parameter. The rotation q BA is a rotation in which the expression in the terminal coordinate system WA is changed to the expression in the terminal coordinate system WB. Origin representation o AB are the coordinate values of the terminal coordinate system WB about the origin O A terminal coordinate system WA. On the contrary, the terminal 1A obtains the rotation q AB and the origin expression o BA as the conversion parameter information 1311.
 次に、座標系ペアリング1302により、端末1Cは、変換パラメータの情報1331として、回転qCBと原点表現oBCとを得る。回転qCBは、端末座標系WBでの表現を、端末座標系WCでの表現にする回転である。原点表現oBCは、端末座標系WBの原点Oについての端末座標系WCでの座標値である。逆に、端末1Bは、変換パラメータの情報1322として、回転qBCと原点表現oCBとを得る。 Next, by the coordinate system pairing 1302, the terminal 1C obtains the rotation q CB and the origin expression o BC as the conversion parameter information 1331. The rotation q CB is a rotation in which the expression in the terminal coordinate system WB is changed to the expression in the terminal coordinate system WC. Origin representation o BC are the coordinate values of the terminal coordinate system WC for the origin O B of the terminal coordinate system WB. On the contrary, the terminal 1B obtains the rotation q BC and the origin expression o CB as the conversion parameter information 1322.
 ここで、端末1Cは、端末1Bから、変換パラメータの情報1321(回転qBAと原点表現oAB)をもらい、それを情報1332として保持する。これにより、端末1Cは、変換パラメータの情報1331(qCB,oBC)および情報1332(qBA,oAB)を用いて、端末1Aとの間接的な座標系ペアリング1303に関する回転qCAと原点表現oACを、下記の式のように計算できる。回転qCAは、端末座標系WAでの表現を、端末座標系WCでの表現にする回転である。原点表現oACは、端末座標系WAの原点Oについての端末座標系WCでの座標値である。
 qCA=qCBBA
 oAC=oBC+qCBABCB*
Here, the terminal 1C receives the conversion parameter information 1321 (rotation q BA and origin expression o AB ) from the terminal 1B, and holds it as the information 1332. As a result, the terminal 1C uses the conversion parameter information 1331 (q CB , o BC ) and information 1332 (q BA , o AB ) to rotate q CA with respect to the indirect coordinate system pairing 1303 with the terminal 1A. The origin expression o AC can be calculated by the following formula. The rotation q CA is a rotation in which the expression in the terminal coordinate system WA is changed to the expression in the terminal coordinate system WC. Origin representation o AC are the coordinate values of the terminal coordinate system WC for the origin O A terminal coordinate system WA.
q CA = q CB q BA
o AC = o BC + q CB o AB q CB *
 端末1Cは、得られた情報1333(qCA,oAC)を保持する。端末1Cは、この情報1333を用いて、下記の式のように、端末座標系WAでの位置21の表現(r)を、端末座標系WCでの表現(r)に変換できる。
 r=qCA(r-oCA)qCA*=qCACA*+oAC
Terminal 1C holds the obtained information 1333 (q CA , o AC ). Using this information 1333, the terminal 1C can convert the representation of the position 21 in the terminal coordinate system WA (r A ) into the representation in the terminal coordinate system WC (r C ) as in the following equation.
r C = q CA (r A- o CA ) q CA * = q CA r A q CA * + o AC
 また、端末1Cは、上記変換パラメータの情報1333(qCA,oAC)を、端末1Aに送信する。端末1Aは、それを情報1312(qCA,oAC)として保持する。そうすれば、一般に下記の関係があることから、端末1Aにおいても、端末座標系WAと端末座標系WCとの変換ができる。すなわち、端末1Aは、逆の変換に関する変換パラメータの情報1313(qAC,oCA)を保持する。また、下記関係があるので、各端末1においては、qIJかqJIの一方を保持し、oJIとoIJの一方を保持してもよい。
 qIJ=qJI*
 oJI=-qIJIJIJ*
Further, the terminal 1C transmits the information 1333 (q CA , o AC ) of the conversion parameter to the terminal 1A. Terminal 1A holds it as information 1312 (q CA , o AC ). Then, since there is generally the following relationship, the terminal coordinate system WA and the terminal coordinate system WC can be converted even in the terminal 1A. That is, the terminal 1A holds the information 1313 (q AC , o CA ) of the conversion parameter related to the reverse conversion. Further, since there is the following relationship, each terminal 1 may hold either q IJ or q JI , and may hold one of o JI and o I J.
q IJ = q JI *
o JI = -q IJ o IJ q IJ *
 図14は、図13のグループの座標系ペアリングにおいて、端末1Aが保持する変換パラメータ7のテーブル1401、端末1Bが保持する変換パラメータ7のテーブル1402、および端末1Cが保持する変換パラメータ7のテーブル1403を示す。グループ内の各端末1は、グループ内の他の各端末1との変換パラメータ情報をテーブルに保持する。各テーブルは、「相手」項目を有し、座標系ペアリング(ここでは直接的座標系ペアリングと間接的座標系ペアリングを含む)の相手の端末1および端末座標系の識別情報を格納する。例えば、端末1Cは、各端末1(1A,1B)を相手として情報を交換しながら、それぞれのペア間の変換パラメータ情報を保持する。具体的には、例えばテーブル1403は、端末1Aとの変換パラメータの情報1333(qCA,oAC)、端末1Bとの変換パラメータの情報1331(qCB,oBC)を有する。 FIG. 14 shows a table 1401 of conversion parameters 7 held by the terminal 1A, a table 1402 of conversion parameters 7 held by the terminal 1B, and a table of conversion parameters 7 held by the terminal 1C in the coordinate system pairing of the group of FIG. 1403 is shown. Each terminal 1 in the group holds conversion parameter information with each other terminal 1 in the group in a table. Each table has a "counterpart" item and stores the identification information of the other party's terminal 1 and the terminal coordinate system of the coordinate system pairing (here, including the direct coordinate system pairing and the indirect coordinate system pairing). .. For example, the terminal 1C holds the conversion parameter information between each pair while exchanging information with each terminal 1 (1A, 1B). Specifically, for example, the table 1403 has information 1333 (q CA , o AC ) of the conversion parameter with the terminal 1A and information 1331 (q CB , o BC ) of the conversion parameter with the terminal 1B.
 上記のように、変形例2では、任意の2台の端末1をペアとして順次に座標系ペアリングを行うことで、グループ内での空間認識共有ができる。ある端末1Cは、ある端末1Aとの間では直接的な座標系ペアリングの処理を行わなくても、その端末1Aと座標系ペアリング済みである別の端末1Bとの座標系ペアリングを行えば、間接的な座標系ペアリング1303が可能である。同様に、グループに新たに参加する端末1Dがある場合でも、その端末1Dは、グループのうちの1つの端末1に対する同様の手続き、例えば端末1Cとの座標系ペアリング1304を行えばよく、各端末1との座標系ペアリングの処理は不要である。実施の形態1や変形例2では、各端末1に変換パラメータ7を保持するので、共有する位置21に仮想画像22を表示する際等に、高速に処理可能である。 As described above, in the modification 2, the spatial recognition can be shared within the group by sequentially performing coordinate system pairing with any two terminals 1 as a pair. A certain terminal 1C performs a coordinate system pairing between the terminal 1A and another terminal 1B that has already been paired with the coordinate system without performing a direct coordinate system pairing process with the certain terminal 1A. For example, indirect coordinate system pairing 1303 is possible. Similarly, even if there is a terminal 1D newly joining the group, the terminal 1D may perform the same procedure for one terminal 1 in the group, for example, the coordinate system pairing 1304 with the terminal 1C. The processing of coordinate system pairing with the terminal 1 is unnecessary. In the first embodiment and the second modification, since the conversion parameter 7 is held in each terminal 1, high-speed processing can be performed when displaying the virtual image 22 at the shared position 21.
 [変形例3]
 図15は、実施の形態1の変形例3における、座標系ペアリングおよび変換パラメータ7に関する構成例を示す。変形例3では、空間認識を共有するための複数の端末1から成るグループにおいて、1つの代表的な端末1(「代表端末」と記載する)を設ける。代表端末は、グループの各端末1との変換パラメータ7を保持する。代表端末以外の各端末1は、代表端末との間の変換パラメータ7を保持する。例えば、図13と同様のグループがあるとする。例えば、端末1Aを代表端末とする。代表端末である端末1Aは、他の各端末1(1B,1C,1D)との座標系ペアリング(1501,1502,1503)を順次に行う。このグループでは、代表端末の端末座標系WAが基準となる。その端末座標系WAにおいて、共有の位置21等が指定され、端末1間で伝達される。
[Modification 3]
FIG. 15 shows a configuration example relating to the coordinate system pairing and the conversion parameter 7 in the modification 3 of the first embodiment. In the third modification, one representative terminal 1 (described as “representative terminal”) is provided in a group consisting of a plurality of terminals 1 for sharing spatial recognition. The representative terminal holds the conversion parameter 7 with each terminal 1 of the group. Each terminal 1 other than the representative terminal holds a conversion parameter 7 with the representative terminal. For example, suppose there is a group similar to that in FIG. For example, terminal 1A is a representative terminal. The terminal 1A, which is a representative terminal, sequentially performs coordinate system pairing (1501, 1502, 1503) with each of the other terminals 1 (1B, 1C, 1D). In this group, the terminal coordinate system WA of the representative terminal is used as a reference. In the terminal coordinate system WA, a shared position 21 or the like is designated and transmitted between terminals 1.
 端末1Aが保持する変換パラメータ7のテーブル1511は、図14のテーブル1401と同様に、各端末1(1B,1C,1D)との変換パラメータ情報を有する。端末1Bが保持するテーブル1512は、代表端末との変換パラメータ情報(qBA,oAB)を有する。端末1Cが保持するテーブル1513は、代表端末との変換パラメータ情報(qCA,oAC)を有する。端末1Dが保持するテーブル1514は、代表端末との変換パラメータ情報(qDA,oAD)を有する。 Table 1511 of the conversion parameters 7 held by the terminal 1A has conversion parameter information with each terminal 1 (1B, 1C, 1D) as in the table 1401 of FIG. The table 1512 held by the terminal 1B has conversion parameter information (q BA , o AB ) with the representative terminal. The table 1513 held by the terminal 1C has conversion parameter information (q CA , o AC ) with the representative terminal. The table 1514 held by the terminal 1D has conversion parameter information (q DA , o AD ) with the representative terminal.
 例えば、端末1Bが空間2内の位置21(図13)を指定する場合、端末1Bは、端末座標系WBでのその位置21の表現(r)を、テーブル1512を用いて、代表端末での表現(r)に変換し、代表端末に伝達する。代表端末は、その表現(r)を、テーブル1511を用いて、グループの他の各端末1(1C,1D)の各端末座標系(WC,WD)での表現(r,r)に変換する。そして、代表端末は、それらの位置情報(r,r)を、他の各端末1(1C,1D)に伝達する。 For example, if the terminal 1B is to specify the position 21 (FIG. 13) in the space 2, the terminal 1B, the expression of its position 21 on the terminal coordinate system WB to (r B), using the table 1512, the representative terminal Is converted into the expression (r A ) and transmitted to the representative terminal. The representative terminal uses the table 1511 to express the expression (r A ) in each terminal coordinate system (WC, WD) of each other terminal 1 (1C, 1D) in the group (r C , r D ). Convert to. Then, the representative terminal transmits the position information (r C , r D ) to each of the other terminals 1 (1C, 1D).
 他の変形例としては、代表端末のみが変換パラメータ7を保持して各変換を行う構成も可能である。この変形例は、例えば図15で、端末1B,1C,1Dが変換パラメータ7のテーブル1512,1513,1514を保持しない構成に相当する。例えば端末1Bは、端末座標系WBでの位置21の表現(r)を、代表端末に伝達する。代表端末は、その表現(r)を、テーブル1511を用いて、各端末座標系(WA,WC,WD)での表現(r,r,r)に変換し、各端末1に伝達する。 As another modification, it is possible that only the representative terminal holds the conversion parameter 7 and performs each conversion. This modification corresponds to, for example, FIG. 15, in which terminals 1B, 1C, and 1D do not hold tables 1512, 1513, and 1514 of conversion parameters 7. For example terminal 1B representing the position 21 of the terminal coordinate system WB to (r B), and transmits the representative terminal. The representative terminal converts the expression (r B ) into the expression (r A , r C , r D ) in each terminal coordinate system (WA, WC, WD) using the table 1511, and converts it into each terminal 1. introduce.
 他の変形例としては、グループ内で代表端末の端末座標系を共通座標系として固定して用いて、端末1間での位置伝達を行う構成としてもよい。代表端末は、変換パラメータ7を保持しない。代表端末以外の各端末1は、代表端末の端末座標系との変換のための変換パラメータ7を保持する。この変形例は、例えば図15で、代表端末である端末1Aがテーブル1511を保持しない構成に相当する。例えば端末1Bは、端末座標系WBでの位置21の表現(r)を、テーブル1512を用いて、代表端末での表現(r)に変換し、代表端末に伝達する。代表端末は、その表現(r)を、グループの他の各端末1(1C,1D)に伝達する。各端末1(1C,1D)は、その表現(r)を、各自のテーブル1513,1514を用いて、各自の端末座標系での表現(r,r)に変換する。 As another modification, the terminal coordinate system of the representative terminal may be fixed as a common coordinate system in the group, and the position may be transmitted between the terminals 1. The representative terminal does not hold the conversion parameter 7. Each terminal 1 other than the representative terminal holds a conversion parameter 7 for conversion of the representative terminal with the terminal coordinate system. This modification corresponds to, for example, in FIG. 15, a configuration in which terminal 1A, which is a representative terminal, does not hold the table 1511. For example, the terminal 1B converts the representation (r B ) of the position 21 in the terminal coordinate system WB into the representation (r A ) in the representative terminal using the table 1512, and transmits the representation to the representative terminal. The representative terminal transmits the expression (r A ) to each of the other terminals 1 (1C, 1D) in the group. Each terminal 1 (1C, 1D) converts its representation (r A ) into a representation (r C , r D ) in its own terminal coordinate system using its own tables 1513, 1514.
 また、この変形例では、端末1間での位置伝達を、代表端末を介さずに行ってもよい。例えば端末1Bは、端末座標系WBでの位置21の表現(r)を、テーブル1512を用いて、代表端末での表現(r)に変換し、端末1Cに伝達する。端末1Cは、その表現(r)を、テーブル1513を用いて、自機での表現(r)に変換する。 Further, in this modification, the position transmission between the terminals 1 may be performed without going through the representative terminal. For example, the terminal 1B converts the representation (r B ) of the position 21 in the terminal coordinate system WB into the representation (r A ) in the representative terminal using the table 1512, and transmits the representation to the terminal 1C. The terminal 1C converts the expression (r A ) into the expression (r C ) of its own machine using the table 1513.
 上記のように、各変形例によれば、システム全体で保持する変換パラメータ7のデータ量を少なくできる。 As described above, according to each modification, the amount of data of the conversion parameter 7 held in the entire system can be reduced.
 <実施の形態2>
 図16~図17等を用いて、本発明の実施の形態2の空間認識システム等について説明する。以下では、実施の形態2等における実施の形態1とは異なる構成部分について説明する。図16等に示す実施の形態2では、実施の形態1での複数の端末1の各端末座標系とは別に、空間2を記述する世界座標系である空間座標系を用いる。実施の形態2では、端末座標系と空間座標系との間の座標系ペアリング、言い換えるとそれらの座標系間の関連付け、変換を扱う。この実施の形態では、空間座標系が基本構成(図31)の共通座標系に相当する。空間2の測定を分担する各端末1の各端末座標系は、共通の空間座標系を介して関連付けられる。また、空間2の空間データ6は、特に、共通の空間座標系を用いて記述することができる。端末1は、空間座標系で記述された空間データ6を作成する。端末1間ではその空間データ6を用いて空間2の認識を共有できる。
<Embodiment 2>
The space recognition system and the like according to the second embodiment of the present invention will be described with reference to FIGS. 16 to 17 and the like. Hereinafter, the components different from those of the first embodiment in the second embodiment and the like will be described. In the second embodiment shown in FIG. 16 and the like, a space coordinate system which is a world coordinate system describing the space 2 is used separately from each terminal coordinate system of the plurality of terminals 1 in the first embodiment. The second embodiment deals with coordinate system pairing between the terminal coordinate system and the spatial coordinate system, in other words, association and conversion between those coordinate systems. In this embodiment, the spatial coordinate system corresponds to the common coordinate system of the basic configuration (FIG. 31). Each terminal coordinate system of each terminal 1 that shares the measurement of space 2 is associated with each other via a common spatial coordinate system. Further, the spatial data 6 of the space 2 can be described in particular by using a common spatial coordinate system. The terminal 1 creates the spatial data 6 described in the spatial coordinate system. The recognition of the space 2 can be shared between the terminals 1 by using the space data 6.
 実施の形態2では、座標系ペアリングの際に、端末1は、空間2内の所定の特徴(特徴点や特徴線)との関係を、諸量として測定する。端末1は、その測定値に基づいて、その特徴に関連付けられた空間座標系と、自機の端末座標系との関係を求め、その関係に基づいて変換パラメータ7を計算する。 In the second embodiment, at the time of coordinate system pairing, the terminal 1 measures the relationship with a predetermined feature (feature point or feature line) in the space 2 as various quantities. The terminal 1 obtains the relationship between the spatial coordinate system associated with the feature and the terminal coordinate system of the own machine based on the measured value, and calculates the conversion parameter 7 based on the relationship.
 また、実施の形態2では、端末1は、作成した空間データ6を、外部のサーバ4のDB5に登録してもよい。この場合、サーバ4が基本構成(図31)の情報処理装置9に相当する。実施の形態2等では、端末1から空間データ6をサーバ4等の外部ソースへ登録する概念を扱う。サーバ4は、端末1に対する外部ソースとして、外部データである空間データ6を保持・管理する。サーバ4のDB5にライブラリーとして登録された空間データ6は、各端末1(空間測定を行わない端末でもよい)から適宜に参照・取得が可能となる。端末1は、サーバ4から利用対象の空間2に関する登録済みの空間データ6を取得し、その空間2の測定を要せずに、その空間データ6を利用して、AR等の画像を速やかに高精度に表示することができる。例えば、ある端末1は、ある空間2を1回測定して空間データ6を作成してサーバ4に登録する。その後、その端末1は、その空間2を再度利用する場合に、再度その空間2を測定する必要は無く、サーバ4から取得した空間データ6を利用できる。事業者がサーバ4を使用し、空間データ6の管理サービスの提供を行ってもよい。 Further, in the second embodiment, the terminal 1 may register the created spatial data 6 in the DB 5 of the external server 4. In this case, the server 4 corresponds to the information processing device 9 having the basic configuration (FIG. 31). The second embodiment deals with the concept of registering the spatial data 6 from the terminal 1 to an external source such as the server 4. The server 4 holds and manages spatial data 6, which is external data, as an external source for the terminal 1. The spatial data 6 registered as a library in the DB 5 of the server 4 can be appropriately referred to and acquired from each terminal 1 (a terminal that does not perform spatial measurement may be used). The terminal 1 acquires the registered spatial data 6 regarding the space 2 to be used from the server 4, and uses the spatial data 6 to quickly obtain an image such as AR without requiring measurement of the space 2. It can be displayed with high accuracy. For example, a certain terminal 1 measures a certain space 2 once, creates spatial data 6, and registers it in the server 4. After that, when the space 2 is used again, the terminal 1 does not need to measure the space 2 again and can use the space data 6 acquired from the server 4. The business operator may use the server 4 to provide the management service of the spatial data 6.
