WO2021153646A1 - Model generation method, model generation device, abnormality detection method, abnormality detection device, and program - Google Patents

Model generation method, model generation device, abnormality detection method, abnormality detection device, and program Download PDF

Info

Publication number
WO2021153646A1
WO2021153646A1 PCT/JP2021/002956 JP2021002956W WO2021153646A1 WO 2021153646 A1 WO2021153646 A1 WO 2021153646A1 JP 2021002956 W JP2021002956 W JP 2021002956W WO 2021153646 A1 WO2021153646 A1 WO 2021153646A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
target data
detection target
anomaly
label
Prior art date
Application number
PCT/JP2021/002956
Other languages
French (fr)
Japanese (ja)
Inventor
真樹 齋藤
Original Assignee
株式会社Preferred Networks
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Preferred Networks filed Critical 株式会社Preferred Networks
Publication of WO2021153646A1 publication Critical patent/WO2021153646A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • This disclosure relates to a model generation method, a model generation device, an abnormality detection method, an abnormality detection device, and a program.
  • the anomaly detection problem that identifies whether a given data contains anomalies by machine learning can be widely applied in industrial applications. Examples include visual inspection, medical image diagnosis, abnormality detection of surveillance cameras, remote sensing, and automatic driving.
  • the object of the present disclosure is to provide a technique for detecting an abnormality in the data to be detected with high accuracy.
  • one aspect of the present disclosure is A step in which one or more processors input detection target data into an abnormality detection model and acquire an abnormality degree map from the abnormality detection model.
  • a step in which the one or more processors obtain a loss value of the detection target data from the abnormality score and the label value.
  • a step in which the one or more processors update the parameters of the anomaly detection model based on the loss value.
  • the present invention relates to a model generation method having.
  • the model generator 100 is trained according to the training process described in detail below using the training labeled sample data stored in the database 300. You may train the anomaly detection model of the target.
  • the anomaly detection model is realized by, for example, a convolutional neural network, receives sample data such as image data as an input, and outputs an anomaly map (anomaly map) indicating an abnormality location in the image data.
  • the model generation device 100 may provide the trained abnormality detection model to the abnormality detection device 200.
  • the abnormality detection device 200 inputs the sample data to be detected into the abnormality detection model, and whether the sample data to be detected is normal or abnormal based on the abnormality degree score derived from the abnormality degree map output from the abnormality detection model. You may judge.
  • a model generator 100 according to an embodiment of the present disclosure will be described with reference to FIG.
  • FIG. 2 is a block diagram showing a functional configuration of the model generation device 100 according to the embodiment of the present disclosure.
  • the model generation device 100 may include a model processing unit 110, a label conversion unit 120, and a loss calculation unit 130.
  • the model processing unit 110 may input the detection target data into the abnormality detection model and acquire the abnormality degree map from the abnormality detection model. Specifically, the model processing unit 110 may input sample data such as image data among the sample data with a training label stored in the database 300 into the abnormality detection model to acquire an abnormality degree map.
  • the abnormality degree map may indicate an abnormality portion in the sample data, and may be, for example, a two-dimensional map in which a portion having a high degree of abnormality is indicated by a large value and a portion other than the portion is indicated by a small value.
  • the anomaly detection model may be a convolutional neural network, or it may detect anomalies based on the difference between normal sample data without anomalies and input detection target data. Or it may be an appropriate calculation model.
  • the model processing unit 110 may update the parameters of the convolutional neural network of the anomaly detection model or the calculation model according to the training method described later.
  • the label conversion unit 120 may convert the label of the detection target data into an area label.
  • the area label may include a pair of area data indicating an area in the detection target data and a label value indicating whether the area is normal or abnormal.
  • the label conversion unit 120 converts the labels L1, L2 or L3 corresponding to the sample data input to the abnormality detection model among the training labeled sample data into the area labels RL1, RL2 or RL3, respectively. May be good.
  • the area label may be composed of a pair of a binary image indicating an area in the sample data and a binary value "good” or "bad” indicating whether the area is normal or abnormal, and the label conversion unit 120 may be composed of a pair.
  • Area labels RL1, RL2 or RL3 may be generated corresponding to the type of label L1, L2 or L3 to be input.
  • the label L1 of the detection target data may include a binary value (good / bad) indicating whether or not the entire detection target data contains an abnormality. For example, if the sample data contains an abnormality such as a scratch, the label of the sample data may be set to "bad", and if the sample data does not contain an abnormality and is normal, the sample is concerned. The label of the data may be set to "good”.
  • the area label RL1 corresponding to the detection target data may include a pair of the area data indicating the entire detection target data and the label value indicating the binary value.
  • the label conversion unit 120 uses the label L1 in which the entire sample data is set to “bad”, the area data indicating the entire sample data, and the label value “indicating that the area is abnormal”. It may be converted to the area label RL1 indicating the pair with “bad”.
  • the label of the detection target data may include rectangular information indicating that the rectangular area in the detection target data contains an abnormality.
  • the label L2 of the sample data may indicate this rectangular region.
  • a rectangular area may be set for each abnormal part, or one or more rectangular areas including all or a part of the abnormal parts are set. You may.
  • the area label RL3 corresponding to the detection target data may include a pair of the area data indicating the rectangular area and the label value “bad” indicating that the area is abnormal.
  • the area label RL2 corresponding to the detection target data is a pair of the area data indicating the area excluding the rectangular area in the detection target data and the label value “good” indicating that the area excluding the rectangular area is normal. And may be further included.
  • the label conversion unit 120 uses the label L2 formed by the rectangular area set in “bad” as the area data indicating the area indicated by the diagonal line and the label indicating that the area is normal.
  • the label L3 of the detection target data may include area information indicating that the designated area in the detection target data contains an abnormality. For example, when the designated area in the sample data contains at least one abnormality such as a scratch, the label L3 of the sample data may indicate this designated area. When the sample data contains a plurality of abnormalities, a designated area may be set for each abnormal part, or one or more designated areas including all or some abnormal parts may be set. May be done. In this case, the area label RL5 corresponding to the detection target data may include a pair of the area data indicating the designated area in the detection target data and the label value “bad” indicating that the designated area is abnormal. good.
  • the area label RL4 corresponding to the detection target data is a pair of the area data indicating the area excluding the designated area in the detection target data and the label value “good” indicating that the area excluding the designated area is normal. And may be further included.
  • the label conversion unit 120 displays the label L3 by the designated area set in "bad” with the area data indicating the area indicated by the diagonal line and the label indicating that the area is normal.
  • the loss calculation unit 130 may acquire the abnormality degree score from the abnormality degree map and the area data of the area label. Specifically, the loss calculation unit 130 determines the region based on the anomaly degree map of the sample data and the binary image showing the region in the sample data (for example, the entire sample data, the binary image of the rectangular region or the designated region). A focused area anomaly map may be generated, or an anomaly score may be obtained from the area anomaly map by a pooling function.
  • the loss calculation unit 130 collates the binary image of each pair of area labels with the anomaly degree map, and generates a partial anomaly degree map focusing only on the area shown in the binary image as an area anomaly degree map. Then, the loss calculation unit 130 may apply the pooling function to the generated area abnormality degree map to calculate the abnormality degree score representing the abnormality degree of the region.
  • a global polling function such as global max polling, global average polling, and global Lp polling may be used.
  • the loss calculation unit 130 may acquire the loss value of the detection target data from the abnormality degree score for the area abnormality degree map and the label value of the area.
  • any loss function generally used in deep learning may be used for the calculation of the loss value, and for example, sigmoid cross entropy, contrast loss, triple loss, L2 softmax loss, etc. can be used.
  • the loss calculation unit 130 may calculate the abnormality degree score for all the area labels according to the above-mentioned procedure, or may calculate the loss value of each area label from the calculated abnormality degree score. Then, the loss calculation unit 130 may calculate the sum of the calculated loss values for the area label corresponding to each sample data, and the model processing unit uses the total of the calculated loss values as the loss value of the sample data. You may call me 110.
  • the model processing unit 110 may update the parameters of the abnormality detection model based on the loss value of each detection target data. For example, when the anomaly detection model is realized by a neural network, when the loss value of each sample data is acquired from the loss calculation unit 130, the model processing unit 110 optimizes any appropriate parameter such as the stochastic gradient descent method. According to the method, the parameters of the abnormality detection model may be updated based on the acquired loss value. Specifically, the model processing unit 110 may update the parameter for the loss value corresponding to the label value “good” so as to reduce the loss value, and the model processing unit 110 may update the parameter corresponding to the label value “bad”. The parameter may be updated so as to increase the loss value.
  • the model processing unit 110 may continue the update process until the end condition is satisfied, and provides the abnormality detection device 200 as a trained abnormality detection model with the abnormality detection model finally acquired after the end condition is satisfied. You may.
  • the termination condition for example, the above-mentioned procedure may be executed for a predetermined number of sample data.
  • the model generation process may be realized by the model generation device 100 described above, and is realized, for example, by executing a program or instruction stored in a memory by one or more processors or processing circuits of the model generation device 100. May be done.
  • FIG. 3 is a flowchart showing a model generation process according to an embodiment of the present disclosure.
  • the model generation device 100 may input the detection target data into the abnormality detection model, or may acquire the abnormality degree map from the abnormality detection model.
  • the model generation device 100 may input the acquired sample data into the abnormality detection model to be trained, and acquires an abnormality degree map from the abnormality detection model. May be good.
  • the anomaly degree map may be a two-dimensional map showing the position of an abnormal part in the sample data.
  • the real number indicating whether or not the sample data contains scratches and the said. It may consist of a pair with an image showing the position of the scratch.
  • the image data for the visual inspection may be a monochrome image or a color image.
  • the detection target data may be any appropriate data according to the detection target, such as hyperspectral image data, depth image data, audio data, waveform data, and three-dimensional data.
  • the model generation device 100 may convert the label of the detection target data into the area label.
  • the detection target data is image data for visual inspection
  • a label indicating the presence or absence of scratches in the image data is stored in the database 300 as training data in association with the image data.
  • the model generation device 100 may acquire a label corresponding to the image data input to the abnormality detection model in step S101 from the database 300, or may convert the label into area data as an intermediate representation.
  • the area data may include a pair of a binary image indicating an area in the image data and a binary value indicating whether the area is normal or abnormal, and is generated according to the label type. May be done. In the binary image, a large value may be assigned to an area with a high degree of anomaly, and a small value may be assigned to an area other than the normal area.
  • the model generator 100 has the model generator 100 as shown in RL1.
  • a region label for the image data may be generated to include a pair of a binary image indicating the entire image data and a label value "bad" indicating the binary value.
  • the model generator 100 indicates in RL2.
  • An area label for the image data may be generated to include a pair of the image and a label value "good” indicating that the area other than the rectangular area is normal.
  • the model generator 100 indicates in RL4.
  • An area label for the image data may be generated so as to include a pair of an image and a label value "good” indicating that the area other than the designated area is normal.
  • the model generation device 100 may acquire the anomaly degree score from the anomaly degree map and the area data. For example, when the anomaly degree map and the area label RL1 as shown in FIG. 2 are acquired for the sample data, the model generation device 100 creates the anomaly degree map and the binary image as the area data showing the entire image data.
  • global max polling may be applied, and for example, a region score ⁇ 1.28, bad ⁇ composed of an abnormality score “1.28” and a label value “bad” may be acquired.
  • the model generator 100 may collate the anomaly degree map with the binary image of the RL2. , A partial anomaly degree map focusing only on the area of the label value “good” in the binary image may be generated as an area anomaly degree map. Then, the model generator 100 applies global max polling to the region abnormality degree map, and for example, the region score ⁇ 0.30, which is composed of the abnormality degree score “0.30” and the label value “good”. Get good ⁇ .
  • the model generation device 100 collates the abnormality degree map with the binary image of RL3, and generates a partial abnormality degree map focusing only on the area of the label value “bad” in the binary image as the area abnormality degree map. May be good. Then, the model generator 100 applies global max polling to the region abnormality degree map, and for example, the region score ⁇ 1.26, which is composed of the abnormality degree score “1.26” and the label value “bad”. Get bad ⁇ .
  • the model generator 100 may collate the anomaly degree map with the binary image of the RL4. , A partial anomaly degree map focusing only on the area of the label value “good” in the binary image may be generated as an area anomaly degree map. Then, the model generator 100 applies global max polling to the region abnormality degree map, and for example, the region score ⁇ 0.30, which is composed of the abnormality degree score “0.30” and the label value “good”. Get good ⁇ .
  • the model generation device 100 collates the abnormality degree map with the binary image of the RL5, and generates a partial abnormality degree map focusing only on the area of the label value “bad” in the binary image as the area abnormality degree map. Then, the model generator 100 applies global max polling to the region abnormality degree map, and for example, the region score ⁇ 1.24, which is composed of the abnormality degree score “1.24” and the label value “bad”. Get bad ⁇ .
  • the model generation device 100 may acquire the loss value of the detection target data from the abnormality degree score and the label value. For example, when the region score RS1 is acquired for the sample data, the model generator 100 applies the anomaly score to any appropriate loss function such as sigmoid cross entropy, cross entropy, triple loss, L2 softmax loss, and the like. The loss value of the sample data may be calculated. Further, when the region scores RS2 and RS3 are acquired for the sample data, the model generator 100 applies each abnormality degree score of RS2 and RS3 to the loss function, and the sum of the derived loss values is the loss of the sample data. It may be determined as a value.
  • the model generator 100 applies each abnormality score of RS4 and RS5 to the loss function, and the sum of the derived loss values is the sum of the derived loss values of the sample data. It may be determined as a loss value.
  • the model generation device 100 may update the parameters of the abnormality detection model based on the loss value of the detection target data.
  • the model generator 100 follows an appropriate parameter optimization method such as a stochastic gradient descent method, and the anomaly detection model is based on the acquired loss value. You may update the parameters of.
  • the model generator 100 may update the parameter for the loss value corresponding to the label value “good” so as to reduce the loss value, and for the loss value corresponding to the label value “bad”, the parameter may be updated. , The parameters may be updated to increase the loss value.
  • the model generator 100 may determine whether the end condition is satisfied.
  • the end condition may be that steps S101 to S105 are executed for a predetermined number of sample data.
  • the model generation process is completed, and the finally acquired abnormality detection model may be provided to the abnormality detection device 200.
  • the model generator 100 may repeat steps S101 to S105 described above for the next sample data.
  • the abnormality detection device 200 may determine the presence or absence of an abnormality in unknown sample data by using the abnormality detection model generated by the model generation device 100.
  • FIG. 4 is a block diagram showing a functional configuration of the abnormality detection device 200 according to the embodiment of the present disclosure.
  • the abnormality detection device 200 may have an abnormality degree map generation unit 210 and an abnormality detection unit 220.
  • the abnormality degree map generation unit 210 may input the detection target data into the trained abnormality detection model and acquire the abnormality degree map from the trained abnormality detection model. Specifically, when the abnormality degree map generation unit 210 receives sample data such as unknown image data to be detected, the received sample data is input to the trained abnormality detection model and output from the trained abnormality detection model. The abnormality degree map may be sent to the abnormality detection unit 220. For example, in the visual inspection, a plurality of image data acquired by imaging the article to be inspected from various angles can be input to the abnormality detection device 200. In this case, the anomaly degree map generation unit 210 may generate an anomaly degree map for each type of image data by using a trained anomaly detection model corresponding to these a plurality of types of image data.
  • the abnormality detection unit 220 may acquire the abnormality degree score from the abnormality degree map according to the pooling function, or may determine whether the detection target data is normal or abnormal based on the abnormality degree score. Specifically, when the anomaly map is acquired from the anomaly map generation unit 210, the anomaly detection unit 220 applies any appropriate pooling function such as global max polling to the anomaly map to determine the anomaly score. You may. Then, the abnormality detection unit 220 may determine whether or not there is an abnormality in the sample data to be detected by determining whether or not the determined abnormality degree score is equal to or higher than a predetermined threshold value.
  • the abnormality detection unit 220 may determine that there is an abnormality in the sample data when the abnormality degree score is equal to or more than a predetermined threshold value, and when the abnormality degree score is less than a predetermined threshold value, the sample may be determined.
  • the data may be determined to be normal.
  • An abnormality detection process according to an embodiment of the present disclosure will be described with reference to FIG.
  • the anomaly detection process is realized by the above-mentioned anomaly detection device 200, for example, by executing a program or instruction in which one or more processors or processing circuits of the anomaly detection device 200 are stored in one or more memories. It may be realized.
  • FIG. 5 is a flowchart showing an abnormality detection process according to an embodiment of the present disclosure.
  • the abnormality detection device 200 may input the detection target data into the trained abnormality detection model and acquire the abnormality degree map from the trained abnormality detection model.
  • the abnormality detection device 200 may acquire the abnormality degree score from the abnormality degree map according to the pooling function.
  • the abnormality detection device 200 may determine whether the abnormality degree score is equal to or higher than a predetermined threshold value. When the abnormality degree score is equal to or higher than a predetermined threshold value (S203: YES), the abnormality detection device 200 may determine that the sample data is abnormal in step S204. On the other hand, when the abnormality degree score is less than a predetermined threshold value (S203: NO), the abnormality detection device 200 may determine that the sample data is normal in step S205.
  • a predetermined threshold value S203: YES
  • the abnormality detection device 200 may determine that the sample data is abnormal in step S204.
  • the abnormality degree score is less than a predetermined threshold value (S203: NO)
  • the abnormality detection device 200 may determine that the sample data is normal in step S205.
  • a part or all of each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment may be composed of hardware, a CPU (Central Processing Unit), or a GPU (Graphics Processing Unit). ) Etc.
  • the software may be composed of information processing of software (program) executed.
  • the software that realizes at least a part of the functions of each device in the above-described embodiment is a flexible disk, a CD-ROM (Compact Disc-Read Only Memory), or a USB (Universal).
  • Serial Bus Information processing of software may be executed by storing it in a non-temporary storage medium (non-temporary computer-readable medium) such as a memory and reading it into a computer.
  • the software may be downloaded via a communication network.
  • information processing may be executed by hardware by mounting the software on a circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the type of storage medium that stores the software is not limited.
  • the storage medium is not limited to a removable one such as a magnetic disk or an optical disk, and may be a fixed storage medium such as a hard disk or a memory. Further, the storage medium may be provided inside the computer or may be provided outside the computer.
  • FIG. 6 is a block diagram showing an example of the hardware configuration of each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment.
  • each device includes a processor 101, a main storage device 102 (memory), an auxiliary storage device 103 (memory), a network interface 104, and a device interface 105, which are connected via a bus 106. It may be realized as a computer 107.
  • the computer 107 of FIG. 6 includes one component for each component, but may include a plurality of the same components. Further, although one computer 107 is shown in FIG. 6, software is installed on a plurality of computers, and each of the plurality of computers executes the same or different part of the software. May be good. In this case, it may be a form of distributed computing in which each computer communicates via a network interface 104 or the like to execute processing. That is, each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment realizes a function by executing an instruction stored in one or a plurality of storage devices by one or a plurality of computers. It may be configured as a system. Further, the information transmitted from the terminal may be processed by one or a plurality of computers provided on the cloud, and the processing result may be transmitted to the terminal.
  • each device model generation device 100 or abnormality detection device 200 in the above-described embodiment can be performed in parallel using one or more processors or by using a plurality of computers via a network. It may be executed. Further, various operations may be distributed to a plurality of arithmetic cores in the processor and executed in parallel processing. In addition, some or all of the processes, means, etc. of the present disclosure may be executed by at least one of a processor and a storage device provided on the cloud capable of communicating with the computer 107 via a network. As described above, each device in the above-described embodiment may be in the form of parallel computing by one or a plurality of computers.
  • the processor 101 may be an electronic circuit (processing circuit, Processing circuit, Processing circuitry, CPU, GPU, FPGA, ASIC, etc.) including a computer control device and an arithmetic unit. Further, the processor 101 may be a semiconductor device or the like including a dedicated processing circuit. The processor 101 is not limited to an electronic circuit using an electronic logic element, and may be realized by an optical circuit using an optical logic element. Further, the processor 101 may include a calculation function based on quantum computing.
  • the processor 101 can perform arithmetic processing based on data and software (programs) input from each device or the like having an internal configuration of the computer 107, and output the arithmetic result or control signal to each device or the like.
  • the processor 101 may control each component constituting the computer 107 by executing an OS (Operating System) of the computer 107, an application, or the like.
  • OS Operating System
  • Each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment may be realized by one or a plurality of processors 101.
  • the processor 101 may refer to one or more electronic circuits arranged on one chip, or may refer to one or more electronic circuits arranged on two or more chips or two or more devices. You may point. When a plurality of electronic circuits are used, each electronic circuit may communicate by wire or wirelessly.
  • the main storage device 102 is a storage device that stores instructions executed by the processor 101, various data, and the like, and the information stored in the main storage device 102 is read out by the processor 101.
  • the auxiliary storage device 103 is a storage device other than the main storage device 102. Note that these storage devices mean any electronic component capable of storing electronic information, and may be a semiconductor memory.
  • the semiconductor memory may be either a volatile memory or a non-volatile memory.
  • the storage device for storing various data in each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment may be realized by the main storage device 102 or the auxiliary storage device 103, and may be realized by the processor 101. It may be realized by the built-in internal memory.
  • the storage unit in the above-described embodiment may be realized by the main storage device 102 or the auxiliary storage device 103.
  • processors may be connected (combined) to one storage device (memory), or a single processor may be connected.
  • a plurality of storage devices (memory) may be connected (combined) to one processor.
  • Each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment is a plurality of processors connected (combined) to at least one storage device (memory) and the at least one storage device (memory).
  • it may include a configuration in which at least one of the plurality of processors is connected (combined) to at least one storage device (memory).
  • this configuration may be realized by a storage device (memory) and a processor included in a plurality of computers.
  • a configuration in which the storage device (memory) is integrated with the processor for example, a cache memory including an L1 cache and an L2 cache may be included.
  • the network interface 104 is an interface for connecting to the communication network 108 wirelessly or by wire. As the network interface 104, an appropriate interface such as one conforming to an existing communication standard may be used. The network interface 104 may exchange information with the external device 109A connected via the communication network 108.
  • the communication network 108 may be any one of WAN (Wide Area Network), LAN (Local Area Network), PAN (Personal Area Network), or a combination thereof, and may be a combination of the computer 107 and the external device 109A. Any information can be exchanged between them.
  • WAN Wide Area Network
  • LAN Local Area Network
  • PAN Personal Area Network
  • An example of WAN is the Internet
  • an example of LAN is IEEE802.11, Ethernet (registered trademark), etc.
  • PAN is Bluetooth (registered trademark), NFC (Near Field Communication), etc.
  • the device interface 105 is an interface such as USB that directly connects to the external device 109B.
  • the external device 109A is a device connected to the computer 107 via a network.
  • the external device 109B is a device that is directly connected to the computer 107.
  • the external device 109A or the external device 109B may be an input device as an example.
  • the input device is, for example, a device such as a camera, a microphone, a motion capture, various sensors, a keyboard, a mouse, or a touch panel, and gives the acquired information to the computer 107. Further, it may be a device including an input unit, a memory and a processor such as a personal computer, a tablet terminal, or a smartphone.
  • the external device 109A or the external device 109B may be an output device as an example.
  • the output device may be, for example, a display device such as an LCD (Liquid Crystal Display), a CRT (Cathode Ray Tube), a PDP (Plasma Display Panel), or an organic EL (Electro Luminescence) panel, and outputs audio or the like. It may be a speaker or the like. Further, it may be a device including an output unit such as a personal computer, a tablet terminal, or a smartphone, a memory, and a processor.
  • the external device 109A or the external device 109B may be a storage device (memory).
  • the external device 109A may be a network storage or the like, and the external device 109B may be a storage such as an HDD.
  • the external device 109A or the external device 109B may be a device having some functions of the components of each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment. That is, the computer 107 may transmit or receive a part or all of the processing result of the external device 109A or the external device 109B.
  • the expression (including similar expressions) of "at least one (one) of a, b and c" or "at least one (one) of a, b or c" is used. When used, it includes any of a, b, c, ab, ac, bc, or abc. It may also include multiple instances of any element, such as a-a, a-b-b, a-a-b-b-c-c, and the like. It also includes adding elements other than the listed elements (a, b and c), such as having d, such as a-b-c-d.
  • connection when the terms "connected” and “coupled” are used, direct connection / coupling and indirect connection / coupling are used. , Electrically connected / combined, communicatively connected / combined, operatively connected / combined, physically connected / combined, etc. Intended as a term.
  • the term should be interpreted as appropriate according to the context in which the term is used, but any connection / combination form that is not intentionally or naturally excluded is not included in the term. It should be interpreted in a limited way.
  • the physical structure of the element A can perform the operation B. Including that the element A has a configuration and the permanent or temporary setting (setting / configuration) of the element A is set (configured / set) to actually execute the operation B. good.
  • the element A is a general-purpose processor
  • the processor has a hardware configuration capable of executing the operation B, and the operation B is set by setting a permanent or temporary program (instruction). It suffices if it is configured to actually execute.
  • the element A is a dedicated processor, a dedicated arithmetic circuit, or the like, the circuit structure of the processor actually executes the operation B regardless of whether or not the control instruction and data are actually attached. It only needs to be implemented.
  • finding a global optimal value finding an approximation of a global optimal value, finding a local optimal value, and local optimization It should be interpreted as appropriate according to the context in which the term was used, including finding an approximation of the value. It also includes probabilistically or heuristically finding approximate values of these optimal values.
  • the respective hardware when a plurality of hardware performs a predetermined process, the respective hardware may cooperate to perform the predetermined process, or some hardware may perform the predetermined process. You may do all of the above. Further, some hardware may perform a part of a predetermined process, and another hardware may perform the rest of the predetermined process.
  • the hardware that performs the first process and the hardware that performs the second process when expressions such as "one or more hardware performs the first process and the one or more hardware performs the second process" are used. , The hardware that performs the first process and the hardware that performs the second process may be the same or different. That is, the hardware that performs the first process and the hardware that performs the second process may be included in the one or more hardware.
  • the hardware may include an electronic circuit, a device including the electronic circuit, or the like.
  • each storage device (memory) among the plurality of storage devices (memory) stores only a part of the data. It may be stored or the entire data may be stored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Image Analysis (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

