WO2021153730A1 - Electrolytic capacitor and method for producing same - Google Patents

Electrolytic capacitor and method for producing same Download PDF

Info

Publication number
WO2021153730A1
WO2021153730A1 PCT/JP2021/003234 JP2021003234W WO2021153730A1 WO 2021153730 A1 WO2021153730 A1 WO 2021153730A1 JP 2021003234 W JP2021003234 W JP 2021003234W WO 2021153730 A1 WO2021153730 A1 WO 2021153730A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
conductive
particles
dopant
electrolytic capacitor
Prior art date
Application number
PCT/JP2021/003234
Other languages
French (fr)
Japanese (ja)
Inventor
博之 有馬
丈博 小林
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021574150A priority Critical patent/JPWO2021153730A1/ja
Priority to US17/795,802 priority patent/US20230078283A1/en
Priority to CN202180011179.9A priority patent/CN115039191A/en
Publication of WO2021153730A1 publication Critical patent/WO2021153730A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Definitions

  • This disclosure relates to electrolytic capacitors and their manufacturing methods.
  • Capacitors used in electronic devices are required to have a large capacity and a low equivalent series resistance (ESR) value in the high frequency region.
  • ESR equivalent series resistance
  • an electrolytic capacitor using a conductive polymer such as polypyrrole, polythiophene, polyfuran, or polyaniline is promising.
  • Patent Document 1 International Publication No. 2012/11794 describes "a conductive polymer and a polysulfonic acid that functions as a dopant for the conductive polymer" as a conductive polymer solution for forming a solid electrolyte layer.
  • Patent Document 1 discloses a solid electrolytic capacitor manufactured by using the conductive polymer solution.
  • one of the objects of the present disclosure is to provide an electrolytic capacitor having a low rate of increase in ESR over a long period of time.
  • the electrolytic capacitor is an electrolytic capacitor including a capacitor element, and the capacitor element includes an anode having a dielectric layer formed on its surface and an electrolyte layer arranged adjacent to the dielectric layer.
  • the electrolyte layer contains a conductive polymer doped with a dopant, conductive particles, and a non-aqueous solvent.
  • the manufacturing method includes a step (i) of preparing a capacitor element precursor containing an anode having a dielectric layer formed on its surface, and a polymer layer containing a dopant-doped conductive polymer and conductive particles. Is included in a step (ii) of forming the polymer layer adjacent to the dielectric layer by an impregnation treatment and a step (iii) of impregnating the polymer layer with a non-aqueous solvent.
  • an electrolytic capacitor having a low rate of increase in ESR over a long period of time can be obtained.
  • the electrolytic capacitor of the present disclosure includes a capacitor element.
  • the capacitor element includes an anode having a dielectric layer formed on its surface and an electrolyte layer arranged adjacent to the dielectric layer.
  • the electrolyte layer contains a dopant-doped conductive polymer, conductive particles, and a non-aqueous solvent.
  • the capacitor element is formed between a foil-shaped anode having a dielectric layer formed on its surface, a foil-shaped cathode body, a separator arranged between the anode body and the cathode body, and between the anode body and the cathode body. It may include an electrolyte layer arranged in. Such a capacitor element may be referred to as a "first capacitor element" below.
  • the first capacitor element may be a winding type or a laminated type. In an example of the winding type capacitor element, the foil-shaped anode body, the foil-shaped cathode body, and the separator are wound so that the separator is arranged between the anode body and the cathode body.
  • the foil-shaped anode body, the foil-shaped cathode body, and the separator are folded in a zigzag shape so that the separator is arranged between the anode body and the cathode body.
  • the capacitor element may include a porous anode body having a dielectric layer formed on its surface, a cathode layer, and an electrolyte layer arranged between the anode body and the cathode layer.
  • a capacitor element may be referred to as a "second capacitor element" below.
  • the electrolyte layer is adjacent to the dielectric layer formed on the surface of the anode.
  • Examples of conductive polymers include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, and derivatives thereof.
  • the derivatives include polymers based on polypyrrole, polythiophene, polyfuran, polyaniline, and polyacetylene.
  • derivatives of polythiophene include poly (3,4-ethylenedioxythiophene) and the like.
  • These conductive polymers may be used alone or in combination of two or more.
  • the conductive polymer may be a copolymer of two or more kinds of monomers.
  • the weight average molecular weight of the conductive polymer is not particularly limited, and may be in the range of, for example, 1000 to 100,000.
  • a preferred example of the conductive polymer is poly (3,4-ethylenedioxythiophene) (PEDOT).
  • Dopants are doped into the conductive polymer. From the viewpoint of suppressing dedoping from the conductive polymer, it is preferable to use a polymer dopant as the dopant.
  • a polymer dopant examples include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic sulfonic acid, polymethacrylic sulfonic acid, poly (2-acrylamide-2-methylpropanesulfonic acid), polyisoprene sulfonic acid, Includes polyacrylic acid and the like. These may be used alone or in combination of two or more. Some of these may be included in the electrolyte layer in the form of salts.
  • a preferred example of a dopant is polystyrene sulfonic acid (PSS).
  • the weight average molecular weight of the dopant is not particularly limited. From the viewpoint of facilitating the formation of a homogeneous electrolyte layer, the weight average molecular weight of the dopant may be in the range of 1000 to 100,000.
  • the dopant may be polystyrene sulfonic acid
  • the conductive polymer may be poly (3,4-ethylenedioxythiophene). That is, the electrolyte layer may contain polystyrene sulfonic acid-doped poly (3,4-ethylenedioxythiophene).
  • the electrolyte layer of the electrolytic capacitor of the present disclosure contains a non-aqueous solvent.
  • the electrolyte layer may contain an electrolytic solution (non-aqueous electrolytic solution) containing a non-aqueous solvent and a basic component dissolved in the non-aqueous solvent. That is, the electrolyte layer of the electrolytic capacitor of the present disclosure may contain a liquid component.
  • the liquid component (non-aqueous solvent or electrolytic solution) contained in the electrolyte layer may be referred to as “liquid component (L)”.
  • the liquid component (L) may be a component that is liquid at room temperature (25 ° C.) or a component that is liquid at the temperature at which the electrolytic capacitor is used. ..
  • An electrolytic capacitor having an electrolyte layer containing a liquid component (L) may be called a hybrid capacitor.
  • the non-aqueous solvent contained in the electrolyte layer may be an organic solvent or an ionic liquid.
  • non-aqueous solvents include polyhydric alcohols such as ethylene glycol and propylene glycol, cyclic sulfones such as sulfolane (SL), lactones such as ⁇ -butyrolactone ( ⁇ BL), N-methylacetamide, N, N-. Includes amides such as dimethylformamide and N-methyl-2-pyrrolidone, esters such as methyl acetate, carbonate compounds such as propylene carbonate, ethers such as 1,4-dioxane, ketones such as methylethylketone, and formaldehyde. ..
  • a polymer solvent may be used as the non-aqueous solvent.
  • the polymer solvent include polyalkylene glycols, derivatives of polyalkylene glycols, compounds in which at least one hydroxyl group in a polyhydric alcohol is replaced with polyalkylene glycol (including a derivative), and the like.
  • examples of polymer-based solvents include polyethylene glycol (PEG), polyethylene glycol glyceryl ether, polyethylene glycol diglyceryl ether, polyethylene glycol sorbitol ether, polypropylene glycol, polypropylene glycol glyceryl ether, and polypropylene glycol diglyceryl ether.
  • Polyethylene glycol sorbitol ether, polybutylene glycol and the like are included.
  • the polymer solvent further include a copolymer of ethylene glycol-propylene glycol, a copolymer of ethylene glycol-butylene glycol, a copolymer of propylene glycol-butylene glycol, and the like.
  • the non-aqueous solvent one type may be used alone, or two or more types may be mixed and used.
  • the electrolyte layer may contain a non-aqueous solvent and a base component (base) dissolved in the non-aqueous solvent. Further, the electrolyte layer may contain a non-aqueous solvent and a base component and / or an acid component (acid) dissolved in the non-aqueous solvent.
  • polycarboxylic acid and monocarboxylic acid can be used as the acid component.
  • polycarboxylic acids include aliphatic polycarboxylic acids ([saturated polycarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebatic acid, 1 , 6-decandicarboxylic acid, 5,6-decandicarboxylic acid]; [unsaturated polycarboxylic acid, eg maleic acid, fumaric acid, icotanic acid]), aromatic polycarboxylic acid (eg phthalic acid, isophthalic acid, terephthalic acid) , Trimellitic acid, pyromellitic acid), alicyclic polycarboxylic acid (for example, cyclohexane-1,2-dicarboxylic acid, cyclohexene-1,2-dicarboxylic acid, etc
  • Examples of the above monocarboxylic acids include aliphatic monocarboxylic acids (1 to 30 carbon atoms) ([saturated monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, etc. Capricic acid, pelargonic acid, lauric acid, myristic acid, stearic acid, bechenic acid]; [unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, oleic acid]) Acids, naphthoic acids), oxycarboxylic acids (eg salicylic acid, mandelic acid, resorcinic acid).
  • saturated monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, etc.
  • maleic acid, phthalic acid, benzoic acid, pyromellitic acid, and resorcinic acid are thermally stable and are preferably used.
  • Inorganic acid may be used as the acid component.
  • Typical examples of inorganic acids are phosphoric acid, phosphite, hypophosphite, alkyl phosphate ester, boric acid, boric acid, boric acid tetrafluoride, phosphoric acid hexafluoride, benzenesulfonic acid, naphthalenesulfone. Examples include acid.
  • a composite compound of an organic acid and an inorganic acid may be used as the acid component. Examples of such complex compounds include borodiglycolic acid, borodioxalic acid, borodisalicylic acid and the like.
  • the base component may be a compound having an alkyl-substituted amidine group, for example, an imidazole compound, a benzimidazole compound, an alicyclic amidine compound (pyrimidine compound, imidazoline compound) or the like.
  • 1,8-diazabicyclo [5,4,0] undecene-7, 1,5-diazabicyclo [4,3,0] nonen-5 1,2-dimethylimidazolinium, 1,2, 4-trimethylimidazoline, 1-methyl-2-ethyl-imidazoline, 1,4-dimethyl-2-ethylimidazoline, 1-methyl-2-heptyl imidazoline, 1-methyl-2- (3'heptyl) imidazoline, 1- Methyl-2-dodecylimidazoline, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1-methylimidazole and 1-methylbenzoimidazole are preferred.
  • a capacitor having excellent impedance performance can be obtained.
  • a quaternary salt of a compound having an alkyl-substituted amidine group may be used.
  • Examples of such basic components include imidazole compounds, benzimidazole compounds, and alicyclic amidine compounds (pyrimidine compounds, imidazoline compounds) quaternized with alkyl or arylalkyl groups having 1 to 11 carbon atoms. Be done.
  • a tertiary amine may be used as a base component.
  • tertiary amines include trialkylamines (trimethylamine, dimethylethylamine, methyldiethylamine, triethylamine, dimethyl-n-propylamine, dimethylisopropylamine, methylethyln-propylamine, methylethylisopropylamine, diethyl-n- Propylamine, diethylisopropylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, tri-tert-butylamine, etc.), phenyl group-containing amines (dimethylphenylamine, methylethylphenylamine, diethylphenylamine, etc.) ).
  • trialkylamines are preferable from the viewpoint of increasing the conductivity of the electrolyte layer, and it is more preferable to contain at least one selected from the group consisting of trimethylamine, dimethylethylamine, methyldiethylamine and triethylamine.
  • a secondary amine such as dialkylamines, a primary amine such as monoalkylamine, or ammonia may be used.
  • the liquid component (L) may contain a salt of an acid component and a base component.
  • the salt may be an inorganic salt and / or an organic salt.
  • An organic salt is a salt in which at least one of an anion and a cation contains an organic substance. Examples of the organic salt include trimethylamine maleate, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono1,2,3,4-tetramethylimidazolinium phthalate, and mono 1,3-dimethyl-2-phthalate. Ethylimidazolinium or the like may be used. Even when the liquid component (L) contains a salt of an acid component and a base component, dedoping is likely to occur due to the base component contained in the salt, so that the configuration of the present disclosure is particularly effective.
  • the pH of the liquid component (L) may be less than 7, or 5 or less (for example, in the range of 2 to 4.5).
  • ESR of electrolytic capacitors is low.
  • a low ESR can be achieved by using an electrolyte layer containing a conductive polymer doped with a dopant.
  • the present inventors have stated that although the initial ESR is low, the deterioration phenomenon in which the ESR increases with time is large. Found. As a result of investigating the cause, it was found that the dopant may be easily dedoped in the electrolyte layer containing the liquid component (L). It is believed that this dedoping increases the ESR over time. Therefore, it is important to suppress an increase in ESR over time in an electrolytic capacitor containing a liquid component (L) as compared with a solid electrolytic capacitor containing a solid electrolyte containing no liquid component (L).
  • the conductive polymer Since the conductive polymer has high conductivity, it is effective in reducing ESR. However, the conductivity of the conductive polymer decreases due to deterioration over time, so that the ESR increases. In particular, when the electrolyte layer contains the liquid component (L), the increase in ESR becomes large. On the other hand, it is considered that the conductivity of the conductive particles hardly deteriorates with time. Therefore, by adding the conductive particles, it is possible to suppress an increase in ESR with time.
  • L liquid component
  • the dopant may be a dopant containing an acidic group or a polymer dopant containing an acidic group.
  • the inventors of the present application have newly found that when a dopant containing an acidic group is used, dedoping may occur remarkably as the pH increases. Therefore, when a dopant containing an acidic group is used, it is particularly important to suppress an increase in ESR over time.
  • the dopant may be a polymer dopant containing an acidic group
  • the electrolyte layer may contain an electrolytic solution containing a non-aqueous solvent and a base component dissolved in the non-aqueous solvent. good.
  • dedopant since dedopant is likely to occur due to the base component, it is particularly important to suppress an increase in ESR over time.
  • the electrolytic capacitor of the present disclosure contains conductive particles, it is possible to suppress an increase in ESR over time.
  • a polymer dopant containing an acidic group is a polymer in which at least a part of its constituent units contains an acidic group.
  • Examples of such polymeric dopants include the polymeric dopants described above.
  • the content of the base component in the electrolytic solution may be 0.1% by mass or more and 20% by mass or less.
  • the amount of the base component is 0.1% by mass or more, it is particularly important to use conductive particles. Further, by setting the amount of the base component to 20% by mass or less, it becomes easy to dissolve the base component in the electrolytic solution.
  • the electrolytic solution contains a salt of an acid component and a base component (for example, when the electrolytic solution contains the salt as a solute)
  • the content of the base component in the electrolytic solution is the mass of the electrolytic solution and the salt. It is obtained from the mass of our base component.
  • the content of the liquid component (L) in the electrolyte layer may be in the range of 50 to 99.5% by mass.
  • the total content of the conductive polymer and the dopant in the electrolyte layer may be in the range of 0.5 to 10% by mass.
  • the content of the conductive particles in the electrolyte layer may be in the range of 0.025 to 5% by mass.
  • the total mass Wm (g) of the conductive polymer and the dopant contained in the electrolyte layer and the mass Wp (g) of the conductive particles contained in the electrolyte layer may satisfy 1 ⁇ Wm / Wp, for example. 2 ⁇ Wm / Wp ⁇ 20 may be satisfied.
  • the ratio Wp / Wm may be 0.05 or more, 0.15 or more, 0.35 or more, 0.50 or more, or 1.0 or more.
  • the ratio Wp / Wm may be 10 or less, 5.0 or less, or 2.0 or less. These lower and upper limits can be combined arbitrarily.
  • the ratio Wp / Wm may be in the range of 0.05 to 10, 0.15 to 10, 0.35 to 10, 0.50 to 10, or 1.0 to 10. good. The upper limit of any of these ranges may be replaced with 5.0 or 2.0.
  • the ratio Wp / Wm is equal to (content of conductive particles in the electrolyte layer) / (total content of conductive polymer and dopant in the electrolyte layer).
  • the conductive particles contained in the electrolyte layer will be described below.
  • the conductive particles are particles made of a conductive material.
  • the conductive particles are different from the above-mentioned conductive polymer.
  • the conductive particles are typically made of a non-polymeric material.
  • the conductive particles contained in the electrolyte layer may be only one type of conductive particles, or may contain a plurality of types of conductive particles.
  • the conductive particles may be particles of a conductive carbon material or particles made of a material other than the conductive carbon material. Examples of materials other than conductive carbon materials include conductive nickel-phosphorus (Ni-P) materials, conductive indium-tin (In-Sn) materials, conductive tin oxide, and conductive tin-silver. (Sn-Ag) and the like are included.
  • the conductive particles may be metal particles (for example, nickel or other metal particles).
  • the conductive particles may include at least one particle selected from the group consisting of carbon black particles, carbon nanotube particles, graphite particles, and graphene particles. These particles are preferable because the average particle size, the structure of the particles, and the surface texture can be controlled in various ways.
  • the conductive particles may be composed of only one kind of particles among these particles, or may be composed of a plurality of kinds of particles among these particles.
  • the total mass of the conductive polymer and the dopant contained in the electrolyte layer may be larger than the mass of the conductive particles contained in the electrolyte layer. That is, the total content (mass%) of the conductive polymer and the dopant in the electrolyte layer may be larger than the content (mass%) of the conductive particles in the electrolyte layer.
  • the above-mentioned conductive polymer is generally more conductive than the above-mentioned conductive particles. Therefore, increasing the content of the conductive polymer is effective in reducing the initial ESR.
  • the electrolytic capacitor of the present disclosure may satisfy the following conditions (1) and (2).
  • the anode has a porous portion on the surface (the surface on which the dielectric layer is formed), and the average particle size of the conductive particles is larger than the average pore diameter of the porous portion on the surface of the anode. big.
  • the conductive polymer is in the form of particles, and the average particle size of the conductive polymer is smaller than the average pore size of the porous portion on the surface of the anode.
  • the above-mentioned conductive polymer is generally more conductive than the above-mentioned conductive particles. Therefore, it is possible to lower the initial ESR by arranging the conductive polymer near the surface of the anode.
  • the conductive polymer is likely to be arranged in the voids (pores) of the porous portion of the anode body. That is, the conductive polymer is easily arranged in the portion of the surface of the anode body close to the dielectric layer. As a result, the initial ESR can be lowered.
  • the average particle size of the particles is the median diameter (D 50 ) at which the cumulative volume is 50% in the volume-based particle size distribution.
  • the median diameter is determined using, for example, a laser diffraction / scattering particle size distribution measuring device.
  • the average pore diameter of the porous portion on the surface of the anode is the median diameter (D 50 ) at which the cumulative volume is 50% in the volume-based pore distribution.
