WO2021155519A1 - Apparatus and method for operating non-access stratum signalling connection over data bearers - Google Patents

Apparatus and method for operating non-access stratum signalling connection over data bearers Download PDF

Info

Publication number
WO2021155519A1
WO2021155519A1 PCT/CN2020/074368 CN2020074368W WO2021155519A1 WO 2021155519 A1 WO2021155519 A1 WO 2021155519A1 CN 2020074368 W CN2020074368 W CN 2020074368W WO 2021155519 A1 WO2021155519 A1 WO 2021155519A1
Authority
WO
WIPO (PCT)
Prior art keywords
nas
nas signalling
network
user equipment
signalling connection
Prior art date
Application number
PCT/CN2020/074368
Other languages
French (fr)
Inventor
Chenho Chin
Jianhua Liu
Haorui YANG
Yang Xu
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to PCT/CN2020/074368 priority Critical patent/WO2021155519A1/en
Priority to PCT/CN2020/078305 priority patent/WO2021155619A1/en
Publication of WO2021155519A1 publication Critical patent/WO2021155519A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • the present disclosure relates to the field of communication systems, and more particularly, to an apparatus and a method for operating a non-access stratum (NAS) signalling connection over a user plane or over a data radio bearer (DRB) of a PDU session or a PDU session.
  • NAS non-access stratum
  • DRB data radio bearer
  • a 3rd generation partnership project (3GPP) has developed a non-public network (NPN) feature in a release 16 that allows enterprises, factories, consortium companies, etc., to have their own private networks.
  • NPN non-public network
  • NPN could be deployed as a part of an operator, a public land mobile network (PLMN) , or it can be totally own by a private operator and in 3GPP-speak this are called standalone non-public networks (SNPNs) because logically speaking these NPNs are standalone networks logically different from PLMNs.
  • PLMN public land mobile network
  • SNPNs standalone non-public networks
  • Layer 3 protocols that govern and control an access, a registration, and a signalling between a user equipment (UE) and a network and/or a PLMN for services are responsibilities of a 3GPP technical specification group core network and terminals working group 1 (3GPP TSG CT WG1) (also known as CT1) .
  • Layer 3 protocol machine is a non-access stratum (NAS) , as complemented by an access stratum protocol machine, a radio resource control (RRC) .
  • NAS non-access stratum
  • RRC radio resource control
  • the NAS is specified in TS 24.501 for 5GS, TS 24.301 for long term evolution (LTE) /system architecture evolution (SAE) ) and TS 24.008 for universal mobile telecommunications system (UMTS) , general packet radio service (GPRS) , and second generation (2G) system.
  • LTE long term evolution
  • SAE system architecture evolution
  • UMTS universal mobile telecommunications system
  • GPRS general packet radio service
  • 2G second generation
  • N1 connection When NAS of the UE signals towards an access and mobility management function (AMF) , there is an N1 connection.
  • AMF access and mobility management function
  • CT1-speak this is a NAS signalling connection.
  • TS 24.501 there is this definition for N1 NAS signalling connection, as follows:
  • N1 NAS signalling connection a peer to peer N1 mode connection between the UE and the AMF.
  • An N1 NAS signalling connection is either a concatenation of an RRC connection via a Uu reference point and an NG connection via a N2 reference point for 3GPP access, or a concatenation of an IPsec tunnel via an NWu reference point and an NG connection via the N2 reference point for non-3GPP access.
  • NAS signalling has not been performed through a user plane defined by 3GPP, and in current release 16 specifications, there is no ability (means, method, identification) that allows a distinction of such NAS signalling within a user plane.
  • a user plane can be in 3GPP-speak, be a PDU session or the DRB of a PDU session.
  • method, identification what is signaled by NAS (on one side of the peer-to-peer protocols) cannot be guaranteed to be delivered to its peer as signalling message (s) .
  • a peer-to-peer signalling can be made to work reliably in a standardized way.
  • NAS non-access stratum
  • An object of the present disclosure is to propose an apparatus and a method for operating a non-access stratum (NAS) signalling connection over a user plane or over a data radio bearer of a PDU session or a PDU session, which can provide a protocol architecture solution for a NAS of a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) capable UE to seek the PLMN service over a (S) NPN and use the NAS signalling connection to enable a NAS signalling message to go between the UE and the PLMN through the (S) NPN.
  • SNPN standalone non-public network
  • NPN non-public network
  • S non-public network
  • Such an objective is extendable to operating a non-access stratum (NAS) signalling connection over a PDU Session or over a/the data radio bearer (s) (DRBs) of a PDU session.
  • a method of operating a non-access stratum (NAS) signalling connection by a user equipment includes establishing a NAS signalling connection from the user equipment to a node of a public land mobile network (PLMN) , wherein the NAS signalling connection goes through one or more data flows; and obtaining a PLMN service from the NAS signalling connection.
  • PLMN public land mobile network
  • a user equipment for control information multiplexing in includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured to: establish a NAS signalling connection from the user equipment to a node of a public land mobile network (PLMN) , wherein the NAS signalling connection goes through one or more data flows; and obtain a PLMN service from the NAS signalling connection.
  • PLMN public land mobile network
  • a method of operating a non-access stratum (NAS) signalling connection by a network includes determining a configuration of a NAS signalling connection, wherein the configuration of the NAS signalling connection comprises an establishment of the NAS signalling connection from a user equipment to a node of a public land mobile network (PLMN) , and the NAS signalling connection goes through one or more data flows; and transmitting the configuration of a NAS signalling connection to a radio access network (RAN) .
  • PLMN public land mobile network
  • a base station for control information multiplexing includes a memory, a transceiver, and a processor coupled to the memory and the transceiver.
  • the processor is configured to: determine a configuration of a NAS signalling connection, wherein the configuration of the NAS signalling connection comprises an establishment of the NAS signalling connection from a user equipment to a node of a public land mobile network (PLMN) , and the NAS signalling connection goes through one or more data flows; and control the transceiver to transmit the configuration of a NAS signalling connection to a radio access network (RAN) .
  • PLMN public land mobile network
  • a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above methods.
  • a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above methods.
  • a computer readable storage medium in which a computer program is stored, causes a computer to execute the above methods.
  • a computer program product includes a computer program, and the computer program causes a computer to execute the above methods.
  • a computer program causes a computer to execute the above methods.
  • FIG. 1 is a schematic diagram of the signaling plane and user plane between a user equipment (UE) and a public land mobile network (PLMN) through a (standalone) non-public network (NPN) .
  • UE user equipment
  • PLMN public land mobile network
  • NPN non-public network
  • FIG. 2 is a schematic diagram amongst other things illustrates a UE accessing a PLMN via a non-3GPP access.
  • FIG. 3 is a schematic diagram of a diagrammatic view of a NAS (on UE side) in relationship with lower and upper layers.
  • FIG. 4 is a schematic diagram of an illustration of a diagrammatic relationship for a NAS (on UE side) in 5GS.
  • FIG. 5 is a schematic diagram illustrating a non-roaming architecture within EPS.
  • FIG. 6 is a schematic diagram of a protocol architecture of a non-access stratum supporting MSs, MS side over non-3GPP access, where the term mobile station (MS) and user equipment (UE) are synonymous.
  • MS mobile station
  • UE user equipment
  • FIG. 7 is a block diagram of a user equipment (UE) and a network (e.g., core network) of operating a non-access stratum (NAS) signalling connection in a communication network system according to an embodiment of the present disclosure.
  • UE user equipment
  • NAS non-access stratum
  • FIG. 8 is a flowchart illustrating a method of operating a non-access stratum (NAS) signalling connection of a UE according to an embodiment of the present disclosure.
  • NAS non-access stratum
  • FIG. 9 is a flowchart illustrating a method of operating a non-access stratum (NAS) signalling connection of a network according to an embodiment of the present disclosure.
  • NAS non-access stratum
  • FIG. 10 is a schematic diagram illustrating a protocol architecture of a non-access stratum supporting (S) NPN UE over (S) NPN 3GPP access for a PLMN service according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram illustrating a protocol architecture of a non-access stratum supporting (S) NPN UE over (S) NPN 3GPP access for a PLMN service according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram illustrating an establishment of a data flow beginning with an establishment of a PDU session according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram illustrating an establishment of a data flow beginning with an establishment of a PDU session according to an embodiment of the present disclosure.
  • FIG. 14 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
  • NAS non-access stratum
  • UE user equipment
  • MS mobile station
  • SA2 has developed an architecture where by a UE of a (S) NPN can access a public land mobile network (PLMN) for a PLMN service, i.e. a service which would not be supported by the (S) NPN which it would then otherwise not get.
  • PLMN public land mobile network
  • FIG. 1 illustrates that, in some embodiments, one would see that a dotted line (through N1 PLMN ) represents a signaling plane (i.e. a control plane) between a UE and a target PLMN.
  • the UE and a (S) NPN have a PDU session set up between the UE and a session management function (SMF) of the (S) NPN and with the PDU session, a user plane exists between the UE and a user plane function (UPF) of the (S) NPN and from there an IP Sec tunnel is established to a N3 interworking function (N3IWF) of the PLMN through a Z2 interface, that is another dotted line (through Nwu PLMN ) in FIG.
  • SMF session management function
  • UPF user plane function
  • the IP Sec tunnel the UE by setting up another PDU session with a user plane, access external data networks through the PLMN, i.e. PLMN data services via the PLMN by a (S) NPN UE connecting to the PLMN through the N3IWF.
  • FIG. 2 illustrates that, in some embodiments, given an entry point of to the PLMN is via the (through the) N3IWF, this will be illustrated as an non-3GPP access-like entry, i.e. a signaling to the AMF through the N3IWF, will be illustrated as the UE accessing the PLMN via a non-3GPP access.
  • This view of an entry via non-3GPP access is illustrated in FIG. 2. It can also refer to 3GPP TS 23.501.
  • FIG. 2 illustrates an architecture and network functions directly connected to non-3GPP access.
  • the reference architecture supports service based interfaces for AMF, SMF, and other NFs not represented in FIG. 2.
  • Two N2 instances terminate to a single AMF for a UE which is simultaneously connected to the same 5G Core Network over 3GPP access and non-3GPP access.
  • Two N3 instances may terminate to different UPFs when different PDU sessions are established over 3GPP access and non-3GPP access.
  • a NAS signaling connection between a NAS of a UE side and a NAS of a network side communicates i.e. performs peer-to-peer signaling both for its needs e.g. mobility management signaling and procedures and is also in support of connection management for other UE protocol entities such as session management or short-message-service (SMS) and upper layers (e.g. user applications such as WeChat or WhatsApp or internet browsers) .
  • SMS short-message-service
  • FIG. 3 provides a diagrammatic view of a NAS in relationship with lower and upper layers.
  • FIG. 3 illustrates that, in some embodiments, a layered and interacting relationship between a NAS and those which use services and support of the NAS and that of the NAS to an RRC of an access stratum.
  • FIG. 4 illustrates that, in some embodiments, an illustration of a diagrammatic relationship for a NAS in 5GS is provided (it can also refer to 3GPP TS 24.007) . Protocol architecture of non access stratum supporting MSs, MS side over 3GPP access is also illustrated in FIG. 4.
  • FIG. 4 illustrates that, in some embodiments, three sublayers for 5GS services are defined.
  • NR or E-UTRA AS sublayer provides services to a 5GMM sublayer.
  • the 5GMM sublayer provides services to entities of the 5GCM sublayer.
  • the 5GMM sublayer further includes one 5GMM entity.
  • the 5GCM sublayer includes 5GSM entities.
  • the 5GSM entity provides services to a QoS flow control (QFC) entity and uses services of the 5GMM sublayer.