Provided is a technique for detecting an abnormality in detection target data with high accuracy. One aspect of the present disclosure relates to a model generation method comprising: a step in which one or more processors input detection target data into an abnormality detection model and acquire an abnormality degree map from the abnormality detection model; a step in which the one or more processors acquire a region label containing a pair of region data indicating the region in the detection target data and a label value indicating whether the region is normal or abnormal; a step in which the one or more processors acquire an abnormality degree score from the abnormality degree map and the region data; a step in which the one or more processors acquire a loss value of the detection target data from the abnormality degree score and the label value; and a step in which the one or more processors update parameters of the abnormality detection model on the basis of the loss value.

Description

モデル生成方法、モデル生成装置、異常検知方法、異常検知装置及びプログラムModel generation method, model generation device, abnormality detection method, abnormality detection device and program
 本開示は、モデル生成方法、モデル生成装置、異常検知方法、異常検知装置及びプログラムに関する。 This disclosure relates to a model generation method, a model generation device, an abnormality detection method, an abnormality detection device, and a program.
 与えられたデータに異常が含まれているかを機械学習によって識別する異常検知問題は、産業用途において広範な応用が考えられる。例えば、外観検査、医用画像診断、監視カメラの異常検知、リモートセンシング、自動運転などがあげられる。 The anomaly detection problem that identifies whether a given data contains anomalies by machine learning can be widely applied in industrial applications. Examples include visual inspection, medical image diagnosis, abnormality detection of surveillance cameras, remote sensing, and automatic driving.
 本開示の課題は、検知対象データにおける異常を高精度に検知する技術を提供することである。 The object of the present disclosure is to provide a technique for detecting an abnormality in the data to be detected with high accuracy.
 上記課題を解決するため、本開示の一態様は、
 1つ以上のプロセッサが、検知対象データを異常検知モデルに入力し、前記異常検知モデルから異常度マップを取得するステップと、
 前記1つ以上のプロセッサが、前記検知対象データ内の領域を示す領域データと、前記領域が正常又は異常であるかを示すラベル値とのペアを含む領域ラベルを取得するステップと、
 前記1つ以上のプロセッサが、前記異常度マップと前記領域データとから異常度スコアを取得するステップと、
 前記1つ以上のプロセッサが、前記異常度スコアと前記ラベル値とから前記検知対象データの損失値を取得するステップと、
 前記1つ以上のプロセッサが、前記損失値に基づき前記異常検知モデルのパラメータを更新するステップと、
を有するモデル生成方法に関する。
In order to solve the above problems, one aspect of the present disclosure is
A step in which one or more processors input detection target data into an abnormality detection model and acquire an abnormality degree map from the abnormality detection model.
A step in which the one or more processors obtain an area label including a pair of area data indicating an area in the detection target data and a label value indicating whether the area is normal or abnormal.
A step in which the one or more processors obtains an anomaly score from the anomaly map and the region data.
A step in which the one or more processors obtain a loss value of the detection target data from the abnormality score and the label value.
A step in which the one or more processors update the parameters of the anomaly detection model based on the loss value.
The present invention relates to a model generation method having.
本開示の一実施例による異常検知処理を示す概略図である。It is the schematic which shows the abnormality detection processing by one Example of this disclosure. 本開示の一実施例によるモデル生成装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the model generation apparatus by one Example of this disclosure. 本開示の一実施例によるモデル生成処理を示すフローチャートである。It is a flowchart which shows the model generation process by one Example of this disclosure. 本開示の一実施例による異常検知装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the abnormality detection apparatus by one Example of this disclosure. 本開示の一実施例による異常検知処理を示すフローチャートである。It is a flowchart which shows the abnormality detection processing by one Example of this disclosure. 本開示の一実施例によるモデル生成装置及び異常検知装置のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware configuration of the model generation apparatus and abnormality detection apparatus by one Example of this disclosure.
 以下、図面に基づいて本開示の実施の形態を説明する。
[本開示の概略]
 以下の実施例では、異常検知モデルを生成するモデル生成装置と、生成した異常検知モデルを利用した異常検知装置とが開示される。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
[Summary of the present disclosure]
In the following examples, a model generation device that generates an abnormality detection model and an abnormality detection device that uses the generated abnormality detection model are disclosed.
 図1に示されるように、本開示の一実施例によるモデル生成装置100は、データベース300に格納されている訓練用ラベル付きサンプルデータを利用して、以下で詳細に説明される訓練処理に従って訓練対象の異常検知モデルを訓練してもよい。ここで、異常検知モデルは、例えば、畳み込みニューラルネットワークによって実現され、画像データなどのサンプルデータを入力として受け取り、画像データ内の異常箇所を示す異常度マップ(anomaly map)を出力する。異常検知モデルの訓練が終了すると、モデル生成装置100は、訓練済み異常検知モデルを異常検知装置200に提供してもよい。 As shown in FIG. 1, the model generator 100 according to an embodiment of the present disclosure is trained according to the training process described in detail below using the training labeled sample data stored in the database 300. You may train the anomaly detection model of the target. Here, the anomaly detection model is realized by, for example, a convolutional neural network, receives sample data such as image data as an input, and outputs an anomaly map (anomaly map) indicating an abnormality location in the image data. When the training of the abnormality detection model is completed, the model generation device 100 may provide the trained abnormality detection model to the abnormality detection device 200.
 異常検知装置200は、検知対象のサンプルデータを異常検知モデルに入力し、異常検知モデルから出力された異常度マップから導出された異常度スコアに基づき検知対象のサンプルデータが正常又は異常であるか判定してもよい。
[モデル生成装置]
 図2を参照して、本開示の一実施例によるモデル生成装置100を説明する。図2は、本開示の一実施例によるモデル生成装置100の機能構成を示すブロック図である。
The abnormality detection device 200 inputs the sample data to be detected into the abnormality detection model, and whether the sample data to be detected is normal or abnormal based on the abnormality degree score derived from the abnormality degree map output from the abnormality detection model. You may judge.
[Model generator]
A model generator 100 according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 2 is a block diagram showing a functional configuration of the model generation device 100 according to the embodiment of the present disclosure.
 図2に示されるように、モデル生成装置100は、モデル処理部110、ラベル変換部120及び損失算出部130を有してもよい。 As shown in FIG. 2, the model generation device 100 may include a model processing unit 110, a label conversion unit 120, and a loss calculation unit 130.
 モデル処理部110は、検知対象データを異常検知モデルに入力し、異常検知モデルから異常度マップを取得してもよい。具体的には、モデル処理部110は、データベース300に格納されている訓練用ラベル付きサンプルデータのうち画像データなどのサンプルデータを異常検知モデルに入力し、異常度マップを取得してもよい。当該異常度マップは、サンプルデータ内の異常箇所を示してもよく、例えば、異常度の高い箇所を大きな値で示し、当該箇所以外を小さな値で示す2次元マップであってもよい。 The model processing unit 110 may input the detection target data into the abnormality detection model and acquire the abnormality degree map from the abnormality detection model. Specifically, the model processing unit 110 may input sample data such as image data among the sample data with a training label stored in the database 300 into the abnormality detection model to acquire an abnormality degree map. The abnormality degree map may indicate an abnormality portion in the sample data, and may be, for example, a two-dimensional map in which a portion having a high degree of abnormality is indicated by a large value and a portion other than the portion is indicated by a small value.
 一実施例では、異常検知モデルは、畳み込みニューラルネットワークであってもよいし、あるいは、異常箇所のない正常なサンプルデータと入力された検知対象データとの間の差分に基づき異常箇所を検出する何れか適切な計算モデルであってもよい。モデル処理部110は、後述される訓練手法に従って異常検知モデルの畳み込みニューラルネットワーク又は計算モデルのパラメータを更新してもよい。 In one embodiment, the anomaly detection model may be a convolutional neural network, or it may detect anomalies based on the difference between normal sample data without anomalies and input detection target data. Or it may be an appropriate calculation model. The model processing unit 110 may update the parameters of the convolutional neural network of the anomaly detection model or the calculation model according to the training method described later.
 ラベル変換部120は、検知対象データのラベルを領域ラベルに変換してもよい。ここで、領域ラベルは、検知対象データ内の領域を示す領域データと、当該領域が正常又は異常であるかを示すラベル値とのペアを含んでもよい。具体的には、ラベル変換部120は、訓練用ラベル付きサンプルデータのうち異常検知モデルに入力されたサンプルデータに対応するラベルL1,L2又はL3をそれぞれ領域ラベルRL1,RL2又はRL3に変換してもよい。領域ラベルは、サンプルデータ内の領域を示すバイナリ画像と、当該領域が正常又は異常であるかを示すバイナリ値“good”又は“bad”とのペアから構成されてもよく、ラベル変換部120は、入力されるラベルL1,L2又はL3のタイプに対応して領域ラベルRL1,RL2又はRL3を生成してもよい。 The label conversion unit 120 may convert the label of the detection target data into an area label. Here, the area label may include a pair of area data indicating an area in the detection target data and a label value indicating whether the area is normal or abnormal. Specifically, the label conversion unit 120 converts the labels L1, L2 or L3 corresponding to the sample data input to the abnormality detection model among the training labeled sample data into the area labels RL1, RL2 or RL3, respectively. May be good. The area label may be composed of a pair of a binary image indicating an area in the sample data and a binary value "good" or "bad" indicating whether the area is normal or abnormal, and the label conversion unit 120 may be composed of a pair. , Area labels RL1, RL2 or RL3 may be generated corresponding to the type of label L1, L2 or L3 to be input.
 一例として、検知対象データのラベルL1は、検知対象データ全体に異常が含まれているかを示すバイナリ値(good/bad)を含むものであってもよい。例えば、サンプルデータに傷などの異常が含まれている場合、当該サンプルデータのラベルは“bad”に設定されてもよく、サンプルデータに異常が含まれておらず、正常である場合、当該サンプルデータのラベルは“good”に設定されてもよい。この場合、検知対象データに対応する領域ラベルRL1は、検知対象データ全体を示す領域データと、バイナリ値を示すラベル値とのペアを含むようにしてもよい。例えば、ラベル変換部120は、図示されるように、サンプルデータ全体が“bad”に設定されたラベルL1を、サンプルデータ全体を示す領域データと、当該領域が異常であることを示すラベル値“bad”とのペアを示す領域ラベルRL1に変換してもよい。 As an example, the label L1 of the detection target data may include a binary value (good / bad) indicating whether or not the entire detection target data contains an abnormality. For example, if the sample data contains an abnormality such as a scratch, the label of the sample data may be set to "bad", and if the sample data does not contain an abnormality and is normal, the sample is concerned. The label of the data may be set to "good". In this case, the area label RL1 corresponding to the detection target data may include a pair of the area data indicating the entire detection target data and the label value indicating the binary value. For example, as shown in the figure, the label conversion unit 120 uses the label L1 in which the entire sample data is set to “bad”, the area data indicating the entire sample data, and the label value “indicating that the area is abnormal”. It may be converted to the area label RL1 indicating the pair with “bad”.
 また、他の例として、検知対象データのラベルは、検知対象データ内の矩形領域に異常が含まれていることを示す矩形情報を含むものであってもよい。例えば、サンプルデータ内の矩形領域に少なくとも1つ以上の傷などの異常が含まれている場合、当該サンプルデータのラベルL2はこの矩形領域を示すものであってもよい。なお、サンプルデータに複数の異常が含まれている場合、異常箇所毎に矩形領域が設定されてもよいし、あるいは、全て又は一部の異常箇所を包含する1つ以上の矩形領域が設定されてもよい。この場合、検知対象データに対応する領域ラベルRL3は、当該矩形領域を示す領域データと、当該領域が異常であることを示すラベル値“bad”とのペアとを含むようにしてもよい。さらに、検知対象データに対応する領域ラベルRL2は、当該検知対象データ内の矩形領域を除く領域を示す領域データと、矩形領域を除く領域が正常であることを示すラベル値“good”とのペアとを更に含むようにしてもよい。例えば、ラベル変換部120は、図示されるように、“bad”に設定された矩形領域によるラベルL2を、斜線で示された領域を示す領域データと、当該領域が正常であることを示すラベル値“good”とのペアを示す領域ラベルRL2と、斜線で示された領域を示す領域データと、当該領域が異常であることを示すラベル値“bad”とのペアを示す領域ラベルRL3とに変換してもよい。 Further, as another example, the label of the detection target data may include rectangular information indicating that the rectangular area in the detection target data contains an abnormality. For example, when the rectangular region in the sample data contains at least one abnormality such as a scratch, the label L2 of the sample data may indicate this rectangular region. When the sample data contains a plurality of abnormalities, a rectangular area may be set for each abnormal part, or one or more rectangular areas including all or a part of the abnormal parts are set. You may. In this case, the area label RL3 corresponding to the detection target data may include a pair of the area data indicating the rectangular area and the label value “bad” indicating that the area is abnormal. Further, the area label RL2 corresponding to the detection target data is a pair of the area data indicating the area excluding the rectangular area in the detection target data and the label value “good” indicating that the area excluding the rectangular area is normal. And may be further included. For example, as shown in the figure, the label conversion unit 120 uses the label L2 formed by the rectangular area set in “bad” as the area data indicating the area indicated by the diagonal line and the label indicating that the area is normal. The area label RL2 indicating a pair with the value "good", the area data indicating the area indicated by the diagonal line, and the area label RL3 indicating the pair with the label value "bad" indicating that the area is abnormal. It may be converted.