  • the median diameter is determined using, for example, gas adsorption pore distribution measurement.
  • the electrolytic capacitor of the present disclosure may satisfy the following condition (3).
  • the electrolyte layer includes a polymer layer (conductive polymer layer) composed of a conductive polymer, and the polymer layer is the first polymer layer formed on the dielectric layer on the surface of the anode. It includes a polymer layer and a second polymer layer formed on the first polymer layer. That is, the first polymer layer is arranged between the dielectric layer on the surface of the anode and the second polymer layer.
  • the conductive polymer contained in the first polymer layer and the conductive polymer contained in the second polymer layer are the same. It may or may not be different.
  • the conductive particles may be contained in both the first and second polymer layers, or may be contained in only one of them. When both the first and second polymer layers contain conductive particles, the conductive particles contained in the first polymer layer and the conductive particles contained in the second polymer layer are the same. It may or may not be different.
  • the electrolytic capacitor of the present disclosure may satisfy the above conditions (3) and the following conditions (4).
  • the content rate (mass%) of the conductive particles in the second polymer layer is larger than the content rate (mass%) of the conductive particles in the first polymer layer.
  • the conductive particles may be contained in both the first and second polymer layers, or may be contained only in the second polymer layer.
  • the condition of (4) above is that (4') the content of the conductive polymer in the first polymer layer (mass%) is the content of the conductive polymer in the second polymer layer (mass). It may be replaced with the condition that it is larger than%).
  • the electrolytic capacitor of the present disclosure may satisfy the following conditions (A) and (B), and may further satisfy the condition (C). By satisfying these conditions, an electrolytic capacitor having high characteristics and reliability can be obtained.
  • the conductive polymer is poly (3,4-ethylenedioxythiophene), and the dopant is polystyrene sulfonic acid.
  • the conductive particles are particles of a conductive carbon material, for example, at least one particle selected from the group consisting of carbon black particles, carbon nanotube particles, graphite particles, and graphene particles. Alternatively, the conductive particles may be at least one selected from the group consisting of metal particles and particles of a conductive carbon material.
  • the total mass Wm (g) of the conductive polymer and the dopant contained in the electrolyte layer and the mass Wp (g) of the conductive particles contained in the electrolyte layer satisfy 1 ⁇ Wm / Wp, for example. , 2 ⁇ Wm / Wp ⁇ 20 is satisfied. Alternatively, the ratio Wp / Wm may be in the above range.
  • the components (anode body, cathode body, separator, etc.) of the capacitor element other than the electrolyte are not particularly limited, and known ones may be used. Examples of those of the first capacitor element will be described below.
  • a metal foil having a dielectric layer formed on its surface may be used as the anode body.
  • the type of metal constituting the metal foil is not particularly limited. Examples of metals constituting the metal foil include valve-acting metals such as aluminum, tantalum, niobium, and titanium, and alloys of valve-acting metals because of the ease of formation of the dielectric layer. .. A preferred example is aluminum and aluminum alloys.
  • the surface of the anode is roughened (porous).
  • the dielectric layer of the anode body is formed on a porous portion (roughened surface).
  • the electrolyte layer is in contact with the dielectric layer of the anode.
  • a metal foil may be used for the cathode body.
  • the type of metal constituting the metal foil is not particularly limited.
  • the metals that make up the metal leaf include valvular metals such as aluminum, tantalum, niobium, titanium, and alloys of valvular metals.
  • a preferred example is aluminum and aluminum alloys.
  • a chemical conversion film may be provided on the surface of the cathode body, or a metal (dissimilar metal) or non-metal film different from the metal constituting the cathode body may be provided.
  • dissimilar metals and non-metals include metals such as titanium and non-metals such as carbon.
  • separator As the separator, a sheet-like material that can be impregnated with an electrolyte can be used. For example, a sheet-like material that has insulating properties and can be impregnated with an electrolyte may be used.
  • the separator may be a woven fabric, a non-woven fabric, or a porous membrane. Examples of separator materials include cellulose, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, vinylon, nylon, aromatic polyamide, polyimide, polyamideimide, polyetherimide, rayon, and glass.
  • the second capacitor element includes a porous anode body having a dielectric layer formed on its surface, a cathode layer, and an electrolyte layer arranged between the anode body and the cathode layer.
  • the porous anode body may be, for example, a porous sintered body obtained by sintering material particles containing a valve acting metal.
  • the anode body may have a rectangular parallelepiped shape.
  • valve acting metals include titanium (Ti), tantalum (Ta), niobium (Nb) and the like.
  • the material particles may be made of an alloy containing a valve acting metal.
  • an alloy containing a valve acting metal and silicon, vanadium, boron or the like may be used.
  • the valve-acting metal alloy contains the valve-acting metal as a main component, and for example, contains 50 atomic% or more of the valve-acting metal.
  • material particles composed of a compound containing a valve acting metal and a typical element such as nitrogen may be used. As the material particles, one type may be used alone, or two or more types may be mixed and used.
  • the anode of the second capacitor element Since the anode of the second capacitor element is porous, it has a porous portion on the surface, and the dielectric layer is formed in the porous portion.
  • the electrolyte layer is in contact with the dielectric layer of the anode.
  • the dielectric layer is formed, for example, by subjecting a sintered body to be an anode body to a chemical conversion treatment and growing an oxide film on the surface of the sintered body.
  • the cathode layer has a current collecting function.
  • the cathode layer is formed of, for example, a conductive material.
  • the cathode layer may be a conductive layer formed so as to cover the electrolyte layer.
  • the cathode layer may include a carbon layer formed so as to cover the electrolyte layer and a metal paste layer formed on the carbon layer.
  • the carbon layer may contain a conductive carbon material such as graphite and a resin.
  • the metal paste layer may contain metal particles (for example, silver particles) and a resin.
  • the cathode layer can be formed by applying the above material or the like.
  • the method of the present disclosure for manufacturing an electrolytic capacitor will be described below. According to this manufacturing method, the electrolytic capacitor of the present disclosure can be manufactured. Since the matters described about the electrolytic capacitor of the present disclosure can be applied to the following manufacturing methods, duplicate description may be omitted. For example, since the components of the capacitor element and the like have been described above, duplicate description may be omitted. In addition, the matters described in the following manufacturing method can be applied to the above-mentioned electrolytic capacitor.
  • Step (i) is a step (i) of preparing a capacitor element precursor containing an anode having a dielectric layer formed on its surface.
  • the step (i) may be a step of forming a capacitor element precursor by a known method.
  • the step (i) involves a foil-shaped anode having a dielectric layer formed on its surface, a foil-shaped cathode body, and an anode body and a cathode body. It may be a step of forming a capacitor element precursor including a separator arranged between them. In this case, as described above, the capacitor element precursor may be a wound type or a laminated type.
  • the capacitor element precursor is an anode having a dielectric layer formed on its surface (a porous anode) and a part thereof embedded in the anode. It may be composed of an anode wire.
  • Step (ii) is a step of forming a polymer layer containing a conductive polymer doped with a dopant and conductive particles so as to be adjacent to the dielectric layer by an impregnation treatment.
  • the impregnation treatment in step (ii) may be an impregnation treatment (x) in which the capacitor element precursor is impregnated with a dispersion liquid containing a conductive polymer doped with a dopant and conductive particles.
  • the dispersion liquid can be impregnated by immersing the capacitor element precursor in the dispersion liquid.
  • the polymer layer containing the dopant-doped conductive polymer and the conductive particles is adjacent to the dielectric layer. Can be placed in.
  • the impregnation treatment (x) may be performed a plurality of times. In that case, a drying step of removing the dispersion medium of the impregnated dispersion may be performed before the second and subsequent impregnation treatments (x) are performed.
  • the dispersion medium of the dispersion is not particularly limited, and a known dispersion medium may be used.
  • a dispersion medium an aqueous liquid containing water may be used, or water may be used.
  • the content of the conductive polymer and the conductive particles in the dispersion is not particularly limited, and may be any content that can be impregnated.
  • the content of the conductive polymer in the dispersion may be in the range of, for example, 0.1% by mass to 10% by mass.
  • the content of the conductive particles in the dispersion may be adjusted according to the content of the conductive polymer.
  • the ratio thereof in the formed electrolyte layer can be adjusted. For example, by making the mass (content rate) of the conductive polymer in the dispersion liquid larger than the mass (content rate) of the conductive particles in the dispersion liquid, the mass of the conductive polymer contained in the electrolyte layer can be increased. , It can be larger than the mass of the conductive particles contained in the electrolyte layer.
  • the impregnation treatment in the step (ii) may include an impregnation treatment (y) and an impregnation treatment (z).
  • the impregnation treatment (y) may be performed first, the impregnation treatment (z) may be performed first, or the impregnation treatment (z) may be performed at the same time.
  • the impregnation treatment (y) is followed by the impregnation treatment (z).
  • the impregnation treatment (y) and the impregnation treatment (z) may be independently performed a plurality of times. Further, after each of the impregnation treatment (y) and the impregnation treatment (z), a drying step of removing the dispersion medium of the impregnated dispersion may be performed.
  • the impregnation treatment (y) is an impregnation treatment in which the capacitor element precursor is impregnated with a first dispersion liquid containing a conductive polymer doped with a dopant.
  • the impregnation treatment (z) is an impregnation treatment for impregnating the capacitor element precursor with a second dispersion liquid containing conductive particles.
  • the dispersion medium and the impregnation method of the first and second dispersion liquids the dispersion medium and the impregnation method described in the impregnation treatment (x) may be applied.
  • the first dispersion does not contain conductive particles and the second dispersion does not contain a dopant-doped conductive polymer.
  • the first dispersion may contain conductive particles and the second dispersion may contain a dopant-doped conductive polymer.
  • both the first and second dispersion liquids contain a conductive polymer doped with a dopant
  • one of the impregnation treatment (y) and the impregnation treatment (z) may be performed, followed by drying, and then the other impregnation treatment.
  • a polymer layer including the first polymer layer and the second polymer layer can be formed.
  • the content of the conductive particles in the first dispersion liquid and the content of the conductive particles in the second dispersion liquid the content of the conductive particles in the first polymer layer and the first The content of conductive particles in the polymer layer of 2 can be adjusted.
  • Step (iii) is a step of impregnating the polymer layer formed in step (ii) with a non-aqueous solvent.
  • a non-aqueous solvent As a result, an electrolyte layer containing a conductive polymer doped with a dopant, conductive particles, and a non-aqueous solvent is formed.
  • the step (iii) may be a step of impregnating the polymer layer formed in the step (ii) with an electrolytic solution containing a non-aqueous solvent. That is, the step (iii) may be a step of impregnating the polymer layer formed in the step (ii) with the liquid component (L).
  • step (iii) is not particularly limited, and a known method may be used.
  • the capacitor element precursor that has undergone step (ii) may be immersed in a non-aqueous solvent (or electrolytic solution).
  • the above-mentioned ones can be applied to the non-aqueous solvent (or electrolytic solution) used in the step (iii).
  • the dopant may be a polymer dopant containing an acidic group, and in step (iii), an electrolytic solution containing a non-aqueous solvent and a base component dissolved in the non-aqueous solvent is polymerized. It may be a step of impregnating the layer.
  • the first capacitor element is obtained by the step (iii).
  • step (iii) provides the anode and electrolyte layer of the second capacitor element.
  • an electrolytic capacitor may be manufactured using the components obtained in the step (iii).
  • the process is not particularly limited, and a known method can be used.
  • the electrolytic capacitor of the present disclosure is not limited by the following figures.
  • the above-mentioned components can be applied to the components of the electrolytic capacitor of the example described below. Further, the components of the electrolytic capacitor of the example described below can be changed based on the above description. In addition, the matters described below may be applied to the above-described embodiment. The same parts may be designated by the same reference numerals and duplicate description may be omitted.
  • FIG. 1 schematically shows a cross section of an example of the electrolytic capacitor 100 of the first embodiment.
  • FIG. 2 shows a schematic view of a part of the capacitor element 10 included in the electrolytic capacitor 100 shown in FIG.
  • the electrolytic capacitor 100 includes a capacitor element 10, a bottomed case 11 that houses the capacitor element 10, a sealing member 12 that closes the opening of the bottomed case 11, and a seat that covers the sealing member 12. It includes a plate 13, lead wires 14A and 14B derived from the sealing member 12 and penetrating the seat plate 13, and lead tabs 15A and 15B connecting the lead wires 14A and 14B and the electrodes of the capacitor element 10.
  • the capacitor element 10 is housed in the bottomed case 11. The vicinity of the open end of the bottomed case 11 is drawn inward, and the open end of the bottomed case 11 is curled so as to crimp the sealing member 12.
  • the capacitor element 10 includes a foil-shaped anode body 21 having a dielectric layer formed on its surface, a foil-shaped cathode body 22, and a separator 23 and an electrolyte layer arranged between them. (Not shown) and.
  • the anode body 21 and the cathode body 22 are wound with the separator 23 arranged between them.
  • the outermost circumference of the winding body is fixed by the winding stop tape 24.
  • a lead tab 15A is connected to the anode body 21, and a lead tab 15B is connected to the cathode body 22. Note that FIG. 2 shows a partially unfolded state before fixing the outermost circumference of the wound body.
  • the capacitor A1 is a winding type electrolytic capacitor having a rated voltage of 35 V and a rated capacitance of 270 ⁇ F.
  • the capacitor A1 was manufactured by the following procedure.
  • an Al foil (aluminum foil) having a thickness of 70 ⁇ m was used.
  • An anode body having a dielectric layer formed on its surface was produced by the following procedure. First, an Al foil having a thickness of 120 ⁇ m was prepared. The Al foil was subjected to a direct current etching treatment to roughen the surface. Next, the Al foil was subjected to chemical conversion treatment. Specifically, the Al foil is immersed in an aqueous solution of ammonium adipate, and a dielectric layer (thickness) is formed on the surface of the Al foil by performing a chemical conversion treatment at 70 ° C.
  • the anode body of the capacitor A1 was prepared by cutting the anode body to a predetermined size.
  • a dispersion of a second conductive polymer doped with a dopant was prepared by the following method. First, a mixed solution of 3,4-ethylenedioxythiophene and polystyrene sulfonic acid (dopant) was prepared by dissolving them in ion-exchanged water. While stirring the obtained mixed solution, iron (III) sulfate (oxidizing agent) dissolved in ion-exchanged water was added to carry out a polymerization reaction. After the reaction, the obtained reaction solution was dialyzed to remove unreacted monomers and excess oxidizing agent.
  • polystyrene sulfonic acid-doped poly (3,4-ethylenedioxythiophene) may be referred to as "PEDOT: PSS".
  • the treatment liquid A was placed in a container.
  • the winding body was immersed in the treatment liquid A in the container for 15 minutes in a reduced pressure atmosphere (40 kPa) at room temperature, and then the winding body was pulled up from the treatment liquid A. In this way, the wound body was impregnated with the treatment liquid A.
  • the drying oven the wound body was dried at 60 ° C. for 30 minutes, followed by drying at 150 ° C. for 30 minutes. As a result, the solvent contained in the treatment liquid A was dried. In this way, a conductive polymer layer containing conductive particles was formed.
  • the wound body on which the conductive polymer layer was formed was impregnated with the electrolytic solution at room temperature under atmospheric pressure.
  • a solution mixed at a mass ratio of 20:20 was used. In this way, a capacitor element including an electrolyte layer was obtained. This capacitor element was sealed to complete an electrolytic capacitor. Then, while applying the rated voltage, the aging treatment was carried out at 130 ° C. for 2 hours. In this way, the capacitor A1 was obtained.
  • capacitors A2 and 3 were manufactured under the same materials and conditions as the capacitors A1 except that the content of the conductive particles in the treatment liquid A was different.
  • capacitors B1 to B3 were manufactured under the same materials and conditions as the capacitors A1 except that the types and contents of the conductive particles contained in the treatment liquid A were different. In the production of the capacitors B1 to B3, graphene (scaly, average particle size 0.4 ⁇ m) was used as the conductive particles.
  • capacitor C1 (comparative example)
  • the capacitor C1 was manufactured under the same materials and conditions as the capacitor A1 except that conductive particles were not used. Therefore, the conductive polymer layer of the capacitor C1 contains PEDOT: PSS, but does not contain conductive particles.
  • ESR Equivalent series resistance
  • Table 1 shows some of the conditions for forming the electrolyte layer of the above electrolytic capacitor.
  • the mass ratio (or content ratio) of the conductive particles and PEDOT: PSS in the formed electrolyte layer can be regarded as equal to the ratio of their content in the treatment liquid. Therefore, their mass ratios in the electrolyte layer were calculated from their content in the treatment solution.
  • Table 2 shows the evaluation results of the ESR of the above electrolytic capacitor.
  • the ESR change rate is low. As shown in Table 2, in the electrolytic capacitor C1 of the comparative example, the ESR was significantly increased by leaving it at a high temperature. On the other hand, the ESR change rates of the electrolytic capacitors A1 to A3 and B1 to B3 were sufficiently low.
  • the mass ratio of conductive particles / (PEDOT: PSS) was preferably 0.15 or more, more preferably 0.35 or more or 1.0 or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is an electrolytic capacitor (100) including a capacitor element (10). The capacitor element (10) includes: a positive electrode on the surface of which a dielectric layer is formed; and an electrolyte layer disposed adjoining the dielectric layer. The electrolyte layer includes: a conductive polymer that has been doped with a dopant; conductive particles; and a non-aqueous solvent.

Description

電解コンデンサおよびその製造方法Electrolytic capacitors and their manufacturing methods
 本開示は、電解コンデンサおよびその製造方法に関する。 This disclosure relates to electrolytic capacitors and their manufacturing methods.
 電子機器に使用されるコンデンサには、大容量で、且つ、高周波領域における等価直列抵抗(ESR)の値が低いことが求められている。大容量で低ESRのコンデンサとしては、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリンなどの導電性高分子を用いる電解コンデンサが有望である。特許文献1(国際公開第2012/117994号)は、固体電解質層を形成するための導電性高分子溶液として、「導電性高分子と、前記導電性高分子に対してドーパントとして機能するポリスルホン酸又はその塩と、ポリ酸と炭素材料との混合物と、溶媒とを含有する導電性高分子溶液」を開示している(特許文献1の請求項1)。また、特許文献1は、当該導電性高分子溶液を用いて製造された固体電解コンデンサを開示している。 Capacitors used in electronic devices are required to have a large capacity and a low equivalent series resistance (ESR) value in the high frequency region. As a capacitor having a large capacity and a low ESR, an electrolytic capacitor using a conductive polymer such as polypyrrole, polythiophene, polyfuran, or polyaniline is promising. Patent Document 1 (International Publication No. 2012/11794) describes "a conductive polymer and a polysulfonic acid that functions as a dopant for the conductive polymer" as a conductive polymer solution for forming a solid electrolyte layer. Alternatively, a conductive polymer solution containing a salt thereof, a mixture of polyacid and a carbon material, and a solvent ”is disclosed (claim 1 of Patent Document 1). Further, Patent Document 1 discloses a solid electrolytic capacitor manufactured by using the conductive polymer solution.
国際公開第2012/117994号International Publication No. 2012/119794
 現在、長期間にわたってESRの上昇率が低い電解コンデンサが求められている。このような状況において、本開示は、長期間にわたってESRの上昇率が低い電解コンデンサを提供することを目的の1つとする。 Currently, there is a demand for electrolytic capacitors with a low rate of increase in ESR over a long period of time. In such a situation, one of the objects of the present disclosure is to provide an electrolytic capacitor having a low rate of increase in ESR over a long period of time.
 本開示の一局面は、電解コンデンサに関する。当該電解コンデンサは、コンデンサ素子を含む電解コンデンサであって、前記コンデンサ素子は、表面に誘電体層が形成された陽極体と、前記誘電体層に隣接して配置された電解質層とを含み、前記電解質層は、ドーパントがドープされた導電性高分子と、導電性粒子と、非水溶媒とを含む。 One aspect of this disclosure relates to electrolytic capacitors. The electrolytic capacitor is an electrolytic capacitor including a capacitor element, and the capacitor element includes an anode having a dielectric layer formed on its surface and an electrolyte layer arranged adjacent to the dielectric layer. The electrolyte layer contains a conductive polymer doped with a dopant, conductive particles, and a non-aqueous solvent.
 本開示の他の局面は、電解コンデンサの製造方法に関する。当該製造方法は、表面に誘電体層が形成された陽極体を含むコンデンサ素子前駆体を準備する工程(i)と、ドーパントがドープされた導電性高分子と導電性粒子とを含む高分子層を、含浸処理によって前記誘電体層に隣接するように形成する工程(ii)と、前記高分子層に非水溶媒を含浸させる工程(iii)とを含む。 Another aspect of this disclosure relates to a method of manufacturing an electrolytic capacitor. The manufacturing method includes a step (i) of preparing a capacitor element precursor containing an anode having a dielectric layer formed on its surface, and a polymer layer containing a dopant-doped conductive polymer and conductive particles. Is included in a step (ii) of forming the polymer layer adjacent to the dielectric layer by an impregnation treatment and a step (iii) of impregnating the polymer layer with a non-aqueous solvent.
 本開示によれば、長期間にわたってESRの上昇率が低い電解コンデンサが得られる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
According to the present disclosure, an electrolytic capacitor having a low rate of increase in ESR over a long period of time can be obtained.
Although the novel features of the present invention are described in the appended claims, the present invention is further described in the following detailed description with reference to the drawings, in combination with other objects and features of the present invention, both in terms of structure and content. It will be well understood.
本開示の電解コンデンサの一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the electrolytic capacitor of this disclosure. 図1に示した電解コンデンサの一部を模式的に示す図である。It is a figure which shows a part of the electrolytic capacitor shown in FIG. 1 schematically.
 以下では、本開示の実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。 Hereinafter, embodiments of the present disclosure will be described with examples, but the present disclosure is not limited to the examples described below. In the following description, specific numerical values and materials may be exemplified, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained.
 (電解コンデンサ)
 本開示の電解コンデンサは、コンデンサ素子を含む。当該コンデンサ素子は、表面に誘電体層が形成された陽極体と、当該誘電体層に隣接して配置された電解質層とを含む。電解質層は、ドーパントがドープされた導電性高分子と、導電性粒子と、非水溶媒とを含む。
(Electrolytic capacitor)
The electrolytic capacitor of the present disclosure includes a capacitor element. The capacitor element includes an anode having a dielectric layer formed on its surface and an electrolyte layer arranged adjacent to the dielectric layer. The electrolyte layer contains a dopant-doped conductive polymer, conductive particles, and a non-aqueous solvent.
 コンデンサ素子は、表面に誘電体層が形成された箔状の陽極体と、箔状の陰極体と、陽極体と陰極体との間に配置されたセパレータと、陽極体と陰極体との間に配置された電解質層とを含んでもよい。このようなコンデンサ素子を、以下では、「第1のコンデンサ素子」と称する場合がある。第1のコンデンサ素子は、巻回型のものであってもよいし、積層型のものであってもよい。巻回型のコンデンサ素子の一例では、陽極体と陰極体との間にセパレータが配置されるように、箔状の陽極体と箔状の陰極体とセパレータとが巻回されている。積層型のコンデンサ素子の一例では、陽極体と陰極体との間にセパレータが配置されるように、箔状の陽極体と箔状の陰極体とセパレータとがジグザグ状に折りたたまれている。 The capacitor element is formed between a foil-shaped anode having a dielectric layer formed on its surface, a foil-shaped cathode body, a separator arranged between the anode body and the cathode body, and between the anode body and the cathode body. It may include an electrolyte layer arranged in. Such a capacitor element may be referred to as a "first capacitor element" below. The first capacitor element may be a winding type or a laminated type. In an example of the winding type capacitor element, the foil-shaped anode body, the foil-shaped cathode body, and the separator are wound so that the separator is arranged between the anode body and the cathode body. In an example of the laminated capacitor element, the foil-shaped anode body, the foil-shaped cathode body, and the separator are folded in a zigzag shape so that the separator is arranged between the anode body and the cathode body.
 あるいは、コンデンサ素子は、表面に誘電体層が形成された多孔性の陽極体と、陰極層と、陽極体と陰極層との間に配置された電解質層とを含んでもよい。このようなコンデンサ素子を、以下では、「第2のコンデンサ素子」と称する場合がある。第1および第2のコンデンサ素子において、電解質層は、陽極体の表面に形成された誘電体層に隣接している。 Alternatively, the capacitor element may include a porous anode body having a dielectric layer formed on its surface, a cathode layer, and an electrolyte layer arranged between the anode body and the cathode layer. Such a capacitor element may be referred to as a "second capacitor element" below. In the first and second capacitor elements, the electrolyte layer is adjacent to the dielectric layer formed on the surface of the anode.
 (導電性高分子)
 電解質層に含まれる導電性高分子について以下に説明する。
(Conductive polymer)
The conductive polymer contained in the electrolyte layer will be described below.
 導電性高分子の例には、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、ポリアセチレン、およびそれらの誘導体などが含まれる。当該誘導体には、ポリピロール、ポリチオフェン、ポリフラン、ポリアニリン、およびポリアセチレンを基本骨格とするポリマーが含まれる。例えば、ポリチオフェンの誘導体には、ポリ(3,4-エチレンジオキシチオフェン)などが含まれる。これらの導電性高分子は、単独で用いてもよく、複数種を組み合わせて用いてもよい。また、導電性高分子は、2種以上のモノマーの共重合体であってもよい。導電性高分子の重量平均分子量は特に限定されず、例えば1000~100000の範囲にあってもよい。導電性高分子の好ましい一例は、ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)である。 Examples of conductive polymers include polypyrrole, polythiophene, polyfuran, polyaniline, polyacetylene, and derivatives thereof. The derivatives include polymers based on polypyrrole, polythiophene, polyfuran, polyaniline, and polyacetylene. For example, derivatives of polythiophene include poly (3,4-ethylenedioxythiophene) and the like. These conductive polymers may be used alone or in combination of two or more. Further, the conductive polymer may be a copolymer of two or more kinds of monomers. The weight average molecular weight of the conductive polymer is not particularly limited, and may be in the range of, for example, 1000 to 100,000. A preferred example of the conductive polymer is poly (3,4-ethylenedioxythiophene) (PEDOT).
 導電性高分子にはドーパントがドープされる。導電性高分子からの脱ドープを抑制する観点から、ドーパントとして、高分子ドーパントを用いることが好ましい。高分子ドーパントの例には、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリルスルホン酸、ポリメタクリルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)、ポリイソプレンスルホン酸、ポリアクリル酸などが含まれる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの一部は、塩の形態で電解質層に含まれてもよい。ドーパントの好ましい一例は、ポリスチレンスルホン酸(PSS)である。 Dopants are doped into the conductive polymer. From the viewpoint of suppressing dedoping from the conductive polymer, it is preferable to use a polymer dopant as the dopant. Examples of high molecular weight dopants include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic sulfonic acid, polymethacrylic sulfonic acid, poly (2-acrylamide-2-methylpropanesulfonic acid), polyisoprene sulfonic acid, Includes polyacrylic acid and the like. These may be used alone or in combination of two or more. Some of these may be included in the electrolyte layer in the form of salts. A preferred example of a dopant is polystyrene sulfonic acid (PSS).
 ドーパントの重量平均分子量は特に限定されない。均質な電解質層の形成を容易にする観点から、ドーパントの重量平均分子量を1000~100000の範囲としてもよい。 The weight average molecular weight of the dopant is not particularly limited. From the viewpoint of facilitating the formation of a homogeneous electrolyte layer, the weight average molecular weight of the dopant may be in the range of 1000 to 100,000.
 本開示の電解コンデンサにおいて、ドーパントはポリスチレンスルホン酸であってもよく、導電性高分子はポリ(3,4-エチレンジオキシチオフェン)であってもよい。すなわち、電解質層は、ポリスチレンスルホン酸がドープされたポリ(3,4-エチレンジオキシチオフェン)を含んでもよい。 In the electrolytic capacitor of the present disclosure, the dopant may be polystyrene sulfonic acid, and the conductive polymer may be poly (3,4-ethylenedioxythiophene). That is, the electrolyte layer may contain polystyrene sulfonic acid-doped poly (3,4-ethylenedioxythiophene).
 (液状成分)
 本開示の電解コンデンサの電解質層は、非水溶媒を含む。電解質層は、非水溶媒と非水溶媒に溶解された塩基成分とを含む電解液(非水電解液)を含んでもよい。すなわち、本開示の電解コンデンサの電解質層は、液状成分を含んでもよい。以下では、電解質層に含まれる液状成分(非水溶媒または電解液)を、「液状成分(L)」と称する場合がある。なお、この明細書において、液状成分(L)は、室温(25℃)において液体状である成分であってもよいし、電解コンデンサの使用時の温度において液体状である成分であってもよい。液状成分(L)を含む電解質層を有する電解コンデンサは、ハイブリッドコンデンサと呼ばれる場合がある。
(Liquid component)
The electrolyte layer of the electrolytic capacitor of the present disclosure contains a non-aqueous solvent. The electrolyte layer may contain an electrolytic solution (non-aqueous electrolytic solution) containing a non-aqueous solvent and a basic component dissolved in the non-aqueous solvent. That is, the electrolyte layer of the electrolytic capacitor of the present disclosure may contain a liquid component. Hereinafter, the liquid component (non-aqueous solvent or electrolytic solution) contained in the electrolyte layer may be referred to as “liquid component (L)”. In this specification, the liquid component (L) may be a component that is liquid at room temperature (25 ° C.) or a component that is liquid at the temperature at which the electrolytic capacitor is used. .. An electrolytic capacitor having an electrolyte layer containing a liquid component (L) may be called a hybrid capacitor.
 電解質層に含まれる非水溶媒は、有機溶媒であってもよいし、イオン性液体であってもよい。非水溶媒の例には、エチレングリコール、プロピレングリコールなどの多価アルコール類、スルホラン(SL)などの環状スルホン類、γ-ブチロラクトン(γBL)などのラクトン類、N-メチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドンなどのアミド類、酢酸メチルなどのエステル類、炭酸プロピレンなどのカーボネート化合物、1,4-ジオキサンなどのエーテル類、メチルエチルケトンなどのケトン類、ホルムアルデヒドなどが含まれる。 The non-aqueous solvent contained in the electrolyte layer may be an organic solvent or an ionic liquid. Examples of non-aqueous solvents include polyhydric alcohols such as ethylene glycol and propylene glycol, cyclic sulfones such as sulfolane (SL), lactones such as γ-butyrolactone (γBL), N-methylacetamide, N, N-. Includes amides such as dimethylformamide and N-methyl-2-pyrrolidone, esters such as methyl acetate, carbonate compounds such as propylene carbonate, ethers such as 1,4-dioxane, ketones such as methylethylketone, and formaldehyde. ..
 また、非水溶媒として、高分子系溶媒を用いてもよい。高分子系溶媒の例には、ポリアルキレングリコール、ポリアルキレングリコールの誘導体、多価アルコール中の水酸基の少なくとも1つがポリアルキレングリコール(誘導体を含む)に置換された化合物などが含まれる。具体的には、高分子系溶媒の例には、ポリエチレングリコール(PEG)、ポリエチレングリコールグリセリルエーテル、ポリエチレングリコールジグリセリルエーテル、ポリエチレングリコールソルビトールエーテル、ポリプロピレングリコール、ポリプロピレングリコールグリセリルエーテル、ポリプロピレングリコールジグリセリルエーテル、ポリプロピレングリコールソルビトールエーテル、ポリブチレングリコールなどが含まれる。高分子系溶媒の例には、さらに、エチレングリコール-プロピレングリコールの共重合体、エチレングリコール-ブチレングリコールの共重合体、プロピレングリコール-ブチレングリコールの共重合体などが含まれる。非水溶媒は、一種を単独で用いてもよいし、2種以上を混合して用いてもよい。 Alternatively, a polymer solvent may be used as the non-aqueous solvent. Examples of the polymer solvent include polyalkylene glycols, derivatives of polyalkylene glycols, compounds in which at least one hydroxyl group in a polyhydric alcohol is replaced with polyalkylene glycol (including a derivative), and the like. Specifically, examples of polymer-based solvents include polyethylene glycol (PEG), polyethylene glycol glyceryl ether, polyethylene glycol diglyceryl ether, polyethylene glycol sorbitol ether, polypropylene glycol, polypropylene glycol glyceryl ether, and polypropylene glycol diglyceryl ether. Polyethylene glycol sorbitol ether, polybutylene glycol and the like are included. Examples of the polymer solvent further include a copolymer of ethylene glycol-propylene glycol, a copolymer of ethylene glycol-butylene glycol, a copolymer of propylene glycol-butylene glycol, and the like. As the non-aqueous solvent, one type may be used alone, or two or more types may be mixed and used.
 上述したように、電解質層は、非水溶媒と、非水溶媒に溶解された塩基成分(塩基)とを含んでもよい。また、電解質層は、非水溶媒と、非水溶媒に溶解された塩基成分および/または酸成分(酸)とを含んでもよい。 As described above, the electrolyte layer may contain a non-aqueous solvent and a base component (base) dissolved in the non-aqueous solvent. Further, the electrolyte layer may contain a non-aqueous solvent and a base component and / or an acid component (acid) dissolved in the non-aqueous solvent.
 酸成分としては、ポリカルボン酸およびモノカルボン酸を用いることができる。上記ポリカルボン酸の例としては、脂肪族ポリカルボン酸([飽和ポリカルボン酸、例えばシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバチン酸、1,6-デカンジカルボン酸、5,6-デカンジカルボン酸];[不飽和ポリカルボン酸、例えばマレイン酸、フマル酸、イコタン酸])、芳香族ポリカルボン酸(例えばフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸)、脂環式ポリカルボン酸(例えばシクロヘキサン-1,2-ジカルボン酸、シクロヘキセン-1,2-ジカルボン酸等)が挙げられる。 As the acid component, polycarboxylic acid and monocarboxylic acid can be used. Examples of the above polycarboxylic acids include aliphatic polycarboxylic acids ([saturated polycarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebatic acid, 1 , 6-decandicarboxylic acid, 5,6-decandicarboxylic acid]; [unsaturated polycarboxylic acid, eg maleic acid, fumaric acid, icotanic acid]), aromatic polycarboxylic acid (eg phthalic acid, isophthalic acid, terephthalic acid) , Trimellitic acid, pyromellitic acid), alicyclic polycarboxylic acid (for example, cyclohexane-1,2-dicarboxylic acid, cyclohexene-1,2-dicarboxylic acid, etc.).
 上記モノカルボン酸の例としては、脂肪族モノカルボン酸(炭素数1~30)([飽和モノカルボン酸、例えばギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、ラウリル酸、ミリスチン酸、ステアリン酸、ベヘン酸];[不飽和モノカルボン酸、例えばアクリル酸、メタクリル酸、オレイン酸])、芳香族モノカルボン酸(例えば安息香酸、ケイ皮酸、ナフトエ酸)、オキシカルボン酸(例えばサリチル酸、マンデル酸、レゾルシン酸)が挙げられる。 Examples of the above monocarboxylic acids include aliphatic monocarboxylic acids (1 to 30 carbon atoms) ([saturated monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, etc. Capricic acid, pelargonic acid, lauric acid, myristic acid, stearic acid, bechenic acid]; [unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, oleic acid]) Acids, naphthoic acids), oxycarboxylic acids (eg salicylic acid, mandelic acid, resorcinic acid).
 これらのなかでも、マレイン酸、フタル酸、安息香酸、ピロメリット酸、レゾルシン酸は、熱的に安定であり、好ましく用いられる。 Among these, maleic acid, phthalic acid, benzoic acid, pyromellitic acid, and resorcinic acid are thermally stable and are preferably used.
 酸成分として無機酸を用いてもよい。代表的な無機酸の例としては、リン酸、亜リン酸、次亜リン酸、アルキル燐酸エステル、ホウ酸、ホウフッ酸、4フッ化ホウ酸、6フッ化リン酸、ベンゼンスルホン酸、ナフタレンスルホン酸などが挙げられる。また、酸成分として有機酸と無機酸との複合化合物を用いてもよい。そのような複合化合物の例としては、ボロジグリコール酸、ボロジ蓚酸、ボロジサリチル酸などが挙げられる。 Inorganic acid may be used as the acid component. Typical examples of inorganic acids are phosphoric acid, phosphite, hypophosphite, alkyl phosphate ester, boric acid, boric acid, boric acid tetrafluoride, phosphoric acid hexafluoride, benzenesulfonic acid, naphthalenesulfone. Examples include acid. Further, a composite compound of an organic acid and an inorganic acid may be used as the acid component. Examples of such complex compounds include borodiglycolic acid, borodioxalic acid, borodisalicylic acid and the like.
 塩基成分は、アルキル置換アミジン基を有する化合物であってもよく、例えば、イミダゾール化合物、ベンゾイミダゾール化合物、脂環式アミジン化合物(ピリミジン化合物、イミダゾリン化合物)などであってもよい。具体的には、1,8-ジアザビシクロ[5,4,0]ウンデセン-7、1,5-ジアザビシクロ[4,3,0]ノネン-5、1,2-ジメチルイミダゾリニウム、1,2,4-トリメチルイミダゾリン、1-メチル-2-エチル-イミダゾリン、1,4-ジメチル-2-エチルイミダゾリン、1-メチル-2-ヘプチルイミダゾリン、1-メチル-2-(3’ヘプチル)イミダゾリン、1-メチル-2-ドデシルイミダゾリン、1,2-ジメチル-1,4,5,6-テトラヒドロピリミジン、1-メチルイミダゾール、1-メチルベンゾイミダゾールが好ましい。これらを用いることによって、インピーダンス性能の優れたコンデンサが得られる。 The base component may be a compound having an alkyl-substituted amidine group, for example, an imidazole compound, a benzimidazole compound, an alicyclic amidine compound (pyrimidine compound, imidazoline compound) or the like. Specifically, 1,8-diazabicyclo [5,4,0] undecene-7, 1,5-diazabicyclo [4,3,0] nonen-5, 1,2-dimethylimidazolinium, 1,2, 4-trimethylimidazoline, 1-methyl-2-ethyl-imidazoline, 1,4-dimethyl-2-ethylimidazoline, 1-methyl-2-heptyl imidazoline, 1-methyl-2- (3'heptyl) imidazoline, 1- Methyl-2-dodecylimidazoline, 1,2-dimethyl-1,4,5,6-tetrahydropyrimidine, 1-methylimidazole and 1-methylbenzoimidazole are preferred. By using these, a capacitor having excellent impedance performance can be obtained.
 塩基成分として、アルキル置換アミジン基を有する化合物の4級塩を用いてもよい。そのような塩基成分の例としては、炭素数1~11のアルキル基またはアリールアルキル基で4級化された、イミダゾール化合物、ベンゾイミダゾール化合物、脂環式アミジン化合物(ピリミジン化合物、イミダゾリン化合物)が挙げられる。具体的には、1-メチル-1,8-ジアザビシクロ[5,4,0]ウンデセン-7、1-メチル-1,5-ジアザビシクロ[4,3,0]ノネン-5、1,2,3-トリメチルイミダゾリニウム、1,2,3,4-テトラメチルイミダゾリニウム、1,2-ジメチル-3-エチル-イミダゾリニウム、1,3,4-トリメチル-2-エチルイミダゾリニウム、1,3-ジメチル-2-ヘプチルイミダゾリニウム、1,3-ジメチル-2-(3’ヘプチル)イミダゾリニウム、1,3-ジメチル-2-ドデシルイミダゾリニウム、1,2,3-トリメチル-1,4,5,6-テトラヒドロピリミジウム、1,3-ジメチルイミダゾリウム、1-メチル-3-エチルイミダゾリウム、1,3-ジメチルベンゾイミダゾリウムが好ましい。これらを用いることによって、インピーダンス性能の優れたコンデンサが得られる。 As the base component, a quaternary salt of a compound having an alkyl-substituted amidine group may be used. Examples of such basic components include imidazole compounds, benzimidazole compounds, and alicyclic amidine compounds (pyrimidine compounds, imidazoline compounds) quaternized with alkyl or arylalkyl groups having 1 to 11 carbon atoms. Be done. Specifically, 1-methyl-1,8-diazabicyclo [5,4,0] undecene-7, 1-methyl-1,5-diazabicyclo [4,3,0] nonen-5,1,2,3 -Trimethylimidazolinium, 1,2,3,4-tetramethylimidazolinium, 1,2-dimethyl-3-ethyl-imidazolinium, 1,3,4-trimethyl-2-ethylimidazolinium, 1, , 3-Dimethyl-2-heptylimidazolinium, 1,3-dimethyl-2- (3'heptyl) imidazolinium, 1,3-dimethyl-2-dodecylimidazolinium, 1,2,3-trimethyl- 1,4,5,6-tetrahydropyrimidium, 1,3-dimethylimidazolium, 1-methyl-3-ethylimidazolium, and 1,3-dimethylbenzoimidazolium are preferred. By using these, a capacitor having excellent impedance performance can be obtained.
 また、塩基成分として三級アミンを用いてもよい。三級アミンの例としては、トリアルキルアミン類(トリメチルアミン、ジメチルエチルアミン、メチルジエチルアミン、トリエチルアミン、ジメチル-n-プロピルアミン、ジメチルイソプロピルアミン、メチルエチルn-プロピルアミン、メチルエチルイソプロピルアミン、ジエチル-n-プロピルアミン、ジエチルイソプロピルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリ-tert-ブチルアミンなど)、フェニル基含有アミン(ジメチルフェニルアミン、メチルエチルフェニルアミン、ジエチルフェニルアミンなど)が挙げられる。なかでも、電解質層の導電性が高くなる点で、トリアルキルアミン類が好ましく、トリメチルアミン、ジメチルエチルアミン、メチルジエチルアミン、トリエチルアミンからなる群より選択される少なくとも1種を含むことがより好ましい。また、塩基成分として、ジアルキルアミン類などの二級アミン、モノアルキルアミンなどの一級アミン、アンモニアを用いてもよい。 Alternatively, a tertiary amine may be used as a base component. Examples of tertiary amines include trialkylamines (trimethylamine, dimethylethylamine, methyldiethylamine, triethylamine, dimethyl-n-propylamine, dimethylisopropylamine, methylethyln-propylamine, methylethylisopropylamine, diethyl-n- Propylamine, diethylisopropylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, tri-tert-butylamine, etc.), phenyl group-containing amines (dimethylphenylamine, methylethylphenylamine, diethylphenylamine, etc.) ). Among them, trialkylamines are preferable from the viewpoint of increasing the conductivity of the electrolyte layer, and it is more preferable to contain at least one selected from the group consisting of trimethylamine, dimethylethylamine, methyldiethylamine and triethylamine. Further, as a base component, a secondary amine such as dialkylamines, a primary amine such as monoalkylamine, or ammonia may be used.
 液状成分(L)は、酸成分と塩基成分との塩を含有してもよい。塩は、無機塩および/または有機塩であってもよい。有機塩とは、アニオンおよびカチオンの少なくとも一方が有機物を含む塩である。有機塩としては、例えば、マレイン酸トリメチルアミン、ボロジサリチル酸トリエチルアミン、フタル酸エチルジメチルアミン、フタル酸モノ1,2,3,4-テトラメチルイミダゾリニウム、フタル酸モノ1,3-ジメチル-2-エチルイミダゾリニウムなどを用いてもよい。液状成分(L)が酸成分と塩基成分との塩を含有する場合も、塩に含まれる塩基成分により脱ドープが生じやすいため、本開示の構成が特に有効になる。 The liquid component (L) may contain a salt of an acid component and a base component. The salt may be an inorganic salt and / or an organic salt. An organic salt is a salt in which at least one of an anion and a cation contains an organic substance. Examples of the organic salt include trimethylamine maleate, triethylamine borodisalicylate, ethyldimethylamine phthalate, mono1,2,3,4-tetramethylimidazolinium phthalate, and mono 1,3-dimethyl-2-phthalate. Ethylimidazolinium or the like may be used. Even when the liquid component (L) contains a salt of an acid component and a base component, dedoping is likely to occur due to the base component contained in the salt, so that the configuration of the present disclosure is particularly effective.
 ドーパントの脱ドープを抑制するために、液状成分(L)のpHを7未満としてもよく、5以下(例えば2~4.5の範囲)としてもよい。 In order to suppress the dedoping of the dopant, the pH of the liquid component (L) may be less than 7, or 5 or less (for example, in the range of 2 to 4.5).
 電解コンデンサでは、ESRが低いことが重要である。ドーパントがドープされた導電性高分子を含む電解質層を用いることによって、低いESRを実現できる。しかし、ドーパントがドープされた導電性高分子と液状成分(L)とを含む電解質層を用いた場合、初期のESRは低いものの、時間とともにESRが上昇する劣化現象が大きいことを本願発明者らは見出した。その原因について検討したところ、液状成分(L)を含む電解質層では、ドーパントが脱ドープしやすい場合があることが分かった。この脱ドープによって、時間とともにESRが上昇すると考えられる。そのため、液状成分(L)を含まない固体電解質を含む固体電解コンデンサと比較して、液状成分(L)を含む電解コンデンサでは、ESRの経時的な上昇を抑制することが重要となる。 It is important that the ESR of electrolytic capacitors is low. A low ESR can be achieved by using an electrolyte layer containing a conductive polymer doped with a dopant. However, when an electrolyte layer containing a conductive polymer doped with a dopant and a liquid component (L) is used, the present inventors have stated that although the initial ESR is low, the deterioration phenomenon in which the ESR increases with time is large. Found. As a result of investigating the cause, it was found that the dopant may be easily dedoped in the electrolyte layer containing the liquid component (L). It is believed that this dedoping increases the ESR over time. Therefore, it is important to suppress an increase in ESR over time in an electrolytic capacitor containing a liquid component (L) as compared with a solid electrolytic capacitor containing a solid electrolyte containing no liquid component (L).
 導電性高分子は導電性が高いため、ESRの低減に有効である。しかし、導電性高分子の導電性は、経時劣化によって低下するためにESRが上昇する。特に、電解質層が液状成分(L)を含む場合にはESRの上昇が大きくなる。一方、導電性粒子の導電性は経時劣化がほとんどないと考えられる。そのため、導電性粒子を添加することによって、ESRの経時的な上昇を抑制することができる。 Since the conductive polymer has high conductivity, it is effective in reducing ESR. However, the conductivity of the conductive polymer decreases due to deterioration over time, so that the ESR increases. In particular, when the electrolyte layer contains the liquid component (L), the increase in ESR becomes large. On the other hand, it is considered that the conductivity of the conductive particles hardly deteriorates with time. Therefore, by adding the conductive particles, it is possible to suppress an increase in ESR with time.
 本開示の電解コンデンサにおいて、ドーパントは、酸性基を含有するドーパントであってもよく、酸性基を含有する高分子ドーパントであってもよい。検討したところ、本願発明者らは、酸性基を含有するドーパントを用いた場合、pHの上昇に伴って脱ドープが顕著に生じる可能性があることを新たに見出した。そのため、酸性基を含有するドーパントを用いる場合には、ESRの経時的な上昇を抑制することが特に重要となる。 In the electrolytic capacitor of the present disclosure, the dopant may be a dopant containing an acidic group or a polymer dopant containing an acidic group. As a result of examination, the inventors of the present application have newly found that when a dopant containing an acidic group is used, dedoping may occur remarkably as the pH increases. Therefore, when a dopant containing an acidic group is used, it is particularly important to suppress an increase in ESR over time.
 本開示の電解コンデンサにおいて、ドーパントは酸性基を含有する高分子ドーパントであってもよく、且つ、電解質層は、非水溶媒と非水溶媒に溶解された塩基成分とを含む電解液を含んでもよい。この場合、塩基成分によって脱ドーパントが起こりやすいため、ESRの経時的な上昇を抑制することが特に重要となる。上述したように、本開示の電解コンデンサは導電性粒子を含むため、ESRの経時的な上昇を抑制することができる。 In the electrolytic capacitor of the present disclosure, the dopant may be a polymer dopant containing an acidic group, and the electrolyte layer may contain an electrolytic solution containing a non-aqueous solvent and a base component dissolved in the non-aqueous solvent. good. In this case, since dedopant is likely to occur due to the base component, it is particularly important to suppress an increase in ESR over time. As described above, since the electrolytic capacitor of the present disclosure contains conductive particles, it is possible to suppress an increase in ESR over time.
 酸性基の例には、スルホン酸基、カルボキシル基などが含まれる。酸性基を含有する高分子ドーパントは、少なくとも一部の構成単位が酸性基を含有する高分子(ポリマー)である。そのような高分子ドーパントの例には、上述した高分子ドーパントが含まれる。 Examples of acidic groups include sulfonic acid groups, carboxyl groups and the like. A polymer dopant containing an acidic group is a polymer in which at least a part of its constituent units contains an acidic group. Examples of such polymeric dopants include the polymeric dopants described above.
 本開示の電解コンデンサにおいて、電解液における塩基成分の含有率は、0.1質量%以上で20質量%以下であってもよい。塩基成分の量が0.1質量%以上の場合、導電性粒子を用いることが特に重要になる。また、塩基成分の量を20質量%以下とすることによって、塩基成分を電解液に溶解させることが容易になる。なお、電解液が酸成分と塩基成分との塩を含有する場合(例えば電解液が当該塩を溶質として含有する場合)、電解液における塩基成分の含有率は、電解液の質量と、塩のうちの塩基成分の質量とから求められる。 In the electrolytic capacitor of the present disclosure, the content of the base component in the electrolytic solution may be 0.1% by mass or more and 20% by mass or less. When the amount of the base component is 0.1% by mass or more, it is particularly important to use conductive particles. Further, by setting the amount of the base component to 20% by mass or less, it becomes easy to dissolve the base component in the electrolytic solution. When the electrolytic solution contains a salt of an acid component and a base component (for example, when the electrolytic solution contains the salt as a solute), the content of the base component in the electrolytic solution is the mass of the electrolytic solution and the salt. It is obtained from the mass of our base component.
 電解質層における液状成分(L)の含有率は、50~99.5質量%の範囲にあってもよい。電解質層中の導電性高分子およびドーパントの合計の含有率は、0.5~10質量%の範囲にあってもよい。電解質層中の導電性粒子の含有率は、0.025~5質量%の範囲にあってもよい。電解質層に含まれる導電性高分子およびドーパントの合計の質量Wm(g)と、電解質層に含まれる導電性粒子の質量Wp(g)とは、1<Wm/Wpを満たしてもよく、例えば2≦Wm/Wp≦20を満たしてもよい。あるいは、比Wp/Wmは、0.05以上、0.15以上、0.35以上、0.50以上、または1.0以上であってもよい。比Wp/Wmは、10以下、5.0以下、または2.0以下であってもよい。これらの下限と上限とは任意に組み合わせることができる。例えば、比Wp/Wmは、0.05~10の範囲、0.15~10の範囲、0.35~10の範囲、0.50~10、または1.0~10の範囲にあってもよい。これらの範囲のいずれかの上限を、5.0または2.0に置き換えてもよい。比Wp/Wmを0.05以上(例えば0.15以上、0.35以上、または1.0以上)とすることによって、ESRの上昇率が特に低い電解コンデンサが得られる。比Wp/Wmを10以下(例えば5.0以下または2.0以下)とすることによって、ESRを特に低減でき、静電容量の低下も抑制できる。なお、比Wp/Wmは、(電解質層における導電性粒子の含有率)/(電解質層における導電性高分子およびドーパントの合計の含有率)に等しい。 The content of the liquid component (L) in the electrolyte layer may be in the range of 50 to 99.5% by mass. The total content of the conductive polymer and the dopant in the electrolyte layer may be in the range of 0.5 to 10% by mass. The content of the conductive particles in the electrolyte layer may be in the range of 0.025 to 5% by mass. The total mass Wm (g) of the conductive polymer and the dopant contained in the electrolyte layer and the mass Wp (g) of the conductive particles contained in the electrolyte layer may satisfy 1 <Wm / Wp, for example. 2 ≦ Wm / Wp ≦ 20 may be satisfied. Alternatively, the ratio Wp / Wm may be 0.05 or more, 0.15 or more, 0.35 or more, 0.50 or more, or 1.0 or more. The ratio Wp / Wm may be 10 or less, 5.0 or less, or 2.0 or less. These lower and upper limits can be combined arbitrarily. For example, the ratio Wp / Wm may be in the range of 0.05 to 10, 0.15 to 10, 0.35 to 10, 0.50 to 10, or 1.0 to 10. good. The upper limit of any of these ranges may be replaced with 5.0 or 2.0. By setting the ratio Wp / Wm to 0.05 or more (for example, 0.15 or more, 0.35 or more, or 1.0 or more), an electrolytic capacitor having a particularly low ESR increase rate can be obtained. By setting the ratio Wp / Wm to 10 or less (for example, 5.0 or less or 2.0 or less), ESR can be particularly reduced, and a decrease in capacitance can also be suppressed. The ratio Wp / Wm is equal to (content of conductive particles in the electrolyte layer) / (total content of conductive polymer and dopant in the electrolyte layer).
 (導電性粒子)
 電解質層に含まれる導電性粒子について、以下に説明する。当該導電性粒子は、導電性材料からなる粒子である。なお、当該導電性粒子は、上述した導電性高分子とは異なる。当該導電性粒子は、典型的には、高分子ではない材料からなる。
(Conductive particles)
The conductive particles contained in the electrolyte layer will be described below. The conductive particles are particles made of a conductive material. The conductive particles are different from the above-mentioned conductive polymer. The conductive particles are typically made of a non-polymeric material.
 電解質層に含まれる導電性粒子は、1種の導電性粒子だけであってもよいし、複数種の導電性粒子を含んでもよい。導電性粒子は、導電性炭素材料の粒子であってもよいし、導電性炭素材料以外の材料からなる粒子であってもよい。導電性炭素材料以外の材料の例には、導電性のニッケル-リン(Ni-P)材料、導電性のインジウム-スズ(In-Sn)材料、導電性の酸化スズ、導電性のスズ-銀(Sn-Ag)などが含まれる。導電性粒子は、金属粒子(例えば、ニッケルその他の金属の粒子)であってもよい。 The conductive particles contained in the electrolyte layer may be only one type of conductive particles, or may contain a plurality of types of conductive particles. The conductive particles may be particles of a conductive carbon material or particles made of a material other than the conductive carbon material. Examples of materials other than conductive carbon materials include conductive nickel-phosphorus (Ni-P) materials, conductive indium-tin (In-Sn) materials, conductive tin oxide, and conductive tin-silver. (Sn-Ag) and the like are included. The conductive particles may be metal particles (for example, nickel or other metal particles).
 本開示の電解コンデンサにおいて、導電性粒子は、カーボンブラックの粒子、カーボンナノチューブの粒子、グラファイトの粒子、およびグラフェンの粒子からなる群より選ばれる少なくとも1つの粒子を含んでもよい。これらの粒子は、平均粒径、粒子同士の構造、表面性状が多様に制御できる点で好ましい。導電性粒子は、これらの粒子のうちの1種の粒子のみで構成されてもよいし、これらの粒子のうちの複数種の粒子で構成されてもよい。 In the electrolytic capacitor of the present disclosure, the conductive particles may include at least one particle selected from the group consisting of carbon black particles, carbon nanotube particles, graphite particles, and graphene particles. These particles are preferable because the average particle size, the structure of the particles, and the surface texture can be controlled in various ways. The conductive particles may be composed of only one kind of particles among these particles, or may be composed of a plurality of kinds of particles among these particles.
 本開示の電解コンデンサにおいて、電解質層に含まれる導電性高分子およびドーパントの合計の質量は、電解質層に含まれる導電性粒子の質量よりも大きくてもよい。すなわち、電解質層における導電性高分子およびドーパントの合計の含有率(質量%)は、電解質層における導電性粒子の含有率(質量%)よりも大きくてもよい。上述した導電性高分子は、上述した導電性粒子よりも、一般的に導電性が高い。そのため、導電性高分子の含有率を高くした方が、初期のESRの低減に有効である。 In the electrolytic capacitor of the present disclosure, the total mass of the conductive polymer and the dopant contained in the electrolyte layer may be larger than the mass of the conductive particles contained in the electrolyte layer. That is, the total content (mass%) of the conductive polymer and the dopant in the electrolyte layer may be larger than the content (mass%) of the conductive particles in the electrolyte layer. The above-mentioned conductive polymer is generally more conductive than the above-mentioned conductive particles. Therefore, increasing the content of the conductive polymer is effective in reducing the initial ESR.
 本開示の電解コンデンサは、以下の(1)および(2)の条件を満たしてもよい。
(1)陽極体は、表面(誘電体層が形成されている表面)に多孔質部分を有し、導電性粒子の平均粒径は、陽極体の表面の多孔質部分の平均細孔径よりも大きい。
(2)導電性高分子は粒子状であり、導電性高分子の平均粒径は、陽極体の表面の多孔質部分の平均細孔径よりも小さい。
The electrolytic capacitor of the present disclosure may satisfy the following conditions (1) and (2).
(1) The anode has a porous portion on the surface (the surface on which the dielectric layer is formed), and the average particle size of the conductive particles is larger than the average pore diameter of the porous portion on the surface of the anode. big.
(2) The conductive polymer is in the form of particles, and the average particle size of the conductive polymer is smaller than the average pore size of the porous portion on the surface of the anode.
 上述したように、上述した導電性高分子は、上述した導電性粒子よりも、一般的に導電性が高い。そのため、導電性高分子を陽極体の表面近傍に配置することによって、初期のESRを低くすることが可能である。上記(1)および(2)の条件が満たされる場合、陽極体の多孔質部分の空隙(細孔)に導電性高分子が配置されやすくなる。すなわち、陽極体の表面の誘電体層に近い部分に、導電性高分子が配置されやすくなる。その結果、初期のESRを低くすることが可能である。 As described above, the above-mentioned conductive polymer is generally more conductive than the above-mentioned conductive particles. Therefore, it is possible to lower the initial ESR by arranging the conductive polymer near the surface of the anode. When the above conditions (1) and (2) are satisfied, the conductive polymer is likely to be arranged in the voids (pores) of the porous portion of the anode body. That is, the conductive polymer is easily arranged in the portion of the surface of the anode body close to the dielectric layer. As a result, the initial ESR can be lowered.
 この明細書において、粒子の平均粒径は、体積基準の粒度分布において累積体積が50%になるメジアン径(D50)である。メジアン径は、例えばレーザ回折/散乱式粒度分布測定装置を用いて求められる。 In this specification, the average particle size of the particles is the median diameter (D 50 ) at which the cumulative volume is 50% in the volume-based particle size distribution. The median diameter is determined using, for example, a laser diffraction / scattering particle size distribution measuring device.
 この明細書において、陽極体の表面の多孔質部分の平均細孔径は、容積基準の細孔分布において累積容積が50%になるメジアン径(D50)である。メジアン径は、例えばガス吸着細孔分布測定を用いて求められる。 In this specification, the average pore diameter of the porous portion on the surface of the anode is the median diameter (D 50 ) at which the cumulative volume is 50% in the volume-based pore distribution. The median diameter is determined using, for example, gas adsorption pore distribution measurement.
 本開示の電解コンデンサは、以下の(3)の条件を満たしてもよい。
(3)電解質層は、導電性高分子によって構成された高分子層(導電性高分子層)を含み、当該高分子層は、陽極体の表面の誘電体層上に形成された第1の高分子層と、第1の高分子層上に形成された第2の高分子層とを含む。すなわち、第1の高分子層は、陽極体の表面の誘電体層と第2の高分子層との間に配置される。
The electrolytic capacitor of the present disclosure may satisfy the following condition (3).
(3) The electrolyte layer includes a polymer layer (conductive polymer layer) composed of a conductive polymer, and the polymer layer is the first polymer layer formed on the dielectric layer on the surface of the anode. It includes a polymer layer and a second polymer layer formed on the first polymer layer. That is, the first polymer layer is arranged between the dielectric layer on the surface of the anode and the second polymer layer.
 電解質層が第1および第2の高分子層を含む場合、第1の高分子層に含まれる導電性高分子と、第2の高分子層に含まれる導電性高分子とは、同じであってもよいし異なってもよい。導電性粒子は、第1および第2の高分子層の両方に含まれてもよいし、いずれか一方のみに含まれてもよい。第1および第2の高分子層の両方が導電性粒子を含む場合、第1の高分子層に含まれる導電性粒子と第2の高分子層に含まれる導電性粒子とは同じであってもよいし異なってもよい。 When the electrolyte layer contains the first and second polymer layers, the conductive polymer contained in the first polymer layer and the conductive polymer contained in the second polymer layer are the same. It may or may not be different. The conductive particles may be contained in both the first and second polymer layers, or may be contained in only one of them. When both the first and second polymer layers contain conductive particles, the conductive particles contained in the first polymer layer and the conductive particles contained in the second polymer layer are the same. It may or may not be different.
 本開示の電解コンデンサは、上記の(3)と下記の(4)の条件を満たしてもよい。
(4)第2の高分子層における導電性粒子の含有率(質量%)は、第1の高分子層における導電性粒子の含有率(質量%)よりも大きい。なお、導電性粒子は、第1および第2の高分子層の両方に含まれてもよいし、第2の高分子層のみに含まれてもよい。
The electrolytic capacitor of the present disclosure may satisfy the above conditions (3) and the following conditions (4).
(4) The content rate (mass%) of the conductive particles in the second polymer layer is larger than the content rate (mass%) of the conductive particles in the first polymer layer. The conductive particles may be contained in both the first and second polymer layers, or may be contained only in the second polymer layer.
 上記(4)の条件は、(4’)第1の高分子層中の導電性高分子の含有率(質量%)は、第2の高分子層中の導電性高分子の含有率(質量%)よりも大きい、という条件に置き換えてもよい。第1の高分子層中の導電性粒子の含有率を低くし、導電性高分子の含有率を高くすることによって、陽極体の表面の誘電体層に近い部分における、導電性高分子の割合を高くできる。その結果、初期のESRを低くすることが可能である。 The condition of (4) above is that (4') the content of the conductive polymer in the first polymer layer (mass%) is the content of the conductive polymer in the second polymer layer (mass). It may be replaced with the condition that it is larger than%). By lowering the content of the conductive particles in the first polymer layer and increasing the content of the conductive polymer, the proportion of the conductive polymer in the portion of the surface of the anode near the dielectric layer Can be raised. As a result, the initial ESR can be lowered.
 本開示の電解コンデンサは、以下の条件(A)および(B)を満たしてもよく、さらに、(C)の条件を満たしてもよい。これらの条件を満たすことによって、特性および信頼性が高い電解コンデンサが得られる。
(A)導電性高分子が、ポリ(3,4-エチレンジオキシチオフェン)であり、ドーパントがポリスチレンスルホン酸である。
(B)導電性粒子が、導電性炭素材料の粒子であり、例えば、カーボンブラックの粒子、カーボンナノチューブの粒子、グラファイトの粒子、およびグラフェンの粒子からなる群より選ばれる少なくとも1つの粒子である。あるいは、導電性粒子は、金属粒子および導電性炭素材料の粒子からなる群より選ばれる少なくとも1種であってもよい。
(C)電解質層に含まれる導電性高分子およびドーパントの合計の質量Wm(g)と、電解質層に含まれる導電性粒子の質量Wp(g)とは、1<Wm/Wpを満たし、例えば、2≦Wm/Wp≦20を満たす。あるいは、比Wp/Wmが上記の範囲にあってもよい。
The electrolytic capacitor of the present disclosure may satisfy the following conditions (A) and (B), and may further satisfy the condition (C). By satisfying these conditions, an electrolytic capacitor having high characteristics and reliability can be obtained.
(A) The conductive polymer is poly (3,4-ethylenedioxythiophene), and the dopant is polystyrene sulfonic acid.
(B) The conductive particles are particles of a conductive carbon material, for example, at least one particle selected from the group consisting of carbon black particles, carbon nanotube particles, graphite particles, and graphene particles. Alternatively, the conductive particles may be at least one selected from the group consisting of metal particles and particles of a conductive carbon material.
(C) The total mass Wm (g) of the conductive polymer and the dopant contained in the electrolyte layer and the mass Wp (g) of the conductive particles contained in the electrolyte layer satisfy 1 <Wm / Wp, for example. , 2 ≦ Wm / Wp ≦ 20 is satisfied. Alternatively, the ratio Wp / Wm may be in the above range.
 電解質以外のコンデンサ素子の構成要素(陽極体、陰極体、セパレータなど)に特に限定はなく、公知のものを用いてもよい。第1のコンデンサ素子のそれらについて、以下に例を説明する。 The components (anode body, cathode body, separator, etc.) of the capacitor element other than the electrolyte are not particularly limited, and known ones may be used. Examples of those of the first capacitor element will be described below.
 (陽極体)
 陽極体には、表面に誘電体層が形成された金属箔を用いてもよい。金属箔を構成する金属の種類は特に限定されない。誘電体層の形成が容易である点から、金属箔を構成する金属の例には、アルミニウム、タンタル、ニオブ、チタンなどの、弁作用を有する金属、および弁作用を有する金属の合金が含まれる。好ましい一例は、アルミニウムおよびアルミニウム合金である。通常、陽極体の表面は粗面化(多孔質化)されている。陽極体の誘電体層は、多孔質部分(粗面化された表面)に形成されている。電解質層は、陽極体の誘電体層と接触している。
(Anode)
As the anode body, a metal foil having a dielectric layer formed on its surface may be used. The type of metal constituting the metal foil is not particularly limited. Examples of metals constituting the metal foil include valve-acting metals such as aluminum, tantalum, niobium, and titanium, and alloys of valve-acting metals because of the ease of formation of the dielectric layer. .. A preferred example is aluminum and aluminum alloys. Normally, the surface of the anode is roughened (porous). The dielectric layer of the anode body is formed on a porous portion (roughened surface). The electrolyte layer is in contact with the dielectric layer of the anode.
 (陰極体)
 陰極体には、金属箔を用いてもよい。金属箔を構成する金属の種類は特に限定されない。金属箔を構成する金属の例には、アルミニウム、タンタル、ニオブ、チタンなどの、弁作用を有する金属、および弁作用を有する金属の合金が含まれる。好ましい一例は、アルミニウムおよびアルミニウム合金である。陰極体の表面には、化成皮膜が設けられていてもよく、陰極体を構成する金属とは異なる金属(異種金属)や非金属の被膜が設けられていてもよい。異種金属や非金属としては、例えば、チタンのような金属やカーボンのような非金属などを挙げることができる。
(Cathode)
A metal foil may be used for the cathode body. The type of metal constituting the metal foil is not particularly limited. Examples of the metals that make up the metal leaf include valvular metals such as aluminum, tantalum, niobium, titanium, and alloys of valvular metals. A preferred example is aluminum and aluminum alloys. A chemical conversion film may be provided on the surface of the cathode body, or a metal (dissimilar metal) or non-metal film different from the metal constituting the cathode body may be provided. Examples of dissimilar metals and non-metals include metals such as titanium and non-metals such as carbon.
 (セパレータ)
 セパレータには、電解質が含浸されうるシート状物を用いることができ、例えば、絶縁性を有し且つ電解質が含浸されうるシート状物を用いてもよい。セパレータは、織布であってもよいし、不織布であってもよいし、多孔質膜であってもよい。セパレータの材料の例には、セルロース、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ビニロン、ナイロン、芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、レーヨン、およびガラスなどが含まれる。
(Separator)
As the separator, a sheet-like material that can be impregnated with an electrolyte can be used. For example, a sheet-like material that has insulating properties and can be impregnated with an electrolyte may be used. The separator may be a woven fabric, a non-woven fabric, or a porous membrane. Examples of separator materials include cellulose, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, vinylon, nylon, aromatic polyamide, polyimide, polyamideimide, polyetherimide, rayon, and glass.
 第2のコンデンサ素子の電解質層以外の構成要素について、以下に例を説明する。第2のコンデンサ素子は、表面に誘電体層が形成された多孔性の陽極体、陰極層、および陽極体と陰極層との間に配置された電解質層を含む。 Examples of components other than the electrolyte layer of the second capacitor element will be described below. The second capacitor element includes a porous anode body having a dielectric layer formed on its surface, a cathode layer, and an electrolyte layer arranged between the anode body and the cathode layer.
 多孔性の陽極体は、例えば、弁作用金属を含有する材料粒子を焼結して得られる多孔質焼結体であってもよい。陽極体は、直方体状の形状であってもよい。弁作用金属の例には、チタン(Ti)、タンタル(Ta)、ニオブ(Nb)などが含まれる。材料粒子は、弁作用金属を含む合金からなるものであってもよい。例えば、弁作用金属と、ケイ素、バナジウム、ホウ素等とを含む合金を用いてもよい。弁作用金属の合金は、弁作用金属を主成分とし、例えば、弁作用金属を50原子%以上含む。また、弁作用金属と窒素等の典型元素とを含む化合物からなる材料粒子を用いてもよい。材料粒子は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。 The porous anode body may be, for example, a porous sintered body obtained by sintering material particles containing a valve acting metal. The anode body may have a rectangular parallelepiped shape. Examples of valve acting metals include titanium (Ti), tantalum (Ta), niobium (Nb) and the like. The material particles may be made of an alloy containing a valve acting metal. For example, an alloy containing a valve acting metal and silicon, vanadium, boron or the like may be used. The valve-acting metal alloy contains the valve-acting metal as a main component, and for example, contains 50 atomic% or more of the valve-acting metal. Further, material particles composed of a compound containing a valve acting metal and a typical element such as nitrogen may be used. As the material particles, one type may be used alone, or two or more types may be mixed and used.
 第2のコンデンサ素子の陽極体は、多孔性であるため、表面に多孔質部分を有し、誘電体層は多孔質部分に形成されている。電解質層は、陽極体の誘電体層と接している。誘電体層は、例えば、陽極体となる焼結体に化成処理を施し、焼結体の表面に酸化皮膜を成長させることによって形成される。 Since the anode of the second capacitor element is porous, it has a porous portion on the surface, and the dielectric layer is formed in the porous portion. The electrolyte layer is in contact with the dielectric layer of the anode. The dielectric layer is formed, for example, by subjecting a sintered body to be an anode body to a chemical conversion treatment and growing an oxide film on the surface of the sintered body.
 陰極層は、集電機能を有する。陰極層は、例えば、導電性の材料で形成される。陰極層は、電解質層を覆うように形成された導電層であってもよい。陰極層は、電解質層を覆うように形成されたカーボン層と、カーボン層上に形成された金属ペースト層とを含んでもよい。カーボン層は、黒鉛等の導電性炭素材料と樹脂とを含んでもよい。金属ペースト層は、金属粒子(例えば、銀粒子)と樹脂とを含んでもよい。陰極層は、上記の材料を塗布することなどによって形成できる。 The cathode layer has a current collecting function. The cathode layer is formed of, for example, a conductive material. The cathode layer may be a conductive layer formed so as to cover the electrolyte layer. The cathode layer may include a carbon layer formed so as to cover the electrolyte layer and a metal paste layer formed on the carbon layer. The carbon layer may contain a conductive carbon material such as graphite and a resin. The metal paste layer may contain metal particles (for example, silver particles) and a resin. The cathode layer can be formed by applying the above material or the like.
 (電解コンデンサの製造方法)
 電解コンデンサを製造するための本開示の方法について、以下に説明する。この製造方法によれば、本開示の電解コンデンサを製造できる。なお、本開示の電解コンデンサについて説明した事項は以下の製造方法に適用できるため、重複する説明を省略する場合がある。例えば、コンデンサ素子の構成要素などについては上述したため、重複する説明を省略する場合がある。また、以下の製造方法で説明する事項は、上述した電解コンデンサに適用できる。
(Manufacturing method of electrolytic capacitor)
The method of the present disclosure for manufacturing an electrolytic capacitor will be described below. According to this manufacturing method, the electrolytic capacitor of the present disclosure can be manufactured. Since the matters described about the electrolytic capacitor of the present disclosure can be applied to the following manufacturing methods, duplicate description may be omitted. For example, since the components of the capacitor element and the like have been described above, duplicate description may be omitted. In addition, the matters described in the following manufacturing method can be applied to the above-mentioned electrolytic capacitor.
 本開示に係る製造方法は、工程(i)、工程(ii)、および工程(iii)を含む。それらについて、以下に説明する。 The manufacturing method according to the present disclosure includes step (i), step (ii), and step (iii). They will be described below.
 (工程(i))
 工程(i)は、表面に誘電体層が形成された陽極体を含むコンデンサ素子前駆体を準備する工程(i)である。工程(i)は、公知の方法でコンデンサ素子前駆体を形成する工程であってもよい。
(Step (i))
Step (i) is a step (i) of preparing a capacitor element precursor containing an anode having a dielectric layer formed on its surface. The step (i) may be a step of forming a capacitor element precursor by a known method.
 第1のコンデンサ素子を含む電解コンデンサを製造する場合、工程(i)は、表面に誘電体層が形成された箔状の陽極体と、箔状の陰極体と、陽極体と陰極体との間に配置されたセパレータとを含むコンデンサ素子前駆体を形成する工程であってもよい。この場合、上述したように、コンデンサ素子前駆体は巻回型であってもよいし、積層型であってもよい。第2のコンデンサ素子を含む電解コンデンサを製造する場合、コンデンサ素子前駆体は、表面に誘電体層が形成された陽極体(多孔性の陽極体)と、一部が当該陽極体に埋設された陽極ワイヤとによって構成されてもよい。 When manufacturing an electrolytic capacitor including the first capacitor element, the step (i) involves a foil-shaped anode having a dielectric layer formed on its surface, a foil-shaped cathode body, and an anode body and a cathode body. It may be a step of forming a capacitor element precursor including a separator arranged between them. In this case, as described above, the capacitor element precursor may be a wound type or a laminated type. When manufacturing an electrolytic capacitor including a second capacitor element, the capacitor element precursor is an anode having a dielectric layer formed on its surface (a porous anode) and a part thereof embedded in the anode. It may be composed of an anode wire.
 (工程(ii))
 工程(ii)は、ドーパントがドープされた導電性高分子と導電性粒子とを含む高分子層を、含浸処理によって誘電体層に隣接するように形成する工程である。
(Process (ii))
Step (ii) is a step of forming a polymer layer containing a conductive polymer doped with a dopant and conductive particles so as to be adjacent to the dielectric layer by an impregnation treatment.
 工程(ii)の含浸処理は、ドーパントがドープされた導電性高分子と導電性粒子とを含む分散液をコンデンサ素子前駆体に含浸させる含浸処理(x)であってもよい。例えば、当該分散液にコンデンサ素子前駆体を浸漬することによって、分散液を含浸させることができる。コンデンサ素子前駆体に含浸された分散液の分散媒を除去(乾燥)することによって、ドーパントがドープされた導電性高分子と導電性粒子とを含む高分子層を、誘電体層に隣接するように配置できる。なお、含浸処理(x)は複数回行ってもよい。その場合、2回目以降の含浸処理(x)を行う前に含浸された分散液の分散媒を除去する乾燥工程を行ってもよい。 The impregnation treatment in step (ii) may be an impregnation treatment (x) in which the capacitor element precursor is impregnated with a dispersion liquid containing a conductive polymer doped with a dopant and conductive particles. For example, the dispersion liquid can be impregnated by immersing the capacitor element precursor in the dispersion liquid. By removing (drying) the dispersion medium of the dispersion liquid impregnated in the capacitor element precursor, the polymer layer containing the dopant-doped conductive polymer and the conductive particles is adjacent to the dielectric layer. Can be placed in. The impregnation treatment (x) may be performed a plurality of times. In that case, a drying step of removing the dispersion medium of the impregnated dispersion may be performed before the second and subsequent impregnation treatments (x) are performed.
 分散液の分散媒に特に限定はなく、公知の分散媒を用いてもよい。例えば、分散媒として、水を含む水性液体を用いてもよく、水を用いてもよい。 The dispersion medium of the dispersion is not particularly limited, and a known dispersion medium may be used. For example, as the dispersion medium, an aqueous liquid containing water may be used, or water may be used.
 分散液における導電性高分子および導電性粒子の含有率に特に限定はなく、含浸処理が可能な含有率であればよい。分散液における導電性高分子の含有率は、例えば、0.1質量%~10質量%の範囲にあってもよい。分散液における導電性粒子の含有率は、導電性高分子の含有率にあわせて調整すればよい。 The content of the conductive polymer and the conductive particles in the dispersion is not particularly limited, and may be any content that can be impregnated. The content of the conductive polymer in the dispersion may be in the range of, for example, 0.1% by mass to 10% by mass. The content of the conductive particles in the dispersion may be adjusted according to the content of the conductive polymer.
 分散液中の導電性高分子の質量(含有率)と導電性粒子の質量(含有率)とを調整することによって、形成される電解質層におけるそれらの比率を調整することができる。例えば、分散液中の導電性高分子の質量(含有率)を、分散液中の導電性粒子の質量(含有率)よりも大きくすることによって、電解質層に含まれる導電性高分子の質量を、電解質層に含まれる導電性粒子の質量よりも大きくすることができる。 By adjusting the mass (content rate) of the conductive polymer and the mass (content rate) of the conductive particles in the dispersion liquid, the ratio thereof in the formed electrolyte layer can be adjusted. For example, by making the mass (content rate) of the conductive polymer in the dispersion liquid larger than the mass (content rate) of the conductive particles in the dispersion liquid, the mass of the conductive polymer contained in the electrolyte layer can be increased. , It can be larger than the mass of the conductive particles contained in the electrolyte layer.
 工程(ii)の含浸処理は、含浸処理(y)と含浸処理(z)とを含んでもよい。含浸処理(y)および含浸処理(z)は、含浸処理(y)を先に行ってもよいし、含浸処理(z)を先に行ってもよいし、同時に行ってもよい。好ましい一例では、含浸処理(y)を行った後に含浸処理(z)が行われる。なお、含浸処理(y)および含浸処理(z)はそれぞれ独立に複数回行ってもよい。また、含浸処理(y)および含浸処理(z)のそれぞれの後に、含浸された分散液の分散媒を除去する乾燥工程を行ってもよい。 The impregnation treatment in the step (ii) may include an impregnation treatment (y) and an impregnation treatment (z). In the impregnation treatment (y) and the impregnation treatment (z), the impregnation treatment (y) may be performed first, the impregnation treatment (z) may be performed first, or the impregnation treatment (z) may be performed at the same time. In a preferred example, the impregnation treatment (y) is followed by the impregnation treatment (z). The impregnation treatment (y) and the impregnation treatment (z) may be independently performed a plurality of times. Further, after each of the impregnation treatment (y) and the impregnation treatment (z), a drying step of removing the dispersion medium of the impregnated dispersion may be performed.
 含浸処理(y)は、ドーパントがドープされた導電性高分子を含む第1の分散液をコンデンサ素子前駆体に含浸させる含浸処理である。含浸処理(z)は、導電性粒子を含む第2の分散液をコンデンサ素子前駆体に含浸させる含浸処理である。第1および第2の分散液の分散媒、および、含浸方法については、含浸処理(x)で説明した分散媒および含浸方法を適用してもよい。 The impregnation treatment (y) is an impregnation treatment in which the capacitor element precursor is impregnated with a first dispersion liquid containing a conductive polymer doped with a dopant. The impregnation treatment (z) is an impregnation treatment for impregnating the capacitor element precursor with a second dispersion liquid containing conductive particles. As for the dispersion medium and the impregnation method of the first and second dispersion liquids, the dispersion medium and the impregnation method described in the impregnation treatment (x) may be applied.
 一例では、第1の分散液は導電性粒子を含まず、第2の分散液はドーパントがドープされた導電性高分子を含まない。しかし、第1の分散液は導電性粒子を含んでもよく、第2の分散液はドーパントがドープされた導電性高分子を含んでもよい。 In one example, the first dispersion does not contain conductive particles and the second dispersion does not contain a dopant-doped conductive polymer. However, the first dispersion may contain conductive particles and the second dispersion may contain a dopant-doped conductive polymer.
 第1および第2の分散液が共にドーパントがドープされた導電性高分子を含む場合について説明する。この場合において、含浸処理(y)および含浸処理(z)のいずれか一方の含浸処理を行った後に乾燥を行い、次に他方の含浸処理を行ってもよい。そのようにすることによって、第1の高分子層と第2の高分子層とを含む高分子層を形成できる。また、第1の分散液における導電性粒子の含有率と、第2の分散液における導電性粒子の含有率とを調整することによって、第1の高分子層における導電性粒子の含有率と第2の高分子層における導電性粒子の含有率とを調整できる。 The case where both the first and second dispersion liquids contain a conductive polymer doped with a dopant will be described. In this case, one of the impregnation treatment (y) and the impregnation treatment (z) may be performed, followed by drying, and then the other impregnation treatment. By doing so, a polymer layer including the first polymer layer and the second polymer layer can be formed. Further, by adjusting the content of the conductive particles in the first dispersion liquid and the content of the conductive particles in the second dispersion liquid, the content of the conductive particles in the first polymer layer and the first The content of conductive particles in the polymer layer of 2 can be adjusted.
 (工程(iii))
 工程(iii)は、工程(ii)で形成された高分子層に非水溶媒を含浸させる工程である。これによって、ドーパントがドープされた導電性高分子と、導電性粒子と、非水溶媒とを含む電解質層が形成される。工程(iii)は、工程(ii)で形成された高分子層に、非水溶媒を含む電解液を含浸させる工程であってもよい。すなわち、工程(iii)は、工程(ii)で形成された高分子層に液状成分(L)を含浸させる工程であってもよい。
(Step (iii))
Step (iii) is a step of impregnating the polymer layer formed in step (ii) with a non-aqueous solvent. As a result, an electrolyte layer containing a conductive polymer doped with a dopant, conductive particles, and a non-aqueous solvent is formed. The step (iii) may be a step of impregnating the polymer layer formed in the step (ii) with an electrolytic solution containing a non-aqueous solvent. That is, the step (iii) may be a step of impregnating the polymer layer formed in the step (ii) with the liquid component (L).
 工程(iii)における含浸の方法に特に限定はなく、公知の方法を用いてもよい。例えば、工程(ii)を経たコンデンサ素子前駆体を、非水溶媒(または電解液)に浸漬すればよい。工程(iii)で用いられる非水溶媒(または電解液)には、上述したものを適用できる。 The impregnation method in step (iii) is not particularly limited, and a known method may be used. For example, the capacitor element precursor that has undergone step (ii) may be immersed in a non-aqueous solvent (or electrolytic solution). The above-mentioned ones can be applied to the non-aqueous solvent (or electrolytic solution) used in the step (iii).
 本開示の製造方法において、ドーパントは酸性基を含有する高分子ドーパントであってもよく、工程(iii)は、非水溶媒と非水溶媒に溶解された塩基成分とを含む電解液を高分子層に含浸させる工程であってもよい。 In the production method of the present disclosure, the dopant may be a polymer dopant containing an acidic group, and in step (iii), an electrolytic solution containing a non-aqueous solvent and a base component dissolved in the non-aqueous solvent is polymerized. It may be a step of impregnating the layer.
 工程(iii)によって、第1のコンデンサ素子が得られる。あるいは、工程(iii)によって、第2のコンデンサ素子の陽極体および電解質層が得られる。工程(iii)の後は工程(iii)で得られた構成要素を用いて電解コンデンサを作製すればよい。その工程に特に限定はなく、公知の方法を用いることができる。 The first capacitor element is obtained by the step (iii). Alternatively, step (iii) provides the anode and electrolyte layer of the second capacitor element. After the step (iii), an electrolytic capacitor may be manufactured using the components obtained in the step (iii). The process is not particularly limited, and a known method can be used.
 以下では、本開示に係る電解コンデンサの例について、図面を参照して具体的に説明するが、本開示の電解コンデンサは以下の図によって限定されない。以下で説明する一例の電解コンデンサの構成要素には、上述した構成要素を適用できる。また、以下で説明する一例の電解コンデンサの構成要素は、上述した記載に基づいて変更できる。また、以下で説明する事項を、上記の実施形態に適用してもよい。なお、同様の部分については同一の符号を付して重複する説明を省略する場合がある。 Hereinafter, an example of the electrolytic capacitor according to the present disclosure will be specifically described with reference to the drawings, but the electrolytic capacitor of the present disclosure is not limited by the following figures. The above-mentioned components can be applied to the components of the electrolytic capacitor of the example described below. Further, the components of the electrolytic capacitor of the example described below can be changed based on the above description. In addition, the matters described below may be applied to the above-described embodiment. The same parts may be designated by the same reference numerals and duplicate description may be omitted.
 (実施形態1)
 実施形態1では、本開示に係る電解コンデンサの一例について説明する。この電解コンデンサは、第1のコンデンサ素子を含む電解コンデンサである。図1は、実施形態1の電解コンデンサ100の一例の断面を模式的に示す。図2は、図1に示した電解コンデンサ100に含まれるコンデンサ素子10の一部を展開した概略図を示す。
(Embodiment 1)
In the first embodiment, an example of the electrolytic capacitor according to the present disclosure will be described. This electrolytic capacitor is an electrolytic capacitor including a first capacitor element. FIG. 1 schematically shows a cross section of an example of the electrolytic capacitor 100 of the first embodiment. FIG. 2 shows a schematic view of a part of the capacitor element 10 included in the electrolytic capacitor 100 shown in FIG.
 図1に示すように、電解コンデンサ100は、コンデンサ素子10と、コンデンサ素子10を収容する有底ケース11と、有底ケース11の開口を塞ぐ封止部材12と、封止部材12を覆う座板13と、封止部材12から導出され、座板13を貫通するリード線14Aおよび14Bと、リード線14Aおよび14Bとコンデンサ素子10の電極とを接続するリードタブ15Aおよび15Bとを含む。コンデンサ素子10は、有底ケース11に収容されている。有底ケース11の開口端近傍は、内側に絞り加工されており、有底ケース11の開口端は封止部材12をかしめるようにカール加工されている。 As shown in FIG. 1, the electrolytic capacitor 100 includes a capacitor element 10, a bottomed case 11 that houses the capacitor element 10, a sealing member 12 that closes the opening of the bottomed case 11, and a seat that covers the sealing member 12. It includes a plate 13, lead wires 14A and 14B derived from the sealing member 12 and penetrating the seat plate 13, and lead tabs 15A and 15B connecting the lead wires 14A and 14B and the electrodes of the capacitor element 10. The capacitor element 10 is housed in the bottomed case 11. The vicinity of the open end of the bottomed case 11 is drawn inward, and the open end of the bottomed case 11 is curled so as to crimp the sealing member 12.
 図2を参照して、コンデンサ素子10は、表面に誘電体層が形成された箔状の陽極体21と、箔状の陰極体22と、これらの間に配置されたセパレータ23および電解質層(図示せず)とを含む。陽極体21および陰極体22は、それらの間にセパレータ23が配置された状態で巻回されている。巻回体の最外周は、巻止めテープ24によって固定される。陽極体21にはリードタブ15Aが接続され、陰極体22にはリードタブ15Bが接続されている。なお、図2は、巻回体の最外周を固定する前の、一部が展開された状態を示している。 With reference to FIG. 2, the capacitor element 10 includes a foil-shaped anode body 21 having a dielectric layer formed on its surface, a foil-shaped cathode body 22, and a separator 23 and an electrolyte layer arranged between them. (Not shown) and. The anode body 21 and the cathode body 22 are wound with the separator 23 arranged between them. The outermost circumference of the winding body is fixed by the winding stop tape 24. A lead tab 15A is connected to the anode body 21, and a lead tab 15B is connected to the cathode body 22. Note that FIG. 2 shows a partially unfolded state before fixing the outermost circumference of the wound body.
 以下では、実施例によって本開示の実施形態をさらに詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in more detail by way of examples.
 (実施例)
[コンデンサA1の作製]
 コンデンサA1は、定格電圧が35Vで定格静電容量が270μFの巻回型の電解コンデンサである。以下の手順で、コンデンサA1を作製した。
(Example)
[Manufacturing of capacitor A1]
The capacitor A1 is a winding type electrolytic capacitor having a rated voltage of 35 V and a rated capacitance of 270 μF. The capacitor A1 was manufactured by the following procedure.
 (陰極体および陽極体の準備)
 陰極体には、厚さ70μmのAl箔(アルミニウム箔)を用いた。表面に誘電体層が形成された陽極体は、以下の手順で作製した。まず、厚さ120μmのAl箔を準備した。このAl箔に直流エッチング処理を行い、表面を粗面化した。次いで、Al箔に化成処理を施した。具体的には、アジピン酸アンモニウム水溶液にAl箔を浸漬させ、Al箔に50Vの電圧を印加しながら、70℃で30分間化成処理を行うことによって、Al箔の表面に誘電体層(厚さ:約70nm)を形成した。このようにして、表面に誘電体層が形成された陽極体を得た。その後、当該陽極体を所定のサイズに裁断することによって、コンデンサA1の陽極体を準備した。
(Preparation of cathode and anode)
As the cathode body, an Al foil (aluminum foil) having a thickness of 70 μm was used. An anode body having a dielectric layer formed on its surface was produced by the following procedure. First, an Al foil having a thickness of 120 μm was prepared. The Al foil was subjected to a direct current etching treatment to roughen the surface. Next, the Al foil was subjected to chemical conversion treatment. Specifically, the Al foil is immersed in an aqueous solution of ammonium adipate, and a dielectric layer (thickness) is formed on the surface of the Al foil by performing a chemical conversion treatment at 70 ° C. for 30 minutes while applying a voltage of 50 V to the Al foil. : About 70 nm) was formed. In this way, an anode body having a dielectric layer formed on its surface was obtained. Then, the anode body of the capacitor A1 was prepared by cutting the anode body to a predetermined size.
 (PEDOT:PSS分散液の調製)
 以下の方法で、ドーパントがドープされた第2の導電性高分子の分散液を調製した。まず、3,4-エチレンジオキシチオフェンと、ポリスチレンスルホン酸(ドーパント)とをイオン交換水に溶解することによって、それらの混合溶液を調製した。得られた混合溶液を撹拌しながら、イオン交換水に溶かした硫酸鉄(III)(酸化剤)を添加し、重合反応を行った。反応後、得られた反応液を透析して、未反応モノマーおよび過剰な酸化剤を除去した。このようにして、ポリスチレンスルホン酸(ポリ(3,4-エチレンジオキシチオフェン)に対して約5質量%)がドープされたポリ(3,4-エチレンジオキシチオフェン)を含む分散液を得た。以下では、ポリスチレンスルホン酸がドープされたポリ(3,4-エチレンジオキシチオフェン)を「PEDOT:PSS」と称する場合がある。
(PEDOT: Preparation of PSS dispersion)
A dispersion of a second conductive polymer doped with a dopant was prepared by the following method. First, a mixed solution of 3,4-ethylenedioxythiophene and polystyrene sulfonic acid (dopant) was prepared by dissolving them in ion-exchanged water. While stirring the obtained mixed solution, iron (III) sulfate (oxidizing agent) dissolved in ion-exchanged water was added to carry out a polymerization reaction. After the reaction, the obtained reaction solution was dialyzed to remove unreacted monomers and excess oxidizing agent. In this way, a dispersion containing poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (about 5% by mass with respect to poly (3,4-ethylenedioxythiophene)) was obtained. .. In the following, polystyrene sulfonic acid-doped poly (3,4-ethylenedioxythiophene) may be referred to as "PEDOT: PSS".
 (PEDOT:PSS分散液への導電性粒子の添加)
 上記PEDOT:PSS分散液に、ニッケル金属粒子(球状、平均粒径:2μm)を添加した。このようにして、PEDOT:PSSと導電性粒子とを含む処理液Aを調製した。
(PEDOT: Addition of conductive particles to PSS dispersion)
Nickel metal particles (spherical, average particle size: 2 μm) were added to the PEDOT: PSS dispersion. In this way, a treatment liquid A containing PEDOT: PSS and conductive particles was prepared.
 (巻回体の作製)
 上記の陽極体および陰極体に、リード線が接続された陽極リードタブおよび陰極リードタブをそれぞれ接続した。そして、陽極体と陰極体とを、セパレータを間に挟んで巻回し、外側表面を巻止めテープで固定した。セパレータには、セルロースからなる不織布を用いた。このようにして巻回体(コンデンサ素子前駆体)を作製した。作製した巻回体を、アジピン酸アンモニウム溶液に浸漬させ、陽極体に対して、50Vの電圧を印加しながら、70℃で60分間再度化成処理を行った。この化成処理によって、主に陽極体の端面に誘電体層を形成した。
(Making a wound body)
An anode lead tab and a cathode lead tab to which a lead wire was connected were connected to the anode body and the cathode body, respectively. Then, the anode body and the cathode body were wound with a separator in between, and the outer surface was fixed with a winding stopper tape. A non-woven fabric made of cellulose was used as the separator. In this way, a wound body (capacitor element precursor) was produced. The prepared wound body was immersed in an ammonium adipate solution, and chemical conversion treatment was performed again at 70 ° C. for 60 minutes while applying a voltage of 50 V to the anode body. By this chemical conversion treatment, a dielectric layer was formed mainly on the end face of the anode body.
 (導電性高分子層の形成)
 まず、上記処理液Aを容器に配置した。次に、室温で減圧雰囲気(40kPa)において、容器内の処理液Aに巻回体を15分間浸漬し、その後、処理液Aから巻回体を引き上げた。このようにして、処理液Aを巻回体に含浸させた。次に、乾燥炉内で、巻回体を、60℃で30分間乾燥させ、続けて150℃で30分間乾燥させた。これによって、処理液Aに含まれる溶媒を乾燥させた。このようにして、導電性粒子を含有する導電性高分子層を形成した。
(Formation of conductive polymer layer)
First, the treatment liquid A was placed in a container. Next, the winding body was immersed in the treatment liquid A in the container for 15 minutes in a reduced pressure atmosphere (40 kPa) at room temperature, and then the winding body was pulled up from the treatment liquid A. In this way, the wound body was impregnated with the treatment liquid A. Next, in the drying oven, the wound body was dried at 60 ° C. for 30 minutes, followed by drying at 150 ° C. for 30 minutes. As a result, the solvent contained in the treatment liquid A was dried. In this way, a conductive polymer layer containing conductive particles was formed.
 (電解液の含浸)
 導電性高分子層を形成した巻回体に、室温で大気圧下において電解液を含浸させた。電解液としては、ポリエチレングリコールとγ-ブチロラクトンとスルホランとフタル酸モノ(エチルジメチルアミン)(溶質)とを、ポリエチレングリコール:γ-ブチロラクトン:スルホラン:フタル酸モノ(エチルジメチルアミン)=30:30:20:20の質量比で混合した溶液を用いた。このようにして、電解質層を含むコンデンサ素子を得た。このコンデンサ素子を封止して、電解コンデンサを完成させた。その後、定格電圧を印加しながら、130℃で2時間エージング処理を行った。このようにして、コンデンサA1を得た。
(Immersion of electrolytic solution)
The wound body on which the conductive polymer layer was formed was impregnated with the electrolytic solution at room temperature under atmospheric pressure. As the electrolytic solution, polyethylene glycol, γ-butyrolactone, sulfolane, and mono (ethyldimethylamine) phthalate (solute) were used, and polyethylene glycol: γ-butyrolactone: sulfolane: mono (ethyldimethylamine) phthalate = 30:30 :. A solution mixed at a mass ratio of 20:20 was used. In this way, a capacitor element including an electrolyte layer was obtained. This capacitor element was sealed to complete an electrolytic capacitor. Then, while applying the rated voltage, the aging treatment was carried out at 130 ° C. for 2 hours. In this way, the capacitor A1 was obtained.
[コンデンサA2、3の作製]
 コンデンサA2およびA3は、処理液Aにおける導電性粒子の含有率が異なることを除いて、コンデンサA1と同様の材料および条件で作製した。
[Manufacturing of capacitors A2 and 3]
The capacitors A2 and A3 were manufactured under the same materials and conditions as the capacitors A1 except that the content of the conductive particles in the treatment liquid A was different.
[コンデンサB1~B3の作製]
 コンデンサB1~B3は、処理液Aに含まれる導電性粒子の種類と含有率とが異なることを除いて、コンデンサA1と同様の材料および条件で作製した。コンデンサB1~B3の作製では、導電性粒子として、グラフェン(鱗片状、平均粒径0.4μm)を用いた。 
[Manufacturing of capacitors B1 to B3]
The capacitors B1 to B3 were manufactured under the same materials and conditions as the capacitors A1 except that the types and contents of the conductive particles contained in the treatment liquid A were different. In the production of the capacitors B1 to B3, graphene (scaly, average particle size 0.4 μm) was used as the conductive particles.
[コンデンサC1(比較例)の作製]
 コンデンサC1は、導電性粒子を用いない点を除いて、コンデンサA1と同様の材料および条件で作製した。そのため、コンデンサC1の導電性高分子層は、PEDOT:PSSを含むが、導電性粒子を含まない。
[Manufacturing of capacitor C1 (comparative example)]
The capacitor C1 was manufactured under the same materials and conditions as the capacitor A1 except that conductive particles were not used. Therefore, the conductive polymer layer of the capacitor C1 contains PEDOT: PSS, but does not contain conductive particles.
 (ESRの測定)
 上記のようにして作製された電解コンデンサについて、等価直列抵抗(ESR)を測定した。ESRは、20℃の環境下で、4端子測定用のLCRメータを用いて測定した。ESRは、電解コンデンサの作製後の初期値と、電解コンデンサを高温放置(145℃で150時間および500時間放置)した後の値とを測定した。そして、長期特性の指標として、ESR変化率を以下の式で求めた。
ESR変化率(%)={100×(高温放置後のESRの値)/(初期のESRの値)}-100
(Measurement of ESR)
Equivalent series resistance (ESR) was measured for the electrolytic capacitors manufactured as described above. The ESR was measured using an LCR meter for 4-terminal measurement in an environment of 20 ° C. The ESR was measured by measuring the initial value after manufacturing the electrolytic capacitor and the value after leaving the electrolytic capacitor at a high temperature (leaving at 145 ° C. for 150 hours and 500 hours). Then, as an index of long-term characteristics, the ESR change rate was calculated by the following formula.
ESR change rate (%) = {100 x (ESR value after leaving at high temperature) / (initial ESR value)} -100
 上記の電解コンデンサの電解質層の形成条件の一部を表1に示す。なお、形成された電解質層における導電性粒子とPEDOT:PSSとの質量比(あるいは含有率の比)は、処理液におけるそれらの含有率の比に等しいとみなせる。そのため、電解質層におけるそれらの質量比は、処理液におけるそれらの含有率から算出した。また、上記の電解コンデンサのESRの評価結果を表2に示す。 Table 1 shows some of the conditions for forming the electrolyte layer of the above electrolytic capacitor. The mass ratio (or content ratio) of the conductive particles and PEDOT: PSS in the formed electrolyte layer can be regarded as equal to the ratio of their content in the treatment liquid. Therefore, their mass ratios in the electrolyte layer were calculated from their content in the treatment solution. Table 2 shows the evaluation results of the ESR of the above electrolytic capacitor.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 ESR変化率は低い方が好ましい。表2に示すように、比較例の電解コンデンサC1では、高温放置によってESRが大幅に上昇した。それに対して、電解コンデンサA1~A3およびB1~B3のESR変化率は、充分に低かった。導電性粒子/(PEDOT:PSS)の質量比は、好ましくは0.15以上であり、より好ましくは0.35以上または1.0以上であった。 It is preferable that the ESR change rate is low. As shown in Table 2, in the electrolytic capacitor C1 of the comparative example, the ESR was significantly increased by leaving it at a high temperature. On the other hand, the ESR change rates of the electrolytic capacitors A1 to A3 and B1 to B3 were sufficiently low. The mass ratio of conductive particles / (PEDOT: PSS) was preferably 0.15 or more, more preferably 0.35 or more or 1.0 or more.
 本開示は、電解コンデンサおよびその製造方法に利用できる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
The present disclosure can be used for electrolytic capacitors and methods for manufacturing them.
Although the present invention has described preferred embodiments at this time, such disclosures should not be construed in a limited way. Various modifications and modifications will undoubtedly become apparent to those skilled in the art belonging to the present invention by reading the above disclosure. Therefore, the appended claims should be construed to include all modifications and modifications without departing from the true spirit and scope of the invention.
10 コンデンサ素子
21 陽極体
22 陰極体
23 セパレータ
100 電解コンデンサ
10 Capacitor element 21 Anode 22 Cathode 23 Separator 100 Electrolytic capacitor

Claims (14)

  1.  コンデンサ素子を含む電解コンデンサであって、
     前記コンデンサ素子は、表面に誘電体層が形成された陽極体と、前記誘電体層に隣接して配置された電解質層とを含み、
     前記電解質層は、ドーパントがドープされた導電性高分子と、導電性粒子と、非水溶媒とを含む、電解コンデンサ。
    An electrolytic capacitor that includes a capacitor element
    The capacitor element includes an anode having a dielectric layer formed on its surface and an electrolyte layer arranged adjacent to the dielectric layer.
    The electrolyte layer is an electrolytic capacitor containing a conductive polymer doped with a dopant, conductive particles, and a non-aqueous solvent.
  2.  前記ドーパントは酸性基を含有する高分子ドーパントであり、
     前記電解質層は、前記非水溶媒と前記非水溶媒に溶解された塩基成分とを含む電解液を含む、請求項1に記載の電解コンデンサ。
    The dopant is a polymer dopant containing an acidic group and
    The electrolytic capacitor according to claim 1, wherein the electrolyte layer contains an electrolytic solution containing the non-aqueous solvent and a base component dissolved in the non-aqueous solvent.
  3.  前記電解液における前記塩基成分の含有率は、0.1質量%以上で20質量%以下である、請求項2に記載の電解コンデンサ。 The electrolytic capacitor according to claim 2, wherein the content of the base component in the electrolytic solution is 0.1% by mass or more and 20% by mass or less.
  4.  前記電解質層に含まれる前記導電性高分子および前記ドーパントの合計の質量は、前記電解質層に含まれる前記導電性粒子の質量よりも大きい、請求項1~3のいずれか1項に記載の電解コンデンサ。 The electrolysis according to any one of claims 1 to 3, wherein the total mass of the conductive polymer and the dopant contained in the electrolyte layer is larger than the mass of the conductive particles contained in the electrolyte layer. Capacitor.
  5.  前記導電性粒子は、導電性炭素材料の粒子である、請求項1~4のいずれか1項に記載の電解コンデンサ。 The electrolytic capacitor according to any one of claims 1 to 4, wherein the conductive particles are particles of a conductive carbon material.
  6.  前記導電性粒子は、カーボンブラックの粒子、カーボンナノチューブの粒子、グラファイトの粒子、およびグラフェンの粒子からなる群より選ばれる少なくとも1つの粒子を含む、請求項1~4のいずれか1項に記載の電解コンデンサ。 The invention according to any one of claims 1 to 4, wherein the conductive particles include at least one particle selected from the group consisting of carbon black particles, carbon nanotube particles, graphite particles, and graphene particles. Electrolytic capacitor.
  7.  前記陽極体は、前記表面に多孔質部分を有し、
     前記導電性粒子の平均粒径は、前記多孔質部分の平均細孔径よりも大きく、
     前記導電性高分子は粒子状であり、
     前記導電性高分子の平均粒径は、前記多孔質部分の平均細孔径よりも小さい、請求項1~6のいずれか1項に記載の電解コンデンサ。
    The anode has a porous portion on the surface and
    The average particle size of the conductive particles is larger than the average pore size of the porous portion.
    The conductive polymer is in the form of particles and is in the form of particles.
    The electrolytic capacitor according to any one of claims 1 to 6, wherein the average particle size of the conductive polymer is smaller than the average pore size of the porous portion.
  8.  前記電解質層は、前記導電性高分子によって構成された高分子層を含み、
     前記高分子層は、前記誘電体層上に形成された第1の高分子層と、前記第1の高分子層上に形成された第2の高分子層とを含み、
     前記第2の高分子層における前記導電性粒子の含有率(質量%)は、前記第1の高分子層における前記導電性粒子の含有率(質量%)よりも大きい、請求項1~7のいずれか1項に記載の電解コンデンサ。
    The electrolyte layer includes a polymer layer composed of the conductive polymer.
    The polymer layer includes a first polymer layer formed on the dielectric layer and a second polymer layer formed on the first polymer layer.
    The content of the conductive particles in the second polymer layer (mass%) is larger than the content of the conductive particles in the first polymer layer (mass%), according to claims 1 to 7. The electrolytic capacitor according to any one item.
  9.  前記ドーパントはポリスチレンスルホン酸であり、
     前記導電性高分子はポリ(3,4-エチレンジオキシチオフェン)である、請求項1~8のいずれか1項に記載の電解コンデンサ。
    The dopant is polystyrene sulfonic acid
    The electrolytic capacitor according to any one of claims 1 to 8, wherein the conductive polymer is poly (3,4-ethylenedioxythiophene).
  10.  電解コンデンサの製造方法であって、
     表面に誘電体層が形成された陽極体を含むコンデンサ素子前駆体を準備する工程(i)と、
     ドーパントがドープされた導電性高分子と導電性粒子とを含む高分子層を、含浸処理によって前記誘電体層に隣接するように形成する工程(ii)と、
     前記高分子層に非水溶媒を含浸させる工程(iii)とを含む、電解コンデンサの製造方法。
    It is a manufacturing method of electrolytic capacitors.
    The step (i) of preparing a capacitor element precursor containing an anode having a dielectric layer formed on its surface, and
    A step (ii) of forming a polymer layer containing a dopant-doped conductive polymer and conductive particles so as to be adjacent to the dielectric layer by impregnation treatment.
    A method for manufacturing an electrolytic capacitor, which comprises the step (iii) of impregnating the polymer layer with a non-aqueous solvent.
  11.  前記ドーパントは酸性基を含有する高分子ドーパントであり、
     前記工程(iii)は、前記非水溶媒と前記非水溶媒に溶解された塩基成分とを含む電解液を前記高分子層に含浸させる工程である、請求項10に記載の製造方法。
    The dopant is a polymer dopant containing an acidic group and
    The production method according to claim 10, wherein step (iii) is a step of impregnating the polymer layer with an electrolytic solution containing the non-aqueous solvent and a base component dissolved in the non-aqueous solvent.
  12.  前記工程(ii)の前記含浸処理は、前記ドーパントがドープされた前記導電性高分子と前記導電性粒子とを含む分散液を前記コンデンサ素子前駆体に含浸させる含浸処理(x)である、請求項10または11に記載の製造方法。 The impregnation treatment in the step (ii) is an impregnation treatment (x) in which the capacitor element precursor is impregnated with a dispersion liquid containing the conductive polymer doped with the dopant and the conductive particles. Item 8. The production method according to Item 10.
  13.  前記工程(ii)の前記含浸処理は、
     前記ドーパントがドープされた前記導電性高分子を含む第1の分散液を前記コンデンサ素子前駆体に含浸させる含浸処理(y)と、
     前記導電性粒子を含む第2の分散液を前記コンデンサ素子前駆体に含浸させる含浸処理(z)とを含む、請求項10または11に記載の製造方法。
    The impregnation treatment in the step (ii) is
    The impregnation treatment (y) of impregnating the capacitor element precursor with a first dispersion liquid containing the conductive polymer doped with the dopant.
    The production method according to claim 10 or 11, further comprising an impregnation treatment (z) of impregnating the capacitor element precursor with a second dispersion liquid containing the conductive particles.
  14.  前記ドーパントはポリスチレンスルホン酸であり、
     前記導電性高分子はポリ(3,4-エチレンジオキシチオフェン)である、請求項10~13のいずれか1項に記載の製造方法。
    The dopant is polystyrene sulfonic acid
    The production method according to any one of claims 10 to 13, wherein the conductive polymer is poly (3,4-ethylenedioxythiophene).
PCT/JP2021/003234 2020-01-31 2021-01-29 Electrolytic capacitor and method for producing same WO2021153730A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021574150A JPWO2021153730A1 (en) 2020-01-31 2021-01-29
US17/795,802 US20230078283A1 (en) 2020-01-31 2021-01-29 Electrolytic capacitor and method for producing same
CN202180011179.9A CN115039191A (en) 2020-01-31 2021-01-29 Electrolytic capacitor and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020015779 2020-01-31
JP2020-015779 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153730A1 true WO2021153730A1 (en) 2021-08-05

Family

ID=77078242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003234 WO2021153730A1 (en) 2020-01-31 2021-01-29 Electrolytic capacitor and method for producing same

Country Status (4)

Country Link
US (1) US20230078283A1 (en)
JP (1) JPWO2021153730A1 (en)
CN (1) CN115039191A (en)
WO (1) WO2021153730A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320902A (en) * 1996-05-28 1997-12-12 Hitachi Aic Inc Solid electrolytic capacitor
JP2007529586A (en) * 2004-03-18 2007-10-25 オルメコン・ゲーエムベーハー Composition comprising a colloidal conductive polymer and carbon
JP2011082313A (en) * 2009-10-06 2011-04-21 Shin Etsu Polymer Co Ltd Solid electrolytic capacitor and method of manufacturing the same
WO2012117994A1 (en) * 2011-02-28 2012-09-07 Necトーキン株式会社 Conductive polymer solution, method for producing same, conductive polymer material, solid electrolytic capacitor using same, and method for producing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443927B2 (en) * 1994-04-14 2003-09-08 松下電器産業株式会社 Electrolytic capacitor and method for manufacturing the same
US6375688B1 (en) * 1998-09-29 2002-04-23 Matsushita Electric Industrial Co., Ltd. Method of making solid electrolyte capacitor having high capacitance
US20070048605A1 (en) * 2005-08-23 2007-03-01 Pez Guido P Stable electrolyte counteranions for electrochemical devices
JP5305569B2 (en) * 2006-06-29 2013-10-02 三洋電機株式会社 Electrolytic capacitor manufacturing method and electrolytic capacitor
JP4836887B2 (en) * 2007-07-09 2011-12-14 三洋電機株式会社 Electrolytic capacitor manufacturing method and electrolytic capacitor
US8405956B2 (en) * 2009-06-01 2013-03-26 Avx Corporation High voltage electrolytic capacitors
US9208954B2 (en) * 2010-02-15 2015-12-08 Panasonic Intellectual Property Management Co., Ltd. Electrolytic capacitor
US11004616B2 (en) * 2016-12-12 2021-05-11 Apaq Technology Co., Ltd. Low leakage electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09320902A (en) * 1996-05-28 1997-12-12 Hitachi Aic Inc Solid electrolytic capacitor
JP2007529586A (en) * 2004-03-18 2007-10-25 オルメコン・ゲーエムベーハー Composition comprising a colloidal conductive polymer and carbon
JP2011082313A (en) * 2009-10-06 2011-04-21 Shin Etsu Polymer Co Ltd Solid electrolytic capacitor and method of manufacturing the same
WO2012117994A1 (en) * 2011-02-28 2012-09-07 Necトーキン株式会社 Conductive polymer solution, method for producing same, conductive polymer material, solid electrolytic capacitor using same, and method for producing same

Also Published As

Publication number Publication date
CN115039191A (en) 2022-09-09
US20230078283A1 (en) 2023-03-16
JPWO2021153730A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
US10262806B2 (en) Electrolytic capacitor
JP7245990B2 (en) Manufacturing method of electrolytic capacitor
US10453618B2 (en) Electrolytic capacitor
JP7336686B2 (en) Electrolytic capacitor
US20110119879A1 (en) Method of manufacturing solid electrolytic capacitor
US20220367120A1 (en) Electrolytic capacitor and method for producing same
US10790098B2 (en) Electrolytic capacitor
JP6803519B2 (en) Manufacturing method of electrolytic capacitors
WO2020022471A1 (en) Electrolytic capacitor
WO2021153730A1 (en) Electrolytic capacitor and method for producing same
US10319532B2 (en) Electrolytic capacitor
WO2022145452A1 (en) Electrolytic capacitor
WO2022145451A1 (en) Electrolytic capacitor
WO2024116845A1 (en) Method for manufacturing electrolytic capacitor, electrolytic capacitor, first processing solution, and second processing solution
WO2023145889A1 (en) Electrolytic capacitor and method for producing electrolytic capacitor
WO2021200775A1 (en) Electrolytic capacitor and production method therefor
WO2021200776A1 (en) Electrolytic capacitor and production method therefor
WO2021153749A1 (en) Electrolytic capacitor and method for producing same
WO2023145893A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
WO2023145891A1 (en) Electrolytic capacitor and method for producing electrolytic capacitor
WO2022071223A1 (en) Electrolytic capacitor and production method therefor
WO2021153750A1 (en) Electrolytic capacitor and method for manufacturing same
JP2023029570A (en) Electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21748231

Country of ref document: EP

Kind code of ref document: A1