  • QFC QoS flow control
  • the QFC entity hides concepts of radio resources that can be established, released, or suspended while a 5GS context is active. If uplink data in a terminal is to be sent,
  • FIG. 5 illustrates that, in some embodiments, since LTE/SAE (4G) , 3GPP has designed in the possibility of the UE using the non-3GPP access (i.e. radio accesses which are not the responsibilities of 3GPP nor specified under 3GPP, e.g. WIFI, cdma200, WiMAX etc. ) to access 3GPP core network (in 3GPP 4G system, this core is the SAE core network) .
  • 3GPP core network in 3GPP 4G system, this core is the SAE core network
  • 3GPP core network in 3GPP 4G system, this core is the SAE core network
  • FIG. 5 illustrates a non-roaming architecture within EPS using S5, S2a, S2b. In some embodiments, the following considerations apply to interfaces where they occur in FIG. 5.
  • S5, S2a and S2b can be GTP-based or PMIP-based.
  • FIG. 6 illustrates that, in some embodiments, a protocol architecture of a non-access stratum supporting MSs, MS side over non-3GPP access is provided.
  • 3GPP goes a step further and specifically designed that NAS could use the non-3GPP access to connect to the 5GC. This can be seen in FIG. 2.
  • a more detail NAS relationship is illustrated in FIG. 6. It can also refer to 3GPP TS 24.007.
  • FIG. 6 illustrates that, in some embodiments, three sublayers for 5GS services are defined.
  • Non-3GPP access stratum sublayer provides services to a 5GMM sublayer.
  • the 5GMM sublayer provides services to the entities of the 5GCM sublayer.
  • the 5GMM sublayer further includes one 5GMM entity.
  • the 5GCM sublayer includes 5GSM entities.
  • the 5GSM entity provides services to the QoS flow control (QFC) entity and uses services of the 5GMM sublayer.
  • QFC QoS flow control
  • the QFC entity hides concepts of non-3GPP access resources that can be established/released while a 5GS context is active. Whenever such resources are available, IPSec security associations will be established and maintained.
  • (S) NPN feature allows a UE that is capable of (S) NPN support, to access PLMN services through the (S) NPN.
  • this access for PLMN services will be through the N3IWF over PDU sessions established between UE and the UPF of the (S) NPN core network.
  • This kind of access is made by the UE's NAS protocol machine making the access to the PLMN via a N3IWF much the way that UE would access the 5GC through non-3GPP access, see also FIG. 2.
  • the NAS is a protocol state machine managing a control plane i.e. the signaling plane and requires a NAS signaling connection. In 5GS, this is the N1 NAS signalling connection where in the "N1" is specifically to denote the NAS over N1 interface (i.e. the UE to AMF, as illustrated in FIG. 2) .
  • the NAS and the control plane that of the NAS signaling connection, has, up to 5G been completely running through a 3GPP connection provided and managed by 3GPP's access stratum –i.e. the RRC connection, as illustrated in FIG. 3.
  • 3GPP's access stratum i.e. the RRC connection
  • FIG. 6 As of a Release15 of 5GS, such NAS control protocols, by design, can run through non-3GPP access, as illustrated in FIG. 6. But so far, such non-3GPP access is still a signalling access tunnel even if the access tunnel is using IETF tunnel protocols.
  • the UPF puts this through to the N3IWF (see FIG. 1, Z2 interface) , where the N3IWF will then present such data as signalling message over the N2 interface to the AMF (see again FIG. 1) .
  • This whole signalling route will run as data over a PDU session's data bearers and reach the AMF as NAS signalling messages, i.e. the entirety of this is the control plane as shown in a dotted line (through N1 PLMN ) in FIG. 1.
  • Such signalling messages will have to go both UL and DL where for some part, it will be the control plane and for other part, it will be transferred as data over data/user plane.
  • NAS signalling connection runs over (and through) a IKEv2 security association or also termed a IPSec Tunnel where such security association or the IPSec tunnel is a data channel between the UE and that non-3GP access e.g. the WIFI hotspot.
  • a transport for the NAS signalling messages might be a data channel of the WIFI equipment/access, it is still a distinct signalling channel between NAS of the UE and the AMF, see also N1 through non-3GPP access and N3IWF in FIG. 2.
  • the NAS sits above an access stratum controller and through that access stratum a connection is provided over which the NAS signalling connection exist.
  • the non-3GPP access is still the access stratum sitting below NAS and which provide this connection /tunnel (to the N3IWF, see FIG. 6 and FIG. 2) through which NAS sends NAS messages thus considering having a NAS signalling connection.
  • NAS and the NAS signalling connection are all about the control plane. While it is not wrong to consider the non-3GPP access stratum with its data tunnel (i.e. the IPSec tunnel, the IKEv2 security association) for NAS to send its signalling messages as a data connection, that tunnel, that security association is still at a protocol layer, below NAS.
  • data tunnel i.e. the IPSec tunnel, the IKEv2 security association
  • the PDU sessions for which data bearers are allocated are about the user plane.
  • the Session Management which establishes and manages these PDU sessions along with the bearer manager are the user plane.
  • the control plane and the user plane are logically and conceptually complementing each other in that both are connections between the UE and the NW.
  • One allows signalling messages to be exchanged i. e the Control Plane
  • the other allows user data to move between UE and NW i.e. the user plane
  • Now some embodiments use a part of this user plane to form as a control plane.
  • the user plane will consist of a number of flows or QoS flows. One of these flows will be for NAS to use as the control plane and so data over the control plane are signalling messages. Signalling messages are control protocol messages and if not identified as such will just be treated as just data.
  • the data sent by UE over the user plane ends at the UPF who then passes it onwards to the data networks (see FIG. 2) .
  • this data arriving at the UPF, which is actually NAS signalling messages has to be switched to the N3IWF, wherein the N3IWF would pass onwards to AMF as NAS signalling messages as illustrated in FIG. 1, the dotted line (through N1 PLMN ) .
  • identifying data meant for N3IWF is not a problem (this can be done and is done by indicating destination for data with a FQDN (Fully Qualified Domain Name) pointing to the N3IWF.
  • the N3IWF having received such data need still to identify that data is really signalling messages meant for AMF. And this has to work in the AMF to (S) NPN UE direction as well.
  • the NAS signalling connection is up to now always tied to a bearer at a lower layer, in fact a signaling bearer at access stratum. Now it is tied to a bearer, specifically a user/data bearer -set up, managed and controlled by a layer (or sublayer) above NAS's mobility management, i.e. the 5GMM.
  • a bearer specifically a user/data bearer -set up, managed and controlled by a layer (or sublayer) above NAS's mobility management, i.e. the 5GMM.
  • FIG. 7 illustrates that, in some embodiments, a user equipment (UE) 10 and a network (e.g., a core network) 20 of operating a non-access stratum (NAS) signalling connection in a communication network system 30 according to an embodiment of the present disclosure are provided.
  • the communication network system 30 includes the UE 10 and the network 20.
  • the UE 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12, the transceiver 13.
  • the network 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22, the transceiver 23.
  • the processor 11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the processor 11 or 21.
  • the memory 12 or 22 is operatively coupled with the processor 11 or 21 and stores a variety of information to operate the processor 11 or 21.
  • the transceiver 13 or 23 is operatively coupled with the processor 11 or 21, and the transceiver 13 or 23 transmits and/or receives a radio signal.
  • the processor 11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device.
  • the memory 12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device.
  • the transceiver 13 or 23 may include baseband circuitry to process radio frequency signals.
  • modules e.g., procedures, functions, and so on
  • the modules can be stored in the memory 12 or 22 and executed by the processor 11 or 21.
  • the memory 12 or 22 can be implemented within the processor 11 or 21 or external to the processor 11 or 21 in which case those can be communicatively coupled to the processor 11 or 21 via various means as is known in the art.
  • the processor 11 is configured to: establish a NAS signalling connection from the user equipment 10 to a node (such as an AMF) of a public land mobile network (PLMN) , wherein the NAS signalling connection goes through one or more data flows; and obtain a PLMN service from the NAS signalling connection.
  • a node such as an AMF
  • PLMN public land mobile network
  • This provides a protocol architecture solution for a NAS of a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) capable UE to seek the PLMN service over a (S) NPN and use the NAS signalling connection to enable a NAS signalling message to go between the UE and the PLMN through the (S) NPN.
  • SNPN non-public network
  • NPN non-public network
  • the processor 11 is configured to use the NAS signalling connection to enable a NAS signalling message to go between the user equipment 10 and the PLMN through a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) or from the user equipment to the PLMN not involving the (S) NPN.
  • the processor 11 is configured to use the NAS signalling connection to enable a NAS signalling message to go between the user equipment and the PLMN through a protocol data unit (PDU) session or its data radio bearers to the PLMN.
  • PDU protocol data unit
  • the NAS signalling message in an uplink direction of the NAS signalling message, is transmitted to a protocol stack before the NAS signalling message is transmitted to a lower layer to transmit to the network 20.
  • the NAS signalling message in a downlink direction of the NAS signalling message, is transmitted to a user plane and then transmitted downwards to a NAS of the user equipment 10.
  • the processor 11 is configured to select one data flow from the one or more data flows as a selected data flow, and the NAS signalling message is directly input to the selected data flow.
  • the one or more data flows comprise one or more quality of service (QoS) flows. In some embodiments, the one or more data flows remain in a duration of existence of the NAS signalling connection. In some embodiments, the one or more data flows are established through an establishment of a protocol data unit (PDU) session, a characteristic of the PDU session is used to identify the one or more data flows in the NAS signalling connection. In some embodiments, the characteristic of the PDU session comprises an information element (IE) , a decode of a PDU session type IE, or an identification, a field, or a subfield within parameters of an establishment request message. In some embodiments, in the establishment of the PDU session, the one or more data flows are linked to the PDU session. In some embodiments, the transceiver 13 is configured to transmit a configuration of the NAS signalling connection to the network 20.
  • IE information element
  • the transceiver 13 is configured to transmit a configuration of the NAS signalling connection to the network 20.
  • the processor 21 is configured to: determine a configuration of a NAS signalling connection, wherein the configuration of the NAS signalling connection comprises an establishment of the NAS signalling connection from the user equipment 10 to a node of a public land mobile network (PLMN) , and the NAS signalling connection goes through one or more data flows; and control the transceiver to transmit the configuration of a NAS signalling connection to a radio access network (RAN) .
  • PLMN public land mobile network
  • RAN radio access network
  • This provides a protocol architecture solution for a NAS of a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) capable UE to seek the PLMN service over a (S) NPN and use the NAS signalling connection to enable a NAS signalling message to go between the UE and the PLMN through the (S) NPN or from the user equipment to the PLMN not involving the (S) NPN.
  • the processor 21 determines the configuration of the NAS signalling connection by itself or determines the configuration of the NAS signalling connection by receiving the configuration of the NAS signalling connection from the user equipment 10.
  • FIG. 8 illustrates a method 200 of operating a non-access stratum (NAS) signalling connection of a UE according to an embodiment of the present disclosure.
  • the method 200 includes: a block 202, establishing a NAS signalling connection from the user equipment to a node of a public land mobile network (PLMN) , wherein the NAS signalling connection goes through one or more data flows, and a block 204, obtaining a PLMN service from the NAS signalling connection.
  • PLMN public land mobile network
  • This provides a protocol architecture solution for a NAS of a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) capable UE to seek the PLMN service over a (S) NPN and use the NAS signalling connection to enable a NAS signalling message to go between the UE and the PLMN through the (S) NPN.
  • SNPN non-public network
  • NPN non-public network
  • FIG. 9 illustrates a method 300 of operating a non-access stratum (NAS) signalling connection according to an embodiment of the present disclosure.
  • the method 300 includes: a block 302, determining a configuration of a NAS signalling connection, wherein the configuration of the NAS signalling connection comprises an establishment of the NAS signalling connection from a user equipment to a node of a public land mobile network (PLMN) , and the NAS signalling connection goes through one or more data flows, and a block 304, transmitting the configuration of a NAS signalling connection to a radio access network (RAN) .
  • PLMN public land mobile network
  • This provides a protocol architecture solution for a NAS of a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) capable UE to seek the PLMN service over a (S) NPN and use the NAS signalling connection to enable a NAS signalling message to go between the UE and the PLMN through the (S) NPN.
  • SNPN non-public network
  • NPN non-public network
  • the method 200 further comprises using the NAS signalling connection to enable a NAS signalling message to go between the user equipment and the PLMN through a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) or from the user equipment to the PLMN not involving the (S) NPN.
  • the method 200 further comprises using the NAS signalling connection to enable a NAS signalling message to go between the user equipment and the PLMN through a protocol data unit (PDU) session or its data radio bearers to the PLMN.
  • PDU protocol data unit
  • the NAS signalling connection is used to enable a NAS signalling message to go between the user equipment and the PLMN through a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) or from the user equipment to the PLMN not involving the (S) NPN.
  • the NAS signalling connection is used to enable a NAS signalling message to go between the user equipment and the PLMN through a protocol data unit (PDU) session or its data radio bearers to the PLMN.
  • PDU protocol data unit
  • the NAS signalling message in an uplink direction of the NAS signalling message, is transmitted to a protocol stack before the NAS signalling message is transmitted to a lower layer to transmit to a network.
  • the NAS signalling message in a downlink direction of the NAS signalling message, is transmitted to a user plane and then transmitted downwards to a NAS of the user equipment.
  • the method 200 further comprises selecting one data flow from the one or more data flows as a selected data flow, and the NAS signalling message is directly input to the selected data flow.
  • the one or more data flows comprise one or more quality of service (QoS) flows.
  • QoS quality of service
  • the one or more data flows remain in a duration of existence of the NAS signalling connection.
  • the one or more data flows are established through an establishment of a protocol data unit (PDU) session, a characteristic of the PDU session is used to identify the one or more data flows in the NAS signalling connection.
  • the characteristic of the PDU session comprises an information element (IE) , a decode of a PDU session type IE, or an identification, a field, or a subfield within parameters of an establishment request message.
  • the one or more data flows are linked to the PDU session.
  • the method 200 further comprises transmitting a configuration of the NAS signalling connection to a network.
  • the network determines the configuration of the NAS signalling connection by itself or determines the configuration of the NAS signalling connection by receiving the configuration of the NAS signalling connection from the user equipment.
  • FIG. 10 illustrates a protocol architecture of a non-access stratum supporting (S) NPN UE (MSs, MS side) over (S) NPN 3GPP access for a PLMN service through PLMN's N3IWF.
  • a dotted line represents a NAS signaling connection. This matches to a dotted line (through N1 PLMN ) in FIG. 1.
  • the NAS signaling connection is a signaling plane (acontrol plane) going from inside of the UE to the AMF of the PLMN from which the (S) NPN UE seeks a PLMN service (through (S) NPN) . Therefore, FIG. 10 complements what is not detailed in FIG. 1 and gives a protocol architecture within the UE for the NAS and interacting entities within the UE.
  • FIG. 10 illustrates that, in some embodiments, the control plane is illustrated to go through QF1. This is just illustrative. Any QoS flow (or data flow) could be used. But once a data (QoS) flow is chosen that remains the flow for the control plane. Further solution in some embodiments of the present disclosure reinforces and identifies (and keeps to that identification) the data flow as the signaling plane. Once a data flow is chosen to be the signaling/control plane when establishing the NAS signaling connection, it remains so for a duration of existence of the NAS signaling connection. If that NAS signaling connection is subsequently release and another NAS signaling connection is re-established (in the course of time) , there is nothing against choosing another data flow to establish (or re-establish) the NAS signaling connection.
  • QoS data flow
  • FIG. 10 also illustrates that, in some embodiments, where before now an uplink (UL) NAS signalling message is passed down to lower layers to transport to the network and never passed up a protocol stack, now a NAS protocol machine passes the UL NAS signaling message up the protocol stack.
  • the DL NAS signaling message will now arrive at a bearer manager (or whatever named entity that handles and manages data bearers (i.e. the user plane) and then passed downwards to the NAS (where before a downlink (DL) NAS message always passes upwards by an access stratum to the NAS) .
  • a bearer manager or whatever named entity that handles and manages data bearers (i.e. the user plane)
  • FIG. 10 illustrates a protocol architecture of a non-access stratum supporting UE over data radio bearer of PDU session accessing for a PLMN service.
  • FIG. 11 illustrates that, in some embodiments, an alternative conceptual solution to piping the NAS signaling message through a user/data plane manager, is for NAS to input the NAS signaling message direct to a selected QoS flow (QF) .
  • QF QoS flow
  • This alternative solution would mean that for all the QoS Flows managed by the user plane manager, there will be exceptions to some data being input outside the management of the data plane manager (bearer manager) , even if that is technically possible.
  • FIG. 11 where the (S) NPN UE access stratum sublayer is instead the 5G-NR or E-UTRAN access stratum sublayer, FIG. 11 then illustrates a protocol architecture of a non-access stratum supporting UE over data radio bearer of PDU session accessing for a PLMN service.
  • FIG. 12 illustrates that, in some embodiments, any data flow is established through a session management (SM) procedure, beginning with an establishment of a PDU session.
  • SM session management
  • a new characteristic of the PDU session is introduced. This new characteristic can be a new IE or can be a new decode of the PDU session type IE or for that matter any new identification or field or subfield within parameters of an establishment request message.
  • This embodiment like all other embodiments in the present disclosure, it does not restrict or limit to the exact identification, field or parameter nor on the name of such identification, field or parameter (s) .
  • FIG. 13 illustrates that, in some embodiments, a PDU session can have one or more data flows, so called QoS Flows.
  • QoS Flows In a PDU session establishment, a number of QoS flows can be linked to the PDU session.
  • one or a certain QoS flow (or data flow) can be picked to carry the NAS signaling messages, i.e. chosen to be whence the NAS signaling connection runs. Therefore, with this alternative embodiment, a QOS flow can be changed, so that it will be the data flow for the NAS signaling connection.
  • Such a change can be indicated by a new decode of an existing field or a new indication (in form of a new IE) or by any other protocol means considered to best fit the needs of signaling such an indication, e.g. a new/different indication within the requested QoS flow descriptions IE of the PDU SESSION MODIFICATION REQUEST message as illustrated in FIG. 13.
  • the (S) NPN capable UE goes through the PLMN's N3IWF (as illustrated in FIG. 1) . It is through the N3IWF, that all manners of control and data for such PLMN service has to pass. It is further noted that the NAS signaling connection —i.e. the control plane —is established, so that consequent signaling messages to establish the user/data plane can be done (again as illustrated in FIG. 1, solid line) .
  • identification of a session or a data flow for NAS signaling use is introduced in some embodiments of the present disclosure.
  • This identification allows UE and network entities to know that what is carried over a certain data bearer is actually NAS signaling and as such can be passed to the correct protocol entities in both the UE side and the network side.
  • the proposed protocol architecture within the UE that is (S) NPN capable and wants to support PLMN services over (S) NPN, allows the UE to reuse all its protocol signaling and NAS procedures that are dependent on having a NAS signaling connection.
  • non-SNPN capable UE i.e. a normal UE to run its NAS signaling connection over a PDU session or the data radio bearer of a PDU Session to a PLMN in much the same way not operating through a (S) NPN.
  • a core network can send a new indication to a radio access network (RAN) .
  • RAN radio access network
  • This can be made used of in the RAN –as it then knows that bearer is for signaling –that the characteristics and quality of that bearer in terms of e.g. latency, error checking, and recovery, required bit rate, etc., are sufficient and properly maintained.
  • Such a core network entity passing the indication to the RAN can be (but not limited to) the SMF.
  • This new parameter can be passed through over the N2 interface as part of the N2 protocol signaling.
  • Some embodiments of the present disclosure are used by 5G-NR chipset vendors, V2X communication system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR device maker for example gaming, conference/seminar, education purposes.
  • Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product. Some embodiments of the present disclosure propose technical mechanisms.
  • FIG. 14 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software.
  • FIG. 14 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
  • RF radio frequency
  • the application circuitry 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors.
  • the processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
  • the baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors.
  • the processors may include a baseband processor.
  • the baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry.
  • the radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc.
  • the baseband circuitry may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • multi-mode baseband circuitry Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol.
  • the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency.
  • baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency.
  • RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
  • the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry.
  • “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
  • ASIC Application Specific Integrated Circuit
  • the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
  • some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
  • SOC system on a chip
  • the memory/storage 740 may be used to load and store data and/or instructions, for example, for system.
  • the memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
  • DRAM dynamic random access memory
  • flash memory non-volatile memory
  • the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system.
  • User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc.
  • Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
  • USB universal serial bus
  • the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system.
  • the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit.
  • the positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
  • GPS global positioning system
  • the display 750 may include a display, such as a liquid crystal display and a touch screen display.
  • the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc.
  • system may have more or less components, and/or different architectures.
  • methods described herein may be implemented as a computer program.
  • the computer program may be stored on a storage medium, such as a non-transitory storage medium.
  • the units as separating components for explanation are or are not physically separated.
  • the units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments.
  • each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units. If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product.
  • the software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure.
  • the storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Abstract