 また、更なる他の例として、検知対象データのラベルL3は、検知対象データ内の指定領域に異常が含まれていることを示す領域情報を含むものであってよい。例えば、サンプルデータ内の指定領域に少なくとも1つ以上の傷などの異常が含まれている場合、当該サンプルデータのラベルL3はこの指定領域を示すものであってもよい。なお、サンプルデータに複数の異常が含まれている場合、各異常箇所毎に指定領域が設定されてもよいし、あるいは、全て又は一部の異常箇所を包含する1つ以上の指定領域が設定されてもよい。この場合、検知対象データに対応する領域ラベルRL5は、検知対象データ内の指定領域を示す領域データと、当該指定領域が異常であることを示すラベル値“bad”とのペアとを含むようにしてもよい。さらに、検知対象データに対応する領域ラベルRL4は、当該検知対象データ内の指定領域を除く領域を示す領域データと、指定領域を除く領域が正常であることを示すラベル値“good”とのペアとを更に含むものであってもよい。例えば、ラベル変換部120は、図示されるように、“bad”に設定された指定領域によるラベルL3を、斜線で示された領域を示す領域データと、当該領域が正常であることを示すラベル値“good”とのペアを示す領域ラベルRL4と、斜線で示された領域を示す領域データと、当該領域が異常であることを示すラベル値“bad”とのペアを示す領域ラベルRL5とに変換してもよい。 Further, as yet another example, the label L3 of the detection target data may include area information indicating that the designated area in the detection target data contains an abnormality. For example, when the designated area in the sample data contains at least one abnormality such as a scratch, the label L3 of the sample data may indicate this designated area. When the sample data contains a plurality of abnormalities, a designated area may be set for each abnormal part, or one or more designated areas including all or some abnormal parts may be set. May be done. In this case, the area label RL5 corresponding to the detection target data may include a pair of the area data indicating the designated area in the detection target data and the label value “bad” indicating that the designated area is abnormal. good. Further, the area label RL4 corresponding to the detection target data is a pair of the area data indicating the area excluding the designated area in the detection target data and the label value “good” indicating that the area excluding the designated area is normal. And may be further included. For example, as shown in the figure, the label conversion unit 120 displays the label L3 by the designated area set in "bad" with the area data indicating the area indicated by the diagonal line and the label indicating that the area is normal. The area label RL4 indicating a pair with the value "good", the area data indicating the area indicated by the diagonal line, and the area label RL5 indicating the pair with the label value "bad" indicating that the area is abnormal. It may be converted.
 このようにして、異常度マップと領域ラベルとを取得すると、損失算出部130は、異常度マップと領域ラベルの領域データとから異常度スコアを取得してもよい。具体的には、損失算出部130は、サンプルデータの異常度マップとサンプルデータ内の領域を示すバイナリ画像(例えば、サンプルデータ全体、矩形領域又は指定領域のバイナリ画像など)とに基づき当該領域にフォーカスされた領域異常度マップを生成してもよく、プーリング関数によって領域異常度マップから異常度スコアを取得してもよい。 When the abnormality degree map and the area label are acquired in this way, the loss calculation unit 130 may acquire the abnormality degree score from the abnormality degree map and the area data of the area label. Specifically, the loss calculation unit 130 determines the region based on the anomaly degree map of the sample data and the binary image showing the region in the sample data (for example, the entire sample data, the binary image of the rectangular region or the designated region). A focused area anomaly map may be generated, or an anomaly score may be obtained from the area anomaly map by a pooling function.
 例えば、損失算出部130は、領域ラベルの各ペアのバイナリ画像と異常度マップとを照合し、バイナリ画像に示される領域のみにフォーカスした部分的な異常度マップを領域異常度マップとして生成する。そして、損失算出部130は、生成した領域異常度マップに対してプーリング関数を適用し、当該領域の異常度を表す異常度スコアを計算してもよい。具体的なプーリング関数として、global max pooling、global average pooling、global Lp poolingなどのglobal pooling関数が利用されてもよい。 For example, the loss calculation unit 130 collates the binary image of each pair of area labels with the anomaly degree map, and generates a partial anomaly degree map focusing only on the area shown in the binary image as an area anomaly degree map. Then, the loss calculation unit 130 may apply the pooling function to the generated area abnormality degree map to calculate the abnormality degree score representing the abnormality degree of the region. As a specific pooling function, a global polling function such as global max polling, global average polling, and global Lp polling may be used.
 このようにして異常度スコアを取得すると、損失算出部130は、領域異常度マップに対する異常度スコアと当該領域のラベル値とから検知対象データの損失値を取得してもよい。ここで、損失値の計算には、深層学習において一般的に利用される何れかの損失関数が利用されてもよく、例えば、sigmoid cross entropy、contrastive loss、triplet loss、L2 softmax lossなどが利用可能である。損失算出部130は、上述した手順に従って全ての領域ラベルに対して異常度スコアを算出してもよく、算出した異常度スコアから各領域ラベルの損失値を算出してもよい。そして、損失算出部130は、各サンプルデータに対応する領域ラベルに対して算出した各損失値の和を計算してもよく、計算した損失値の合計を当該サンプルデータの損失値としてモデル処理部110にわたしてもよい。 When the abnormality degree score is acquired in this way, the loss calculation unit 130 may acquire the loss value of the detection target data from the abnormality degree score for the area abnormality degree map and the label value of the area. Here, any loss function generally used in deep learning may be used for the calculation of the loss value, and for example, sigmoid cross entropy, contrast loss, triple loss, L2 softmax loss, etc. can be used. Is. The loss calculation unit 130 may calculate the abnormality degree score for all the area labels according to the above-mentioned procedure, or may calculate the loss value of each area label from the calculated abnormality degree score. Then, the loss calculation unit 130 may calculate the sum of the calculated loss values for the area label corresponding to each sample data, and the model processing unit uses the total of the calculated loss values as the loss value of the sample data. You may call me 110.
 そして、モデル処理部110は、各検知対象データの損失値に基づき異常検知モデルのパラメータを更新してもよい。例えば、異常検知モデルがニューラルネットワークにより実現されている場合、損失算出部130から各サンプルデータの損失値を取得すると、モデル処理部110は、確率的勾配降下法などの何れか適切なパラメータ最適化手法に従って、取得した損失値に基づき異常検知モデルのパラメータを更新してもよい。具体的には、モデル処理部110は、ラベル値“good”に対応する損失値については、当該損失値を減少させるようにパラメータを更新してもよく、ラベル値“bad”に対応する損失値については、当該損失値を増加させるようにパラメータを更新してもよい。 Then, the model processing unit 110 may update the parameters of the abnormality detection model based on the loss value of each detection target data. For example, when the anomaly detection model is realized by a neural network, when the loss value of each sample data is acquired from the loss calculation unit 130, the model processing unit 110 optimizes any appropriate parameter such as the stochastic gradient descent method. According to the method, the parameters of the abnormality detection model may be updated based on the acquired loss value. Specifically, the model processing unit 110 may update the parameter for the loss value corresponding to the label value “good” so as to reduce the loss value, and the model processing unit 110 may update the parameter corresponding to the label value “bad”. The parameter may be updated so as to increase the loss value.
 モデル処理部110は、終了条件を充足するまで当該更新処理を継続してもよく、終了条件の充足後に最終的に取得された異常検知モデルを訓練済み異常検知モデルとして異常検知装置200に提供してもよい。ここで、終了条件としては、例えば、所定数のサンプルデータに対して上述した手順を実行したことなどであってもよい。
[モデル生成処理]
 次に、図3を参照して、本開示の一実施例によるモデル生成処理を説明してもよい。当該モデル生成処理は、上述したモデル生成装置100によって実現されてもよく、例えば、モデル生成装置100の1つ以上のプロセッサ又は処理回路がメモリに記憶されているプログラム又は命令を実行することによって実現されてもよい。図3は、本開示の一実施例によるモデル生成処理を示すフローチャートである。
The model processing unit 110 may continue the update process until the end condition is satisfied, and provides the abnormality detection device 200 as a trained abnormality detection model with the abnormality detection model finally acquired after the end condition is satisfied. You may. Here, as the termination condition, for example, the above-mentioned procedure may be executed for a predetermined number of sample data.
[Model generation process]
Next, the model generation process according to the embodiment of the present disclosure may be described with reference to FIG. The model generation process may be realized by the model generation device 100 described above, and is realized, for example, by executing a program or instruction stored in a memory by one or more processors or processing circuits of the model generation device 100. May be done. FIG. 3 is a flowchart showing a model generation process according to an embodiment of the present disclosure.
 図3に示されるように、ステップS101において、モデル生成装置100は、検知対象データを異常検知モデルに入力してもよく、異常検知モデルから異常度マップを取得してもよい。具体的には、画像データなどのサンプルデータを取得すると、モデル生成装置100は、取得したサンプルデータを訓練対象の異常検知モデルに入力してもよく、異常検知モデルから異常度マップを取得してもよい。当該異常度マップは、サンプルデータ内の異常箇所の位置を示す2次元マップであってもよく、例えば、外観検査については、当該サンプルデータ内に傷が含まれているか否かを示す実数と当該傷の位置を示す画像とのペアから構成されてもよい。外観検査のための画像データは、モノクロ画像又はカラー画像であってもよい。また、検知対象データは、ハイパースペクトル画像データ、深度画像データ、音声データ、波形データ、3次元データなど、検知対象に応じた何れか適切なデータであってもよい。 As shown in FIG. 3, in step S101, the model generation device 100 may input the detection target data into the abnormality detection model, or may acquire the abnormality degree map from the abnormality detection model. Specifically, when sample data such as image data is acquired, the model generation device 100 may input the acquired sample data into the abnormality detection model to be trained, and acquires an abnormality degree map from the abnormality detection model. May be good. The anomaly degree map may be a two-dimensional map showing the position of an abnormal part in the sample data. For example, in the case of visual inspection, the real number indicating whether or not the sample data contains scratches and the said. It may consist of a pair with an image showing the position of the scratch. The image data for the visual inspection may be a monochrome image or a color image. Further, the detection target data may be any appropriate data according to the detection target, such as hyperspectral image data, depth image data, audio data, waveform data, and three-dimensional data.
 ステップS102において、モデル生成装置100は、検知対象データのラベルを領域ラベルに変換してもよい。例えば、検知対象データが外観検査のための画像データである場合、当該画像データ内における傷の有無を示すラベルが、画像データに関連付けされて訓練データとしてデータベース300に格納されている。モデル生成装置100は、ステップS101において異常検知モデルに入力した画像データに対応するラベルをデータベース300から取得してもよく、当該ラベルを中間表現としての領域データに変換してもよい。ここで、領域データは、画像データ内の領域を示すバイナリ画像と、当該領域が正常又は異常であるかを示すバイナリ値とのペアを含むものであってもよく、ラベルのタイプに応じて生成されてもよい。当該バイナリ画像では、異常度の高いエリアに大きな値が割り当てられ、それ以外の正常なエリアに小さな値が割り当てられてもよい。 In step S102, the model generation device 100 may convert the label of the detection target data into the area label. For example, when the detection target data is image data for visual inspection, a label indicating the presence or absence of scratches in the image data is stored in the database 300 as training data in association with the image data. The model generation device 100 may acquire a label corresponding to the image data input to the abnormality detection model in step S101 from the database 300, or may convert the label into area data as an intermediate representation. Here, the area data may include a pair of a binary image indicating an area in the image data and a binary value indicating whether the area is normal or abnormal, and is generated according to the label type. May be done. In the binary image, a large value may be assigned to an area with a high degree of anomaly, and a small value may be assigned to an area other than the normal area.
 例えば、画像データのラベルが、図2のL1に示されるように、画像データ全体に異常が含まれているかを示すバイナリ値を含むものである場合、モデル生成装置100は、RL1に示されるように、画像データ全体を示すバイナリ画像と、バイナリ値を示すラベル値“bad”とのペアを含むように、当該画像データに対する領域ラベルを生成してもよい。 For example, if the image data label contains a binary value indicating whether the entire image data contains anomalies, as shown in L1 of FIG. 2, the model generator 100 has the model generator 100 as shown in RL1. A region label for the image data may be generated to include a pair of a binary image indicating the entire image data and a label value "bad" indicating the binary value.
 また、画像データのラベルが、図2のL2に示されるように、画像データ内の矩形領域に異常が含まれていることを示す矩形情報を含むものである場合、モデル生成装置100は、RL2に示されるように、矩形領域を示すバイナリ画像と、当該領域が異常であることを示すラベル値“bad”とのペアと、RL3に示されるように、画像データ内の矩形領域を除く領域を示すバイナリ画像と、矩形領域を除く領域が正常であることを示すラベル値“good”とのペアとを含むように、当該画像データに対する領域ラベルを生成してもよい。 Further, when the label of the image data includes rectangular information indicating that the rectangular region in the image data contains an abnormality as shown in L2 of FIG. 2, the model generator 100 indicates in RL2. A pair of a binary image indicating a rectangular area, a label value “bad” indicating that the area is abnormal, and a binary indicating an area excluding the rectangular area in the image data as shown in RL3. An area label for the image data may be generated to include a pair of the image and a label value "good" indicating that the area other than the rectangular area is normal.
 また、画像データのラベルが、図2のL3に示されるように、画像データ内の指定領域に異常が含まれていることを示す領域情報を含むものである場合、モデル生成装置100は、RL4に示されるように、指定領域を示すバイナリ画像と、指定領域が異常であることを示すラベル値“bad”とのペアと、RL5に示されるように、画像データ内の指定領域を除く領域を示すバイナリ画像と、指定領域を除く領域が正常であることを示すラベル値“good”とのペアとを含むように、当該画像データに対する領域ラベルを生成してもよい。 Further, when the label of the image data includes the area information indicating that the designated area in the image data contains an abnormality as shown in L3 of FIG. 2, the model generator 100 indicates in RL4. A pair of a binary image indicating a designated area, a label value “bad” indicating that the designated area is abnormal, and a binary indicating an area excluding the designated area in the image data as shown in RL5. An area label for the image data may be generated so as to include a pair of an image and a label value "good" indicating that the area other than the designated area is normal.
