WO2021153963A1 - Thermoelectric element embedded-type actuator module and apparatus for driving actuator - Google Patents

Thermoelectric element embedded-type actuator module and apparatus for driving actuator Download PDF

Info

Publication number
WO2021153963A1
WO2021153963A1 PCT/KR2021/000985 KR2021000985W WO2021153963A1 WO 2021153963 A1 WO2021153963 A1 WO 2021153963A1 KR 2021000985 W KR2021000985 W KR 2021000985W WO 2021153963 A1 WO2021153963 A1 WO 2021153963A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
heat
thermoelectric element
shape memory
reaction surface
Prior art date
Application number
PCT/KR2021/000985
Other languages
French (fr)
Korean (ko)
Inventor
고정찬
고성준
Original Assignee
고정찬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고정찬 filed Critical 고정찬
Publication of WO2021153963A1 publication Critical patent/WO2021153963A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Definitions

  • the present invention relates to an actuator driving device, and more particularly, to an actuator module implemented with a shape memory alloy spring and having a thermoelectric element embedded therein, and an actuator driving device for driving the actuator module.
  • the conventional muscle strength assisting robot is a robot that a person wears or rides on a joint device operated by an actuator, and it means a robot that can generate a force much greater than the force that a user can exert with the help of the actuator.
  • the joint rotation part of the conventional muscle-assist robot it is practically impossible to accurately derive the physical property information of the robot that is changed between robot production, assembly, and operation, and the calculation time for generating the motion command based on the torque is too short. There was a problem with excessive consumption. Due to the excessive consumption of such calculation time, a time delay between robot operation is induced, which causes the wearer to feel a sense of heterogeneity in wearing.
  • a resistance wire is used for contraction of the shape memory alloy spring (corresponding to the thermal reaction drive unit).
  • the shape memory alloy spring corresponding to the thermal reaction drive unit.
  • the present invention is an invention devised according to the above-mentioned necessity, and the main object of the present invention is a thermoelectric element embedded actuator module that can contract and relax an actuator implemented with a shape memory alloy spring using a single heat source, and an actuator driving device therefor In providing
  • Another object of the present invention is to utilize an actuator implemented with a shape memory alloy spring as an actuator of a strength assisting device, but to provide a thermoelectric element embedded actuator module capable of miniaturizing and lightening the muscle power assisting device and an actuator driving device thereof. there is.
  • Another object of the present invention is to provide a thermoelectric element embedded actuator module and an actuator driving device for precise control by varying the degree of contraction or relaxation for each length section of the spring using the thermal deformation characteristics of the shape memory alloy spring.
  • Another object of the present invention is to contract and relax an actuator implemented with a shape memory alloy spring using a single heat source, convert kinetic energy by relaxation and contraction of the actuator into electrical energy to maximize energy use efficiency.
  • An object of the present invention is to provide a power generation system including a thermoelectric element embedded actuator module that can be used.
  • An actuator driving device for achieving the above object is an actuator driving device using a thermoelectric element
  • At least one spring-shaped actuator made of a wire made of a shape memory alloy material that contracts and relaxes in response to heat
  • thermoelectric elements having an acting surface facing the actuator and a reaction surface positioned on the opposite side of the action surface, each of the action surface and the reaction surface acting as a heat absorbing surface or a heat generating surface depending on the direction in which the power is applied; ;
  • thermoelectric element positioned on each of the action surface and the reaction surface to transfer heat between the actuator and the thermoelectric element and between the thermoelectric element and the atmosphere;
  • At least one temperature sensor for sensing an ambient temperature of the actuator
  • a control unit that contracts or relaxes the actuator by controlling an application direction of the power applied to the thermoelectric elements, and controls the contraction length or relaxation length of the actuator according to the sensed ambient temperature of the actuator; do.
  • thermoelectric element having an action surface and a reaction surface positioned on the opposite side of the action surface, each of the action surface and the reaction surface acting as a heat absorbing surface or a heat generating surface according to a direction in which power is applied;
  • heat transfer members positioned on each of the action surface and the reaction surface to transfer heat
  • spring-shaped actuators made of a wire made of a shape memory alloy material, one side of which is connected to each of the heat transfer members and contracts and relaxes in response to heat transferred through the heat transfer member;
  • one or more temperature sensors for sensing ambient temperatures of the actuators
  • a control unit for controlling the direction of the power applied to the thermoelectric element to contract or relax the actuators, and to control the contraction length or relaxation length of the actuator according to the sensed ambient temperature of the actuator.
  • Another feature is that it is located in the heat shear member located on the reaction surface.
  • control unit controls the direction of application of power so that the working surface acts as a heating surface to contract the actuator, and drives the electric heating member to reduce the temperature difference with the reaction surface acting as a heat absorbing surface.
  • the spring-shaped actuator is manufactured using shape memory alloys of different materials whose plasticity changes depending on the temperature, but the length of the spring is divided into a plurality of sections to make different materials or shape memory alloys having different composition ratios. is another feature.
  • thermoelectric element embedded actuator module according to another embodiment of the present invention
  • At least one spring-shaped actuator made of a wire made of a shape memory alloy material that contracts and relaxes in response to heat
  • a receiving groove for accommodating the actuator is formed therein, and an actuator body that moves according to contraction and relaxation of the actuator having one side fixed in the receiving groove; including, in the actuator body,
  • One or more first heat transfer members facing the actuator accommodated in the receiving groove and exchanging heat with the actuator One or more second heat transfer members that form an outer surface of a portion of the actuator body to radiate heat to the atmosphere; and one or more thermoelectric elements having an action surface and a reaction surface attached to each of the second heat transfer members, each of the action surface and the reaction surface acting as a heat absorbing surface or a heat generating surface depending on a direction in which power is applied, and the second heat transfer It is characterized in that it includes one or more electrical heating members positioned in the member to apply heat to the reaction surface, and one or more temperature sensors positioned in the receiving groove to sense the ambient temperature of the actuator.
  • the spring-shaped actuator comprises:
  • shape memory alloys of different materials whose plasticity changes according to temperature, and the length of the spring is divided into a plurality of sections to produce shape memory alloys with different materials or different composition ratios.
  • the present invention can contract and relax an actuator implemented with a shape memory alloy spring using a thermoelectric element as a single heat source, so the existing device for contracting or relaxing the shape memory alloy spring Alternatively, there is an advantage that the structure and size can be miniaturized and simplified compared to products.
  • thermoelectric element embedded actuator module can be utilized as a muscle strength assisting device or an actuator for a prosthetic leg or prosthesis for the disabled, thereby contributing to miniaturization and weight reduction of the devices, and the thermal effect of the shape memory alloy spring corresponding to the actuator It is also possible to achieve precise control by varying the degree of contraction or relaxation for each length section of the spring using the deformation characteristics.
  • the actuator driving device since the actuator implemented with a shape memory alloy spring is contracted and relaxed to move horizontally, it is connected with a gearbox that converts this horizontal motion into a rotational motion to generate power such as a generator there are also advantages to being used as part of the device.
  • thermoelectric element 1 is an exemplary configuration diagram of an actuator driving device using a thermoelectric element according to an embodiment of the present invention.
  • thermoelectric element embedded actuator module is a perspective view of a thermoelectric element embedded actuator module according to an embodiment of the present invention
  • FIG. 3 is an exemplary cross-sectional configuration view of the thermoelectric element embedded actuator module shown in FIG. 2 .
  • FIG. 4 is an exemplary driving view of the thermoelectric element embedded actuator module shown in FIG. 2 .
  • thermoelectric element 1 illustrates a configuration diagram of an actuator driving device using a thermoelectric element according to an embodiment of the present invention.
  • thermoelectric element an actuator driving device using a thermoelectric element according to an embodiment of the present invention
  • thermoelectrics having an acting surface facing the actuator 100 and a reaction surface located on the opposite side of the action surface, each of the action surface and the reaction surface acting as a heat absorbing surface or a heat generating surface depending on the direction in which the power is applied elements 110 and
  • Heat transfer members 120, 130 that are located on each of the action surface and the reaction surface to transfer heat between the actuator 100 and the thermoelectric element 110 and between the thermoelectric element 110 and the atmosphere;
  • the actuator 100 is contracted or relaxed by controlling the direction of the power applied to the thermoelectric elements 110 , and the length of contraction or relaxation of the actuator 100 according to the sensed ambient temperature of the actuator 100 .
  • a control unit 150 for controlling the and a power supply unit 160 for supplying operating power to the thermoelectric elements 110 and the electric heating member 140 according to the control of the control unit 150 .
  • a spring made of a wire made of a shape memory alloy material that contracts and relaxes in response to heat (a shape memory alloy spring can be called , 102) may be made of various heat-reactive materials that respond to heat, for example, shape memory resins, shape memory polymers, carbon nanotubes, polyethylene, polyamide, nylon, and the like.
  • the spring-shaped actuator 100 is manufactured using shape memory alloys of different materials whose plasticity changes depending on the temperature, but by dividing the length of the spring into a plurality of sections, different materials or shape memory alloys having different composition ratios. can also be produced. By using such a manufacturing technique, the actuator 100 can be controlled more smoothly, which can be usefully used for precise control.
  • the electric heating member 140 is located in the heat transfer member 130 positioned on the reaction surface of each thermoelectric element 110 or is disposed outside the heat transfer member 130 to apply electrical heat to the heat transfer member 130 , By reducing the temperature difference with the working surface, the efficiency of the thermoelectric element 110 can be maximized, and possible frost can be eliminated.
  • Such an electric heating member 140 may be selected from an electric resistance heating wire, a PCT heating element, a coil heater, an input heater, a cartridge heater, a casting heater, a sheath heater, a halogen heater, an infrared heater, a ceramic band heater, a flange heater, etc. Any heating element using
  • control unit 150 controls the power application direction so that the working surface of the thermoelectric element 110 acts as a heating surface to contract the actuator 100, but to reduce the temperature difference with the reaction surface acting as a heat absorbing surface. Another feature is that the heating member 140 is driven and controlled.
  • the control unit 150 includes an A/D converter for converting signals sensed by various types of sensors including the temperature sensor S into digital data, and power applied to the plurality of thermoelectric elements 110 ( More specifically, it includes a forward/reverse conversion circuit that converts the direction of current) and a microprocessor that is positioned between the A/D converter and the forward/reverse conversion circuit to control the direction of power supply and overall control the operation of the actuator driving device.
  • A/D converter for converting signals sensed by various types of sensors including the temperature sensor S into digital data, and power applied to the plurality of thermoelectric elements 110 ( More specifically, it includes a forward/reverse conversion circuit that converts the direction of current) and a microprocessor that is positioned between the A/D converter and the forward/reverse conversion circuit to control the direction of power supply and overall control the operation of the actuator driving device.
  • At least one thermoelectric element 110 having an action surface and a reaction surface located on the opposite side of the action surface, each of the action surface and the reaction surface acting as a heat absorbing surface or a heat generating surface depending on the direction of application of power;
  • Heat transfer members 120 and 130 that are positioned on the action surface and the reaction surface respectively to transfer heat
  • Spring-shaped actuators 100 made of a wire made of a shape memory alloy material that one side is connected to each of the heat transfer members 120 and 130 and contracts and relaxes in response to heat transferred through the heat transfer members 120 and 130;
  • control unit 150 for controlling the length of contraction or relaxation of the actuator according to the sensed ambient temperature of the actuator may be included.
  • thermoelectric element embedded actuator module may have a bar-shaped hexahedral shape as shown in FIG. 2 , but is not limited thereto and may be manufactured in various shapes such as a cylindrical shape and a clothing attachment type depending on the application.
  • FIG. 2 is a perspective view of a thermoelectric element embedded actuator module according to an embodiment of the present invention
  • FIG. 3 is a thermoelectric element embedded actuator module shown in FIG. 2 . The cross-sectional configuration of each is illustrated.
  • thermoelectric element embedded actuator module according to an embodiment of the present invention
  • At least one spring-shaped actuator 100 made of a wire made of a shape memory alloy material that contracts and relaxes in response to heat;
  • An accommodating groove 210 for accommodating the actuator 100 is formed therein, and an actuator body 200 that moves according to the contraction and relaxation of the actuator 100 having one side fixed in the accommodating groove 210 is included.
  • an actuator body 200 that moves according to the contraction and relaxation of the actuator 100 having one side fixed in the accommodating groove 210 is included.
  • the actuator body 200 as shown in (a) of Figure 3,
  • At least one first heat transfer member 120 that faces the actuator 100 accommodated in the receiving groove 210 and heat-exchanges with the actuator 100, and the actuator body 200 Form an outer surface of a part to stand by It has at least one second heat transfer member 130 that emits heat to the first and second heat transfer members 120 and 130, respectively, and has an action surface and a reaction surface which are attached (adhesive) to each of the first and second heat transfer members 120 and 130, and each of the action surface and the reaction surface is a power source
  • One or more thermoelectric elements 110 acting as a heat absorbing surface or a heating surface according to the direction of application of It is characterized in that at least one temperature sensor (not shown) for detecting the ambient temperature of the actuator 100 is located in the receiving groove 210 is included.
  • the spring-shaped actuator 102 can be manufactured using a shape memory alloy of a single material, but in some cases, it is manufactured using a shape memory alloy of a different material whose plasticity changes depending on the temperature, but the spring By dividing the length into a plurality of sections, it may be made of different materials or shape memory alloys having different composition ratios.
  • the actuator body 200 described above has a first heat transfer member 120, a thermoelectric element 110, and a second heat transfer member on the left and right sides of the receiving groove 210 as shown in FIG. 3(a). 130), the first heat transfer member 120, the thermoelectric element 110, and the second It may be manufactured to have a structure in which the heat transfer member 130 is positioned, and the first heat transfer member 120, the thermoelectric element 110, and the second heat transfer member 130 are sequentially positioned in one or three directions.
  • the first heat transfer member 120 , the thermoelectric element 110 , and the second heat transfer member 130 may be sequentially manufactured in a circular shape so as to be positioned in an outward direction from the center of the circle.
  • thermoelectric element embedded actuator module shown in FIGS. 2 and 3 moves according to the application direction of the power applied to the thermoelectric element
  • FIG. 4 is a view showing an exemplary driving diagram of the thermoelectric element embedded actuator module shown in FIG. 2 .
  • the thermoelectric elements 110 and the electric heating member 140 constituting the thermoelectric element embedded actuator module are provided with a power supply unit 160 ), and it is assumed that the cross-section of the actuator module has the cross-sectional structure of FIG. 3 (a).
  • the actuator 100 made of a shape memory alloy material is accommodated in the receiving groove 210 formed in the actuator body 200 and one side is fixed in the receiving groove 210 is maintained in a contracted state.
  • the control unit 150 may lower the ambient temperature of the actuator 100 to a temperature required for the actuator 100 to be tensioned, for example, to 25° C. with the actuator 100 and
  • the power application direction of the thermoelectric elements 110 is controlled so that the opposing surface of the thermoelectric elements 11 acts as a heat absorbing surface and the reaction surface located on the opposite side of the working surface acts as a heat generating surface.
  • the first heat transfer member 120 attached or adhered to the action surface absorbs the heat around the actuator 100 and the actuator The temperature of 100 decreases and the temperature of the reaction surface rises, but the heat of the reaction surface is discharged to the atmosphere through the second heat transfer member 130 such as a heat dissipation fin.
  • the ambient temperature of the actuator 100 is a preset temperature ( 25°C), and it starts to be stretched at a preset temperature.
  • the controller 150 continuously senses the ambient temperature of the actuator 100 through the temperature sensor S, and when another set temperature (the temperature at which the tension stops) is reached, the power applied to the thermoelectric element 110 is supplied. block
  • the control unit 150 increases the temperature around the actuator 100 to a temperature required for the actuator 100 to contract (for example, 40° C.). To this end, the controller 150 controls the thermoelectric elements 110 so that the working surface of the thermoelectric elements 11 facing the actuator 100 acts as a heating surface, and the reaction surface located on the opposite side of the working surface acts as a heat absorbing surface. control the direction of power supply.
  • the temperature of the action surface rises and the first heat transfer member 120 attached or adhered thereto emits heat to raise the temperature around the actuator 100 and the temperature of the reaction surface decreases.
  • the actuator 100 made of a shape memory alloy contracts and returns to its original position as shown in the upper part of FIG. 4 .
  • control unit 150 controls the application direction of the power applied to the thermoelectric element 110 to horizontally contract or tension the actuator 100 made of a shape memory alloy material, and temperature sensing and Through the control, it is possible to control the length of the actuator 100 that is contracted or stretched in the horizontal direction.
  • the actuator 100 implemented as a shape memory alloy spring can be contracted as well as relaxed using the thermoelectric element 110 as a single heat source, an existing device or product that contracts or relaxes the shape memory alloy spring.
  • the structure and size can be miniaturized and simplified in comparison with other devices.
  • the actuator driving device since the actuator implemented with a shape memory alloy spring is contracted and relaxed to move horizontally, a gearbox (using a worm gear and a reel gear method) that converts this horizontal motion into a rotational motion ) and the gears rotating in the gearbox and rotating shafts of turbines constituting the generator may be rotated to generate electrical energy. If the generated energy is significantly greater than the energy applied to the thermoelectric elements 110 , continuous driving may be achieved. Therefore, the actuator driving device according to the embodiment of the present invention also has an advantage that can be utilized as a part of the power generating device.
  • thermoelectric element embedded actuator module can be used as a muscle strength assisting device or an actuator for a prosthetic leg or prosthetic limb of the disabled, thereby contributing to miniaturization and weight reduction of the devices, and the shape memory alloy spring corresponding to the actuator. It is also possible to achieve precise control by varying the degree of contraction or relaxation for each length section of the spring using thermal deformation characteristics.
  • thermoelectric element 110 acts as a heat absorbing surface and a heat generating surface
  • the working surface of the thermoelectric element 110 An actuator that deforms the two shape memory alloy springs 102 at the same time may be configured by taking advantage of the fact that one of the reaction surfaces acts as a heat absorbing surface and the other acts as a heat generating surface at the same time.
  • one side of the first shape memory alloy spring is connected to one side of a heat transfer member (such as a heat conductor) located on the working surface (assuming the upper part) of the thermoelectric element 110, and the other side of the spring is located in the upper part.
  • a heat transfer member such as a heat conductor
  • one side of the second shape memory alloy spring is connected to one side of another heat transfer member located on the reaction surface (assumed to be the lower part) of the thermoelectric element 110, and the other side of the spring is located in the lower part of the rack
  • the pinion between the upper and lower racks is in a state in which it can rotate clockwise and counterclockwise according to the movement directions of the upper and lower racks.
  • thermoelectric element 110 when power is applied to the thermoelectric element 110 so that the working surface acts as a heat absorbing surface and the reaction surface acts as a heating surface, one shape memory alloy spring contracts and another shape memory alloy spring is tensioned between the racks. of the pinion is rotated in one direction. If the application direction of the power is changed, the contracted shape memory alloy spring is tensioned and the tensioned shape memory alloy spring is contracted in the opposite direction, so the pinion between the racks rotates in the opposite direction. If this motion mechanism is applied to the human body, it will be possible to effectively implement joint bending and extension motions.
  • the upper and lower racks form two shape memory alloy springs.
  • the motion of moving in different directions is repeated by the contraction and tension of
  • one side of the shape memory alloy spring is fixedly coupled to the actuator body.
  • the spring on the other side can be controlled to be tensioned, and the shape memory alloy spring is placed on the left, right, top, and bottom of the actuator body, and one side of each spring is fixed to the actuator body in the left, right, up, and down directions. It is also possible to control the movement of the actuator body.
  • the number and position of the shape memory alloy spring can be varied according to the application place and application equipment, and the shape of the actuator body can also be variously modified. Accordingly, the true technical protection scope of the present invention should be defined only by the appended claims.