An apparatus and a method for operating a non-access stratum (NAS) signalling connection over a user plane or over a data radio bearer of a PDU session or a PDU session are provided. A method of operating a NAS signalling connection by a user equipment includes establishing a NAS signalling connection from the user equipment to a node of a public land mobile network (PLMN), wherein the NAS signalling connection goes through one or more data flows; and obtaining a PLMN service from the NAS signalling connection. This provides a protocol architecture solution for a NAS of a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) capable UE to seek the PLMN service over a (S) NPN and use the NAS signalling connection to enable a NAS signalling message to go between the UE and the PLMN through the (S) NPN.

Description

APPARATUS AND METHOD FOR OPERATING NON-ACCESS STRATUM SIGNALLING CONNECTION OVER DATA BEARERS
BACKGROUND OF DISCLOSURE
1. Field of Disclosure
The present disclosure relates to the field of communication systems, and more particularly, to an apparatus and a method for operating a non-access stratum (NAS) signalling connection over a user plane or over a data radio bearer (DRB) of a PDU session or a PDU session.
2. Description of Related Art
For a 5th generation system (5GS) , a 3rd generation partnership project (3GPP) has developed a non-public network (NPN) feature in a release 16 that allows enterprises, factories, consortium companies, etc., to have their own private networks.
NPN, could be deployed as a part of an operator, a public land mobile network (PLMN) , or it can be totally own by a private operator and in 3GPP-speak this are called standalone non-public networks (SNPNs) because logically speaking these NPNs are standalone networks logically different from PLMNs.
Layer 3 protocols that govern and control an access, a registration, and a signalling between a user equipment (UE) and a network and/or a PLMN for services are responsibilities of a 3GPP technical specification group core network and terminals working group 1 (3GPP TSG CT WG1) (also known as CT1) . Layer 3 protocol machine is a non-access stratum (NAS) , as complemented by an access stratum protocol machine, a radio resource control (RRC) . In the CT1, the NAS is specified in TS 24.501 for 5GS, TS 24.301 for long term evolution (LTE) /system architecture evolution (SAE) ) and TS 24.008 for universal mobile telecommunications system (UMTS) , general packet radio service (GPRS) , and second generation (2G) system.
When NAS of the UE signals towards an access and mobility management function (AMF) , there is an N1 connection. In CT1-speak, this is a NAS signalling connection. In TS 24.501, there is this definition for N1 NAS signalling connection, as follows:
N1 NAS signalling connection: a peer to peer N1 mode connection between the UE and the AMF. An N1 NAS signalling connection is either a concatenation of an RRC connection via a Uu reference point and an NG connection via a N2 reference point for 3GPP access, or a concatenation of an IPsec tunnel via an NWu reference point and an NG connection via the N2 reference point for non-3GPP access.
However, currently such NAS signalling has not been performed through a user plane defined by 3GPP, and in current release 16 specifications, there is no ability (means, method, identification) that allows a distinction of such NAS signalling within a user plane. Such a user plane, can be in 3GPP-speak, be a PDU session or the DRB of a PDU session. Without such means, method, identification, what is signaled by NAS (on one side of the peer-to-peer protocols) cannot be guaranteed to be delivered to its peer as signalling message (s) . A peer-to-peer signalling can be made to work reliably in a standardized way.
Determining how to operate such a NAS signalling may be a challenging issue. Thus, improvements in the field are desired. Therefore, there is a need for an apparatus and a method for operating a non-access stratum (NAS) signalling connection over a user plane or over a data radio bearer of a PDU session or a PDU session.
SUMMARY
An object of the present disclosure is to propose an apparatus and a method for operating a non-access stratum (NAS) signalling connection over a user plane or over a data radio bearer of a PDU session or a PDU session, which can  provide a protocol architecture solution for a NAS of a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) capable UE to seek the PLMN service over a (S) NPN and use the NAS signalling connection to enable a NAS signalling message to go between the UE and the PLMN through the (S) NPN. Such an objective is extendable to operating a non-access stratum (NAS) signalling connection over a PDU Session or over a/the data radio bearer (s) (DRBs) of a PDU session.
In a first aspect of the present disclosure, a method of operating a non-access stratum (NAS) signalling connection by a user equipment includes establishing a NAS signalling connection from the user equipment to a node of a public land mobile network (PLMN) , wherein the NAS signalling connection goes through one or more data flows; and obtaining a PLMN service from the NAS signalling connection.
In a second aspect of the present disclosure, a user equipment for control information multiplexing in includes a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured to: establish a NAS signalling connection from the user equipment to a node of a public land mobile network (PLMN) , wherein the NAS signalling connection goes through one or more data flows; and obtain a PLMN service from the NAS signalling connection.
In a third aspect of the present disclosure, a method of operating a non-access stratum (NAS) signalling connection by a network includes determining a configuration of a NAS signalling connection, wherein the configuration of the NAS signalling connection comprises an establishment of the NAS signalling connection from a user equipment to a node of a public land mobile network (PLMN) , and the NAS signalling connection goes through one or more data flows; and transmitting the configuration of a NAS signalling connection to a radio access network (RAN) .
In a fourth aspect of the present disclosure, a base station for control information multiplexing includes a memory, a transceiver, and a processor coupled to the memory and the transceiver. The processor is configured to: determine a configuration of a NAS signalling connection, wherein the configuration of the NAS signalling connection comprises an establishment of the NAS signalling connection from a user equipment to a node of a public land mobile network (PLMN) , and the NAS signalling connection goes through one or more data flows; and control the transceiver to transmit the configuration of a NAS signalling connection to a radio access network (RAN) .
In a fifth aspect of the present disclosure, a non-transitory machine-readable storage medium has stored thereon instructions that, when executed by a computer, cause the computer to perform the above methods.
In a sixth aspect of the present disclosure, a chip includes a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the above methods.
In a seventh aspect of the present disclosure, a computer readable storage medium, in which a computer program is stored, causes a computer to execute the above methods.
In an eighth aspect of the present disclosure, a computer program product includes a computer program, and the computer program causes a computer to execute the above methods.
In a ninth aspect of the present disclosure, a computer program causes a computer to execute the above methods.
BRIEF DESCRIPTION OF DRAWINGS
In order to more clearly illustrate the embodiments of the present disclosure or related art, the following figures will be described in the embodiments are briefly introduced. It is obvious that the drawings are merely some embodiments of the present disclosure, a person having ordinary skill in this field can obtain other figures according to these figures without paying the premise.
FIG. 1 is a schematic diagram of the signaling plane and user plane between a user equipment (UE) and a public land mobile network (PLMN) through a (standalone) non-public network (NPN) .
FIG. 2 is a schematic diagram amongst other things illustrates a UE accessing a PLMN via a non-3GPP access.
FIG. 3 is a schematic diagram of a diagrammatic view of a NAS (on UE side) in relationship with lower and upper layers.
FIG. 4 is a schematic diagram of an illustration of a diagrammatic relationship for a NAS (on UE side) in 5GS.
FIG. 5 is a schematic diagram illustrating a non-roaming architecture within EPS.
FIG. 6 is a schematic diagram of a protocol architecture of a non-access stratum supporting MSs, MS side over non-3GPP access, where the term mobile station (MS) and user equipment (UE) are synonymous.
FIG. 7 is a block diagram of a user equipment (UE) and a network (e.g., core network) of operating a non-access stratum (NAS) signalling connection in a communication network system according to an embodiment of the present disclosure.
FIG. 8 is a flowchart illustrating a method of operating a non-access stratum (NAS) signalling connection of a UE according to an embodiment of the present disclosure.
FIG. 9 is a flowchart illustrating a method of operating a non-access stratum (NAS) signalling connection of a network according to an embodiment of the present disclosure.
FIG. 10 is a schematic diagram illustrating a protocol architecture of a non-access stratum supporting (S) NPN UE over (S) NPN 3GPP access for a PLMN service according to an embodiment of the present disclosure.
FIG. 11 is a schematic diagram illustrating a protocol architecture of a non-access stratum supporting (S) NPN UE over (S) NPN 3GPP access for a PLMN service according to an embodiment of the present disclosure.
FIG. 12 is a schematic diagram illustrating an establishment of a data flow beginning with an establishment of a PDU session according to an embodiment of the present disclosure.
FIG. 13 is a schematic diagram illustrating an establishment of a data flow beginning with an establishment of a PDU session according to an embodiment of the present disclosure.
FIG. 14 is a block diagram of a system for wireless communication according to an embodiment of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present disclosure are described in detail with the technical matters, structural features, achieved objects, and effects with reference to the accompanying drawings as follows. Specifically, the terminologies in the embodiments of the present disclosure are merely for describing the purpose of the certain embodiment and does not limit the disclosure.
In some embodiments, when a non-access stratum (NAS) is mentioned, it refers to a NAS of a user equipment (UE) unless it is explicitly stated that it is a NAS of a network side or a NAS of each side of a peer-to-peer communication/signaling. In some embodiments, terms, a UE and a mobile station (MS) , are synonymous, in much the same way as it does in 3GPP specifications.
In some embodiments, as part of what service and system aspects working group 2 (SA2) developed under a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) , SA2 has developed an architecture where by a UE of a (S) NPN can access a public land mobile network (PLMN) for a PLMN service, i.e. a service which would not be supported by the (S) NPN which it would then otherwise not get. Such service could for example be access to external data networks or access to voice/video services. FIG. 1 below taken from SA2 technical documentation (e.g. 3GPP TR 23.734, subclause 6.20) , illustrates this architecture.
FIG. 1 illustrates that, in some embodiments, one would see that a dotted line (through N1 PLMN) represents a signaling plane (i.e. a control plane) between a UE and a target PLMN. In order to have this signaling path, the UE and a (S) NPN have a PDU session set up between the UE and a session management function (SMF) of the (S) NPN and with the PDU session, a user plane exists between the UE and a user plane function (UPF) of the (S) NPN and from there an IP Sec tunnel is established to a N3 interworking function (N3IWF) of the PLMN through a Z2 interface, that is another dotted line (through Nwu PLMN) in FIG. 1. Over the Z2 interface, the IP Sec tunnel, the UE by setting up another PDU session with a user plane, access external data networks through the PLMN, i.e. PLMN data services via the PLMN by a (S) NPN UE connecting to the PLMN through the N3IWF.
FIG. 2 illustrates that, in some embodiments, given an entry point of to the PLMN is via the (through the) N3IWF, this will be illustrated as an non-3GPP access-like entry, i.e. a signaling to the AMF through the N3IWF, will be illustrated as the UE accessing the PLMN via a non-3GPP access. This view of an entry via non-3GPP access is illustrated in FIG. 2. It can also refer to 3GPP TS 23.501. FIG. 2 illustrates an architecture and network functions directly connected to non-3GPP access. The reference architecture supports service based interfaces for AMF, SMF, and other NFs not represented in FIG. 2. Two N2 instances terminate to a single AMF for a UE which is simultaneously connected to the same 5G Core Network over 3GPP access and non-3GPP access. Two N3 instances may terminate to different UPFs when different PDU sessions are established over 3GPP access and non-3GPP access.
In some embodiments, a NAS signaling connection between a NAS of a UE side and a NAS of a network side (or 5GC) communicates i.e. performs peer-to-peer signaling both for its needs e.g. mobility management signaling and procedures and is also in support of connection management for other UE protocol entities such as session management or short-message-service (SMS) and upper layers (e.g. user applications such as WeChat or WhatsApp or internet browsers) . FIG. 3 provides a diagrammatic view of a NAS in relationship with lower and upper layers. FIG. 3 illustrates that, in some embodiments, a layered and interacting relationship between a NAS and those which use services and support of the NAS and that of the NAS to an RRC of an access stratum.
FIG. 4 illustrates that, in some embodiments, an illustration of a diagrammatic relationship for a NAS in 5GS is provided (it can also refer to 3GPP TS 24.007) . Protocol architecture of non access stratum supporting MSs, MS side over 3GPP access is also illustrated in FIG. 4. FIG. 4 illustrates that, in some embodiments, three sublayers for 5GS services are defined. NR or E-UTRA AS sublayer provides services to a 5GMM sublayer. The 5GMM sublayer provides services to entities of the 5GCM sublayer. The 5GMM sublayer further includes one 5GMM entity. The 5GCM sublayer includes 5GSM entities. The 5GSM entity provides services to a QoS flow control (QFC) entity and uses services of the 5GMM sublayer. The QFC entity hides concepts of radio resources that can be established, released, or suspended while a 5GS context is active. If uplink data in a terminal is to be sent, and 5GS radio resources have been released or suspended, the QFC will notify 5GMM.
FIG. 5 illustrates that, in some embodiments, since LTE/SAE (4G) , 3GPP has designed in the possibility of the UE using the non-3GPP access (i.e. radio accesses which are not the responsibilities of 3GPP nor specified under 3GPP, e.g. WIFI, cdma200, WiMAX etc. ) to access 3GPP core network (in 3GPP 4G system, this core is the SAE core network) . However, such access by the UE (in LTE/SAE) is not controlled and managed by the NAS (of UE and NW side) . Instead this access is direct from the upper layers through non-3GPP signaling protocol controllers and procedures such as those specified under IETF, wherein the application uses such IETF protocols to access the SAE core network via packet data gateways or through secure tunnels established to the SAE/LTE packet gateway. It can also refer to 3GPP TS 23.402. FIG. 5 illustrates a non-roaming architecture within EPS using S5, S2a, S2b. In some embodiments, the following considerations apply to interfaces where they occur in FIG. 5. S5, S2a and S2b can be GTP-based or PMIP-based.
FIG. 6 illustrates that, in some embodiments, a protocol architecture of a non-access stratum supporting MSs, MS side over non-3GPP access is provided. In 5GS, 3GPP goes a step further and specifically designed that NAS could use the non-3GPP access to connect to the 5GC. This can be seen in FIG. 2. A more detail NAS relationship is illustrated in FIG. 6. It can also refer to 3GPP TS 24.007. FIG. 6 illustrates that, in some embodiments, three sublayers for 5GS services are defined. Non-3GPP access stratum sublayer provides services to a 5GMM sublayer. The 5GMM sublayer provides services to the entities of the 5GCM sublayer. The 5GMM sublayer further includes one 5GMM entity. The 5GCM sublayer includes 5GSM entities. The 5GSM entity provides services to the QoS flow control (QFC) entity and uses services of the 5GMM sublayer. The QFC entity hides concepts of non-3GPP access resources that can be established/released while a 5GS context is active. Whenever such resources are available, IPSec security associations will be established and maintained.
As described above, (S) NPN feature allows a UE that is capable of (S) NPN support, to access PLMN services through the (S) NPN. As illustrated in FIG. 1, this access for PLMN services will be through the N3IWF over PDU sessions established between UE and the UPF of the (S) NPN core network. This kind of access is made by the UE's NAS protocol machine making the access to the PLMN via a N3IWF much the way that UE would access the 5GC through non-3GPP access, see also FIG. 2. As discussed above, the NAS is a protocol state machine managing a control plane i.e. the signaling plane and requires a NAS signaling connection. In 5GS, this is the N1 NAS signalling connection where in the "N1" is specifically to denote the NAS over N1 interface (i.e. the UE to AMF, as illustrated in FIG. 2) .