 ステップS103において、モデル生成装置100は、異常度マップと領域データとから異常度スコアを取得してもよい。例えば、図2に示されるような異常度マップと領域ラベルRL1がサンプルデータに対して取得された場合、モデル生成装置100は、異常度マップと画像データ全体を示す領域データとしてのバイナリ画像とに対してglobal max poolingを適用してもよく、例えば、異常度スコア“1.28”とラベル値“bad”とから構成される領域スコア{1.28,bad}を取得してもよい。 In step S103, the model generation device 100 may acquire the anomaly degree score from the anomaly degree map and the area data. For example, when the anomaly degree map and the area label RL1 as shown in FIG. 2 are acquired for the sample data, the model generation device 100 creates the anomaly degree map and the binary image as the area data showing the entire image data. On the other hand, global max polling may be applied, and for example, a region score {1.28, bad} composed of an abnormality score “1.28” and a label value “bad” may be acquired.
 また、図2に示されるような異常度マップと領域ラベルRL2,RL3がサンプルデータに対して取得された場合、モデル生成装置100は、異常度マップとRL2のバイナリ画像とを照合してもよく、バイナリ画像におけるラベル値“good”の領域のみにフォーカスした部分的な異常度マップを領域異常度マップとして生成してもよい。そして、モデル生成装置100は、領域異常度マップに対してglobal max poolingを適用し、例えば、異常度スコア“0.30”とラベル値“good”とから構成される領域スコア{0.30,good}を取得する。また、モデル生成装置100は、異常度マップとRL3のバイナリ画像とを照合し、バイナリ画像におけるラベル値“bad”の領域のみにフォーカスした部分的な異常度マップを領域異常度マップとして生成してもよい。そして、モデル生成装置100は、領域異常度マップに対してglobal max poolingを適用し、例えば、異常度スコア“1.26”とラベル値“bad”とから構成される領域スコア{1.26,bad}を取得する。 Further, when the anomaly degree map and the area labels RL2 and RL3 as shown in FIG. 2 are acquired for the sample data, the model generator 100 may collate the anomaly degree map with the binary image of the RL2. , A partial anomaly degree map focusing only on the area of the label value “good” in the binary image may be generated as an area anomaly degree map. Then, the model generator 100 applies global max polling to the region abnormality degree map, and for example, the region score {0.30, which is composed of the abnormality degree score “0.30” and the label value “good”. Get good}. Further, the model generation device 100 collates the abnormality degree map with the binary image of RL3, and generates a partial abnormality degree map focusing only on the area of the label value “bad” in the binary image as the area abnormality degree map. May be good. Then, the model generator 100 applies global max polling to the region abnormality degree map, and for example, the region score {1.26, which is composed of the abnormality degree score “1.26” and the label value “bad”. Get bad}.
 また、図2に示されるような異常度マップと領域ラベルRL4,RL5がサンプルデータに対して取得された場合、モデル生成装置100は、異常度マップとRL4のバイナリ画像とを照合してもよく、バイナリ画像におけるラベル値“good”の領域のみにフォーカスした部分的な異常度マップを領域異常度マップとして生成してもよい。そして、モデル生成装置100は、領域異常度マップに対してglobal max poolingを適用し、例えば、異常度スコア“0.30”とラベル値“good”とから構成される領域スコア{0.30,good}を取得する。また、モデル生成装置100は、異常度マップとRL5のバイナリ画像とを照合し、バイナリ画像におけるラベル値“bad”の領域のみにフォーカスした部分的な異常度マップを領域異常度マップとして生成する。そして、モデル生成装置100は、領域異常度マップに対してglobal max poolingを適用し、例えば、異常度スコア“1.24”とラベル値“bad”とから構成される領域スコア{1.24,bad}を取得する。 Further, when the anomaly degree map and the area labels RL4 and RL5 as shown in FIG. 2 are acquired for the sample data, the model generator 100 may collate the anomaly degree map with the binary image of the RL4. , A partial anomaly degree map focusing only on the area of the label value “good” in the binary image may be generated as an area anomaly degree map. Then, the model generator 100 applies global max polling to the region abnormality degree map, and for example, the region score {0.30, which is composed of the abnormality degree score “0.30” and the label value “good”. Get good}. Further, the model generation device 100 collates the abnormality degree map with the binary image of the RL5, and generates a partial abnormality degree map focusing only on the area of the label value “bad” in the binary image as the area abnormality degree map. Then, the model generator 100 applies global max polling to the region abnormality degree map, and for example, the region score {1.24, which is composed of the abnormality degree score “1.24” and the label value “bad”. Get bad}.
 ステップS104において、モデル生成装置100は、異常度スコアとラベル値とから検知対象データの損失値を取得してもよい。例えば、サンプルデータに対して領域スコアRS1を取得すると、モデル生成装置100は、sigmoid cross entropy、contrastive loss、triplet loss、L2 softmax lossなどの何れか適切な損失関数に異常度スコアを適用し、当該サンプルデータの損失値を算出してもよい。また、サンプルデータに対して領域スコアRS2,RS3を取得すると、モデル生成装置100は、損失関数にRS2,RS3の各異常度スコアを適用し、導出した各損失値の合計を当該サンプルデータの損失値として決定してもよい。同様に、サンプルデータに対して領域スコアRS4,RS5を取得すると、モデル生成装置100は、損失関数にRS4,RS5の各異常度スコアを適用し、導出した各損失値の合計を当該サンプルデータの損失値として決定してもよい。 In step S104, the model generation device 100 may acquire the loss value of the detection target data from the abnormality degree score and the label value. For example, when the region score RS1 is acquired for the sample data, the model generator 100 applies the anomaly score to any appropriate loss function such as sigmoid cross entropy, cross entropy, triple loss, L2 softmax loss, and the like. The loss value of the sample data may be calculated. Further, when the region scores RS2 and RS3 are acquired for the sample data, the model generator 100 applies each abnormality degree score of RS2 and RS3 to the loss function, and the sum of the derived loss values is the loss of the sample data. It may be determined as a value. Similarly, when the region scores RS4 and RS5 are acquired for the sample data, the model generator 100 applies each abnormality score of RS4 and RS5 to the loss function, and the sum of the derived loss values is the sum of the derived loss values of the sample data. It may be determined as a loss value.
 ステップS105において、モデル生成装置100は、検知対象データの損失値に基づき異常検知モデルのパラメータを更新してもよい。異常検知モデルが畳み込みニューラルネットワークなどのニューラルネットワークにより実現されている場合、モデル生成装置100は、確率的勾配降下法などの何れか適切なパラメータ最適化手法に従って、取得した損失値に基づき異常検知モデルのパラメータを更新してもよい。このとき、モデル生成装置100は、ラベル値“good”に対応する損失値については、当該損失値を減少させるようにパラメータを更新してもよく、ラベル値“bad”に対応する損失値については、当該損失値を増加させるようにパラメータを更新してもよい。 In step S105, the model generation device 100 may update the parameters of the abnormality detection model based on the loss value of the detection target data. When the anomaly detection model is realized by a neural network such as a convolutional neural network, the model generator 100 follows an appropriate parameter optimization method such as a stochastic gradient descent method, and the anomaly detection model is based on the acquired loss value. You may update the parameters of. At this time, the model generator 100 may update the parameter for the loss value corresponding to the label value “good” so as to reduce the loss value, and for the loss value corresponding to the label value “bad”, the parameter may be updated. , The parameters may be updated to increase the loss value.
 ステップS106において、モデル生成装置100は、終了条件を充足したか判断してもよい。例えば、終了条件としては、所定数のサンプルデータに対してステップS101~S105を実行したことなどであってもよい。終了条件を充足した場合(S106:YES)、当該モデル生成処理は終了し、最終的に取得された異常検知モデルは異常検知装置200に提供されてもよい。他方、終了条件を充足していない場合(S106:NO)、モデル生成装置100は、次のサンプルデータに対して上述したステップS101~S105を繰り返してもよい。
[異常検知装置]
 次に、図4を参照して、本開示の一実施例による異常検知装置200を説明する。異常検知装置200は、モデル生成装置100によって生成された異常検知モデルを利用して、未知のサンプルデータに対する異常の有無を判定してもよい。図4は、本開示の一実施例による異常検知装置200の機能構成を示すブロック図である。
In step S106, the model generator 100 may determine whether the end condition is satisfied. For example, the end condition may be that steps S101 to S105 are executed for a predetermined number of sample data. When the end condition is satisfied (S106: YES), the model generation process is completed, and the finally acquired abnormality detection model may be provided to the abnormality detection device 200. On the other hand, when the end condition is not satisfied (S106: NO), the model generator 100 may repeat steps S101 to S105 described above for the next sample data.
[Abnormality detection device]
Next, the abnormality detection device 200 according to the embodiment of the present disclosure will be described with reference to FIG. The abnormality detection device 200 may determine the presence or absence of an abnormality in unknown sample data by using the abnormality detection model generated by the model generation device 100. FIG. 4 is a block diagram showing a functional configuration of the abnormality detection device 200 according to the embodiment of the present disclosure.
 図4に示されるように、異常検知装置200は、異常度マップ生成部210及び異常検知部220を有してもよい。 As shown in FIG. 4, the abnormality detection device 200 may have an abnormality degree map generation unit 210 and an abnormality detection unit 220.
 異常度マップ生成部210は、検知対象データを訓練済み異常検知モデルに入力し、訓練済み異常検知モデルから異常度マップを取得してもよい。具体的には、異常度マップ生成部210は、検知対象の未知の画像データなどのサンプルデータを受け付けると、受け付けたサンプルデータを訓練済み異常検知モデルに入力し、訓練済み異常検知モデルから出力された異常度マップを異常検知部220にわたしてもよい。例えば、外観検査では、検査対象の物品を様々な角度から撮像することによって取得された複数の画像データが異常検知装置200に入力されうる。この場合、異常度マップ生成部210は、これら複数のタイプの画像データに対応した訓練済み異常検知モデルを利用して、各タイプの画像データに対する異常度マップを生成してもよい。 The abnormality degree map generation unit 210 may input the detection target data into the trained abnormality detection model and acquire the abnormality degree map from the trained abnormality detection model. Specifically, when the abnormality degree map generation unit 210 receives sample data such as unknown image data to be detected, the received sample data is input to the trained abnormality detection model and output from the trained abnormality detection model. The abnormality degree map may be sent to the abnormality detection unit 220. For example, in the visual inspection, a plurality of image data acquired by imaging the article to be inspected from various angles can be input to the abnormality detection device 200. In this case, the anomaly degree map generation unit 210 may generate an anomaly degree map for each type of image data by using a trained anomaly detection model corresponding to these a plurality of types of image data.
 異常検知部220は、異常度マップからプーリング関数に従って異常度スコアを取得してもよく、異常度スコアに基づき検知対象データが正常又は異常であるか判定してもよい。具体的には、異常度マップ生成部210から異常度マップを取得すると、異常検知部220は、global max poolingなどの何れか適切なプーリング関数を異常度マップに適用し、異常度スコアを決定してもよい。そして、異常検知部220は、決定した異常度スコアが所定の閾値以上であるかを判定することによって、検知対象のサンプルデータに異常がないか判定してもよい。例えば、異常検知部220は、異常度スコアが所定の閾値以上であった場合には、サンプルデータに異常があると判定してもよく、異常度スコアが所定の閾値未満であった場合、サンプルデータは正常であると判定してもよい。
[異常検知処理]
 次に、図5を参照して、本開示の一実施例による異常検知処理を説明する。当該異常検知処理は、上述した異常検知装置200によって実現され、例えば、異常検知装置200の1つ以上のプロセッサ又は処理回路が1つ以上のメモリに格納されているプログラム又は命令を実行することによって実現されてもよい。図5は、本開示の一実施例による異常検知処理を示すフローチャートである。
The abnormality detection unit 220 may acquire the abnormality degree score from the abnormality degree map according to the pooling function, or may determine whether the detection target data is normal or abnormal based on the abnormality degree score. Specifically, when the anomaly map is acquired from the anomaly map generation unit 210, the anomaly detection unit 220 applies any appropriate pooling function such as global max polling to the anomaly map to determine the anomaly score. You may. Then, the abnormality detection unit 220 may determine whether or not there is an abnormality in the sample data to be detected by determining whether or not the determined abnormality degree score is equal to or higher than a predetermined threshold value. For example, the abnormality detection unit 220 may determine that there is an abnormality in the sample data when the abnormality degree score is equal to or more than a predetermined threshold value, and when the abnormality degree score is less than a predetermined threshold value, the sample may be determined. The data may be determined to be normal.
[Abnormality detection processing]
Next, an abnormality detection process according to an embodiment of the present disclosure will be described with reference to FIG. The anomaly detection process is realized by the above-mentioned anomaly detection device 200, for example, by executing a program or instruction in which one or more processors or processing circuits of the anomaly detection device 200 are stored in one or more memories. It may be realized. FIG. 5 is a flowchart showing an abnormality detection process according to an embodiment of the present disclosure.
 図5に示されるように、ステップS201において、異常検知装置200は、検知対象データを訓練済み異常検知モデルに入力し、訓練済み異常検知モデルから異常度マップを取得してもよい。 As shown in FIG. 5, in step S201, the abnormality detection device 200 may input the detection target data into the trained abnormality detection model and acquire the abnormality degree map from the trained abnormality detection model.
 ステップS202において、異常検知装置200は、異常度マップからプーリング関数に従って異常度スコアを取得してもよい。 In step S202, the abnormality detection device 200 may acquire the abnormality degree score from the abnormality degree map according to the pooling function.
 ステップS203において、異常検知装置200は、異常度スコアが所定の閾値以上であるか判断してもよい。異常度スコアが所定の閾値以上であった場合(S203:YES)、異常検知装置200は、ステップS204において、当該サンプルデータは異常であると判定してもよい。他方、異常度スコアが所定の閾値未満であった場合(S203:NO)、異常検知装置200は、ステップS205において、当該サンプルデータは正常であると判定してもよい。
[ハードウェア構成]
 前述した実施形態における各装置(モデル生成装置100、又は異常検知装置200)の一部又は全部は、ハードウェアで構成されていてもよいし、CPU(Central Processing Unit)、又はGPU(Graphics Processing Unit)等が実行するソフトウェア(プログラム)の情報処理で構成されてもよい。ソフトウェアの情報処理で構成される場合には、前述した実施形態における各装置の少なくとも一部の機能を実現するソフトウェアを、フレキシブルディスク、CD-ROM(Compact Disc-Read Only Memory)、又はUSB(Universal Serial Bus)メモリ等の非一時的な記憶媒体(非一時的なコンピュータ可読媒体)に収納し、コンピュータに読み込ませることにより、ソフトウェアの情報処理を実行してもよい。また、通信ネットワークを介して当該ソフトウェアがダウンロードされてもよい。さらに、ソフトウェアがASIC(Application Specific Integrated Circuit)、又はFPGA(Field Programmable Gate Array)等の回路に実装されることにより、情報処理がハードウェアにより実行されてもよい。
