WO2021155865A1 - Geometric partitioning mode - Google Patents

Geometric partitioning mode Download PDF

Info

Publication number
WO2021155865A1
WO2021155865A1 PCT/CN2021/075821 CN2021075821W WO2021155865A1 WO 2021155865 A1 WO2021155865 A1 WO 2021155865A1 CN 2021075821 W CN2021075821 W CN 2021075821W WO 2021155865 A1 WO2021155865 A1 WO 2021155865A1
Authority
WO
WIPO (PCT)
Prior art keywords
partitioning
mode
video block
modes
video
Prior art date
Application number
PCT/CN2021/075821
Other languages
French (fr)
Inventor
Zhipin DENG
Li Zhang
Kai Zhang
Original Assignee
Beijing Bytedance Network Technology Co., Ltd.
Bytedance Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Bytedance Network Technology Co., Ltd., Bytedance Inc. filed Critical Beijing Bytedance Network Technology Co., Ltd.
Priority to CN202180013097.8A priority Critical patent/CN115136601A/en
Publication of WO2021155865A1 publication Critical patent/WO2021155865A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/14Coding unit complexity, e.g. amount of activity or edge presence estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • This document is related to video coding techniques, systems and devices.
  • Digital video accounts for the largest bandwidth use on the internet and other digital communication networks. As the number of connected user devices capable of receiving and displaying video increases, it is expected that the bandwidth demand for digital video usage will continue to grow.
  • This invention is related to video coding technologies. Specifically, it is about inter prediction and related techniques in video coding. It may be applied to the existing video coding standard like HEVC, or the standard (Versatile Video Coding) to be finalized. It may be also applicable to future video coding standards or video codec.
  • the disclosed technology may be used to provide a method for video processing.
  • This method includes performing a conversion between a current block of a video and a bitstream representation of the video, wherein a coding mode of the current block partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region, wherein the bitstream representation comprises signaling associated with the coding mode, and wherein the signaling corresponds to a set of parameters with a first set of values for the current block and a second set of values for a subsequent block of the video.
  • the disclosed technology may be used to provide a method for video processing.
  • This method includes performing a conversion between a current block of a video and a bitstream representation of the video, wherein a coding mode of the current block partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region, wherein the coding mode can be configured using a plurality of parameter sets, and wherein the bitstream representation comprises signaling for a subset of the plurality of parameter sets, and wherein a parameter set comprises angles, displacements and distance associated with the at least one non-rectangular or non-square sub-region.
  • the disclosed technology may be used to provide a method for video processing.
  • This method includes making a determination, for a conversion between a current block of a video and a bitstream representation of the video, regarding an enablement of a first coding mode and a second coding mode that is different from the first coding mode, wherein the first coding mode partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region; and performing, based on the determination, the conversion.
  • the disclosed technology may be used to provide a method for video processing.
  • This method includes determining, for a conversion between a current video block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes; determining one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block; and performing the conversion based on the one or more partitioning modes.
  • the disclosed technology may be used to provide a method for video processing.
  • This method includes determining, for a conversion between a current video block of a video and a bitstream of the current video block, that the video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes, and each partitioning mode is associated with a set of parameters including at least one of angle, distance and/or displacement; deriving a subset of partitioning modes or parameters from the whole set of partitioning modes or parameters; and performing the conversion based on the subset of partitioning modes or parameters.
  • the disclosed technology may be used to provide a method for video processing.
  • This method includes determining, for a conversion between a video block of a video and a bitstream of the video block, an enablement of a geometric partitioning mode and a second coding mode different from the geometric partitioning mode for the video block; and performing the conversion based on the determination.
  • the disclosed technology may be used to provide a method for video processing.
  • This method includes determining, for a conversion between a video block of a video and a bitstream of the video block, a deblocking process associated with the video block based on whether the current video block is coded with a geometric partitioning mode and/or color format of the current video block; and performing the conversion based on the deblocking process.
  • a method for storing bitstream of a video includes determining, for a conversion between a current video block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes; determining one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block; generating the bitstream from the video block the one or more partitioning modes; and storing the bitstream in a non-transitory computer-readable recording medium.
  • a video encoder apparatus that includes a processor configured to implement an above-described method is disclosed.
  • a video decoder apparatus that includes a processor configured to implement an above-described method is disclosed.
  • a computer readable medium has code stored on it.
  • the code when executed by a processor, causes the processor to implement an above-described method.
  • FIG. 1 shows examples of triangular prediction modes (TPM) .
  • FIG. 2 shows an example of a geometrical coding mode (GEO) split boundary description.
  • GEO geometrical coding mode
  • FIG. 3A shows an example of edges supported in GEO.
  • FIG. 3B shows the geometric relations between a given pixel position and two edges.
  • FIG. 4 shows examples of different angles for GEO along with their corresponding width: height ratios.
  • FIG. 5 shows an example of the angle distribution of 64 GEO modes.
  • FIG. 6 shows an example of GEO/TPM splitting boundary for angleIdx 0 to 31, in an anti-clockwise direction.
  • FIG. 7 shows another example of GEO/TPM splitting boundary for angleIdx 0 to 31, in a clockwise direction.
  • FIG. 8 shows a flowchart of an example method of video processing.
  • FIG. 9 is a block diagram of an example of a video processing apparatus.
  • FIG. 10 is a block diagram that illustrates an example video coding system.
  • FIG. 11 is a block diagram that illustrates an example encoder.
  • FIG. 12 is a block diagram that illustrates an example decoder.
  • FIG. 13 is a block diagram of an example video processing system in which disclosed techniques may be implemented.
  • FIG. 14 shows a flowchart of an example method of video processing.
  • FIG. 15 shows a flowchart of an example method of video processing.
  • FIG. 16 shows a flowchart of an example method of video processing.
  • FIG. 17 shows a flowchart of an example method of video processing.
  • FIG. 18 shows a flowchart of an example method of video processing.
  • Video codecs typically include an electronic circuit or software that compresses or decompresses digital video, and are continually being improved to provide higher coding efficiency.
  • a video codec converts uncompressed video to a compressed format or vice versa.
  • the compressed format usually conforms to a standard video compression specification, e.g., the High Efficiency Video Coding (HEVC) standard (also known as H. 265 or MPEG-H Part 2) , the Versatile Video Coding standard to be finalized, or other current and/or future video coding standards.
  • HEVC High Efficiency Video Coding
  • MPEG-H Part 2 MPEG-H Part 2
  • Embodiments of the disclosed technology may be applied to existing video coding standards (e.g., HEVC, H. 265) and future standards to improve runtime performance. It is specifically related to merge modes in video coding. Section headings are used in the present document to improve readability of the description and do not in any way limit the discussion or the embodiments (and/or implementations) to the respective sections only.
  • Video coding standards have evolved primarily through the development of the well-known ITU-T and ISO/IEC standards.
  • the ITU-T produced H. 261 and H. 263, ISO/IEC produced MPEG-1 and MPEG-4 Visual, and the two organizations jointly produced the H. 262/MPEG-2 Video and H. 264/MPEG-4 Advanced Video Coding (AVC) and H. 265/HEVC standards.
  • AVC H. 264/MPEG-4 Advanced Video Coding
  • H. 265/HEVC High Efficiency Video Coding
  • the video coding standards are based on the hybrid video coding structure wherein temporal prediction plus transform coding are utilized.
  • Joint Video Exploration Team JVET was founded by VCEG and MPEG jointly in 2015.
  • JEM Joint Exploration Model
  • JVET-P0884 JVET-P0107, JVET-P0304, JVET-P0264, JVET-Q0079, JVETQ0059, JEVT-Q0077, and JVET-Q0309.
  • Geometric merge mode was proposed in 15 th Gothenburg JVET meeting as extension of the existing triangle prediction mode (TPM) .
  • TPM triangle prediction mode
  • a simpler designed GEO mode in JVET-P0884 has been selected as a CE anchor for further study.
  • GEO was adopted to VTM8 as a replacement of TPM mode in VTM7, and GEO mode was renamed as GPM mode in VVC WD8.
  • the FIG. 1 illustrates TPM in VTM-6.0 and additional shapes proposed for GEO inter blocks.
  • the split boundary of geometric merge mode is descripted by angle and distance offset ⁇ i as shown in FIG. 2.
  • Angle represents a quantized angle between 0 and 360 degrees and distance offset ⁇ i represents a quantized offset of the largest distance ⁇ max .
  • the split directions overlapped with binary tree splits and TPM splits are excluded.
  • GEO is applied to block sizes not smaller than 8 ⁇ 8, and for each block size, there are 82 different partitioning manners, differentiated by 24 angles and 4 edges relative to the center of a CU.
  • FIG. 3A shows that the 4 edges are distributed uniformly along the direction of normal vector within a CU, starting from Edge0 that passes through the CU center.
  • Each partition mode i.e., a pair of an angle index and an edge index
  • Each partition mode i.e., a pair of an angle index and an edge index
  • GEO is assigned with a pixel-adaptive weight table to blend samples on the two partitioned parts, where the weight value of a sampled ranges from 0 to 8 and is determined by the L2 distance from the center position of a pixel to the edge.
  • unit-gain constraint is followed when weight values are assigned, that is, when a small weight value is assigned to a GEO partition, a large complementary one is assigned to the other partition, summing up to 8.
  • the computation of the weight value of each pixel is two-fold: (a) computing the displacement from a pixel position to a given edge and (c) mapping the computed displacement to a weight value through a pre-defined look-up table.
  • the way to compute the displacement from a pixel position (x, y) to a given edge Edgei is actually the same as computing the displacement from (x, y) to Edge0 and subtract this displacement by the distance ⁇ between Edge0 and Edgei.
  • FIG. 3B illustrates the geometric relations among (x, y) and edges. Specifically, the displacement from (x, y) to Edgei can be formulated as follows:
  • is a function of the maximum length (denoted by ⁇ max) of the normal vector and edge index i, that is:
  • JVET-P0884 jointed the proposal jointed the proposed simplification of JVET-P0107 slope based version 2, JVET-P0304 and JVET-P0264 test 1 on top of CE4-1.14 of the 16 th Geneva JVET meeting.
  • the geo angles are defined slope (tangle power of 2) same as in JVET-P0107 and JVET-P0264.
  • the slope used in this proposal is (1, 1/2, 1/4, 4, 2) .
  • the multiplications are replaced by shift operation if the blending mask is calculated on the fly.
  • Table 1 2 bits Dis [. ] look up table for slope based GEO
  • the angles in GEO is replaced with the angles which have powers of 2 as tangent. Since the tangent of the proposed angles is a power-of-2 number, most of multiplications can be replaced by bit-shifting. Besides, the weight values for these angles can be implemented by repeating row-by-row or column-by-column with phase shift. With the proposed angles, one row or column is needed to store per block size and per partition mode.
  • JVET-P0304 it is proposed to derive the weights and the mask for motion field storage for all blocks and partition modes from two sets of pre-defined masks, one for the blending weights derivation and the other for the masks of motion field storage. There are totally 16 masks in each set. Each mask per angle is calculated using the same equations in GEO with block width and block height set to 256 and displacement set to 0. For a block of size W ⁇ H with angle and distance ⁇ , the blending weights for the luma samples are directly cropped from the pre-defined masks with offsets calculated as follows:
  • g_sampleWeight L [] is the pre-defined masks for the blending weights.
  • a simplified GEO mode is proposed in JVET-P0884/JVET-P0885, and is suggested to be the common base for CE4 core experiment.
  • the GEO mode is applied to a merge block whose width and height are both larger than or equal to 8.
  • an index is signaled to indicate which one of 82 partitioning modes is used to split the block into two partitions.
  • Each partition is inter predicted with its own motion vector.
  • the sample values along the partitioning edge are adjusted using a blending processing with weights. This is the prediction signal for the whole block, and transform and quantization process will be applied to the whole block as in other prediction modes.
  • the weights for luma samples used in the blending process are calculated as follows:
  • weightIdx ( ( (x + offsetX) ⁇ 1) + 1) *Dis [displacementX] + ( ( (y+ offsetY) ⁇ 1) + 1) ) *Dis [displacementY] -rho.
  • weightIdxAbs Clip3 (0, 26, abs (weightIdx) ) .
  • GeoFilter [. ] is a look up table with 27 entries.
  • the variables rho, offsetX and offsetY are pre-computed based on:
  • the and ⁇ represent angle and distance which are derived from a look up table using the signaled index.
  • the weights for chroma samples are subsampled from the luma weights.
  • the motion storage masks are derived using same method of weights derivation independently. More details description for this common base can be found in JVET-P0884/JVET-P0885.
  • JVET-Q meeting 64 modes geometric inter prediction (i.e., JVET-Q0059) was adopted.
  • FIG. 5 shows the angle distribution of 64 modes GEO.
  • the distances with distance index 2 of horizontal angles ⁇ 0, 12 ⁇ and vertical angles ⁇ 6, 18 ⁇ are overlapped with ternary tree split boundaries. They are also removed in the proposed 64 modes GEO.
  • the GEO is disabled for blocks greater than 64x64, and GEO is disabled for 64x8, and 8x64 blocks.
  • the GEO mode is renamed as geometric partitioning mode (GPM) .
  • the GEO/GPM angle index is used to represent the splitting boundary which split a GEO/GPM block into two sub-regions, as illustrated in FIG. 6.
  • the tangent of the GEO/GPM angles is a power-of-2 number according to block width-height-ratio.
  • the size of GEO/GPM angle ranges from 0° to 352.87°, with the associated GEO/GPM angle index ranges from 0 to 31, as illustrated in FIG. 6.
  • the angle between the vertical direction (e.g., overlapped with the splitting boundary of angleIdx equal to 0) and the specified GEO splitting boundary is defined as the size of GEO/GPM angle of a GEO/GPM mode.
  • size of GEO/GPM angle size of angle
  • GEO/GPM angle index angleIdx
  • Table 2 An example of the relationship between angle index and size of angles (anti-clockwise)
  • sps_gpm_enabled_flag specifies whether geometric partition based motion compensation can be used for inter prediction.
  • sps_gpm_enabled_flag 0 specifies that the syntax shall be constrained such that no geometric partition based motion compensation is used in the CLVS, and merge_gpm_partition_idx, merge_gpm_idx0, and merge_gpm_idx1 are not present in coding unit syntax of the CLVS.
  • sps_gpm_enabled_flag 1 specifies that geometric partition based motion compensation can be used in the CLVS. When not present, the value of sps_gpm_enabled_flag is inferred to be equal to 0.
  • max_num_merge_cand_minus_max_num_gpm_cand specifies the maximum number of geometric partitioning merge mode candidates supported in the SPS subtracted from MaxNumMergeCand.
  • MaxNumMergeCand the maximum number of geometric partitioning merge mode candidates
  • MaxNumGeoMergeCand shall be in the range of 2 to MaxNumMergeCand, inclusive.
  • variable MergeGpmFlag [x0] [y0] which specifies whether geometric partitioning based motion compensation is used to generate the prediction samples of the current coding unit, when decoding a B slice, is derived as follows:
  • MergeGpmFlag [x0] [y0] is set equal to 1:
  • – slice_type is equal to B.
  • cbHeight is less than 8 *cbWidth.
  • merge_subblock_flag [x0] [y0] is equal to 0.
  • MergeGpmFlag [x0] [y0] is set equal to 0.
  • merge_gpm_partition_idx [x0] [y0] specifies the partitioning shape of the geometric partitioning merge mode.
  • the array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.
  • merge_gpm_idx0 [x0] [y0] specifies the first merging candidate index of the geometric partitioning based motion compensation candidate list where x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.
  • merge_gpm_idx1 [x0] [y0] specifies the second merging candidate index of the geometric partitioning based motion compensation candidate list where x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.
  • a luma location (xCb, yCb) specifying the top-left sample of the current coding block relative to the top-left luma sample of the current picture
  • variable cbWidth specifying the width of the current coding block in luma samples
  • variable cbHeight specifying the height of the current coding block in luma samples
  • the prediction list flags predListFlagA and predListFlagB.
  • an (cbWidth /SubWidthC) x (cbHeight /SubHeightC) array predSamples Cb of chroma prediction samples for the component Cb, when ChromaArrayType is not equal to 0,
  • predSamplesLA L and predSamplesLB L be (cbWidth) x (cbHeight) arrays of predicted luma sample values and, when ChromaArrayType is not equal to 0, predSamplesLA Cb , predSamplesLB Cb , predSamplesLA Cr and predSamplesLB Cr be (cbWidth /SubWidthC) x (cbHeight /SubHeightC) arrays of predicted chroma sample values.
  • predSamples L , predSamples Cb and predSamples Cr are derived by the following ordered steps:
  • the reference picture consisting of an ordered two-dimensional array refPicLN L of luma samples and two ordered two-dimensional arrays refPicLN Cb and refPicLN Cr of chroma samples is derived by invoking the process specified in clause 8.5.6.2 with X set equal to predListFlagN and refIdxX set equal to refIdxN as input.
  • the array predSamplesLN L is derived by invoking the fractional sample interpolation process specified in clause 8.5.6.3 with the luma location (xCb, yCb) , the luma coding block width sbWidth set equal to cbWidth, the luma coding block height sbHeight set equal to cbHeight, the motion vector offset mvOffset set equal to (0, 0) , the motion vector mvLX set equal to mvN and the reference array refPicLX L set equal to refPicLN L , the variable bdofFlag set euqal to FALSE, the variable cIdx is set equal to 0, RprConstraintsActive [X] [refIdxLX] , and RefPicScale [predListFlagN] [refIdxN] as inputs.
  • the array predSamplesLN Cb is derived by invoking the fractional sample interpolation process specified in clause 8.5.6.3 with the luma location (xCb, yCb) , the coding block width sbWidth set equal to cbWidth /SubWidthC, the coding block height sbHeight set equal to cbHeight /SubHeightC, the motion vector offset mvOffset set equal to (0, 0) , the motion vector mvLX set equal to mvCN, and the reference array refPicLX Cb set equal to refPicLN Cb , the variable bdofFlag set euqal to FALSE, the variable cIdx is set equal to 1, RprConstraintsActive [X] [refIdxLX] , and RefPicScale [predListFlagN] [refId
  • the array predSamplesLN Cr is derived by invoking the fractional sample interpolation process specified in clause 8.5.6.3 with the luma location (xCb, yCb) , the coding block width sbWidth set equal to cbWidth /SubWidthC, the coding block height sbHeight set equal to cbHeight /SubHeightC, the motion vector offset mvOffset set equal to (0, 0) , the motion vector mvLX set equal to mvCN, and the reference array refPicLX Cr set equal to refPicLN Cr , the variable bdofFlag set euqal to FALSE, the variable cIdx is set equal to 2, RprConstraintsActive [X] [refIdxLX] , and RefPicScale [predListFlagN] [refIdxN]
  • the partition angle variable angleIdx and the distance variable distanceIdx of the geometric partitioning mode are set according to the value of merge_gpm_partition_idx [xCb] [yCb] as specified in Table 36.
  • cbHeight /SubHeightC -1 are derived by invoking the weighted sample prediction process for geometric partitioning mode specified in clause 8.5.7.2 with the coding block width nCbW set equal to cbWidth /SubWidthC, the coding block height nCbH set equal to cbHeight /SubHeightC, the sample arrays predSamplesLA Cb and predSamplesLB Cb , and the variables angleIdx, distanceIdx, and cIdx equal to 1 as inputs.
  • cbHeight /SubHeightC -1 are derived by invoking the weighted sample prediction process for geometric partitioning mode specified in clause 8.5.7.2 with the coding block width nCbW set equal to cbWidth /SubWidthC, the coding block height nCbH set equal to cbHeight /SubHeightC, the sample arrays predSamplesLA Cr and predSamplesLB Cr , and the variables angleIdx, distanceIdx, and cIdx equal to 2 as inputs.
  • the motion vector storing process for merge geometric partitioning mode specified in clause 8.5.7.3 is invoked with the luma coding block location (xCb, yCb) , the luma coding block width cbWidth, the luma coding block height cbHeight, the partition angle angleIdx and the distance distanceIdx, the luma motion vectors mvA and mvB, the reference indices refIdxA and refIdxB, and the prediction list flags predListFlagA and predListFlagB as inputs.
  • nCbW and nCbH specifying the width and the height of the current coding block
  • Output of this process is the (nCbW) x (nCbH) array pbSamples of prediction sample values.
  • nW, nH, shift1, offset1, hwRatio, displacementX, displacementY, partFlip and shiftHor are derived as follows:
  • offsetX ( (-nW) >> 1) + (angleIdx ⁇ 16 ? (distanceIdx *nW) >> 3: - ( (distanceIdx *nW) >> 3) ) (1041)
  • variable wValue specifying the weight of the prediction sample is derived based on the array disLut specified in Table 37 as follows:
  • weightIdx ( ( (xL + offsetX) ⁇ 1) + 1) *disLut [displacementX] + ( ( (yL + offsetY) ⁇ 1) + 1) ) *disLut [displacementY] (1045)
  • weightIdxL partFlip ? 32 + weightIdx: 32 -weightIdx (1046)
  • the prediction sample values are derived as follows:
  • a luma location (xCb, yCb) specifying the top-left sample of the current coding block relative to the top-left luma sample of the current picture
  • variable cbWidth specifying the width of the current coding block in luma samples
  • variable cbHeight specifying the height of the current coding block in luma samples
  • the prediction list flags predListFlagA and predListFlagB.
  • variables numSbX and numSbY specifying the number of 4 ⁇ 4 blocks in the current coding block in the horizontal and vertical directions, respectivecly, are set equal to cbWidth >> 2 and cbHeight >> 2, respectively.
  • offsetY ( (-cbHeight) >> 1) + (angleIdx ⁇ 16 ? (distanceIdx *cbHeight) >> 3: - ( (distanceIdx *cbHeight) >> 3) ) (1055)
  • offsetX ( (-cbWidth) >> 1) + (angleIdx ⁇ 16 ? (distanceIdx *cbWidth) >> 3: - ( (distanceIdx *cbWidth) >> 3) ) (1056)
  • variable motionIdx is calculated based on the array disLut specified in Table 37 as following:
  • motionIdx ( ( (4 *xSbIdx + offsetX) ⁇ 1) + 5) *disLut [displacementX] + ( ( (4 *ySbIdx + offsetY ⁇ 1) + 5) ) *disLut [displacementY] (1058)
  • variable sType is derived as follows:
  • the current GEO modes are distributed as symmetric GEO angles and symmetric GEO distances/displacements, which might not efficient for natural video coding.
  • the term ‘GEO’ may represent a coding method that split one block into two or more sub-regions wherein at least one sub-region is non-rectangular, or it could’ t be generated by any of existing partitioning structure (e.g., QT/BT/TT) which splits one block into multiple rectangular sub-regions.
  • one or more weighting masks are derived for a coding block based on how the sub-regions are split, and the final prediction signal of the coding block is generated by a weighted-sum of two or more auxiliary prediction signals associated with the sub-regions.
  • the term ‘GEO’ may indicate the geometric merge mode (GEO) , and/or geometric partition mode (GPM) , and/or wedge prediction mode, and/or triangular prediction mode (TPM) .
  • block may represent a coding block (CB) , a CU, a PU, a TU, a PB, a TB.
  • CB coding block
  • Interpretation of a signaled GEO mode index may be adaptively changed from one video unit to another video unit. That is, for a same signaled value, it may be interpreted to different angles and/or different distances.
  • mapping between a signaled GEO mode index and its corresponding GEO angle/distance may depend on the block dimension (e.g., ratios of block width and height) .
  • the binarization used for GEO mode index coding may be non-fixed length coding wherein for two different modes, number of bins/bits to be coded may be different.
  • unequal number of GEO modes/angles/displacements/distances may be used in different video units.
  • how many GEO modes/angles/displacements/distances are used in a video unit may be dependent on block dimension (e.g., width, height, width-height-ratio, and etc. ) .
  • more GEO angles may be used in block A, than that be used in block B, wherein A and B may have different dimensions (e.g., A may indicate a block with height larger than width, B may indicate a block with height less than or equal to width) .
  • the allowed GEO angles for a video unit may be asymmetric.
  • the allowed GEO angles for a video unit may be not rotational symmetry.
  • the allowed GEO angles for a video unit may be not bilateral symmetry.
  • the allowed GEO angles for a video unit may be not quadrantal symmetry.
  • the video unit may be a block, a VPDU, a tile/slice/picture/subpicture/brick/video.
  • How to represent the GEO mode in a bitstream may be dependent on a priority of a mode, e.g., the priority is determined by the associated GEO angles and/or distances.
  • the GEO modes which are oriented to smaller size of GEO angles are with a higher priority than the GEO modes which are oriented to larger size of GEO angles (i.e., size of GEO angles greater than X degree) .
  • the GEO modes associated to smaller GEO angle indices are with a higher priority than the GEO modes associated to larger GEO angle indices (i.e., GEO angle index larger than Y) .
  • GEO modes with a higher priority in above claims may require less bins or bits than GEO modes with a lower priority in signaling.
  • GEO modes may be classified into two or more categories.
  • the indication of which category a GEO belongs to may be signaled before other information related to the GEO mode.
  • angle index is signaled in clockwise or anti-clockwise direction may be firstly signaled for a GEO coded block.
  • the GEO angle index signaled in anti-clockwise may mean a smaller GEO angle index represents a smaller size of GEO angle.
  • the GEO angle index signaled in clock-wise may mean a smaller GEO angle index represents a larger size of GEO angle.
  • iii it may be signaled at video unit level (such as SPS/VPS/PPS/Picture header/Subpicture/Slice/Slice header/Tile/Brick/CTU/VPDU/CU/block level) .
  • video unit level such as SPS/VPS/PPS/Picture header/Subpicture/Slice/Slice header/Tile/Brick/CTU/VPDU/CU/block level
  • a high-level flag (higher than block level) may be signaled to indicate whether the angle associated with a signaled GEO mode is in clockwise or anti-clockwise direction.
  • a block-level flag may be signaled to indicate whether the angle associated with a signaled GEO mode is in clockwise or anti-clockwise direction.
  • Table 3 An example of the relationship between angle index and size of angles (clock-wise)
  • a subset of GEO modes/angles/displacements/distances may be derived from a whole set of GEO modes/angles/displacements/distances.
  • an indication of whether the selected mode/angle/displacement/distance is within the subset may be further signaled in a bitstream.
  • whether a subset of GEO modes/angles/displacements/distances or a full set of GEO modes/angles/displacements/distances is used for a video unit may be dependent on decoded information (e.g., syntax element, and/or block dimensions) of the current video unit or previously decoded video unit (s) .
  • decoded information e.g., syntax element, and/or block dimensions
  • what GEO modes are in the subset may be dependent on the corresponding GEO angles.
  • the subset may only contain the GEO modes which are associated with distance/displacement equal to 0.
  • the subset may only contain the GEO modes which are associated with specified GEO angles (e.g., GEO modes associated with a predefined subset of GEO angles which may be combined with all displacements corresponding to these predefined GEO angles) .
  • what GEO modes are in the subset may be dependent on whether LDB (i.e., low-delay B frame) coding is checked.
  • LDB low-delay B frame
  • LDB low-delay B frame
  • RA random access
  • what GEO modes are in the subset may be dependent on reference pictures in the reference picture lists of the current picture.
  • the status of reference pictures in the reference picture lists may be identified into two cases: Case 1: All reference pictures are prior to the current picture in the displaying order; Case 2: At least one reference picture is after the current picture in the displaying order.
  • what GEO modes are in the subset may be dependent on how the motion candidates are derived.
  • different subset of GEO modes may be used, depending on whether the motion candidates are derived from temporal motion candidates (e.g., TMVP) or spatial motion candidates, or History-based Motion Vector Prediction (HMVP) or which spatial motion candidates (e.g., left, or top, or top-right) .
  • TMVP temporal motion candidates
  • HMVP History-based Motion Vector Prediction
  • the subset of GEO may only contain GEO modes that split a block in the same manner as a TPM mode does.
  • the subset of GEO may only contains GEO modes that split a block by a line connecting the top-left corner and the bottom-right corner of the block, or by a line connecting the top-right corner and the bottom-left corner of the block.
  • the subset of GEO may only contain GEO modes corresponding to diagonal angles with one or more distance/displacement indices.
  • diagonal angles may indicate the GEO modes that corresponding to splitting boundaries that split a block by a line connecting the top-left corner and the bottom-right corner of the block, or by a line connecting the top-right corner and the bottom-left corner of the block.
  • the subset of GEO may only contain GEO modes associated with distance/displacement equal to 0.
  • the subset of GEO may only contain GEO modes corresponding to any angles associated with distance/displacement equal to 0.
  • the subset of GEO may only contain GEO modes corresponding to diagonal angles (i.e., splitting boundaries from top-left to bottom-right, and/or top-right to bottom-left for a block) associated with distance/displacement equal to 0.
  • the subset of GEO may only contain GEO modes corresponding to diagonal angles (i.e., splitting boundaries from top-left to bottom-right, and/or top-right to bottom-left for a block) associated with all distance/displacement indices corresponding to these GEO angles.
  • the subset of GEO may only contain the GEO modes corresponding to the size of GEO angles equal to arctan (X) and/or ⁇ -arctan (X) , and/or ⁇ + arctan (X) and/or 2 ⁇ -arctan (X) and all distance indices (e.g., distanceIdx from 0 to 3 as defined in JVET-Q2001-vB) corresponding to these GEO angles.
  • horizontal and/or vertical angles may be included in the subset of GEO angles
  • horizontal angles may mean the angle indices corresponding to 90°and/or 270° as described in Table 2 of section 2.1.8 (i.e., GEO angle index equal to 8 and/or 24 in Table 36 of JVET-Q2001-vB.
  • vertical angles may mean the angle indices corresponding to 0° and/or 180° as described in Table 2 of section 2.1.8 (i.e., GEO angle index equal to 0 and/or 6 in Table 36 of JVET-Q2001-vB.
  • GEO modes associated with horizontal and/or vertical angles combined with distance/displacement equal to 0 may be included in the subset of allowed GEO angles.
  • GEO modes associated with horizontal and/or vertical angles combined with distance/displacement equal to 0 may NOT be included in the subset of allowed GEO angles.
  • GEO modes associated with horizontal and/or vertical angles combined with all distance/displacement indices may be included in the subset of allowed GEO angles.
  • GEO modes associated with horizontal and/or vertical angles combined with all distance/displacement indices may NOT be included in the subset of allowed GEO angles.
  • It may be signaled (such as SPS/VPS/PPS/Picture header/Subpicture/Slice/Slice header/Tile/Brick/CTU/VPDU/CU/block level) to indicate whether a subset of GEO modes/angles/displacements/distances is used.
  • SPS/VPS/PPS/Picture header/Subpicture/Slice/Slice header/Tile/Brick/CTU/VPDU/CU/block level to indicate whether a subset of GEO modes/angles/displacements/distances is used.
  • It may be further signaled (such as SPS/VPS/PPS/Picture header/Subpicture/Slice/Slice header/Tile/Brick/CTU/VPDU/CU/block level) to indicate which subset of GEO modes/angles/displacements/distances is used.
  • SPS/VPS/PPS/Picture header/Subpicture/Slice/Slice header/Tile/Brick/CTU/VPDU/CU/block level to indicate which subset of GEO modes/angles/displacements/distances is used.
  • the GEO mode may not coexist with X (such as X is another coding tool that is different from GEO) .
  • X may indicate weighted prediction.
  • the GEO when weighted prediction is enabled (e.g., at slice level) , the GEO may be disabled on video unit level (such as slice/PPS/SPS/tile/subpicture/CU/PU/TU level) .
  • whether GEO is used together with weighted prediction may be dependent on the weighting factor.
  • the GEO may be disabled.
  • X may indicate BCW.
  • X may indicate PROF.
  • X may indicate BDOF.
  • X may indicate DMVR.
  • X may indicate SBT.
  • the coding tool X may be disabled.
  • the indication of coding tool X may not be signaled if GEO is enabled.
  • GEO when the coding tool X is enabled, GEO may be disabled.
  • the indication of GEO may not be signaled if coding tool X is enabled.
  • the coding tool X may be disabled.
  • the deblocking process (such as deblocking strength, deblocking edge detection, the type of deblocking edges, and etc. ) may be dependent on whether GEO coexist with coding tool X.
  • the deblocking process (such as deblocking strength, deblocking edge detection, the type of deblocking edges, and etc. ) may be dependent on whether GEO is applied.
  • the weighting values generated for a first component (such as the luma component) may be used to derive the weighting values for a second component (such as Cb or Cr component) .
  • the derivation may depend on the color format (such as 4: 2: 0 or 4: 2: 2 or 4: 4: 4) .
  • the weighting values for the second component may be derived by applying up-sampling or down-sampling on the weighting values for the first component.
  • weighting values generated for a component may depend on the color format (such as 4: 2: 0 or 4: 2: 2 or 4: 4: 4) .
  • the GEO angle/displacement/distance associated with a GEO mode may be adjusted to generate the weighting values for a component (such as Cb or Cr component) when the color format is 4: 2: 2.
  • a component such as Cb or Cr component
  • method 800 may be implemented at a video decoder or a video encoder.
  • FIG. 8 shows a flowchart of an example method 800 for video processing.
  • the method includes, at operation 810, making a determination, for a conversion between a current block of a video and a bitstream representation of the video, regarding an enablement of a first coding mode and a second coding mode that is different from the first coding mode, wherein the first coding mode partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region.
  • the method includes, at operation 820, performing, based on the determination, the conversion.
  • a method for video processing comprising: performing a conversion between a current block of a video and a bitstream representation of the video, wherein a coding mode of the current block partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region, wherein the bitstream representation comprises signaling associated with the coding mode, and wherein the signaling corresponds to a set of parameters with a first set of values for the current block and a second set of values for a subsequent block of the video.
  • A2 The method of solution A1, wherein the signaling comprises an index, and wherein a binarization of the index comprises variable length coding that uses a first number of bins for a first value of the index and a second number of bins for a second value of the index.
  • a method for video processing comprising: performing a conversion between a current block of a video and a bitstream representation of the video, wherein a coding mode of the current block partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region, wherein the coding mode can be configured using a plurality of parameter sets, and wherein the bitstream representation comprises signaling for a subset of the plurality of parameter sets, and wherein a parameter set comprises angles, displacements and distance associated with the at least one non-rectangular or non-square sub-region.
  • a method for video processing comprising: making a determination, for a conversion between a current block of a video and a bitstream representation of the video, regarding an enablement of a first coding mode and a second coding mode that is different from the first coding mode, wherein the first coding mode partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region; and performing, based on the determination, the conversion.
  • the video unit level is a slice level, a picture parameter set (PPS) level, a sequence parameter set (SPS) level, a tile level, a subpicture level, a coding unit (CU) level, a prediction unit (PU) level, or a transform unit (TU) level.
  • PPS picture parameter set
  • SPS sequence parameter set
  • CU coding unit
  • PU prediction unit
  • TU transform unit
  • the second coding mode is a bi-prediction with coding unit (CU) weights (BCW) , a prediction refinement with optical flow (PROF) mode, a bi-directional optical flow (BDOF) mode, a decoder-side motion vector refinement (DMVR) mode, or a sub-block transform (SBT) mode.
  • CU coding unit
  • BDOF prediction refinement with optical flow
  • DMVR decoder-side motion vector refinement
  • SBT sub-block transform
  • An apparatus in a video system comprising a processor and a non-transitory memory with instructions thereon, wherein the instructions upon execution by the processor, cause the processor to implement the method in any one of solutions A1 to A27.
  • a computer program product stored on a non-transitory computer readable media, the computer program product including program code for carrying out the method in any one of solutions A1 to A27.
  • FIG. 9 is a block diagram of a video processing apparatus 900.
  • the apparatus 900 may be used to implement one or more of the methods described herein.
  • the apparatus 900 may be embodied in a smartphone, tablet, computer, Internet of Things (IoT) receiver, and so on.
  • the apparatus 900 may include one or more processors 902, one or more memories 904 and video processing hardware 906.
  • the processor (s) 902 may be configured to implement one or more methods described in the present document.
  • the memory (memories) 904 may be used for storing data and code used for implementing the methods and techniques described herein.
  • the video processing hardware 906 may be used to implement, in hardware circuitry, some techniques described in the present document.
  • FIG. 10 is a block diagram that illustrates an example video coding system 300 that may utilize the techniques of this disclosure.
  • video coding system 300 may include a source device 310 and a destination device 320.
  • Source device 310 generates encoded video data which may be referred to as a video encoding device.
  • Destination device 320 may decode the encoded video data generated by source device 310 which may be referred to as a video decoding device.
  • Source device 310 may include a video source 312, a video encoder 314, and an input/output (I/O) interface 316.
  • Video source 312 may include a source such as a video capture device, an interface to receive video data from a video content provider, and/or a computer graphics system for generating video data, or a combination of such sources.
  • the video data may comprise one or more pictures.
  • Video encoder 314 encodes the video data from video source 312 to generate a bitstream.
  • the bitstream may include a sequence of bits that form a coded representation of the video data.
  • the bitstream may include coded pictures and associated data.
  • the coded picture is a coded representation of a picture.
  • the associated data may include sequence parameter sets, picture parameter sets, and other syntax structures.
  • I/O interface 316 may include a modulator/demodulator (modem) and/or a transmitter.
  • the encoded video data may be transmitted directly to destination device 320 via I/O interface 316 through network 330a.
  • the encoded video data may also be stored onto a storage medium/server 330b for access by destination device 320.
  • Destination device 320 may include an I/O interface 326, a video decoder 324, and a display device 322.
  • I/O interface 326 may include a receiver and/or a modem. I/O interface 326 may acquire encoded video data from the source device 310 or the storage medium/server 330b. Video decoder 324 may decode the encoded video data. Display device 322 may display the decoded video data to a user. Display device 322 may be integrated with the destination device 320, or may be external to destination device 320 which be configured to interface with an external display device.
  • Video encoder 314 and video decoder 324 may operate according to a video compression standard, such as the High Efficiency Video Coding (HEVC) standard, Versatile Video Coding (VVM) standard and other current and/or further standards.
  • HEVC High Efficiency Video Coding
  • VVM Versatile Video Coding
  • FIG. 11 is a block diagram illustrating an example of video encoder 400, which may be video encoder 314 in the system 300 illustrated in FIG. 10.
  • Video encoder 400 may be configured to perform any or all of the techniques of this disclosure.
  • video encoder 400 includes a plurality of functional components.
  • the techniques described in this disclosure may be shared among the various components of video encoder 400.
  • a processor may be configured to perform any or all of the techniques described in this disclosure.
  • the functional components of video encoder 400 may include a partition unit 401, a predication unit 402 which may include a mode select unit 403, a motion estimation unit 404, a motion compensation unit 405 and an intra prediction unit 406, a residual generation unit 407, a transform unit 408, a quantization unit 409, an inverse quantization unit 410, an inverse transform unit 411, a reconstruction unit 412, a buffer 413, and an entropy encoding unit 414.
  • a partition unit 401 may include a mode select unit 403, a motion estimation unit 404, a motion compensation unit 405 and an intra prediction unit 406, a residual generation unit 407, a transform unit 408, a quantization unit 409, an inverse quantization unit 410, an inverse transform unit 411, a reconstruction unit 412, a buffer 413, and an entropy encoding unit 414.
  • video encoder 400 may include more, fewer, or different functional components.
  • predication unit 402 may include an intra block copy (IBC) unit.
  • the IBC unit may perform predication in an IBC mode in which at least one reference picture is a picture where the current video block is located.
  • IBC intra block copy
  • motion estimation unit 404 and motion compensation unit 405 may be highly integrated, but are represented in the example of FIG. 11 separately for purposes of explanation.
  • Partition unit 401 may partition a picture into one or more video blocks.
  • Video encoder 400 and video decoder 500 may support various video block sizes.
  • Mode select unit 403 may select one of the coding modes, intra or inter, e.g., based on error results, and provide the resulting intra-or inter-coded block to a residual generation unit 407 to generate residual block data and to a reconstruction unit 412 to reconstruct the encoded block for use as a reference picture.
  • Mode select unit 403 may select a combination of intra and inter predication (CIIP) mode in which the predication is based on an inter predication signal and an intra predication signal.
  • CIIP intra and inter predication
  • Mode select unit 403 may also select a resolution for a motion vector (e.g., a sub-pixel or integer pixel precision) for the block in the case of inter-predication.
  • motion estimation unit 404 may generate motion information for the current video block by comparing one or more reference frames from buffer 413 to the current video block.
  • Motion compensation unit 405 may determine a predicted video block for the current video block based on the motion information and decoded samples of pictures from buffer 413 other than the picture associated with the current video block.
  • Motion estimation unit 404 and motion compensation unit 405 may perform different operations for a current video block, for example, depending on whether the current video block is in an I slice, a P slice, or a B slice.
  • motion estimation unit 404 may perform uni-directional prediction for the current video block, and motion estimation unit 404 may search reference pictures of list 0 or list 1 for a reference video block for the current video block. Motion estimation unit 404 may then generate a reference index that indicates the reference picture in list 0 or list 1 that contains the reference video block and a motion vector that indicates a spatial displacement between the current video block and the reference video block. Motion estimation unit 404 may output the reference index, a prediction direction indicator, and the motion vector as the motion information of the current video block. Motion compensation unit 405 may generate the predicted video block of the current block based on the reference video block indicated by the motion information of the current video block.
  • motion estimation unit 404 may perform bi-directional prediction for the current video block, motion estimation unit 404 may search the reference pictures in list 0 for a reference video block for the current video block and may also search the reference pictures in list 1 for another reference video block for the current video block. Motion estimation unit 404 may then generate reference indexes that indicate the reference pictures in list 0 and list 1 containing the reference video blocks and motion vectors that indicate spatial displacements between the reference video blocks and the current video block. Motion estimation unit 404 may output the reference indexes and the motion vectors of the current video block as the motion information of the current video block. Motion compensation unit 405 may generate the predicted video block of the current video block based on the reference video blocks indicated by the motion information of the current video block.
  • motion estimation unit 404 may output a full set of motion information for decoding processing of a decoder.
  • motion estimation unit 404 may do not output a full set of motion information for the current video. Rather, motion estimation unit 404 may signal the motion information of the current video block with reference to the motion information of another video block. For example, motion estimation unit 404 may determine that the motion information of the current video block is sufficiently similar to the motion information of a neighboring video block.
  • motion estimation unit 404 may indicate, in a syntax structure associated with the current video block, a value that indicates to the video decoder 500 that the current video block has the same motion information as the another video block.
  • motion estimation unit 404 may identify, in a syntax structure associated with the current video block, another video block and a motion vector difference (MVD) .
  • the motion vector difference indicates a difference between the motion vector of the current video block and the motion vector of the indicated video block.
  • the video decoder 500 may use the motion vector of the indicated video block and the motion vector difference to determine the motion vector of the current video block.
  • video encoder 400 may predictively signal the motion vector.
  • Two examples of predictive signaling techniques that may be implemented by video encoder 400 include advanced motion vector predication (AMVP) and merge mode signaling.
  • AMVP advanced motion vector predication
  • merge mode signaling merge mode signaling
  • Intra prediction unit 406 may perform intra prediction on the current video block. When intra prediction unit 406 performs intra prediction on the current video block, intra prediction unit 406 may generate prediction data for the current video block based on decoded samples of other video blocks in the same picture.
  • the prediction data for the current video block may include a predicted video block and various syntax elements.
  • Residual generation unit 407 may generate residual data for the current video block by subtracting (e.g., indicated by the minus sign) the predicted video block (s) of the current video block from the current video block.
  • the residual data of the current video block may include residual video blocks that correspond to different sample components of the samples in the current video block.
  • residual generation unit 407 may not perform the subtracting operation.
  • Transform processing unit 408 may generate one or more transform coefficient video blocks for the current video block by applying one or more transforms to a residual video block associated with the current video block.
  • quantization unit 409 may quantize the transform coefficient video block associated with the current video block based on one or more quantization parameter (QP) values associated with the current video block.
  • QP quantization parameter
  • Inverse quantization unit 410 and inverse transform unit 411 may apply inverse quantization and inverse transforms to the transform coefficient video block, respectively, to reconstruct a residual video block from the transform coefficient video block.
  • Reconstruction unit 412 may add the reconstructed residual video block to corresponding samples from one or more predicted video blocks generated by the predication unit 402 to produce a reconstructed video block associated with the current block for storage in the buffer 413.
  • loop filtering operation may be performed reduce video blocking artifacts in the video block.
  • Entropy encoding unit 414 may receive data from other functional components of the video encoder 400. When entropy encoding unit 414 receives the data, entropy encoding unit 414 may perform one or more entropy encoding operations to generate entropy encoded data and output a bitstream that includes the entropy encoded data.
  • FIG. 12 is a block diagram illustrating an example of video decoder 500 which may be video decoder 314 in the system 300 illustrated in FIG. 10.
  • the video decoder 500 may be configured to perform any or all of the techniques of this disclosure.
  • the video decoder 500 includes a plurality of functional components.
  • the techniques described in this disclosure may be shared among the various components of the video decoder 500.
  • a processor may be configured to perform any or all of the techniques described in this disclosure.
  • video decoder 500 includes an entropy decoding unit 501, a motion compensation unit 502, an intra prediction unit 503, an inverse quantization unit 504, an inverse transformation unit 505 , and a reconstruction unit 506 and a buffer 507.
  • Video decoder 500 may, in some examples, perform a decoding pass generally reciprocal to the encoding pass described with respect to video encoder 400 (FIG. 11) .
  • Entropy decoding unit 501 may retrieve an encoded bitstream.
  • the encoded bitstream may include entropy coded video data (e.g., encoded blocks of video data) .
  • Entropy decoding unit 501 may decode the entropy coded video data, and from the entropy decoded video data, motion compensation unit 502 may determine motion information including motion vectors, motion vector precision, reference picture list indexes, and other motion information. Motion compensation unit 502 may, for example, determine such information by performing the AMVP and merge mode.
  • Motion compensation unit 502 may produce motion compensated blocks, possibly performing interpolation based on interpolation filters. Identifiers for interpolation filters to be used with sub-pixel precision may be included in the syntax elements.
  • Motion compensation unit 502 may use interpolation filters as used by video encoder 400 during encoding of the video block to calculate interpolated values for sub-integer pixels of a reference block. Motion compensation unit 502 may determine the interpolation filters used by video encoder 400 according to received syntax information and use the interpolation filters to produce predictive blocks.
  • Motion compensation unit 502 may uses some of the syntax information to determine sizes of blocks used to encode frame (s) and/or slice (s) of the encoded video sequence, partition information that describes how each macroblock of a picture of the encoded video sequence is partitioned, modes indicating how each partition is encoded, one or more reference frames (and reference frame lists) for each inter-encoded block, and other information to decode the encoded video sequence.
  • Intra prediction unit 503 may use intra prediction modes for example received in the bitstream to form a prediction block from spatially adjacent blocks.
  • Inverse quantization unit 503 inverse quantizes, i.e., de-quantizes, the quantized video block coefficients provided in the bitstream and decoded by entropy decoding unit 501.
  • Inverse transform unit 503 applies an inverse transform.
  • Reconstruction unit 506 may sum the residual blocks with the corresponding prediction blocks generated by motion compensation unit 402 or intra-prediction unit 503 to form decoded blocks. If desired, a deblocking filter may also be applied to filter the decoded blocks in order to remove blockiness artifacts.
  • the decoded video blocks are then stored in buffer 507, which provides reference blocks for subsequent motion compensation/intra predication and also produces decoded video for presentation on a display device.
  • FIG. 13 is a block diagram showing an example video processing system 1300 in which various techniques disclosed herein may be implemented.
  • the system 1300 may include input 1302 for receiving video content.
  • the video content may be received in a raw or uncompressed format, e.g., 8 or 10 bit multi-component pixel values, or may be in a compressed or encoded format.
  • the input 1302 may represent a network interface, a peripheral bus interface, or a storage interface. Examples of network interface include wired interfaces such as Ethernet, passive optical network (PON) , etc. and wireless interfaces such as Wi-Fi or cellular interfaces.
  • PON passive optical network
  • the system 1300 may include a coding component 1304 that may implement the various coding or encoding methods described in the present document.
  • the coding component 1304 may reduce the average bitrate of video from the input 1302 to the output of the coding component 1304 to produce a coded representation of the video.
  • the coding techniques are therefore sometimes called video compression or video transcoding techniques.
  • the output of the coding component 1304 may be either stored, or transmitted via a communication connected, as represented by the component 1306.
  • the stored or communicated bitstream (or coded) representation of the video received at the input 1302 may be used by the component 1308 for generating pixel values or displayable video that is sent to a display interface 1310.
  • the process of generating user-viewable video from the bitstream representation is sometimes called video decompression.
  • certain video processing operations are referred to as “coding” operations or tools, it will be appreciated that the coding tools or operations are used at an encoder and corresponding decoding tools or operations that reverse the results of the coding will be performed by
  • peripheral bus interface or a display interface may include universal serial bus (USB) or high definition multimedia interface (HDMI) or Displayport, and so on.
  • storage interfaces include SATA (serial advanced technology attachment) , PCI, IDE interface, and the like.
  • FIG. 14 shows a flowchart of an example method for video processing.
  • the method includes determining (1402) , for a conversion between a current video block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes; determining (1404) one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block; and performing (1406) the conversion based on the one or more partitioning modes.
  • each partitioning mode of the whole set of partitioning modes partition the current video block into two or more partitions, and two or more partitions corresponding to at least one partitioning mode is non-square and non-rectangular.
  • each partitioning mode index is associated with a set of parameters including at least one of angle, distance and/or displacement.
  • the correspondence of the partitioning mode index and the partitions mode depends on a dimension of a video block, wherein the dimension of the video block includes at least one of a height, a width and a ratio of width and height of the video block.
  • a binarization of the partitioning mode index comprises variable length coding that uses a first number of bins for a first partitioning mode and a second number of bins for a second partitioning mode.
  • different number of partitioning modes or different number of the parameters are used in different video blocks.
  • the number of partitioning modes or the number of the parameters used in a video block depends on the dimension of the video block.
  • the number of angles used in the current video block is more than that used in a second video block, wherein the current video block is a video block with height larger than width, and the second video block is a video block with height less than width.
  • angles are asymmetric.
  • angles are not rotational symmetry.
  • angles are not bilateral symmetry.
  • angles are not quadrantal symmetry.
  • the video block includes at least one of a coding block, a coding unit, a virtual pipeline data unit (VPDU) , a tile, a slice, a picture, a subpicture, a brick or a video.
  • VPDU virtual pipeline data unit
  • representation of a partitioning mode in the bitstream is dependent on a priority of the partitioning mode.
  • the priority is determined by angles and/or distances associated with the partitioning mode.
  • the partitioning modes which are oriented to angles smaller than a predetermined value with a higher priority than the partitioning mode which are oriented to angles larger than the predetermined value are oriented to angles smaller than a predetermined value with a higher priority than the partitioning mode which are oriented to angles larger than the predetermined value.
  • the predetermined value is 45 or 90.
  • the partitioning modes which are associated with angle indices smaller than a predetermined value with a higher priority than the partitioning mode which are associated with angle indices larger than the predetermined value are different than a predetermined value with a higher priority than the partitioning mode which are associated with angle indices larger than the predetermined value.
  • the predetermined value is 4 or 8 or 16.
  • the partitioning modes with a higher priority in require less bins or bits than the partitioning modes with a lower priority in signaling.
  • the partitioning modes are classified into two or more categories, and an indication of which category a partitioning mode belongs to is signaled before other information related to the partitioning mode.
  • whether an angle index is signaled in clockwise or anti-clockwise direction is firstly signaled for the video block.
  • angle index signalled in anti-clockwise means a smaller angle index, which represents a smaller size of angle.
  • angleIdx 0 means the size of angle is equal to 0 degree
  • angleIdx 8 means the size of angle is equal to 90 degree
  • angleIdx 16 means the size of angle is equal to 180 degree
  • angleIdx 24 means the size of angle is equal to 270 degree.
  • angle index signalled in clockwise means a larger angle index, which represents a larger size of angle.
  • angleIdx 0 means the size of angle is equal to 0 degree
  • angleIdx 8 means the size of angle is equal to 270 degree
  • angleIdx 16 means the size of angle is equal to 180 degree
  • angleIdx 24 means the size of angle is equal to 90 degree.
  • the indication is signalled at video block level.
  • the indication is signalled at at least one of SPS, VPS, PPS, Picture header, Subpicture, Slice, Slice header, Tile, Brick, CTU, VPDU, CU and block level.
  • a high-level flag which is higher than block level is signaled to indicate whether an angle associated with a signaled partitioning mode is in clockwise or anti-clockwise direction.
  • a block-level flag is signaled to indicate whether an angle associated with a signaled partitioning mode is in clockwise or anti-clockwise direction.
  • FIG. 15 shows a flowchart of an example method for video processing.
  • the method includes determining (1502) , for a conversion between a current video block of a video and a bitstream of the current video block, that the video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes, and each partitioning mode is associated with a set of parameters including at least one of angle, distance and/or displacement; deriving (1504) a subset of partitioning modes or parameters from the whole set of partitioning modes or parameters; and performing (1506) the conversion based on the subset of partitioning modes or parameters.
  • each partitioning mode of the whole set of partitioning modes partition the current video block into two or more partitions, at least one of which is non-square and non-rectangular.
  • only the subset of partitioning modes is used for the video block.
  • only the partitioning modes associated with the subset of parameters are used for the video block.
  • an indication of whether a selected partitioning mode or parameter is within the subset is further included in the bitstream.
  • whether a subset of partitioning modes or parameters or a whole set of partitioning modes or parameters is used for a video block is dependent on decoded information of the current video block or one or more previously decoded video blocks.
  • the decoded information includes syntax element and/or block dimensions of the video block.
  • selection of the partitioning modes in the subset of partitioning modes is dependent on the corresponding angles.
  • the subset of partitioning modes only contain the partitioning modes which are associated with distance or displacement equal to 0.
  • the subset of partitioning modes only contain the partitioning modes which are associated with specified angles.
  • the partitioning modes which are associated with specified angles include the partitioning modes associated with a predefined subset of angles which are combined with all displacements corresponding to these predefined angles.
  • selection of the partitioning modes in the subset of partitioning modes is dependent on whether a low-delay B frame (LDB) coding is checked.
  • LLB low-delay B frame
  • different subsets of partitioning modes are used for LDB coding and random access (RA) coding.
  • selection of the partitioning modes in the subset of partitioning modes is dependent on reference pictures in reference picture lists of a current picture.
  • different subsets of partitioning modes are used in a first case that all reference pictures are prior to the current picture in the displaying order and in a second case that at least one reference picture is after the current picture in the displaying order.
  • selection of the partitioning modes in the subset of partitioning modes is dependent on a derivation of motion vector candidates.
  • different subsets of partitioning modes are used when the motion vector candidates are derived from temporal motion vector prediction (TMVP) candidates, spatial motion candidates, or history-based motion vector prediction (HMVP) candidates.
  • TMVP temporal motion vector prediction
  • HMVP history-based motion vector prediction
  • the subset of partitioning modes only contain the partitioning modes that split a block in the same manner as a TPM mode.
  • the subset of partitioning modes only contains the partitioning modes that split a block by a line connecting a top-left corner and a bottom-right corner of the block, or by a line connecting a top-right corner and a bottom-left corner of the block.
  • the subset of partitioning modes only contain the partitioning modes corresponding to diagonal angles with one or more distance or displacement indices.
  • the diagonal angles indicate the partitioning modes that corresponding to splitting boundaries that split a block by a line connecting a top-left corner and a bottom-right corner of a block, or by a line connecting a top-right corner and a bottom-left corner of the block.
  • the subset of partitioning modes only contain the partitioning modes which are associated with distance or displacement equal to 0.
  • the subset of partitioning modes only contain the partitioning modes corresponding to any angles associated with distance or displacement equal to 0.
  • the subset of partitioning modes only contain the partitioning modes corresponding to diagonal angles associated with distance or displacement equal to 0.
  • the subset of partitioning modes only contain the partitioning modes corresponding to diagonal angles associated with all distance or displacement indices corresponding to these angles.
  • the subset of partitioning modes only contain the partitioning modes corresponding to a size of angles equal to arctan (X) and/or ⁇ -arctan (X) , and/or ⁇ + arctan (X) and/or 2 ⁇ -arctan (X) and all distance indices corresponding to these angles, X being an integer.
  • X 1
  • horizontal angles and/or vertical angles are included in the subset of angles.
  • the horizontal angles indicate angle indices corresponding to 90°and/or 270°.
  • the vertical angles indicate angle indices corresponding to 0° and/or 180°.
  • the partitioning modes associated with the horizontal angels and/or the vertical angles combined with distance/displacement equal to 0 are included in the subset of allowed angles.
  • the partitioning modes associated with the horizontal angels and/or the vertical angles combined with distance or displacement equal to 0 are not included in the subset of allowed angles.
  • the partitioning modes associated with the horizontal angels and/or the vertical angles combined with all distance or displacement indices are included in the subset of allowed angles.
  • the partitioning modes associated with the horizontal angels and/or the vertical angles combined with all distance or displacement indices are not included in the subset of allowed angles.
  • an indication of whether a subset of partitioning modes or parameters is used is signaled at at least one of SPS, VPS, PPS, Picture header, Subpicture, Slice, Slice header, Tile, Brick, CTU, VPDU, CU and block level.
  • an indication of which subset of partitioning modes or parameters is used is further signaled at at least one of SPS, VPS, PPS, Picture header, Subpicture, Slice, Slice header, Tile, Brick, CTU, VPDU, CU and block level.
  • FIG. 16 shows a flowchart of an example method for video processing.
  • the method includes determining (1602) , for a conversion between a video block of a video and a bitstream of the video block, an enablement of a geometric partitioning mode and a second coding mode different from the geometric partitioning mode for the video block; and performing (1604) the conversion based on the determination.
  • the geometric partitioning mode includes a whole set of partitioning modes, each partitioning mode of the whole set of partitioning modes partition the current video block into two or more partitions, and two or more partitions corresponding to at least one partitioning mode is non-square and non-rectangular.
  • the second coding mode includes weighted prediction.
  • the geometric partitioning mode is disabled at video block level.
  • the geometric partitioning mode is disabled at at least one of slice, PPS, SPS, tile, subpicture, CU, PU or TU level.
  • whether the geometric partitioning mode is used together with the weighted prediction is dependent on weighting factor of the weighted prediction.
  • the geometric partitioning mode is disabled, where T is a constant value.
  • the second coding mode includes a bi-prediction with coding unit (CU) weights (BCW) , a prediction refinement with optical flow (PROF) mode, a bi-directional optical flow (BDOF) mode, a decoder-side motion vector refinement (DMVR) mode, or a sub-block transform (SBT) mode.
  • CU coding unit
  • BDOF prediction refinement with optical flow
  • DMVR decoder-side motion vector refinement
  • SBT sub-block transform
  • the second coding mode is disabled.
  • an indication of the second coding mode is not signaled.
  • the geometric partitioning mode is disabled.
  • an indication of the geometric partitioning mode is not signaled.
  • the second coding mode when weighted prediction is enabled, the second coding mode is disabled.
  • a deblocking process associated with the video block is dependent on whether the geometric partitioning mode and the second coding mode are both enabled.
  • FIG. 17 shows a flowchart of an example method for video processing.
  • the method includes determining (1702) , for a conversion between a video block of a video and a bitstream of the video block, a deblocking process associated with the video block based on whether the current video block is coded with a geometric partitioning mode and/or color format of the current video block; and performing (1704) the conversion based on the deblocking parameters.
  • the geometric partitioning mode includes a whole set of partitioning modes, each partitioning mode of the whole set of partitioning modes partition the current video block into two or more partitions, and two or more partitions corresponding to at least one partitioning mode is non-square and non-rectangular.
  • weighting values of a weighted prediction generated for a first component of the video block is used to derive weighting values for a second component of the video block.
  • the first component is luma component
  • the second component is Cb or Cr component
  • the derivation depends on color format of the video block.
  • the color format is 4: 2: 0, 4: 2: 2 or 4: 4: 4.
  • the weighting values for the second component are derived by applying up-sampling or down-sampling on the weighting values for the first component.
  • weighting values of weighted prediction for a component is based on the color format of the video block.
  • the component is a Cb component or a Cr component, and wherein the color format is 4: 2: 0, 4: 2: 2 or 4: 4: 4.
  • the parameters associated with the partitioning mode are adjusted to generate the weighting values for the component.
  • the geometric partitioning mode includes one or more of a geometric merge mode, a geometric partition mode, a wedge prediction mode, and a triangular prediction mode.
  • the conversion includes encoding the video block into the bitstream.
  • the conversion includes decoding the video block from the bitstream.
  • the conversion includes generating the bitstream from the video block; the method further comprising: storing the bitstream in a non-transitory computer-readable recording medium.
  • FIG. 17 shows a flowchart of an example method for video processing.
  • the method includes determining (1702) , for a conversion between a current video block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes; determining (1704) one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block; generating (1706) the bitstream from the video block the one or more partitioning modes; and storing (1708) the bitstream in a non-transitory computer-readable recording medium.
  • Implementations of the subject matter and the functional operations described in this patent document can be implemented in various systems, digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Implementations of the subject matter described in this specification can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a tangible and non-transitory computer readable medium for execution by, or to control the operation of, data processing apparatus.
  • the computer readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more of them.
  • data processing unit or “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers.
  • the apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
  • a computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment.
  • a computer program does not necessarily correspond to a file in a file system.
  • a program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code) .
  • a computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
  • the processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output.
  • the processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
  • processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer.
  • a processor will receive instructions and data from a read only memory or a random access memory or both.
  • the essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data.
  • a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks.
  • a computer need not have such devices.
  • Computer readable media suitable for storing computer program instructions and data include all forms of nonvolatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices.
  • semiconductor memory devices e.g., EPROM, EEPROM, and flash memory devices.
  • the processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.

Abstract

Geometric partitioning mode is described. In a representative aspect, a method of video processing includes determining, for a conversion between a current v ideo block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes; determining one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block; and performing the conversion based on the one or more partitioning modes.

Description

GEOMETRIC PARTITIONING MODE
CROSS-REFERENCE TO RELATED APPLICATION
Under the applicable patent law and/or rules pursuant to the Paris Convention, this application is made to timely claim the priority to and benefits of International Patent Application No. PCT/CN2020/074499, filed on February 7, 2020. The entire disclosures of International Patent Application No. PCT/CN2020/074499 are incorporated by reference as part of the disclosure of this application.
TECHNICAL FIELD
This document is related to video coding techniques, systems and devices.
BACKGROUND
Digital video accounts for the largest bandwidth use on the internet and other digital communication networks. As the number of connected user devices capable of receiving and displaying video increases, it is expected that the bandwidth demand for digital video usage will continue to grow.
SUMMARY
This invention is related to video coding technologies. Specifically, it is about inter prediction and related techniques in video coding. It may be applied to the existing video coding standard like HEVC, or the standard (Versatile Video Coding) to be finalized. It may be also applicable to future video coding standards or video codec.
In one representative aspect, the disclosed technology may be used to provide a method for video processing. This method includes performing a conversion between a current block of a video and a bitstream representation of the video, wherein a coding mode of the current block partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region, wherein the bitstream representation comprises signaling associated with the coding mode, and wherein the signaling corresponds to a set of parameters with a first set of values for the current block and a second set of values for a subsequent block of the video.
In another representative aspect, the disclosed technology may be used to provide a method for video processing. This method includes performing a conversion between a current block of a video and a bitstream representation of the video, wherein a coding mode of the current block partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region, wherein the coding mode can be configured using a plurality of parameter sets, and wherein the bitstream representation comprises signaling for a subset of the plurality of parameter sets, and wherein a parameter set comprises angles, displacements and distance associated with the at least one non-rectangular or non-square sub-region.
In yet another representative aspect, the disclosed technology may be used to provide a method for video processing. This method includes making a determination, for a conversion between a current block of a video and a bitstream representation of the video, regarding an enablement of a first coding mode and a second coding mode that is different from the first coding mode, wherein the first coding mode partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region; and performing, based on the determination, the conversion.
In yet another representative aspect, the disclosed technology may be used to provide a method for video processing. This method includes determining, for a conversion between a current video block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes; determining one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block; and performing the conversion based on the one or more partitioning modes.
In yet another representative aspect, the disclosed technology may be used to provide a method for video processing. This method includes determining, for a conversion between a current video block of a video and a bitstream of the current video block, that the video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes, and each partitioning mode is associated with a set of parameters including at least one of angle, distance and/or displacement; deriving a subset of partitioning modes or parameters from the whole set of partitioning modes or parameters; and performing the conversion based on the subset of partitioning modes or parameters.
In yet another representative aspect, the disclosed technology may be used to provide a method for video processing. This method includes determining, for a conversion between a video block of a video and a bitstream of the video block, an enablement of a geometric partitioning mode and a second coding mode different from the geometric partitioning mode for the video block; and performing the conversion based on the determination.
In yet another representative aspect, the disclosed technology may be used to provide a method for video processing. This method includes determining, for a conversion between a video block of a video and a bitstream of the video block, a deblocking process associated with the video block based on whether the current video block is coded with a geometric partitioning mode and/or color format of the current video block; and performing the conversion based on the deblocking process.
In yet another representative aspect, a method for storing bitstream of a video is disclosed. The method includes determining, for a conversion between a current video block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes; determining one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block; generating the bitstream from the video block the one or more partitioning modes; and storing the bitstream in a non-transitory computer-readable recording medium.
In yet another example aspect, a video encoder apparatus that includes a processor configured to implement an above-described method is disclosed.
In yet another example aspect, a video decoder apparatus that includes a processor configured to implement an above-described method is disclosed.
In yet another example aspect, a computer readable medium is disclosed. The computer readable medium has code stored on it. The code, when executed by a processor, causes the processor to implement an above-described method.
These, and other, aspects are described in the present document.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows examples of triangular prediction modes (TPM) .
FIG. 2 shows an example of a geometrical coding mode (GEO) split boundary description.
FIG. 3A shows an example of edges supported in GEO.
FIG. 3B shows the geometric relations between a given pixel position and two edges.
FIG. 4 shows examples of different angles for GEO along with their corresponding width: height ratios.
FIG. 5 shows an example of the angle distribution of 64 GEO modes.
FIG. 6 shows an example of GEO/TPM splitting boundary for angleIdx 0 to 31, in an anti-clockwise direction.
FIG. 7 shows another example of GEO/TPM splitting boundary for angleIdx 0 to 31, in a clockwise direction.
FIG. 8 shows a flowchart of an example method of video processing.
FIG. 9 is a block diagram of an example of a video processing apparatus.
FIG. 10 is a block diagram that illustrates an example video coding system.
FIG. 11 is a block diagram that illustrates an example encoder.
FIG. 12 is a block diagram that illustrates an example decoder.
FIG. 13 is a block diagram of an example video processing system in which disclosed techniques may be implemented.
FIG. 14 shows a flowchart of an example method of video processing.
FIG. 15 shows a flowchart of an example method of video processing.
FIG. 16 shows a flowchart of an example method of video processing.
FIG. 17 shows a flowchart of an example method of video processing.
FIG. 18 shows a flowchart of an example method of video processing.
DETAILED DESCRIPTION
Due to the increasing demand of higher resolution video, video coding methods and techniques are ubiquitous in modern technology. Video codecs typically include an electronic circuit or software that compresses or decompresses digital video, and are continually being improved to provide higher coding efficiency. A video codec converts uncompressed video to a compressed format or vice versa. There are complex relationships between the video quality, the amount of data used to represent the video (determined by the bit rate) , the complexity of the encoding and decoding algorithms, sensitivity to data losses and errors, ease of editing, random  access, and end-to-end delay (latency) . The compressed format usually conforms to a standard video compression specification, e.g., the High Efficiency Video Coding (HEVC) standard (also known as H. 265 or MPEG-H Part 2) , the Versatile Video Coding standard to be finalized, or other current and/or future video coding standards.
Embodiments of the disclosed technology may be applied to existing video coding standards (e.g., HEVC, H. 265) and future standards to improve runtime performance. It is specifically related to merge modes in video coding. Section headings are used in the present document to improve readability of the description and do not in any way limit the discussion or the embodiments (and/or implementations) to the respective sections only.
1. Background
Video coding standards have evolved primarily through the development of the well-known ITU-T and ISO/IEC standards. The ITU-T produced H. 261 and H. 263, ISO/IEC produced MPEG-1 and MPEG-4 Visual, and the two organizations jointly produced the H. 262/MPEG-2 Video and H. 264/MPEG-4 Advanced Video Coding (AVC) and H. 265/HEVC standards. Since H. 262, the video coding standards are based on the hybrid video coding structure wherein temporal prediction plus transform coding are utilized. To explore the future video coding technologies beyond HEVC, Joint Video Exploration Team (JVET) was founded by VCEG and MPEG jointly in 2015. Since then, many new methods have been adopted by JVET and put into the reference software named Joint Exploration Model (JEM) . The JVET meeting is concurrently held once every quarter, and the new coding standard is targeting at 50%bitrate reduction as compared to HEVC. The new video coding standard was officially named as Versatile Video Coding (VVC) in the April 2018 JVET meeting, and the first version of VVC test model (VTM) was released at that time. As there are continuous effort contributing to VVC standardization, new coding techniques are being adopted to the VVC standard in every JVET meeting. The VVC working draft and test model VTM are then updated after every meeting. The VVC project is now aiming for technical completion (FDIS) at the July 2020 meeting.
1.1. Geometrical partitioning (GEO) for inter prediction
The following description is extracted from JVET-P0884, JVET-P0107, JVET-P0304, JVET-P0264, JVET-Q0079, JVETQ0059, JEVT-Q0077, and JVET-Q0309.
Geometric merge mode (GEO) was proposed in 15 th Gothenburg JVET meeting as extension of the existing triangle prediction mode (TPM) . In 16 th Geneva JVET meeting, a simpler designed GEO mode in JVET-P0884 has been selected as a CE anchor for further study. In 17 th Brussels JVET meeting, GEO was adopted to VTM8 as a replacement of TPM mode in VTM7, and GEO mode was renamed as GPM mode in VVC WD8.
The FIG. 1 illustrates TPM in VTM-6.0 and additional shapes proposed for GEO inter blocks.
The split boundary of geometric merge mode is descripted by angle
Figure PCTCN2021075821-appb-000001
and distance offset ρ i as shown in FIG. 2. Angle 
Figure PCTCN2021075821-appb-000002
represents a quantized angle between 0 and 360 degrees and distance offset ρ i represents a quantized offset of the largest distance ρ max. In addition, the split directions overlapped with binary tree splits and TPM splits are excluded.
In JVET-P0884, GEO is applied to block sizes not smaller than 8×8, and for each block size, there are 82 different partitioning manners, differentiated by 24 angles and 4 edges relative to the center of a CU. FIG. 3A shows that the 4 edges are distributed uniformly along the direction of normal vector within a CU, starting from Edge0 that passes through the CU center. Each partition mode (i.e., a pair of an angle index and an edge index) in GEO is assigned with a pixel-adaptive weight table to blend samples on the two partitioned parts, where the weight value of a sampled ranges from 0 to 8 and is determined by the L2 distance from the center position of a pixel to the edge. Basically, unit-gain constraint is followed when weight values are assigned, that is, when a small weight value is assigned to a GEO partition, a large complementary one is assigned to the other partition, summing up to 8.
The computation of the weight value of each pixel is two-fold: (a) computing the displacement from a pixel position to a given edge and (c) mapping the computed displacement to a weight value through a pre-defined look-up table. The way to compute the displacement from a pixel position (x, y) to a given edge Edgei is actually the same as computing the displacement from (x, y) to Edge0 and subtract this displacement by the distance ρ between Edge0 and Edgei. FIG. 3B illustrates the geometric relations among (x, y) and edges. Specifically, the displacement from (x, y) to Edgei can be formulated as follows:
Figure PCTCN2021075821-appb-000003
Figure PCTCN2021075821-appb-000004
The value of ρ is a function of the maximum length (denoted by ρmax) of the normal vector and edge index i, that is:
Figure PCTCN2021075821-appb-000005
where N is the number of edges supported by GEO and the “1” is to prevent the last edge EdgeN-1 from falling too close to a CU corner for some angle indices. Substituting Eq. (8) from (6) , we can compute the displacement from each pixel (x, y) to a given Edgei. In short, we denote
Figure PCTCN2021075821-appb-000006
as wIdx (x, y) . The computation of ρ is needed once per CU, and the computation of wIdx (x, y) is needed once per sample, in which multiplications are involved.
1.1.1. JVET-P0884
JVET-P0884 jointed the proposal jointed the proposed simplification of JVET-P0107 slope based version 2, JVET-P0304 and JVET-P0264 test 1 on top of CE4-1.14 of the 16 th Geneva JVET meeting.
a) In the jointed contribution, the geo angles are defined slope (tangle power of 2) same as in JVET-P0107 and JVET-P0264. The slope used in this proposal is (1, 1/2, 1/4, 4, 2) . In this case, the multiplications are replaced by shift operation if the blending mask is calculated on the fly.
b) The rho calculation is replaced by offset X and offset Y as descripted in JVET-P304. In this case, only the 24 blending masks need to be stored in case of not calculate the blending mask on the fly.
1.1.2. JVET-P0107
Based on the slope based GEO version 2, The Dis [. ] look up table is illustrated in Table 1
Table 1 2 bits Dis [. ] look up table for slope based GEO
idx 0 1 2 4 6 7 8 9 10 12 14 15
Dis [idx] 4 4 4 4 2 1 0 -1 -2 -4 -4 -4
idx 16 17 18 20 22 23 24 25 26 28 30 31
Dis [idx] -4 -4 -4 -4 -2 -1 0 1 2 4 4 4
With the slope based GEO version 2, the computation complexity of geo blending mask derivation is considered as multiplication (up to 2 bits shift) and addition. There is no different partitions compared to TPM. Furthermore, the rounding operation of distFromLine is removed in order to easier store the blending mask. This bugfix guarantees that sample weights are repeated in each row or column in a shifted fashion.
1.1.3. JVET-P0264
In JVET-P0264, the angles in GEO is replaced with the angles which have powers of 2 as tangent. Since the tangent of the proposed angles is a power-of-2 number, most of multiplications can be replaced by bit-shifting. Besides, the weight values for these angles can be implemented by repeating row-by-row or column-by-column with phase shift. With the proposed angles, one row or column is needed to store per block size and per partition mode. 
1.1.4. JVET-P0304
In JVET-P0304, it is proposed to derive the weights and the mask for motion field storage for all blocks and partition modes from two sets of pre-defined masks, one for the blending weights derivation and the other for the masks of motion field storage. There are totally 16 masks in each set. Each mask per angle is calculated using the same equations in GEO with block width and block height set to 256 and displacement set to 0. For a block of size W×H with angle 
Figure PCTCN2021075821-appb-000007
and distance ρ, the blending weights for the luma samples are directly cropped from the pre-defined masks with offsets calculated as follows:
- Variables offsetX and offsetY are calculated as follows:
Figure PCTCN2021075821-appb-000008
Figure PCTCN2021075821-appb-000009
Figure PCTCN2021075821-appb-000010
, where g_sampleWeight L [] is the pre-defined masks for the blending weights.
1.1.5. JVET-Q0079
In the JVET-P meeting, a simplified GEO mode is proposed in JVET-P0884/JVET-P0885, and is suggested to be the common base for CE4 core experiment. In this common base, the GEO mode is applied to a merge block whose width and height are both larger than or equal to 8. When a block coded using GEO mode, an index is signaled to indicate which one of 82 partitioning modes is used to split the block into two partitions. Each partition is inter predicted with its own motion vector. After predicting each of the partition, the sample values along the partitioning edge are adjusted using a blending processing with weights. This is the prediction signal for the whole block, and transform and quantization process will be applied to the whole block as in other prediction modes.
The weights for luma samples used in the blending process are calculated as follows:
weightIdx = ( ( (x + offsetX) <<1) + 1) *Dis [displacementX] + ( ( (y+ offsetY) <<1) + 1) ) *Dis [displacementY] -rho.
weightIdxAbs = Clip3 (0, 26, abs (weightIdx) ) .
sampleWeight = weightIdx <= 0 ? GeoFilter [weightIdxAbs] : 8 -GeoFilter [weightIdxAbs] 
Dis [. ] is a look up table with 24 entries and the possible out put values are {0, 1, 2, 4} . GeoFilter [. ] is a look up table with 27 entries. The variables rho, offsetX and offsetY are pre-computed based on:
rho = (Dis [displacementX] << 8) + (Dis [displacementY] << 8)
Figure PCTCN2021075821-appb-000011
Figure PCTCN2021075821-appb-000012
The
Figure PCTCN2021075821-appb-000013
and ρ represent angle and distance which are derived from a look up table using the signaled index.
The weights for chroma samples are subsampled from the luma weights. The motion storage masks are derived using same method of weights derivation independently. More details description for this common base can be found in JVET-P0884/JVET-P0885.
1.1.6. JVET-Q0059
In JVET-Q meeting, 64 modes geometric inter prediction (i.e., JVET-Q0059) was adopted.
Since in nature video sequences the motion objects are mostly vertical layout, the near horizontal split modes are less frequently used. In the proposed 64 modes GEO, we removed the angle {5, 7, 17, 19} . FIG. 5 shows the angle distribution of 64 modes GEO.
Furthermore, In the 82 modes GEO, the distances with distance index 2 of horizontal angles {0, 12} and vertical angles {6, 18} are overlapped with ternary tree split boundaries. They are also removed in the proposed 64 modes GEO.
The total modes of the proposed method can be calculated as 10*4 + 10*3 –2 –4 = 64 modes
In addition, since the geo split modes are signaled by using truncated binary, 64 modes will be signaled most efficient with 6 bits TB.
1.1.7. JVET-Q0077 and JVET-Q0309
The GEO is disabled for blocks greater than 64x64, and GEO is disabled for 64x8, and 8x64 blocks.
1.1.8. GEO/GPM angle index and size of an angle
In the latest VVC working draft 8, the GEO mode is renamed as geometric partitioning mode (GPM) . The GEO/GPM angle index is used to represent the splitting boundary which split a GEO/GPM block into two sub-regions, as illustrated in FIG. 6. As introduced in JVET-P0264, the tangent of the GEO/GPM angles is a power-of-2 number according to block width-height-ratio. In JVET-Q2001-vB, the size of GEO/GPM angle ranges from 0° to 352.87°, with the associated GEO/GPM angle index ranges from 0 to 31, as illustrated in FIG. 6. The angle between the vertical direction (e.g., overlapped with the splitting boundary of angleIdx equal to 0) and the specified GEO splitting boundary is defined as the size of GEO/GPM angle of a GEO/GPM mode. The corresponding relationship between size of GEO/GPM angle (size of angle) and GEO/GPM angle index (angleIdx) can be found in Table 2.
Table 2: An example of the relationship between angle index and size of angles (anti-clockwise)
Figure PCTCN2021075821-appb-000014
Figure PCTCN2021075821-appb-000015
1.2. Specification of GEO/GPM in JVET-Q2001-vB
The following specification is extracted from the provided working draft in JVET-Q2001-vB.
7.3.10.5 Coding unit syntax
Figure PCTCN2021075821-appb-000016
Figure PCTCN2021075821-appb-000017
Figure PCTCN2021075821-appb-000018
Figure PCTCN2021075821-appb-000019
Figure PCTCN2021075821-appb-000020
Figure PCTCN2021075821-appb-000021
Figure PCTCN2021075821-appb-000022
7.3.10.7Merge data syntax
Figure PCTCN2021075821-appb-000023
Figure PCTCN2021075821-appb-000024
sps_gpm_enabled_flag specifies whether geometric partition based motion compensation can be used for inter prediction. sps_gpm_enabled_flag equal to 0 specifies that the syntax shall be constrained such that no geometric partition based motion compensation is used in the CLVS, and merge_gpm_partition_idx, merge_gpm_idx0, and merge_gpm_idx1 are not present in coding unit syntax of the CLVS. sps_gpm_enabled_flag equal to 1 specifies that geometric partition based motion compensation can be used in the CLVS. When not present, the value of sps_gpm_enabled_flag is inferred to be equal to 0.
max_num_merge_cand_minus_max_num_gpm_cand specifies the maximum number of geometric partitioning merge mode candidates supported in the SPS subtracted from MaxNumMergeCand.
If sps_gpm_enabled_flag is equal to 1 and MaxNumMergeCand is greater than or equal to 3, the maximum number of geometric partitioning merge mode candidates, MaxNumGeoMergeCand, is derived as follows:
Figure PCTCN2021075821-appb-000025
The value of MaxNumGeoMergeCand shall be in the range of 2 to MaxNumMergeCand, inclusive.
The variable MergeGpmFlag [x0] [y0] , which specifies whether geometric partitioning based motion compensation is used to generate the prediction samples of the current coding unit, when decoding a B slice, is derived as follows:
– If all the following conditions are true, MergeGpmFlag [x0] [y0] is set equal to 1:
– sps_gpm_enabled_flag is equal to 1.
– slice_type is equal to B.
– general_merge_flag [x0] [y0] is equal to 1.
– cbWidth is greater than or equal to 8.
– cbHeight is greater than or equal to 8.
– cbWidth is less than 8 *cbHeight.
– cbHeight is less than 8 *cbWidth.
– regular_merge_flag [x0] [y0] is equal to 0.
– merge_subblock_flag [x0] [y0] is equal to 0.
– ciip_flag [x0] [y0] is equal to 0.
– Otherwise, MergeGpmFlag [x0] [y0] is set equal to 0.
merge_gpm_partition_idx [x0] [y0] specifies the partitioning shape of the geometric partitioning merge mode. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.
When merge_gpm_partition_idx [x0] [y0] is not present, it is inferred to be equal to 0.
merge_gpm_idx0 [x0] [y0] specifies the first merging candidate index of the geometric partitioning based motion compensation candidate list where x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.
When merge_gpm_idx0 [x0] [y0] is not present, it is inferred to be equal to 0.
merge_gpm_idx1 [x0] [y0] specifies the second merging candidate index of the geometric partitioning based motion compensation candidate list where x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered coding block relative to the top-left luma sample of the picture.
When merge_gpm_idx1 [x0] [y0] is not present, it is inferred to be equal to 0.
8.5.7Decoding process for geometric partitioning mode inter blocks
8.5.7.1General
This process is invoked when decoding a coding unit with MergeGpmFlag [xCb] [yCb] equal to 1.
Inputs to this process are:
– a luma location (xCb, yCb) specifying the top-left sample of the current coding block relative to the top-left luma sample of the current picture,
– a variable cbWidth specifying the width of the current coding block in luma samples,
– a variable cbHeight specifying the height of the current coding block in luma samples,
– the luma motion vectors in 1/16 fractional-sample accuracy mvA and mvB,
– the chroma motion vectors mvCA and mvCB,
– the reference indices refIdxA and refIdxB,
– the prediction list flags predListFlagA and predListFlagB.
Outputs of this process are:
– an (cbWidth) x (cbHeight) array predSamples L of luma prediction samples,
– an (cbWidth /SubWidthC) x (cbHeight /SubHeightC) array predSamples Cb of chroma prediction samples for the component Cb, when ChromaArrayType is not equal to 0,
– an (cbWidth /SubWidthC) x (cbHeight /SubHeightC) array predSamples Cr of chroma prediction samples for the component Cr, when ChromaArrayType is not equal to 0.
Let predSamplesLA L and predSamplesLB L be (cbWidth) x (cbHeight) arrays of predicted luma sample values and, when ChromaArrayType is not equal to 0, predSamplesLA Cb, predSamplesLB Cb, predSamplesLA Cr and predSamplesLB Cr be (cbWidth /SubWidthC) x (cbHeight /SubHeightC) arrays of predicted chroma sample values.
The predSamples L, predSamples Cb and predSamples Cr are derived by the following ordered steps:
1. For N being each of A and B, the following applies:
– The reference picture consisting of an ordered two-dimensional array refPicLN L of luma samples and two ordered two-dimensional arrays refPicLN Cb and refPicLN Cr of chroma samples is derived by invoking the process specified in clause 8.5.6.2 with X set equal to predListFlagN and refIdxX set equal to refIdxN as input.
– The array predSamplesLN L is derived by invoking the fractional sample interpolation process specified in clause 8.5.6.3 with the luma location (xCb, yCb) , the luma coding block width sbWidth set equal to cbWidth, the luma coding block height sbHeight set equal to cbHeight, the motion vector offset mvOffset set equal to (0, 0) , the motion vector mvLX set equal to mvN and the reference array refPicLX L set equal to refPicLN L, the variable bdofFlag set euqal to FALSE, the variable cIdx is set equal to 0, RprConstraintsActive [X] [refIdxLX] , and RefPicScale [predListFlagN] [refIdxN] as inputs.
– When ChromaArrayType is not equal to 0, the array predSamplesLN Cb is derived by invoking the fractional sample interpolation process specified in clause 8.5.6.3 with the luma location (xCb, yCb) , the coding block width sbWidth set equal to cbWidth /SubWidthC, the coding block height sbHeight set equal to cbHeight /SubHeightC, the motion vector  offset mvOffset set equal to (0, 0) , the motion vector mvLX set equal to mvCN, and the reference array refPicLX Cb set equal to refPicLN Cb, the variable bdofFlag set euqal to FALSE, the variable cIdx is set equal to 1, RprConstraintsActive [X] [refIdxLX] , and RefPicScale [predListFlagN] [refIdxN] as inputs.
– When ChromaArrayType is not equal to 0, the array predSamplesLN Cr is derived by invoking the fractional sample interpolation process specified in clause 8.5.6.3 with the luma location (xCb, yCb) , the coding block width sbWidth set equal to cbWidth /SubWidthC, the coding block height sbHeight set equal to cbHeight /SubHeightC, the motion vector offset mvOffset set equal to (0, 0) , the motion vector mvLX set equal to mvCN, and the reference array refPicLX Cr set equal to refPicLN Cr, the variable bdofFlag set euqal to FALSE, the variable cIdx is set equal to 2, RprConstraintsActive [X] [refIdxLX] , and RefPicScale [predListFlagN] [refIdxN] as inputs.
2. The partition angle variable angleIdx and the distance variable distanceIdx of the geometric partitioning mode are set according to the value of merge_gpm_partition_idx [xCb] [yCb] as specified in Table 36.
3. The prediction samples inside the current luma coding block, predSamples L [x L] [y L] with x L = 0.. cbWidth -1 and y L = 0.. cbHeight -1, are derived by invoking the weighted sample prediction process for geometric partitioning mode specified in clause 8.5.7.2 with the coding block width nCbW set equal to cbWidth, the coding block height nCbH set equal to cbHeight, the sample arrays predSamplesLA L and predSamplesLB L, and the variables angleIdx, distanceIdx, and cIdx equal to 0 as inputs.
4. When ChromaArrayType is not equal to 0, the prediction samples inside the current chroma component Cb coding block, predSamples Cb [x C] [y C] with x C = 0.. cbWidth /SubWidthC -1 and y C = 0.. cbHeight /SubHeightC -1, are derived by invoking the weighted sample prediction process for geometric partitioning mode specified in clause 8.5.7.2 with the coding block width nCbW set equal to cbWidth /SubWidthC, the coding block height nCbH set equal to cbHeight /SubHeightC, the sample arrays predSamplesLA Cb and predSamplesLB Cb, and the variables angleIdx, distanceIdx, and cIdx equal to 1 as inputs.
5. When ChromaArrayType is not equal to 0, the prediction samples inside the current chroma component Cr coding block, predSamples Cr [x C] [y C] with x C = 0.. cbWidth /SubWidthC -1 and y C = 0.. cbHeight /SubHeightC -1, are derived by invoking the weighted sample prediction process for geometric partitioning mode specified in clause 8.5.7.2 with the coding block width nCbW set equal to cbWidth /SubWidthC, the coding block height nCbH set equal to cbHeight /SubHeightC, the sample arrays predSamplesLA Cr and predSamplesLB Cr, and the variables angleIdx, distanceIdx, and cIdx equal to 2 as inputs.
6. The motion vector storing process for merge geometric partitioning mode specified in clause 8.5.7.3 is invoked with the luma coding block location (xCb, yCb) , the luma coding block width cbWidth, the luma coding block height cbHeight, the partition angle angleIdx and the distance distanceIdx, the luma motion vectors mvA and mvB, the reference indices refIdxA and refIdxB, and the prediction list flags predListFlagA and predListFlagB as inputs.
Table 36 –Specification of angleIdx and distanceIdx based on merge_gpm_partition_idx.
Figure PCTCN2021075821-appb-000026
8.5.7.2Weighted sample prediction process for geometric partitioning mode
Inputs to this process are:
– two variables nCbW and nCbH specifying the width and the height of the current coding block,
– two (nCbW) x (nCbH) arrays predSamplesLA and predSamplesLB,
– a variable angleIdx specifying the angle index of the geometric partition,
– a variable distanceIdx specifying the distance index of the geometric partition,
– a variable cIdx specifying colour component index.
Output of this process is the (nCbW) x (nCbH) array pbSamples of prediction sample values.
The variables nW, nH, shift1, offset1, hwRatio, displacementX, displacementY, partFlip and shiftHor are derived as follows:
nW = (cIdx = = 0) ? nCbW: nCbW *SubWidthC                                            (1030)
nH = (cIdx = = 0) ? nCbH: nCbH *SubHeightC                                                      (1031)
shift1 = Max (5, 17 -BitDepth)                                                             (1032)
offset1 = 1 << (shift1 -1)                                                                (1033)
hwRatio = nH /nW                                                                        (1034)
displacementX = angleIdx                                                                  (1035)
displacementY = (angleIdx + 8) %32                                                        (1036)
partFlip = (angleIdx >= 13 &&angleIdx <= 27) ? 0: 1                                       (1037)
shiftHor = (angleIdx %16 = = 8 | | (angleIdx %16 ! = 0 && hwRatio > 0) ) ? 0: 1             (1038)
The variables offsetX and offsetY are derived as follows:
– If shiftHor is equal to 0, the following applies:
offsetX = (-nW) >> 1                                                                    (1039)
offsetY = ( (-nH) >> 1) + (angleIdx < 16 ? (distanceIdx *nH) >> 3: - ( (distanceIdx *nH) >> 3) )          (1040)
– Otherwise (shiftHor is equal to 1) , the following applies:
offsetX = ( (-nW) >> 1) + (angleIdx < 16 ? (distanceIdx *nW) >> 3: - ( (distanceIdx *nW) >> 3) )         (1041)
offsetY = (-nH) >> 1                                                                    (1042)
The prediction samples pbSamples [x] [y] with x = 0.. nCbW -1 and y = 0.. nCbH -1 are derived as follows:
– The variables xL and yL are derived as follows:
xL = (cIdx = = 0) ? x: x *SubWidthC                                                      (1043)
yL = (cIdx = = 0) ? y: y *SubHeightC                                                     (1044)
– The variable wValue specifying the weight of the prediction sample is derived based on the array disLut specified in Table 37 as follows:
weightIdx = ( ( (xL + offsetX) << 1) + 1) *disLut [displacementX] + ( ( (yL + offsetY) << 1) + 1) ) *disLut [displacementY]                      (1045)
weightIdxL = partFlip ? 32 + weightIdx: 32 -weightIdx                                      (1046)
wValue = Clip3 (0, 8, (weightIdxL + 4) >> 3)                                                (1047)
– The prediction sample values are derived as follows:
Figure PCTCN2021075821-appb-000027
Table 37 -Specification of the geometric partitioning distance array disLut.
idx 0 2 3 4 5 6 8 10 11 12 13 14
disLut [idx] 8 8 8 4 4 2 0 -2 -4 -4 -8 -8
idx 16 18 19 20 21 22 24 26 27 28 29 30
disLut [idx] -8 -8 -8 -4 -4 -2 0 2 4 4 8 8
8.5.7.3Motion vector storing process for geometric partitioning mode
This process is invoked when decoding a coding unit with MergeGpmFlag [xCb] [yCb] equal to 1.
Inputs to this process are:
– a luma location (xCb, yCb) specifying the top-left sample of the current coding block relative to the top-left luma sample of the current picture,
– a variable cbWidth specifying the width of the current coding block in luma samples,
– a variable cbHeight specifying the height of the current coding block in luma samples,
– a variable angleIdx specifying the angle index of the geometric partition,
– a variable distanceIdx specifying the distance index of the geometric partition,
– the luma motion vectors in 1/16 fractional-sample accuracy mvA and mvB,
– the reference indices refIdxA and refIdxB,
– the prediction list flags predListFlagA and predListFlagB.
The variables numSbX and numSbY, specifying the number of 4×4 blocks in the current coding block in the horizontal and vertical directions, respectivecly, are set equal to cbWidth >> 2 and cbHeight >> 2, respectively.
The variables hwRatio, displacementX, displacementY, partIdx and shiftHor are derived as follows:
hwRatio = cbHeight /cbWidth                                                                (1049)
displacementX = angleIdx                                                                    (1050)
displacementY = (angleIdx + 8) %32                                                         (1051)
partIdx = (angleIdx >= 13 && angleIdx <= 27) ? 0: 1                                       (1052)
shiftHor = (angleIdx %16 = = 8 | | (angleIdx %16 ! = 0 && hwRatio > 0) ? 0: 1               (1053)
The variables offsetX and offsetY are derived as follows:
– If shiftHor is equal to 0, the following applies:
offsetX = (-cbWidth) >> 1                                                                 (1054)
offsetY = ( (-cbHeight) >> 1) + (angleIdx < 16 ? (distanceIdx *cbHeight) >> 3: - ( (distanceIdx *cbHeight) >> 3) )    (1055)
– Otherwise (shiftHor is equal to 1) , the following applies:
offsetX = ( (-cbWidth) >> 1) + (angleIdx < 16 ? (distanceIdx *cbWidth) >> 3: - ( (distanceIdx *cbWidth) >> 3) )    (1056)
offsetY = (-cbHeight) >> 1                                                                (1057)
For each 4×4 subblock at subblock index (xSbIdx, ySbIdx) with xSbIdx = 0.. numSbX -1, and ySbIdx = 0.. numSbY -1, the following applies:
– The variable motionIdx is calculated based on the array disLut specified in Table 37 as following:
motionIdx = ( ( (4 *xSbIdx + offsetX) << 1) + 5) *disLut [displacementX] + ( ( (4 *ySbIdx + offsetY << 1) + 5) ) *disLut [displacementY]                 (1058)
– The variable sType is derived as follows:
sType = abs (motionIdx) < 32 ? 2 : (motionIdx <= 0 ? (1 -partIdx) : partIdx)                   (1059)
– Depending on the value of sType, the following assignments are made:
– If sType is equal to 0, the following applies:
predFlagL0 = (predListFlagA = = 0) ? 1: 0                                                      (1060)
predFlagL1 = (predListFlagA = = 0) ? 0: 1                                                      (1061)
refIdxL0 = (predListFlagA = = 0) ? refIdxA: -1                                         (1062)
refIdxL1 = (predListFlagA = = 0) ? -1: refIdxA                                         (1063)
mvL0 [0] = (predListFlagA = = 0) ? mvA [0] : 0                                        (1064)
mvL0 [1] = (predListFlagA = = 0) ? mvA [1] : 0                                        (1065)
mvL1 [0] = (predListFlagA = = 0) ? 0: mvA [0]                                        (1066)
mvL1 [1] = (predListFlagA = = 0) ? 0: mvA [1]                                        (1067)
– Otherwise, if sType is equal to 1 or (sType is equal to 2 and predListFlagA + predListFlagB is not equal to 1) , the following applies:
predFlagL0 = (predListFlagB = = 0) ? 1: 0                                                      (1068)
predFlagL1 = (predListFlagB = = 0) ? 0: 1                                                       (1069)
refIdxL0 = (predListFlagB = = 0) ? refIdxB: -1                                          (1070)
refIdxL1 = (predListFlagB = = 0) ? -1: refIdxB                                         (1071)
mvL0 [0] = (predListFlagB = = 0) ? mvB [0] : 0                                        (1072)
mvL0 [1] = (predListFlagB = = 0) ? mvB [1] : 0                                        (1073)
mvL1 [0] = (predListFlagB = = 0) ? 0: mvB [0]                                         (1074)
mvL1 [1] = (predListFlagB = = 0) ? 0: mvB [1]                                         (1075)
– Otherwise (sType is equal to 2 and predListFlagA + predListFlagB is equal to 1) , the following applies:
predFlagL0 = 1                                               (1076)
predFlagL1 = 1                                           (1077)
refIdxL0 = (predListFlagA = = 0) ? refIdxA: refIdxB                 (1078)
refIdxL1 = (predListFlagA = = 0) ? refIdxB: refIdxA                                (1079)
mvL0 [0] = (predListFlagA = = 0) ? mvA [0] : mvB [0]                             (1080)
mvL0 [1] = (predListFlagA = = 0) ? mvA [1] : mvB [1]                             (1081)
mvL1 [0] = (predListFlagA = = 0) ? mvB [0] : mvA [0]                             (1082)
mvL1 [1] = (predListFlagA = = 0) ? mvB [1] : mvA [1]                             (1083)
– The following assignments are made for x = 0..3 and y = 0.. 3:
MvL0 [ (xSbIdx << 2) + x] [ (ySbIdx << 2) + y] = mvL0                               (1084)
MvL1 [ (xSbIdx << 2) + x] [ (ySbIdx << 2) + y] = mvL1                               (1085)
MvDmvrL0 [ (xSbIdx << 2) + x] [ (ySbIdx << 2) + y] = mvL0                           (1086)
MvDmvrL1 [ (xSbIdx << 2) + x] [ (ySbIdx << 2) + y] = mvL1                           (1087)
RefIdxL0 [ (xSbIdx << 2) + x] [ (ySbIdx << 2) + y] = refIdxL0                          (1088)
RedIdxL1 [ (xSbIdx << 2) + x] [ (ySbIdx << 2) + y] = refIdxL1                          (1089)
PredFlagL0 [ (xSbIdx << 2) + x] [ (ySbIdx << 2) + y] = predFlagL0                       (1090)
PredFlagL1 [ (xSbIdx << 2) + x] [ (ySbIdx << 2) + y] = predFlagL1                       (1091)
BcwIdx [ (xSbIdx << 2) + x] [ (ySbIdx << 2) + y] = 0                                 (1092)
2. Drawbacks of Existing Solutions
There are several potential issues in the current design of GEO, which are described below.
(1) The current GEO modes are distributed as symmetric GEO angles and symmetric GEO distances/displacements, which might not efficient for natural video coding.
(2) The current GEO modes can be presented with weighted prediction, which might cause visual artifacts.
3. Embodiments of the Disclosed Technology
The detailed inventions below should be considered as examples to explain general concepts. These inventions should not be interpreted in a narrow way. Furthermore, these inventions can be combined in any manner.
The term ‘GEO’ may represent a coding method that split one block into two or more sub-regions wherein at least one sub-region is non-rectangular, or it couldn’ t be generated by any of existing partitioning structure (e.g., QT/BT/TT) which splits one block into multiple rectangular sub-regions. In one example, for the GEO coded blocks, one or more weighting masks are derived for a coding block based on how the sub-regions are split, and the final prediction signal of the coding block is generated by a weighted-sum of two or more auxiliary prediction signals associated with the sub-regions. The term ‘GEO’ may indicate the geometric merge mode (GEO) , and/or geometric partition mode (GPM) , and/or wedge prediction mode, and/or triangular prediction mode (TPM) .
The term ‘block’ may represent a coding block (CB) , a CU, a PU, a TU, a PB, a TB.
1. Interpretation of a signaled GEO mode index may be adaptively changed from one video unit to another video unit. That is, for a same signaled value, it may be interpreted to different angles and/or different distances.
a) In one example, the mapping between a signaled GEO mode index and its corresponding GEO angle/distance may depend on the block dimension (e.g., ratios of block width and height) .
b) Alternatively, furthermore, the binarization used for GEO mode index coding may be non-fixed length coding wherein for two different modes, number of bins/bits to be coded may be different.
c) In one example, unequal number of GEO modes/angles/displacements/distances may be used in different video units.
i. In one example, how many GEO modes/angles/displacements/distances are used in a video unit may be dependent on block dimension (e.g., width, height, width-height-ratio, and etc. ) .
ii. In one example, more GEO angles may be used in block A, than that be used in block B, wherein A and B may have different dimensions (e.g., A may indicate a block with height larger than width, B may indicate a block with height less than or equal to width) .
iii. In one example, the allowed GEO angles for a video unit may be asymmetric.
iv. In one example, the allowed GEO angles for a video unit may be not rotational symmetry.
v. In one example, the allowed GEO angles for a video unit may be not bilateral symmetry.
vi. In one example, the allowed GEO angles for a video unit may be not quadrantal symmetry.
d) In one example, the video unit may be a block, a VPDU, a tile/slice/picture/subpicture/brick/video.
2. How to represent the GEO mode in a bitstream may be dependent on a priority of a mode, e.g., the priority is determined by the associated GEO angles and/or distances.
a) In one example, the GEO modes which are oriented to smaller size of GEO angles (i.e., size of GEO angles less than X degrees as described in Table 2 of section 2.1.8, such as X=90 or 45) are with a higher priority than the GEO modes which are oriented to larger size of GEO angles (i.e., size of GEO angles greater than X degree) .
b) In one example, the GEO modes associated to smaller GEO angle indices (i.e., GEO angle index less than Y (such as Y=4 or 8 or 16) are with a higher priority than the GEO modes associated to larger GEO angle indices (i.e., GEO angle index larger than Y) .
c) In one example, GEO modes with a higher priority in above claims may require less bins or bits than GEO modes with a lower priority in signaling.
3. GEO modes may be classified into two or more categories. The indication of which category a GEO belongs to may be signaled before other information related to the GEO mode.
a) For example, whether the angle index is signaled in clockwise or anti-clockwise direction may be firstly signaled for a GEO coded block.
i. Definition of clockwise GEO angle index signaling:
1. For example, the GEO angle index signaled in anti-clockwise may mean a smaller GEO angle index represents a smaller size of GEO angle.
a) In one example, as illustrated in FIG. 6 and Table 2 wherein the GEO angle indices are signaled in anti-clockwise, suppose angleIdx = 0 means the size of GEO angle is equal to 0 degree, then angleIdx = 8 means the size of GEO angle is equal to 90 degree; angleIdx = 16 means the size of GEO angle is equal to 180 degree, while angleIdx = 24 means the size of GEO angle is equal to 270 degree.
ii. Definition of clockwise GEO angle index signaling:
1. For example, the GEO angle index signaled in clock-wise may mean a smaller GEO angle index represents a larger size of GEO angle.
a) In one example, conversely of FIG. 6 and Table 2 wherein the GEO angle indices are signaled in anti-clockwise, the clock-wise GEO angle signaling is illustrated in FIG. 7 and Table 3, suppose angleIdx = 0 means the size of GEO angle is equal to 0 degree (equivalent to 360 degree) , then angleIdx =8 may mean the size of GEO angle is equal to 270 degree; angleIdx = 16 may mean the size of GEO angle is equal to 180 degree, while angleIdx =24 may mean the size of GEO angle is equal to 90 degree.
iii. In one example, it may be signaled at video unit level (such as SPS/VPS/PPS/Picture header/Subpicture/Slice/Slice header/Tile/Brick/CTU/VPDU/CU/block level) .
1. In one example, a high-level flag (higher than block level) may be signaled to indicate whether the angle associated with a signaled GEO mode is in clockwise or anti-clockwise direction.
2. In one example, a block-level flag may be signaled to indicate whether the angle associated with a signaled GEO mode is in clockwise or anti-clockwise direction.
Table 3: An example of the relationship between angle index and size of angles (clock-wise)
angleIdx 0 1 2 3 4 5 6 7
size of angle 0.00° 352.87° 345.96° 333.43° 315.00° 296.57° 284.04° 277.13°
angleIdx 8 9 10 11 12 13 14 15
size of angle 270.00° 262.87° 255.96° 243.43° 225.00° 206.57° 194.04° 187.13°
angleIdx 16 17 18 19 20 21 22 23
size of angle 180.00° 172.87° 165.96° 153.43° 135.00° 116.57° 104.04° 97.13°
angleIdx 24 25 26 27 28 29 30 31
size of angle 90.00° 82.87° 75.96° 63.43° 45.00° 26.57° 14.04° 7.13°
4. A subset of GEO modes/angles/displacements/distances may be derived from a whole set of GEO modes/angles/displacements/distances.
a) In one example, only the subset of GEO modes is used for a block.
b) In one example, only the GEO modes associated with the subset of GEO angles/displacements/distances are used for a block.
c) Alternatively, furthermore, an indication of whether the selected mode/angle/displacement/distance is within the subset may be further signaled in a bitstream.
d) In one example, whether a subset of GEO modes/angles/displacements/distances or a full set of GEO modes/angles/displacements/distances is used for a video unit may be dependent on decoded information (e.g., syntax element, and/or block dimensions) of the current video unit or previously decoded video unit (s) .
e) In one example, what GEO modes are in the subset may be dependent on the corresponding GEO angles.
i. In one example, the subset may only contain the GEO modes which are associated with distance/displacement equal to 0.
ii. In one example, the subset may only contain the GEO modes which are associated with specified GEO angles (e.g., GEO modes associated with a predefined subset of GEO angles which may be combined with all displacements corresponding to these predefined GEO angles) .
f) In one example, what GEO modes are in the subset may be dependent on whether LDB (i.e., low-delay B frame) coding is checked.
i. In one example, different subsets of GEO modes may be used for LDB (i.e., low-delay B frame) and RA (i.e., random access) coding.
g) In one example, what GEO modes are in the subset may be dependent on reference pictures in the reference picture lists of the current picture. For example, the status of reference pictures in the reference picture lists may be identified into two cases: Case 1: All reference pictures are prior to the current picture in the displaying order; Case 2: At least one reference picture is after the current picture in the displaying order.
i. In one example, different subsets may be used for Case 1 and Case 2.
h) In one example, what GEO modes are in the subset may be dependent on how the motion candidates are derived.
i. In one example, different subset of GEO modes may be used, depending on whether the motion candidates are derived from temporal motion candidates (e.g., TMVP) or spatial motion candidates, or History-based Motion Vector Prediction (HMVP) or which spatial motion candidates (e.g., left, or top, or top-right) .
i) In one example, the subset of GEO may only contain GEO modes that split a block in the same manner as a TPM mode does.
i. In one example, the subset of GEO may only contains GEO modes that split a block by a line connecting the top-left corner and the bottom-right corner of the block, or by a line connecting the top-right corner and the bottom-left corner of the block.
j) In one example, the subset of GEO may only contain GEO modes corresponding to diagonal angles with one or more distance/displacement indices.
i. In one example, diagonal angles may indicate the GEO modes that corresponding to splitting boundaries that split a block by a line connecting the top-left corner and the bottom-right corner of the block, or by a line connecting the top-right corner and the bottom-left corner of the block.
ii. In one example, the subset of GEO may only contain GEO modes associated with distance/displacement equal to 0.
1. In one example, the subset of GEO may only contain GEO modes corresponding to any angles associated with distance/displacement equal to 0.
2. In one example, the subset of GEO may only contain GEO modes corresponding to diagonal angles (i.e., splitting boundaries from top-left to bottom-right, and/or top-right to bottom-left for a block) associated with distance/displacement equal to 0.
iii. In one example, the subset of GEO may only contain GEO modes corresponding to diagonal angles (i.e., splitting boundaries from top-left to bottom-right, and/or top-right to bottom-left for a block) associated with all distance/displacement indices corresponding to these GEO angles.
1. For example, for a block with width-to-height ratio (i.e., two to the power of log2 (width) –log2 (height) ) equal to X, the subset of GEO may only contain the GEO modes corresponding to the size of GEO angles equal to arctan (X) and/or π-arctan (X) , and/or π+ arctan (X) and/or 2π-arctan (X) and all distance indices (e.g., distanceIdx from 0 to 3 as defined in JVET-Q2001-vB) corresponding to these GEO angles.
k) For example, for a block with width-to-height ratio equal to 1, the subset of GEO may only contain the GEO modes corresponding to the size of GEO angles equal to 45° and/or  135°, and/or 225° and/or 315° (e.g., angle index = 4 and/or 12 and/or 20 and/or 28 as defined in JVET-Q2001-vB) and all distance indices (e.g., distanceIdx from 0 to 3 as defined in JVET-Q2001-vB) corresponding to these GEO angles. In one example, horizontal and/or vertical angles may be included in the subset of GEO angles
i. For example, horizontal angles may mean the angle indices corresponding to 90°and/or 270° as described in Table 2 of section 2.1.8 (i.e., GEO angle index equal to 8 and/or 24 in Table 36 of JVET-Q2001-vB.
ii. For example, vertical angles may mean the angle indices corresponding to 0° and/or 180° as described in Table 2 of section 2.1.8 (i.e., GEO angle index equal to 0 and/or 6 in Table 36 of JVET-Q2001-vB.
iii. In one example, GEO modes associated with horizontal and/or vertical angles combined with distance/displacement equal to 0 may be included in the subset of allowed GEO angles.
1. Alternatively, GEO modes associated with horizontal and/or vertical angles combined with distance/displacement equal to 0 may NOT be included in the subset of allowed GEO angles.
iv. In one example, GEO modes associated with horizontal and/or vertical angles combined with all distance/displacement indices may be included in the subset of allowed GEO angles.
1. Alternatively, GEO modes associated with horizontal and/or vertical angles combined with all distance/displacement indices may NOT be included in the subset of allowed GEO angles.
l) It may be signaled (such as SPS/VPS/PPS/Picture header/Subpicture/Slice/Slice header/Tile/Brick/CTU/VPDU/CU/block level) to indicate whether a subset of GEO modes/angles/displacements/distances is used.
i. It may be further signaled (such as SPS/VPS/PPS/Picture header/Subpicture/Slice/Slice header/Tile/Brick/CTU/VPDU/CU/block level) to indicate which subset of GEO modes/angles/displacements/distances is used.
5. The GEO mode may not coexist with X (such as X is another coding tool that is different from GEO) .
a) In one example, X may indicate weighted prediction.
i. In on example, when weighted prediction is enabled (e.g., at slice level) , the GEO may be disabled on video unit level (such as slice/PPS/SPS/tile/subpicture/CU/PU/TU level) .
ii. In one example, whether GEO is used together with weighted prediction may be dependent on the weighting factor.
1. In one example, if the weighting factor of weighted prediction is greater than T (e.g., T is constant values) , then the GEO may be disabled.
b) In one example, X may indicate BCW.
c) In one example, X may indicate PROF.
d) In one example, X may indicate BDOF.
e) In one example, X may indicate DMVR.
f) In one example, X may indicate SBT.
g) In one example, when GEO is enabled, the coding tool X may be disabled.
i. In one example, the indication of coding tool X may not be signaled if GEO is enabled.
h) In another example, when the coding tool X is enabled, GEO may be disabled.
i. In on example, the indication of GEO may not be signaled if coding tool X is enabled.
i) In another example, when weighted prediction is enabled (e.g., at slice level) , the coding tool X may be disabled.
j) Alternatively, the deblocking process (such as deblocking strength, deblocking edge detection, the type of deblocking edges, and etc. ) may be dependent on whether GEO coexist with coding tool X.
6. The deblocking process (such as deblocking strength, deblocking edge detection, the type of deblocking edges, and etc. ) may be dependent on whether GEO is applied. For a coding unit coded with GEO, the weighting values generated for a first component (such as the luma component) may be used to derive the weighting values for a second component (such as Cb or Cr component) .
a) The derivation may depend on the color format (such as 4: 2: 0 or 4: 2: 2 or 4: 4: 4) .
b) The weighting values for the second component may be derived by applying up-sampling or down-sampling on the weighting values for the first component.
7. The weighting values generated for a component (such as Cb or Cr component) may depend on the color format (such as 4: 2: 0 or 4: 2: 2 or 4: 4: 4) .
a) For example, the GEO angle/displacement/distance associated with a GEO mode may be adjusted to generate the weighting values for a component (such as Cb or Cr component) when the color format is 4: 2: 2.
The examples described above may be incorporated in the context of the method described below, e.g., method 800, which may be implemented at a video decoder or a video encoder.
FIG. 8 shows a flowchart of an example method 800 for video processing. The method includes, at operation 810, making a determination, for a conversion between a current block of a video and a bitstream representation of the video, regarding an enablement of a first coding mode and a second coding mode that is different from the first coding mode, wherein the first coding mode partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region.
The method includes, at operation 820, performing, based on the determination, the conversion.
In some embodiments, the following technical solutions may be implemented:
A1. A method for video processing, comprising: performing a conversion between a current block of a video and a bitstream representation of the video, wherein a coding mode of the current block partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region, wherein the bitstream representation comprises signaling associated with the coding mode, and wherein the signaling corresponds to a set of parameters with a first set of values for the current block and a second set of values for a subsequent block of the video.
A2. The method of solution A1, wherein the signaling comprises an index, and wherein a binarization of the index comprises variable length coding that uses a first number of bins for a first value of the index and a second number of bins for a second value of the index.
A3. The method of solution A1, wherein the signaling comprises an index, and wherein the index is based on a height or a width of the current block.
A4. The method of solution A1, wherein the set of parameters comprises a plurality of angles and a plurality of distances for the at least one non-rectangular or non-square sub-region.
A5. The method of solution A4, wherein the plurality of angles are asymmetric.
A6. The method of solution A4, wherein the plurality of angles are not rotationally symmetric.
A7. The method of solution A4, wherein the plurality of angles are not bilaterally symmetric.
A8. The method of solution A1, wherein a location of the signaling in the bitstream representation is based on a priority of the coding mode.
A9. The method of solution A1, wherein the signaling comprises an indication of a category of the coding mode and other information related to the coding mode.
A10. The method of solution A9, wherein the other information comprises an angle, and wherein the indication comprises an indication of a clockwise or an anti-clockwise direction of the angle.
A11. A method for video processing, comprising: performing a conversion between a current block of a video and a bitstream representation of the video, wherein a coding mode of the current block partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region, wherein the coding mode can be configured using a plurality of parameter sets, and wherein the bitstream representation comprises signaling for a subset of the plurality of parameter sets, and wherein a parameter set comprises angles, displacements and distance associated with the at least one non-rectangular or non-square sub-region.
A12. The method of solution A11, wherein the coding mode uses only the subset of the plurality of parameter sets.
A13. The method of solution A11, wherein a selection of parameter sets in the subset of the plurality of parameter sets is based on syntax elements in the bitstream representation or one or more dimensions of the current block.
A14. The method of solution A11, wherein a selection of parameter sets in the subset of the plurality of parameter sets is based on an enablement of a low-delay B (LDB) frame coding tool.
A15. The method of solution A11, wherein a selection of parameter sets in the subset of the plurality of parameter sets is based on a derivation of motion vector candidates.
A16. The method of solution A15, wherein the motion vector candidates are derived from temporal motion vector prediction (TMVP) candidates, spatial motion candidates, or history-based motion vector prediction (HMVP) candidates.
A17. The method of solution A11, wherein the subset of the plurality of parameter sets comprises the coding modes corresponding to angles of 45°, 135°, 225° and/or 315° upon a determination that a ratio of the a height of the current block to a width of the current block is one.
A18. The method of solution A11, wherein the subset of the plurality of parameter sets comprises the coding modes corresponding to the current block being split by (a) a line connecting a top-left corner and a bottom-right corner of the current block, or (b) a line connecting a top-right corner and a bottom-left corner of the current block.
A19. A method for video processing, comprising: making a determination, for a conversion between a current block of a video and a bitstream representation of the video, regarding an enablement of a first coding mode and a second coding mode that is different from the first coding mode, wherein the first coding mode partitions the current block into two or more sub-regions comprising at least one non-rectangular or non-square sub-region; and performing, based on the determination, the conversion.
A20. The method of solution A19, wherein the second coding mode comprises weighted prediction, and wherein the first coding mode is disabled at a video unit level and the second coding mode is enabled at a slice level.
A21. The method of solution A20, wherein the video unit level is a slice level, a picture parameter set (PPS) level, a sequence parameter set (SPS) level, a tile level, a subpicture level, a coding unit (CU) level, a prediction unit (PU) level, or a transform unit (TU) level.
A22. The method of solution A19, wherein the second coding mode is a bi-prediction with coding unit (CU) weights (BCW) , a prediction refinement with optical flow (PROF) mode, a bi-directional optical flow (BDOF) mode, a decoder-side motion vector refinement (DMVR) mode, or a sub-block transform (SBT) mode.
A23. The method of solution A19, wherein the second coding mode comprises a deblocking process, and wherein enabling the second coding mode is based on the enablement of the first coding mode.
A24. The method of solution A19, wherein the second coding mode comprises weighted prediction, and wherein the weighting values of the weighted prediction for a component is based on a color format of the current block.
A25. The method of solution A24, wherein the component is a Cb component or a Cr component, and wherein the color format is 4: 2: 0, 4: 2: 2 or 4: 4: 4.
A26. The method of any of solutions A1 to A25, wherein the conversion generates the current block from the bitstream representation.
A27. The method of any of solutions A1 to A25, wherein the conversion generates the bitstream representation from the current block.
A28. An apparatus in a video system comprising a processor and a non-transitory memory with instructions thereon, wherein the instructions upon execution by the processor, cause the processor to implement the method in any one of solutions A1 to A27.
A29. A computer program product stored on a non-transitory computer readable media, the computer program product including program code for carrying out the method in any one of solutions A1 to A27.
FIG. 9 is a block diagram of a video processing apparatus 900. The apparatus 900 may be used to implement one or more of the methods described herein. The apparatus 900 may be embodied in a smartphone, tablet, computer, Internet of Things (IoT) receiver, and so on. The apparatus 900 may include one or more processors 902, one or more memories 904 and video processing hardware 906. The processor (s) 902 may be configured to implement one or more methods described in the present document. The memory (memories) 904 may be used for storing data and code used for implementing the methods and techniques described herein. The video processing hardware 906 may be used to implement, in hardware circuitry, some techniques described in the present document.
FIG. 10 is a block diagram that illustrates an example video coding system 300 that may utilize the techniques of this disclosure.
As shown in FIG. 10, video coding system 300 may include a source device 310 and a destination device 320. Source device 310 generates encoded video data which may be referred to as a video encoding device. Destination device 320 may decode the encoded video data generated by source device 310 which may be referred to as a video decoding device.
Source device 310 may include a video source 312, a video encoder 314, and an input/output (I/O) interface 316.
Video source 312 may include a source such as a video capture device, an interface to receive video data from a video content provider, and/or a computer graphics system for generating video data, or a combination of such sources. The video data may comprise one or more pictures. Video encoder 314 encodes the video data from video source 312 to generate a bitstream. The bitstream may include a sequence of bits that form a coded representation of the video data. The bitstream may include coded pictures and associated data. The coded picture is a coded representation of a picture. The associated data may include sequence parameter sets, picture parameter sets, and other syntax structures. I/O interface 316 may include a modulator/demodulator (modem) and/or a transmitter. The encoded video data may be transmitted directly to destination device 320 via I/O interface 316 through network 330a. The encoded video data may also be stored onto a storage medium/server 330b for access by destination device 320.
Destination device 320 may include an I/O interface 326, a video decoder 324, and a display device 322.
I/O interface 326 may include a receiver and/or a modem. I/O interface 326 may acquire encoded video data from the source device 310 or the storage medium/server 330b. Video decoder 324 may decode the encoded video data. Display device 322 may display the decoded video data to a user. Display device 322 may be integrated with the destination device 320, or may be external to destination device 320 which be configured to interface with an external display device.
Video encoder 314 and video decoder 324 may operate according to a video compression standard, such as the High Efficiency Video Coding (HEVC) standard, Versatile Video Coding (VVM) standard and other current and/or further standards.
FIG. 11 is a block diagram illustrating an example of video encoder 400, which may be video encoder 314 in the system 300 illustrated in FIG. 10.
Video encoder 400 may be configured to perform any or all of the techniques of this disclosure. In the example of FIG. 11, video encoder 400 includes a plurality of functional components. The techniques described in this disclosure may be shared among the various components of video encoder 400. In some examples, a processor may be configured to perform any or all of the techniques described in this disclosure.
The functional components of video encoder 400 may include a partition unit 401, a predication unit 402 which may include a mode select unit 403, a motion estimation unit 404, a motion compensation unit 405 and an intra prediction unit 406, a residual generation unit 407, a transform unit 408, a quantization unit 409, an inverse quantization unit 410, an inverse transform unit 411, a reconstruction unit 412, a buffer 413, and an entropy encoding unit 414.
In other examples, video encoder 400 may include more, fewer, or different functional components. In an example, predication unit 402 may include an intra block copy (IBC) unit. The IBC unit may perform predication in an IBC mode in which at least one reference picture is a picture where the current video block is located.
Furthermore, some components, such as motion estimation unit 404 and motion compensation unit 405 may be highly integrated, but are represented in the example of FIG. 11 separately for purposes of explanation.
Partition unit 401 may partition a picture into one or more video blocks. Video encoder 400 and video decoder 500 may support various video block sizes.
Mode select unit 403 may select one of the coding modes, intra or inter, e.g., based on error results, and provide the resulting intra-or inter-coded block to a residual generation unit 407 to generate residual block data and to a reconstruction unit 412 to reconstruct the encoded block for use as a reference picture. In some example, Mode select unit 403 may select a combination of intra and inter predication (CIIP) mode in which the predication is based on an inter predication signal and an intra predication signal. Mode select unit 403 may also select a resolution for a motion vector (e.g., a sub-pixel or integer pixel precision) for the block in the case of inter-predication.
To perform inter prediction on a current video block, motion estimation unit 404 may generate motion information for the current video block by comparing one or more reference frames from buffer 413 to the current video block. Motion compensation unit 405 may determine a predicted video block for the current video block based on the motion information and decoded samples of pictures from buffer 413 other than the picture associated with the current video block.
Motion estimation unit 404 and motion compensation unit 405 may perform different operations for a current video block, for example, depending on whether the current video block is in an I slice, a P slice, or a B slice.
In some examples, motion estimation unit 404 may perform uni-directional prediction for the current video block, and motion estimation unit 404 may search reference pictures of list 0 or list 1 for a reference video block for the current video block. Motion estimation unit 404 may then generate a reference index that indicates the reference picture in list 0 or list 1 that contains the reference video block and a motion vector that indicates a spatial displacement between the current video block and the reference video block. Motion estimation unit 404 may output the reference index, a prediction direction indicator, and the motion vector as the motion information of the current video block. Motion compensation unit 405 may generate the predicted video block of the current block based on the reference video block indicated by the motion information of the current video block.
In other examples, motion estimation unit 404 may perform bi-directional prediction for the current video block, motion estimation unit 404 may search the reference pictures in list 0 for a reference video block for the current video block and may also search the reference pictures in list 1 for another reference video block for the current video block. Motion estimation unit 404 may then generate reference indexes that indicate the reference pictures in list 0 and list 1 containing the reference video blocks and motion vectors that indicate spatial displacements between the reference video blocks and the current video block. Motion estimation unit 404 may output the reference indexes and the motion vectors of the current video block as the motion information of the current video block. Motion compensation unit 405 may generate the predicted video block of the current video block based on the reference video blocks indicated by the motion information of the current video block.
In some examples, motion estimation unit 404 may output a full set of motion information for decoding processing of a decoder.
In some examples, motion estimation unit 404 may do not output a full set of motion information for the current video. Rather, motion estimation unit 404 may signal the motion information of the current video block with reference to the motion information of another video block. For example, motion estimation unit 404 may determine that the motion information of the current video block is sufficiently similar to the motion information of a neighboring video block.
In one example, motion estimation unit 404 may indicate, in a syntax structure associated with the current video block, a value that indicates to the video decoder 500 that the current video block has the same motion information as the another video block.
In another example, motion estimation unit 404 may identify, in a syntax structure associated with the current video block, another video block and a motion vector difference (MVD) . The motion vector difference indicates a difference between the motion vector of the current video block and the motion vector of the indicated video block. The video decoder 500 may use the motion vector of the indicated video block and the motion vector difference to determine the motion vector of the current video block.
As discussed above, video encoder 400 may predictively signal the motion vector. Two examples of predictive signaling techniques that may be implemented by video encoder 400 include advanced motion vector predication (AMVP) and merge mode signaling.
Intra prediction unit 406 may perform intra prediction on the current video block. When intra prediction unit 406 performs intra prediction on the current video block, intra prediction unit 406 may generate prediction data for the current video block based on decoded samples of other video blocks in the same picture. The prediction data for the current video block may include a predicted video block and various syntax elements.
Residual generation unit 407 may generate residual data for the current video block by subtracting (e.g., indicated by the minus sign) the predicted video block (s) of the current video block from the current video block. The residual data of the current video block may include residual video blocks that correspond to different sample components of the samples in the current video block.
In other examples, there may be no residual data for the current video block for the current video block, for example in a skip mode, and residual generation unit 407 may not perform the subtracting operation.
Transform processing unit 408 may generate one or more transform coefficient video blocks for the current video block by applying one or more transforms to a residual video block associated with the current video block.
After transform processing unit 408 generates a transform coefficient video block associated with the current video block, quantization unit 409 may quantize the transform coefficient video block associated with the current video block based on one or more quantization parameter (QP) values associated with the current video block.
Inverse quantization unit 410 and inverse transform unit 411 may apply inverse quantization and inverse transforms to the transform coefficient video block, respectively, to  reconstruct a residual video block from the transform coefficient video block. Reconstruction unit 412 may add the reconstructed residual video block to corresponding samples from one or more predicted video blocks generated by the predication unit 402 to produce a reconstructed video block associated with the current block for storage in the buffer 413.
After reconstruction unit 412 reconstructs the video block, loop filtering operation may be performed reduce video blocking artifacts in the video block.
Entropy encoding unit 414 may receive data from other functional components of the video encoder 400. When entropy encoding unit 414 receives the data, entropy encoding unit 414 may perform one or more entropy encoding operations to generate entropy encoded data and output a bitstream that includes the entropy encoded data.
FIG. 12 is a block diagram illustrating an example of video decoder 500 which may be video decoder 314 in the system 300 illustrated in FIG. 10.
The video decoder 500 may be configured to perform any or all of the techniques of this disclosure. In the example of FIG. 12, the video decoder 500 includes a plurality of functional components. The techniques described in this disclosure may be shared among the various components of the video decoder 500. In some examples, a processor may be configured to perform any or all of the techniques described in this disclosure.
In the example of FIG. 12, video decoder 500 includes an entropy decoding unit 501, a motion compensation unit 502, an intra prediction unit 503, an inverse quantization unit 504, an inverse transformation unit 505 , and a reconstruction unit 506 and a buffer 507. Video decoder 500 may, in some examples, perform a decoding pass generally reciprocal to the encoding pass described with respect to video encoder 400 (FIG. 11) .
Entropy decoding unit 501 may retrieve an encoded bitstream. The encoded bitstream may include entropy coded video data (e.g., encoded blocks of video data) . Entropy decoding unit 501 may decode the entropy coded video data, and from the entropy decoded video data, motion compensation unit 502 may determine motion information including motion vectors, motion vector precision, reference picture list indexes, and other motion information. Motion compensation unit 502 may, for example, determine such information by performing the AMVP and merge mode.
Motion compensation unit 502 may produce motion compensated blocks, possibly performing interpolation based on interpolation filters. Identifiers for interpolation filters to be used with sub-pixel precision may be included in the syntax elements.
Motion compensation unit 502 may use interpolation filters as used by video encoder 400 during encoding of the video block to calculate interpolated values for sub-integer pixels of a reference block. Motion compensation unit 502 may determine the interpolation filters used by video encoder 400 according to received syntax information and use the interpolation filters to produce predictive blocks.
Motion compensation unit 502 may uses some of the syntax information to determine sizes of blocks used to encode frame (s) and/or slice (s) of the encoded video sequence, partition information that describes how each macroblock of a picture of the encoded video sequence is partitioned, modes indicating how each partition is encoded, one or more reference frames (and reference frame lists) for each inter-encoded block, and other information to decode the encoded video sequence.
Intra prediction unit 503 may use intra prediction modes for example received in the bitstream to form a prediction block from spatially adjacent blocks. Inverse quantization unit 503 inverse quantizes, i.e., de-quantizes, the quantized video block coefficients provided in the bitstream and decoded by entropy decoding unit 501. Inverse transform unit 503 applies an inverse transform.
Reconstruction unit 506 may sum the residual blocks with the corresponding prediction blocks generated by motion compensation unit 402 or intra-prediction unit 503 to form decoded blocks. If desired, a deblocking filter may also be applied to filter the decoded blocks in order to remove blockiness artifacts. The decoded video blocks are then stored in buffer 507, which provides reference blocks for subsequent motion compensation/intra predication and also produces decoded video for presentation on a display device.
FIG. 13 is a block diagram showing an example video processing system 1300 in which various techniques disclosed herein may be implemented. Various implementations may include some or all of the components of the system 1300. The system 1300 may include input 1302 for receiving video content. The video content may be received in a raw or uncompressed format, e.g., 8 or 10 bit multi-component pixel values, or may be in a compressed or encoded format. The input 1302 may represent a network interface, a peripheral bus interface, or a storage interface. Examples  of network interface include wired interfaces such as Ethernet, passive optical network (PON) , etc. and wireless interfaces such as Wi-Fi or cellular interfaces.
The system 1300 may include a coding component 1304 that may implement the various coding or encoding methods described in the present document. The coding component 1304 may reduce the average bitrate of video from the input 1302 to the output of the coding component 1304 to produce a coded representation of the video. The coding techniques are therefore sometimes called video compression or video transcoding techniques. The output of the coding component 1304 may be either stored, or transmitted via a communication connected, as represented by the component 1306. The stored or communicated bitstream (or coded) representation of the video received at the input 1302 may be used by the component 1308 for generating pixel values or displayable video that is sent to a display interface 1310. The process of generating user-viewable video from the bitstream representation is sometimes called video decompression. Furthermore, while certain video processing operations are referred to as “coding” operations or tools, it will be appreciated that the coding tools or operations are used at an encoder and corresponding decoding tools or operations that reverse the results of the coding will be performed by a decoder.
Examples of a peripheral bus interface or a display interface may include universal serial bus (USB) or high definition multimedia interface (HDMI) or Displayport, and so on. Examples of storage interfaces include SATA (serial advanced technology attachment) , PCI, IDE interface, and the like. The techniques described in the present document may be embodied in various electronic devices such as mobile phones, laptops, smartphones or other devices that are capable of performing digital data processing and/or video display.
FIG. 14 shows a flowchart of an example method for video processing. The method includes determining (1402) , for a conversion between a current video block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes; determining (1404) one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block; and performing (1406) the conversion based on the one or more partitioning modes.
In some examples, each partitioning mode of the whole set of partitioning modes partition the current video block into two or more partitions, and two or more partitions corresponding to at least one partitioning mode is non-square and non-rectangular.
In some examples, each partitioning mode index is associated with a set of parameters including at least one of angle, distance and/or displacement.
In some examples, the correspondence of the partitioning mode index and the partitions mode depends on a dimension of a video block, wherein the dimension of the video block includes at least one of a height, a width and a ratio of width and height of the video block.
In some examples, a binarization of the partitioning mode index comprises variable length coding that uses a first number of bins for a first partitioning mode and a second number of bins for a second partitioning mode.
In some examples, different number of partitioning modes or different number of the parameters are used in different video blocks.
In some examples, the number of partitioning modes or the number of the parameters used in a video block depends on the dimension of the video block.
In some examples, the number of angles used in the current video block is more than that used in a second video block, wherein the current video block is a video block with height larger than width, and the second video block is a video block with height less than width.
In some examples, the angles are asymmetric.
In some examples, the angles are not rotational symmetry.
In some examples, the angles are not bilateral symmetry.
In some examples, the angles are not quadrantal symmetry.
In some examples, the video block includes at least one of a coding block, a coding unit, a virtual pipeline data unit (VPDU) , a tile, a slice, a picture, a subpicture, a brick or a video.
In some examples, representation of a partitioning mode in the bitstream is dependent on a priority of the partitioning mode.
In some examples, the priority is determined by angles and/or distances associated with the partitioning mode.
In some examples, the partitioning modes which are oriented to angles smaller than a predetermined value with a higher priority than the partitioning mode which are oriented to angles larger than the predetermined value.
In some examples, the predetermined value is 45 or 90.
In some examples, the partitioning modes which are associated with angle indices smaller than a predetermined value with a higher priority than the partitioning mode which are associated with angle indices larger than the predetermined value.
In some examples, the predetermined value is 4 or 8 or 16.
In some examples, the partitioning modes with a higher priority in require less bins or bits than the partitioning modes with a lower priority in signaling.
In some examples, the partitioning modes are classified into two or more categories, and an indication of which category a partitioning mode belongs to is signaled before other information related to the partitioning mode.
In some examples, whether an angle index is signaled in clockwise or anti-clockwise direction is firstly signaled for the video block.
In some examples, when the angle index is signaled in anti-clockwise direction, angle index signalled in anti-clockwise means a smaller angle index, which represents a smaller size of angle.
In some examples, if angleIdx = 0 means the size of angle is equal to 0 degree, angleIdx = 8 means the size of angle is equal to 90 degree; angleIdx = 16 means the size of angle is equal to 180 degree, while angleIdx = 24 means the size of angle is equal to 270 degree.
In some examples, when the angle index is signaled in clockwise direction, angle index signalled in clockwise means a larger angle index, which represents a larger size of angle.
In some examples, if angleIdx = 0 means the size of angle is equal to 0 degree, angleIdx = 8 means the size of angle is equal to 270 degree; angleIdx = 16 means the size of angle is equal to 180 degree, while angleIdx = 24 means the size of angle is equal to 90 degree.
In some examples, the indication is signalled at video block level.
In some examples, the indication is signalled at at least one of SPS, VPS, PPS, Picture header, Subpicture, Slice, Slice header, Tile, Brick, CTU, VPDU, CU and block level.
In some examples, a high-level flag which is higher than block level is signaled to indicate whether an angle associated with a signaled partitioning mode is in clockwise or anti-clockwise direction.
In some examples, a block-level flag is signaled to indicate whether an angle associated with a signaled partitioning mode is in clockwise or anti-clockwise direction.
FIG. 15 shows a flowchart of an example method for video processing. The method includes determining (1502) , for a conversion between a current video block of a video and a bitstream of the current video block, that the video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes, and each partitioning mode is associated with a set of parameters including at least one of angle, distance and/or displacement; deriving (1504) a subset of partitioning modes or parameters from the whole set of partitioning modes or parameters; and performing (1506) the conversion based on the subset of partitioning modes or parameters.
In some examples, each partitioning mode of the whole set of partitioning modes partition the current video block into two or more partitions, at least one of which is non-square and non-rectangular.
In some examples, only the subset of partitioning modes is used for the video block.
In some examples, only the partitioning modes associated with the subset of parameters are used for the video block.
In some examples, an indication of whether a selected partitioning mode or parameter is within the subset is further included in the bitstream.
In some examples, whether a subset of partitioning modes or parameters or a whole set of partitioning modes or parameters is used for a video block is dependent on decoded information of the current video block or one or more previously decoded video blocks.
In some examples, the decoded information includes syntax element and/or block dimensions of the video block.
In some examples, selection of the partitioning modes in the subset of partitioning modes is dependent on the corresponding angles.
In some examples, the subset of partitioning modes only contain the partitioning modes which are associated with distance or displacement equal to 0.
In some examples, the subset of partitioning modes only contain the partitioning modes which are associated with specified angles.
In some examples, the partitioning modes which are associated with specified angles include the partitioning modes associated with a predefined subset of angles which are combined with all displacements corresponding to these predefined angles.
In some examples, selection of the partitioning modes in the subset of partitioning modes is dependent on whether a low-delay B frame (LDB) coding is checked.
In some examples, different subsets of partitioning modes are used for LDB coding and random access (RA) coding.
In some examples, selection of the partitioning modes in the subset of partitioning modes is dependent on reference pictures in reference picture lists of a current picture.
In some examples, different subsets of partitioning modes are used in a first case that all reference pictures are prior to the current picture in the displaying order and in a second case that at least one reference picture is after the current picture in the displaying order.
In some examples, selection of the partitioning modes in the subset of partitioning modes is dependent on a derivation of motion vector candidates.
In some examples, different subsets of partitioning modes are used when the motion vector candidates are derived from temporal motion vector prediction (TMVP) candidates, spatial motion candidates, or history-based motion vector prediction (HMVP) candidates.
In some examples, the subset of partitioning modes only contain the partitioning modes that split a block in the same manner as a TPM mode.
In some examples, the subset of partitioning modes only contains the partitioning modes that split a block by a line connecting a top-left corner and a bottom-right corner of the block, or by a line connecting a top-right corner and a bottom-left corner of the block.
In some examples, the subset of partitioning modes only contain the partitioning modes corresponding to diagonal angles with one or more distance or displacement indices.
In some examples, the diagonal angles indicate the partitioning modes that corresponding to splitting boundaries that split a block by a line connecting a top-left corner and a bottom-right corner of a block, or by a line connecting a top-right corner and a bottom-left corner of the block.
In some examples, the subset of partitioning modes only contain the partitioning modes which are associated with distance or displacement equal to 0.
In some examples, the subset of partitioning modes only contain the partitioning modes corresponding to any angles associated with distance or displacement equal to 0.
In some examples, the subset of partitioning modes only contain the partitioning modes corresponding to diagonal angles associated with distance or displacement equal to 0.
In some examples, the subset of partitioning modes only contain the partitioning modes corresponding to diagonal angles associated with all distance or displacement indices corresponding to these angles.
In some examples, for a block with width-to-height ratio equal to X, the subset of partitioning modes only contain the partitioning modes corresponding to a size of angles equal to arctan (X) and/or π-arctan (X) , and/or π+ arctan (X) and/or 2π-arctan (X) and all distance indices corresponding to these angles, X being an integer.
In some examples, X=1.
In some examples, horizontal angles and/or vertical angles are included in the subset of angles.
In some examples, the horizontal angles indicate angle indices corresponding to 90°and/or 270°.
In some examples, the vertical angles indicate angle indices corresponding to 0° and/or 180°.
In some examples, the partitioning modes associated with the horizontal angels and/or the vertical angles combined with distance/displacement equal to 0 are included in the subset of allowed angles.
In some examples, the partitioning modes associated with the horizontal angels and/or the vertical angles combined with distance or displacement equal to 0 are not included in the subset of allowed angles.
In some examples, the partitioning modes associated with the horizontal angels and/or the vertical angles combined with all distance or displacement indices are included in the subset of allowed angles.
In some examples, the partitioning modes associated with the horizontal angels and/or the vertical angles combined with all distance or displacement indices are not included in the subset of allowed angles.
In some examples, an indication of whether a subset of partitioning modes or parameters is used is signaled at at least one of SPS, VPS, PPS, Picture header, Subpicture, Slice, Slice header, Tile, Brick, CTU, VPDU, CU and block level.
In some examples, an indication of which subset of partitioning modes or parameters is used is further signaled at at least one of SPS, VPS, PPS, Picture header, Subpicture, Slice, Slice header, Tile, Brick, CTU, VPDU, CU and block level.
FIG. 16 shows a flowchart of an example method for video processing. The method includes determining (1602) , for a conversion between a video block of a video and a bitstream of the video block, an enablement of a geometric partitioning mode and a second coding mode different from the geometric partitioning mode for the video block; and performing (1604) the conversion based on the determination.
In some examples, the geometric partitioning mode includes a whole set of partitioning modes, each partitioning mode of the whole set of partitioning modes partition the current video block into two or more partitions, and two or more partitions corresponding to at least one partitioning mode is non-square and non-rectangular.
In some examples, the second coding mode includes weighted prediction.
In some examples, when the weighted prediction is enabled, the geometric partitioning mode is disabled at video block level.
In some examples, when the weighted prediction is enabled at slice level, the geometric partitioning mode is disabled at at least one of slice, PPS, SPS, tile, subpicture, CU, PU or TU level.
In some examples, whether the geometric partitioning mode is used together with the weighted prediction is dependent on weighting factor of the weighted prediction.
In some examples, if the weighting factor of weighted prediction is greater than T, the geometric partitioning mode is disabled, where T is a constant value.
In some examples, the second coding mode includes a bi-prediction with coding unit (CU) weights (BCW) , a prediction refinement with optical flow (PROF) mode, a bi-directional optical flow (BDOF) mode, a decoder-side motion vector refinement (DMVR) mode, or a sub-block transform (SBT) mode.
In some examples, when the geometric partitioning mode is enabled, the second coding mode is disabled.
In some examples, when the geometric partitioning mode is enabled, an indication of the second coding mode is not signaled.
In some examples, when the second coding mode is enabled, the geometric partitioning mode is disabled.
In some examples, when the second coding mode is enabled, an indication of the geometric partitioning mode is not signaled.
In some examples, when weighted prediction is enabled, the second coding mode is disabled.
In some examples, a deblocking process associated with the video block is dependent on whether the geometric partitioning mode and the second coding mode are both enabled.
FIG. 17 shows a flowchart of an example method for video processing. The method includes determining (1702) , for a conversion between a video block of a video and a bitstream of the video block, a deblocking process associated with the video block based on whether the current video block is coded with a geometric partitioning mode and/or color format of the current video block; and performing (1704) the conversion based on the deblocking parameters.
In some examples, the geometric partitioning mode includes a whole set of partitioning modes, each partitioning mode of the whole set of partitioning modes partition the current video block into two or more partitions, and two or more partitions corresponding to at least one partitioning mode is non-square and non-rectangular.
In some examples, when video block is coded with the geometric partitioning mode, weighting values of a weighted prediction generated for a first component of the video block is used to derive weighting values for a second component of the video block.
In some examples, the first component is luma component, and the second component is Cb or Cr component.
In some examples, the derivation depends on color format of the video block.
In some examples, the color format is 4: 2: 0, 4: 2: 2 or 4: 4: 4.
In some examples, the weighting values for the second component are derived by applying up-sampling or down-sampling on the weighting values for the first component.
In some examples, weighting values of weighted prediction for a component is based on the color format of the video block.
In some examples, the component is a Cb component or a Cr component, and wherein the color format is 4: 2: 0, 4: 2: 2 or 4: 4: 4.
In some examples, when the color format is 4: 2: 2, the parameters associated with the partitioning mode are adjusted to generate the weighting values for the component.
In some examples, the geometric partitioning mode includes one or more of a geometric merge mode, a geometric partition mode, a wedge prediction mode, and a triangular prediction mode.
In some examples, the conversion includes encoding the video block into the bitstream.
In some examples, the conversion includes decoding the video block from the bitstream.
In some examples, the conversion includes generating the bitstream from the video block; the method further comprising: storing the bitstream in a non-transitory computer-readable recording medium.
FIG. 17 shows a flowchart of an example method for video processing. The method includes determining (1702) , for a conversion between a current video block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes; determining (1704) one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block; generating (1706) the bitstream from the video block the one or more partitioning modes; and storing (1708) the bitstream in a non-transitory computer-readable recording medium.
From the foregoing, it will be appreciated that specific embodiments of the presently disclosed technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the scope of the invention. Accordingly, the presently disclosed technology is not limited except as by the appended claims.
Implementations of the subject matter and the functional operations described in this patent document can be implemented in various systems, digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Implementations of the subject matter described in this specification can be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a tangible and non-transitory computer readable medium for execution by, or to control the operation of, data processing apparatus. The computer readable medium can be a machine-readable storage  device, a machine-readable storage substrate, a memory device, a composition of matter effecting a machine-readable propagated signal, or a combination of one or more of them. The term “data processing unit” or “data processing apparatus” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The apparatus can include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.
A computer program (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document) , in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code) . A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.
The processes and logic flows described in this specification can be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows can also be performed by, and apparatus can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit) .
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random access memory or both. The essential elements of a computer are a processor for performing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical  disks, or optical disks. However, a computer need not have such devices. Computer readable media suitable for storing computer program instructions and data include all forms of nonvolatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices. The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
While this patent document contains many specifics, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this patent document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. Moreover, the separation of various system components in the embodiments described in this patent document should not be understood as requiring such separation in all embodiments.
Only a few implementations and examples are described and other implementations, enhancements and variations can be made based on what is described and illustrated in this patent document.

Claims (98)

  1. A method for video processing, comprising:
    determining, for a conversion between a current video block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes;
    determining one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block; and
    performing the conversion based on the one or more partitioning modes.
  2. The method of claim 1, wherein each partitioning mode of the whole set of partitioning modes partition the current video block into two or more partitions, and two or more partitions corresponding to at least one partitioning mode is non-square and non-rectangular.
  3. The method of claim 1 or 2, wherein each partitioning mode index is associated with a set of parameters including at least one of angle, distance and/or displacement.
  4. The method of claim 3, wherein the correspondence of the partitioning mode index and the partitions mode depends on a dimension of a video block, wherein the dimension of the video block includes at least one of a height, a width and a ratio of width and height of the video block.
  5. The method of any of claims 1-4, wherein a binarization of the partitioning mode index comprises variable length coding that uses a first number of bins for a first partitioning mode and a second number of bins for a second partitioning mode.
  6. The method of claim 4, wherein different number of partitioning modes or different number of the parameters are used in different video blocks.
  7. The method of claim 6, wherein the number of partitioning modes or the number of the parameters used in a video block depends on the dimension of the video block.
  8. The method of claim 7, wherein the number of angles used in the current video block is more than that used in a second video block, wherein the current video block is a video block with height larger than width, and the second video block is a video block with height less than width.
  9. The method of claim 8, wherein the angles are asymmetric.
  10. The method of claim 8, wherein the angles are not rotational symmetry.
  11. The method of claim 8, wherein the angles are not bilateral symmetry.
  12. The method of claim 8, wherein the angles are not quadrantal symmetry.
  13. The method of claim 12, wherein the video block includes at least one of a coding block, a coding unit, a virtual pipeline data unit (VPDU) , a tile, a slice, a picture, a subpicture, a brick or a video.
  14. The method of claim 1, wherein representation of a partitioning mode in the bitstream is dependent on a priority of the partitioning mode.
  15. The method of claim 14, wherein the priority is determined by angles and/or distances associated with the partitioning mode.
  16. The method of claim 15, wherein the partitioning modes which are oriented to angles smaller than a predetermined value with a higher priority than the partitioning mode which are oriented to angles larger than the predetermined value.
  17. The method of claim 16, wherein the predetermined value is 45 or 90.
  18. The method of claim 15, wherein the partitioning modes which are associated with angle indices smaller than a predetermined value with a higher priority than the partitioning mode which are associated with angle indices larger than the predetermined value.
  19. The method of claim 18, wherein the predetermined value is 4 or 8 or 16.
  20. The method of any of claims 14-19, wherein the partitioning modes with a higher priority in require less bins or bits than the partitioning modes with a lower priority in signaling.
  21. The method of any of claims 1-20, wherein the partitioning modes are classified into two or more categories, and an indication of which category a partitioning mode belongs to is signaled before other information related to the partitioning mode.
  22. The method of claim 21, wherein whether an angle index is signaled in clockwise or anti-clockwise direction is firstly signaled for the video block.
  23. The method of claim 21, wherein when the angle index is signaled in anti-clockwise direction, angle index signalled in anti-clockwise means a smaller angle index, which represents a smaller size of angle.
  24. The method of claim 23, wherein if angleIdx = 0 means the size of angle is equal to 0 degree, angleIdx = 8 means the size of angle is equal to 90 degree; angleIdx = 16 means the size of angle is equal to 180 degree, while angleIdx = 24 means the size of angle is equal to 270 degree.
  25. The method of claim 21, wherein when the angle index is signaled in clockwise direction, angle index signalled in clockwise means a larger angle index, which represents a larger size of angle.
  26. The method of claim 25, wherein if angleIdx = 0 means the size of angle is equal to 0 degree, angleIdx = 8 means the size of angle is equal to 270 degree; angleIdx = 16 means the size of angle is equal to 180 degree, while angleIdx = 24 means the size of angle is equal to 90 degree.
  27. The method of claim 21, wherein the indication is signalled at video block level.
  28. The method of claim 27, wherein the indication is signalled at at least one of SPS, VPS, PPS, Picture header, Subpicture, Slice, Slice header, Tile, Brick, CTU, VPDU, CU and block level.
  29. The method of claim 28, wherein a high-level flag which is higher than block level is signaled to indicate whether an angle associated with a signaled partitioning mode is in clockwise or anti-clockwise direction.
  30. The method of claim 28, wherein a block-level flag is signaled to indicate whether an angle associated with a signaled partitioning mode is in clockwise or anti-clockwise direction.
  31. A method for video processing, comprising:
    determining, for a conversion between a current video block of a video and a bitstream of the current video block, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes which including multiple subset of partitioning modes, and each partitioning mode is associated with a set of parameters including at least one of angle, distance and/or displacement;
    selecting a subset of partitioning modes or parameters from the whole set of partitioning modes or parameters for the current video block; and
    performing the conversion based on the subset of partitioning modes or parameters.
  32. The method of claim 31, wherein each partitioning mode of the whole set of partitioning modes partition the current video block into two or more partitions, and two or more partitions corresponding to at least one partitioning mode is non-square and non-rectangular.
  33. The method of claim 31, wherein only the subset of partitioning modes is used for the video block.
  34. The method of claim 31, wherein only the partitioning modes associated with the subset of parameters are used for the video block.
  35. The method of claim 31, wherein an indication of whether a selected partitioning mode or parameter is within the subset is further included in the bitstream.
  36. The method of claim 31, wherein whether a subset of partitioning modes or parameters or a whole set of partitioning modes or parameters is used for a video block is dependent on decoded information of the current video block or one or more previously decoded video blocks.
  37. The method of claim 36, wherein the decoded information includes syntax element and/or block dimensions of the video block.
  38. The method of claim 31, wherein selection of the partitioning modes in the subset of partitioning modes is dependent on the corresponding angles.
  39. The method of claim 37, wherein the subset of partitioning modes only contain the partitioning modes which are associated with distance or displacement equal to 0.
  40. The method of claim 38, wherein the subset of partitioning modes only contain the partitioning modes which are associated with specified angles.
  41. The method of claim 40, wherein the partitioning modes which are associated with specified angles include the partitioning modes associated with a predefined subset of angles which are combined with all displacements corresponding to these predefined angles.
  42. The method of claim 31, wherein selection of the partitioning modes in the subset of partitioning modes is dependent on whether a low-delay B frame (LDB) coding is checked.
  43. The method of claim 42, wherein different subsets of partitioning modes are used for LDB coding and random access (RA) coding.
  44. The method of claim 31, wherein selection of the partitioning modes in the subset of partitioning modes is dependent on reference pictures in reference picture lists of a current picture.
  45. The method of claim 44, wherein different subsets of partitioning modes are used in a first case that all reference pictures are prior to the current picture in the displaying order and in a second case that at least one reference picture is after the current picture in the displaying order.
  46. The method of claim 31, wherein selection of the partitioning modes in the subset of partitioning modes is dependent on a derivation of motion vector candidates.
  47. The method of claim 46, wherein different subsets of partitioning modes are used when the motion vector candidates are derived from temporal motion vector prediction (TMVP) candidates, spatial motion candidates, or history-based motion vector prediction (HMVP) candidates.
  48. The method of claim 38, wherein the subset of partitioning modes only contain the partitioning modes that split a block in the same manner as a TPM mode.
  49. The method of claim 48, wherein the subset of partitioning modes only contains the partitioning modes that split a block by a line connecting a top-left corner and a bottom-right corner of the block, or by a line connecting a top-right corner and a bottom-left corner of the block.
  50. The method of claim 38, wherein the subset of partitioning modes only contain the partitioning modes corresponding to diagonal angles with one or more distance or displacement indices.
  51. The method of claim 50, wherein the diagonal angles indicate the partitioning modes that corresponding to splitting boundaries that split a block by a line connecting a top-left corner and a bottom-right corner of a block, or by a line connecting a top-right corner and a bottom-left corner of the block.
  52. The method of claim 50, wherein the subset of partitioning modes only contain the partitioning modes which are associated with distance or displacement equal to 0.
  53. The method of claim 52, wherein the subset of partitioning modes only contain the partitioning modes corresponding to any angles associated with distance or displacement equal to 0.
  54. The method of claim 52, wherein the subset of partitioning modes only contain the partitioning modes corresponding to diagonal angles associated with distance or displacement equal to 0.
  55. The method of claim 50, wherein the subset of partitioning modes only contain the partitioning modes corresponding to diagonal angles associated with all distance or displacement indices corresponding to these angles.
  56. The method of claim 55, wherein for a block with width-to-height ratio equal to X, the subset of partitioning modes only contain the partitioning modes corresponding to a size of angles equal to arctan (X) and/or π-arctan (X) , and/or π+ arctan (X) and/or 2π-arctan (X) and all distance indices corresponding to these angles, X being an integer.
  57. The method of claim 56, wherein X=1.
  58. The method of claim 57, wherein horizontal angles and/or vertical angles are included in the subset of angles.
  59. The method of claim 58, wherein the horizontal angles indicate angle indices corresponding to 90° and/or 270°.
  60. The method of claim 58, wherein the vertical angles indicate angle indices corresponding to 0° and/or 180°.
  61. The method of claim 58, wherein the partitioning modes associated with the horizontal angels and/or the vertical angles combined with distance/displacement equal to 0 are included in the subset of allowed angles.
  62. The method of claim 58, wherein the partitioning modes associated with the horizontal angels and/or the vertical angles combined with distance or displacement equal to 0 are not included in the subset of allowed angles.
  63. The method of claim 58, wherein the partitioning modes associated with the horizontal angels and/or the vertical angles combined with all distance or displacement indices are included in the subset of allowed angles.
  64. The method of claim 58, wherein the partitioning modes associated with the horizontal angels and/or the vertical angles combined with all distance or displacement indices are not included in the subset of allowed angles.
  65. The method of any of claims 31-64, wherein an indication of whether a subset of partitioning modes or parameters is used is signaled at at least one of SPS, VPS, PPS, Picture header, Subpicture, Slice, Slice header, Tile, Brick, CTU, VPDU, CU and block level.
  66. The method of claim 65, wherein an indication of which subset of partitioning modes or parameters is used is further signaled at at least one of SPS, VPS, PPS, Picture header, Subpicture, Slice, Slice header, Tile, Brick, CTU, VPDU, CU and block level.
  67. A method for video processing, comprising:
    determining, for a conversion between a video block of a video and a bitstream of the video block, an enablement of a geometric partitioning mode and a second coding mode different from the geometric partitioning mode for the video block; and
    performing the conversion based on the determination.
  68. The method of claim 67, wherein the geometric partitioning mode includes a whole set of partitioning modes, each partitioning mode of the whole set of partitioning modes partition the current video block into two or more partitions, and two or more partitions corresponding to at least one partitioning mode is non-square and non-rectangular.
  69. The method of claim 68, wherein the second coding mode includes weighted prediction.
  70. The method of claim 69, wherein when the weighted prediction is enabled, the geometric partitioning mode is disabled at video block level.
  71. The method of claim 70, wherein when the weighted prediction is enabled at slice level, the geometric partitioning mode is disabled at at least one of slice, PPS, SPS, tile, subpicture, CU, PU or TU level.
  72. The method of claim 69, wherein whether the geometric partitioning mode is used together with the weighted prediction is dependent on weighting factor of the weighted prediction.
  73. The method of claim 72, wherein if the weighting factor of weighted prediction is greater than T, the geometric partitioning mode is disabled, where T is a constant value.
  74. The method of claim 68, wherein the second coding mode includes a bi-prediction with coding unit (CU) weights (BCW) , a prediction refinement with optical flow (PROF) mode, a bi-directional optical flow (BDOF) mode, a decoder-side motion vector refinement (DMVR) mode, or a sub-block transform (SBT) mode.
  75. The method of claim 68, wherein when the geometric partitioning mode is enabled, the second coding mode is disabled.
  76. The method of claim 75, wherein when the geometric partitioning mode is enabled, an indication of the second coding mode is not signaled.
  77. The method of claim 68, wherein when the second coding mode is enabled, the geometric partitioning mode is disabled.
  78. The method of claim 77, wherein when the second coding mode is enabled, an indication of the geometric partitioning mode is not signaled.
  79. The method of claim 68, wherein when weighted prediction is enabled, the second coding mode is disabled.
  80. The method of claim 68, wherein a deblocking process associated with the video block is dependent on whether the geometric partitioning mode and the second coding mode are both enabled.
  81. A method for video processing, comprising:
    determining, for a conversion between a video block of a video and a bitstream of the video block, a deblocking process associated with the video block based on whether the current video block is coded with a geometric partitioning mode and/or color format of the current video block; and
    performing the conversion based on the deblocking process.
  82. The method of claim 81, wherein the geometric partitioning mode includes a whole set of partitioning modes, each partitioning mode of the whole set of partitioning modes partition the current video block into two or more partitions, and two or more partitions corresponding to at least one partitioning mode is non-square and non-rectangular.
  83. The method of claim 82, wherein when video block is coded with the geometric partitioning mode, weighting values of a weighted prediction generated for a first component of the video block is used to derive weighting values for a second component of the video block.
  84. The method of claim 83, wherein the first component is luma component, and the second component is Cb or Cr component.
  85. The method of claim 84, wherein the derivation depends on color format of the video block.
  86. The method of claim 85, wherein the color format is 4: 2: 0, 4: 2: 2 or 4: 4: 4.
  87. The method of claim 83, wherein the weighting values for the second component are derived by applying up-sampling or down-sampling on the weighting values for the first component.
  88. The method of claim 81, wherein weighting values of weighted prediction for a component is based on the color format of the video block.
  89. The method of claim 88, wherein the component is a Cb component or a Cr component, and wherein the color format is 4: 2: 0, 4: 2: 2 or 4: 4: 4.
  90. The method of claim 89, wherein when the color format is 4: 2: 2, the parameters associated with the partitioning mode are adjusted to generate the weighting values for the component.
  91. The method of any of claims 1-90, wherein the geometric partitioning mode includes one or more of a geometric merge mode, a geometric partition mode, a wedge prediction mode, and a triangular prediction mode.
  92. The method of any of claims 1-91, wherein the conversion includes encoding the video block into the bitstream.
  93. The method of any of claims 1-91, wherein the conversion includes decoding the video block from the bitstream.
  94. The method of any of claims 1-91, wherein the conversion includes generating the bitstream from the video block;
    the method further comprising:
    storing the bitstream in a non-transitory computer-readable recording medium.
  95. An apparatus for processing video data comprising a processor and a non-transitory memory with instructions thereon, wherein the instructions upon execution by the processor, cause the processor to:
    determining, for a conversion between a current video block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes;
    determining one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block; and
    performing the conversion based on the one or more partitioning modes.
  96. A non-transitory computer readable media storing instructions that cause a processor to:
    determining, for a conversion between a current video block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes;
    determining one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block; and
    performing the conversion based on the one or more partitioning modes.
  97. A non-transitory computer readable media storing a bitstream of a video which is generated by a method performed by a video processing apparatus, wherein the method comprises:
    determining, for a conversion between a current video block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes;
    determining one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block; and
    generating the bitstream from the video block based on the one or more partitioning modes.
  98. A method for storing bitstream of a video, comprising:
    determining, for a conversion between a current video block of a video and a bitstream of the video, that the current video block is coded with a geometric partitioning mode, wherein the geometric partitioning mode includes a whole set of partitioning modes;
    determining one or more partitioning modes for the current video block based on a partitioning mode index included in the bitstream, wherein the partitioning mode index corresponds to different partitions mode from one video block to another video block;
    generating the bitstream from the video block the one or more partitioning modes; and
    storing the bitstream in a non-transitory computer-readable recording medium.
PCT/CN2021/075821 2020-02-07 2021-02-07 Geometric partitioning mode WO2021155865A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180013097.8A CN115136601A (en) 2020-02-07 2021-02-07 Geometric segmentation mode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020074499 2020-02-07
CNPCT/CN2020/074499 2020-02-07

Publications (1)

Publication Number Publication Date
WO2021155865A1 true WO2021155865A1 (en) 2021-08-12

Family

ID=77200518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075821 WO2021155865A1 (en) 2020-02-07 2021-02-07 Geometric partitioning mode

Country Status (2)

Country Link
CN (1) CN115136601A (en)
WO (1) WO2021155865A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023158765A1 (en) * 2022-02-16 2023-08-24 Beijing Dajia Internet Information Technology Co., Ltd. Methods and devices for geometric partitioning mode split modes reordering with pre-defined modes order

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012097740A1 (en) * 2011-01-19 2012-07-26 华为技术有限公司 Encoding/decoding method and device for identifying geometric division mode of image block
CN104853201A (en) * 2010-07-02 2015-08-19 数码士控股有限公司 Apparatus and method for encoding/decoding image for intra-prediction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104853201A (en) * 2010-07-02 2015-08-19 数码士控股有限公司 Apparatus and method for encoding/decoding image for intra-prediction
WO2012097740A1 (en) * 2011-01-19 2012-07-26 华为技术有限公司 Encoding/decoding method and device for identifying geometric division mode of image block

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
H. GAO (HUAWEI), S. ESENLIK (HUAWEI), E. ALSHINA (HUAWEI), A. M. KOTRA (HUAWEI), B. WANG (HUAWEI), M. BLÄSER (RWTH-AACHEN), J. SAU: "CE4: CE4-1.1, CE4-1.2 and CE4-1.14: Geometric Merge Mode (GEO)", 16. JVET MEETING; 20191001 - 20191011; GENEVA; (THE JOINT VIDEO EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ), 25 September 2019 (2019-09-25), XP030216131 *
H. GAO (HUAWEI), S. ESENLIK (HUAWEI), E. ALSHINA (HUAWEI), A. M. KOTRA (HUAWEI), B. WANG (HUAWEI), M. BLÄSER (RWTH-AACHEN), J. SAU: "CE4: CE4-1.7, CE4-1.8: GEO and TPM Blending Off for SCC", 16. JVET MEETING; 20191001 - 20191011; GENEVA; (THE JOINT VIDEO EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ), 17 September 2019 (2019-09-17), XP030216134 *
J. LI (PANASONIC), C. S. LIM (PANASONIC): "Non-CE4: Modifications of TPM and GEO", 16. JVET MEETING; 20191001 - 20191011; GENEVA; (THE JOINT VIDEO EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ), 26 September 2019 (2019-09-26), XP030216516 *
Z. DENG (BYTEDANCE), L. ZHANG (BYTEDANCE), H. LIU (BYTEDANCE), K. ZHANG (BYTEDANCE), Y. WANG (BYTEDANCE): "CE4-related: Further constraints on block shapes for GEO", 17. JVET MEETING; 20200107 - 20200117; BRUSSELS; (THE JOINT VIDEO EXPLORATION TEAM OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ), 31 December 2019 (2019-12-31), XP030223128 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023158765A1 (en) * 2022-02-16 2023-08-24 Beijing Dajia Internet Information Technology Co., Ltd. Methods and devices for geometric partitioning mode split modes reordering with pre-defined modes order

Also Published As

Publication number Publication date
CN115136601A (en) 2022-09-30

Similar Documents

Publication Publication Date Title
US11438597B2 (en) Quantized residual differential pulse code modulation representation of coded video
US11700378B2 (en) High level syntax for inter prediction with geometric partitioning
US11706414B2 (en) Residual coding for transform skipped blocks
US11758143B2 (en) Motion vector handling in geometry partition mode
WO2021129682A1 (en) Improvements on merge mode
WO2021204190A1 (en) Motion vector difference for block with geometric partition
US20230247199A1 (en) Simplified Inter Prediction With Geometric Partitioning
WO2021155865A1 (en) Geometric partitioning mode
US20230097850A1 (en) Intra block copy using non-adjacent neighboring blocks
US20220337867A1 (en) Motion vector difference for block with geometric partition
US20220217341A1 (en) Adaptive resolution change and scalable coding for screen contents
US20230262226A1 (en) Sample string processing in intra coding
WO2023061305A1 (en) Method, apparatus, and medium for video processing
US20230262225A1 (en) Video coding using sample string vector
WO2023030504A1 (en) Method, device, and medium for video processing
US20240129518A1 (en) Method, device, and medium for video processing
WO2023056895A1 (en) Method, apparatus, and medium for video processing
WO2023040972A1 (en) Method, apparatus, and medium for video processing
WO2023284694A1 (en) Method, apparatus, and medium for video processing
US20230276044A1 (en) Constraints on intra block copy using non-adjacent neighboring blocks
WO2021185306A1 (en) Intra block copy buffer and palette predictor update
WO2023040993A1 (en) Method, device, and medium for video processing
WO2023061306A1 (en) Method, apparatus, and medium for video processing
WO2023198120A1 (en) Method, apparatus, and medium for video processing
WO2022262689A1 (en) Method, device, and medium for video processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750124

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21750124

Country of ref document: EP

Kind code of ref document: A1