The NAS and the control plane, that of the NAS signaling connection, has, up to 5G been completely running through a 3GPP connection provided and managed by 3GPP's access stratum –i.e. the RRC connection, as illustrated in FIG. 3. As of a Release15 of 5GS, such NAS control protocols, by design, can run through non-3GPP access, as illustrated in FIG. 6. But so far, such non-3GPP access is still a signalling access tunnel even if the access tunnel is using IETF tunnel protocols. But now for such (S) NPN UEs in connection to the NPN CN making access to PLMN for PLMN services, these NAS protocol and signalling go through PDU session established and over the user/data plane (the data bearers) between the (S) NPN capable UE and the UPF of the NPN. This logically and conceptually has not been done before by NAS nor specified before for NAS.
Furthermore, once such NAS signalling get to the UPF, the UPF puts this through to the N3IWF (see FIG. 1, Z2 interface) , where the N3IWF will then present such data as signalling message over the N2 interface to the AMF (see again FIG. 1) . This whole signalling route will run as data over a PDU session's data bearers and reach the AMF as NAS signalling messages, i.e. the entirety of this is the control plane as shown in a dotted line (through N1 PLMN) in FIG. 1. Such signalling messages will have to go both UL and DL where for some part, it will be the control plane and for other part, it will be transferred as data over data/user plane. It should be noted that for NAS over non-3GPP access as specified in Rel-15 for 5GS, (see 3GPP TS 24.502, see also FIG. 6) there the NAS signalling connection runs over (and through) a IKEv2 security association or also termed a IPSec Tunnel where such security association or the IPSec tunnel is a data channel between the UE and that non-3GP access e.g. the WIFI hotspot. While such a transport for the NAS signalling messages might be a data channel of the WIFI equipment/access, it is still a distinct signalling channel between NAS of the UE and the AMF, see also N1 through non-3GPP access and N3IWF in FIG. 2.
In summary, there are some issues as follows.
The NAS sits above an access stratum controller and through that access stratum a connection is provided over which the NAS signalling connection exist.
Even with NAS over non-3GPP access, the non-3GPP access is still the access stratum sitting below NAS and which provide this connection /tunnel (to the N3IWF, see FIG. 6 and FIG. 2) through which NAS sends NAS messages thus considering having a NAS signalling connection.
NAS and the NAS signalling connection are all about the control plane. While it is not wrong to consider the non-3GPP access stratum with its data tunnel (i.e. the IPSec tunnel, the IKEv2 security association) for NAS to send its signalling messages as a data connection, that tunnel, that security association is still at a protocol layer, below NAS.
The PDU sessions for which data bearers are allocated, are about the user plane. The Session Management which establishes and manages these PDU sessions along with the bearer manager (see FIG. 2, FIG. 4, and FIG. 6) are the user plane. The control plane and the user plane are logically and conceptually complementing each other in that both are connections between the UE and the NW. One allows signalling messages to be exchanged (i. e the Control Plane) while the other allows user data to move between UE and NW (i.e. the user plane) . Now some embodiments use a part of this user plane to form as a control plane.
The user plane will consist of a number of flows or QoS flows. One of these flows will be for NAS to use as the control plane and so data over the control plane are signalling messages. Signalling messages are control protocol messages and if not identified as such will just be treated as just data.
While before it is through the control plan that the user plane is set up, now (apart) of the user plane has to be a control plane for the NAS.
The data sent by UE over the user plane ends at the UPF who then passes it onwards to the data networks (see FIG. 2) . But for (S) NPN UE wanting PLMN services, this data arriving at the UPF, which is actually NAS signalling messages) has to be switched to the N3IWF, wherein the N3IWF would pass onwards to AMF as NAS signalling messages as illustrated in FIG. 1, the dotted line (through N1 PLMN) . Whilst identifying data meant for N3IWF is not a problem (this can be done and is done by indicating destination for data with a FQDN (Fully Qualified Domain Name) pointing to the N3IWF. The N3IWF having received such data need still to identify that data is really signalling messages meant for AMF. And this has to work in the AMF to (S) NPN UE direction as well.
The NAS signalling connection is up to now always tied to a bearer at a lower layer, in fact a signaling bearer at access stratum. Now it is tied to a bearer, specifically a user/data bearer -set up, managed and controlled by a layer (or sublayer) above NAS's mobility management, i.e. the 5GMM.
FIG. 7 illustrates that, in some embodiments, a user equipment (UE) 10 and a network (e.g., a core network) 20 of operating a non-access stratum (NAS) signalling connection in a communication network system 30 according to an embodiment of the present disclosure are provided. The communication network system 30 includes the UE 10 and the network 20. The UE 10 may include a memory 12, a transceiver 13, and a processor 11 coupled to the memory 12, the transceiver 13. The network 20 may include a memory 22, a transceiver 23, and a processor 21 coupled to the memory 22, the transceiver 23. The  processor  11 or 21 may be configured to implement proposed functions, procedures and/or methods described in this description. Layers of radio interface protocol may be implemented in the  processor  11 or 21. The  memory  12 or 22 is operatively coupled with the  processor  11 or 21 and stores a variety of information to operate the  processor  11 or 21. The  transceiver  13 or 23 is operatively coupled with the  processor  11 or 21, and the  transceiver  13 or 23 transmits and/or receives a radio signal.
The  processor  11 or 21 may include application-specific integrated circuit (ASIC) , other chipset, logic circuit and/or data processing device. The  memory  12 or 22 may include read-only memory (ROM) , random access memory (RAM) , flash memory, memory card, storage medium and/or other storage device. The  transceiver  13 or 23 may include baseband circuitry to process radio frequency signals. When the embodiments are implemented in software, the techniques described herein can be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. The modules can be stored in the  memory  12 or 22 and executed by the  processor  11 or 21. The  memory  12 or 22 can be implemented within the  processor  11 or 21 or external to the  processor  11 or 21 in which case those can be communicatively coupled to the  processor  11 or 21 via various means as is known in the art.
In some embodiments, the processor 11 is configured to: establish a NAS signalling connection from the user equipment 10 to a node (such as an AMF) of a public land mobile network (PLMN) , wherein the NAS signalling connection goes through one or more data flows; and obtain a PLMN service from the NAS signalling connection. This provides a protocol architecture solution for a NAS of a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) capable UE to seek the PLMN service over a (S) NPN and use the NAS signalling connection to enable a NAS signalling message to go between the UE and the PLMN through the (S) NPN.
In some embodiments, the processor 11 is configured to use the NAS signalling connection to enable a NAS signalling message to go between the user equipment 10 and the PLMN through a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) or from the user equipment to the PLMN not involving the (S) NPN. In some embodiments, the processor 11 is configured to use the NAS signalling connection to enable a NAS signalling message to go between the user equipment and the PLMN through a protocol data unit (PDU) session or its data radio bearers to the PLMN. In some embodiments, in an uplink direction of the NAS signalling message, the NAS signalling message is transmitted to a protocol stack before the NAS signalling message is transmitted to a lower layer to transmit to the network 20. In some embodiments, in a downlink direction of the NAS signalling message, the NAS signalling message is transmitted to a user plane and then transmitted downwards to a NAS of the user equipment 10. In some embodiments, the processor 11 is configured to select one data flow from the one or more data flows as a selected data flow, and the NAS signalling message is directly input to the selected data flow.
In some embodiments, the one or more data flows comprise one or more quality of service (QoS) flows. In some embodiments, the one or more data flows remain in a duration of existence of the NAS signalling connection. In some embodiments, the one or more data flows are established through an establishment of a protocol data unit (PDU) session, a characteristic of the PDU session is used to identify the one or more data flows in the NAS signalling connection. In some embodiments, the characteristic of the PDU session comprises an information element (IE) , a decode of a PDU session type IE, or an identification, a field, or a subfield within parameters of an establishment request message. In some embodiments, in the establishment of the PDU session, the one or more data flows are linked to the PDU session. In some embodiments, the transceiver 13 is configured to transmit a configuration of the NAS signalling connection to the network 20.
In some embodiments, the processor 21 is configured to: determine a configuration of a NAS signalling connection, wherein the configuration of the NAS signalling connection comprises an establishment of the NAS signalling connection from the user equipment 10 to a node of a public land mobile network (PLMN) , and the NAS signalling connection goes through one or more data flows; and control the transceiver to transmit the configuration of a NAS signalling connection to a radio access network (RAN) . This provides a protocol architecture solution for a NAS of a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) capable UE to seek the PLMN service over a (S) NPN and use the NAS signalling connection to enable a NAS signalling message to go between the UE and the PLMN through the (S) NPN or from the user equipment to the PLMN not involving the (S) NPN. In some embodiments, the processor 21 determines the configuration of the NAS signalling connection by itself or determines the configuration of the NAS signalling connection by receiving the configuration of the NAS signalling connection from the user equipment 10.
In the above descriptions of embodiments to determine a configuration of a NAS signaling connection comprising of the NAS signaling connection from UE to PLMN through (S) NPN, such descriptions apply equally as embodiments to determine a configuration of a NAS signaling connection comprising of the NAS signaling connection from UE to PLMN through PDU sessions or data radio bearers of PDU session to any 5G PLMN or E-UTRA PLMN.
FIG. 8 illustrates a method 200 of operating a non-access stratum (NAS) signalling connection of a UE according to an embodiment of the present disclosure. In some embodiments, the method 200 includes: a block 202, establishing a NAS signalling connection from the user equipment to a node of a public land mobile network (PLMN) , wherein the NAS signalling connection goes through one or more data flows, and a block 204, obtaining a PLMN service from the NAS signalling connection. This provides a protocol architecture solution for a NAS of a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) capable UE to seek the PLMN service over a (S) NPN and use the NAS signalling connection to enable a NAS signalling message to go between the UE and the PLMN through the (S) NPN.
FIG. 9 illustrates a method 300 of operating a non-access stratum (NAS) signalling connection according to an embodiment of the present disclosure. In some embodiments, the method 300 includes: a block 302, determining a configuration of a NAS signalling connection, wherein the configuration of the NAS signalling connection comprises an establishment of the NAS signalling connection from a user equipment to a node of a public land mobile network (PLMN) , and the NAS signalling connection goes through one or more data flows, and a block 304, transmitting the configuration of a NAS signalling connection to a radio access network (RAN) . This provides a protocol architecture solution for a NAS of a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) capable UE to seek the PLMN service over a (S) NPN and use the NAS signalling connection to enable a NAS signalling message to go between the UE and the PLMN through the (S) NPN.
In some embodiments, the method 200 further comprises using the NAS signalling connection to enable a NAS signalling message to go between the user equipment and the PLMN through a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) or from the user equipment to the PLMN not involving the (S) NPN. In some embodiments, the method 200 further comprises using the NAS signalling connection to enable a NAS signalling message to go between the user equipment and the PLMN through a protocol data unit (PDU) session or its data radio bearers to the PLMN. In some embodiments, the NAS signalling connection is used to enable a NAS signalling message to go between the user equipment and the PLMN through a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) or from the user equipment to the PLMN not involving the (S) NPN. In some embodiments, the NAS signalling connection is used to enable a NAS signalling message to go between the user equipment and the PLMN through a protocol data unit (PDU) session or its data radio bearers to the PLMN. In some embodiments, in an uplink direction of the NAS signalling message, the NAS signalling message is transmitted to a protocol stack before the NAS signalling message is transmitted to a lower layer to transmit to a network. In some embodiments, in a downlink direction of the NAS signalling message, the NAS signalling message is transmitted to a user plane and then transmitted downwards to a NAS of the user equipment. In some embodiments, the method 200 further comprises selecting one data flow from the one or more data flows as a selected data flow, and the NAS signalling message is directly input to the selected data flow. In some embodiments, the one or more data flows comprise one or more quality of service (QoS) flows.
In some embodiments, the one or more data flows remain in a duration of existence of the NAS signalling connection. In some embodiments, the one or more data flows are established through an establishment of a protocol data unit (PDU) session, a characteristic of the PDU session is used to identify the one or more data flows in the NAS signalling connection. In some embodiments, the characteristic of the PDU session comprises an information element (IE) , a decode of a PDU session type IE, or an identification, a field, or a subfield within parameters of an establishment request message. In some embodiments, in the establishment of the PDU session, the one or more data flows are linked to the PDU session. In some embodiments, the method 200 further comprises transmitting a configuration of the NAS signalling connection to a network. In some embodiments, the network determines the configuration of the NAS signalling  connection by itself or determines the configuration of the NAS signalling connection by receiving the configuration of the NAS signalling connection from the user equipment.
Whilst the present disclosure has many embodiments, where each embodiment by itself or in combination with any of other embodiments solves issues and deficiencies as follows. In some embodiments, a concept that provides a protocol architecture solution for a NAS of a (S) NPN capable UE to seek a PLMN service over (S) NPN and use a NAS signaling connection to enable a NAS signaling message to go between the UE and the PLMN through the (S) NPN. This protocol architecture solution is illustrated in FIG. 10. In some embodiments, FIG. 10 illustrates a protocol architecture of a non-access stratum supporting (S) NPN UE (MSs, MS side) over (S) NPN 3GPP access for a PLMN service through PLMN's N3IWF. It is understood that a dotted line represents a NAS signaling connection. This matches to a dotted line (through N1 PLMN) in FIG. 1. The NAS signaling connection is a signaling plane (acontrol plane) going from inside of the UE to the AMF of the PLMN from which the (S) NPN UE seeks a PLMN service (through (S) NPN) . Therefore, FIG. 10 complements what is not detailed in FIG. 1 and gives a protocol architecture within the UE for the NAS and interacting entities within the UE.
FIG. 10 illustrates that, in some embodiments, the control plane is illustrated to go through QF1. This is just illustrative. Any QoS flow (or data flow) could be used. But once a data (QoS) flow is chosen that remains the flow for the control plane. Further solution in some embodiments of the present disclosure reinforces and identifies (and keeps to that identification) the data flow as the signaling plane. Once a data flow is chosen to be the signaling/control plane when establishing the NAS signaling connection, it remains so for a duration of existence of the NAS signaling connection. If that NAS signaling connection is subsequently release and another NAS signaling connection is re-established (in the course of time) , there is nothing against choosing another data flow to establish (or re-establish) the NAS signaling connection.
FIG. 10 also illustrates that, in some embodiments, where before now an uplink (UL) NAS signalling message is passed down to lower layers to transport to the network and never passed up a protocol stack, now a NAS protocol machine passes the UL NAS signaling message up the protocol stack. In a direction of the DL NAS signaling message, the DL NAS signaling message will now arrive at a bearer manager (or whatever named entity that handles and manages data bearers (i.e. the user plane) and then passed downwards to the NAS (where before a downlink (DL) NAS message always passes upwards by an access stratum to the NAS) . In FIG. 10, where the (S) NPN UE access stratum sublayer is instead the 5G-NR or E-UTRAN access stratum sublayer, FIG. 10 then illustrates a protocol architecture of a non-access stratum supporting UE over data radio bearer of PDU session accessing for a PLMN service.
FIG. 11 illustrates that, in some embodiments, an alternative conceptual solution to piping the NAS signaling message through a user/data plane manager, is for NAS to input the NAS signaling message direct to a selected QoS flow (QF) . This alternative solution however would mean that for all the QoS Flows managed by the user plane manager, there will be exceptions to some data being input outside the management of the data plane manager (bearer manager) , even if that is technically possible. In FIG. 11, where the (S) NPN UE access stratum sublayer is instead the 5G-NR or E-UTRAN access stratum sublayer, FIG. 11 then illustrates a protocol architecture of a non-access stratum supporting UE over data radio bearer of PDU session accessing for a PLMN service.
FIG. 12 illustrates that, in some embodiments, any data flow is established through a session management (SM) procedure, beginning with an establishment of a PDU session. As a separate embodiment, to identify the data flow for which the NAS will use for the NAS signaling connection, a new characteristic of the PDU session is introduced. This new characteristic can be a new IE or can be a new decode of the PDU session type IE or for that matter any new identification or field or subfield within parameters of an establishment request message. This embodiment like all other  embodiments in the present disclosure, it does not restrict or limit to the exact identification, field or parameter nor on the name of such identification, field or parameter (s) .
FIG. 13 illustrates that, in some embodiments, a PDU session can have one or more data flows, so called QoS Flows. In a PDU session establishment, a number of QoS flows can be linked to the PDU session. As an alternative embodiment, one or a certain QoS flow (or data flow) can be picked to carry the NAS signaling messages, i.e. chosen to be whence the NAS signaling connection runs. Therefore, with this alternative embodiment, a QOS flow can be changed, so that it will be the data flow for the NAS signaling connection. Such a change can be indicated by a new decode of an existing field or a new indication (in form of a new IE) or by any other protocol means considered to best fit the needs of signaling such an indication, e.g. a new/different indication within the requested QoS flow descriptions IE of the PDU SESSION MODIFICATION REQUEST message as illustrated in FIG. 13.
In some embodiments, it is noted and described that for PLMN services, the (S) NPN capable UE goes through the PLMN's N3IWF (as illustrated in FIG. 1) . It is through the N3IWF, that all manners of control and data for such PLMN service has to pass. It is further noted that the NAS signaling connection –i.e. the control plane –is established, so that consequent signaling messages to establish the user/data plane can be done (again as illustrated in FIG. 1, solid line) . Therefore, as a separate method of solution, the first time a bearer established where a destination address is a fully qualified domain name (FQDN) of the N3IWF of the PLMN, that bearer will be the one used as the NAS signaling connection. By this method, there is no explicit indication of that bearer being used for NAS signaling. The indication is more by association and by being the first to be established. Furthermore, this could be the first PDU session or could be the first bearer of the first PDU session for getting to the N3IWF. By this method, however, the PDU session or that specific bearer within what could be a number of bearers of a PDU session, will have to remain in existence, even if actual radio resources for the data plane might get deactivated.
While the above embodiments have the UE choosing and indicating which session or data flow can be for carrying NAS signaling messages, there is nothing in the solutions of the present disclosure to restrict the network from making that choice or providing such indication of session or data flow for NAS signaling connection. The solutions of some embodiments in the present disclosure allow for NAS signaling messages –which till now is carry over a 3GPP access control plane –to now be transported over a 3GPP access user plane and identified as such. Whilst it has been done before by IMS to send and receive IMS signaling over an established user plane bearer, IMS is an application, positioned at the application layer. IMS signaling from the UE to the network is still passed downwards while UL IMS messages are passed by the user plane control upwards to IMS application. With some embodiments of the present disclosure, NAS signaling messages can now be passed over and above to the data bearer controllers to be transported over 3GPP data bearers.
In summary, identification of a session or a data flow for NAS signaling use is introduced in some embodiments of the present disclosure. This identification allows UE and network entities to know that what is carried over a certain data bearer is actually NAS signaling and as such can be passed to the correct protocol entities in both the UE side and the network side. In some embodiments of the present disclosure, the proposed protocol architecture within the UE that is (S) NPN capable and wants to support PLMN services over (S) NPN, allows the UE to reuse all its protocol signaling and NAS procedures that are dependent on having a NAS signaling connection. While what is introduced as the protocol architecture is abstract and can be argued to be conceptual, what is existing as NAS signaling procedures specified within 3GPP TS 24.501 are factual and are existing protocols and procedures. These now can be use without changes given the NAS signaling connection is available and can exist as before. And this summary and the introduced embodiments of present disclosure a non-SNPN capable UE, i.e. a normal UE to run its NAS signaling connection over a  PDU session or the data radio bearer of a PDU Session to a PLMN in much the same way not operating through a (S) NPN.
As another point of a solution in some embodiments of the present disclosure, a core network can send a new indication to a radio access network (RAN) . This may happen when the core network receives the new indication (that of the "NAS signaling" ) from the UE or the core network determines by itself. This can be made used of in the RAN –as it then knows that bearer is for signaling –that the characteristics and quality of that bearer in terms of e.g. latency, error checking, and recovery, required bit rate, etc., are sufficient and properly maintained. Such a core network entity passing the indication to the RAN can be (but not limited to) the SMF. This new parameter can be passed through over the N2 interface as part of the N2 protocol signaling.
Commercial interests for some embodiments are as follows. 1. providing a protocol architecture solution for a NAS of a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) capable UE to seek the PLMN service over a (S) NPN and use the NAS signalling connection to enable a NAS signalling message to go between the UE and the PLMN through the (S) NPN. 2. providing a good communication performance. 3. providing a high reliability. 4. Some embodiments of the present disclosure are used by 5G-NR chipset vendors, V2X communication system development vendors, automakers including cars, trains, trucks, buses, bicycles, moto-bikes, helmets, and etc., drones (unmanned aerial vehicles) , smartphone makers, communication devices for public safety use, AR/VR device maker for example gaming, conference/seminar, education purposes. Some embodiments of the present disclosure are a combination of “techniques/processes” that can be adopted in 3GPP specification to create an end product. Some embodiments of the present disclosure propose technical mechanisms.
5. for embodiments on NAS signaling connection over (S) NPN applies to NAS signaling connections over PDU Sessions to a PLMN.
FIG. 14 is a block diagram of an example system 700 for wireless communication according to an embodiment of the present disclosure. Embodiments described herein may be implemented into the system using any suitably configured hardware and/or software. FIG. 14 illustrates the system 700 including a radio frequency (RF) circuitry 710, a baseband circuitry 720, an application circuitry 730, a memory/storage 740, a display 750, a camera 760, a sensor 770, and an input/output (I/O) interface 780, coupled with each other at least as illustrated.
The application circuitry 730 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include any combinations of general-purpose processors and dedicated processors, such as graphics processors and application processors. The processors may be coupled with the memory/storage and configured to execute instructions stored in the memory/storage to enable various applications and/or operating systems running on the system.
The baseband circuitry 720 may include a circuitry, such as, but not limited to, one or more single-core or multi-core processors. The processors may include a baseband processor. The baseband circuitry may handle various radio control functions that enable communication with one or more radio networks via the RF circuitry. The radio control functions may include, but are not limited to, signal modulation, encoding, decoding, radio frequency shifting, etc. In some embodiments, the baseband circuitry may provide for communication compatible with one or more radio technologies. For example, in some embodiments, the baseband circuitry may support communication with an evolved universal terrestrial radio access network (EUTRAN) and/or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) . Embodiments in which the baseband circuitry is configured to support radio communications of more than one wireless protocol may be referred to as multi-mode baseband circuitry.
In various embodiments, the baseband circuitry 720 may include circuitry to operate with signals that are not strictly considered as being in a baseband frequency. For example, in some embodiments, baseband circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency. The RF circuitry 710 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium. In various embodiments, the RF circuitry may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
In various embodiments, the RF circuitry 710 may include circuitry to operate with signals that are not strictly considered as being in a radio frequency. For example, in some embodiments, RF circuitry may include circuitry to operate with signals having an intermediate frequency, which is between a baseband frequency and a radio frequency.
In various embodiments, the transmitter circuitry, control circuitry, or receiver circuitry discussed above with respect to the user equipment, eNB, or gNB may be embodied in whole or in part in one or more of the RF circuitry, the baseband circuitry, and/or the application circuitry. As used herein, “circuitry” may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC) , an electronic circuit, a processor (shared, dedicated, or group) , and/or a memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality. In some embodiments, the electronic device circuitry may be implemented in, or functions associated with the circuitry may be implemented by, one or more software or firmware modules.
In some embodiments, some or all of the constituent components of the baseband circuitry, the application circuitry, and/or the memory/storage may be implemented together on a system on a chip (SOC) .
The memory/storage 740 may be used to load and store data and/or instructions, for example, for system. The memory/storage for one embodiment may include any combination of suitable volatile memory, such as dynamic random access memory (DRAM) ) , and/or non-volatile memory, such as flash memory.
In various embodiments, the I/O interface 780 may include one or more user interfaces designed to enable user interaction with the system and/or peripheral component interfaces designed to enable peripheral component interaction with the system. User interfaces may include, but are not limited to a physical keyboard or keypad, a touchpad, a speaker, a microphone, etc. Peripheral component interfaces may include, but are not limited to, a non-volatile memory port, a universal serial bus (USB) port, an audio jack, and a power supply interface.
In various embodiments, the sensor 770 may include one or more sensing devices to determine environmental conditions and/or location information related to the system. In some embodiments, the sensors may include, but are not limited to, a gyro sensor, an accelerometer, a proximity sensor, an ambient light sensor, and a positioning unit. The positioning unit may also be part of, or interact with, the baseband circuitry and/or RF circuitry to communicate with components of a positioning network, e.g., a global positioning system (GPS) satellite.
In various embodiments, the display 750 may include a display, such as a liquid crystal display and a touch screen display. In various embodiments, the system 700 may be a mobile computing device such as, but not limited to, a laptop computing device, a tablet computing device, a netbook, an ultrabook, a smartphone, etc. In various embodiments, system may have more or less components, and/or different architectures. Where appropriate, methods described herein may be implemented as a computer program. The computer program may be stored on a storage medium, such as a non-transitory storage medium.
A person having ordinary skill in the art understands that each of the units, algorithm, and steps described and disclosed in the embodiments of the present disclosure are realized using electronic hardware or combinations of software for computers and electronic hardware. Whether the functions run in hardware or software depends on the condition of application and design requirement for a technical plan. A person having ordinary skill in the art can use different ways to  realize the function for each specific application while such realizations should not go beyond the scope of the present disclosure. It is understood by a person having ordinary skill in the art that he/she can refer to the working processes of the system, device, and unit in the above-mentioned embodiment since the working processes of the above-mentioned system, device, and unit are basically the same. For easy description and simplicity, these working processes will not be detailed.
It is understood that the disclosed system, device, and method in the embodiments of the present disclosure can be realized with other ways. The above-mentioned embodiments are exemplary only. The division of the units is merely based on logical functions while other divisions exist in realization. It is possible that a plurality of units or components are combined or integrated in another system. It is also possible that some characteristics are omitted or skipped. On the other hand, the displayed or discussed mutual coupling, direct coupling, or communicative coupling operate through some ports, devices, or units whether indirectly or communicatively by ways of electrical, mechanical, or other kinds of forms.
While the present disclosure has been described in connection with what is considered the most practical and preferred embodiments, it is understood that the present disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements made without departing from the scope of the broadest interpretation of the appended claims.
The units as separating components for explanation are or are not physically separated. The units for display are or are not physical units, that is, located in one place or distributed on a plurality of network units. Some or all of the units are used according to the purposes of the embodiments. Moreover, each of the functional units in each of the embodiments can be integrated in one processing unit, physically independent, or integrated in one processing unit with two or more than two units. If the software function unit is realized and used and sold as a product, it can be stored in a readable storage medium in a computer. Based on this understanding, the technical plan proposed by the present disclosure can be essentially or partially realized as the form of a software product. Or, one part of the technical plan beneficial to the conventional technology can be realized as the form of a software product. The software product in the computer is stored in a storage medium, including a plurality of commands for a computational device (such as a personal computer, a server, or a network device) to run all or some of the steps disclosed by the embodiments of the present disclosure. The storage medium includes a USB disk, a mobile hard disk, a read-only memory (ROM) , a random access memory (RAM) , a floppy disk, or other kinds of media capable of storing program codes.