In step S203, the abnormality detection device 200 may determine whether the abnormality degree score is equal to or higher than a predetermined threshold value. When the abnormality degree score is equal to or higher than a predetermined threshold value (S203: YES), the abnormality detection device 200 may determine that the sample data is abnormal in step S204. On the other hand, when the abnormality degree score is less than a predetermined threshold value (S203: NO), the abnormality detection device 200 may determine that the sample data is normal in step S205.
[Hardware configuration]
A part or all of each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment may be composed of hardware, a CPU (Central Processing Unit), or a GPU (Graphics Processing Unit). ) Etc. may be composed of information processing of software (program) executed. When it is composed of information processing of software, the software that realizes at least a part of the functions of each device in the above-described embodiment is a flexible disk, a CD-ROM (Compact Disc-Read Only Memory), or a USB (Universal). Serial Bus) Information processing of software may be executed by storing it in a non-temporary storage medium (non-temporary computer-readable medium) such as a memory and reading it into a computer. In addition, the software may be downloaded via a communication network. Further, information processing may be executed by hardware by mounting the software on a circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
 ソフトウェアを収納する記憶媒体の種類は限定されるものではない。記憶媒体は、磁気ディスク、又は光ディスク等の着脱可能なものに限定されず、ハードディスク、又はメモリ等の固定型の記憶媒体であってもよい。また、記憶媒体は、コンピュータ内部に備えられてもよいし、コンピュータ外部に備えられてもよい。 The type of storage medium that stores the software is not limited. The storage medium is not limited to a removable one such as a magnetic disk or an optical disk, and may be a fixed storage medium such as a hard disk or a memory. Further, the storage medium may be provided inside the computer or may be provided outside the computer.
 図6は、前述した実施形態における各装置(モデル生成装置100、又は異常検知装置200)のハードウェア構成の一例を示すブロック図である。各装置は、一例として、プロセッサ101と、主記憶装置102(メモリ)と、補助記憶装置103(メモリ)と、ネットワークインタフェース104と、デバイスインタフェース105と、を備え、これらがバス106を介して接続されたコンピュータ107として実現されてもよい。 FIG. 6 is a block diagram showing an example of the hardware configuration of each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment. As an example, each device includes a processor 101, a main storage device 102 (memory), an auxiliary storage device 103 (memory), a network interface 104, and a device interface 105, which are connected via a bus 106. It may be realized as a computer 107.
 図6のコンピュータ107は、各構成要素を一つ備えているが、同じ構成要素を複数備えていてもよい。また、図6では、1台のコンピュータ107が示されているが、ソフトウェアが複数台のコンピュータにインストールされて、当該複数台のコンピュータそれぞれがソフトウェアの同一の又は異なる一部の処理を実行してもよい。この場合、コンピュータそれぞれがネットワークインタフェース104等を介して通信して処理を実行する分散コンピューティングの形態であってもよい。つまり、前述した実施形態における各装置(モデル生成装置100、又は異常検知装置200)は、1又は複数の記憶装置に記憶された命令を1台又は複数台のコンピュータが実行することで機能を実現するシステムとして構成されてもよい。また、端末から送信された情報をクラウド上に設けられた1台又は複数台のコンピュータで処理し、この処理結果を端末に送信するような構成であってもよい。 The computer 107 of FIG. 6 includes one component for each component, but may include a plurality of the same components. Further, although one computer 107 is shown in FIG. 6, software is installed on a plurality of computers, and each of the plurality of computers executes the same or different part of the software. May be good. In this case, it may be a form of distributed computing in which each computer communicates via a network interface 104 or the like to execute processing. That is, each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment realizes a function by executing an instruction stored in one or a plurality of storage devices by one or a plurality of computers. It may be configured as a system. Further, the information transmitted from the terminal may be processed by one or a plurality of computers provided on the cloud, and the processing result may be transmitted to the terminal.
 前述した実施形態における各装置(モデル生成装置100、又は異常検知装置200)の各種演算は、1又は複数のプロセッサを用いて、又は、ネットワークを介した複数台のコンピュータを用いて、並列処理で実行されてもよい。また、各種演算が、プロセッサ内に複数ある演算コアに振り分けられて、並列処理で実行されてもよい。また、本開示の処理、手段等の一部又は全部は、ネットワークを介してコンピュータ107と通信可能なクラウド上に設けられたプロセッサ及び記憶装置の少なくとも一方により実行されてもよい。このように、前述した実施形態における各装置は、1台又は複数台のコンピュータによる並列コンピューティングの形態であってもよい。 Various operations of each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment can be performed in parallel using one or more processors or by using a plurality of computers via a network. It may be executed. Further, various operations may be distributed to a plurality of arithmetic cores in the processor and executed in parallel processing. In addition, some or all of the processes, means, etc. of the present disclosure may be executed by at least one of a processor and a storage device provided on the cloud capable of communicating with the computer 107 via a network. As described above, each device in the above-described embodiment may be in the form of parallel computing by one or a plurality of computers.
 プロセッサ101は、コンピュータの制御装置及び演算装置を含む電子回路(処理回路、Processing circuit、Processing circuitry、CPU、GPU、FPGA、又はASIC等)であってもよい。また、プロセッサ101は、専用の処理回路を含む半導体装置等であってもよい。プロセッサ101は、電子論理素子を用いた電子回路に限定されるものではなく、光論理素子を用いた光回路により実現されてもよい。また、プロセッサ101は、量子コンピューティングに基づく演算機能を含むものであってもよい。 The processor 101 may be an electronic circuit (processing circuit, Processing circuit, Processing circuitry, CPU, GPU, FPGA, ASIC, etc.) including a computer control device and an arithmetic unit. Further, the processor 101 may be a semiconductor device or the like including a dedicated processing circuit. The processor 101 is not limited to an electronic circuit using an electronic logic element, and may be realized by an optical circuit using an optical logic element. Further, the processor 101 may include a calculation function based on quantum computing.
 プロセッサ101は、コンピュータ107の内部構成の各装置等から入力されたデータやソフトウェア(プログラム)に基づいて演算処理を行い、演算結果や制御信号を各装置等に出力することができる。プロセッサ101は、コンピュータ107のOS(Operating System)や、アプリケーション等を実行することにより、コンピュータ107を構成する各構成要素を制御してもよい。 The processor 101 can perform arithmetic processing based on data and software (programs) input from each device or the like having an internal configuration of the computer 107, and output the arithmetic result or control signal to each device or the like. The processor 101 may control each component constituting the computer 107 by executing an OS (Operating System) of the computer 107, an application, or the like.
 前述した実施形態における各装置(モデル生成装置100、又は異常検知装置200)は、1又は複数のプロセッサ101により実現されてもよい。ここで、プロセッサ101は、1チップ上に配置された1又は複数の電子回路を指してもよいし、2つ以上のチップあるいは2つ以上のデバイス上に配置された1又は複数の電子回路を指してもよい。複数の電子回路を用いる場合、各電子回路は有線又は無線により通信してもよい。 Each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment may be realized by one or a plurality of processors 101. Here, the processor 101 may refer to one or more electronic circuits arranged on one chip, or may refer to one or more electronic circuits arranged on two or more chips or two or more devices. You may point. When a plurality of electronic circuits are used, each electronic circuit may communicate by wire or wirelessly.
 主記憶装置102は、プロセッサ101が実行する命令及び各種データ等を記憶する記憶装置であり、主記憶装置102に記憶された情報がプロセッサ101により読み出される。補助記憶装置103は、主記憶装置102以外の記憶装置である。なお、これらの記憶装置は、電子情報を格納可能な任意の電子部品を意味するものとし、半導体のメモリでもよい。半導体のメモリは、揮発性メモリ、不揮発性メモリのいずれでもよい。前述した実施形態における各装置(モデル生成装置100、又は異常検知装置200)において各種データを保存するための記憶装置は、主記憶装置102又は補助記憶装置103により実現されてもよく、プロセッサ101に内蔵される内蔵メモリにより実現されてもよい。例えば、前述した実施形態における記憶部は、主記憶装置102又は補助記憶装置103により実現されてもよい。 The main storage device 102 is a storage device that stores instructions executed by the processor 101, various data, and the like, and the information stored in the main storage device 102 is read out by the processor 101. The auxiliary storage device 103 is a storage device other than the main storage device 102. Note that these storage devices mean any electronic component capable of storing electronic information, and may be a semiconductor memory. The semiconductor memory may be either a volatile memory or a non-volatile memory. The storage device for storing various data in each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment may be realized by the main storage device 102 or the auxiliary storage device 103, and may be realized by the processor 101. It may be realized by the built-in internal memory. For example, the storage unit in the above-described embodiment may be realized by the main storage device 102 or the auxiliary storage device 103.
 記憶装置(メモリ)1つに対して、複数のプロセッサが接続(結合)されてもよいし、単数のプロセッサが接続されてもよい。プロセッサ1つに対して、複数の記憶装置(メモリ)が接続(結合)されてもよい。前述した実施形態における各装置(モデル生成装置100、又は異常検知装置200)が、少なくとも1つの記憶装置(メモリ)とこの少なくとも1つの記憶装置(メモリ)に接続(結合)される複数のプロセッサで構成される場合、複数のプロセッサのうち少なくとも1つのプロセッサが、少なくとも1つの記憶装置(メモリ)に接続(結合)される構成を含んでもよい。また、複数台のコンピュータに含まれる記憶装置(メモリ))とプロセッサによって、この構成が実現されてもよい。さらに、記憶装置(メモリ)がプロセッサと一体になっている構成(例えば、L1キャッシュ、L2キャッシュを含むキャッシュメモリ)を含んでもよい。 Multiple processors may be connected (combined) to one storage device (memory), or a single processor may be connected. A plurality of storage devices (memory) may be connected (combined) to one processor. Each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment is a plurality of processors connected (combined) to at least one storage device (memory) and the at least one storage device (memory). When configured, it may include a configuration in which at least one of the plurality of processors is connected (combined) to at least one storage device (memory). Further, this configuration may be realized by a storage device (memory) and a processor included in a plurality of computers. Further, a configuration in which the storage device (memory) is integrated with the processor (for example, a cache memory including an L1 cache and an L2 cache) may be included.
 ネットワークインタフェース104は、無線又は有線により、通信ネットワーク108に接続するためのインタフェースである。ネットワークインタフェース104は、既存の通信規格に適合したもの等、適切なインタフェースを用いればよい。ネットワークインタフェース104により、通信ネットワーク108を介して接続された外部装置109Aと情報のやり取りが行われてもよい。なお、通信ネットワーク108は、WAN(Wide Area Network)、LAN(Local Area Network)、PAN(Personal Area Network)等の何れか、又は、それらの組み合わせであってよく、コンピュータ107と外部装置109Aとの間で情報のやり取りが行われるものであればよい。WANの一例としてインターネット等があり、LANの一例としてIEEE802.11やイーサネット(登録商標)等があり、PANの一例としてBluetooth(登録商標)やNFC(Near Field Communication)等がある。 The network interface 104 is an interface for connecting to the communication network 108 wirelessly or by wire. As the network interface 104, an appropriate interface such as one conforming to an existing communication standard may be used. The network interface 104 may exchange information with the external device 109A connected via the communication network 108. The communication network 108 may be any one of WAN (Wide Area Network), LAN (Local Area Network), PAN (Personal Area Network), or a combination thereof, and may be a combination of the computer 107 and the external device 109A. Any information can be exchanged between them. An example of WAN is the Internet, an example of LAN is IEEE802.11, Ethernet (registered trademark), etc., and an example of PAN is Bluetooth (registered trademark), NFC (Near Field Communication), etc.
 デバイスインタフェース105は、外部装置109Bと直接接続するUSB等のインタフェースである。 The device interface 105 is an interface such as USB that directly connects to the external device 109B.
 外部装置109Aはコンピュータ107とネットワークを介して接続されている装置である。外部装置109Bはコンピュータ107と直接接続されている装置である。 The external device 109A is a device connected to the computer 107 via a network. The external device 109B is a device that is directly connected to the computer 107.
 外部装置109A又は外部装置109Bは、一例として、入力装置であってもよい。入力装置は、例えば、カメラ、マイクロフォン、モーションキャプチャ、各種センサ、キーボード、マウス、又はタッチパネル等のデバイスであり、取得した情報をコンピュータ107に与える。また、パーソナルコンピュータ、タブレット端末、又はスマートフォン等の入力部とメモリとプロセッサを備えるデバイスであってもよい。 The external device 109A or the external device 109B may be an input device as an example. The input device is, for example, a device such as a camera, a microphone, a motion capture, various sensors, a keyboard, a mouse, or a touch panel, and gives the acquired information to the computer 107. Further, it may be a device including an input unit, a memory and a processor such as a personal computer, a tablet terminal, or a smartphone.
 また、外部装置109A又は外部装置109Bは、一例として、出力装置でもよい。出力装置は、例えば、LCD(Liquid Crystal Display)、CRT(Cathode Ray Tube)、PDP(Plasma Display Panel)、又は有機EL(Electro Luminescence)パネル等の表示装置であってもよいし、音声等を出力するスピーカ等であってもよい。また、パーソナルコンピュータ、タブレット端末、又はスマートフォン等の出力部とメモリとプロセッサを備えるデバイスであってもよい。 Further, the external device 109A or the external device 109B may be an output device as an example. The output device may be, for example, a display device such as an LCD (Liquid Crystal Display), a CRT (Cathode Ray Tube), a PDP (Plasma Display Panel), or an organic EL (Electro Luminescence) panel, and outputs audio or the like. It may be a speaker or the like. Further, it may be a device including an output unit such as a personal computer, a tablet terminal, or a smartphone, a memory, and a processor.