 [空間認識システム]
 図16は、実施の形態2の空間認識システムの構成を示し、特に、第1端末1Aの第1端末座標系WAと空間2の空間座標系W1との座標系ペアリング等についての説明図を示す。本例では、空間2の測定を分担する端末1として、第1端末1Aと第2端末1Bを有する。第2端末1Bの第2端末座標系WB等については図示を省略する。
[Spatial recognition system]
FIG. 16 shows the configuration of the space recognition system of the second embodiment, and in particular, illustrates the coordinate system pairing between the first terminal coordinate system WA of the first terminal 1A and the space coordinate system W1 of the space 2. show. In this example, as the terminal 1 that shares the measurement of the space 2, the first terminal 1A and the second terminal 1B are provided. The second terminal coordinate system WB and the like of the second terminal 1B are not shown.
 実施の形態2では、予め、空間2に関する空間座標系W1の情報が規定されている。空間座標系W1において、空間2の位置や所定の特徴(特徴点や特徴線)等の情報も規定されている。空間座標系W1は、例えば建物に固有の局所的座標系でもよいし、地球や地域等において共通の座標系でもよい。空間座標系W1は、実空間内に固定されており、原点Oと、直交する3軸として軸X、軸Y、および軸Zとを有する。図16の例では、空間座標系W1の原点Oは部屋等の空間2に対し離れた位置にあるが、これに限らず、原点Oは空間2内にあってもよい。 In the second embodiment, the information of the space coordinate system W1 regarding the space 2 is defined in advance. In the space coordinate system W1, information such as the position of the space 2 and predetermined features (feature points and feature lines) is also defined. The spatial coordinate system W1 may be, for example, a local coordinate system peculiar to a building, or a coordinate system common to the earth, a region, or the like. Space coordinate system W1 has is fixed in the real space, the origin O 1, the axis X 1 as 3 orthogonal axes, the axis Y 1, and a shaft Z 1. In the example of FIG. 16, the origin O 1 of the spatial coordinate system W1 is located at a position distant from the space 2 such as a room, but the origin O 1 may be in the space 2.
 実施の形態2では、各端末1の端末座標系(WA,WB)と、空間2の空間座標系W1との間での座標系ペアリングを扱う。それらの端末1(1A,1B)は、分担で作成した空間データ6を用いて、空間2の認識を共有する。各端末1は、自機の端末座標系で空間2の形状等を測定して空間2を記述する空間データ6(特に空間形状データ)を作成する。その際、各端末1は、空間2内の所定の特徴を手掛かりとして、空間座標系W1との座標系ペアリングを行う。空間2内の所定の特徴である特徴点や特徴線等は、予め規定されている。この特徴は、例えば壁や天井等の境界線としてもよいし、所定の配置物等でもよい。なお、空間2の所定の特徴における特徴点は、前述の測距センサ13によって得られる点群データの特徴点とは意味が異なる。 In the second embodiment, the coordinate system pairing between the terminal coordinate system (WA, WB) of each terminal 1 and the spatial coordinate system W1 of the space 2 is handled. Those terminals 1 (1A, 1B) share the recognition of the space 2 by using the spatial data 6 created by sharing. Each terminal 1 measures the shape and the like of the space 2 in the terminal coordinate system of its own machine and creates the space data 6 (particularly the space shape data) that describes the space 2. At that time, each terminal 1 performs coordinate system pairing with the space coordinate system W1 by using a predetermined feature in the space 2 as a clue. The feature points, feature lines, and the like, which are predetermined features in the space 2, are defined in advance. This feature may be, for example, a boundary line such as a wall or a ceiling, or a predetermined arrangement or the like. The feature points in the predetermined features of the space 2 have different meanings from the feature points of the point cloud data obtained by the distance measuring sensor 13 described above.
 例えば、第1端末1Aは、空間2の所定の特徴を認識して諸量を測定し、第1端末座標系WAと空間座標系W1との関係を把握する。第1端末1Aは、その関係から、第1端末座標系WAと空間座標系W1との変換パラメータ7を生成し、自機に設定する。各端末1は、座標系ペアリングの状態で、空間2における分担する領域を測定する。例えば第1端末1Aは、領域2Aを測定し、第1端末座標系WAで記述されている測定データ1601を得る。第1端末1Aは、測定データ1601から部分空間データ1602を構成する。第1端末1Aは、部分空間データ1602を、変換パラメータ7を用いて、空間座標系W1で記述される部分空間データに変換する。また、例えば第1端末1Aは、第2端末1Bから、第2端末1Bが作成した部分空間データを取得する。そして、第1端末1Aは、自機側で得た部分空間データと、相手から取得した部分空間データとを1つに統合することで、空間座標系W1で記述された、空間2を単位とした空間データ6を得る。第2端末1B側も、第1端末1A側と同様に空間データ6を得ることができる。 For example, the first terminal 1A recognizes a predetermined feature of the space 2 and measures various quantities to grasp the relationship between the first terminal coordinate system WA and the space coordinate system W1. Based on this relationship, the first terminal 1A generates a conversion parameter 7 between the first terminal coordinate system WA and the spatial coordinate system W1 and sets it in its own machine. Each terminal 1 measures the shared area in the space 2 in the state of the coordinate system pairing. For example, the first terminal 1A measures the region 2A and obtains the measurement data 1601 described in the first terminal coordinate system WA. The first terminal 1A constitutes the subspace data 1602 from the measurement data 1601. The first terminal 1A converts the subspace data 1602 into the subspace data described in the spatial coordinate system W1 by using the conversion parameter 7. Further, for example, the first terminal 1A acquires the subspace data created by the second terminal 1B from the second terminal 1B. Then, the first terminal 1A integrates the subspace data acquired on the own machine side and the subspace data acquired from the other party into one, so that the space 2 described in the spatial coordinate system W1 is used as a unit. Obtain the created spatial data 6. The second terminal 1B side can also obtain the spatial data 6 in the same manner as the first terminal 1A side.
 図16で、実施の形態2の空間認識システムは、通信網に接続されるサーバ4を有する。サーバ4は、事業者等が管理するサーバ装置であり、例えばデータセンタやクラウドコンピューティングシステム上に設けられている。サーバ4は、内部または外部のデータベース(DB)5に、ライブラリーとして、IDおよび空間データ6を登録し保持している。例えば、図示する空間2にはID=101が付与されており、DB5には、ID=101で識別される空間データ6(D101)が登録されている。複数の各々の空間2について、同様に空間データ6が登録されている。サーバ4は、会社等の単位で閉じられた空間データ6を管理するものとしてもよいし、地球や地域等の単位で多数の空間データ6を管理するものとしてもよい。例えば会社の建物を単位として空間データ6を管理する場合、会社のLAN等のコンピュータシステムのサーバ4に、その建物内の各空間2に関する各空間データ6が登録される。 In FIG. 16, the space recognition system of the second embodiment has a server 4 connected to a communication network. The server 4 is a server device managed by a business operator or the like, and is provided on, for example, a data center or a cloud computing system. The server 4 registers and holds the ID and the spatial data 6 as a library in the internal or external database (DB) 5. For example, ID = 101 is assigned to the illustrated space 2, and space data 6 (D101) identified by ID = 101 is registered in DB5. Spatial data 6 is similarly registered for each of the plurality of spaces 2. The server 4 may manage the spatial data 6 closed in a unit such as a company, or may manage a large number of spatial data 6 in a unit such as the earth or a region. For example, when the spatial data 6 is managed in units of a company building, each spatial data 6 relating to each space 2 in the building is registered in the server 4 of a computer system such as a corporate LAN.
 実施の形態2では、特に、外部ソースであるサーバ4のDB5に、ライブラリーとして、実空間内の各空間2に関する空間データ6が登録される。なお、最初、空間2が測定される前の段階では、DB5の空間データ6のうちの空間形状データ61は未登録である。DB5の空間データ6には、空間形状データ61や特徴データ62を含む。空間形状データ61は、空間座標系W1で記述された、空間2の形状等を表すデータであり、端末1によって作成される部分である。特徴データ62は、空間2内の所定の特徴(特徴点や特徴線等)の諸量を規定するデータを含む。特徴データ62は、端末1による座標系ペアリングの際に参照される。 In the second embodiment, in particular, the spatial data 6 relating to each space 2 in the real space is registered as a library in the DB 5 of the server 4 which is an external source. At first, before the space 2 is measured, the space shape data 61 of the space data 6 of the DB 5 is not registered. The spatial data 6 of the DB 5 includes the spatial shape data 61 and the feature data 62. The space shape data 61 is data representing the shape of the space 2 and the like described in the space coordinate system W1, and is a part created by the terminal 1. The feature data 62 includes data that defines various quantities of predetermined features (feature points, feature lines, etc.) in the space 2. The feature data 62 is referred to when the coordinate system is paired by the terminal 1.
 DB5の空間データ6は、空間2に応じた固有の空間座標系で記述されていてもよいし、関連する複数の空間2(例えば建物)で共通の空間座標系で記述されていてもよい。共通の空間座標系は、地球や地域内において共通の座標系としてもよい。例えばGPS等における緯度・経度・高度を用いた座標系でもよい。 The spatial data 6 of the DB 5 may be described in a unique spatial coordinate system corresponding to the space 2, or may be described in a common spatial coordinate system in a plurality of related spaces 2 (for example, a building). The common spatial coordinate system may be a common coordinate system within the earth or a region. For example, a coordinate system using latitude, longitude, and altitude in GPS or the like may be used.
 なお、この空間データ6の構成は一例であり、詳細を限定しない。空間データ6とは別のデータとして、予め規定される空間座標系W1や特徴・諸量に関するデータ等が存在してもよい。空間形状データ61の一部として特徴データ62が記述されていてもよい。予め端末1に特徴データ62を保持してもよい。各種のデータが別の場所に保持され、識別情報を通じて関連付けられる構成でもよい。サーバ4は1台に限らず、複数台のサーバ4でもよく、例えば、1つ以上の空間2毎に関連付けられたサーバ4でもよい。 Note that the configuration of this spatial data 6 is an example, and the details are not limited. As data different from the spatial data 6, there may be predetermined spatial coordinate system W1 and data related to features / quantities. Feature data 62 may be described as part of the spatial shape data 61. The feature data 62 may be held in the terminal 1 in advance. Various types of data may be held in different locations and associated with each other through identification information. The server 4 is not limited to one, and may be a plurality of servers 4, and may be, for example, a server 4 associated with each one or more spaces 2.
 特に、実施の形態2では、各端末1は、空間2の測定によって作成した空間データ6を、サーバ4のDB5に登録することができる。その際には、予めDB5に登録されている空間データ6(特に空間形状データ61)に対し、端末1が作成した空間データ6が登録される。言い換えると、サーバ4の空間データ6は、端末1からの空間データ6の登録に応じて適宜に内容が更新される。そして、各端末1は、サーバ4のDB5から、登録済みの空間データ6を適宜に取得して利用できる。各端末1は、自機内部に空間データ6を保持しなくてもよい。 In particular, in the second embodiment, each terminal 1 can register the spatial data 6 created by the measurement of the space 2 in the DB 5 of the server 4. At that time, the spatial data 6 created by the terminal 1 is registered with respect to the spatial data 6 (particularly the spatial shape data 61) registered in the DB 5 in advance. In other words, the content of the spatial data 6 of the server 4 is appropriately updated according to the registration of the spatial data 6 from the terminal 1. Then, each terminal 1 can appropriately acquire and use the registered spatial data 6 from the DB 5 of the server 4. Each terminal 1 does not have to hold the spatial data 6 inside its own device.
 実施の形態2は、各空間2の空間データ6をサーバ4等の外部ソースにライブラリーとして登録する場合であるが、これに限らず、端末1内に空間データ6をライブラリーとして保持してもよい。空間2の認識を共有する各端末1は、それらの端末1間で空間データ6を作成・授受し、共有して保持するのみとしてもよい。 The second embodiment is a case where the spatial data 6 of each space 2 is registered as a library in an external source such as a server 4, but the present invention is not limited to this, and the spatial data 6 is held in the terminal 1 as a library. May be good. Each terminal 1 that shares the recognition of the space 2 may only create, exchange, share, and hold the spatial data 6 between the terminals 1.
 [座標変換]
 図17は、実施の形態2での端末座標系WAと空間座標系W1との座標系ペアリングについての説明図を示す。実施の形態2では、空間2における所定の特徴(言い換えると特徴物)として、例えば壁や天井等の所定の物体1700における特徴点や特徴線を用いる。端末1は、その所定の特徴点や特徴線を、空間座標系W1との座標系ペアリングの際に用いる。図17の例では、壁等の物体1700における矩形の面の4個の角隅の点を用いる。図17の例では、特に物体1700の面における左辺および上辺に対応する3個の特徴点および2つの特徴線を用いる。2つの特徴線は、2つの特定方向に対応している。空間2内の所定の特徴は、特徴データ62(図16)で規定されており、端末1がカメラやセンサ等によって認識できるものであれば任意でよい。所定の特徴は、壁等に限らず、例えば部屋内にユーザによって設定された所定の物体としてもよい。
[Coordinate transformation]
FIG. 17 shows an explanatory diagram of the coordinate system pairing between the terminal coordinate system WA and the spatial coordinate system W1 in the second embodiment. In the second embodiment, as a predetermined feature (in other words, a feature) in the space 2, a feature point or a feature line in a predetermined object 1700 such as a wall or a ceiling is used. The terminal 1 uses the predetermined feature points and feature lines when pairing the coordinate system with the spatial coordinate system W1. In the example of FIG. 17, the points at the four corners of the rectangular surface of the object 1700 such as a wall are used. In the example of FIG. 17, three feature points and two feature lines corresponding to the left and top sides of the surface of the object 1700 are used in particular. The two feature lines correspond to two specific directions. The predetermined feature in the space 2 is defined by the feature data 62 (FIG. 16), and may be arbitrary as long as the terminal 1 can be recognized by a camera, a sensor, or the like. The predetermined feature is not limited to a wall or the like, and may be, for example, a predetermined object set by the user in the room.
 なお、本例では、端末座標系WAの原点Oの位置と、第1端末1の位置LAとは異なり、また、空間座標系W1の原点Oの位置と空間2内の特徴点の位置L1とは異なるが、これに限定されない。以下では、このように端末座標系の原点と端末1の位置とが一致しない場合、および、空間座標系の原点の位置と空間2の特徴点の位置とが一致しない場合について説明する。 In this example, the position of the origin O A terminal coordinate system WA, unlike the first position LA of the terminal 1, also the position of the feature point in the position and space 2 of the origin O 1 space coordinate system W1 It is different from L1 but is not limited to this. Hereinafter, a case where the origin of the terminal coordinate system and the position of the terminal 1 do not match and a case where the position of the origin of the spatial coordinate system and the position of the feature point in the space 2 do not match will be described.
 端末1の位置LAについての端末座標系WAでの座標値を、d=(x,y,z)とする。空間2の特徴点の位置L1についての空間座標系W1での座標値を、d=(x,y,z)とする。これらの座標値は、世界座標系の設定に応じて定まる。端末位置ベクトルVは、原点Oから位置LAまでのベクトルである。特徴点位置ベクトルVは、原点Oから位置L1までのベクトルである。 Let d A = (x A , y A , z A ) be the coordinate value of the position LA of the terminal 1 in the terminal coordinate system WA. Let d 1 = (x 1 , y 1 , z 1 ) be the coordinate value in the space coordinate system W1 for the position L1 of the feature point in space 2. These coordinate values are determined according to the settings of the world coordinate system. Terminal position vector V A is the vector from the origin O A to the position LA. The feature point position vector V 1 is a vector from the origin O 1 to the position L1.
 座標系ペアリングの際、端末1は、サーバ4(または変形例での基準端末)から、空間座標系W1に関する情報を取得する。例えば、端末1は、サーバ4から、空間データ6のうちの特徴データ62を参照する。特徴データ62には、空間2側の特徴(対応する物体1700)に関する諸量1702のデータが含まれている。端末1は、測距センサ13等を用いて、自機側の諸量1701を測定する。端末1は、空間2側の諸量1702と、測定した自機側の諸量1701とに基づいて、端末座標系WAと空間座標系W1との関係を求める。端末1は、その関係に基づいて、それらの座標系間の変換パラメータ7を計算し、自機に設定する。 At the time of coordinate system pairing, the terminal 1 acquires information on the spatial coordinate system W1 from the server 4 (or the reference terminal in the modified example). For example, the terminal 1 refers to the feature data 62 of the spatial data 6 from the server 4. The feature data 62 includes data of various quantities 1702 relating to features on the space 2 side (corresponding object 1700). The terminal 1 measures various quantities 1701 on the own machine side by using the distance measuring sensor 13 and the like. The terminal 1 obtains the relationship between the terminal coordinate system WA and the space coordinate system W1 based on the quantities 1702 on the space 2 side and the measured quantities 1701 on the own machine side. Based on the relationship, the terminal 1 calculates the conversion parameter 7 between those coordinate systems and sets it in its own machine.
 座標系ペアリングの際の諸量としては、以下の3つの要素の情報を有する。諸量は、第1情報として特定方向ベクトルと、第2情報として世界座標値と、第3情報として空間位置ベクトルとを有する。図17の例では、自機側の諸量1701として、第1特定方向ベクトルN、第2特定方向ベクトルM、座標値d、および空間位置ベクトルP1Aを有する。空間2側の諸量として、第1特定方向ベクトルN、第2特定方向ベクトルM、および座標値dを有する。 As various quantities at the time of coordinate system pairing, it has information on the following three elements. The quantities have a specific direction vector as the first information, a world coordinate value as the second information, and a spatial position vector as the third information. In the example of FIG. 17, having a various amount 1701 of own device side, a first specific direction vector N A, a second specific direction vector M A, the coordinate value d A, and the spatial position vector P 1A. As various quantities on the space 2 side, it has a first specific direction vector N 1 , a second specific direction vector M 1 , and a coordinate value d 1 .