Claims (55)

  1. A method of operating a non-access stratum (NAS) signalling connection by a user equipment, the method comprising: establishing a NAS signalling connection from the user equipment to a node of a public land mobile network (PLMN) , wherein the NAS signalling connection goes through one or more data flows; and
    obtaining a PLMN service from the NAS signalling connection.
  2. The method of claim 1, further comprising using the NAS signalling connection to enable a NAS signalling message to go between the user equipment and the PLMN through a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) or from the user equipment to the PLMN not involving the (S) NPN.
  3. The method of claim 1, further comprising using the NAS signalling connection to enable a NAS signalling message to go between the user equipment and the PLMN through a protocol data unit (PDU) session or its data radio bearers to the PLMN.
  4. The method of claim 2 or 3, wherein in an uplink direction of the NAS signalling message, the NAS signalling message is transmitted to a protocol stack before the NAS signalling message is transmitted to a lower layer to transmit to a network.
  5. The method of any one of claims 2 to 4, wherein in a downlink direction of the NAS signalling message, the NAS signalling message is transmitted to a user plane and then transmitted downwards to a NAS of the user equipment.
  6. The method of any one of claims 2 to 5, further comprising selecting one data flow from the one or more data flows as a selected data flow, and the NAS signalling message is directly input to the selected data flow.
  7. The method of any one of claims 1 to 6, wherein the one or more data flows comprise one or more quality of service (QoS) flows.
  8. The method of any one of claims 1 to 7, wherein the one or more data flows remain in a duration of existence of the NAS signalling connection.
  9. The method of any one of claims 1 to 8, wherein the one or more data flows are established through an establishment of a protocol data unit (PDU) session, a characteristic of the PDU session is used to identify the one or more data flows in the NAS signalling connection.
  10. The method of claim 9, wherein the characteristic of the PDU session comprises an information element (IE) , a decode of a PDU session type IE, or an identification, a field, or a subfield within parameters of an establishment request message.
  11. The method of claim 9 or 10, wherein in the establishment of the PDU session, the one or more data flows are linked to the PDU session.
  12. The method of any one of claims 1 to 11, further comprising transmitting a configuration of the NAS signalling connection to a network.
  13. A user equipment of operating a non-access stratum (NAS) signalling connection, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to:
    establish a NAS signalling connection from the user equipment to a node of a public land mobile network (PLMN) , wherein the NAS signalling connection goes through one or more data flows; and
    obtain a PLMN service from the NAS signalling connection.
  14. The user equipment of claim 13, wherein the processor is configured to use the NAS signalling connection to enable a NAS signalling message to go between the user equipment and the PLMN through a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) or from the user equipment to the PLMN not involving the (S)NPN.
  15. The user equipment of claim 13, wherein the processor is configured to use the NAS signalling connection to enable a NAS signalling message to go between the user equipment and the PLMN through a protocol data unit (PDU) session or its data radio bearers to the PLMN.
  16. The user equipment of claim 14 or 15, wherein in an uplink direction of the NAS signalling message, the NAS signalling message is transmitted to a protocol stack before the NAS signalling message is transmitted to a lower layer to transmit to a network.
  17. The user equipment of any one of claims 14 to 16, wherein in a downlink direction of the NAS signalling message, the NAS signalling message is transmitted to a user plane and then transmitted downwards to a NAS of the user equipment.
  18. The user equipment of any one of claims 14 to 17, wherein the processor is configured to select one data flow from the one or more data flows as a selected data flow, and the NAS signalling message is directly input to the selected data flow.
  19. The user equipment of any one of claims 13 to 18, wherein the one or more data flows comprise one or more quality of service (QoS) flows.
  20. The user equipment of any one of claims 13 to 19, wherein the one or more data flows remain in a duration of existence of the NAS signalling connection.
  21. The user equipment of any one of claims 13 to 20, wherein the one or more data flows are established through an establishment of a protocol data unit (PDU) session, a characteristic of the PDU session is used to identify the one or more data flows in the NAS signalling connection.
  22. The user equipment of claim 21, wherein the characteristic of the PDU session comprises an information element (IE) , a decode of a PDU session type IE, or an identification, a field, or a subfield within parameters of an establishment request message.
  23. The user equipment of claim 21 or 22, wherein in the establishment of the PDU session, the one or more data flows are linked to the PDU session.
  24. The user equipment of any one of claims 13 to 23, wherein the transceiver is configured to transmit a configuration of the NAS signalling connection to a network.
  25. A method of operating a non-access stratum (NAS) signalling connection by a network, the method comprising:
    determining a configuration of a NAS signalling connection, wherein the configuration of the NAS signalling connection comprises an establishment of the NAS signalling connection from a user equipment to a node of a public land mobile network (PLMN) , and the NAS signalling connection goes through one or more data flows; and
    transmitting the configuration of a NAS signalling connection to a radio access network (RAN) .
  26. The method of claim 25, wherein the NAS signalling connection is used to enable a NAS signalling message to go between the user equipment and the PLMN through a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) or from the user equipment to the PLMN not involving the (S) NPN.
  27. The method of claim 25, wherein the NAS signalling connection is used to enable a NAS signalling message to go between the user equipment and the PLMN through a protocol data unit (PDU) session or its data radio bearers to the PLMN.
  28. The method of claim 26 or 27, wherein in an uplink direction of the NAS signalling message, the NAS signalling message is transmitted to a protocol stack before the NAS signalling message is transmitted to a lower layer to transmit to the network.
  29. The method of any one of claims 26 to 28, wherein in a downlink direction of the NAS signalling message, the NAS signalling message is transmitted to a user plane and then transmitted downwards to a NAS of the user equipment.
  30. The method of any one of claims 26 to 29, wherein one data flow is selected from the one or more data flows as a selected data flow, and the NAS signalling message is directly input to the selected data flow.
  31. The method of any one of claims 25 to 30, wherein the one or more data flows comprise one or more quality of service (QoS) flows.
  32. The method of any one of claims 25 to 31, wherein the one or more data flows remain in a duration of existence of the NAS signalling connection.
  33. The method of any one of claims 25 to 32, wherein the one or more data flows are established through an establishment of a protocol data unit (PDU) session, a characteristic of the PDU session is used to identify the one or more data flows in the NAS signalling connection.
  34. The method of claim 33, wherein the characteristic of the PDU session comprises an information element (IE) , a decode of a PDU session type IE, or an identification, a field, or a subfield within parameters of an establishment request message.
  35. The method of claim 33 or 34, wherein in the establishment of the PDU session, the one or more data flows are linked to the PDU session.
  36. The method of any one of claims 25 to 35, wherein the network determines the configuration of the NAS signalling connection by itself or determines the configuration of the NAS signalling connection by receiving the configuration of the NAS signalling connection from the user equipment.
  37. The method of any one of claims 25 to 36, wherein the network is a core network.
  38. A network of operating a non-access stratum (NAS) signalling connection, comprising:
    a memory;
    a transceiver; and
    a processor coupled to the memory and the transceiver;
    wherein the processor is configured to:
    determine a configuration of a NAS signalling connection, wherein the configuration of the NAS signalling connection comprises an establishment of the NAS signalling connection from a user equipment to a node of a public land mobile network (PLMN) , and the NAS signalling connection goes through one or more data flows; and
    control the transceiver to transmit the configuration of a NAS signalling connection to a radio access network (RAN) .
  39. The network of claim 38, wherein the NAS signalling connection is used to enable a NAS signalling message to go between the user equipment and the PLMN through a standalone non-public network (SNPN) and/or a non-public network (NPN) ( (S) NPN) or from the user equipment to the PLMN not involving the (S) NPN.
  40. The network of claim 38, wherein the NAS signalling connection is used to enable a NAS signalling message to go between the user equipment and the PLMN through a protocol data unit (PDU) session or its data radio bearers to the PLMN.
  41. The network of claim 39 or 40, wherein in an uplink direction of the NAS signalling message, the NAS signalling message is transmitted to a protocol stack before the NAS signalling message is transmitted to a lower layer to transmit to the network.
  42. The network of any one of claims 39 to 41, wherein in a downlink direction of the NAS signalling message, the NAS  signalling message is transmitted to a user plane and then transmitted downwards to a NAS of the user equipment.
  43. The network of any one of claims 38 to 42, wherein one data flow is selected from the one or more data flows as a selected data flow, and the NAS signalling message is directly input to the selected data flow.
  44. The network of any one of claims 38 to 43, wherein the one or more data flows comprise one or more quality of service (QoS) flows.
  45. The network of any one of claims 38 to 44, wherein the one or more data flows remain in a duration of existence of the NAS signalling connection.
  46. The network of any one of claims 38 to 45, wherein the one or more data flows are established through an establishment of a protocol data unit (PDU) session, a characteristic of the PDU session is used to identify the one or more data flows in the NAS signalling connection.
  47. The network of claim 46, wherein the characteristic of the PDU session comprises an information element (IE) , a decode of a PDU session type IE, or an identification, a field, or a subfield within parameters of an establishment request message.
  48. The network of claim 46 or 47, wherein in the establishment of the PDU session, the one or more data flows are linked to the PDU session.
  49. The network of any one of claims 38 to 48, wherein the processor determines the configuration of the NAS signalling connection by itself or determines the configuration of the NAS signalling connection by receiving the configuration of the NAS signalling connection from the user equipment.
  50. The network of any one of claims 38 to 49, wherein the network is a core network.
  51. A non-transitory machine-readable storage medium having stored thereon instructions that, when executed by a computer, cause the computer to perform the method of any one of claims 1 to 12 and 25 to 37.
  52. A chip, comprising:
    a processor, configured to call and run a computer program stored in a memory, to cause a device in which the chip is installed to execute the method of any one of claims 1 to 12 and 25 to 37.
  53. A computer readable storage medium, in which a computer program is stored, wherein the computer program causes a computer to execute the method of any one of claims 1 to 12 and 25 to 37.
  54. Acomputer program product, comprising a computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 12 and 25 to 37.
  55. A computer program, wherein the computer program causes a computer to execute the method of any one of claims 1 to 12 and 25 to 37.
PCT/CN2020/074368 2020-02-05 2020-02-05 Apparatus and method for operating non-access stratum signalling connection over data bearers WO2021155519A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/074368 WO2021155519A1 (en) 2020-02-05 2020-02-05 Apparatus and method for operating non-access stratum signalling connection over data bearers
PCT/CN2020/078305 WO2021155619A1 (en) 2020-02-05 2020-03-06 Apparatus and method for operating non-access stratum signalling connection over data bearers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074368 WO2021155519A1 (en) 2020-02-05 2020-02-05 Apparatus and method for operating non-access stratum signalling connection over data bearers

Publications (1)

Publication Number Publication Date
WO2021155519A1 true WO2021155519A1 (en) 2021-08-12

Family

ID=77199662

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/074368 WO2021155519A1 (en) 2020-02-05 2020-02-05 Apparatus and method for operating non-access stratum signalling connection over data bearers
PCT/CN2020/078305 WO2021155619A1 (en) 2020-02-05 2020-03-06 Apparatus and method for operating non-access stratum signalling connection over data bearers

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078305 WO2021155619A1 (en) 2020-02-05 2020-03-06 Apparatus and method for operating non-access stratum signalling connection over data bearers

Country Status (1)

Country Link
WO (2) WO2021155519A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190208561A1 (en) * 2016-12-11 2019-07-04 Motorola Mobility Llc Method and apparatus for relaying user data between a secure connection and a data connection
CN110582121A (en) * 2018-06-08 2019-12-17 英特尔公司 Solution for UE to request initial UE policy provisioning or updating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190208561A1 (en) * 2016-12-11 2019-07-04 Motorola Mobility Llc Method and apparatus for relaying user data between a secure connection and a data connection
CN110582121A (en) * 2018-06-08 2019-12-17 英特尔公司 Solution for UE to request initial UE policy provisioning or updating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC.: "QoS flow mapping for accessing PLMN via NPN", 3GPP DRAFT; S2-1900374_QOS ISSUE FOR ACCESSING PLMN VIA NPN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Kochi, India; 20190121 - 20190125, 15 January 2019 (2019-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051590054 *

Also Published As

Publication number Publication date
WO2021155619A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
US10512038B2 (en) Voice and data continuity between wireless devices
RU2615502C1 (en) Transmission of small data volumes in wireless communication network
TWI654859B (en) Network assisted device-to-device discovery for peer-to-peer applications
WO2020172491A1 (en) Meeting strict qos requirements through network control of device route and location
CN112119652A (en) Identity layer of IoT device
CN114600504B (en) Method for moving IMS voice session on non-3 GPP to 3GPP access
WO2015116676A1 (en) Enabling d2d functionality for public safety applications
EP3942850B1 (en) Supporting location services at a base station
CN106488386B (en) A kind of method and apparatus carrying out data processing
US20220174482A1 (en) Establishing a protocol data unit session
CN114208134A (en) Requesting data connectivity for UAV operations
WO2014047949A1 (en) Method for multi-user cooperation communication, device and system
JP2023015260A (en) Method, UE and AMF node
WO2013149428A1 (en) Method for realizing switching to device-to-device communication mode, network apparatus and user equipment
US11375575B2 (en) Apparatus and method of performing a group communication
WO2021136287A1 (en) Communication method and apparatus
EP4057766A1 (en) Method and device for controlling configuration related to sidelink communication in wireless communication system
WO2021155519A1 (en) Apparatus and method for operating non-access stratum signalling connection over data bearers
CN112368976B (en) Terminal and method for performing group communication
US20220322152A1 (en) Method for measuring performance for qos
US20230140726A1 (en) Method and apparatus for providing emergency service in a network
CN115669213A (en) Relay device selection method, device, equipment and storage medium
WO2022027303A1 (en) User equipment and method of operating access control for at least one of onboarding service and/or of npn service
WO2023054198A1 (en) First node, second node, method employing first node, method employing second node, ue, and method employing ue
WO2022027448A1 (en) Nr sidelink relay communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917768

Country of ref document: EP

Kind code of ref document: A1