 また、外部装置109Aまた外部装置109Bは、記憶装置(メモリ)であってもよい。例えば、外部装置109Aはネットワークストレージ等であってもよく、外部装置109BはHDD等のストレージであってもよい。 Further, the external device 109A or the external device 109B may be a storage device (memory). For example, the external device 109A may be a network storage or the like, and the external device 109B may be a storage such as an HDD.
 また、外部装置109A又は外部装置109Bは、前述した実施形態における各装置(モデル生成装置100、又は異常検知装置200)の構成要素の一部の機能を有する装置でもよい。つまり、コンピュータ107は、外部装置109A又は外部装置109Bの処理結果の一部又は全部を送信又は受信してもよい。 Further, the external device 109A or the external device 109B may be a device having some functions of the components of each device (model generation device 100 or abnormality detection device 200) in the above-described embodiment. That is, the computer 107 may transmit or receive a part or all of the processing result of the external device 109A or the external device 109B.
 本明細書(請求項を含む)において、「a、b及びcの少なくとも1つ(一方)」又は「a、b又はcの少なくとも1つ(一方)」の表現(同様な表現を含む)が用いられる場合は、a、b、c、a-b、a-c、b-c、又はa-b-cのいずれかを含む。また、a-a、a-b-b、a-a-b-b-c-c等のように、いずれかの要素について複数のインスタンスを含んでもよい。さらに、a-b-c-dのようにdを有する等、列挙された要素(a、b及びc)以外の他の要素を加えることも含む。 In the present specification (including claims), the expression (including similar expressions) of "at least one (one) of a, b and c" or "at least one (one) of a, b or c" is used. When used, it includes any of a, b, c, ab, ac, bc, or abc. It may also include multiple instances of any element, such as a-a, a-b-b, a-a-b-b-c-c, and the like. It also includes adding elements other than the listed elements (a, b and c), such as having d, such as a-b-c-d.
 本明細書(請求項を含む)において、「データを入力として/データに基づいて/に従って/に応じて」等の表現(同様な表現を含む)が用いられる場合は、特に断りがない場合、各種データそのものを入力として用いる場合や、各種データに何らかの処理を行ったもの(例えば、ノイズ加算したもの、正規化したもの、各種データの中間表現等)を入力として用いる場合を含む。また「データに基づいて/に従って/に応じて」何らかの結果が得られる旨が記載されている場合、当該データのみに基づいて当該結果が得られる場合を含むとともに、当該データ以外の他のデータ、要因、条件、及び/又は状態等にも影響を受けて当該結果が得られる場合をも含み得る。また、「データを出力する」旨が記載されている場合、特に断りがない場合、各種データそのものを出力として用いる場合や、各種データに何らかの処理を行ったもの(例えば、ノイズ加算したもの、正規化したもの、各種データの中間表現等)を出力とする場合も含む。 In the present specification (including claims), when expressions such as "with data as input / based on / according to / according to" (including similar expressions) are used, unless otherwise specified. This includes the case where various data itself is used as an input, and the case where various data are processed in some way (for example, noise-added data, normalized data, intermediate representation of various data, etc.) are used as input. In addition, when it is stated that some result can be obtained "based on / according to / according to the data", it includes the case where the result can be obtained based only on the data, and other data other than the data. It may also include cases where the result is obtained under the influence of factors, conditions, and / or conditions. In addition, when it is stated that "data is output", unless otherwise specified, various data itself is used as output, or various data is processed in some way (for example, noise is added, normal). It also includes the case where the output is output (intermediate representation of various data, etc.).
 本明細書(請求項を含む)において、「接続される(connected)」及び「結合される(coupled)」との用語が用いられる場合は、直接的な接続/結合、間接的な接続/結合、電気的(electrically)な接続/結合、通信的(communicatively)な接続/結合、機能的(operatively)な接続/結合、物理的(physically)な接続/結合等のいずれをも含む非限定的な用語として意図される。当該用語は、当該用語が用いられた文脈に応じて適宜解釈されるべきであるが、意図的に或いは当然に排除されるのではない接続/結合形態は、当該用語に含まれるものして非限定的に解釈されるべきである。 In the present specification (including claims), when the terms "connected" and "coupled" are used, direct connection / coupling and indirect connection / coupling are used. , Electrically connected / combined, communicatively connected / combined, operatively connected / combined, physically connected / combined, etc. Intended as a term. The term should be interpreted as appropriate according to the context in which the term is used, but any connection / combination form that is not intentionally or naturally excluded is not included in the term. It should be interpreted in a limited way.
 本明細書(請求項を含む)において、「AがBするよう構成される(A configured to B)」との表現が用いられる場合は、要素Aの物理的構造が、動作Bを実行可能な構成を有するとともに、要素Aの恒常的(permanent)又は一時的(temporary)な設定(setting/configuration)が、動作Bを実際に実行するように設定(configured/set)されていることを含んでよい。例えば、要素Aが汎用プロセッサである場合、当該プロセッサが動作Bを実行可能なハードウェア構成を有するとともに、恒常的(permanent)又は一時的(temporary)なプログラム(命令)の設定により、動作Bを実際に実行するように設定(configured)されていればよい。また、要素Aが専用プロセッサ又は専用演算回路等である場合、制御用命令及びデータが実際に付属しているか否かとは無関係に、当該プロセッサの回路的構造が動作Bを実際に実行するように構築(implemented)されていればよい。 In the present specification (including claims), when the expression "A is configured to B" is used, the physical structure of the element A can perform the operation B. Including that the element A has a configuration and the permanent or temporary setting (setting / configuration) of the element A is set (configured / set) to actually execute the operation B. good. For example, when the element A is a general-purpose processor, the processor has a hardware configuration capable of executing the operation B, and the operation B is set by setting a permanent or temporary program (instruction). It suffices if it is configured to actually execute. Further, when the element A is a dedicated processor, a dedicated arithmetic circuit, or the like, the circuit structure of the processor actually executes the operation B regardless of whether or not the control instruction and data are actually attached. It only needs to be implemented.
 本明細書(請求項を含む)において、含有又は所有を意味する用語(例えば、「含む(comprising/including)」及び有する「(having)等)」が用いられる場合は、当該用語の目的語により示される対象物以外の物を含有又は所有する場合を含む、open-endedな用語として意図される。これらの含有又は所有を意味する用語の目的語が数量を指定しない又は単数を示唆する表現(a又はanを冠詞とする表現)である場合は、当該表現は特定の数に限定されないものとして解釈されるべきである。 In the present specification (including claims), when a term meaning inclusion or possession (for example, "comprising / including" and "having", etc.) is used, the object of the term is used. It is intended as an open-ended term, including the case of containing or owning an object other than the indicated object. If the object of these terms that mean inclusion or possession is an expression that does not specify a quantity or suggests a singular (an expression with a or an as an article), the expression is interpreted as not being limited to a specific number. It should be.
 本明細書(請求項を含む)において、ある箇所において「1つ又は複数(one or more)」又は「少なくとも1つ(at least one)」等の表現が用いられ、他の箇所において数量を指定しない又は単数を示唆する表現(a又はanを冠詞とする表現)が用いられているとしても、後者の表現が「1つ」を意味することを意図しない。一般に、数量を指定しない又は単数を示唆する表現(a又はanを冠詞とする表現)は、必ずしも特定の数に限定されないものとして解釈されるべきである。 In the present specification (including claims), expressions such as "one or more" or "at least one" are used in some places, and the quantity is specified in other places. Even if expressions that do not or suggest the singular (expressions with a or an as an article) are used, the latter expression is not intended to mean "one". In general, expressions that do not specify a quantity or suggest a singular (expressions with a or an as an article) should be interpreted as not necessarily limited to a particular number.
 本明細書において、ある実施例の有する特定の構成について特定の効果(advantage/result)が得られる旨が記載されている場合、別段の理由がない限り、当該構成を有する他の1つ又は複数の実施例についても当該効果が得られると理解されるべきである。但し当該効果の有無は、一般に種々の要因、条件、及び/又は状態等に依存し、当該構成により必ず当該効果が得られるものではないと理解されるべきである。当該効果は、種々の要因、条件、及び/又は状態等が満たされたときに実施例に記載の当該構成により得られるものに過ぎず、当該構成又は類似の構成を規定したクレームに係る発明において、当該効果が必ずしも得られるものではない。 In the present specification, when it is stated that a specific effect (advantage / result) can be obtained for a specific configuration of an embodiment, unless there is a specific reason, one or more of the other configurations having the configuration. It should be understood that the effect can also be obtained in the examples of. However, it should be understood that the presence or absence of the effect generally depends on various factors, conditions, and / or states, etc., and that the effect cannot always be obtained by the configuration. The effect is merely obtained by the configuration described in the examples when various factors, conditions, and / or conditions are satisfied, and in the invention relating to the claim that defines the configuration or a similar configuration. , The effect is not always obtained.
 本明細書(請求項を含む)において、「最大化(maximize)」等の用語が用いられる場合は、グローバルな最大値を求めること、グローバルな最大値の近似値を求めること、ローカルな最大値を求めること、及びローカルな最大値の近似値を求めることを含み、当該用語が用いられた文脈に応じて適宜解釈されるべきである。また、これら最大値の近似値を確率的又はヒューリスティックに求めることを含む。同様に、「最小化(minimize)」等の用語が用いられる場合は、グローバルな最小値を求めること、グローバルな最小値の近似値を求めること、ローカルな最小値を求めること、及びローカルな最小値の近似値を求めることを含み、当該用語が用いられた文脈に応じて適宜解釈されるべきである。また、これら最小値の近似値を確率的又はヒューリスティックに求めることを含む。同様に、「最適化(optimize)」等の用語が用いられる場合は、グローバルな最適値を求めること、グローバルな最適値の近似値を求めること、ローカルな最適値を求めること、及びローカルな最適値の近似値を求めることを含み、当該用語が用いられた文脈に応じて適宜解釈されるべきである。また、これら最適値の近似値を確率的又はヒューリスティックに求めることを含む。 In the present specification (including claims), when terms such as "maximize" are used, the global maximum value is obtained, the approximate value of the global maximum value is obtained, and the local maximum value is obtained. Should be interpreted as appropriate according to the context in which the term was used, including finding an approximation of the local maximum. It also includes probabilistically or heuristically finding approximate values of these maximum values. Similarly, when terms such as "minimize" are used, finding the global minimum, finding an approximation of the global minimum, finding the local minimum, and finding the local minimum. It should be interpreted as appropriate according to the context in which the term was used, including finding an approximation of the value. It also includes probabilistically or heuristically finding approximate values of these minimum values. Similarly, when terms such as "optimize" are used, finding a global optimal value, finding an approximation of a global optimal value, finding a local optimal value, and local optimization It should be interpreted as appropriate according to the context in which the term was used, including finding an approximation of the value. It also includes probabilistically or heuristically finding approximate values of these optimal values.
 本明細書(請求項を含む)において、複数のハードウェアが所定の処理を行う場合、各ハードウェアが協働して所定の処理を行ってもよいし、一部のハードウェアが所定の処理の全てを行ってもよい。また、一部のハードウェアが所定の処理の一部を行い、別のハードウェアが所定の処理の残りを行ってもよい。本明細書(請求項を含む)において、「1又は複数のハードウェアが第1の処理を行い、前記1又は複数のハードウェアが第2の処理を行う」等の表現が用いられている場合、第1の処理を行うハードウェアと第2の処理を行うハードウェアは同じものであってもよいし、異なるものであってもよい。つまり、第1の処理を行うハードウェア及び第2の処理を行うハードウェアが、前記1又は複数のハードウェアに含まれていればよい。なお、ハードウェアは、電子回路、又は電子回路を含む装置等を含んでよい。 In the present specification (including claims), when a plurality of hardware performs a predetermined process, the respective hardware may cooperate to perform the predetermined process, or some hardware may perform the predetermined process. You may do all of the above. Further, some hardware may perform a part of a predetermined process, and another hardware may perform the rest of the predetermined process. In the present specification (including claims), when expressions such as "one or more hardware performs the first process and the one or more hardware performs the second process" are used. , The hardware that performs the first process and the hardware that performs the second process may be the same or different. That is, the hardware that performs the first process and the hardware that performs the second process may be included in the one or more hardware. The hardware may include an electronic circuit, a device including the electronic circuit, or the like.
 本明細書(請求項を含む)において、複数の記憶装置(メモリ)がデータの記憶を行う場合、複数の記憶装置(メモリ)のうち個々の記憶装置(メモリ)は、データの一部のみを記憶してもよいし、データの全体を記憶してもよい。 In the present specification (including claims), when a plurality of storage devices (memory) store data, each storage device (memory) among the plurality of storage devices (memory) stores only a part of the data. It may be stored or the entire data may be stored.
 以上、本開示の実施形態について詳述したが、本開示は上記した個々の実施形態に限定されるものではない。特許請求の範囲に規定された内容及びその均等物から導き出される本発明の概念的な思想と趣旨を逸脱しない範囲において種々の追加、変更、置き換え及び部分的削除等が可能である。例えば、前述した全ての実施形態において、数値又は数式を説明に用いている場合は、一例として示したものであり、これらに限られるものではない。また、実施形態における各動作の順序は、一例として示したものであり、これらに限られるものではない。 Although the embodiments of the present disclosure have been described in detail above, the present disclosure is not limited to the individual embodiments described above. Various additions, changes, replacements, partial deletions, etc. are possible without departing from the conceptual idea and purpose of the present invention derived from the contents defined in the claims and their equivalents. For example, in all the above-described embodiments, when numerical values or mathematical formulas are used for explanation, they are shown as examples, and the present invention is not limited thereto. Further, the order of each operation in the embodiment is shown as an example, and is not limited to these.
 本出願は、2020年1月30日に出願した日本国特許出願2020-013838号の優先権の利益に基づき、これを主張するものであり、2020-013838号の全内容を本出願に援用する。 This application asserts this in the interest of the priority of Japanese Patent Application No. 2020-013838, which was filed on January 30, 2020, and the entire contents of No. 2020-013838 are incorporated in this application. ..