Abstract

The present invention relates to an actuator module formed of a shape-memory alloy spring and having a thermoelectric element embedded therein, and an actuator driving apparatus for driving the actuator module, the actuator module comprising: one or more actuators that have spring shapes and are manufactured by using wires of a shape-memory alloy material that contracts and relaxes in response to heat; a plurality of thermoelectric elements each including an acting surface facing the actuator and a reaction surface located opposite to the acting surface, wherein the acting surface and the reaction surface each act as a heat absorption surface or a heating surface according to a direction in which electric power is applied; heat transfer members located respectively on the acting surface and the reaction surface for transferring heat between the actuator and the thermoelectric elements and between the thermoelectric elements and air; an electrical heating member for applying heat to the reaction surface; one or more temperature sensors for sensing the peripheral temperature of the actuator; and a controller for contracting or relaxing the actuator by controlling the direction of electric power applied to the thermoelectric elements and controlling the contracting length or relaxing length of the actuator according to the sensed peripheral temperature of the actuator.

Description

열전소자 매립형 액츄에이터 모듈과 그 액츄에이터 구동장치Thermoelectric element embedded actuator module and actuator driving device
본 발명은 액츄에이터 구동장치에 관한 것으로, 특히 형상기억합금 스프링으로 구현되고 열전소자가 매립된 액츄에이터 모듈 및 그 액츄에이터 모듈을 구동시키는 액츄에이터 구동장치에 관한 것이다.The present invention relates to an actuator driving device, and more particularly, to an actuator module implemented with a shape memory alloy spring and having a thermoelectric element embedded therein, and an actuator driving device for driving the actuator module.
산업 현장의 근로자, 하역 근로자, 택배 근로자 등은 무거운 중량의 물체를 반복적으로 들고 이동하는 동작을 수행하는 경우가 많다. 이러한 작업은 여러 사람의 인력이 요구되거나 현장 상황에 따라 중장비나 기중기, 도르래 등의 보조장비가 사용되어야 하는 불편이 있다. 또한, 사람이 직접 작업할 경우에는 높은 작업 강도로 인해 근로자의 피로 증가와 작업능률의 저하는 물론이고, 근골격계 손상 등의 산업재해와 관련 직종의 기피 현상에 대한 문제가 있으며, 보조장비를 사용할 경우에는 비교적 넓은 이동공간이나 설치공간이 필요하므로, 사용범위가 제한적인 문제가 있다.Industrial workers, unloading workers, courier workers, etc. often perform movements of repeatedly lifting and moving heavy objects. This work requires several people, or depending on the site situation, heavy equipment, cranes, and auxiliary equipment such as pulleys are inconvenient to be used. In addition, when a person works directly, there is a problem of increased fatigue and decreased work efficiency, as well as industrial accidents such as musculoskeletal damage and avoidance of related occupations due to high work intensity, and when using auxiliary equipment Since it requires a relatively wide moving space or installation space, there is a problem that the range of use is limited.
이러한 문제로 인해 최근에는 모터나 유/공압 실린더 등의 액츄에이터를 이용하여 추가적인 힘을 지원할 수 있는 근력보조로봇의 필요성이 대두하고 있다. 종래의 근력보조로봇은 액츄에이터에 의해 동작하는 관절기구를 사람이 착용하거나 탑승하여 사용하는 것으로서, 액츄에이터의 도움으로 사용자가 낼 수 있는 힘보다 훨씬 큰 힘을 낼 수 있도록 해주는 로봇을 의미한다. 하지만, 종래의 근력보조로봇의 관절 회동부 제어를 위해서는 로봇 제작간, 조립간, 운용간 변경되는 로봇의 물성정보를 정확히 도출하는 것이 현실적으로 불가능하고, 토크에 근거한 동작지령을 생성하기 위한 연산시간이 과다하게 소요되는 문제점이 있었다. 이러한 연산시간의 과다한 소요로 인하여 로봇 구동간 시간지연을 유발하게 되고, 이로 인하여 착용자로 하여금 착용상의 이질감으로 느끼게 하는 문제점이 있었다.Due to these problems, the need for a strength assisting robot that can support additional force by using an actuator such as a motor or hydraulic/pneumatic cylinder has recently emerged. The conventional muscle strength assisting robot is a robot that a person wears or rides on a joint device operated by an actuator, and it means a robot that can generate a force much greater than the force that a user can exert with the help of the actuator. However, for the control of the joint rotation part of the conventional muscle-assist robot, it is practically impossible to accurately derive the physical property information of the robot that is changed between robot production, assembly, and operation, and the calculation time for generating the motion command based on the torque is too short. There was a problem with excessive consumption. Due to the excessive consumption of such calculation time, a time delay between robot operation is induced, which causes the wearer to feel a sense of heterogeneity in wearing.
이러한 문제를 해결하기 위한 기술로서 대한민국 등록특허공보 제10-1922556호에 게시된 "형상기억합금 스프링을 이용한 근력보조장치"가 있다. 이러한 예시 특허발명은 형상기억합금 스프링의 수축 또는 이완 작용을 이용하여 반복적인 하중을 들고 일어서는 동작, 버티는 상황에 대해 도움을 줄 수 있다.As a technique for solving this problem, there is a "muscular support device using a shape memory alloy spring" published in Republic of Korea Patent Publication No. 10-1922556. This exemplary patented invention can help with the situation of standing up and holding repetitive loads by using the contraction or relaxation action of the shape memory alloy spring.
참고적으로 상기 예시 특허발명에서는 형상기억합금 스프링(열반응구동유닛에 해당함)의 수축을 위해 저항선을 이용한다. 즉, 저항선에 전류를 공급하면 열이 발생하고 이러한 열에 의해 형상기억합금 스프링의 수축이 일어나는 특성을 이용해, 특정 신체부위의 전방과 후방 각각에 서로 다른 저항선에 공급되는 전류에 의해 각각 수축하는 열반응구동유닛을 배치하여 하나의 열반응구동유닛을 수축시킨 후, 반대쪽에 배치된 또 다른 열반응구동유닛을 수축시키는 방식으로 제어하면, 예를 들어 착용자가 팔을 굽힌 후 다시 팔을 펴는 것과 같은 효과를 얻을 수 있도록 고안된 발명이다.For reference, in the exemplary patented invention, a resistance wire is used for contraction of the shape memory alloy spring (corresponding to the thermal reaction drive unit). In other words, when a current is supplied to a resistance wire, heat is generated, and by using the characteristic that the shape memory alloy spring is contracted by this heat, a thermal reaction that contracts by the current supplied to different resistance wires in the front and rear of a specific body part, respectively If a drive unit is arranged to contract one thermal reaction drive unit and then controls the other thermal reaction drive unit disposed on the opposite side to contract, for example, the wearer bends the arm and then stretches the arm again. It is an invention designed to achieve
이러한 예시 특허발명에서는 저항선을 이용하여 형상기억합금 스프링을 수축시킬 뿐 저항선을 이용해 형상기억합금 스프링을 이완시킬 수는 없기 때문에, 수축된 형상기억합금 스프링을 이완시키기 위한 새로운 기구적 구성 혹은 냉각 구조가 필요하다. 이는 곧 제품의 경박단소화 경향에 역행하는 것이기 때문에 이를 개선할 필요가 있으며, 보다 더 단순한 구조로 형상기억합금 스프링의 수축과 이완을 동시에 구동 혹은 제어할 수 있는 장치의 개발이 절실히 요구되는 바이다.In this exemplary patent invention, a new mechanical configuration or cooling structure for relaxing the contracted shape memory alloy spring because the shape memory alloy spring can only be contracted using a resistance wire and cannot be relaxed using a resistance wire. need. It is necessary to improve this because it goes against the tendency of light, thin and compact products, and the development of a device capable of simultaneously driving or controlling the contraction and relaxation of the shape memory alloy spring with a simpler structure is urgently required.
이에 본 발명은 상술한 필요성에 따라 창안된 발명으로서, 본 발명의 주요 목적은 형상기억합금 스프링으로 구현된 액츄에이터를 하나의 열원을 이용해 수축 및 이완시킬 수 있는 열전소자 매립형 액츄에이터 모듈 및 그 액츄에이터 구동장치를 제공함에 있으며,Accordingly, the present invention is an invention devised according to the above-mentioned necessity, and the main object of the present invention is a thermoelectric element embedded actuator module that can contract and relax an actuator implemented with a shape memory alloy spring using a single heat source, and an actuator driving device therefor In providing
더 나아가 본 발명의 또 다른 목적은 형상기억합금 스프링으로 구현된 액츄에이터를 근력보조장치의 액츄에이터로 활용하되 상기 근력보조장치를 소형화 및 경량화할 수 있는 열전소자 매립형 액츄에이터 모듈 및 그 액츄에이터 구동장치를 제공함에 있다.Further, another object of the present invention is to utilize an actuator implemented with a shape memory alloy spring as an actuator of a strength assisting device, but to provide a thermoelectric element embedded actuator module capable of miniaturizing and lightening the muscle power assisting device and an actuator driving device thereof. there is.
또한 본 발명의 다른 목적은 형상기억합금 스프링의 열적 변형 특성을 이용해 상기 스프링의 길이 구간별로 수축 혹은 이완의 정도를 다르게 하여 정밀 제어가 이루어질 수 있도록 한 열전소자 매립형 액츄에이터 모듈 및 그 액츄에이터 구동장치를 제공함에 있다.Another object of the present invention is to provide a thermoelectric element embedded actuator module and an actuator driving device for precise control by varying the degree of contraction or relaxation for each length section of the spring using the thermal deformation characteristics of the shape memory alloy spring. is in
더 나아가 본 발명의 또 다른 목적은 형상기억합금 스프링으로 구현된 액츄에이터를 하나의 열원을 이용해 수축 및 이완시키되, 상기 액츄에이터의 이완 및 수축에 의한 운동 에너지를 전기에너지로 변환시켜 에너지 사용효율을 극대화할 수 있는 열전소자 매립형 액츄에이터 모듈을 포함하는 동력 발생 시스템을 제공함에 있다.Furthermore, another object of the present invention is to contract and relax an actuator implemented with a shape memory alloy spring using a single heat source, convert kinetic energy by relaxation and contraction of the actuator into electrical energy to maximize energy use efficiency. An object of the present invention is to provide a power generation system including a thermoelectric element embedded actuator module that can be used.
전술한 목적을 달성하기 위한 본 발명의 실시예에 따른 액츄에이터 구동장치는 열전소자를 이용한 액츄에이터 구동장치로서,An actuator driving device according to an embodiment of the present invention for achieving the above object is an actuator driving device using a thermoelectric element,
열에 반응하여 수축 및 이완되는 형상기억합금 재질의 와이어로 제작된 하나 이상의 스프링 형상의 액츄에이터와;At least one spring-shaped actuator made of a wire made of a shape memory alloy material that contracts and relaxes in response to heat;
상기 액츄에이터와 마주하는 작용면과 상기 작용면의 반대측에 위치하는 반작용면을 가지되, 상기 작용면과 반작용면 각각이 전원의 인가방향에 따라 흡열면 혹은 발열면으로 작용하는 다수의 열전소자들과;A plurality of thermoelectric elements having an acting surface facing the actuator and a reaction surface positioned on the opposite side of the action surface, each of the action surface and the reaction surface acting as a heat absorbing surface or a heat generating surface depending on the direction in which the power is applied; ;
상기 작용면과 반작용면 각각에 위치하여 상기 액츄에이터와 상기 열전소자 상호간 및 상기 열전소자와 대기 상호간에 열을 전달하는 열전달 부재들과;heat transfer members positioned on each of the action surface and the reaction surface to transfer heat between the actuator and the thermoelectric element and between the thermoelectric element and the atmosphere;
상기 반작용면에 열을 가하기 위한 전기적 발열부재와;an electric heating member for applying heat to the reaction surface;
상기 액츄에이터의 주변온도를 감지하기 위한 하나 이상의 온도감지센서와;at least one temperature sensor for sensing an ambient temperature of the actuator;
상기 열전소자들에 인가되는 전원의 인가방향을 제어하여 상기 액츄에이터를 수축 혹은 이완시키되, 감지되는 상기 액츄에이터의 주변온도에 따라 상기 액츄에이터의 수축길이 혹은 이완길이를 제어하는 제어부;를 포함함을 특징으로 한다.A control unit that contracts or relaxes the actuator by controlling an application direction of the power applied to the thermoelectric elements, and controls the contraction length or relaxation length of the actuator according to the sensed ambient temperature of the actuator; do.
본 발명의 또 다른 실시예에 따른 액츄에이터 구동장치는,Actuator driving device according to another embodiment of the present invention,
작용면과 상기 작용면의 반대측에 위치하는 반작용면을 가지되, 상기 작용면과 반작용면 각각이 전원의 인가방향에 따라 흡열면 혹은 발열면으로 작용하는 하나 이상의 열전소자와;at least one thermoelectric element having an action surface and a reaction surface positioned on the opposite side of the action surface, each of the action surface and the reaction surface acting as a heat absorbing surface or a heat generating surface according to a direction in which power is applied;
상기 작용면과 반작용면 각각에 위치하여 열을 전달하는 열전달 부재들과;heat transfer members positioned on each of the action surface and the reaction surface to transfer heat;
상기 열전달 부재들 각각에 일측이 연결되어 상기 열전달 부재를 통해 전달되는 열에 반응하여 수축 및 이완되는 형상기억합금 재질의 와이어로 제작된 스프링 형상의 액츄에이터들과;spring-shaped actuators made of a wire made of a shape memory alloy material, one side of which is connected to each of the heat transfer members and contracts and relaxes in response to heat transferred through the heat transfer member;
상기 반작용면에 열을 가하기 위한 전기적 발열부재와;an electric heating member for applying heat to the reaction surface;
상기 액츄에이터들의 주변온도를 감지하기 위한 하나 이상의 온도감지센서와;one or more temperature sensors for sensing ambient temperatures of the actuators;
상기 열전소자에 인가되는 전원의 방향을 제어하여 상기 액츄에이터들을 수축 혹은 이완시키되, 감지되는 상기 액츄에이터의 주변온도에 따라 상기 액츄에이터의 수축길이 혹은 이완길이를 제어하는 제어부;를 포함함을 특징으로 한다.A control unit for controlling the direction of the power applied to the thermoelectric element to contract or relax the actuators, and to control the contraction length or relaxation length of the actuator according to the sensed ambient temperature of the actuator.
상술한 구성의 액츄에이터 구동장치에 있어서 상기 전기적 발열부재는,In the actuator driving device of the above configuration, the electric heating member,
상기 반작용면에 위치하는 상기 열전단 부재 내에 위치함을 또 다른 특징으로 한다.Another feature is that it is located in the heat shear member located on the reaction surface.
더 나아가 상기 제어부는 상기 작용면이 발열면으로 작용하도록 전원의 인가방향을 제어하여 상기 액츄에이터를 수축시키되, 흡열면으로 작용하는 상기 반작용면과의 온도차이를 줄이기 위해 상기 전기적 발열부재를 구동 제어함을 또 다른 특징으로 한다.Further, the control unit controls the direction of application of power so that the working surface acts as a heating surface to contract the actuator, and drives the electric heating member to reduce the temperature difference with the reaction surface acting as a heat absorbing surface. is another feature.
또한 상기 스프링 형상의 액츄에이터는 온도에 따라 소성변화가 상이한 서로 다른 재질의 형상기억합금을 이용해 제작하되, 스프링의 길이를 복수 구간으로 분할하여 서로 다른 재질 혹은 서로 다른 조성비를 가지는 형상기억합금으로 제작함을 또 다른 특징으로 한다.In addition, the spring-shaped actuator is manufactured using shape memory alloys of different materials whose plasticity changes depending on the temperature, but the length of the spring is divided into a plurality of sections to make different materials or shape memory alloys having different composition ratios. is another feature.
한편, 본 발명의 또 다른 실시예에 따른 열전소자 매립형 액츄에이터 모듈은,On the other hand, the thermoelectric element embedded actuator module according to another embodiment of the present invention,
열에 반응하여 수축 및 이완되는 형상기억합금 재질의 와이어로 제작된 하나 이상의 스프링 형상의 액츄에이터와;At least one spring-shaped actuator made of a wire made of a shape memory alloy material that contracts and relaxes in response to heat;
상기 액츄에이터를 내부에 수용하는 수용홈이 형성되고, 상기 수용홈 내에 일측이 고정되는 상기 액츄에이터의 수축 및 이완에 따라 이동하는 액츄에이터 몸체;를 포함하되, 상기 액츄에이터 몸체에는,A receiving groove for accommodating the actuator is formed therein, and an actuator body that moves according to contraction and relaxation of the actuator having one side fixed in the receiving groove; including, in the actuator body,
상기 수용홈 내에 수용되는 상기 액츄에이터와 마주하여 상기 액츄에이터와 열교환하는 하나 이상의 제1열전달부재와, 상기 액츄에이터 몸체 일부의 외부 면을 형성하여 대기로 열 방출하는 하나 이상의 제2열전달부재와, 상기 제1 및 제2열전달부재 각각에 부착되는 작용면과 반작용면을 가지되 상기 작용면과 반작용면 각각이 전원의 인가방향에 따라 흡열면 혹은 발열면으로 작용하는 하나 이상의 열전소자들과, 상기 제2열전달부재 내에 위치하여 상기 반작용면에 열을 가하는 하나 이상의 전기적 발열부재와, 상기 수용홈 내에 위치하여 상기 액츄에이터의 주변온도를 감지하기 위한 하나 이상의 온도감지센서가 포함됨을 특징으로 한다.One or more first heat transfer members facing the actuator accommodated in the receiving groove and exchanging heat with the actuator; One or more second heat transfer members that form an outer surface of a portion of the actuator body to radiate heat to the atmosphere; and one or more thermoelectric elements having an action surface and a reaction surface attached to each of the second heat transfer members, each of the action surface and the reaction surface acting as a heat absorbing surface or a heat generating surface depending on a direction in which power is applied, and the second heat transfer It is characterized in that it includes one or more electrical heating members positioned in the member to apply heat to the reaction surface, and one or more temperature sensors positioned in the receiving groove to sense the ambient temperature of the actuator.
이러한 구성 및 구조의 열전소자 매립형 액츄에이터 모듈에 있어서, 상기 스프링 형상의 액츄에이터는,In the thermoelectric element embedded actuator module of this configuration and structure, the spring-shaped actuator comprises:
온도에 따라 소성변화가 상이한 서로 다른 재질의 형상기억합금을 이용해 제작하되, 스프링의 길이를 복수 구간으로 분할하여 서로 다른 재질 혹은 서로 다른 조성비를 가지는 형상기억합금으로 제작함을 특징으로 한다.It is manufactured using shape memory alloys of different materials whose plasticity changes according to temperature, and the length of the spring is divided into a plurality of sections to produce shape memory alloys with different materials or different composition ratios.
상술한 기술적 과제 해결 수단에 따르면, 본 발명은 형상기억합금 스프링으로 구현된 액츄에이터를 하나의 열원인 열전소자를 이용해 수축은 물론 이완시킬 수 있기 때문에, 형상기억합금 스프링을 수축시키거나 이완시키는 기존 장치 혹은 제품들과 대비하여 그 구조 및 크기를 소형화 및 단순화할 수 있는 장점이 있다.According to the above-described technical problem solving means, the present invention can contract and relax an actuator implemented with a shape memory alloy spring using a thermoelectric element as a single heat source, so the existing device for contracting or relaxing the shape memory alloy spring Alternatively, there is an advantage that the structure and size can be miniaturized and simplified compared to products.
또한 본 발명의 실시예에 따른 열전소자 매립형 액츄에이터 모듈을 근력보조장치 혹은 장애인의 의족 혹은 의수의 액츄에이터로 활용할 수 있어 해당 장치들을 소형화 및 경량화시키는데 기여할 수 있으며, 액츄에이터에 해당하는 형상기억합금 스프링의 열적 변형 특성을 이용해 스프링의 길이 구간별로 수축 혹은 이완의 정도를 다르게 하여 정밀 제어가 이루어지도록 할 수도 있다.In addition, the thermoelectric element embedded actuator module according to an embodiment of the present invention can be utilized as a muscle strength assisting device or an actuator for a prosthetic leg or prosthesis for the disabled, thereby contributing to miniaturization and weight reduction of the devices, and the thermal effect of the shape memory alloy spring corresponding to the actuator It is also possible to achieve precise control by varying the degree of contraction or relaxation for each length section of the spring using the deformation characteristics.
또한 본 발명의 실시예에 따른 액츄에이터 구동장치는 형상기억합금 스프링으로 구현된 액츄에이터가 수축 및 이완되어 수평 이동 가능하기 때문에, 이러한 수평 운동을 회전운동으로 바꿔 주는 기어박스와 연결하여 발전기와 같은 동력 발생장치의 일부로 활용할 수 있는 장점도 있다.In addition, in the actuator driving device according to the embodiment of the present invention, since the actuator implemented with a shape memory alloy spring is contracted and relaxed to move horizontally, it is connected with a gearbox that converts this horizontal motion into a rotational motion to generate power such as a generator There are also advantages to being used as part of the device.
도 1은 본 발명의 실시예에 따른 열전소자를 이용한 액츄에이터 구동장치의 구성 예시도.1 is an exemplary configuration diagram of an actuator driving device using a thermoelectric element according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 열전소자 매립형 액츄에이터 모듈의 사시도.2 is a perspective view of a thermoelectric element embedded actuator module according to an embodiment of the present invention;
도 3은 도 2에 도시한 열전소자 매립형 액츄에이터 모듈의 단면 구성 예시도.FIG. 3 is an exemplary cross-sectional configuration view of the thermoelectric element embedded actuator module shown in FIG. 2 .
도 4는 도 2에 도시한 열전소자 매립형 액츄에이터 모듈의 구동 예시도.FIG. 4 is an exemplary driving view of the thermoelectric element embedded actuator module shown in FIG. 2 .
후술하는 본 발명에 대한 상세한 설명은, 본 발명의 목적들, 기술적 해법들 및 장점들을 분명하게 하기 위하여 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 통상의 기술자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following detailed description of the present invention refers to the accompanying drawings, which show by way of illustration a specific embodiment in which the present invention may be practiced, in order to clarify the objects, technical solutions and advantages of the present invention. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present invention.
본 발명의 상세한 설명 및 청구항들에 걸쳐, '포함하다'라는 단어 및 그 변형은 다른 기술적 특징들, 부가물들, 구성요소들 또는 단계들을 제외하는 것으로 의도된 것이 아니다. 통상의 기술자에게 본 발명의 다른 목적들, 장점들 및 특성들의 일부는 본 설명서로부터, 그리고 일부는 본 발명의 실시로부터 드러날 것이다. 아래의 예시 및 도면은 실례로서 제공되며, 본 발명을 한정하는 것으로 의도된 것이 아니다. 더욱이 본 발명은 본 명세서에 표시된 실시예들의 모든 가능한 조합들을 망라한다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 사상 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 사상 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.Throughout this description and claims, the word 'comprise' and variations thereof are not intended to exclude other technical features, additions, components or steps. To a person skilled in the art, some of the other objects, advantages and characteristics of the present invention will appear from this description, and in part from practice of the present invention. The following illustrations and drawings are provided by way of illustration and are not intended to limit the invention. Moreover, the invention encompasses all possible combinations of the embodiments indicated herein. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein with respect to one embodiment may be implemented in other embodiments without departing from the spirit and scope of the invention. In addition, it should be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the present invention. Accordingly, the detailed description set forth below is not intended to be taken in a limiting sense, and the scope of the invention, if properly described, is limited only by the appended claims, along with all scope equivalents to those claimed. Like reference numerals in the drawings refer to the same or similar functions throughout the various aspects.
본 명세서에서 달리 표시되거나 분명히 문맥에 모순되지 않는 한, 단수로 지칭된 항목은, 그 문맥에서 달리 요구되지 않는 한, 복수의 것을 아우른다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Unless otherwise indicated herein or otherwise clearly contradicted by context, items referred to in the singular encompass the plural unless the context requires otherwise. In addition, in describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
이하, 통상의 기술자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, in order to enable those skilled in the art to easily practice the present invention, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 열전소자를 이용한 액츄에이터 구동장치의 구성도를 예시한 것이다.1 illustrates a configuration diagram of an actuator driving device using a thermoelectric element according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시예에 따른 열전소자를 이용한 액츄에이터 구동장치는,Referring to Figure 1, an actuator driving device using a thermoelectric element according to an embodiment of the present invention,
열에 반응하여 수축 및 이완되는 형상기억합금 재질의 와이어로 제작된 하나 이상의 스프링(102) 형상의 액츄에이터(100)와,An actuator 100 in the shape of one or more springs 102 made of a wire made of a shape memory alloy material that contracts and relaxes in response to heat;
상기 액츄에이터(100)와 마주하는 작용면과 상기 작용면의 반대측에 위치하는 반작용면을 가지되, 상기 작용면과 반작용면 각각이 전원의 인가방향에 따라 흡열면 혹은 발열면으로 작용하는 다수의 열전소자들(110)과,A plurality of thermoelectrics having an acting surface facing the actuator 100 and a reaction surface located on the opposite side of the action surface, each of the action surface and the reaction surface acting as a heat absorbing surface or a heat generating surface depending on the direction in which the power is applied elements 110 and
상기 작용면과 반작용면 각각에 위치하여 상기 액츄에이터(100)와 상기 열전소자(110) 상호간 및 상기 열전소자(110)와 대기 상호간에 열을 전달하는 열전달 부재들(120,130)과,Heat transfer members (120, 130) that are located on each of the action surface and the reaction surface to transfer heat between the actuator 100 and the thermoelectric element 110 and between the thermoelectric element 110 and the atmosphere;
상기 반작용면에 열을 가하기 위한 전기적 발열부재(140)와,an electric heating member 140 for applying heat to the reaction surface;
상기 액츄에이터(100)의 주변온도를 감지하기 위한 하나 이상의 온도감지센서(S)와,At least one temperature sensor (S) for detecting the ambient temperature of the actuator (100),
상기 열전소자들(110)에 인가되는 전원의 방향을 제어하여 상기 액츄에이터(100)를 수축 혹은 이완시키되, 감지되는 상기 액츄에이터(100)의 주변온도에 따라 상기 액츄에이터(100)의 수축길이 혹은 이완길이를 제어하는 제어부(150), 및 상기 제어부(150)의 제어에 따라 열전소자들(110)과 전기적 발열부재(140)에 동작 전원을 공급하는 전원공급부(160)를 포함한다.The actuator 100 is contracted or relaxed by controlling the direction of the power applied to the thermoelectric elements 110 , and the length of contraction or relaxation of the actuator 100 according to the sensed ambient temperature of the actuator 100 . a control unit 150 for controlling the , and a power supply unit 160 for supplying operating power to the thermoelectric elements 110 and the electric heating member 140 according to the control of the control unit 150 .
상술한 구성의 액츄에이터 구동장치에 있어서, 열에 반응(예를 들면 25℃에서는 인장되고 40℃에서는 수축)하여 수축 및 이완되는 형상기억합금 재질의 와이어로 제작된 스프링(형상기억합금 스프링이라 할 수 있음, 102)은 열에 반응하는 다양한 열반응 물질, 예를 들면 형상기억수지, 형상기억고분자, 탄소나노튜브, 폴리에틸렌, 폴리아미드, 나일론 등으로 제작될 수 있다. 이에 스프링 형상의 액츄에이터(100)는 온도에 따라 소성변화가 상이한 서로 다른 재질의 형상기억합금을 이용해 제작하되, 스프링의 길이를 복수 구간으로 분할하여 서로 다른 재질 혹은 서로 다른 조성비를 가지는 형상기억합금으로 제작할 수도 있다. 이러한 제작기법을 이용하면 액츄에이터(100)를 보다 부드럽게 제어할 수 있어 정밀 제어에 유용하게 사용될 수 있다.In the actuator driving device having the above configuration, a spring made of a wire made of a shape memory alloy material that contracts and relaxes in response to heat (for example, tension at 25°C and contraction at 40°C) (a shape memory alloy spring can be called , 102) may be made of various heat-reactive materials that respond to heat, for example, shape memory resins, shape memory polymers, carbon nanotubes, polyethylene, polyamide, nylon, and the like. Accordingly, the spring-shaped actuator 100 is manufactured using shape memory alloys of different materials whose plasticity changes depending on the temperature, but by dividing the length of the spring into a plurality of sections, different materials or shape memory alloys having different composition ratios. can also be produced. By using such a manufacturing technique, the actuator 100 can be controlled more smoothly, which can be usefully used for precise control.
한편, 전기적 발열부재(140)는 열전소자(110) 각각의 반작용면에 위치하는 열전달 부재(130) 내에 위치하거나 열전달 부재(130)의 외측에 배치되어 그 열전달 부재(130)에 전기적 열을 가하여 작용면과의 온도차이를 줄여 열전소자(110)의 효율을 극대화함은 물론 발생 가능한 성애를 제거할 수 있다. 이러한 전기적 발열부재(140)는 전기저항 열선, PCT 발열소자, 코일히터, 투입히터, 카트리지 히터, 주물 히터, 씨즈 히터, 할로겐 히터, 적외선 히터, 세라믹 밴드 히터, 후렌지 히터 등에서 선택될 수 있으며, 전기를 이용하는 발열소자 모두 가능하다.On the other hand, the electric heating member 140 is located in the heat transfer member 130 positioned on the reaction surface of each thermoelectric element 110 or is disposed outside the heat transfer member 130 to apply electrical heat to the heat transfer member 130 , By reducing the temperature difference with the working surface, the efficiency of the thermoelectric element 110 can be maximized, and possible frost can be eliminated. Such an electric heating member 140 may be selected from an electric resistance heating wire, a PCT heating element, a coil heater, an input heater, a cartridge heater, a casting heater, a sheath heater, a halogen heater, an infrared heater, a ceramic band heater, a flange heater, etc. Any heating element using
한편, 제어부(150)는 열전소자(110)의 작용면이 발열면으로 작용하도록 전원 인가방향을 제어하여 액츄에이터(100)를 수축시키되 흡열면으로 작용하는 반작용면과의 온도차이를 줄이기 위해 상기 전기적 발열부재(140)를 구동 제어함을 또 다른 특징으로 한다.On the other hand, the control unit 150 controls the power application direction so that the working surface of the thermoelectric element 110 acts as a heating surface to contract the actuator 100, but to reduce the temperature difference with the reaction surface acting as a heat absorbing surface. Another feature is that the heating member 140 is driven and controlled.
이러한 제어부(150)는 온도감지센서(S)를 포함하는 여러 종류의 센서들에서 감지된 신호들을 디지털 데이터로 변환하기 위한 A/D 변환기와, 다수의 열전소자들(110)에 인가되는 전원(보다 구체적으로는 전류)의 방향을 변환하는 정역전환회로 및 상기 A/D 변환기와 정역전환회로 사이에 위치하여 전원의 인가방향 제어 및 액츄에이터 구동장치의 동작을 전반적으로 제어하는 마이크로프로세서를 포함한다.The control unit 150 includes an A/D converter for converting signals sensed by various types of sensors including the temperature sensor S into digital data, and power applied to the plurality of thermoelectric elements 110 ( More specifically, it includes a forward/reverse conversion circuit that converts the direction of current) and a microprocessor that is positioned between the A/D converter and the forward/reverse conversion circuit to control the direction of power supply and overall control the operation of the actuator driving device.
본 발명의 또 다른 실시예에 따른 액츄에이터 구동장치는Actuator driving device according to another embodiment of the present invention
작용면과 상기 작용면의 반대측에 위치하는 반작용면을 가지되, 상기 작용면과 반작용면 각각이 전원의 인가방향에 따라 흡열면 혹은 발열면으로 작용하는 하나 이상의 열전소자(110)와,At least one thermoelectric element 110 having an action surface and a reaction surface located on the opposite side of the action surface, each of the action surface and the reaction surface acting as a heat absorbing surface or a heat generating surface depending on the direction of application of power;
상기 작용면과 반작용면 각각에 위치하여 열을 전달하는 열전달 부재들(120,130)과, Heat transfer members 120 and 130 that are positioned on the action surface and the reaction surface respectively to transfer heat;
상기 열전달 부재들(120,130) 각각에 일측이 연결되어 상기 열전달부재(120,130)를 통해 전달되는 열에 반응하여 수축 및 이완되는 형상기억합금 재질의 와이어로 제작된 스프링 형상의 액츄에이터들(100)과,Spring-shaped actuators 100 made of a wire made of a shape memory alloy material that one side is connected to each of the heat transfer members 120 and 130 and contracts and relaxes in response to heat transferred through the heat transfer members 120 and 130;
상기 반작용면에 열을 가하기 위한 전기적 발열부재(140)와,an electric heating member 140 for applying heat to the reaction surface;
상기 액츄에이터들(100)의 주변온도를 감지하기 위한 하나 이상의 온도감지센서(s)와,At least one temperature sensor (s) for detecting the ambient temperature of the actuators (100),
상기 열전소자에 인가되는 전원의 방향을 제어하여 상기 액츄에이터들을 수축 혹은 이완시키되, 감지되는 상기 액츄에이터의 주변온도에 따라 상기 액츄에이터의 수축길이 혹은 이완길이를 제어하는 제어부(150)를 포함할 수도 있다.Control the direction of the power applied to the thermoelectric element to contract or relax the actuators, the control unit 150 for controlling the length of contraction or relaxation of the actuator according to the sensed ambient temperature of the actuator may be included.
한편 상술한 구성의 액츄에이터 구동장치들에서 제어부(150)와 전원 공급부(160)를 제외한 구성들은 하나의 모듈, 즉 열전소자 매립형 액츄에이터 모듈로 구현 가능하다. 이러한 열전소자 매립형 액츄에이터 모듈은 일 예로서 도 2에 도시한 바와 같이 바 형태의 육면체 형상을 가질 수 있으나 이에 한정되지 않고 적용처에 따라 원통형, 의류 부착형 등 다양한 형상으로 제작 가능하다.Meanwhile, in the actuator driving devices having the above-described configuration, configurations except for the control unit 150 and the power supply unit 160 may be implemented as a single module, that is, a thermoelectric element embedded actuator module. As an example, the thermoelectric element embedded actuator module may have a bar-shaped hexahedral shape as shown in FIG. 2 , but is not limited thereto and may be manufactured in various shapes such as a cylindrical shape and a clothing attachment type depending on the application.
이하 모듈화될 수 있는 열전소자 매립형 액츄에이터 모듈에 대해 부연 설명하면, 우선 도 2는 본 발명의 일 실시예에 따른 열전소자 매립형 액츄에이터 모듈의 사시도를, 도 3은 도 2에 도시한 열전소자 매립형 액츄에이터 모듈의 단면 구성을 각각 예시한 것이다.Hereinafter, a thermoelectric element embedded actuator module that can be modularized will be described in detail. First, FIG. 2 is a perspective view of a thermoelectric element embedded actuator module according to an embodiment of the present invention, and FIG. 3 is a thermoelectric element embedded actuator module shown in FIG. 2 . The cross-sectional configuration of each is illustrated.
도 2를 참조하면, 본 발명의 일 실시예에 따른 열전소자 매립형 액츄에이터 모듈은,2, the thermoelectric element embedded actuator module according to an embodiment of the present invention,
열에 반응하여 수축 및 이완되는 형상기억합금 재질의 와이어로 제작된 하나 이상의 스프링 형상의 액츄에이터(100)와,At least one spring-shaped actuator 100 made of a wire made of a shape memory alloy material that contracts and relaxes in response to heat;
상기 액츄에이터(100)를 내부에 수용하는 수용홈(210)이 형성되고, 상기 수용홈(210) 내에 일측이 고정되는 상기 액츄에이터(100)의 수축 및 이완에 따라 이동하는 액츄에이터 몸체(200)를 포함하되, 상기 액츄에이터 몸체(200)에는 도 3의 (a)에 도시한 바와 같이,An accommodating groove 210 for accommodating the actuator 100 is formed therein, and an actuator body 200 that moves according to the contraction and relaxation of the actuator 100 having one side fixed in the accommodating groove 210 is included. However, in the actuator body 200, as shown in (a) of Figure 3,
상기 수용홈(210) 내에 수용되는 상기 액츄에이터(100)와 마주하여 상기 액츄에이터(100)와 열교환하는 하나 이상의 제1열전달부재(120)와, 상기 액츄에이터 몸체(200) 일부의 외부 면을 형성하여 대기로 열 방출하는 하나 이상의 제2열전달부재(130)와, 상기 제1 및 제2열전달부재(120,130) 각각에 부착(접착)되는 작용면과 반작용면을 가지되 상기 작용면과 반작용면 각각이 전원의 인가방향에 따라 흡열면 혹은 발열면으로 작용하는 하나 이상의 열전소자들(110)과, 상기 제2열전달부재(130) 내에 위치하여 상기 반작용면에 열을 가하는 하나 이상의 전기적 발열부재(140)와, 상기 수용홈(210) 내에 위치하여 상기 액츄에이터(100)의 주변온도를 감지하기 위한 하나 이상의 온도감지센서(도시되지 않았음)가 포함됨을 특징으로 한다.At least one first heat transfer member 120 that faces the actuator 100 accommodated in the receiving groove 210 and heat-exchanges with the actuator 100, and the actuator body 200 Form an outer surface of a part to stand by It has at least one second heat transfer member 130 that emits heat to the first and second heat transfer members 120 and 130, respectively, and has an action surface and a reaction surface which are attached (adhesive) to each of the first and second heat transfer members 120 and 130, and each of the action surface and the reaction surface is a power source One or more thermoelectric elements 110 acting as a heat absorbing surface or a heating surface according to the direction of application of , It is characterized in that at least one temperature sensor (not shown) for detecting the ambient temperature of the actuator 100 is located in the receiving groove 210 is included.
참고적으로, 상기 스프링 형상의 액츄에이터(102)는 단일 재질의 형상기억합금을 이용해 제작할 수 있지만, 경우에 따라서는 온도에 따라 소성변화가 상이한 서로 다른 재질의 형상기억합금을 이용해 제작하되, 스프링의 길이를 복수 구간으로 분할하여 서로 다른 재질 혹은 서로 다른 조성비를 가지는 형상기억합금으로 제작할 수도 있을 것이다.For reference, the spring-shaped actuator 102 can be manufactured using a shape memory alloy of a single material, but in some cases, it is manufactured using a shape memory alloy of a different material whose plasticity changes depending on the temperature, but the spring By dividing the length into a plurality of sections, it may be made of different materials or shape memory alloys having different composition ratios.
더 나아가 상술한 액츄에이터 몸체(200)는 도 3의 (a)에 도시한 바와 같이 수용홈(210)의 좌, 우측에 제1열전달부재(120), 열전소자(110), 제2열전달부재(130)가 위치하는 것으로 도시하였으나, 도 3의 (b)에 도시한 바와 같이 수용홈(210)의 상하, 좌우 각각에서 외측 방향으로 제1열전달부재(120), 열전소자(110), 제2열전달부재(130)가 위치하는 구조를 가지도록 제작될 수도 있으며, 한 방향 혹은 세 방향으로 제1열전달부재(120), 열전소자(110), 제2열전달부재(130)가 순차 위치하도록 제작될 수도 있고, 원형의 중심에서 외측 방향으로 순차적으로 제1열전달부재(120), 열전소자(110), 제2열전달부재(130)가 위치하도록 원형의 형상으로 제작될 수도 있다.Furthermore, the actuator body 200 described above has a first heat transfer member 120, a thermoelectric element 110, and a second heat transfer member on the left and right sides of the receiving groove 210 as shown in FIG. 3(a). 130), the first heat transfer member 120, the thermoelectric element 110, and the second It may be manufactured to have a structure in which the heat transfer member 130 is positioned, and the first heat transfer member 120, the thermoelectric element 110, and the second heat transfer member 130 are sequentially positioned in one or three directions. Alternatively, the first heat transfer member 120 , the thermoelectric element 110 , and the second heat transfer member 130 may be sequentially manufactured in a circular shape so as to be positioned in an outward direction from the center of the circle.
이하 도 2 및 도 3에 도시한 열전소자 매립형 액츄에이터 모듈이 열전소자에 인가되는 전원의 인가방향에 따라 이동하는 동작을 도 4를 참조하여 설명하기로 한다. 도 4는 도 2에 도시한 열전소자 매립형 액츄에이터 모듈의 구동 예시도를 도시한 것으로, 하기에서는 열전소자 매립형 액츄에이터 모듈을 구성하는 열전소자(110)들과 전기적 발열부재(140)가 전원 공급부(160)에 연결되어 있고, 액츄에이터 모듈의 단면은 도 3의 (a)의 단면 구조를 가지는 것으로 가정하기로 한다.Hereinafter, an operation in which the thermoelectric element embedded actuator module shown in FIGS. 2 and 3 moves according to the application direction of the power applied to the thermoelectric element will be described with reference to FIG. 4 . 4 is a view showing an exemplary driving diagram of the thermoelectric element embedded actuator module shown in FIG. 2 . Hereinafter, the thermoelectric elements 110 and the electric heating member 140 constituting the thermoelectric element embedded actuator module are provided with a power supply unit 160 ), and it is assumed that the cross-section of the actuator module has the cross-sectional structure of FIG. 3 (a).
우선 액츄에이터 몸체(200)에 형성되어 있는 수용홈(210) 내에 수용되어 일측이 그 수용홈(210) 내에 고정되어 있는 형상기억합금 재질의 액츄에이터(100)는 수축된 상태를 유지하고 있다고 가정한다.First, it is assumed that the actuator 100 made of a shape memory alloy material is accommodated in the receiving groove 210 formed in the actuator body 200 and one side is fixed in the receiving groove 210 is maintained in a contracted state.
수축되어 있는 액츄에이터(100)를 인장시키고자 한다면, 제어부(150)는 액츄에이터(100)의 주변 온도를 액츄에이터(100)가 인장되기 위해 필요한 온도, 예를 들면 25℃까지 낮추기 위해 액츄에이터(100)와 마주하는 열전소자(11)들의 작용면이 흡열면으로, 그리고 상기 작용면의 반대측에 위치하는 반작용면이 발열면으로 작용하도록 열전소자들(110)의 전원 인가방향을 제어한다.If the contracted actuator 100 is to be tensioned, the control unit 150 may lower the ambient temperature of the actuator 100 to a temperature required for the actuator 100 to be tensioned, for example, to 25° C. with the actuator 100 and The power application direction of the thermoelectric elements 110 is controlled so that the opposing surface of the thermoelectric elements 11 acts as a heat absorbing surface and the reaction surface located on the opposite side of the working surface acts as a heat generating surface.
전원 인가 방향에 따라 작용면이 흡열면으로 작용하고 반작용면이 발열면으로 작용하게 되면, 작용면에 부착 혹은 접착된 제1열전달부재(120)는 액츄에이터(100) 주변의 열을 흡수하게 되어 액츄에이터(100)의 온도는 내려가게 되고, 반작용면의 온도는 상승하게 되지만 그 반작용면의 열은 방열핀과 같은 제2열전달부재(130)를 통해 대기중으로 방출된다.When the action surface acts as a heat absorbing surface and the reaction surface acts as a heat generating surface depending on the direction in which the power is applied, the first heat transfer member 120 attached or adhered to the action surface absorbs the heat around the actuator 100 and the actuator The temperature of 100 decreases and the temperature of the reaction surface rises, but the heat of the reaction surface is discharged to the atmosphere through the second heat transfer member 130 such as a heat dissipation fin.
이와 같이 열전소자(110)의 작용면과 반작용면 각각을 흡열면과 발열면으로 작용하도록 열전소자(110)에 인가되는 전원의 인가방향을 제어하면 액츄에이터(100)의 주변온도는 미리 설정된 온도(예를 들면 25℃)까지 낮아지게 되고, 미리 설정된 온도에서 인장되기 시작한다. 액츄에이터(100)가 인장되기 시작하면 액츄에이터(100)의 일측 끝단이 수용홈(210) 내에 고정되어 있기 때문에 도 4의 하부에 도시한 도면에서와 같이 액츄에이터 몸체(200)는 좌측으로 수평 이동한다.In this way, when the application direction of the power applied to the thermoelectric element 110 is controlled so that the working surface and the reaction surface of the thermoelectric element 110 act as a heat absorbing surface and a heat generating surface, respectively, the ambient temperature of the actuator 100 is a preset temperature ( 25°C), and it starts to be stretched at a preset temperature. When the actuator 100 starts to be tensioned, since one end of the actuator 100 is fixed in the receiving groove 210, the actuator body 200 horizontally moves to the left as shown in the drawing shown in the lower part of FIG.
한편, 제어부(150)는 온도감지센서(S)를 통해 액츄에이터(100)의 주변온도를 지속적으로 감지하면서 또 다른 설정 온도(인장이 멈추는 온도)에 다다르면 열전소자(110)에 인가해 주는 전원을 차단한다.On the other hand, the controller 150 continuously senses the ambient temperature of the actuator 100 through the temperature sensor S, and when another set temperature (the temperature at which the tension stops) is reached, the power applied to the thermoelectric element 110 is supplied. block
만약 인장된 액츄에이터(100)를 수축시켜야 한다면, 제어부(150)는 액츄에이터(100)가 수축되기에 필요한 온도(예를 들면 40℃)가 되도록 액츄에이터(100) 주변의 온도를 상승시킨다. 이를 위해 제어부(150)는 액츄에이터(100)와 마주하는 열전소자(11)들의 작용면이 발열면으로, 그리고 상기 작용면의 반대측에 위치하는 반작용면이 흡열면으로 작용하도록 열전소자들(110)의 전원 인가방향을 제어한다.If the tensioned actuator 100 is to be contracted, the control unit 150 increases the temperature around the actuator 100 to a temperature required for the actuator 100 to contract (for example, 40° C.). To this end, the controller 150 controls the thermoelectric elements 110 so that the working surface of the thermoelectric elements 11 facing the actuator 100 acts as a heating surface, and the reaction surface located on the opposite side of the working surface acts as a heat absorbing surface. control the direction of power supply.
작용면이 발열면으로 작용하고 반작용면이 흡열면으로 작용하게 되면, 작용면의 온도는 올라가 그에 부착 혹은 접착된 제1열전달부재(120)는 열을 방출해 액츄에이터(100) 주변의 온도를 상승시키고, 반작용면의 온도는 내려간다. 이러한 경우 제2열전달부재(130) 내의 혹은 근접 위치하는 전기적 발열부재(140)를 구동시켜 반작용면의 온도를 상승시켜 작용면과의 온도차를 감소시켜 열전소자(110)의 효율을 극대화시키는 것이 바람직하다. 이와 같은 방식으로 액츄에이터(100) 주변의 온도가 상승하여 설정된 온도에 다다르면 형상기억합금 재질의 액츄에이터(100)는 수축하게 되어 도 4의 상부에 도시한 것처럼 원위치로 복귀하게 된다.When the action surface acts as a heat generating surface and the reaction surface acts as a heat absorbing surface, the temperature of the action surface rises and the first heat transfer member 120 attached or adhered thereto emits heat to raise the temperature around the actuator 100 and the temperature of the reaction surface decreases. In this case, it is desirable to maximize the efficiency of the thermoelectric element 110 by driving the electric heating member 140 located in or close to the second heat transfer member 130 to increase the temperature of the reaction surface to reduce the temperature difference with the action surface. do. In this way, when the temperature around the actuator 100 rises and reaches a set temperature, the actuator 100 made of a shape memory alloy contracts and returns to its original position as shown in the upper part of FIG. 4 .
이상에서 설명한 바에 따르면, 제어부(150)는 열전소자(110)에 인가되는 전원의 인가 방향을 제어해 형상기억합금 재질의 액츄에이터(100)를 수평방향으로 수축시키거나 인장시킬 수 있고, 온도 감지 및 제어를 통해 수평방향으로 수축되거나 인장되는 액츄에이터(100)의 길이까지 제어할 수 있다.As described above, the control unit 150 controls the application direction of the power applied to the thermoelectric element 110 to horizontally contract or tension the actuator 100 made of a shape memory alloy material, and temperature sensing and Through the control, it is possible to control the length of the actuator 100 that is contracted or stretched in the horizontal direction.
따라서 본 발명은 형상기억합금 스프링으로 구현된 액츄에이터(100)를 하나의 열원인 열전소자(110)를 이용해 수축은 물론 이완시킬 수 있기 때문에, 형상기억합금 스프링을 수축시키거나 이완시키는 기존 장치 혹은 제품들과 대비하여 그 구조 및 크기를 소형화 및 단순화할 수 있는 장점이 있다.Therefore, in the present invention, since the actuator 100 implemented as a shape memory alloy spring can be contracted as well as relaxed using the thermoelectric element 110 as a single heat source, an existing device or product that contracts or relaxes the shape memory alloy spring. There is an advantage in that the structure and size can be miniaturized and simplified in comparison with other devices.
또한 본 발명의 실시예에 따른 액츄에이터 구동장치는 형상기억합금 스프링으로 구현된 액츄에이터가 수축 및 이완되어 수평 이동 가능하기 때문에, 이러한 수평 운동을 회전운동으로 바꿔 주는 기어박스(웜기어와 릴기어방식을 이용)와, 상기 기어박스에서 회전운동하는 기어에 발전기를 구성하는 터빈의 회전축을 맞물려 회전시키면 전기 에너지를 생성할 수도 있다. 만약 생성되는 에너지가 열전소자들(110)에 인가되는 에너지 보다 유의미하게 크다면 계속적인 구동을 이룰 수 있다. 따라서 본 발명의 실시예에 따른 액츄에이터 구동장치는 동력 발생장치의 일부로 활용할 수 있는 장점도 있다.In addition, in the actuator driving device according to an embodiment of the present invention, since the actuator implemented with a shape memory alloy spring is contracted and relaxed to move horizontally, a gearbox (using a worm gear and a reel gear method) that converts this horizontal motion into a rotational motion ) and the gears rotating in the gearbox and rotating shafts of turbines constituting the generator may be rotated to generate electrical energy. If the generated energy is significantly greater than the energy applied to the thermoelectric elements 110 , continuous driving may be achieved. Therefore, the actuator driving device according to the embodiment of the present invention also has an advantage that can be utilized as a part of the power generating device.
더 나아가 본 발명의 실시예에 따른 열전소자 매립형 액츄에이터 모듈을 근력보조장치 혹은 장애인의 의족 혹은 의수의 액츄에이터로 활용할 수 있어 해당 장치들을 소형화 및 경량화시키는데 기여할 수 있으며, 액츄에이터에 해당하는 형상기억합금 스프링의 열적 변형 특성을 이용해 스프링의 길이 구간별로 수축 혹은 이완의 정도를 다르게 하여 정밀 제어가 이루어지도록 할 수도 있다.Furthermore, the thermoelectric element embedded actuator module according to an embodiment of the present invention can be used as a muscle strength assisting device or an actuator for a prosthetic leg or prosthetic limb of the disabled, thereby contributing to miniaturization and weight reduction of the devices, and the shape memory alloy spring corresponding to the actuator. It is also possible to achieve precise control by varying the degree of contraction or relaxation for each length section of the spring using thermal deformation characteristics.
이상의 실시예에서는 열전소자(110)의 한 면이 흡열면과 발열면으로 작용하도록 하여 형상기억합금 스프링(102)이 수축 혹은 인장되는 실시예를 구체적으로 설명하였으나, 열전소자(110)의 작용면과 반작용면이 동시에 하나는 흡열면으로 작용하고 나머지 하나는 발열면으로 작용한다는 점을 이용해 두 개의 형상기억 합금 스프링(102)을 동시에 변형시키는 액츄에이터를 구성할 수도 있다.In the above embodiment, the embodiment in which the shape memory alloy spring 102 is contracted or stretched by making one surface of the thermoelectric element 110 act as a heat absorbing surface and a heat generating surface has been specifically described, but the working surface of the thermoelectric element 110 An actuator that deforms the two shape memory alloy springs 102 at the same time may be configured by taking advantage of the fact that one of the reaction surfaces acts as a heat absorbing surface and the other acts as a heat generating surface at the same time.
예를 들어 열전소자(110)의 작용면(상부로 가정)에 위치하는 열전달부재(열전도체와 같은)의 일측에 첫 번째 형상기억합금 스프링의 일측을 연결하고 그 스프링의 타측을 상부에 위치하는 랙에 연결하며, 상기 열전소자(110)의 반작용면(하부로 가정)에 위치하는 또 다른 열전달부재의 일측에 두 번째 형상기억합금스프링의 일측을 연결하고 그 스프링의 타측을 하부에 위치하는 랙에 연결하면, 상부와 하부에 위치하는 랙 사이의 피니언은 상부 랙과 하부 랙의 이동 방향에 따라 시계방향과 반시계 방향으로 회전할 수 있는 상태가 된다.For example, one side of the first shape memory alloy spring is connected to one side of a heat transfer member (such as a heat conductor) located on the working surface (assuming the upper part) of the thermoelectric element 110, and the other side of the spring is located in the upper part. Connected to a rack, one side of the second shape memory alloy spring is connected to one side of another heat transfer member located on the reaction surface (assumed to be the lower part) of the thermoelectric element 110, and the other side of the spring is located in the lower part of the rack When connected to , the pinion between the upper and lower racks is in a state in which it can rotate clockwise and counterclockwise according to the movement directions of the upper and lower racks.
즉, 열전소자(110)에 전원을 인가하여 작용면이 흡열면으로 작용하고 반작용면이 발열면으로 작용한다면, 하나의 형상기억합금 스프링은 수축하고 또다른 형상기억합금 스프링은 인장되어 상기 랙 사이의 피니언은 한 방향으로 회전된다. 만약 전원의 인가방향을 전환한다면 수축된 형상기억합금 스프링은 인장되고 인장되었던 형상기억합금 스프링은 반대로 수축되므로 랙 사이의 피니언은 그 반대 방향으로 회전된다. 이러한 동작 메카니즘을 인간의 신체에 적용시키면 관절의 굽힘과 폄 동작을 효과적으로 구현할 수 있을 것이다.That is, when power is applied to the thermoelectric element 110 so that the working surface acts as a heat absorbing surface and the reaction surface acts as a heating surface, one shape memory alloy spring contracts and another shape memory alloy spring is tensioned between the racks. of the pinion is rotated in one direction. If the application direction of the power is changed, the contracted shape memory alloy spring is tensioned and the tensioned shape memory alloy spring is contracted in the opposite direction, so the pinion between the racks rotates in the opposite direction. If this motion mechanism is applied to the human body, it will be possible to effectively implement joint bending and extension motions.
또한 상술한 바와 같이 상부 랙과 하부 랙 각각에 원웨이 기어를 물리고, 각각의 원웨이 기어 사이에 방향전환용 기어와 피니언 기어(회전축에 해당) 를 물리면 상부 랙과 하부 랙이 두 형상기억합금 스프링의 수축과 인장에 의해 서로 다른 방향으로 이동하는 동작을 반복하게 되고, 이때 피니언 기어는 한 방향으로만 회전하게 된다. 이러한 한 방향 회전력을 이용하면 발전까지 가능해 본 발명을 동력 발생 시스템으로 활용할 수도 있다.In addition, as described above, when the one-way gear is engaged in each of the upper and lower racks, and a gear for direction change and a pinion gear (corresponding to the rotation shaft) are engaged between each one-way gear, the upper and lower racks form two shape memory alloy springs. The motion of moving in different directions is repeated by the contraction and tension of By using such a one-way rotational force, power generation is possible, and the present invention can also be utilized as a power generating system.
이상은 도면에 도시된 실시예들을 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 예를 들면, 본 발명의 실시예에서는 형상기억합금 스프링의 일측이 액츄에이터 몸체에 고정 결합되는 것을 설명하였으나, 액츄에이터 몸체를 중심에 두고 그 좌,우측에 형상기억합금 스프링을 위치시켜 한 쪽의 스프링이 수축될 때 다른 쪽의 스프링은 인장되도록 제어할 수도 있고, 액츄에이터 몸체의 좌,우,상,하에 형상기억합금 스프링을 위치시키고 각 스프링의 일측을 액츄에이터 몸체에 고정시켜 좌,우,상,하 방향으로 액츄에이터 몸체를 이동 제어할 수도 있다. 즉, 본 발명의 실시예에 따른 열전소자 매립형 액츄에이터 모듈은 적용처와 적용장비에 따라 형상기억합금 스프링의 수와 위치를 가변시킬 수 있고, 액츄에이터 몸체의 형상 또한 다양하게 변형할 수 있다. 이에 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위에 의해서만 정해져야 할 것이다.The above has been described with reference to the embodiments shown in the drawings, which are merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. For example, in the embodiment of the present invention, it has been described that one side of the shape memory alloy spring is fixedly coupled to the actuator body. When contracted, the spring on the other side can be controlled to be tensioned, and the shape memory alloy spring is placed on the left, right, top, and bottom of the actuator body, and one side of each spring is fixed to the actuator body in the left, right, up, and down directions. It is also possible to control the movement of the actuator body. That is, in the thermoelectric element embedded actuator module according to an embodiment of the present invention, the number and position of the shape memory alloy spring can be varied according to the application place and application equipment, and the shape of the actuator body can also be variously modified. Accordingly, the true technical protection scope of the present invention should be defined only by the appended claims.

Claims (7)

  1. 열에 반응하여 수축 및 이완되는 형상기억합금 재질의 와이어로 제작된 하나이상의 스프링 형상의 액츄에이터와;At least one spring-shaped actuator made of a wire made of a shape memory alloy material that contracts and relaxes in response to heat;
    상기 액츄에이터와 마주하는 작용면과 상기 작용면의 반대측에 위치하는 반작용면을 가지되, 상기 작용면과 반작용면 각각이 전원의 인가방향에 따라 흡열면혹은 발열면으로 작용하는 다수의 열전소자들과;A plurality of thermoelectric elements having an acting surface facing the actuator and a reaction surface positioned on the opposite side of the action surface, each of the action surface and the reaction surface acting as a heat absorbing surface or a heat generating surface depending on the direction in which the power is applied; ;
    상기 작용면과 반작용면 각각에 위치하여 상기 액츄에이터와 상기 열전소자상호간 및 상기 열전소자와 대기 상호간에 열을 전달하는 열전달 부재들과;heat transfer members positioned on each of the action surface and the reaction surface to transfer heat between the actuator and the thermoelectric element and between the thermoelectric element and the atmosphere;
    상기 반작용면에 열을 가하기 위한 전기적 발열부재와;an electric heating member for applying heat to the reaction surface;
    상기 액츄에이터의 주변온도를 감지하기 위한 하나 이상의 온도감지센서와;at least one temperature sensor for sensing an ambient temperature of the actuator;
    상기 열전소자들에 인가되는 전원의 방향을 제어하여 상기 액츄에이터를 수축 혹은 이완시키되, 감지되는 상기 액츄에이터의 주변온도에 따라 상기 액츄에이터의 수축길이 혹은 이완길이를 제어하는 제어부;를 포함함을 특징으로 하는 열전소자를 이용한 액츄에이터 구동장치.A control unit for contracting or relaxing the actuator by controlling the direction of the power applied to the thermoelectric elements, and controlling the contraction length or relaxation length of the actuator according to the sensed ambient temperature of the actuator; An actuator driving device using a thermoelectric element.
  2. 작용면과 상기 작용면의 반대측에 위치하는 반작용면을 가지되, 상기 작용면과 반작용면 각각이 전원의 인가방향에 따라 흡열면 혹은 발열면으로 작용하는 하나 이상의 열전소자와;at least one thermoelectric element having an action surface and a reaction surface positioned on the opposite side of the action surface, each of the action surface and the reaction surface acting as a heat absorbing surface or a heat generating surface according to a direction in which power is applied;
    상기 작용면과 반작용면 각각에 위치하여 열을 전달하는 열전달 부재들과;heat transfer members positioned on each of the action surface and the reaction surface to transfer heat;
    상기 열전달 부재들 각각에 일측이 연결되어 상기 열전달 부재를 통해 전달되는 열에 반응하여 수축 및 이완되는 형상기억합금 재질의 와이어로 제작된 스프링 형상의 액츄에이터들과;spring-shaped actuators made of a wire made of a shape memory alloy material, one side of which is connected to each of the heat transfer members and contracts and relaxes in response to heat transferred through the heat transfer member;
    상기 반작용면에 열을 가하기 위한 전기적 발열부재와;an electric heating member for applying heat to the reaction surface;
    상기 액츄에이터들의 주변온도를 감지하기 위한 하나 이상의 온도감지센서와;one or more temperature sensors for sensing ambient temperatures of the actuators;
    상기 열전소자에 인가되는 전원의 방향을 제어하여 상기 액츄에이터들을 수축 혹은 이완시키되, 감지되는 상기 액츄에이터의 주변온도에 따라 상기 액츄에이터의 수축길이 혹은 이완길이를 제어하는 제어부;를 포함함을 특징으로 하는 열전소자를 이용한 액츄에이터 구동장치.Thermoelectric device comprising a; a control unit that contracts or relaxes the actuators by controlling the direction of the power applied to the thermoelectric element, and controls the contraction length or relaxation length of the actuator according to the sensed ambient temperature of the actuator. Actuator driving device using element.
  3. 청구항 1 또는 청구항 2에 있어서, 상기 전기적 발열부재는,The method according to claim 1 or 2, wherein the electrical heating member,
    상기 반작용면에 위치하는 상기 열전달 부재 내에 위치함을 특징으로 하는 열전소자를 이용한 액츄에이터 구동장치.Actuator driving device using a thermoelectric element, characterized in that located in the heat transfer member located on the reaction surface.
  4. 청구항 1 내지 청구항 3중 어느 한 항에 있어서, 상기 제어부는,The method according to any one of claims 1 to 3, wherein the control unit,
    상기 작용면이 발열면으로 작용하도록 전원 인가방향을 제어하여 상기 액츄에이터를 수축시키되 흡열면으로 작용하는 상기 반작용면과의 온도차이를 줄이기 위해 상기 전기적 발열부재를 구동 제어함을 특징으로 하는 열전소자를 이용한 액츄에이터 구동장치.A thermoelectric element characterized in that the actuator is contracted by controlling the direction of power application so that the working surface acts as a heating surface, but the electric heating member is driven and controlled to reduce a temperature difference with the reaction surface acting as a heat absorbing surface. Actuator drive device used.
  5. 청구항 1 또는 청구항 2에 있어서, 상기 스프링 형상의 액츄에이터는,The method according to claim 1 or 2, The spring-shaped actuator,
    온도에 따라 소성변화가 상이한 서로 다른 재질의 형상기억합금을 이용해 제작하되, 스프링의 길이를 복수 구간으로 분할하여 서로 다른 재질 혹은 서로 다른 조성비를 가지는 형상기억합금으로 제작함을 특징으로 하는 열전소자를 이용한 액츄에이터 구동장치.A thermoelectric element characterized in that it is manufactured using shape memory alloys of different materials whose plasticity changes according to temperature, but the length of the spring is divided into a plurality of sections to produce shape memory alloys with different materials or different composition ratios. Actuator drive device used.
  6. 열에 반응하여 수축 및 이완되는 형상기억합금 재질의 와이어로 제작된 하나이상의 스프링 형상의 액츄에이터와;At least one spring-shaped actuator made of a wire made of a shape memory alloy material that contracts and relaxes in response to heat;
    상기 액츄에이터를 내부에 수용하는 수용홈이 형성되고, 상기 수용홈 내에 일측이 고정되는 상기 액츄에이터의 수축 및 이완에 따라 이동하는 액츄에이터 몸체;를 포함하되, 상기 액츄에이터 몸체에는,A receiving groove for accommodating the actuator is formed therein, and an actuator body that moves according to contraction and relaxation of the actuator having one side fixed in the receiving groove; including, in the actuator body,
    상기 수용홈 내에 수용되는 상기 액츄에이터와 마주하여 상기 액츄에이터와 열교환하는 하나 이상의 제1열전달부재와, 상기 액츄에이터 몸체 일부의 외부 면을 형성하여 대기로 열 방출하는 하나 이상의 제2열전달부재와, 상기 제1 및 제2열전달부재 각각에 부착되는 작용면과 반작용면을 가지되 상기 작용면과 반작용면 각각 이 전원의 인가방향에 따라 흡열면 혹은 발열면으로 작용하는 하나 이상의 열전소자들과, 상기 제2열전달부재 내에 위치하여 상기 반작용면에 열을 가하는 하나 이상의 전기적 발열부재와, 상기 수용홈 내에 위치하여 상기 액츄에이터의 주변온도를 감지하기 위한 하나 이상의 온도감지센서가 포함됨을 특징으로 하는 열전소자 매립형 액츄에이터 모듈.One or more first heat transfer members facing the actuator accommodated in the receiving groove and exchanging heat with the actuator; One or more second heat transfer members forming an outer surface of a portion of the actuator body to radiate heat to the atmosphere; and one or more thermoelectric elements having an action surface and a reaction surface attached to each of the second heat transfer members, each of the action surface and the reaction surface acting as a heat absorbing surface or a heat generating surface depending on a direction in which power is applied, and the second heat transfer At least one electric heating member positioned in the member to apply heat to the reaction surface, and one or more temperature sensors positioned in the receiving groove to sense the ambient temperature of the actuator.
  7. 청구항 6에 있어서, 상기 스프링 형상의 액츄에이터는,The method according to claim 6, The spring-shaped actuator,
    온도에 따라 소성변화가 상이한 서로 다른 재질의 형상기억합금을 이용해 제작하되, 스프링의 길이를 복수 구간으로 분할하여 서로 다른 재질 혹은 서로 다른 조성비를 가지는 형상기억합금으로 제작함을 특징으로 하는 열전소자 매립형 액츄에이터 모듈.A thermoelectric element embedded type, characterized in that it is manufactured using shape memory alloys of different materials whose plasticity changes according to temperature, but the length of the spring is divided into a plurality of sections to produce shape memory alloys with different materials or different composition ratios actuator module.
PCT/KR2021/000985 2020-01-31 2021-01-25 Thermoelectric element embedded-type actuator module and apparatus for driving actuator WO2021153963A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200011728A KR102261987B1 (en) 2020-01-31 2020-01-31 Apparatus for driving thermoelement embedded actuator
KR10-2020-0011728 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153963A1 true WO2021153963A1 (en) 2021-08-05

Family

ID=76414977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000985 WO2021153963A1 (en) 2020-01-31 2021-01-25 Thermoelectric element embedded-type actuator module and apparatus for driving actuator

Country Status (2)

Country Link
KR (1) KR102261987B1 (en)
WO (1) WO2021153963A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165984A (en) * 1994-12-13 1996-06-25 Casio Comput Co Ltd Actuator moving device
JPH09133069A (en) * 1995-11-09 1997-05-20 Mitsubishi Heavy Ind Ltd Actuator using semiconductor element
JP3988336B2 (en) * 1999-09-27 2007-10-10 松下電工株式会社 Actuator
KR101738069B1 (en) * 2016-01-20 2017-05-22 한국과학기술연구원 Flexible display device having shape memory alloy
KR101922556B1 (en) * 2017-02-28 2018-11-28 한국기계연구원 Muscular strength assistance device using the shape memory alloy spring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165984A (en) * 1994-12-13 1996-06-25 Casio Comput Co Ltd Actuator moving device
JPH09133069A (en) * 1995-11-09 1997-05-20 Mitsubishi Heavy Ind Ltd Actuator using semiconductor element
JP3988336B2 (en) * 1999-09-27 2007-10-10 松下電工株式会社 Actuator
KR101738069B1 (en) * 2016-01-20 2017-05-22 한국과학기술연구원 Flexible display device having shape memory alloy
KR101922556B1 (en) * 2017-02-28 2018-11-28 한국기계연구원 Muscular strength assistance device using the shape memory alloy spring

Also Published As

Publication number Publication date
KR102261987B1 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
US8291788B2 (en) Rotary series elastic actuator
US8562049B2 (en) Robotic finger assembly
US10578197B2 (en) Robotic arm and wrist mechanisms
US7407208B2 (en) Joint drive mechanism and robot hand
JP5357847B2 (en) Robot thumb assembly
JP5906506B1 (en) Actuator device, power assist robot and humanoid robot
US20170203432A1 (en) Actuation apparatus for wearable devices
Hamidi et al. Multidirectional 3D-printed functionally graded modular joint actuated by TCP FL muscles for soft robots
US20170051729A1 (en) Complaint actuator
Tang et al. An exoskeleton system for hand rehabilitation driven by shape memory alloy
WO2021153963A1 (en) Thermoelectric element embedded-type actuator module and apparatus for driving actuator
Burns et al. Towards a wearable hand exoskeleton with embedded synergies
Hino et al. Development of a miniature robot finger with a variable stiffness mechanism using shape memory alloy
Popov et al. A preliminary study on a twisted strings-based elbow exoskeleton
Qian et al. CURER: A lightweight cable-driven compliant upper limb rehabilitation exoskeleton robot
WO2020262802A1 (en) Soft actuator comprising cooler, wearable robot comprising same, massage device comprising same, and method for controlling same
CN111098295B (en) Intelligent snakelike arm robot system based on memory alloy
Takashima et al. Characteristics of pneumatic artificial rubber muscle using two shape-memory polymer sheets
Ihrke et al. Rotary series elastic actuator
JP2018155294A (en) Robot driving device and operation assisting device
KR102515086B1 (en) Assistive wearable robot for upper limb movement using artificial muscle
Harris et al. Design and development of a dextrous manipulator
JP2020196091A (en) Servo motor device enabling torque control
Yao et al. Research of a dual stage bending dexterous robotic hand with EMG control
KR102417805B1 (en) Wrist wearable robot using heat-shrink artificial muscle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21746987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21746987

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.12.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 21746987

Country of ref document: EP

Kind code of ref document: A1