 (1)特定方向ベクトルについて: 端末1は、端末座標系における空間2内の特定方向に関する情報として、特定方向ベクトルを用いる。この特定方向は、例えば鉛直下方向のように、端末1のセンサで測定するものと、空間2内の特徴線の方向、例えば物体1700の左辺または上辺に対応する方向とがある。端末1は、複数の候補の中から、異なる2つの特定方向の単位ベクトルを用いればよい。これらの単位ベクトルについての空間座標系W1での表現をn,mとし、端末座標系WAでの表現をn,mとする。端末座標系WAでの単位ベクトルn,mについては、端末1によって測定する。空間座標系W1での単位ベクトルn,mについては、予め規定され、サーバ4の特徴データ62から取得できる。 (1) Regarding the specific direction vector: The terminal 1 uses the specific direction vector as information regarding the specific direction in the space 2 in the terminal coordinate system. This specific direction includes a direction measured by a sensor of the terminal 1, such as a vertically downward direction, and a direction corresponding to a feature line in space 2, for example, a direction corresponding to the left side or the upper side of the object 1700. The terminal 1 may use two different unit vectors in a specific direction from a plurality of candidates. The representation in the spatial coordinate system W1 for these unit vectors and n 1, m 1, is a representation of the terminal coordinate system WA n A, and m A. Unit vector n A in the terminal coordinate system WA, for m A, measured by the terminal 1. The unit vectors n 1 and m 1 in the spatial coordinate system W1 are defined in advance and can be obtained from the feature data 62 of the server 4.
 1つの特定方向として鉛直下方向を用いる場合、鉛直下方向は、前述と同様に、加速度センサを用いて重力加速度の方向として測定できる。あるいは、各世界座標系(WA,W1)の設定において、鉛直下方向を、Z軸(Z,Z)の負方向として設定してもよい。いずれにせよ、この鉛直下方向は、世界座標系において変化しないので、座標系ペアリング毎に毎回測定しなくてもよい。 When the vertical downward direction is used as one specific direction, the vertical downward direction can be measured as the direction of gravitational acceleration using an acceleration sensor as described above. Alternatively, in the setting of the world coordinate system (WA, W1), a vertically downward direction, Z-axis (Z A, Z 1) may be set as a negative direction. In any case, since this vertical downward direction does not change in the world coordinate system, it is not necessary to measure each coordinate system pairing.
 1つの特定方向として例えば地磁気の北方向を用いる場合、地磁気の北方向は、端末1に備える地磁気センサ143(図7)を用いて測定できる。地磁気は構造物の影響を受ける可能性があるので、座標系ペアリング毎に測定すると好ましい。構造物の影響が十分に小さいことが分かっている場合には、測定を省略して、地磁気の北方向として認識している方向を用いてもよい。 When, for example, the north direction of the geomagnetism is used as one specific direction, the north direction of the geomagnetism can be measured by using the geomagnetism sensor 143 (FIG. 7) provided in the terminal 1. Since the geomagnetism may be affected by the structure, it is preferable to measure each coordinate system pairing. If it is known that the influence of the structure is sufficiently small, the measurement may be omitted and the direction recognized as the north direction of the geomagnetism may be used.
 特定方向として、空間2内の所定の特徴線の方向を用いる場合、例えば2つの特定方向として、物体1700の左辺および上辺の2つの特徴線の方向を用いる場合、以下のように測定できる。端末1は、特徴線毎に、特徴線を構成する異なる2つの特徴点について、端末座標系WAでの位置座標値を測定する。端末1は、その測定値から方向ベクトル(例えば左辺に対応する方向ベクトルN(n)、上辺に対応する方向ベクトルM(m))を求める。この座標値は、例えば端末1の測距センサ13によって測定できる。 When the directions of the predetermined feature lines in the space 2 are used as the specific directions, for example, when the directions of the two feature lines on the left side and the upper side of the object 1700 are used as the two specific directions, the measurement can be performed as follows. The terminal 1 measures the position coordinate values in the terminal coordinate system WA for each of the feature lines for two different feature points constituting the feature line. Terminal 1, the direction vector from the measured values determined (e.g. direction vector N A corresponding to the left side (n A), the direction vector M A corresponding to the upper side (m A)). This coordinate value can be measured by, for example, the distance measuring sensor 13 of the terminal 1.
 (2)世界座標値について: 端末1は、端末座標系における位置を表す座標値の情報を用いる。図17の例では、世界座標値として、第1端末座標系WAでの座標値d、および空間座標系W1での座標値dを用いる。本例では、物体1700の特徴として、左上の1つの特徴点を、位置L1(座標値d)としている。 (2) World coordinate values: The terminal 1 uses coordinate value information representing a position in the terminal coordinate system. In the example of FIG. 17, as the world coordinate values, the coordinate values d A at the first terminal coordinate system WA, and using the coordinate values d 1 in the spatial coordinate system W1. In this example, as a feature of the object 1700, one feature point on the upper left is set to the position L1 (coordinate value d 1 ).
 (3)空間位置ベクトルについて: 空間位置ベクトル(空間位置ベクトルP1A)とは、端末1の位置LAから空間2の特徴点の位置L1へ向かうベクトルである。この空間位置ベクトルにより、2つの座標系(WA,W1)間の位置関係に関する情報が得られる。この空間位置ベクトルは、例えば端末1の測距センサ13によって測定できる。 (3) Spatial position vector: The spatial position vector (spatial position vector P1A ) is a vector from the position LA of the terminal 1 to the position L1 of the feature point in the space 2. From this spatial position vector, information on the positional relationship between the two coordinate systems (WA, W1) can be obtained. This spatial position vector can be measured by, for example, the distance measuring sensor 13 of the terminal 1.
 図17で、位置ベクトルGは、第1端末座標系WAでの位置21のベクトルであり、位置座標値rは、その位置21の座標値である。位置ベクトルGは、空間座標系W1での位置21のベクトルであり、位置座標値rは、その位置21の座標値である。原点間ベクトルo1Aは、原点Oから原点Oへのベクトルであり、第1端末座標系WAにおける原点Oの表現である。原点間ベクトルoA1は、原点Oから原点Oへのベクトルであり、空間座標系W1における原点Oの表現である。 In Figure 17, the position vector G A is the vector position 21 of the first terminal coordinate system WA, position coordinates r A is the coordinate value of the position 21. The position vector G 1 is a vector of the position 21 in the spatial coordinate system W1, and the position coordinate value r 1 is a coordinate value of the position 21. The inter-origin vector o 1A is a vector from the origin O A to the origin O 1 , and is a representation of the origin O 1 in the first terminal coordinate system WA. Origin between the vectors o A1 is a vector from the origin O 1 to the origin O A, is a representation of the origin O A in the spatial coordinate system W1.
 [変換]
 上記諸量データ(1701,1702)から、第1端末座標系WAと空間座標系W1との関係が分かるので、それらの世界座標系(WA,W1)間の変換が計算できる。すなわち、変換パラメータ7として、空間座標系W1を第1端末座標系WAに合わせる変換のための変換パラメータ73と、その逆の変換として、第1端末座標系WAを空間座標系W1に合わせる変換のための変換パラメータ74とを構成できる。この変換パラメータ7は、実施の形態1での説明と同様に、回転と座標原点差を用いて規定できる。
[transform]
Since the relationship between the first terminal coordinate system WA and the spatial coordinate system W1 can be known from the above-mentioned various amount data (1701,1702), the conversion between those world coordinate systems (WA, W1) can be calculated. That is, as the conversion parameter 7, the conversion parameter 73 for matching the spatial coordinate system W1 to the first terminal coordinate system WA, and vice versa, the conversion for matching the first terminal coordinate system WA to the spatial coordinate system W1. The conversion parameter 74 for this can be configured. This conversion parameter 7 can be defined by using rotation and the coordinate origin difference, as in the description in the first embodiment.
 座標系ペアリング後、端末1による空間2内の位置の認識については、いずれの世界座標系を用いてもよい。空間座標系W1での位置を、変換パラメータ73によって、第1端末座標系WAでの位置に変換することでもよい。第1端末座標系WAでの位置を、変換パラメータ74によって、空間座標系W1での位置に変換することでもよい。 After pairing the coordinate system, any world coordinate system may be used for the recognition of the position in the space 2 by the terminal 1. The position in the spatial coordinate system W1 may be converted to the position in the first terminal coordinate system WA by the conversion parameter 73. The position in the first terminal coordinate system WA may be converted to the position in the spatial coordinate system W1 by the conversion parameter 74.
 図17の例での変換パラメータ73のテーブルは、項目として、空間座標系、端末座標系、回転、および原点表現を有する。「空間座標系」項目は、空間座標系の識別情報を格納する。「端末座標系」項目は、端末座標系の識別情報、あるいは対応する端末1やユーザの識別情報を格納する。「回転」項目は、それらの空間座標系と端末座標系との間の回転の表現の情報(例:qA1)を格納する。「原点表現」項目は、空間座標系の原点と端末座標系の原点との差の表現の情報(例:o1A)を格納する。 The table of transformation parameters 73 in the example of FIG. 17 has spatial coordinate systems, terminal coordinate systems, rotations, and origin representations as items. The "spatial coordinate system" item stores the identification information of the spatial coordinate system. The "terminal coordinate system" item stores the identification information of the terminal coordinate system or the corresponding identification information of the terminal 1 or the user. The "Rotation" item stores information on the representation of rotation between those spatial coordinate systems and the terminal coordinate system (eg q A1 ). The "origin expression" item stores information on the expression of the difference between the origin of the spatial coordinate system and the origin of the terminal coordinate system (example: o 1A ).
 実施の形態2での変換パラメータ7の計算方法は、実施の形態1の場合と同様であるので、計算結果のみを以下に記す。空間2内の任意の点(位置21)についての端末座標系WAでの座標値rと、空間座標系W1での座標値rとの変換式は、以下のように与えられる。
 r=q1A(r-o1A)q1A* =q1A1A*+oA1
 r=qA1(r-oA1)qA1* =qA1A1*+o1A
Since the calculation method of the conversion parameter 7 in the second embodiment is the same as that in the first embodiment, only the calculation result will be described below. And coordinate values r A of the terminal coordinate system WA for any point in space 2 (position 21), conversion formula between the coordinate values r 1 in the spatial coordinate system W1 is given as follows.
r 1 = q 1A (r A- o 1A ) q 1A * = q 1A r A q 1A * + o A 1
r A = q A1 (r 1- o A1 ) q A1 * = q A1 r 1 q A1 * + o 1A
 ただし、上記式中の諸量は、下記から与えられる。
 qT1=R(n,n
 mA1=qT1T1*
 qT2=R([P(n)mA1],[P(n)m])
 q1A=qT2T1
 qA1=q1A*
 o1A=d+P1A-qA1A1*
 oA1=d-q1A(d+P1A)q1A*
However, the quantities in the above formula are given from the following.
q T1 = R (n A , n 1 )
m A1 = q T1 m A q T1 *
q T2 = R ([ PT (n 1 ) m A1 ], [ PT (n 1 ) m 1 ])
q 1A = q T2 q T1
q A1 = q 1A *
o 1A = d A + P 1A -q A1 d 1 q A1 *
o A1 = d 1- q 1A (d A + P 1A ) q 1A *
 上記のように、例えば第1端末座標系WAで見た位置21(座標値r)を、空間座標系W1で見た位置21(座標値r)に変換したい場合、回転q1A、座標値r、および原点表現(oA1)を用いて計算できる。逆の変換も同様に計算できる。実施の形態2での変換パラメータ7は、上記説明で登場したパラメータで構成できる。変換パラメータ7の構成および保持においては、実施の形態1と同様に、容易に相互に変換できるので、例えば回転qA1の代わりにq1Aとしてもよい。 As described above, for example, when it is desired to convert the position 21 (coordinate value r A ) seen in the first terminal coordinate system WA to the position 21 (coordinate value r 1 ) seen in the spatial coordinate system W1, rotation q 1 A , coordinates. It can be calculated using the value r A and the origin representation (o A1). The reverse transformation can be calculated in the same way. The conversion parameter 7 in the second embodiment can be configured by the parameters introduced in the above description. In the configuration and retention of the conversion parameter 7, as in the first embodiment, since they can be easily converted to each other, for example , q 1A may be used instead of the rotation q A1.
 [効果等(2)]
 上記のように、実施の形態2によれば、各端末1によって、共通座標系とする空間2の空間座標系W1に合わせた空間データ6を作成し、サーバ4に登録でき、複数のユーザの複数の端末1間で空間2の認識を共有できる。
[Effects (2)]
As described above, according to the second embodiment, each terminal 1 can create spatial data 6 in accordance with the spatial coordinate system W1 of the space 2 as the common coordinate system and register it in the server 4, and can be registered by a plurality of users. The recognition of space 2 can be shared among a plurality of terminals 1.
 実施の形態2の変形例として以下も可能である。変形例では、端末1は、座標系ペアリングを行う前に、空間2を測定し、自機の端末座標系で記述された空間データ6を作成する。その後、端末1は、空間座標系W1との座標系ペアリングを行い、変換パラメータ7を用いて、端末座標系で記述された空間データ6を、空間座標系W1で記述された空間データ6に変換する。 The following is also possible as a modification of the second embodiment. In the modified example, the terminal 1 measures the space 2 and creates the spatial data 6 described in the terminal coordinate system of the own machine before performing the coordinate system pairing. After that, the terminal 1 performs coordinate system pairing with the spatial coordinate system W1 and uses the conversion parameter 7 to convert the spatial data 6 described in the terminal coordinate system into the spatial data 6 described in the spatial coordinate system W1. Convert.
 実施の形態1や2の変形例として、以下も可能である。端末1間で、あるいは端末1とサーバ4との間で、提供される情報は、AR等の機能に係わる仮想画像(ARオブジェクト)やその仮想画像の配置位置情報等のデータを含んでもよい。例えば図16で、サーバ4と各端末1との間では、空間データ6を通じて、そのようなデータをやり取りしてもよい。端末1からサーバ4にARオブジェクト等のデータを提供して空間データ6と関連付けて登録してもよい。サーバ4から端末1に空間データ6とともにARオブジェクト等のデータを提供してもよい。DB5のライブラリーでは、空間データ6において、空間形状データ61等と関連付けて、空間2内に配置して表示するARオブジェクトのデータおよび配置位置情報等が登録される。これにより、ユーザに対し、端末1を通じて各種のサービスを提供できる。例えば、商品を販売する店舗(対応する空間2)は、端末1に対し、空間データ6とともに商品広告等のARオブジェクトを提供できる。 As a modification of Embodiments 1 and 2, the following is also possible. The information provided between the terminals 1 or between the terminals 1 and the server 4 may include data such as a virtual image (AR object) related to a function such as AR and arrangement position information of the virtual image. For example, in FIG. 16, such data may be exchanged between the server 4 and each terminal 1 through the spatial data 6. Data such as an AR object may be provided from the terminal 1 to the server 4 and registered in association with the spatial data 6. Data such as an AR object may be provided from the server 4 to the terminal 1 together with the spatial data 6. In the library of DB5, in the spatial data 6, the data of the AR object to be arranged and displayed in the space 2 and the arrangement position information and the like are registered in association with the spatial shape data 61 and the like. As a result, various services can be provided to the user through the terminal 1. For example, a store that sells products (corresponding space 2) can provide the terminal 1 with an AR object such as a product advertisement together with the space data 6.
 [変形例4]
 図18は、実施の形態2の変形例(変形例4とする)の構成を示す。分担および共有を行う複数の端末1のうち、特定の端末1を基準(「基準端末」と記載する)とし、その基準端末の端末座標系を、基準(「基準座標系」とする)として用いてもよい。その場合、基準端末が、その基準座標系で、空間2の特徴(特徴点、特徴線の方向)を諸量データ1800として測定し、保持しておく。基準端末は、空間2の空間座標系W1との間で座標系ペアリング1801を行う。基準端末以外の各端末1、例えば第2端末1Bは、その基準端末から諸量データ1800を受け取り、その基準端末との間で座標系ペアリング1802を行う。この座標系ペアリング1802は、実施の形態1で説明した座標系ペアリングと同様である。これにより、基準座標系との座標系ペアリングを行った各端末1は、基準座標系を介して空間座標系W1との間接的な座標系ペアリングが実現される。
[Modification example 4]
FIG. 18 shows the configuration of a modified example (referred to as modified example 4) of the second embodiment. Of a plurality of terminals 1 to be shared and shared, a specific terminal 1 is used as a reference (described as a "reference terminal"), and the terminal coordinate system of the reference terminal is used as a reference (referred to as a "reference coordinate system"). You may. In that case, the reference terminal measures and holds the features (directions of feature points and feature lines) of the space 2 as various quantity data 1800 in the reference coordinate system. The reference terminal performs coordinate system pairing 1801 with the space coordinate system W1 in space 2. Each terminal 1 other than the reference terminal, for example, the second terminal 1B, receives various quantity data 1800 from the reference terminal and performs coordinate system pairing 1802 with the reference terminal. This coordinate system pairing 1802 is the same as the coordinate system pairing described in the first embodiment. As a result, each terminal 1 that has undergone coordinate system pairing with the reference coordinate system realizes indirect coordinate system pairing with the spatial coordinate system W1 via the reference coordinate system.
 <実施の形態3>
 図19~図24等を用いて、本発明の実施の形態3の空間認識システム等について説明する。図19等に示す実施の形態3は、実施の形態2の発展形であり、端末座標系と空間座標系との座標系ペアリングを扱う点は同様であり、異なる構成点として、空間2の測定等のために、特有の標識3の特徴を用いる。実施の形態3では、端末1は、標識3に係わる空間座標系W1を利用し、空間2を測定して、空間データ6を作成する。また、端末1は、作成した空間データ6を、サーバ4のDB5に登録・蓄積してもよい。
<Embodiment 3>
The space recognition system and the like according to the third embodiment of the present invention will be described with reference to FIGS. 19 to 24 and the like. The third embodiment shown in FIG. 19 and the like is an advanced form of the second embodiment, and the point of handling the coordinate system pairing between the terminal coordinate system and the spatial coordinate system is the same. The unique features of the label 3 are used for measurement and the like. In the third embodiment, the terminal 1 uses the space coordinate system W1 related to the sign 3 to measure the space 2 and create the space data 6. Further, the terminal 1 may register / store the created spatial data 6 in the DB 5 of the server 4.
 [空間認識システムおよび方法]
 図19は、実施の形態3の空間認識システムおよび方法の構成を示す。実施の形態3の空間認識システムは、標識3を有する。空間2には、その空間2に対応付けられる標識3が設置されている。図19の例では、部屋である空間2には、例えば入口の壁1901の外側面に、標識3が設置されている。
[Spatial recognition system and method]
FIG. 19 shows the configuration of the spatial recognition system and method of the third embodiment. The spatial recognition system of embodiment 3 has a marker 3. In the space 2, a sign 3 associated with the space 2 is installed. In the example of FIG. 19, a sign 3 is installed in the space 2 which is a room, for example, on the outer surface of the entrance wall 1901.
 標識3(言い換えるとマーカ、サイン等)は、ユーザが空間2を識別できるようにする一般的な標識としての機能に加え、端末1のための特別の機能を有する。この標識3は、空間2に関する基準となる世界座標系を、空間座標系W1(標識座標系と呼んでもよい)として与えるものである。標識3は、所定の特徴が規定されており、端末1による座標系ペアリングの際の諸量の測定等に使用できる特有の物体である。また、標識3は、端末1が空間2(対応するID)を識別して空間データ6を取得できるようにするための機能を有する。標識3は、空間2と同じ空間座標系W1において位置や形状等が記述されている。実施の形態2での空間2内の特徴は、実施の形態3では標識3の特徴として特徴点や特徴線である。この標識3の特徴は、予め諸量として規定されている。例えばサーバ4のDB5の空間データ6において、標識データ62が登録されている。この標識データ62は、標識3の諸量データを含み、実施の形態2での特徴データ62に相当する。 The sign 3 (in other words, a marker, a sign, etc.) has a special function for the terminal 1 in addition to a function as a general sign that allows the user to identify the space 2. The sign 3 gives the world coordinate system as a reference for the space 2 as the space coordinate system W1 (may be called a sign coordinate system). The sign 3 is a peculiar object that has predetermined features and can be used for measuring various quantities at the time of coordinate system pairing by the terminal 1. Further, the sign 3 has a function for enabling the terminal 1 to identify the space 2 (corresponding ID) and acquire the space data 6. The position, shape, and the like of the sign 3 are described in the same space coordinate system W1 as that of the space 2. The features in the space 2 in the second embodiment are feature points and feature lines as the features of the sign 3 in the third embodiment. The characteristics of this sign 3 are defined in advance as various quantities. For example, the indicator data 62 is registered in the spatial data 6 of the DB 5 of the server 4. The label data 62 includes various amount data of the label 3 and corresponds to the feature data 62 in the second embodiment.
 端末1、例えば第1端末1Aは、標識3の特徴を対象として自機側の諸量データとして測定し、第1端末座標系WAと空間座標系W1との関係を把握し、その関係に基づいて、第1端末座標系WAと空間座標系W1との変換パラメータ7を生成し、自機に設定する。 The terminal 1, for example, the first terminal 1A measures the feature of the marker 3 as various quantity data on the own machine side, grasps the relationship between the first terminal coordinate system WA and the spatial coordinate system W1, and is based on the relationship. Then, the conversion parameter 7 between the first terminal coordinate system WA and the spatial coordinate system W1 is generated and set in the own machine.
 [標識]
 図20は、標識3の構成例を示す。(A)は第1例、(B)は第2例、(C)は第3例、(D)は第4例である。(A)で、標識3は、横長の矩形の板等で構成されており、その板等の面(標識面と記載する場合がある)には、空間2である部屋の名称を示す「第7会議室」文字列が記載されている。本例では、標識面は、空間座標系W1のY-Z面に配置されている。また、本例では、標識面の一箇所に、空間2および標識3のID2001が直接的に文字列として記載されている。端末1は、カメラ12によってそのID2001を認識できる。
[Sign]
FIG. 20 shows a configuration example of the sign 3. (A) is the first example, (B) is the second example, (C) is the third example, and (D) is the fourth example. In (A), the sign 3 is composed of a horizontally long rectangular plate or the like, and the surface of the plate or the like (sometimes referred to as a sign surface) indicates the name of the room which is the space 2. "7 meeting room" character string is described. In this example, the label surface is arranged in Y 1 -Z 1 side of the spatial coordinate system W1. Further, in this example, the ID 2001 of the space 2 and the sign 3 is directly described as a character string in one place on the sign surface. The terminal 1 can recognize the ID 2001 by the camera 12.
 本例では、標識3は、標識面において、予め空間座標系W1での特徴点や特徴線が規定されている。標識面において、標識3の代表的な位置L1を表す1つの特徴点(点p1)が規定されている。また、標識面において、他の2つの特徴点(点p2,p3)が規定されている。3つの特徴点(点p1~p3)によって、2つの特徴線(ベクトルに対応する線v1,v2)が規定されている。点p1は、標識面の左上の角点であり、点p2は、左下の角点であり、点p3は、右上の角点である。線v1は、標識面の左辺であり、線v2は、上辺である。これらの特徴点や特徴線は、前述の2つの特定方向を構成する。標識3の空間座標系W1に関する諸量データは、例えば上記1つの特徴点(点p1)および2つの特定方向(線v1,v2)の情報を含む。なお、説明のために点p1等の特徴点や線v1等の特徴線を図示しているが、実際には記載されない。もしくは、あえて標識面に特徴点や特徴点が特定の画像として記載されて、ユーザおよび端末1から認識できるようにしてもよい。 In this example, the feature points and feature lines in the spatial coordinate system W1 are defined in advance on the sign surface of the sign 3. On the marking surface, one feature point (point p1) representing the representative position L1 of the marking 3 is defined. In addition, two other feature points (points p2 and p3) are defined on the marking surface. Two feature lines (lines v1 and v2 corresponding to the vector) are defined by the three feature points (points p1 to p3). The point p1 is the upper left corner point of the marking surface, the point p2 is the lower left corner point, and the point p3 is the upper right corner point. The line v1 is the left side of the sign plane, and the line v2 is the upper side. These feature points and feature lines constitute the above-mentioned two specific directions. The various quantity data regarding the spatial coordinate system W1 of the marker 3 includes, for example, information of the above-mentioned one feature point (point p1) and two specific directions (lines v1, v2). For the sake of explanation, feature points such as point p1 and feature lines such as line v1 are shown, but they are not actually described. Alternatively, the feature points and feature points may be intentionally described as specific images on the sign surface so that the user and the terminal 1 can recognize them.
 端末1は、座標系ペアリングの際に、標識3との関係を諸量として測定する。その際、端末1は、標識データ62に基づいて、測距センサ13やカメラ12を用いて、これらの3つの特徴点(点p1~p3)を測定する。言い換えると、端末1は、2つの特徴線(線v1,v2)を測定する。端末座標系WAでの3つの特徴点の位置が把握できた場合、2つの特定方向に対応する2つの特徴線が把握できたことと同じである。 The terminal 1 measures the relationship with the marker 3 as various quantities at the time of coordinate system pairing. At that time, the terminal 1 measures these three feature points (points p1 to p3) using the distance measuring sensor 13 and the camera 12 based on the marking data 62. In other words, the terminal 1 measures two feature lines (lines v1, v2). When the positions of the three feature points in the terminal coordinate system WA can be grasped, it is the same as when the two feature lines corresponding to the two specific directions can be grasped.
 なお、空間座標系W1の原点Oは、空間2外にあってもよいし、空間2内にあってもよいし、特に標識3の標識面に設定されていてもよい。例えば、標識3の特徴点(点p1)に合わせて原点Oが設定されていてもよい。 The origin O 1 of the space coordinate system W1 may be outside the space 2, inside the space 2, or particularly set on the sign surface of the sign 3. For example, the origin O 1 may be set to match the characteristic points of the marker 3 (point p1).
 (B)では、標識3は、(A)と同様の標識面のうちの一箇所、例えば左上の点p1付近に、所定のコード(コード画像)2002が記載されている。このコード2002は、所定の情報を記述したコードである。このコード2002は、例えばQRコード(QR:Quick Response、登録商標)等の2次元コードを用いてもよい。端末1は、カメラ12の画像からコード2002を抽出し、デコードによって所定の情報を得る。 In (B), a predetermined code (code image) 2002 is written on the sign 3 at one of the same sign surfaces as in (A), for example, in the vicinity of the upper left point p1. This code 2002 is a code that describes predetermined information. As this code 2002, for example, a two-dimensional code such as a QR code (QR: Quick Response, registered trademark) may be used. The terminal 1 extracts the code 2002 from the image of the camera 12 and obtains predetermined information by decoding.
 (C)では、標識3は、コード2003の画像や媒体として構成されている。例えば、標識3は、QRコードを記載した貼り付け媒体でもよい。本例では、コード2003面に部屋の名称の文字列が記載されている。端末1は、例えばコード2003の3つの角点を特徴点として同様に測定すればよい。あるいは、端末1は、QRコードの認識用の3つの切り出しシンボルを特徴点として測定してもよい。 In (C), the sign 3 is configured as an image or medium of the code 2003. For example, the sign 3 may be a sticking medium on which a QR code is written. In this example, the character string of the room name is described on the code 2003 side. The terminal 1 may measure in the same manner, for example, using the three corner points of the code 2003 as feature points. Alternatively, the terminal 1 may measure three cutout symbols for recognizing the QR code as feature points.
 (D)では、標識3は、表示装置2004(例えば壁掛けディスプレイ)の表示画像によって構成されている。表示装置2004の画面にコード2005が表示され、標識3として機能する。この場合、標識3の変更が容易に可能である。 In (D), the sign 3 is composed of a display image of a display device 2004 (for example, a wall-mounted display). The code 2005 is displayed on the screen of the display device 2004 and functions as a sign 3. In this case, the sign 3 can be easily changed.
 標識3に記述される所定の情報は、空間2および標識3を識別するID2001を含む情報としてもよいし、外部ソースであるサーバ4の空間データ6にアクセスするためのアドレスやURLを含む情報としてもよいし、以下のような構成としてもよい。 The predetermined information described in the sign 3 may be information including the space 2 and the ID 2001 that identifies the sign 3, or as information including an address and a URL for accessing the space data 6 of the server 4 which is an external source. Alternatively, the configuration may be as follows.
 所定の情報は、標識3の空間座標系W1に関する諸量データ(図19の標識データ62)と、空間データ送信先情報とを含む情報としてもよい。空間データ送信先情報は、外部ソース情報であり、端末1によって測定され作成される空間データ6(特に空間形状データ)についての送信先の識別情報であり、例えばサーバ4のアドレスやURLである。 The predetermined information may be information including various quantity data (label data 62 in FIG. 19) relating to the spatial coordinate system W1 of the marker 3 and spatial data transmission destination information. The spatial data transmission destination information is external source information, and is transmission destination identification information for spatial data 6 (particularly spatial shape data) measured and created by the terminal 1, for example, an address or URL of a server 4.
 所定の情報は、所定のIDと空間データ送信先情報とを含む情報としてもよい。端末1は、この情報を用いて、サーバ4にアクセスし、その標識3に関連付けられた空間データ6(特に標識データ62)を取得できる。そして、端末1は、その標識データ62から諸量データを取得できる。 The predetermined information may be information including a predetermined ID and spatial data transmission destination information. Using this information, the terminal 1 can access the server 4 and acquire the spatial data 6 (particularly the sign data 62) associated with the sign 3. Then, the terminal 1 can acquire various quantity data from the indicator data 62.
 [空間データ登録]
 図19で、実施の形態3の空間認識方法として、複数の端末1が分担によって空間2を測定して空間2の単位での空間データ6を作成し、サーバ6に登録する場合の処理フロー例は以下の通りである。まず、ステップS31で、端末1(例えば第1端末1A)は、カメラ12等によって、実空間内にある標識3を認識し、標識3の特徴を対象に諸量を測定する。端末1は、測定値である諸量データを用いて、自機の端末座標系WAとその標識3の空間座標系W1との座標系ペアリングを行う。これにより、端末1は、端末座標系WAと、共通座標系とする空間座標系W1との変換パラメータ7を設定する。
[Spatial data registration]
In FIG. 19, as a space recognition method of the third embodiment, a processing flow example in which a plurality of terminals 1 measure the space 2 by sharing, create space data 6 in units of the space 2, and register the space data 6 in the server 6. Is as follows. First, in step S31, the terminal 1 (for example, the first terminal 1A) recognizes the sign 3 in the real space by the camera 12 or the like, and measures various quantities for the feature of the sign 3. The terminal 1 performs coordinate system pairing between the terminal coordinate system WA of its own machine and the spatial coordinate system W1 of its marker 3 by using various quantity data which are measured values. As a result, the terminal 1 sets the conversion parameter 7 between the terminal coordinate system WA and the spatial coordinate system W1 as the common coordinate system.
 次に、ステップS32で、端末1は、端末座標系WAで空間2(前述の分担の領域)を測定し、変換パラメータ7を用いて、空間座標系W1で記述された空間データ6を作成する。端末1は、適宜に、測定データまたは部分空間データにおける端末座標系WAでの位置等を、空間座標系W1における位置等に変換する。ステップS32の処理の詳細は前述と同様である。 Next, in step S32, the terminal 1 measures the space 2 (the above-mentioned shared area) in the terminal coordinate system WA, and creates the space data 6 described in the space coordinate system W1 using the conversion parameter 7. .. The terminal 1 appropriately converts the position or the like in the terminal coordinate system WA in the measurement data or the subspace data into the position or the like in the spatial coordinate system W1. The details of the process in step S32 are the same as described above.
 ステップS33で、端末1は、作成した空間座標系W1で記述された空間データ6を、標識3の所定の情報に基づいて、サーバ4に送信する。端末1は、送信する空間データ6には、自機やユーザの識別情報、位置情報(測定起点)、測定日時情報(タイムスタンプ)、その他の関連する情報を付属させてもよい。測定日時情報がある場合、サーバ4側において、データ管理として、時間軸上の空間データ6(空間2の形状等の状態)の変化を把握することができる。 In step S33, the terminal 1 transmits the spatial data 6 described in the created spatial coordinate system W1 to the server 4 based on the predetermined information of the sign 3. The terminal 1 may attach identification information of the own device or the user, position information (measurement starting point), measurement date / time information (time stamp), and other related information to the spatial data 6 to be transmitted. When there is measurement date and time information, the server 4 can grasp the change of the spatial data 6 (state such as the shape of the space 2) on the time axis as data management.
 サーバ4は、端末1から受信した空間データ6(特に空間形状データ)を、DB5のライブラリーに登録・蓄積する。サーバ4は、空間2のID等の情報と対応付けて、空間データ6(特に空間形状データ61)を登録する。サーバ4は、DB5において既に対応する空間データ6(特に空間形状データ61)が登録済みであった場合、その空間データ6の内容を更新する。サーバ4は、空間データ6の測定日時、登録日時、更新日時等を管理する。 The server 4 registers and stores the spatial data 6 (particularly the spatial shape data) received from the terminal 1 in the library of the DB 5. The server 4 registers the spatial data 6 (particularly the spatial shape data 61) in association with information such as the ID of the space 2. When the corresponding spatial data 6 (particularly the spatial shape data 61) has already been registered in the DB 5, the server 4 updates the contents of the spatial data 6. The server 4 manages the measurement date / time, registration date / time, update date / time, etc. of the spatial data 6.
 別の方法として以下としてもよい。ステップS32~S33で、端末1は、測定データに基づいて、自機の端末座標系WAで記述された空間データ6を作成する。そして、端末1は、その端末座標系WAで記述された空間データ6と、変換パラメータ7(端末座標系WAから空間座標系W1への変換が可能な変換パラメータ)とを、セットとして、サーバ4に送信する。サーバ4は、それらのデータをDB5に登録する。 Alternatively, the following may be used. In steps S32 to S33, the terminal 1 creates the spatial data 6 described in the terminal coordinate system WA of the own machine based on the measurement data. Then, the terminal 1 sets the spatial data 6 described in the terminal coordinate system WA and the conversion parameter 7 (conversion parameter capable of converting the terminal coordinate system WA to the spatial coordinate system W1) as a set of the server 4 Send to. The server 4 registers the data in the DB 5.
 [制御フロー]
 図21は、実施の形態3での端末1とサーバ4との間での空間データ6の登録に関するやりとりの処理フロー例を示す。本例では、標識3に基づいて、端末1とサーバ4との間で通信接続を確立し、座標系ペアリングを確立する。その状態で、端末1は空間を測定して空間データ6を作成し、サーバ4に送信して登録する。なお、空間2の測定を分担する複数のユーザの複数の端末1に関して同様のフローとなる。
[Control flow]
FIG. 21 shows an example of a processing flow of an exchange regarding registration of spatial data 6 between the terminal 1 and the server 4 in the third embodiment. In this example, the communication connection is established between the terminal 1 and the server 4 based on the sign 3, and the coordinate system pairing is established. In that state, the terminal 1 measures the space, creates the space data 6, sends it to the server 4, and registers it. The flow is the same for a plurality of terminals 1 of a plurality of users who share the measurement of the space 2.
 ステップS301で、端末1は、標識3を認識して所定の情報(例えば、ID、空間データ送信先情報)を読み取り、その所定の情報に基づいて、サーバ4との通信接続を確立する。ステップS301bで、サーバ4は、端末1との通信接続を確立する。この際、サーバ4は、ユーザや端末1に関する認証を行って、空間2に関する権限を確認し、権限が確認された端末1を許可してもよい。権限としては、例えば、測定の権限、空間データ6の登録・更新の権限、空間データ6の取得・利用の権限、等を設けてもよい。 In step S301, the terminal 1 recognizes the sign 3 and reads predetermined information (for example, ID, spatial data transmission destination information), and establishes a communication connection with the server 4 based on the predetermined information. In step S301b, the server 4 establishes a communication connection with the terminal 1. At this time, the server 4 may authenticate the user and the terminal 1, confirm the authority regarding the space 2, and permit the terminal 1 for which the authority has been confirmed. As the authority, for example, measurement authority, registration / update authority of spatial data 6, acquisition / use authority of spatial data 6, and the like may be provided.
 ステップS302で、端末1は、座標系ペアリング要求をサーバ4に送信し、ステップS302bで、サーバ4は、座標系ペアリング応答を端末1に送信する。 In step S302, the terminal 1 transmits a coordinate system pairing request to the server 4, and in step S302b, the server 4 transmits a coordinate system pairing response to the terminal 1.
 ステップS303で、端末1は、標識3に関する諸量データの要求をサーバ4に送信する。ステップS303bで、サーバ4は、標識3に関する諸量データの応答として、対応する標識データ62を、端末1に送信する。端末1は、その標識3に関する諸量データを取得する。 In step S303, the terminal 1 transmits a request for various amounts of data related to the sign 3 to the server 4. In step S303b, the server 4 transmits the corresponding indicator data 62 to the terminal 1 in response to the quantity data relating to the indicator 3. The terminal 1 acquires various quantity data related to the sign 3.
 ステップS304で、端末1は、上記取得した諸量データに基づいて、標識3の所定の特徴(図20の点p1および線v1,v2)を端末座標系WAで測定し、自機側の諸量データとして得る。この際の測定は測距センサ13によって可能である。 In step S304, the terminal 1 measures predetermined features of the sign 3 (points p1 and lines v1 and v2 in FIG. 20) in the terminal coordinate system WA based on the acquired various amount data, and various items on the own machine side. Obtained as quantitative data. The measurement at this time is possible by the distance measuring sensor 13.
 ステップS305で、端末1は、ステップS303で得た標識側の空間座標系W1で記述されている諸量データと、ステップS304で得た自機側の端末座標系WAで記述されている諸量データとを用いて、端末座標系WAと空間座標系W1との変換パラメータ7を計算し、自機に設定する。 In step S305, the terminal 1 has the various quantities data described in the spatial coordinate system W1 on the marker side obtained in step S303 and the various quantities described in the terminal coordinate system WA on the own machine side obtained in step S304. Using the data, the conversion parameter 7 between the terminal coordinate system WA and the spatial coordinate system W1 is calculated and set in the own machine.
 ステップS306で、端末1は、空間2を測定し、測定データを得て、自機の端末座標系WAで記述された空間データ6(特に空間形状データ)を作成する。なお、詳細には、この空間データ6は、分担による部分空間データである。 In step S306, the terminal 1 measures the space 2, obtains the measurement data, and creates the space data 6 (particularly the space shape data) described in the terminal coordinate system WA of the own machine. In detail, the spatial data 6 is subspace data by sharing.
 ステップS307で、端末1は、ステップS306で作成した空間データ6を、変換パラメータ7を用いて、空間座標系W1で記述された空間データ6に変換する。 In step S307, the terminal 1 converts the spatial data 6 created in step S306 into the spatial data 6 described in the spatial coordinate system W1 using the conversion parameter 7.
 ステップS308で、端末1は、ステップS307で得た空間データ6を、サーバ4に送信する。ステップS308bで、サーバ4は、端末1から受信した空間データ6を、DB5内の対応する空間データ6(特に空間形状データ61)に登録または更新する。 In step S308, the terminal 1 transmits the spatial data 6 obtained in step S307 to the server 4. In step S308b, the server 4 registers or updates the spatial data 6 received from the terminal 1 with the corresponding spatial data 6 (particularly the spatial shape data 61) in the DB 5.
 なお、他の方法では、ステップS307,S308の代わりに、端末1は、自機の端末座標系WAで記述された空間データ6と変換パラメータ7とをセットとしてサーバ4に送信する。サーバ4はDB5に空間データ6と変換パラメータ7を対応付けて登録する。この形態の場合、サーバ4はDB5の変換パラメータ7を用いて座標変換処理を行ってもよい。 In another method, instead of steps S307 and S308, the terminal 1 transmits the spatial data 6 described in the terminal coordinate system WA of the own machine and the conversion parameter 7 as a set to the server 4. The server 4 registers the spatial data 6 and the conversion parameter 7 in association with each other in the DB 5. In the case of this form, the server 4 may perform the coordinate conversion process using the conversion parameter 7 of the DB 5.
 ステップS309,S309bで、端末1およびサーバ4は、空間測定に係わる座標系ペアリングを終了するかどうかを確認し、終了する場合(Yes)にはS310へ進み、継続する場合(No)にはステップS306へ戻って同様に繰り返す。 In steps S309 and S309b, the terminal 1 and the server 4 confirm whether or not to end the coordinate system pairing related to the spatial measurement, and if it ends (Yes), proceed to S310, and if it continues (No), proceed to S310. The process returns to step S306 and repeats in the same manner.
  ステップS310,S310bで、端末1とサーバ4は、空間2の測定に係わる通信接続を解除する。端末1とサーバ4は、座標系ペアリングの状態を明示的に解除(例えば変換パラメータ7の削除)してもよいし、その後も継続させてもよい。なお、端末1は、通信を介して常時にサーバ4と通信接続されてもよいし、必要な時のみサーバ4と通信接続されてもよい。端末1内には基本的には空間データ6等のデータを保持しない方式(クライアント・サーバ方式)を用いてもよい。 In steps S310 and S310b, the terminal 1 and the server 4 disconnect the communication connection related to the measurement of the space 2. The terminal 1 and the server 4 may explicitly cancel the coordinate system pairing state (for example, delete the conversion parameter 7), or may continue thereafter. The terminal 1 may be connected to the server 4 at all times via communication, or may be connected to the server 4 only when necessary. Basically, a method (client-server method) that does not hold data such as spatial data 6 may be used in the terminal 1.
 上記制御フロー例では、端末1は、作成した空間データ6を自動的にサーバ4に送信して登録する。これに限らず、ユーザが端末1に空間データ登録のための操作を行い、その操作に従って空間データ6をサーバ4に登録するようにしてもよい。端末1は、空間データ登録に係わるガイド画像を表示面11に表示する。ユーザは、それに従って空間データ登録の操作を行う。 In the above control flow example, the terminal 1 automatically transmits the created spatial data 6 to the server 4 and registers it. Not limited to this, the user may perform an operation for registering spatial data in the terminal 1 and register the spatial data 6 in the server 4 according to the operation. The terminal 1 displays a guide image related to spatial data registration on the display surface 11. The user performs the spatial data registration operation accordingly.
 [空間データ利用]
 上記のようにしてサーバ4に空間2の空間データ6(特に空間形状データ61)が登録済みである場合、各端末1は、特に標識3を通じて、その空間データ6を通信で取得して利用することができる。この際の手続きは例えば以下の通りである。
[Use of spatial data]
When the spatial data 6 (particularly the spatial shape data 61) of the space 2 is registered in the server 4 as described above, each terminal 1 acquires and uses the spatial data 6 by communication, particularly through the sign 3. be able to. The procedure at this time is as follows, for example.
 端末1は、対象の空間2について、対応する標識3を認識して所定の情報(ID等)を取得し、座標系ペアリング済みであるかや、空間データ6が登録済みであるか等の状態を確認する。例えば、端末1は、空間データ6が登録済みである場合、所定の情報を用いて、サーバ4から対象の空間2に関する空間データ6(特に空間形状データ61)を取得する。端末1は、座標系ペアリング済みでない場合には、空間2との座標系ペアリングを行う。端末1内に既に変換パラメータ7を保持している場合、その座標系ペアリングを省略できる。 The terminal 1 recognizes the corresponding sign 3 for the target space 2, acquires predetermined information (ID, etc.), and determines whether the coordinate system has been paired, whether the space data 6 has been registered, and the like. Check the status. For example, when the spatial data 6 is already registered, the terminal 1 acquires the spatial data 6 (particularly the spatial shape data 61) relating to the target space 2 from the server 4 by using the predetermined information. If the terminal 1 has not been paired with the coordinate system, the terminal 1 performs the coordinate system pairing with the space 2. When the conversion parameter 7 is already held in the terminal 1, the coordinate system pairing can be omitted.
 なお、端末1は、標識3を認識した際等に、ユーザに対し、空間2の測定(対応する空間データ6の作成)を行うか、登録済みの空間データ6を取得し利用するか、等の選択肢やガイドのための画像を表示面11に表示し、ユーザの操作に応じてその後の処理を決めてもよい。例えば、端末1は、ユーザの操作に基づいて、空間データ6を利用する場合には、サーバ4に空間データ要求を送信する。サーバ4は、要求に対し、DB5を検索し、対象の空間データ6(特に空間形状データ61)がある場合には、応答としてその空間データ6を端末1に送信する。 When the terminal 1 recognizes the sign 3, the user is asked whether to measure the space 2 (create the corresponding space data 6), or to acquire and use the registered space data 6 or the like. An image for the options and guides may be displayed on the display surface 11, and the subsequent processing may be determined according to the operation of the user. For example, the terminal 1 transmits a spatial data request to the server 4 when using the spatial data 6 based on the user's operation. The server 4 searches the DB 5 in response to the request, and if there is a target spatial data 6 (particularly the spatial shape data 61), the server 4 transmits the spatial data 6 to the terminal 1 as a response.
 端末1は、取得した空間データ6を利用して、空間2内で、例えばAR機能によって、空間2の物体の形状に合わせた位置21に仮想画像22を好適に表示できる。空間データ6(特に空間形状データ61)は、AR機能による仮想画像22の表示の用途の他にも、各種の用途に利用できる。例えば、ユーザおよび自機の位置の把握の用途や、目的地への経路の探索や案内の用途にも利用できる。例えば、端末1であるHMDは、取得した空間データ6を用いて、表示面11に、空間2の形状を表示する。この際、HMDは、空間2の形状を、実物サイズで、例えば線画の仮想画像によって実物に重畳表示してもよい。他には、HMDは、空間2の形状を、実物よりも小さいサイズで、3次元的な地図あるいは2次元的な地図のような仮想画像で表示してもよい。また、HMDは、その地図において、ユーザおよび自機の現在位置を表す仮想画像を表示してもよい。また、HMDは、その地図において、ユーザの目的地の位置や、現在位置から目的地の位置までの経路を、仮想画像として表示してもよい。あるいは、HMDは、実物に合わせて、経路案内のための矢印等の仮想画像を表示してもよい。 The terminal 1 can suitably display the virtual image 22 in the space 2 at the position 21 according to the shape of the object in the space 2 by using the acquired space data 6, for example, by the AR function. The spatial data 6 (particularly the spatial shape data 61) can be used for various purposes other than the purpose of displaying the virtual image 22 by the AR function. For example, it can be used for grasping the positions of users and their own machines, and for searching and guiding routes to destinations. For example, the HMD, which is the terminal 1, uses the acquired spatial data 6 to display the shape of the space 2 on the display surface 11. At this time, the HMD may superimpose and display the shape of the space 2 in the actual size, for example, by a virtual image of a line drawing. Alternatively, the HMD may display the shape of the space 2 as a virtual image such as a three-dimensional map or a two-dimensional map in a size smaller than the actual one. In addition, the HMD may display a virtual image showing the current positions of the user and the own machine on the map. Further, the HMD may display the position of the user's destination or the route from the current position to the position of the destination as a virtual image on the map. Alternatively, the HMD may display a virtual image such as an arrow for route guidance according to the real thing.
 [効果等(3)]
 上記のように、実施の形態3では、特に標識3を用いて効率的な座標系ペアリングや空間データの取得が可能である。また、実施の形態2や3では、端末1の端末座標系WAと空間2および標識3側の空間座標系W1との座標系ペアリングの際に、空間2の物体または標識3が固定されている。よって、この座標系ペアリングの際には、端末1側の静止を考慮すればよく、高精度の測定が可能であり、実用上の自由度が増す。
[Effects (3)]
As described above, in the third embodiment, it is possible to efficiently pair the coordinate system and acquire the spatial data by using the marker 3 in particular. Further, in the second and third embodiments, the object or the sign 3 in the space 2 is fixed at the time of the coordinate system pairing between the terminal coordinate system WA of the terminal 1 and the space coordinate system W1 on the space 2 and the sign 3 side. There is. Therefore, at the time of this coordinate system pairing, it is sufficient to consider the stationary side of the terminal 1, high-precision measurement is possible, and the degree of freedom in practical use is increased.
 実施の形態3の変形例として、端末1の端末座標系と標識3の空間座標系との座標系ペアリングに関しては、実施の形態2の変形例4(図18)と同様に、間接的な座標系ペアリングの方法も適用できる。例えば第2端末1Bは、標識3の空間座標系W1(図19)との座標系ペアリングを行う際に、既にその座標系ペアリングが済んでいる第1端末1Aとの座標系ペアリングを代わりに行ってもよい。これにより、第2端末1Bの第2端末座標系WBは、第1端末座標系WAを介して、標識3の空間座標系W1との間接的な座標系ペアリングが実現できる。 As a modification of the third embodiment, regarding the coordinate system pairing between the terminal coordinate system of the terminal 1 and the spatial coordinate system of the marker 3, indirect as in the modification 4 (FIG. 18) of the second embodiment. The method of coordinate system pairing can also be applied. For example, when the second terminal 1B performs the coordinate system pairing with the spatial coordinate system W1 (FIG. 19) of the sign 3, the second terminal 1B performs the coordinate system pairing with the first terminal 1A for which the coordinate system pairing has already been completed. You may go instead. As a result, the second terminal coordinate system WB of the second terminal 1B can realize indirect coordinate system pairing with the spatial coordinate system W1 of the marker 3 via the first terminal coordinate system WA.
 実施の形態3で、端末1は、標識3との座標系ペアリング後、空間2内で測定して得られる所定の特徴点や特徴線を、座標系ペアリング(対応する変換パラメータ7)に関するキャリブレーション(調整)に使用してもよい。また、1つの空間2に複数の標識3または特徴が設けられてもよい。端末1は、それぞれの標識3または特徴を、座標系ペアリングまたは調整に用いることができる。 In the third embodiment, the terminal 1 relates to the coordinate system pairing (corresponding conversion parameter 7) with respect to the predetermined feature points and feature lines obtained by measuring in the space 2 after the coordinate system pairing with the marker 3. It may be used for calibration (adjustment). Further, a plurality of signs 3 or features may be provided in one space 2. The terminal 1 can use each of the markers 3 or features for coordinate system pairing or adjustment.
 [変形例5]
 実施の形態1~3の変形例(変形例5とする)として、以下も可能である。変形例5では、ある空間2を測定して空間データ6を作成する場合における時間軸上での分担を扱う。この場合のユーザは一人でも複数人でもよい。同時に1台の端末1しか無い場合でも、時間軸上での分担が可能である。この場合、時間的な分割によって構成された複数の時間における各時間を、各端末1が担当する。
[Modification 5]
As a modification of the first to third embodiments (referred to as modification 5), the following is also possible. In the modified example 5, the division on the time axis in the case of measuring a certain space 2 and creating the space data 6 is dealt with. In this case, the number of users may be one or a plurality. Even if there is only one terminal 1 at the same time, sharing on the time axis is possible. In this case, each terminal 1 is in charge of each time in a plurality of times configured by time division.
 図22は、変形例5における時間軸上での分担の例を示す。空間2は、例えば広い建物であり、ID=100を有する。空間2は、図示しないが複数の部屋やエリア等を有してもよい。分担するユーザとして例えば二人のユーザ(U1,U2)がいて、対応する2台の端末1(1A,1B)がある。ここでの作業の目的は、空間座標系W1で記述された、空間2の単位での空間データ6(D100とする)を作成することである。 FIG. 22 shows an example of sharing on the time axis in the modified example 5. Space 2 is, for example, a large building and has ID = 100. Although not shown, the space 2 may have a plurality of rooms, areas, and the like. For example, there are two users (U1, U2) as sharing users, and there are two corresponding terminals 1 (1A, 1B). The purpose of the work here is to create spatial data 6 (referred to as D100) in units of space 2 described in the spatial coordinate system W1.
 (A)は第1日時での状態を示す。第1日時で、ユーザU1は、第1端末1Aによって、空間2内の領域2201を測定し、その領域2201の形状等を表す部分空間データD101を作成し、サーバ4のDB5のライブラリーに登録する。領域2201は、予め分担で決めた領域でもよいし、ユーザU1がその時に任意に測定した領域でもよい。 (A) indicates the state at the first date and time. At the first date and time, the user U1 measures the area 2201 in the space 2 by the first terminal 1A, creates the subspace data D101 representing the shape of the area 2201, and registers it in the library of the DB 5 of the server 4. do. The area 2201 may be an area determined in advance by sharing, or may be an area arbitrarily measured by the user U1 at that time.
 (B)は第2日時での状態を示す。第2日時で、ユーザU2は、第2端末1Bによって、空間2内の領域2202を測定し、部分空間データD102を作成し、サーバ4のDB5のライブラリーに登録する。領域2202は、領域2201とは別の領域であり、重複領域(例えば重複領域2212)を含んでもよい。部分空間データD102は、少なくとも部分空間データD101とは重複していない領域のデータを含む。 (B) indicates the state at the second date and time. At the second date and time, the user U2 measures the area 2202 in the space 2 by the second terminal 1B, creates the subspace data D102, and registers it in the library of the DB 5 of the server 4. The region 2202 is a region different from the region 2201 and may include an overlapping region (for example, an overlapping region 2212). The subspace data D102 includes at least data in a region that does not overlap with the subspace data D101.
 (C)は第3日時での状態を示す。第3日時で、ユーザU1は、第1端末1Aによって、空間2内の領域2203を測定し、部分空間データD103を作成し、サーバ4のDB5のライブラリーに登録する。領域2203は、領域2201,2202とは別の領域であり、重複領域を含んでもよい。 (C) indicates the state at the third date and time. At the third date and time, the user U1 measures the area 2203 in the space 2 by the first terminal 1A, creates the subspace data D103, and registers it in the library of the DB 5 of the server 4. Region 2203 is a region different from regions 2201,202 and may include overlapping regions.
 上記のように、サーバ4のDB5には、空間2(ID=100)についての空間データ6(特に空間形状データ61)が蓄積される。時間軸上でその空間データ6の内容は随時に更新される。例えば第3日時では、空間データD100は、部分空間データD101,D102,D103から構成されている。なお、各部分空間データには、測定日時情報や、測定ユーザ・端末情報、「測定済み」等のステータス情報、等を持たせてもよい。その後も同様に、時間軸上で、一人以上の任意のユーザ、任意の端末1によって、適宜に空間2内の任意の領域を測定することで、空間2内の十分な領域が測定済みとなれば、空間2を単位とした空間データ6が作成できる。 As described above, the spatial data 6 (particularly the spatial shape data 61) about the space 2 (ID = 100) is accumulated in the DB 5 of the server 4. The contents of the spatial data 6 are updated at any time on the time axis. For example, at the third date and time, the spatial data D100 is composed of subspace data D101, D102, and D103. In addition, each subspace data may have measurement date / time information, measurement user / terminal information, status information such as "measured", and the like. After that, similarly, by appropriately measuring an arbitrary area in the space 2 by one or more arbitrary users and an arbitrary terminal 1 on the time axis, a sufficient area in the space 2 can be measured. For example, spatial data 6 in units of space 2 can be created.
 また、各端末1は、各回の測定の開始前には、サーバ4から空間データ6を参照することで、空間2内の測定済み領域について把握できる。よって、端末1は、測定済み領域についての測定を省略し、未測定領域を対象に測定を開始することもできる。また、端末1は、測定済み領域についても再度測定する場合、その領域の形状等の更新または補正が可能である。 Further, each terminal 1 can grasp the measured area in the space 2 by referring to the spatial data 6 from the server 4 before the start of each measurement. Therefore, the terminal 1 can omit the measurement for the measured region and start the measurement for the unmeasured region. Further, when the measured area is measured again, the terminal 1 can update or correct the shape and the like of the area.
 測定の重複領域(例えば重複領域2212)の扱いについては、以下の方法が可能である。第1方法としては、各部分空間データに、重複領域のデータを持たせる。例えば、部分空間データD101およびD102において、重複領域2212のデータを持つ。 Regarding the handling of the overlapping area of measurement (for example, the overlapping area 2212), the following method is possible. As the first method, each subspace data is provided with the data of the overlapping area. For example, in the subspace data D101 and D102, the data of the overlapping region 2212 is held.
 第2方法としては、各部分空間データに、重複領域のデータを持たせない。例えば、部分空間データD101またはD102において、重複領域2212のデータを持たない。端末1またはサーバ4は、空間2内のある領域が測定済みか否かを判断する。例えば、登録済みの空間データ6の内容の状態からその判断が可能である。例えば、第2端末1Bおよびサーバ4は、部分空間データD101に既に重複領域2212のデータがあるので、部分空間データD102には重複領域2212のデータを持たせないようにする。あるいは、他の方法として、第2端末1Bおよびサーバ4は、部分空間データD101における重複領域2212のデータを、部分空間データD102の重複領域2212のデータによって上書き更新する。 As the second method, each subspace data does not have the data of the overlapping area. For example, in the subspace data D101 or D102, there is no data of the overlapping region 2212. The terminal 1 or the server 4 determines whether or not a certain area in the space 2 has been measured. For example, the determination can be made from the state of the contents of the registered spatial data 6. For example, in the second terminal 1B and the server 4, since the subspace data D101 already has the data of the overlapping area 2212, the subspace data D102 does not have the data of the overlapping area 2212. Alternatively, as another method, the second terminal 1B and the server 4 overwrite and update the data of the overlapping area 2212 in the subspace data D101 with the data of the overlapping area 2212 of the subspace data D102.
 空間2内の領域については、時間軸上でその領域での形状等の状態が変化している場合もある。例えば、机等の配置物が動かされている場合がある。この場合、端末1およびサーバ4は、時間軸上で領域毎の測定データまたは部分空間データの差をみることで、その変化を判断可能である。この判断に基づいて、例えば空間2の最新の状態を反映したい場合には、端末1およびサーバ4は、新しい方の測定日時での部分空間データを用いて上書き更新を行えばよい。また、端末1およびサーバ4は、そのような判断に基づいて、空間2を構成している固定の配置物(例えば壁、床、天井)と位置可変の配置物(例えば机)との区別を判断することもできる。これに基づいて、端末1およびサーバ4は、空間データ6において、部分毎に、固定と位置可変とを区別して属性情報を登録してもよい。また、そもそも位置可変の配置物については構成要素としないように空間データ6を構成することもできる。 Regarding the area in space 2, the state such as the shape in that area may change on the time axis. For example, an arrangement such as a desk may be moved. In this case, the terminal 1 and the server 4 can determine the change by observing the difference between the measurement data or the subspace data for each area on the time axis. Based on this determination, for example, when it is desired to reflect the latest state of the space 2, the terminal 1 and the server 4 may perform overwriting and updating using the subspace data at the newer measurement date and time. Further, the terminal 1 and the server 4 distinguish between a fixed arrangement (for example, a wall, a floor, a ceiling) constituting the space 2 and a position-variable arrangement (for example, a desk) based on such a judgment. You can also judge. Based on this, the terminal 1 and the server 4 may register the attribute information in the spatial data 6 by distinguishing between fixed and variable positions for each part. Further, the spatial data 6 can be configured so that the position-variable arrangement is not a component in the first place.
 サーバ4のDB5において、同じ空間2の空間データ6として、最新の測定日時の空間データのみ保持してもよいが、測定日時毎の空間データを履歴として保持してもよい。この場合、時間軸上の空間2の変化が履歴として把握できる。各測定日時の空間データの差からは、上記固定の配置物と位置可変の配置物との弁別も可能である。 In the DB 5 of the server 4, only the spatial data of the latest measurement date and time may be retained as the spatial data 6 of the same space 2, but the spatial data for each measurement date and time may be retained as a history. In this case, the change in space 2 on the time axis can be grasped as a history. From the difference in the spatial data of each measurement date and time, it is possible to discriminate between the fixed arrangement and the position-variable arrangement.
 [変形例6]
 実施の形態1~3の変形例(変形例6とする)として、以下も可能である。変形例6では、ある空間2を測定して空間データ6を作成する場合において、各端末1は、測定の事前の分担を行わない。この場合のユーザは一人でも複数人でもよい。各端末1は、測定した空間データを、要求があれば他の端末1に提供するか、サーバ4に登録する。各端末1は、自機が保有しない空間データ6を他の端末1およびサーバ4から検索して取得し、利用する。
[Modification 6]
As a modification of the first to third embodiments (referred to as modification 6), the following is also possible. In the modification 6, when the space 2 is measured and the space data 6 is created, each terminal 1 does not share the measurement in advance. In this case, the number of users may be one or a plurality. Each terminal 1 provides the measured spatial data to another terminal 1 or registers it in the server 4 if requested. Each terminal 1 searches for and acquires spatial data 6 not owned by its own device from the other terminals 1 and the server 4 and uses it.
 変形例6のフローを図23に示す。情報処理装置9は、端末1(例えば第2端末1B)またはサーバ4である。図23のフロー以前に、端末1は空間データ6を測定して保有し、サーバ4は例えば図21のフローのように、測定された空間データ6の登録をしている。さらに、サーバ4は、建物の壁等の設計データとしての空間データ6を保持していてもよい。 The flow of the modified example 6 is shown in FIG. The information processing device 9 is a terminal 1 (for example, a second terminal 1B) or a server 4. Prior to the flow of FIG. 23, the terminal 1 measures and holds the spatial data 6, and the server 4 registers the measured spatial data 6 as in the flow of FIG. 21, for example. Further, the server 4 may hold the spatial data 6 as the design data of the wall of the building or the like.
 ステップS331,S331bで、第1端末1Aと情報処理装置9は通信を確立する。情報処理装置9がサーバ4である場合は、通信の確立に際し、第1端末1Aは、取得したい空間データ6を管理するサーバ4を選択する。選択は、例えば、空間データ6の位置情報から行うことができる。あるいは、標識3を認識して所定の情報(例えば、ID、空間データ取得先情報)を読み取り、その所定の情報に基づいてサーバ4との通信接続を確立することでもよい。情報処理装置9が第2端末1Bである場合、具体的に装置が特定できるので、予め保持していた通信用データを用いて通信確立を行うことができる。 In steps S331 and S331b, the first terminal 1A and the information processing device 9 establish communication. When the information processing device 9 is the server 4, the first terminal 1A selects the server 4 that manages the spatial data 6 to be acquired when establishing the communication. The selection can be made, for example, from the position information of the spatial data 6. Alternatively, the sign 3 may be recognized to read predetermined information (for example, ID, spatial data acquisition destination information), and a communication connection with the server 4 may be established based on the predetermined information. When the information processing device 9 is the second terminal 1B, the device can be specifically specified, so that communication can be established using the communication data held in advance.
 ステップS332で、第1端末1Aは、座標系ペアリング要求を情報処理装置9に送信し、ステップS332bで、情報処理装置9は、座標系ペアリング応答を第1端末1Aに送信する。 In step S332, the first terminal 1A transmits a coordinate system pairing request to the information processing device 9, and in step S332b, the information processing device 9 transmits a coordinate system pairing response to the first terminal 1A.
 ステップS333で、端末1は、諸量データの要求を情報処理装置9に送信する。この諸量データは、情報処理装置9が第2端末1Bである場合、第2端末1Bに関する諸量データである。情報処理装置9がサーバ4である場合、諸量データは標識3に関する諸量データである。ステップS333bで、情報処理装置9は、要求された諸量データを第1端末1Aに送信する。第1端末1Aは、その諸量データを取得する。なお、第2端末1Bから空間データ6を取得する際の共通座標系が空間座標系である場合、第1端末1Aは、空間座標系との座標系ペアリングに必要な標識3等の諸量データを、第2端末1B他から取得する。 In step S333, the terminal 1 transmits a request for various amounts of data to the information processing device 9. When the information processing device 9 is the second terminal 1B, the various amount data is various amount data related to the second terminal 1B. When the information processing device 9 is the server 4, the quantity data is the quantity data related to the marker 3. In step S333b, the information processing apparatus 9 transmits the requested amount of data to the first terminal 1A. The first terminal 1A acquires the various amount data. When the common coordinate system for acquiring the spatial data 6 from the second terminal 1B is the spatial coordinate system, the first terminal 1A has various quantities such as a marker 3 required for coordinate system pairing with the spatial coordinate system. The data is acquired from the second terminal 1B and others.
 ステップS334で、第1端末1Aは、上記取得した諸量データに基づいて、座標系ペアリングに必要な、第2端末1Bまたは標識3の所定の特徴(例えば図20の点p1および線v1,v2)を端末座標系WAで測定し、自機側の諸量データとして得る。この際の測定は測距センサ13によって可能である。 In step S334, the first terminal 1A has a predetermined feature of the second terminal 1B or the marker 3 (for example, the point p1 and the line v1 in FIG. 20) necessary for the coordinate system pairing based on the acquired various quantity data. v2) is measured by the terminal coordinate system WA and obtained as various quantity data on the own machine side. The measurement at this time is possible by the distance measuring sensor 13.
 ステップS335で、第1端末1Aは、ステップS333で得た第2端末1Bまたは標識3側の共通座標系WSで記述されている諸量データと、ステップS334で得た自機側の端末座標系WAで記述されている諸量データとを用いて、端末座標系WAと共通座標系WSとの変換パラメータ7を計算し、自機に設定する。これにより、第1端末1Aと情報処理装置9との空間認識の共有ができる。 In step S335, the first terminal 1A has the various amount data described in the common coordinate system WS on the second terminal 1B or the sign 3 side obtained in step S333, and the terminal coordinate system on the own machine side obtained in step S334. Using the various amount data described in WA, the conversion parameter 7 between the terminal coordinate system WA and the common coordinate system WS is calculated and set in the own machine. As a result, the spatial recognition can be shared between the first terminal 1A and the information processing device 9.
 ステップS336,S336bで、第1端末1Aによる空間データ6保有の問合せと、情報処理装置9による問合せ応答および空間データ6の送信とを行う。まず、第1端末1Aは、空間データ6を取得したい領域の共通座標系を基準として記述された位置情報を、情報処理装置9に送信する。情報処理装置9は、問合せを受けた領域に関する空間データ6のリストを回答する。ここでいう領域とは、例えば図24の(A)に示すような、座標値で規定される直方体で囲まれる3次元的領域であり、空間2の部分領域を細かく指定するものである。これは、予め空間メッシュを定義して、空間メッシュのIDで指定することでもよい。領域に関する空間データ6とは、領域内に少なくとも一部が存在する物体や、実空間の境界等の特徴点、特徴線、ポリゴンデータ等の3次元的位置情報である。空間データ6のリストとは、例えば図24の(B)のようなものである。リスト上の領域の位置は物体等の位置情報が存在する範囲であり、問合せの領域とは必ずしも一致しない。領域の指定は、領域が、その各辺が座標軸に平行である直方体である場合は、直方体の一つの対角線の両端の座標値でよい。領域が任意の多面体である場合は、全ての頂点座標値で指定する。情報処理装置9による回答は、問合せを受けた領域の近傍の空間データ6を含めてもよい。回答を受けた第1端末1Aは、リスト中から取得する空間データ6を選択し、情報処理装置9よりその空間データ9の送信を受ける。 In steps S336 and S336b, the first terminal 1A performs an inquiry for holding the spatial data 6, the information processing apparatus 9 performs an inquiry response, and the spatial data 6 is transmitted. First, the first terminal 1A transmits the position information described with reference to the common coordinate system of the region for which the spatial data 6 is to be acquired to the information processing device 9. The information processing device 9 replies with a list of spatial data 6 relating to the area for which the inquiry has been received. The region referred to here is a three-dimensional region surrounded by a rectangular parallelepiped defined by coordinate values, as shown in FIG. 24A, for example, and a partial region of space 2 is specified in detail. This may be specified by defining the spatial mesh in advance and specifying the ID of the spatial mesh. The spatial data 6 relating to the region is three-dimensional position information such as an object in which at least a part thereof exists in the region, feature points such as boundaries in the real space, feature lines, and polygon data. The list of spatial data 6 is, for example, as shown in FIG. 24 (B). The position of the area on the list is the range in which the position information of the object or the like exists, and does not necessarily match the area of the query. When the region is a rectangular parallelepiped whose sides are parallel to the coordinate axes, the region may be specified by the coordinate values at both ends of one diagonal line of the rectangular parallelepiped. If the region is an arbitrary polyhedron, specify it with all vertex coordinate values. The response by the information processing device 9 may include spatial data 6 in the vicinity of the area in which the inquiry was received. Upon receiving the response, the first terminal 1A selects the spatial data 6 to be acquired from the list, and receives the transmission of the spatial data 9 from the information processing device 9.
 ステップS337で、第1端末1Aは、ステップS336で取得した空間データ6を、変換パラメータ7を用いて、自機の端末座標系WAで記述された空間データ6に変換し、利用する。 In step S337, the first terminal 1A converts the spatial data 6 acquired in step S336 into the spatial data 6 described in the terminal coordinate system WA of the own machine by using the conversion parameter 7, and uses it.
 なお、他の方法では、変換パラメータ7を情報端末装置9に送信し、位置情報に関しては、端末座標系WAを基準とした情報交換を行ってもよい。 In another method, the conversion parameter 7 may be transmitted to the information terminal device 9, and the position information may be exchanged based on the terminal coordinate system WA.
 ステップS338,S338bで、第1端末1Aおよび情報処理装置9は、空間データ提供に係わる座標系ペアリングを終了するかどうかを確認し、終了する場合(Yes)にはステップS339,S339bへ進み、継続する場合(No)にはステップS336,S336bへ戻って同様に繰り返す。 In steps S338 and S338b, the first terminal 1A and the information processing device 9 confirm whether or not to end the coordinate system pairing related to the spatial data provision, and if so, proceed to steps S339 and S339b. When continuing (No), the process returns to steps S336 and S336b and is repeated in the same manner.
 ステップS309,S309bで、第1端末1Aと情報処理装置9は、空間データの提供に係わる通信接続を解除する。第1端末1Aと情報処理装置9は、座標系ペアリングの状態を明示的に解除(例えば変換パラメータ7の削除)してもよいし、その後も継続させてもよい。なお、第1端末1Aは、通信を介して常時に情報処理装置9と通信接続されてもよいし、必要な時のみ情報処理装置9と通信接続されてもよい。端末1内には基本的には空間データ6等のデータを保持しない方式(クライアント・サーバ方式)を用いてもよい。この場合のサーバは情報処理装置9としてのサーバ4ではない。 In steps S309 and S309b, the first terminal 1A and the information processing device 9 disconnect the communication connection related to the provision of spatial data. The first terminal 1A and the information processing device 9 may explicitly cancel the state of the coordinate system pairing (for example, delete the conversion parameter 7), or may continue thereafter. The first terminal 1A may be connected to the information processing device 9 at all times via communication, or may be connected to the information processing device 9 only when necessary. Basically, a method (client-server method) that does not hold data such as spatial data 6 may be used in the terminal 1. The server in this case is not the server 4 as the information processing device 9.
 端末1は、取得した空間データ6を統合して新たな空間データ6を作成する他、情報処理装置から取得した空間データ6を、ARオブジェクトの表示等に利用するだけでもよい。 The terminal 1 may integrate the acquired spatial data 6 to create a new spatial data 6, or may simply use the spatial data 6 acquired from the information processing device for displaying an AR object or the like.
 変形例6により、事前の測定分担設定の手間なく、自機による空間データ6の測定を省略でき、作業の効率化を図ることができる。 According to the modified example 6, the measurement of the spatial data 6 by the own machine can be omitted without the trouble of setting the measurement sharing in advance, and the work efficiency can be improved.
 <実施の形態4>
 図25等を用いて、実施の形態4の空間認識システム等について説明する。実施の形態4は、実施の形態1~3に関する変形例であり、機能が追加される。端末1は、端末1の位置や向きに応じて、ユーザに対し、分担に係わる測定範囲等のガイドや支援のための画像を表示面11に表示する。端末1の位置については、座標系ペアリング時の水平面上での位置を用いる。
<Embodiment 4>
The space recognition system and the like according to the fourth embodiment will be described with reference to FIG. 25 and the like. The fourth embodiment is a modification of the first to third embodiments, and a function is added. The terminal 1 displays on the display surface 11 an image for guiding or supporting a measurement range or the like related to sharing to the user according to the position or orientation of the terminal 1. As for the position of the terminal 1, the position on the horizontal plane at the time of pairing the coordinate system is used.
 [表示例1]
 図25は、実施の形態4での端末1の表示面11の表示例を示す。本例では、図3のような空間2内に、第1端末1AであるHMDを装着したユーザU1がいる。ユーザU1は、HMDの表示面11を通じて、ホワイトボード2bがある壁2301の方を見ている。第1端末1Aには、予め例えば前述の図10のステップS2Aで、分担に係わる領域の設定が行われているとする。この設定は、サーバ4のDB5の空間データ6に対する設定としてもよい。例えば、ユーザU1の第1端末1Aは、図3や図4のように領域2Aを担当する。
[Display example 1]
FIG. 25 shows a display example of the display surface 11 of the terminal 1 according to the fourth embodiment. In this example, there is a user U1 who wears the HMD which is the first terminal 1A in the space 2 as shown in FIG. The user U1 is looking toward the wall 2301 where the whiteboard 2b is located through the display surface 11 of the HMD. It is assumed that the region related to the sharing has been set in advance in the first terminal 1A, for example, in step S2A of FIG. 10 described above. This setting may be set for the spatial data 6 of the DB 5 of the server 4. For example, the first terminal 1A of the user U1 is in charge of the area 2A as shown in FIGS. 3 and 4.
 第1端末1Aは、自機が分担する領域2A(すなわち測定すべき領域)や測定範囲等を表す画像2300を、表示面11に重畳表示する。この画像2300は、その画像2300が見える方向にある領域が分担の領域であることを表している。本例では、画像2300は、空間2内の領域2A,2Bの境界面を表す画像(奥が透過して見える画像)であるが、これに限らず、3次元的な領域2A等を表す画像としてもよい。本例では、空間座標系W1内での第1端末1A(対応するユーザU1)の位置が領域2Aの外側にあり、領域2Aを向いている。そのため、領域2A,2Bの境界面が画像2300として表示されている。また、例えば、第1端末1Aの位置が領域2Aの内側にあり、領域2Aの配置物の方を向いている状態の場合、画像2300の代わりに、その状態を表す画像が表示される。 The first terminal 1A superimposes and displays an image 2300 representing an area 2A (that is, an area to be measured) shared by the own machine, a measurement range, and the like on the display surface 11. The image 2300 indicates that the region in the direction in which the image 2300 can be seen is a shared region. In this example, the image 2300 is an image representing the boundary surface of the regions 2A and 2B in the space 2 (an image in which the back can be seen through), but the image 2300 is not limited to this and is an image representing a three-dimensional region 2A and the like. May be. In this example, the position of the first terminal 1A (corresponding user U1) in the spatial coordinate system W1 is outside the area 2A and faces the area 2A. Therefore, the boundary surface of the regions 2A and 2B is displayed as the image 2300. Further, for example, when the position of the first terminal 1A is inside the area 2A and faces the arrangement of the area 2A, an image showing the state is displayed instead of the image 2300.
 ユーザU1は、この画像2300を見ることで、領域2Aを把握しやすく、測定がしやすい。ユーザU1は、この画像2300が見える方向を測定すればよい。端末1に備える測定のためのセンサ(例えば測距センサ13)の感度領域がユーザU1の顔の前方向にある場合において、ユーザU1は、この画像2300を、測定のために顔を向ける方向の目安とすることができる。言い換えると、ユーザU1は、測定の際に、視線がこの画像2300の面領域内を指すように顔を向ければよい。 The user U1 can easily grasp the area 2A and easily measure the area 2A by looking at the image 2300. The user U1 may measure the direction in which the image 2300 can be seen. When the sensitivity region of the measurement sensor (for example, the distance measuring sensor 13) provided in the terminal 1 is in the front direction of the face of the user U1, the user U1 turns the image 2300 in the direction in which the face is turned for the measurement. It can be used as a guide. In other words, the user U1 may turn his / her face so that the line of sight points within the surface region of the image 2300 at the time of measurement.
 他の例としては、第1端末1Aは、位置や向きの状態に応じて、画像2300とは別に、他の端末1(例えば第2端末1B)の分担する領域(領域2B)を表す別の画像を表示してもよい。 As another example, the first terminal 1A represents an area (region 2B) shared by another terminal 1 (for example, the second terminal 1B) in addition to the image 2300, depending on the position and orientation. An image may be displayed.
 図26は、分担方法の一例として、空間2を俯瞰した水平面(X-Y面)での概要を示す。この分担は、対象の空間2を同時に複数台の端末1によって測定する場合に、測定の方位を設定する例を示す。この場合、水平面において、複数台の端末1によって対象の空間2の全方位(対応する領域)をカバーするように、各端末1の測定の方位が決定される。分担する複数の端末1は、互いに座標系ペアリングを行う。その後、端末1間では、適宜に通信しながら、分担のための処理を行う。 Figure 26 is an example of a sharing process, an overview of a horizontal plane looking down the space 2 (X 1 -Y 1 side). This division shows an example of setting the measurement direction when the target space 2 is measured by a plurality of terminals 1 at the same time. In this case, in the horizontal plane, the measurement orientation of each terminal 1 is determined so that the plurality of terminals 1 cover all directions (corresponding regions) of the target space 2. The plurality of terminals 1 to be shared perform coordinate system pairing with each other. After that, the terminals 1 perform processing for sharing while appropriately communicating with each other.
 本例では、三人のユーザ(U1,U2,U3)の端末1(1A,1B,1C)で同時に測定する場合の各位置と方位(2401,2402,2403)を示す。端末1間では、まずこの状態で分担範囲を計算する。隣り合う端末1を結ぶ線分の垂直2等分線と空間2の境界線(本例では四方の壁)との交点(2411,2412,2413)をとる。この交点を、空間2の分担範囲の境界(対応する鉛直方向の線)とする。また、端末1間では、この分担範囲を初期値として、さらに、分担が公平(例えば同程度の大きさ)になるように調整(例えば交点を水平方向にずらす等)をしてもよい。また本例では交点を境界として分担範囲に重なりが無いようにしているが、これに限らず、交点を含む境界部分に分担範囲の重なりを設けてもよい。図26のような分担での測定によって、部屋の壁等の形状を測定できる。 In this example, each position and orientation (2401,402, 2403) when simultaneously measuring with terminals 1 (1A, 1B, 1C) of three users (U1, U2, U3) are shown. Between terminals 1, first, the sharing range is calculated in this state. An intersection (2411,241,2413) is taken between the perpendicular bisector of the line segment connecting the adjacent terminals 1 and the boundary line (four walls in this example) of the space 2. This intersection is defined as the boundary of the sharing range of space 2 (corresponding vertical line). Further, between the terminals 1, this sharing range may be used as an initial value, and further adjustment may be made so that the sharing is fair (for example, the same size) (for example, the intersection points are shifted in the horizontal direction). Further, in this example, the intersection is used as a boundary so that the sharing range does not overlap, but the present invention is not limited to this, and the sharing range may be overlapped at the boundary portion including the intersection. The shape of the wall or the like of the room can be measured by the shared measurement as shown in FIG.
 [表示例2]
 図27は、図26の分担に対応した第1端末1Aでの表示例を示す。表示面11には、交点2411,2413に対応する測定範囲境界線を表す画像2501,2502が表示される。また、本例では、その測定範囲境界線の画像2501,2502で表される測定範囲内に、複数の横線矢印の画像2503が表示される。この横線矢印は、測定の際に端末1のセンサ(例えば測距センサ13)を走査するように動かす場合に、その走査の目安となる。
[Display example 2]
FIG. 27 shows a display example on the first terminal 1A corresponding to the division of FIG. 26. Images 2501, 502 representing the measurement range boundary lines corresponding to the intersections 2411 and 2413 are displayed on the display surface 11. Further, in this example, a plurality of images 2503 of horizontal line arrows are displayed within the measurement range represented by the images 2501, 502 of the measurement range boundary line. This horizontal line arrow serves as a guide for scanning when the sensor of the terminal 1 (for example, the distance measuring sensor 13) is moved so as to scan during measurement.
 ユーザU1は、その横線矢印の画像2503に沿って、顔の向き(対応する画像2504)を変えるように動かすことで、効率的および高精度の測定が実現できる。画像2504は、HMDおよびセンサ等の向きを表すカーソルのような画像の表示例である。画像2503における横線矢印の方向や間隔は、効率的な測定ができるように設計されている。例えば隣り合う2本の横線矢印の間隔は、測定漏れが生じずに測定重複が最低限となるような間隔として選択されている。 The user U1 can realize efficient and highly accurate measurement by moving the user U1 so as to change the direction of the face (corresponding image 2504) along the image 2503 of the horizontal line arrow. Image 2504 is a display example of an image such as a cursor indicating the orientation of the HMD, the sensor, or the like. The direction and spacing of the horizontal arrows in image 2503 are designed for efficient measurement. For example, the distance between two adjacent horizontal arrows is selected as a distance that minimizes measurement duplication without causing measurement omission.
 [表示例3]
 図28は、さらに、他の表示例を示す。端末1は、空間2内または分担領域内の各領域について、測定(言い換えると測定データの取得)が済んだか否かを把握し、測定済みの領域と未測定の領域とがユーザに分かりやすいように、それらの領域を区別して表す画像を表示面11に表示する。また、端末1は、サーバ4のDB5のライブラリーに既に空間データ6(特に空間形状データ61)として登録済みの領域かどうかを把握し、それらの領域を区別して表す画像を表示してもよい。本例では、画像2601は、測定済み範囲を表す、縦線ハッチングのような画像である。画像2602は、未測定範囲を表す、斜線ハッチングのような画像である。これらの画像の表示状態はリアルタイムで更新される。画像には、「測定済み」、「未測定」、「登録済み」、「分担範囲」とった種類を表す文字列やアイコン等を付けて表示してもよい。画像表示のみならず、音声出力によるガイドを用いてもよい。
[Display example 3]
FIG. 28 further shows another display example. The terminal 1 grasps whether or not the measurement (in other words, the acquisition of the measurement data) has been completed for each area in the space 2 or the shared area, so that the measured area and the unmeasured area can be easily understood by the user. An image that distinguishes and represents those areas is displayed on the display surface 11. Further, the terminal 1 may grasp whether or not the area is already registered as the spatial data 6 (particularly the spatial shape data 61) in the library of the DB 5 of the server 4, and display an image representing those areas separately. .. In this example, the image 2601 is a vertical line hatch-like image representing the measured range. Image 2602 is a diagonal hatch-like image representing an unmeasured range. The display state of these images is updated in real time. The image may be displayed with a character string, an icon, or the like indicating the types of "measured", "unmeasured", "registered", and "sharing range". Not only the image display but also the guide by audio output may be used.
 [表示例4]
 図29は、他の表示例を示す。この変形例では、複数の端末1間では、分担の領域を決めない。各ユーザは適宜に端末1によって任意の範囲を測定し、自発的に未測定範囲を測定する。空間2の測定の際、各端末1は、ユーザの位置や向きに応じた範囲を測定する。各端末1は、図28と同様に、自機による測定済み範囲と未測定範囲とがユーザに分かるように画像を表示する。例えば第1端末1Aは画像2601,2602を表示する。分担する端末1間では、測定の都度、測定データ、または自機の測定済み領域等を表す情報を、他の端末1に送信する。各端末1は、その測定データまたは情報に基づいて、空間2内の各端末1による測定済み領域や未測定領域を把握する。そして、各端末1は、表示面11の範囲内に、他の端末1による測定済みの領域がある場合には、その測定済みを表す画像を表示する。例えば第1端末1Aは、第2端末1Bによる測定済みを表す横線ハッチングのような画像2701を表示する。ユーザU1は、ガイド画像を見ることで、次の測定範囲を決めやすい。上記例に限らず、分担する全端末1でまとめて、測定済みと未測定との2種類の画像としてもよい。
[Display example 4]
FIG. 29 shows another display example. In this modification, the area of sharing is not determined between the plurality of terminals 1. Each user appropriately measures an arbitrary range with the terminal 1 and spontaneously measures the unmeasured range. When measuring the space 2, each terminal 1 measures a range according to the position and orientation of the user. Similar to FIG. 28, each terminal 1 displays an image so that the user can see the measured range and the unmeasured range by the own device. For example, the first terminal 1A displays images 2601,602. Between the terminals 1 to share, each time a measurement is performed, measurement data or information representing a measured area of the own machine is transmitted to another terminal 1. Each terminal 1 grasps a measured area and an unmeasured area by each terminal 1 in the space 2 based on the measurement data or information. Then, each terminal 1 displays an image showing the measured area when there is a measured area by another terminal 1 within the range of the display surface 11. For example, the first terminal 1A displays an image 2701 such as a horizontal line hatch indicating that the measurement has been performed by the second terminal 1B. The user U1 can easily determine the next measurement range by looking at the guide image. Not limited to the above example, two types of images, measured and unmeasured, may be collected by all the terminals 1 to be shared.
 [表示例5]
 図30は、他の画像の表示例を示す。図25等の例では、実空間中に面等を表すガイド画像が表示されているが、これに限らず、空間2の壁や机等の物体の面に合わせるように、ガイド画像を表示してもよい。本例では、部屋等の空間2内の壁2702,2703に近い角隅において、床2701上に物体2700が配置されている。端末1は、この物体2700を含む範囲を測定した際、測定済みを表す破線のような画像2710を表示する。例えば、端末1は、測距センサ13によって取得した点群データに基づいて、その点群で表される物体の面に合わせて、測定済み範囲の物体の形状を表す画像2710を表示できる。画像2710は、線画像でもよいし、面画像でもよい。
[Display example 5]
FIG. 30 shows a display example of another image. In the example of FIG. 25 and the like, a guide image representing a surface or the like is displayed in the real space, but the guide image is not limited to this and is displayed so as to match the surface of an object such as a wall or a desk in the space 2. You may. In this example, the object 2700 is arranged on the floor 2701 at a corner close to the walls 2702 and 2703 in the space 2 such as a room. When the range including the object 2700 is measured, the terminal 1 displays an image 2710 such as a broken line indicating that the measurement has been completed. For example, the terminal 1 can display an image 2710 showing the shape of an object in the measured range according to the surface of the object represented by the point cloud based on the point cloud data acquired by the distance measuring sensor 13. The image 2710 may be a line image or a surface image.
 以上、本発明を実施の形態に基づいて具体的に説明したが、本発明は前述の実施の形態に限定されず、要旨を逸脱しない範囲で種々変更可能である。実施の形態の構成要素の追加や削除や置換、各種の組合せによる構成が可能である。前述した機能等は、一部または全部をハードウェアで実装してもよいし、ソフトウェアプログラム処理で実装してもよい。機能等を構成するプログラムやデータは、コンピュータ読取可能な記憶媒体に格納されてもよいし、通信網上の装置に格納されてもよい。 Although the present invention has been specifically described above based on the embodiments, the present invention is not limited to the above-described embodiments and can be variously modified without departing from the gist. It is possible to add, delete, replace, and configure various combinations of the components of the embodiment. Some or all of the above-mentioned functions may be implemented by hardware, or may be implemented by software program processing. The programs and data constituting the functions and the like may be stored in a computer-readable storage medium, or may be stored in a device on a communication network.
 1…端末(HMD)、1A…第1端末、1B…第2端末、1a,1b…スマートフォン、2…空間、4…サーバ、6…空間データ、7…変換パラメータ、9…情報処理装置、11…表示面、12…カメラ、13…測距センサ、U1…第1ユーザ、U2…第2ユーザ、W1…空間座標系、WA…第1端末座標系、WB…第2端末座標系、WS…共通座標系、WT…端末座標系、21…位置、22…画像。 1 ... Terminal (HMD), 1A ... 1st terminal, 1B ... 2nd terminal, 1a, 1b ... Smartphone, 2 ... Space, 4 ... Server, 6 ... Spatial data, 7 ... Conversion parameters, 9 ... Information processing device, 11 ... Display surface, 12 ... Camera, 13 ... Distance measuring sensor, U1 ... 1st user, U2 ... 2nd user, W1 ... Spatial coordinate system, WA ... 1st terminal coordinate system, WB ... 2nd terminal coordinate system, WS ... Common coordinate system, WT ... terminal coordinate system, 21 ... position, 22 ... image.

Claims (27)

  1.  空間を測定する機能および表示面に仮想画像を表示する機能を有し端末座標系を有する情報端末と、共通座標系に基づいた処理を行う情報処理装置と、を備え、
     前記情報端末は、前記端末座標系と前記共通座標系との間の、位置および向きに関する関係を測定し、測定した関係を表すデータに基づいて、前記端末座標系と前記共通座標系とを適合させ、
     前記情報端末と前記情報処理装置は、前記空間の認識の共有を行う、
     空間認識システム。
    It is equipped with an information terminal having a function of measuring space and a function of displaying a virtual image on a display surface and having a terminal coordinate system, and an information processing device that performs processing based on a common coordinate system.
    The information terminal measures the relationship regarding position and orientation between the terminal coordinate system and the common coordinate system, and adapts the terminal coordinate system and the common coordinate system based on data representing the measured relationship. Let me
    The information terminal and the information processing device share the recognition of the space.
    Spatial recognition system.
  2.  請求項1記載の空間認識システムにおいて、
     前記情報端末として複数の情報端末を備え、
     前記複数の情報端末のうち、前記共通座標系となる第1端末座標系を有し、前記情報処理装置ともなる第1情報端末と、第2端末座標系を有する第2情報端末とが、前記空間の認識の共有を行う場合に、
     前記第2情報端末は、前記第1情報端末との間で、位置および向きに関する関係を測定し、測定した関係を表すデータに基づいて、前記第1端末座標系と前記第2端末座標系とを適合させ、前記空間の認識の共有を行う、
     空間認識システム。
    In the space recognition system according to claim 1,
    A plurality of information terminals are provided as the information terminals.
    Among the plurality of information terminals, the first information terminal having the first terminal coordinate system serving as the common coordinate system and also serving as the information processing device, and the second information terminal having the second terminal coordinate system are described above. When sharing the perception of space
    The second information terminal measures the relationship regarding the position and orientation with the first information terminal, and based on the data representing the measured relationship, the first terminal coordinate system and the second terminal coordinate system And share the perception of the space,
    Spatial recognition system.
  3.  請求項1記載の空間認識システムにおいて、
     前記空間の有する空間座標系が前記共通座標系であり、
     前記情報端末は、前記空間内の所定の特徴を持つ物体との間で、位置および向きに関する関係を測定し、測定した関係を表すデータに基づいて、前記端末座標系と前記空間座標系とを適合させ、前記情報処理装置との間で前記空間の認識の共有を行う、
     空間認識システム。
    In the space recognition system according to claim 1,
    The spatial coordinate system of the space is the common coordinate system.
    The information terminal measures the relationship regarding position and orientation with an object having a predetermined feature in the space, and based on the data representing the measured relationship, the terminal coordinate system and the space coordinate system are set. Adapt and share the recognition of the space with the information processing device.
    Spatial recognition system.
  4.  請求項1記載の空間認識システムにおいて、
     前記情報端末として複数の情報端末を備え、
     前記複数の情報端末が前記空間を分担して測定して空間データを得る場合に、
     前記情報端末または前記情報処理装置は、各前記情報端末が測定して得た部分空間データを統合して前記空間単位での前記空間データを作成する、
     空間認識システム。
    In the space recognition system according to claim 1,
    A plurality of information terminals are provided as the information terminals.
    When the plurality of information terminals share and measure the space to obtain spatial data,
    The information terminal or the information processing device integrates the subspatial data measured and obtained by each information terminal to create the spatial data in the spatial unit.
    Spatial recognition system.
  5.  請求項2記載の空間認識システムにおいて、
     前記第1情報端末と、前記第2情報端末とが、前記空間を分担して測定する場合に、
     前記第1情報端末は、前記空間の第1領域を前記第1端末座標系で測定し、前記第1端末座標系で記述された第1部分空間データを作成し、
     前記第2情報端末は、前記空間の第2領域を前記第2端末座標系で測定し、前記第2端末座標系で記述された第2部分空間データを作成し、
     前記第1情報端末または前記第2情報端末は、前記第2部分空間データを、前記第1端末座標系で記述された部分空間データに変換し、前記第1部分空間データと前記第1端末座標系で記述された部分空間データとを統合して前記空間単位での空間データを作成する、
     空間認識システム。
    In the space recognition system according to claim 2,
    When the first information terminal and the second information terminal share the space for measurement,
    The first information terminal measures the first region of the space in the first terminal coordinate system, creates the first subspace data described in the first terminal coordinate system, and creates the first subspace data.
    The second information terminal measures a second region of the space in the second terminal coordinate system, creates a second subspace data described in the second terminal coordinate system, and creates a second subspace data.
    The first information terminal or the second information terminal converts the second subspace data into the subspace data described in the first terminal coordinate system, and the first subspace data and the first terminal coordinates. Create spatial data in the spatial unit by integrating with the subspatial data described in the system.
    Spatial recognition system.
  6.  請求項3記載の空間認識システムにおいて、
     前記情報端末として複数の情報端末を備え、前記複数の情報端末のうち、第1端末座標系を有する第1情報端末と、第2端末座標系を有する第2情報端末とが、前記空間を分担して測定する場合に、
     前記第1情報端末は、前記空間の第1領域を前記第1端末座標系で測定し、前記第1端末座標系で記述された第1部分空間データを作成し、前記第1部分空間データを、前記空間座標系で記述された第1部分空間データに変換し、
     前記第2情報端末は、前記空間の第2領域を前記第2端末座標系で測定し、前記第2端末座標系で記述された第2部分空間データを作成し、前記第2部分空間データを、前記空間座標系で記述された第2部分空間データに変換し、
     前記第1情報端末または前記第2情報端末は、前記情報処理装置ともなり、前記空間座標系で記述された第1部分空間データと、前記空間座標系で記述された第2部分空間データとを統合して前記空間単位での空間データを作成する、
     空間認識システム。
    In the space recognition system according to claim 3,
    A plurality of information terminals are provided as the information terminals, and among the plurality of information terminals, a first information terminal having a first terminal coordinate system and a second information terminal having a second terminal coordinate system share the space. When measuring
    The first information terminal measures a first region of the space in the first terminal coordinate system, creates first subspace data described in the first terminal coordinate system, and uses the first subspace data. , Converted to the first subspace data described in the spatial coordinate system,
    The second information terminal measures a second region of the space in the second terminal coordinate system, creates a second subspace data described in the second terminal coordinate system, and uses the second subspace data. , Converted to the second subspace data described in the spatial coordinate system,
    The first information terminal or the second information terminal also serves as the information processing device, and obtains first subspace data described in the space coordinate system and second subspace data described in the space coordinate system. Integrate to create spatial data in the spatial unit,
    Spatial recognition system.
  7.  請求項5記載の空間認識システムにおいて、
     前記第2情報端末は、前記第1端末座標系と前記第2端末座標系とを適合させるための変換パラメータを生成し、自機に設定する、
     空間認識システム。
    In the space recognition system according to claim 5,
    The second information terminal generates a conversion parameter for matching the first terminal coordinate system and the second terminal coordinate system, and sets the conversion parameter in the own machine.
    Spatial recognition system.
  8.  請求項6記載の空間認識システムにおいて、
     前記第1情報端末は、前記第1端末座標系と前記空間座標系とを適合させるための変換パラメータを生成し、自機に設定し、
     前記第2情報端末は、前記第2端末座標系と前記空間座標系とを適合させるための変換パラメータを生成し、自機に設定する、
     空間認識システム。
    In the space recognition system according to claim 6,
    The first information terminal generates a conversion parameter for matching the first terminal coordinate system and the spatial coordinate system, sets it in its own machine, and sets it in its own machine.
    The second information terminal generates a conversion parameter for matching the second terminal coordinate system and the spatial coordinate system, and sets the conversion parameter in the own machine.
    Spatial recognition system.
  9.  請求項4記載の空間認識システムにおいて、
     前記情報端末は、前記空間データを用いて、前記空間内の位置に合わせるように前記表示面に仮想画像を表示する、
     空間認識システム。
    In the space recognition system according to claim 4,
    The information terminal uses the spatial data to display a virtual image on the display surface so as to match a position in the space.
    Spatial recognition system.
  10.  請求項1記載の空間認識システムにおいて、
     前記空間の空間データを登録し保持する前記情報処理装置となるサーバ装置を備え、
     前記情報端末は、作成した前記空間データを、前記サーバ装置に登録する、
     空間認識システム。
    In the space recognition system according to claim 1,
    A server device serving as the information processing device for registering and holding spatial data in the space is provided.
    The information terminal registers the created spatial data in the server device.
    Spatial recognition system.
  11.  請求項10記載の空間認識システムにおいて、
     前記情報端末は、前記サーバ装置から前記空間データを取得して利用する、
     空間認識システム。
    In the space recognition system according to claim 10,
    The information terminal acquires and uses the spatial data from the server device.
    Spatial recognition system.
  12.  請求項11記載の空間認識システムにおいて、
     前記サーバ装置には、前記空間データと関連付けて、前記空間内に前記仮想画像を表示させるためのデータが登録されている、
     空間認識システム。
    In the space recognition system according to claim 11,
    Data for displaying the virtual image in the space is registered in the server device in association with the space data.
    Spatial recognition system.
  13.  請求項3記載の空間認識システムにおいて、
     前記情報端末は、前記関係として、前記端末座標系と前記空間座標系との間における相対的な向きの関係を表す量と、前記端末座標系の原点と前記空間座標系の原点との相対的な位置の関係を表す量とを測定する、
     空間認識システム。
    In the space recognition system according to claim 3,
    As the relationship, the information terminal has a quantity representing a relative orientation relationship between the terminal coordinate system and the spatial coordinate system, and a relative of the origin of the terminal coordinate system and the origin of the spatial coordinate system. Measure the amount that represents the relationship between the two positions,
    Spatial recognition system.
  14.  請求項3記載の空間認識システムにおいて、
     前記空間に対応付けて設けられた前記物体として標識を備え、
     前記情報端末は、前記標識との間で、前記位置および向きに関する関係を測定し、測定した関係を表すデータに基づいて、前記端末座標系と前記空間座標系とを適合させる、
     空間認識システム。
    In the space recognition system according to claim 3,
    A sign is provided as the object provided in association with the space.
    The information terminal measures the relationship regarding the position and orientation with the sign, and adapts the terminal coordinate system and the spatial coordinate system based on the data representing the measured relationship.
    Spatial recognition system.
  15.  請求項14記載の空間認識システムにおいて、
     前記情報端末は、前記標識を認識して、前記標識に記述されている所定の情報を読み取り、前記所定の情報を用いて、前記空間に対応付けられた空間データを特定する、
     空間認識システム。
    In the space recognition system according to claim 14,
    The information terminal recognizes the sign, reads predetermined information described in the sign, and uses the predetermined information to identify spatial data associated with the space.
    Spatial recognition system.
  16.  請求項2記載の空間認識システムにおいて、
     前記複数の情報端末のうち、前記第1端末座標系を有する前記第1情報端末と、前記第2端末座標系を有する前記第2情報端末と、第3端末座標系を有する第3情報端末とが、前記空間を分担して測定する場合において、
     前記第1情報端末は、前記第2情報端末との間で、前記第1端末座標系と前記第2端末座標系とを適合させ、
     前記第2情報端末は、前記第3情報端末との間で、前記第2端末座標系と前記第3端末座標系とを適合させ、
     前記第3情報端末は、前記第2情報端末から取得した情報を用いて、前記第3端末座標系と前記第1端末座標系とを適合させる、
     空間認識システム。
    In the space recognition system according to claim 2,
    Among the plurality of information terminals, the first information terminal having the first terminal coordinate system, the second information terminal having the second terminal coordinate system, and the third information terminal having the third terminal coordinate system. However, when the space is shared and measured,
    The first information terminal adapts the first terminal coordinate system and the second terminal coordinate system to the second information terminal.
    The second information terminal adapts the second terminal coordinate system and the third terminal coordinate system to the third information terminal.
    The third information terminal uses the information acquired from the second information terminal to match the third terminal coordinate system with the first terminal coordinate system.
    Spatial recognition system.
  17.  請求項4記載の空間認識システムにおいて、
     前記複数の情報端末は、時間的に分担して前記空間を測定し、
     前記情報端末は、前記時間的に分担して測定して作成された複数の部分空間データを統合して前記空間単位での前記空間データを作成する、
     空間認識システム。
    In the space recognition system according to claim 4,
    The plurality of information terminals share time to measure the space.
    The information terminal integrates a plurality of subspace data created by sharing and measuring the time to create the spatial data in the spatial unit.
    Spatial recognition system.
  18.  請求項3記載の空間認識システムにおいて、
     前記空間の前記空間座標系は、実世界内の複数の空間において共通の座標系である、
     空間認識システム。
    In the space recognition system according to claim 3,
    The spatial coordinate system of the space is a coordinate system common to a plurality of spaces in the real world.
    Spatial recognition system.
  19.  請求項4記載の空間認識システムにおいて、
     前記情報端末は、前記空間において前記分担する領域または測定範囲を表す画像を前記表示面に表示する、
     空間認識システム。
    In the space recognition system according to claim 4,
    The information terminal displays an image representing the shared area or measurement range in the space on the display surface.
    Spatial recognition system.
  20.  請求項4記載の空間認識システムにおいて、
     前記情報端末は、前記空間において測定済みの領域または範囲を表す画像と、未測定の領域または範囲を表す画像とを、前記表示面に表示する、
     空間認識システム。
    In the space recognition system according to claim 4,
    The information terminal displays an image representing a measured area or range in the space and an image representing an unmeasured area or range on the display surface.
    Spatial recognition system.
  21.  請求項4記載の空間認識システムにおいて、
     前記情報端末は、前記空間において前記測定の方向をガイドするための画像を、前記表示面に表示する、
     空間認識システム。
    In the space recognition system according to claim 4,
    The information terminal displays an image for guiding the measurement direction in the space on the display surface.
    Spatial recognition system.
  22.  空間を測定する機能および表示面に仮想画像を表示する機能を有し端末座標系を有する情報端末と、共通座標系に基づいて処理を行う情報処理装置と、を備える空間認識システムにおける空間認識方法であって、
     前記情報端末が、前記端末座標系と前記共通座標系との間の、位置および向きに関する関係を測定し、測定した関係を表すデータに基づいて、前記端末座標系と前記共通座標系とを適合させるステップと、
     前記情報端末と前記情報処理装置が、前記空間の認識の共有を行うステップと、
     を有する、空間認識方法。
    A space recognition method in a space recognition system including an information terminal having a function of measuring space and a function of displaying a virtual image on a display surface and having a terminal coordinate system, and an information processing device that performs processing based on a common coordinate system. And
    The information terminal measures the relationship between the terminal coordinate system and the common coordinate system regarding the position and orientation, and matches the terminal coordinate system and the common coordinate system based on the data representing the measured relationship. Steps to make
    A step in which the information terminal and the information processing device share recognition of the space,
    A spatial recognition method that has.
  23.  請求項22に記載の空間認識方法において、
     前記情報端末として複数の情報端末が前記空間を分担して測定して空間データを得るステップと、
     各前記情報端末が測定して得た部分空間データを統合して前記空間単位での前記空間データを作成するステップと、
     をさらに有する、空間認識方法。
    In the space recognition method according to claim 22,
    A step in which a plurality of information terminals share the space as the information terminal and measure the space to obtain spatial data.
    A step of integrating the subspace data measured and obtained by each information terminal to create the spatial data in the spatial unit, and
    A spatial recognition method that further has.
  24.  空間を測定する機能および表示面に仮想画像を表示する機能を有し端末座標系を有する情報端末と、前記空間の空間データを提供する共通座標系に基づいた処理を行う情報処理装置と、を備える空間認識システムにおける前記情報端末であって、
     前記情報端末は、前記端末座標系と前記空間データを記述する前記共通座標系との間の、位置および向きに関する関係を測定し、測定した関係を表すデータに基づいて、前記端末座標系と前記共通座標系とを適合させ、
     前記共通座標系で記述された前記空間データを利用する、
     情報端末。
    An information terminal having a function of measuring space and a function of displaying a virtual image on a display surface and having a terminal coordinate system, and an information processing device that performs processing based on a common coordinate system that provides spatial data of the space. The information terminal in the spatial recognition system provided.
    The information terminal measures the relationship regarding position and orientation between the terminal coordinate system and the common coordinate system that describes the spatial data, and based on the data representing the measured relationship, the terminal coordinate system and the said. Align with the common coordinate system,
    Utilizing the spatial data described in the common coordinate system,
    Information terminal.
  25.  請求項24記載の情報端末において、
     前記情報端末として複数の情報端末が前記空間を分担して測定して空間データを得る場合に、
     各前記情報端末が測定して得た部分空間データを統合して前記空間単位での前記空間データを作成する、
     情報端末。
    In the information terminal according to claim 24
    When a plurality of information terminals share the space as the information terminal and measure the space to obtain spatial data.
    The subspace data measured and obtained by each of the information terminals is integrated to create the spatial data in the spatial unit.
    Information terminal.
  26.  空間を測定する機能および表示面に仮想画像を表示する機能を有し端末座標系を有する情報端末と、前記空間の空間データを提供する共通座標系に基づいた処理を行うサーバ装置と、を備える空間認識システムにおける前記サーバ装置であって、
     前記情報端末は、前記端末座標系と前記空間データを記述する前記共通座標系との間の、位置および向きに関する関係を測定し、測定した関係を表すデータに基づいて、前記端末座標系と前記共通座標系とを適合させ、
     前記情報端末は、前記空間データを、前記サーバ装置に登録し、
     前記サーバ装置は、前記空間データを登録し保持する、
     サーバ装置。
    It includes an information terminal having a function of measuring space and a function of displaying a virtual image on a display surface and having a terminal coordinate system, and a server device that performs processing based on a common coordinate system that provides spatial data of the space. The server device in the space recognition system.
    The information terminal measures the relationship regarding position and orientation between the terminal coordinate system and the common coordinate system that describes the spatial data, and based on the data representing the measured relationship, the terminal coordinate system and the said. Align with the common coordinate system,
    The information terminal registers the spatial data in the server device and registers the spatial data in the server device.
    The server device registers and holds the spatial data.
    Server device.
  27.  請求項26記載のサーバ装置において、
     前記情報端末が、前記空間内の所定の特徴を持つ物体との間で、位置および向きに関する関係を測定し、測定した関係を表すデータに基づいて、前記端末座標系と前記共通座標系とを適合させる場合に、
     前記サーバ装置は、前記空間内の所定の特徴を持つ物体に関わる前記空間データを提供する、
     サーバ装置。
    In the server device according to claim 26,
    The information terminal measures the relationship regarding position and orientation with an object having a predetermined feature in the space, and based on the data representing the measured relationship, the terminal coordinate system and the common coordinate system are used. When adapting,
    The server device provides the spatial data relating to an object having a predetermined feature in the space.
    Server device.
PCT/JP2020/004388 2020-02-05 2020-02-05 Space recognition system, space recognition method, information terminal, and server device WO2021156977A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/797,445 US20230089061A1 (en) 2020-02-05 2020-02-05 Space recognition system, space recognition method, information terminal, and server apparatus
JP2021575161A JPWO2021156977A1 (en) 2020-02-05 2020-02-05
CN202080095876.2A CN115053262A (en) 2020-02-05 2020-02-05 Space recognition system, space recognition method, information terminal, and server device
PCT/JP2020/004388 WO2021156977A1 (en) 2020-02-05 2020-02-05 Space recognition system, space recognition method, information terminal, and server device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/004388 WO2021156977A1 (en) 2020-02-05 2020-02-05 Space recognition system, space recognition method, information terminal, and server device

Publications (1)

Publication Number Publication Date
WO2021156977A1 true WO2021156977A1 (en) 2021-08-12

Family

ID=77199936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004388 WO2021156977A1 (en) 2020-02-05 2020-02-05 Space recognition system, space recognition method, information terminal, and server device

Country Status (4)

Country Link
US (1) US20230089061A1 (en)
JP (1) JPWO2021156977A1 (en)
CN (1) CN115053262A (en)
WO (1) WO2021156977A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230342100A1 (en) * 2022-04-20 2023-10-26 Snap Inc. Location-based shared augmented reality experience system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186808A (en) * 2010-03-09 2011-09-22 Sony Corp Information processing apparatus, map update method, program, and information processing system
JP2014515854A (en) * 2011-03-29 2014-07-03 クアルコム,インコーポレイテッド Anchoring virtual images to the real world surface in augmented reality systems
JP2016115268A (en) * 2014-12-17 2016-06-23 富士通株式会社 Information processing method, information processing program, and information processing apparatus
JP2019186800A (en) * 2018-04-12 2019-10-24 Kddi株式会社 Information terminal device, program and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805750A (en) * 2018-08-13 2021-05-14 奇跃公司 Cross-reality system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011186808A (en) * 2010-03-09 2011-09-22 Sony Corp Information processing apparatus, map update method, program, and information processing system
JP2014515854A (en) * 2011-03-29 2014-07-03 クアルコム,インコーポレイテッド Anchoring virtual images to the real world surface in augmented reality systems
JP2016115268A (en) * 2014-12-17 2016-06-23 富士通株式会社 Information processing method, information processing program, and information processing apparatus
JP2019186800A (en) * 2018-04-12 2019-10-24 Kddi株式会社 Information terminal device, program and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISHIKAWA, TOMOYA ET AL.: "Interactive 3D indoor modeler with a camera and self-contained sensors", IEICE TECHNICAL REPORT, vol. 109, no. 215, 2009, pages 65 - 70 *

Also Published As

Publication number Publication date
CN115053262A (en) 2022-09-13
US20230089061A1 (en) 2023-03-23
JPWO2021156977A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
KR101260576B1 (en) User Equipment and Method for providing AR service
JP5776201B2 (en) Information processing apparatus, information sharing method, program, and terminal apparatus
US10482659B2 (en) System and method for superimposing spatially correlated data over live real-world images
US20190041972A1 (en) Method for providing indoor virtual experience based on a panorama and a 3d building floor plan, a portable terminal using the same, and an operation method thereof
JP7428843B2 (en) Information terminal device and location recognition method
US11321929B2 (en) System and method for spatially registering multiple augmented reality devices
JP5915996B2 (en) Composite image display system and method
US11609345B2 (en) System and method to determine positioning in a virtual coordinate system
JP2019153274A (en) Position calculation device, position calculation program, position calculation method, and content addition system
US11395102B2 (en) Field cooperation system and management device
US20190197788A1 (en) Method and system for synchronizing a plurality of augmented reality devices to a virtual reality device
WO2021156977A1 (en) Space recognition system, space recognition method, information terminal, and server device
CN104076949A (en) Laser pointer beam synchronization method and related equipment and system
JP7001711B2 (en) A position information system that uses images taken by a camera, and an information device with a camera that uses it.
WO2021140631A1 (en) Spatial recognition system, spatial recognition method, and information terminal
CN108062786B (en) Comprehensive perception positioning technology application system based on three-dimensional information model
CN114373016A (en) Method for positioning implementation point in augmented reality technical scene
WO2016035992A1 (en) Device for establishing interior map
KR20220026114A (en) Electronic device, and method for identifing realted external electronic device in augmented reality of electronic device
Schmidt et al. A layer-based 3d virtual environment for architectural collaboration
KR102467017B1 (en) Method for augmented reality communication between multiple users
Archangelskaya et al. City AR: Augmented reality navigation in the smart cities infrastructure
Tang A mixed reality solution for indoor navigation
JP2011022662A (en) Portable telephone terminal and information processing system
Wu et al. Cognition-based augmented reality visualization of the geospatial data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917826

Country of ref document: EP

Kind code of ref document: A1