Claims (21)

  1.  1つ以上のプロセッサが、検知対象データを異常検知モデルに入力し、前記異常検知モデルから異常度マップを取得するステップと、
     前記1つ以上のプロセッサが、前記異常度マップと前記検知対象データ内の領域を示す領域データとから異常度スコアを取得するステップと、
     前記1つ以上のプロセッサが、前記異常度スコアと前記領域のラベル値とから前記検知対象データの損失値を取得するステップと、
     前記1つ以上のプロセッサが、前記損失値に基づき前記異常検知モデルのパラメータを更新するステップと、
    を有するモデル生成方法。
    A step in which one or more processors input detection target data into an abnormality detection model and acquire an abnormality degree map from the abnormality detection model.
    A step in which the one or more processors obtains an anomaly score from the anomaly map and area data indicating an area in the detection target data.
    A step in which the one or more processors obtains a loss value of the detection target data from the abnormality score and the label value of the region.
    A step in which the one or more processors update the parameters of the anomaly detection model based on the loss value.
    Model generation method having.
  2.  前記1つ以上のプロセッサが、前記検知対象データ内の領域を示す領域データと、前記領域のラベル値とのペアを含む領域ラベルを取得するステップを含み、
     前記領域ラベルを取得するステップは、前記検知対象データのラベルを領域ラベルに変換することによって行われる、請求項1記載のモデル生成方法。
    The one or more processors include a step of acquiring an area label including a pair of an area data indicating an area in the detection target data and a label value of the area.
    The model generation method according to claim 1, wherein the step of acquiring the area label is performed by converting the label of the detection target data into the area label.
  3.  前記検知対象データは、画像データであり、
     前記異常度マップは前記画像データ内の異常個所を示し、
     前記異常度スコアは前記領域の異常度を示し、
     前記領域ラベルは、前記画像データ内の領域を示すバイナリ画像と、前記領域が正常又は異常であるかを示すバイナリ値とのペアを含む、請求項1、若しくは請求項2に記載のモデル生成方法。
    The detection target data is image data and
    The anomaly degree map shows anomalous parts in the image data.
    The anomaly score indicates the anomaly of the region.
    The model generation method according to claim 1 or 2, wherein the area label includes a pair of a binary image indicating an area in the image data and a binary value indicating whether the area is normal or abnormal. ..
  4.  前記異常度スコアを取得するステップは、前記異常度マップと前記バイナリ画像とに基づき前記領域の領域異常度マップを生成し、プーリング関数によって前記領域異常度マップから前記異常度スコアを取得する、請求項3に記載のモデル生成方法。 The step of acquiring the anomaly degree score is to generate a region anomaly degree map of the region based on the anomaly degree map and the binary image, and acquire the anomaly degree score from the region anomaly degree map by a pooling function. Item 3. The model generation method according to item 3.
  5.  前記検知対象データのラベルは、前記検知対象データ全体に異常が含まれているかを示すバイナリ値を含み、
     前記検知対象データに対応する領域ラベルは、前記検知対象データ全体を示す領域データと、前記バイナリ値を示すラベル値とのペアを含む、請求項1乃至4何れか一項記載のモデル生成方法。
    The label of the detection target data includes a binary value indicating whether or not the entire detection target data contains an abnormality.
    The model generation method according to any one of claims 1 to 4, wherein the area label corresponding to the detection target data includes a pair of an area data indicating the entire detection target data and a label value indicating the binary value.
  6.  前記検知対象データのラベルは、前記検知対象データ内の矩形領域に異常が含まれていることを示す矩形情報を含み、
     前記検知対象データに対応する領域ラベルは、前記矩形領域を示す領域データと、前記領域が異常であることを示すラベル値とのペアと、前記検知対象データ内の前記矩形領域を除く領域を示す領域データと、前記矩形領域を除く領域が正常であることを示すラベル値とのペアとを含む、請求項1乃至5何れか一項記載のモデル生成方法。
    The label of the detection target data includes rectangular information indicating that the rectangular region in the detection target data contains an abnormality.
    The area label corresponding to the detection target data indicates a pair of the area data indicating the rectangular area, the label value indicating that the area is abnormal, and the area excluding the rectangular area in the detection target data. The model generation method according to any one of claims 1 to 5, further comprising a pair of region data and a label value indicating that the region other than the rectangular region is normal.
  7.  前記検知対象データのラベルは、前記検知対象データ内の指定領域に異常が含まれていることを示す領域情報を含み、
     前記検知対象データに対応する領域ラベルは、前記指定領域を示す領域データと、前記指定領域が異常であることを示すラベル値とのペアと、前記検知対象データ内の前記指定領域を除く領域を示す領域データと、前記指定領域を除く領域が正常であることを示すラベル値とのペアとを含む、請求項1乃至6何れか一項記載のモデル生成方法。
    The label of the detection target data includes area information indicating that the designated area in the detection target data contains an abnormality.
    The area label corresponding to the detection target data includes a pair of the area data indicating the designated area, a label value indicating that the designated area is abnormal, and an area excluding the designated area in the detection target data. The model generation method according to any one of claims 1 to 6, further comprising a pair of the indicated area data and a label value indicating that the area other than the designated area is normal.
  8.  1つ以上のメモリと、
     1つ以上のプロセッサと、
    を有し、
     前記1つ以上のプロセッサは、
     検知対象データを異常検知モデルに入力し、前記異常検知モデルから異常度マップを取得し、
     前記異常度マップと前記検知対象データ内の領域を示す領域データとから異常度スコアを取得し、
     前記異常度スコアと前記領域のラベル値とから前記検知対象データの損失値を取得し、
     前記損失値に基づき前記異常検知モデルのパラメータを更新する、
    よう構成されるモデル生成装置。
    With one or more memories
    With one or more processors
    Have,
    The one or more processors
    Input the detection target data into the anomaly detection model, acquire the anomaly degree map from the anomaly detection model, and
    An abnormality score is obtained from the abnormality degree map and the area data indicating the area in the detection target data, and the abnormality degree score is acquired.
    The loss value of the detection target data is acquired from the abnormality degree score and the label value of the area, and the loss value is obtained.
    Update the parameters of the anomaly detection model based on the loss value.
    A model generator configured as such.
  9.  前記1つ以上のプロセッサが、前記検知対象データ内の領域を示す領域データと、前記領域のラベル値とのペアを含む領域ラベルを取得し、
    前記領域ラベルの取得は、前記検知対象データのラベルを領域ラベルに変換することにより行われる、請求項8記載のモデル生成装置。
    The one or more processors acquire an area label including a pair of an area data indicating an area in the detection target data and a label value of the area.
    The model generation device according to claim 8, wherein the acquisition of the area label is performed by converting the label of the detection target data into the area label.
  10.  前記検知対象データは、画像データであり、
     前記異常度マップは前記画像データの異常個所を示し、
     前記異常度スコアは前記画像データ内の領域の異常度を示し、
     前記領域ラベルは、前記画像データ内の領域を示すバイナリ画像と、前記領域が正常又は異常であるかを示すバイナリ値とのペアを含む、請求項8若しくは請求項9に記載のモデル生成装置。
    The detection target data is image data and
    The anomaly degree map shows the anomalous part of the image data.
    The anomaly score indicates the anomaly of a region in the image data.
    The model generator according to claim 8 or 9, wherein the area label includes a pair of a binary image indicating an area in the image data and a binary value indicating whether the area is normal or abnormal.
  11.  前記1つ以上のプロセッサは、前記異常度マップと前記バイナリ画像とに基づき前記領域の領域異常度マップを生成し、プーリング関数によって前記領域異常度マップから前記異常度スコアを取得する、請求項10記載のモデル生成装置。 10. The one or more processors generate a region anomaly map of the region based on the anomaly map and the binary image, and acquire the anomaly score from the region anomaly map by a pooling function. The model generator described.
  12.  前記検知対象データのラベルは、前記検知対象データ全体に異常が含まれているかを示すバイナリ値を含み、
     前記検知対象データに対応する領域ラベルは、前記検知対象データ全体を示す領域データと、前記バイナリ値を示すラベル値とのペアを含む、請求項8乃至11何れか一項記載のモデル生成装置。
    The label of the detection target data includes a binary value indicating whether or not the entire detection target data contains an abnormality.
    The model generation device according to any one of claims 8 to 11, wherein the area label corresponding to the detection target data includes a pair of an area data indicating the entire detection target data and a label value indicating the binary value.
  13.  前記検知対象データのラベルは、前記検知対象データ内の矩形領域に異常が含まれていることを示す矩形情報を含み、
     前記検知対象データに対応する領域ラベルは、前記矩形領域を示す領域データと、前記領域が異常であることを示すラベル値とのペアと、前記検知対象データ内の前記矩形領域を除く領域を示す領域データと、前記矩形領域を除く領域が正常であることを示すラベル値とのペアとを含む、請求項8乃至12何れか一項記載のモデル生成装置。
    The label of the detection target data includes rectangular information indicating that the rectangular region in the detection target data contains an abnormality.
    The area label corresponding to the detection target data indicates a pair of the area data indicating the rectangular area, the label value indicating that the area is abnormal, and the area excluding the rectangular area in the detection target data. The model generator according to any one of claims 8 to 12, comprising a pair of region data and a label value indicating that the region other than the rectangular region is normal.
  14.  前記検知対象データのラベルは、前記検知対象データ内の指定領域に異常が含まれていることを示す領域情報を含み、
     前記検知対象データに対応する領域ラベルは、前記指定領域を示す領域データと、前記指定領域が異常であることを示すラベル値とのペアと、前記検知対象データ内の前記指定領域を除く領域を示す領域データと、前記指定領域を除く領域が正常であることを示すラベル値とのペアとを含む、請求項8乃至13何れか一項記載のモデル生成装置。
    The label of the detection target data includes area information indicating that the designated area in the detection target data contains an abnormality.
    The area label corresponding to the detection target data includes a pair of the area data indicating the designated area, a label value indicating that the designated area is abnormal, and an area excluding the designated area in the detection target data. The model generator according to any one of claims 8 to 13, comprising a pair of the area data shown and a label value indicating that the area other than the designated area is normal.
  15.  検知対象データを異常検知モデルに入力し、前記異常検知モデルから異常度マップを取得する処理と、
     前記異常度マップと前記検知対象データ内の領域を示す領域データとから異常度スコアを取得する処理と、
     前記異常度スコアと前記領域のラベル値とから前記検知対象データの損失値を取得する処理と、
     前記損失値に基づき前記異常検知モデルのパラメータを更新する処理と、
    を1つ以上のコンピュータに実行させるプログラム。
    The process of inputting the detection target data into the abnormality detection model and acquiring the abnormality degree map from the abnormality detection model,
    The process of acquiring the anomaly degree score from the anomaly degree map and the area data indicating the area in the detection target data, and
    The process of acquiring the loss value of the detection target data from the abnormality score and the label value of the area, and
    The process of updating the parameters of the abnormality detection model based on the loss value, and
    A program that causes one or more computers to run.
  16.  1つ以上のプロセッサが、検知対象データを訓練済み異常検知モデルに入力し、前記訓練済み異常検知モデルから異常度マップを取得するステップと、
     前記1つ以上のプロセッサが、前記異常度マップから所定領域の異常度スコアを取得するステップと、
     前記1つ以上のプロセッサが、前記異常度スコアに基づき前記検知対象データの状態を判定するステップと、
    を有する異常検知方法。
    A step in which one or more processors input detection target data into a trained anomaly detection model and acquire an anomaly degree map from the trained anomaly detection model.
    A step in which the one or more processors obtains an anomaly score in a predetermined area from the anomaly map.
    A step in which the one or more processors determine the state of the data to be detected based on the anomaly score.
    Anomaly detection method with.
  17.  前記異常度スコアは、プーリング関数に従って取得される、請求項16記載の異常検知方法。 The abnormality detection method according to claim 16, wherein the abnormality degree score is acquired according to a pooling function.
  18.  前記検知対象データは複数の画像データであり、
     前記異常検知モデルは、異なる角度から撮影された前記複数の画像データに対して異常度マップを取得する、請求項16若しくは17記載の異常検知方法。
    The detection target data is a plurality of image data, and is
    The abnormality detection method according to claim 16 or 17, wherein the abnormality detection model acquires an abnormality degree map for the plurality of image data taken from different angles.
  19. 前記検知対象データを判定するステップは、前記検知対象データが正常又は異常であるかを判定するステップである、請求項16乃至18何れか記載の異常検知方法。 The abnormality detection method according to any one of claims 16 to 18, wherein the step of determining the detection target data is a step of determining whether the detection target data is normal or abnormal.
  20.  1つ以上のメモリと、
     1つ以上のプロセッサと、
    を有し、
     前記1つ以上のプロセッサは、
     検知対象データを訓練済み異常検知モデルに入力し、前記訓練済み異常検知モデルから異常度マップを取得し、
     前記異常度マップからプーリング関数に従って異常度スコアを取得し、
     前記異常度スコアに基づき前記検知対象データの状態を判定する、
    よう構成される異常検知装置。
    With one or more memories
    With one or more processors
    Have,
    The one or more processors
    Input the detection target data into the trained anomaly detection model, acquire the anomaly degree map from the trained anomaly detection model, and obtain the anomaly degree map.
    The anomaly score is obtained from the anomaly map according to the pooling function.
    The state of the detection target data is determined based on the abnormality degree score.
    Anomaly detection device configured as such.
  21.  検知対象データを訓練済み異常検知モデルに入力し、前記訓練済み異常検知モデルから異常度マップを取得する処理と、
     前記異常度マップからプーリング関数に従って異常度スコアを取得する処理と、
     前記異常度スコアに基づき前記検知対象データの状態を判定する処理と、
    を1つ以上のコンピュータに実行させるプログラム。
    The process of inputting the detection target data into the trained anomaly detection model and acquiring the anomaly degree map from the trained anomaly detection model,
    The process of acquiring the anomaly score from the anomaly map according to the pooling function,
    A process of determining the state of the detection target data based on the abnormality score, and
    A program that causes one or more computers to run.
PCT/JP2021/002956 2020-01-30 2021-01-28 Model generation method, model generation device, abnormality detection method, abnormality detection device, and program WO2021153646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-013838 2020-01-30
JP2020013838A JP2023052707A (en) 2020-01-30 2020-01-30 Model generation method, model generation apparatus, anomaly detection method, anomaly detection apparatus, and program

Publications (1)

Publication Number Publication Date
WO2021153646A1 true WO2021153646A1 (en) 2021-08-05

Family

ID=77079852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002956 WO2021153646A1 (en) 2020-01-30 2021-01-28 Model generation method, model generation device, abnormality detection method, abnormality detection device, and program

Country Status (2)

Country Link
JP (1) JP2023052707A (en)
WO (1) WO2021153646A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096006A (en) * 2017-11-21 2019-06-20 キヤノン株式会社 Information processing device, and information processing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096006A (en) * 2017-11-21 2019-06-20 キヤノン株式会社 Information processing device, and information processing method

Also Published As

Publication number Publication date
JP2023052707A (en) 2023-04-12

Similar Documents

Publication Publication Date Title
CN110322500B (en) Optimization method and device for instant positioning and map construction, medium and electronic equipment
CN111986178A (en) Product defect detection method and device, electronic equipment and storage medium
US9141852B1 (en) Person detection and pose estimation system
JP2016085704A (en) Information processing system, information processing device, information processing method, and program
US10885620B2 (en) Neural network image processing system
CN110349212B (en) Optimization method and device for instant positioning and map construction, medium and electronic equipment
CN113379813A (en) Training method and device of depth estimation model, electronic equipment and storage medium
JP2019159820A (en) Inspection device, image identification device, identification device, inspection method, and inspection program
CN113052295A (en) Neural network training method, object detection method, device and equipment
CN115205128A (en) Depth camera temperature drift correction method, system, equipment and medium based on structured light
WO2021153646A1 (en) Model generation method, model generation device, abnormality detection method, abnormality detection device, and program
JP2011238148A (en) Analysis result display device and analysis result display method
JP2020064364A (en) Learning device, image generating device, learning method, and learning program
CN115393251A (en) Defect detection method and device for printed circuit board, storage medium and electronic equipment
CN111242017A (en) Multi-marking-line pavement crack identification method, device, equipment and storage medium
CN112446842A (en) Image reconstruction method, system, device and medium based on sparse and dense depth maps
US11874415B2 (en) Earthquake detection and response via distributed visual input
WO2020037553A1 (en) Image processing method and device, and mobile device
CN114626545A (en) Data preparation for artificial intelligence models
WO2020075468A1 (en) Environmental similarity display device, environmental similarity display method, and environmental similarity display algorithm
CN111062920A (en) Method and device for generating semiconductor detection report
TWI803334B (en) Method for optimizing depth estimation model and detecting object distance, and related equipment
CN113963322B (en) Detection model training method and device and electronic equipment
CN117726145B (en) Cable inspection processing method and device, electronic equipment and computer readable medium
JPWO2020031423A1 (en) Object detection method, object detection device and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP