WO2021153548A1 - Futures trading information display program - Google Patents

Futures trading information display program Download PDF

Info

Publication number
WO2021153548A1
WO2021153548A1 PCT/JP2021/002607 JP2021002607W WO2021153548A1 WO 2021153548 A1 WO2021153548 A1 WO 2021153548A1 JP 2021002607 W JP2021002607 W JP 2021002607W WO 2021153548 A1 WO2021153548 A1 WO 2021153548A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
futures
increase
association
degree
Prior art date
Application number
PCT/JP2021/002607
Other languages
French (fr)
Japanese (ja)
Inventor
綾子 澤田
Original Assignee
Assest株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Assest株式会社 filed Critical Assest株式会社
Publication of WO2021153548A1 publication Critical patent/WO2021153548A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange

Definitions

  • the present invention relates to a futures trading information display program that displays information on an increase or decrease in futures to be traded.
  • an object of the present invention is to provide a futures trading information display program that displays information on an increase or decrease in futures to be traded.
  • the futures trading information display program to which the present invention is applied is a futures trading information display program that displays information on the increase or decrease of futures to be traded.
  • the above information acquisition is performed using the information acquisition step for acquiring the above information, the reference market information regarding the past market conditions acquired in advance, and the three or more levels of association between the increase / decrease data of each futures at a later time with respect to the past market conditions.
  • a display step for displaying the increase / decrease data of each of the above futures is given to the computer by giving priority to the one with a higher degree of association of three or more levels of the reference market condition information according to the market condition information acquired in the step and the increase / decrease data of each futures. It is characterized by being executed.
  • FIG. 1 It is a block diagram which shows the whole structure of the system to which this invention is applied. It is a figure which shows the specific configuration example of a search device. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is
  • FIG. 1 is a block diagram showing an overall configuration of a futures transaction information display system 1 in which a futures transaction information display program to which the present invention is applied is implemented.
  • the futures transaction information display system 1 includes an information acquisition unit 9, a search device 2 connected to the information acquisition unit 9, and a database 3 connected to the search device 2.
  • the information acquisition unit 9 is a device for a person who uses this system to input various commands and information, and is specifically composed of a keyboard, buttons, a touch panel, a mouse, a switch, and the like.
  • the information acquisition unit 9 is not limited to a device for inputting text information, and may be configured by a device such as a microphone that can detect voice and convert it into text information. Further, the information acquisition unit 9 may be configured as an image pickup device capable of capturing an image of a camera or the like.
  • the information acquisition unit 9 may be configured by a scanner having a function of recognizing a character string from a paper-based document. Further, the information acquisition unit 9 may be integrated with the search device 2 described later. The information acquisition unit 9 outputs the detected information to the search device 2.
  • the information acquisition unit 9 may be configured by means for specifying the position information by scanning the map information.
  • the information acquisition unit 9 also includes a temperature sensor, a humidity sensor, a flow rate sensor, and other sensors capable of identifying substances and physical properties.
  • the information acquisition unit 9 may be configured by means for automatically fetching character strings and data posted on a site on the Internet.
  • Database 3 stores various information necessary for displaying futures transaction information.
  • Information necessary for displaying future market information includes reference market information regarding past market conditions, reference event information that reflects events that occurred during the detection period of past market conditions, and external information regarding the detection period of past market conditions.
  • External environmental information for reference that reflects the environment
  • household information for reference that reflects statistical data about households at the time of detection of past market conditions
  • Real estate information reference expert opinion information that reflects the opinions of experts announced at the time of past market condition detection
  • reference natural environment information that reflects information on the natural environment at the time of past market condition detection
  • a data set with the increase / decrease data of each future in the past market conditions is stored.
  • the database 3 contains reference event information, reference external environment information, reference household information, reference real estate information, reference expert opinion information, and reference natural environment information. Any one or more of the above and the increase / decrease data of each future in the past market conditions are stored in association with each other.
  • the search device 2 is composed of, for example, an electronic device such as a personal computer (PC), but is embodied in any other electronic device such as a mobile phone, a smartphone, a tablet terminal, a wearable terminal, etc., in addition to the PC. It may be converted. The user can obtain a search solution by the search device 2.
  • PC personal computer
  • FIG. 2 shows a specific configuration example of the search device 2.
  • the search device 2 performs wired communication or wireless communication with a control unit 24 for controlling the entire search device 2 and an operation unit 25 for inputting various control commands via operation buttons, a keyboard, or the like.
  • a communication unit 26 for the purpose, an estimation unit 27 for making various judgments, and a storage unit 28 for storing a program for performing a search to be executed represented by a hard disk or the like are connected to the internal bus 21, respectively. .. Further, a display unit 23 as a monitor that actually displays information is connected to the internal bus 21.
  • the control unit 24 is a so-called central control unit for controlling each component mounted in the search device 2 by transmitting a control signal via the internal bus 21. Further, the control unit 24 transmits various control commands via the internal bus 21 in response to the operation via the operation unit 25.
  • the operation unit 25 is embodied by a keyboard or a touch panel, and an execution command for executing a program is input from the user.
  • the operation unit 25 notifies the control unit 24 of the execution command.
  • the control unit 24, including the estimation unit 27, executes a desired processing operation in cooperation with each component.
  • the operation unit 25 may be embodied as the information acquisition unit 9 described above.
  • the estimation unit 27 estimates the search solution.
  • the estimation unit 27 reads out various information stored in the storage unit 28 and various information stored in the database 3 as necessary information when executing the estimation operation.
  • the estimation unit 27 may be controlled by artificial intelligence. This artificial intelligence may be based on any well-known artificial intelligence technique.
  • the display unit 23 is composed of a graphic controller that creates a display image based on the control by the control unit 24.
  • the display unit 23 is realized by, for example, a liquid crystal display (LCD) or the like.
  • the storage unit 28 When the storage unit 28 is composed of a hard disk, predetermined information is written to each address based on the control by the control unit 24, and this is read out as needed. Further, the storage unit 28 stores a program for executing the present invention. This program is read and executed by the control unit 24.
  • the futures trading information display system 1 is used in futures trading, and as shown in FIG. 3, for example, three or more levels of association between reference market information and increase / decrease data of each future are preset and acquired. Is a prerequisite.
  • Reference market information is various information related to market conditions. Examples of this reference market information are interest rates, futures, exchange rates, stock prices of each stock, crude oil, precious metals, bitcoin, and other price movements. This reference market information may be displayed as a time-series chart, a line graph, or the like for these objects. In addition, information such as Bollinger band, volume, MACD, and moving average line may be attached.
  • this market information may be accompanied by information such as each futures, a chart of a brand, a Bollinger band, MACD, and a moving average line.
  • information such as a chart showing price movements between futures, Bollinger Bands, MACD, and moving averages may be attached. This reference market information was obtained before the actual increase or decrease of futures was predicted.
  • Futures here is a concept that includes all futures to be bought and sold, and includes all futures such as agricultural products such as soybeans and corn, petroleum, gold, precious metals, and shapeless stock indexes.
  • the increase / decrease data of each future is data showing how much the increase / decrease of each future was at the time after acquiring the reference market information.
  • This increase / decrease data may be counted by the actual increase / decrease price range, or may be expressed by the increase / decrease rate.
  • This increase / decrease data is represented by the increase / decrease of the futures at the measurement time point (later time point) with respect to the futures at the previous time point (that is, the time point when the reference market information is acquired).
  • the time point before here is 10 seconds before, 1 minute before, 30 minutes before, 1 hour before, 4 hours before, 1 day before, 10 days ago, 1 month ago, 1 year ago, 5 years ago, etc. As in the above, it may be configured with any time width with respect to the measurement time point.
  • the futures increase / decrease data indicates the increase / decrease of the futures at the measurement time point with respect to the futures at the previous time point when a certain point in the chart is set as the measurement time point.
  • the futures increase / decrease data may represent the foot itself in the futures chart.
  • the input data is, for example, reference market condition information P01 to P03.
  • the reference market information as such input data is linked to the output. In this output, futures increase / decrease data as an output solution is displayed.
  • the market information for reference is related to each other through the degree of association of three or more levels with respect to the increase / decrease data of futures as this output solution.
  • the reference market information is arranged on the left side via this degree of association, and the increase / decrease data of each futures is arranged on the right side via this degree of association.
  • the degree of association indicates the degree to which futures increase / decrease data is highly relevant to the reference market information arranged on the left side. In other words, this degree of association is an index showing what kind of futures increase / decrease data is likely to be associated with each reference market information, and the most probable futures increase / decrease data from the reference market information. It shows the accuracy of selection. In the example of FIG. 3, w13 to w19 are shown as the degree of association.
  • w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the increase / decrease data of futures as an output. On the contrary, the closer to one point, the lower the degree of relevance of each combination as an intermediate node to the increase / decrease data of futures as an output.
  • the search device 2 acquires in advance the degree of association w13 to w19 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference market information and the futures increase / decrease data in that case is adopted in determining the actual search solution, and analyzes these. By analyzing, the degree of association shown in FIG. 3 is created.
  • a certain reference market information is when the preceding MACD pulls out the lagging average (SIGNAL) from the bottom to the top in a certain futures chart.
  • SIGNAL lagging average
  • This analysis may be performed by artificial intelligence.
  • analysis is performed from the price movement data of each futures in the past. This may be, for example, extracted from the electronic data of past futures charts.
  • reference market information P01 if there are many cases of increase / decrease data A1 (4% increase in gold) of each future, set a higher degree of association leading to this increase / decrease data A1 and increase / decrease data A3 (corn 5). When there are many cases of% up), the degree of association that leads to this increase / decrease data A3 is set higher.
  • the increase / decrease data A1 and the increase / decrease data A3 are linked. The degree of association is set to 2 points.
  • the degree of association shown in FIG. 3 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
  • Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, in order to actually give new advice on futures trading to customers, the above-mentioned learned data will be used to predict the increase or decrease of futures. In such a case, market information on market conditions at the time of actual new futures trading will be acquired.
  • This market condition information is composed of the same kind of data as the above-mentioned reference market condition information.
  • the market condition information to be newly acquired is input by the above-mentioned information acquisition unit 9.
  • the information acquisition unit 9 may acquire charts, price movement data, and the like as electronic data.
  • the future futures that is, future futures increase / decrease data
  • the degree of association shown in FIG. 3 (Table 1) acquired in advance is referred to.
  • the increase / decrease data A2 is associated with w15 and the increase / decrease data A3 is associated with the association degree w16 via the degree of association.
  • the increase / decrease data A2 having the highest degree of association is selected as the optimum solution.
  • the status of each future that may occur in the future can be searched through the futures increase / decrease data and displayed to the user (consultant).
  • the user (consultant) can obtain a guideline for futures to be bought and sold based on the increase / decrease data of the searched futures.
  • this advice in addition to simply displaying the increase / decrease data of the searched futures, based on this increase / decrease data, it is also displayed specifically which futures should be purchased or sold. You may configure the advice by doing so.
  • the input data is, for example, reference market condition information P01 to P03 and reference event information P14 to 17.
  • the intermediate node shown in FIG. 4 is a combination of reference event information and reference market information as such input data.
  • Each intermediate node is further linked to the output. In this output, the increase / decrease data of each futures as an output solution is displayed.
  • Reference event information is a concept that includes various social news, events, incidents, celebrations, ceremonies, etc. that occurred in Japan or abroad, as well as news, events, incidents, celebrations, ceremonies, etc. that occurred about each company. be.
  • This reference event information can be obtained from blogs, analyst reports, securities reports, advertisements, press releases, news articles, etc. regarding each company or society as a whole.
  • These reference event information may be extracted through a character string, a dependency, or the like obtained by analyzing a news article through text mining.
  • the input data is, for example, reference market condition information P01 to P03 and reference event information P14 to 17.
  • the intermediate node shown in FIG. 4 is a combination of reference event information and reference market information as such input data.
  • Each intermediate node is further linked to the output. In this output, the increase / decrease data of each futures as an output solution is displayed.
  • Each combination of reference market information and reference event information (intermediate node) is associated with each other through three or more levels of association with the increase / decrease data of each future as this output solution.
  • the reference market information and the reference event information are arranged on the left side via this degree of association, and the increase / decrease data of each future is arranged on the right side via this degree of association.
  • the degree of association indicates the degree of relevance to the increase / decrease data of each futures with respect to the reference market information and the reference event information arranged on the left side.
  • this degree of association is an index showing what kind of futures increase / decrease data is likely to be associated with each reference market information and reference event information, and is a reference market information and reference event.
  • w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
  • the search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference market condition information, the reference event information, and the increase / decrease data of each future in that case was suitable for determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 4 is created.
  • This analysis may be performed by artificial intelligence.
  • the increase / decrease data of each future is analyzed from the past data.
  • the degree of association leading to this increase / decrease data A1 is set higher, and there are many cases of increase / decrease data A2 (gold 2% down).
  • the degree of association connected to the increase / decrease data A2 is set high, and the degree of association connected to the increase / decrease data A1 is set low.
  • the intermediate node 61a it is linked to the output of the increase / decrease data A1 and the increase / decrease data A2. The degree is set to 2 points.
  • the degree of association shown in FIG. 4 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
  • the node 61b is a node in which the reference event information P14 is combined with the reference market condition information P01, the degree of association of the increase / decrease data A3 is w15, and the degree of association of the increase / decrease data A5.
  • the node 61c is a node that is a combination of the reference event information P15 and P17 with respect to the reference market information P02, and the degree of association of the increase / decrease data A2 is w17 and the degree of association of the increase / decrease data A4 is w18.
  • Such degree of association is what is called learned data in artificial intelligence.
  • learned data After creating such learned data, when actually searching for increase / decrease data for displaying futures transaction information, the above-mentioned learned data will be used.
  • the market information regarding the market conditions at the time of new futures trading is acquired, and the event information reflecting the events that occurred at the time of new futures trading is acquired.
  • This event information corresponds to the above-mentioned reference event information, and data such as news, newspapers, and blogs may be taken in or directly input.
  • the optimum increase / decrease data for each futures is searched for.
  • the degree of association shown in FIG. 4 (Table 1) acquired in advance is referred to.
  • the node 61d is associated through the degree of association, and this node In 61d, the increase / decrease data A3 is associated with w19, and the increase / decrease data A4 is associated with the degree of association w20.
  • the increase / decrease data A3 having the highest degree of association is selected as the optimum solution.
  • Table 2 below shows an example of the degree of association w1 to w12 extending from the input.
  • the intermediate node 61 may be selected based on the degree of association w1 to w12 extending from this input. That is, the larger the degree of association w1 to w12, the heavier the weighting in the selection of the intermediate node 61 may be. However, the degrees of association w1 to w12 may all have the same value, and the weights in the selection of the intermediate node 61 may all be the same.
  • FIG. 5 shows an example in which the combination of the above-mentioned reference market condition information and the reference external environment information and the increase / decrease data of each futures with respect to the combination are set to three or more levels of association.
  • the input data is, for example, reference market condition information P01 to P03 and reference external environment information P18 to 21.
  • the intermediate node shown in FIG. 5 is a combination of the reference market condition information and the reference external environment information as such input data.
  • Each intermediate node is further linked to the output. In this output, the increase / decrease data of each futures as an output solution is displayed.
  • Each combination (intermediate node) of the reference market information and the reference external environment information is associated with each other through three or more levels of association with the increase / decrease data of each future as this output solution.
  • the reference market information and the reference external environment information are arranged on the left side via this degree of association, and the increase / decrease data is arranged on the right side via this degree of association.
  • the degree of association indicates the degree of relevance to the increase / decrease data with respect to the reference market condition information and the reference external environment information arranged on the left side. In other words, this degree of association is an index showing what kind of increase / decrease data is likely to be associated with each reference market condition information and reference external environment information, and the reference market information and reference external environment information.
  • w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
  • the search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference market condition information, the reference external environment information, and the increase / decrease data in that case was suitable for determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 5 is created.
  • This analysis may be performed by artificial intelligence.
  • the increase / decrease data is analyzed from the past data.
  • the intermediate node 61a it is linked to the output of the increase / decrease data A1 and the increase / decrease data A2.
  • the degree is set to 2 points.
  • the degree of association shown in FIG. 5 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
  • the node 61b is a node that is a combination of the reference market condition information P01 and the reference external environment information P18, and the degree of association of the increase / decrease data A3 is w15 and the association of the increase / decrease data A5.
  • the degree is w16.
  • the node 61c is a node that is a combination of the reference external environment information P19 and P21 with respect to the reference market condition information P02, and the degree of association of the increase / decrease data A2 is w17 and the degree of association of the increase / decrease data A4 is w18.
  • Such degree of association is what is called learned data in artificial intelligence.
  • the above-mentioned trained data After creating such trained data, when actually giving advice from now on, the above-mentioned trained data will be used.
  • external environment information that reflects the external environment at the time of new futures trading is acquired.
  • the external environment information for example, if it is employment statistics information, the data may be directly taken in. If it is other statistical data, the data may be acquired directly.
  • the degree of association shown in FIG. 5 (Table 1) acquired in advance is referred to.
  • the node 61d is associated with the node 61d through the degree of association.
  • the increase / decrease data A3 is associated with w19
  • the increase / decrease data A4 is associated with the degree of association w20.
  • the increase / decrease data A3 having the highest degree of association is selected as the optimum solution.
  • FIG. 6 shows an example in which a combination of the above-mentioned reference market information and reference household information and three or more levels of association with the increase / decrease data of each futures for the combination are set.
  • Reference household information includes various data related to household consumption status survey, household data, average working hours per week, savings amount statistical data, annual income statistical data, household budget, etc.
  • the input data is, for example, reference market condition information P01 to P03 and reference household information P22 to 25.
  • the intermediate node shown in FIG. 6 is a combination of reference market information and reference household information as such input data.
  • Each intermediate node is further linked to the output. In this output, the increase / decrease data of each futures as an output solution is displayed.
  • Each combination of reference market information and reference household information is associated with each other through three or more levels of association with the increase / decrease data of each future as this output solution.
  • Reference market information and reference household information are arranged on the left side via this degree of association, and increase / decrease data are arranged on the right side via this degree of association.
  • the degree of association indicates the degree of relevance to the increase / decrease data with respect to the reference market information and the reference household information arranged on the left side.
  • this degree of association is an index showing what kind of increase / decrease data is likely to be associated with each reference market condition information and reference household budget information, and is the most from the reference market condition information and the reference household budget information. It shows the accuracy in selecting the increase / decrease data of each probable future.
  • w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
  • the search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference market condition information, the reference household information, and the increase / decrease data in that case was suitable for determining the actual search solution. By analyzing and analyzing the above, the degree of association shown in FIG. 6 is created.
  • This analysis may be performed by artificial intelligence.
  • the increase / decrease data is analyzed from the past data.
  • the intermediate node 61a it is linked to the output of the increase / decrease data A1 and the increase / decrease data A2.
  • the degree is set to 2 points.
  • the degree of association shown in FIG. 6 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
  • the node 61b is a node that is a combination of the reference market information P01 and the reference household information P22, and the degree of association of the increase / decrease data A3 is w15 and the degree of association of the increase / decrease data A5.
  • the node 61c is a node that is a combination of the reference household information P23 and P25 with respect to the reference market information P02, and the degree of association of the increase / decrease data A2 is w17 and the degree of association of the increase / decrease data A4 is w18.
  • Such degree of association is what is called learned data in artificial intelligence.
  • the above-mentioned trained data After creating such trained data, when actually giving advice from now on, the above-mentioned trained data will be used.
  • household information that reflects statistical data on the household budget at the time of new futures trading is acquired. If the household information is data published by each government agency, such as statistical data on the amount of savings, the data may be directly taken in. If it is other statistical data, the data may be acquired directly.
  • the degree of association shown in FIG. 6 (Table 1) acquired in advance is referred to.
  • the node 61d is associated through the degree of association, and this node In 61d, the increase / decrease data A3 is associated with w19, and the increase / decrease data A4 is associated with the degree of association w20.
  • the increase / decrease data A3 having the highest degree of association is selected as the optimum solution.
  • reference real estate information that reflects statistical data on real estate at the time of detection of past market conditions may be used as input data.
  • the detailed description will be omitted by replacing the reference household information with the reference real estate information and replacing the household information with the real estate information.
  • the combination of the reference market condition information and the reference real estate information and the degree of association with the increase / decrease data of each of the above futures will be used at three levels or more.
  • the node 61 defines the degree of association between the combination of the reference market condition information and the reference real estate information and the increase / decrease data of each of the above futures in three or more stages.
  • Reference real estate information includes all information related to real estate such as office vacancy rate, tsubo unit price, rent market price, land price, statistical data on vacant houses, etc.
  • FIG. 7 shows an example in which a combination of the above-mentioned reference market condition information and reference expert opinion information and three or more levels of association with the increase / decrease data of each futures for the combination are set.
  • Reference expert opinion information means any information that gives an expert opinion on the increase or decrease of futures, and is specialized in futures forecasts and reasons for increase or decrease in stocks published in analyst reports and newspaper articles. Home comments, views, etc. Also, the reference expert opinion information may simply be the prediction itself as to whether each futures will rise, fall, or remain unchanged. This reference expert opinion information includes opinions on the entire Nikkei 225 futures, opinions on specific segments and industries, and opinions on individual futures. In addition, the reference expert opinion information may include comments by experts (analysts) posted on the Internet and forecasts of increase or decrease.
  • the input data is, for example, reference market condition information P01 to P03 and reference expert opinion information P26 to 29.
  • the intermediate node shown in FIG. 7 is a combination of reference market condition information and reference expert opinion information as such input data.
  • Each intermediate node is further linked to the output. In this output, the increase / decrease data of each futures as an output solution is displayed.
  • Each combination (intermediate node) of the reference market condition information and the reference expert opinion information is associated with each other through three or more levels of association with the increase / decrease data of each future as this output solution.
  • the reference market information and the reference expert opinion information are arranged on the left side through this degree of association, and the increase / decrease data is arranged on the right side through this degree of association.
  • the degree of association indicates the degree of relevance to the increase / decrease data with respect to the reference market condition information and the reference expert opinion information arranged on the left side. In other words, this degree of association is an index showing what kind of increase / decrease data each reference market condition information and reference expert opinion information is likely to be associated with, and is a reference market information and reference expert.
  • w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
  • the search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. 7. That is, the search device 2 accumulates past data as to which of the reference market condition information, the reference expert opinion information, and the increase / decrease data in that case was suitable for determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 7 is created.
  • This analysis may be performed by artificial intelligence.
  • the increase / decrease data is analyzed from the past data.
  • the intermediate node 61a it is linked to the output of the increase / decrease data A1 and the increase / decrease data A2.
  • the degree is set to 2 points.
  • the degree of association shown in FIG. 7 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
  • the node 61b is a node in which the reference market condition information P01 is combined with the reference expert opinion information P26, and the degree of association of the increase / decrease data A3 is w15 and the increase / decrease data A5.
  • the degree of association is w16.
  • the node 61c is a node that is a combination of the reference expert opinion information P27 and P29 with respect to the reference market information P02, and the degree of association of the increase / decrease data A2 is w17 and the degree of association of the increase / decrease data A4 is w18. ..
  • Such degree of association is what is called learned data in artificial intelligence.
  • the above-mentioned trained data After creating such trained data, when actually giving advice from now on, the above-mentioned trained data will be used.
  • expert opinion information that reflects the expert opinions announced at the time of new futures trading will be acquired.
  • the expert opinion information for example, if there is an expert opinion expressed in a newspaper article, the data may be directly taken in.
  • the degree of association shown in FIG. 7 (Table 1) acquired in advance is referred to.
  • the node 61d is associated through the degree of association.
  • the increase / decrease data A3 is associated with w19
  • the increase / decrease data A4 is associated with the degree of association w20.
  • the increase / decrease data A3 having the highest degree of association is selected as the optimum solution.
  • FIG. 8 shows an example in which the combination of the above-mentioned reference market condition information and the reference natural environment information and the increase / decrease data of each futures with respect to the combination are set to three or more levels of association.
  • Reference natural environment information means all information related to the natural environment such as disaster data, temperature data, precipitation data, wind direction data, humidity data, etc., and data on the past natural environment released by the Meteorological Agency, or private companies and private companies. Data on the past natural environment released by individuals.
  • the input data is, for example, reference market condition information P01 to P03 and reference natural environment information P30 to 33.
  • the intermediate node shown in FIG. 8 is a combination of the reference market condition information and the reference natural environment information as such input data.
  • Each intermediate node is further linked to the output. In this output, the increase / decrease data of each futures as an output solution is displayed.
  • Each combination (intermediate node) of the reference market information and the reference natural environment information is associated with each other through three or more levels of association with the increase / decrease data of each future as this output solution.
  • the reference market information and the reference natural environment information are arranged on the left side via this degree of association, and the increase / decrease data are arranged on the right side via this degree of association.
  • the degree of association indicates the degree of relevance to the increase / decrease data with respect to the reference market condition information and the reference natural environment information arranged on the left side. In other words, this degree of association is an index showing what kind of increase / decrease data is likely to be associated with each reference market condition information and reference natural environment information, and the reference market condition information and reference natural environment information.
  • w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
  • the search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference market condition information, the reference natural environment information, and the increase / decrease data in that case was suitable for determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 8 is created.
  • This analysis may be performed by artificial intelligence.
  • the increase / decrease data is analyzed from the past data.
  • the intermediate node 61a to which the reference natural environment information P32 is linked in the reference market condition information P01 it is linked to the output of the increase / decrease data A1 and the increase / decrease data A2.
  • the degree of association of w14 is set to 7 points, and the degree of association of w14 connected to the increase / decrease data A2 is set to 2 points.
  • the degree of association shown in FIG. 8 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
  • the node 61b is a node that is a combination of the reference market condition information P01 and the reference natural environment information P30, and the degree of association of the increase / decrease data A3 is w15 and the association of the increase / decrease data A5.
  • the degree is w16.
  • the node 61c is a node that is a combination of the reference expert opinion information P31 and P33 with respect to the reference market information P02, and the degree of association of the increase / decrease data A2 is w17 and the degree of association of the increase / decrease data A4 is w18. ..
  • Such degree of association is what is called learned data in artificial intelligence.
  • the above-mentioned trained data After creating such trained data, when actually giving advice from now on, the above-mentioned trained data will be used.
  • the natural environment information that reflects the information on the natural environment at the time of new futures trading is acquired. Natural environment information may be imported directly from, for example, data and information on the natural environment published by the Japan Meteorological Agency, private companies, and individuals, or sites containing these.
  • the degree of association shown in FIG. 8 (Table 1) acquired in advance is referred to.
  • the node 61d is associated through the degree of association, and this In the node 61d, the increase / decrease data A3 is associated with w19, and the increase / decrease data A4 is associated with the degree of association w20.
  • the increase / decrease data A3 having the highest degree of association is selected as the optimum solution.
  • a combination of the reference external environment information and the increase / decrease data of each futures with respect to the combination are set with three or more levels of association. An example is shown.
  • the degree of association is such that a set of combinations of reference market condition information, reference event information, and reference external environment information is set as nodes 61a to 61e of intermediate nodes as described above. It will be expressed.
  • the reference market condition information P02 is associated with the association degree w3
  • the reference event information P15 is associated with the association degree w7
  • the reference external environment information P19 is associated with the association degree w11.
  • the reference market condition information P03 is associated with the association degree w5
  • the reference event information P15 is associated with the association degree w8
  • the reference external environment information P18 is associated with the association degree w10.
  • the search solution is determined based on the newly acquired market condition information, the event information, and the external environment information.
  • this search solution refers to the degree of association shown in FIG. 9 acquired in advance.
  • the acquired market condition information is the same as or similar to the reference market condition information P02
  • the acquired event information corresponds to the reference event information P15
  • the acquired external environment information corresponds to the reference external environment information P19.
  • the node 61c is associated, and in this node 61c, the increase / decrease data A2 is associated with the association degree w17, and the increase / decrease data A4 is associated with the association degree w18.
  • a search solution is actually obtained based on w17 and w18.
  • advice on actual futures purchasing behavior for example, futures ⁇ ⁇ buy, futures ⁇ ⁇ retention
  • this advice may also advise on specific purchase volumes.
  • Such advice may be generated based on the increase / decrease data described above. In such a case, it may be advised to buy if the futures will be high in the future, and to sell if the futures will be low in the future.
  • the advice may also include risks.
  • the input data and the data to be trained it is of course possible to directly include this advice content in the data set instead of the increase / decrease data and train it.
  • the present invention may be embodied as an automatic futures trading program that automatically trades futures.
  • each future of the futures is automatically bought and sold based on the increase / decrease data.
  • the system side buys and sells futures by itself based on advice on futures purchasing behavior (for example, futures ⁇ ⁇ buy, futures ⁇ ⁇ retention).
  • futures purchasing behavior for example, futures ⁇ ⁇ buy, futures ⁇ ⁇ retention.
  • the above-mentioned degree of association may be composed of the nodes of the neural network in artificial intelligence as shown in FIG. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
  • the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
  • the present invention discriminates the increase / decrease data of each futures based on the degree of association of the combination of two or more types of information, the reference information U and the reference information V. It is assumed that the reference information Y is the reference market information information, and the reference information V is any other reference information (for example, reference event information, reference expert opinion information, etc.).
  • the output obtained for the reference information U is used as the input data as it is, and is associated with the output (increase / decrease data of each futures) via the intermediate node 61 in combination with the reference information V. You may be.
  • the reference information U after the output solution is output, this is used as an input as it is, and the output (increase / decrease data of each futures) is searched by using the degree of association with other reference information V. You may do it.
  • the chart may be applied to the chart pattern of the trading signal for the market condition information and the reference market condition information.
  • 13 and 14 show examples of chart patterns of chart trading signals.
  • FIG. 13A when the value of a stock price or futures repeatedly fluctuates with respect to the moving average, the buying signal is when the value of the stock price or futures falls to the moving average.
  • FIG. 13B a buy signal is obtained when the stock price breaks out of the upside resistance line after the fraying market continues for a long time.
  • FIG. 13C is said to be a W bottom type, and when the stock price hits the low price twice in the low price range, it becomes a buy signal.
  • FIG. 13A when the value of a stock price or futures repeatedly fluctuates with respect to the moving average, the buying signal is when the value of the stock price or futures falls to the moving average.
  • FIG. 13B a buy signal is obtained when the stock price breaks out of the upside resistance line after the fraying market continues for a long time.
  • FIG. 13C is said to be
  • FIG. 14A shows a case where the stock price soars and then immediately plummets, and a long lower beard candlestick or the Taiyo line appears and reverses. When this appears, it is a sign of buying.
  • Fig. 14 (b) is said to be the bright star at the end of Mikawa. If the shape of the Taiyo line appears, it will be a signal to buy in the near future.
  • FIG. 14A shows a case where the stock price soars and then immediately plummets, and a long lower beard candlestick or the Taiyo line appears and reverses. When this appears, it is a sign of buying.
  • Fig. 14 (b) is said to be the bright star at the end of Mikawa. If the shape of the Taiyo line appears, it will be a signal to buy in the near future.
  • FIG. 14 (c) is said to be Mikawa Akegarasu, and represents a V-shaped conversion with the red three soldiers after plunging with the black three soldiers (three wings), which is a sign of buying.
  • Fig. 14 (d) the bright star of Mikawa evening becomes the Taiyo line in the ascending phase, the upper mado opens and the beard and the substance are short, and the positive and negative lines (top legs) appear, and the lower mado opens and the large shadow line appears. It will be a sign of a downturn and a sell signal.
  • a judgment model generated by machine learning as shown in FIG. 15 may be used.
  • this determination model an image of a chart pattern of a trading signal consisting of the above-mentioned example is used as teacher data.
  • the input is a chart of each futures, and the output is a type of trading signal.
  • fitting is performed based on the judgment model generated by this machine learning, and it is determined what type of trading signal is applied.
  • this reference market information will be represented by categorized trading signals.
  • the above-mentioned degree of association is formed.
  • each reference market condition information is used as the type of trading signal. I will apply it.
  • this market information will be represented by typified trading signals.
  • the type of trading signal of such market information is determined through the above-mentioned degree of association to determine what type of trading signal of the reference market information is applicable.
  • the one with the higher degree of association is prioritized and described above. Display increase / decrease data for each futures.
  • type of trading signal corresponding to the output shown in FIG. 15 is not limited to the existing proposed person, and a new type of signal may be sequentially updated.
  • the degree of association is expressed by a 10-step evaluation, but it is not limited to this, and it may be expressed by a degree of association of 3 or more levels, and conversely, it may be expressed by 3 or more levels. For example, 100 steps or 1000 steps may be used.
  • this degree of association does not include those expressed in two stages, that is, whether or not they are related to each other, either 1 or 0.
  • the present invention having the above-described configuration, anyone can easily search for the optimum futures for futures trading and the optimum futures for futures trading without any special skill or experience. It can be carried out. Further, according to the present invention, it is possible to determine the search solution with higher accuracy than that performed by a human being. Further, by configuring the above-mentioned degree of association with artificial intelligence (neural network or the like), it is possible to further improve the discrimination accuracy by learning this.
  • artificial intelligence neural network or the like
  • the above-mentioned input data and output data may not be exactly the same in the process of learning, so that the input data and the output data may be classified by type. That is, the information P01, P02, ... P15, 16, ... That constitute the input data are classified according to the criteria classified in advance on the system side or the user side according to the content of the information, and the classified inputs.
  • a data set may be created between the data and the output data and trained.
  • the optimum solution search is performed through the degree of association set in three or more stages.
  • the degree of association can be described by, for example, a numerical value from 0 to 100% in addition to the above-mentioned 10 steps, but the degree of association is not limited to this, and any step can be described as long as it can be described by a numerical value of 3 or more steps. It may be configured.
  • association By discriminating futures with a higher rate of return and lower risk based on the degree of association expressed by such numerical values of three or more levels, the association is considered as a candidate for the possibility of a search solution. It is also possible to search and display in descending order of degree.
  • the present invention it is possible to judge without overlooking the discrimination result of the extremely low output such as the degree of association of 1%. It warns the user that even a judgment result with an extremely low degree of association is connected as a slight sign and may be useful as the judgment result once every tens or hundreds of times. be able to.
  • the search policy can be determined by the method of setting the threshold value by performing the search based on the degree of association of three or more stages. If the threshold value is lowered, even if the above-mentioned degree of association is 1%, it can be picked up without omission, but it is unlikely that a more appropriate discrimination result can be detected favorably, and a lot of noise may be picked up. be. On the other hand, if the threshold value is raised, there is a high possibility that the optimum search solution can be detected with a high probability. Sometimes the solution is overlooked. It is possible to decide which one to prioritize based on the ideas of the user side and the system side, but it is possible to increase the degree of freedom in selecting the points to be emphasized.
  • the above-mentioned degree of association may be updated.
  • This update may reflect information provided via a public communication network such as the Internet.
  • a public communication network such as the Internet.
  • the degree of association is increased or decreased accordingly.
  • the above-mentioned expert opinion information, natural environment information, fundamental information, and statistical information are acquired as a substitute for this external environmental information in addition to the event information, the degree of association is increased or decreased accordingly. ..
  • this update is equivalent to learning in terms of artificial intelligence. It can be said that it is a learning act because it acquires new data and reflects it in the learned data.
  • this update of the degree of association is not based on the information that can be obtained from the public communication network, but is also updated by the system side or the user side based on the contents of research data, papers, conference presentations, newspaper articles, books, etc. by experts. It may be updated artificially or automatically. Artificial intelligence may be utilized in these update processes.
  • the process of first creating a trained model and the above-mentioned update may use not only supervised learning but also unsupervised learning, deep learning, reinforcement learning, and the like.
  • unsupervised learning instead of reading and learning the data set of input data and output data, information corresponding to the input data is read and trained, and the degree of association related to the output data is self-formed from there. You may let it.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Engineering & Computer Science (AREA)
  • Technology Law (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

[Problem] To offer advice relating to futures in futures trading. [Solution] A futures trading information display program that is for displaying information pertaining to gain/loss in traded futures, wherein the program is characterized by causing a computer to execute the following: an information acquisition step in which market conditions information pertaining to market conditions in a period when futures trading is to be newly performed is acquired; and a display step in which three or more levels of relation between reference market conditions information pertaining to past market conditions acquired in advance and gain/loss data for individual futures at a point in time after the past market conditions are used as a basis to display the gain/loss data for the individual futures with priority being given to futures in which the level of relation among the three or more levels of relation is higher between the reference market conditions information corresponding to the market conditions information acquired in the information acquisition step and the gain/loss data for the individual futures.

Description

先物取引情報表示プログラムFutures trading information display program
 本発明は、取引する先物の増減に関する情報を表示する先物取引情報表示プログラムに関する。 The present invention relates to a futures trading information display program that displays information on an increase or decrease in futures to be traded.
 先物取引を行う際の様々な助言を行うアプリや、先物取引の自動化、即ち自動トレードを行うシステムが近年において利用されるようになっている。このようなアプリやシステムを利用する上では、膨大なデータ分析の下で助言をしてもらった方が勝率をより高くすることができ、利益の増加も期待できる。しかしながら、その膨大なデータを取得することができたとしても、これを分析してユーザに対して的確な助言ができるような出力解をまとめ上げることは相当な労力を要する。またこれらの作業を自動的に行うことができるシステムは従来において提案されていないのが現状であった。 In recent years, applications that provide various advice when conducting futures trading and systems that automate futures trading, that is, automatic trading, have been used. When using such an app or system, it is possible to increase the winning rate and increase profits by receiving advice based on a huge amount of data analysis. However, even if the enormous amount of data can be acquired, it takes considerable effort to analyze this and compile an output solution that can give accurate advice to the user. In addition, the current situation is that a system capable of automatically performing these operations has not been proposed in the past.
 そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、取引する先物の増減に関する情報を表示する先物取引情報表示プログラムを提供することにある。 Therefore, the present invention was devised in view of the above-mentioned problems, and an object of the present invention is to provide a futures trading information display program that displays information on an increase or decrease in futures to be traded.
 上述した課題を解決するために、本発明を適用した先物取引情報表示プログラムは、取引する先物の増減に関する情報を表示する先物取引情報表示プログラムにおいて、新たに先物取引を行う時期における市況に関する市況情報を取得する情報取得ステップと、予め取得した過去の市況に関する参照用市況情報と、その過去の市況に対する後の時点における各先物の増減データとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した市況情報に応じた参照用市況情報と各先物の増減データとの3段階以上の連関度のより高いものを優先させて上記各先物の増減データを表示する表示ステップとをコンピュータに実行させることを特徴とする。 In order to solve the above-mentioned problems, the futures trading information display program to which the present invention is applied is a futures trading information display program that displays information on the increase or decrease of futures to be traded. The above information acquisition is performed using the information acquisition step for acquiring the above information, the reference market information regarding the past market conditions acquired in advance, and the three or more levels of association between the increase / decrease data of each futures at a later time with respect to the past market conditions. A display step for displaying the increase / decrease data of each of the above futures is given to the computer by giving priority to the one with a higher degree of association of three or more levels of the reference market condition information according to the market condition information acquired in the step and the increase / decrease data of each futures. It is characterized by being executed.
 特段のスキルや経験が無くても、先物取引を行う上で有益な助言を提供することが可能となる。 It is possible to provide useful advice for trading futures without any special skills or experience.
本発明を適用したシステムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the system to which this invention is applied. 探索装置の具体的な構成例を示す図である。It is a figure which shows the specific configuration example of a search device. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention. 本発明の動作について説明するための図である。It is a figure for demonstrating the operation of this invention.
 以下、本発明を適用した先物取引情報表示プログラムについて、図面を参照しながら詳細に説明をする。 Hereinafter, the futures transaction information display program to which the present invention is applied will be described in detail with reference to the drawings.
 図1は、本発明を適用した先物取引情報表示プログラムが実装される先物取引情報表示システム1の全体構成を示すブロック図である。先物取引情報表示システム1は、情報取得部9と、情報取得部9に接続された探索装置2と、探索装置2に接続されたデータベース3とを備えている。 FIG. 1 is a block diagram showing an overall configuration of a futures transaction information display system 1 in which a futures transaction information display program to which the present invention is applied is implemented. The futures transaction information display system 1 includes an information acquisition unit 9, a search device 2 connected to the information acquisition unit 9, and a database 3 connected to the search device 2.
 情報取得部9は、本システムを活用する者が各種コマンドや情報を入力するためのデバイスであり、具体的にはキーボードやボタン、タッチパネル、マウス、スイッチ等により構成される。情報取得部9は、テキスト情報を入力するためのデバイスに限定されるものではなく、マイクロフォン等のような音声を検知してこれをテキスト情報に変換可能なデバイスで構成されていてもよい。また情報取得部9は、カメラ等の画像を撮影可能な撮像装置として構成されていてもよい。情報取得部9は、紙媒体の書類から文字列を認識できる機能を備えたスキャナで構成されていてもよい。また情報取得部9は、後述する探索装置2と一体化されていてもよい。情報取得部9は、検知した情報を探索装置2へと出力する。また情報取得部9は地図情報をスキャニングすることで位置情報を特定する手段により構成されていてもよい。また情報取得部9は、温度センサ、湿度センサ、流量センサ、その他物質や物性を特定することが可能なセンサも含む。情報取得部9は、インターネット上のサイトに掲載されている文字列やデータを自動的に取り込んでくる手段で構成されていてもよい。 The information acquisition unit 9 is a device for a person who uses this system to input various commands and information, and is specifically composed of a keyboard, buttons, a touch panel, a mouse, a switch, and the like. The information acquisition unit 9 is not limited to a device for inputting text information, and may be configured by a device such as a microphone that can detect voice and convert it into text information. Further, the information acquisition unit 9 may be configured as an image pickup device capable of capturing an image of a camera or the like. The information acquisition unit 9 may be configured by a scanner having a function of recognizing a character string from a paper-based document. Further, the information acquisition unit 9 may be integrated with the search device 2 described later. The information acquisition unit 9 outputs the detected information to the search device 2. Further, the information acquisition unit 9 may be configured by means for specifying the position information by scanning the map information. The information acquisition unit 9 also includes a temperature sensor, a humidity sensor, a flow rate sensor, and other sensors capable of identifying substances and physical properties. The information acquisition unit 9 may be configured by means for automatically fetching character strings and data posted on a site on the Internet.
 データベース3は、先物取引情報表示を行う上で必要な様々な情報が蓄積される。先物取引情報表示を行う上で必要な情報としては、過去の市況に関する参照用市況情報、過去の市況の検出時期に発生したイベントが反映された参照用イベント情報、過去の市況の検出時期における外部環境が反映された参照用外部環境情報、過去の市況の検出時期における家計に関する統計的データが反映された参照用家計情報、過去の市況の検出時期における不動産に関する統計的データが反映された参照用不動産情報、過去の市況の検出時期に発表された専門家の意見が反映された参照用専門家意見情報、過去の市況の検出時期における自然環境の情報が反映された参照用自然環境情報と、その過去の市況における各先物の増減データとのデータセットが記憶されている。 Database 3 stores various information necessary for displaying futures transaction information. Information necessary for displaying future market information includes reference market information regarding past market conditions, reference event information that reflects events that occurred during the detection period of past market conditions, and external information regarding the detection period of past market conditions. External environmental information for reference that reflects the environment, household information for reference that reflects statistical data about households at the time of detection of past market conditions, and reference that reflects statistical data about real estate at the time of detection of past market conditions Real estate information, reference expert opinion information that reflects the opinions of experts announced at the time of past market condition detection, reference natural environment information that reflects information on the natural environment at the time of past market condition detection, A data set with the increase / decrease data of each future in the past market conditions is stored.
 つまり、データベース3には、このような参照用市況情報に加え、参照用イベント情報、参照用外部環境情報、参照用家計情報、参照用不動産情報、参照用専門家意見情報、参照用自然環境情報の何れか1以上と、過去の市況における各先物の増減データが互いに紐づけられて記憶されている。 That is, in addition to such reference market condition information, the database 3 contains reference event information, reference external environment information, reference household information, reference real estate information, reference expert opinion information, and reference natural environment information. Any one or more of the above and the increase / decrease data of each future in the past market conditions are stored in association with each other.
 探索装置2は、例えば、パーソナルコンピュータ(PC)等を始めとした電子機器で構成されているが、PC以外に、携帯電話、スマートフォン、タブレット型端末、ウェアラブル端末等、他のあらゆる電子機器で具現化されるものであってもよい。ユーザは、この探索装置2による探索解を得ることができる。 The search device 2 is composed of, for example, an electronic device such as a personal computer (PC), but is embodied in any other electronic device such as a mobile phone, a smartphone, a tablet terminal, a wearable terminal, etc., in addition to the PC. It may be converted. The user can obtain a search solution by the search device 2.
 図2は、探索装置2の具体的な構成例を示している。この探索装置2は、探索装置2全体を制御するための制御部24と、操作ボタンやキーボード等を介して各種制御用の指令を入力するための操作部25と、有線通信又は無線通信を行うための通信部26と、各種判断を行う推定部27と、ハードディスク等に代表され、実行すべき検索を行うためのプログラムを格納するための記憶部28とが内部バス21にそれぞれ接続されている。さらに、この内部バス21には、実際に情報を表示するモニタとしての表示部23が接続されている。 FIG. 2 shows a specific configuration example of the search device 2. The search device 2 performs wired communication or wireless communication with a control unit 24 for controlling the entire search device 2 and an operation unit 25 for inputting various control commands via operation buttons, a keyboard, or the like. A communication unit 26 for the purpose, an estimation unit 27 for making various judgments, and a storage unit 28 for storing a program for performing a search to be executed represented by a hard disk or the like are connected to the internal bus 21, respectively. .. Further, a display unit 23 as a monitor that actually displays information is connected to the internal bus 21.
  制御部24は、内部バス21を介して制御信号を送信することにより、探索装置2内に実装された各構成要素を制御するためのいわゆる中央制御ユニットである。また、この制御部24は、操作部25を介した操作に応じて各種制御用の指令を内部バス21を介して伝達する。 The control unit 24 is a so-called central control unit for controlling each component mounted in the search device 2 by transmitting a control signal via the internal bus 21. Further, the control unit 24 transmits various control commands via the internal bus 21 in response to the operation via the operation unit 25.
 操作部25は、キーボードやタッチパネルにより具現化され、プログラムを実行するための実行命令がユーザから入力される。この操作部25は、上記実行命令がユーザから入力された場合には、これを制御部24に通知する。この通知を受けた制御部24は、推定部27を始め、各構成要素と協調させて所望の処理動作を実行していくこととなる。この操作部25は、前述した情報取得部9として具現化されるものであってもよい。 The operation unit 25 is embodied by a keyboard or a touch panel, and an execution command for executing a program is input from the user. When the execution command is input by the user, the operation unit 25 notifies the control unit 24 of the execution command. Upon receiving this notification, the control unit 24, including the estimation unit 27, executes a desired processing operation in cooperation with each component. The operation unit 25 may be embodied as the information acquisition unit 9 described above.
 推定部27は、探索解を推定する。この推定部27は、推定動作を実行するに当たり、必要な情報として記憶部28に記憶されている各種情報や、データベース3に記憶されている各種情報を読み出す。この推定部27は、人工知能により制御されるものであってもよい。この人工知能はいかなる周知の人工知能技術に基づくものであってもよい。 The estimation unit 27 estimates the search solution. The estimation unit 27 reads out various information stored in the storage unit 28 and various information stored in the database 3 as necessary information when executing the estimation operation. The estimation unit 27 may be controlled by artificial intelligence. This artificial intelligence may be based on any well-known artificial intelligence technique.
  表示部23は、制御部24による制御に基づいて表示画像を作り出すグラフィックコントローラにより構成されている。この表示部23は、例えば、液晶ディスプレイ(LCD)等によって実現される。 The display unit 23 is composed of a graphic controller that creates a display image based on the control by the control unit 24. The display unit 23 is realized by, for example, a liquid crystal display (LCD) or the like.
  記憶部28は、ハードディスクで構成される場合において、制御部24による制御に基づき、各アドレスに対して所定の情報が書き込まれるとともに、必要に応じてこれが読み出される。また、この記憶部28には、本発明を実行するためのプログラムが格納されている。このプログラムは制御部24により読み出されて実行されることになる。 When the storage unit 28 is composed of a hard disk, predetermined information is written to each address based on the control by the control unit 24, and this is read out as needed. Further, the storage unit 28 stores a program for executing the present invention. This program is read and executed by the control unit 24.
 上述した構成からなる先物取引情報表示システム1における動作について説明をする。 The operation of the futures transaction information display system 1 having the above-described configuration will be described.
 先物取引情報表示システム1は、先物取引において使用され、例えば図3に示すように、参照用市況情報と、各先物の増減データとの3段階以上の連関度が予め設定され、取得されていることが前提となる。参照用市況情報とは、市況に関する様々な情報である。この参照用市況情報の例としては、金利、先物、為替、各銘柄の株価、原油、貴金属、ビットコイン等の値動きを対象としたものである。この参照用市況情報は、これらの対象について時系列的なチャートや折れ線グラフ等で表示されていてもよい。またボリンジャーバンド、出来高、MACD、移動平均線等の情報が付されていてもよい。また、この市況情報は、各先物、銘柄のチャート、ボリンジャーバンド、MACD、移動平均線等の情報が付されていてもよい。先物についても各先物間における値動きを示すチャート、ボリンジャーバンド、MACD、移動平均線等の情報が付されていてもよい。この参照用市況情報は、実際に先物の増減を予測する前の時点において取得したものである。 The futures trading information display system 1 is used in futures trading, and as shown in FIG. 3, for example, three or more levels of association between reference market information and increase / decrease data of each future are preset and acquired. Is a prerequisite. Reference market information is various information related to market conditions. Examples of this reference market information are interest rates, futures, exchange rates, stock prices of each stock, crude oil, precious metals, bitcoin, and other price movements. This reference market information may be displayed as a time-series chart, a line graph, or the like for these objects. In addition, information such as Bollinger band, volume, MACD, and moving average line may be attached. In addition, this market information may be accompanied by information such as each futures, a chart of a brand, a Bollinger band, MACD, and a moving average line. For futures, information such as a chart showing price movements between futures, Bollinger Bands, MACD, and moving averages may be attached. This reference market information was obtained before the actual increase or decrease of futures was predicted.
 ここでいう先物とは、売買対象となる全ての先物を含む概念であり、大豆やとうもろこしといった農産物や石油、金、貴金属、形のない株価指数等、あらゆる先物が含まれる。 Futures here is a concept that includes all futures to be bought and sold, and includes all futures such as agricultural products such as soybeans and corn, petroleum, gold, precious metals, and shapeless stock indexes.
 各先物の増減データは、その参照用市況情報を取得した後の時点において各先物の増減がどの程度あったかを示すデータである。この増減データは、実際の増減した値幅でカウントされるものであってもよいし、増減率で表現されるものであってもよい。この増減データは、前の時点(即ち、参照用市況情報を取得した時点)の先物に対する、測定時点(後の時点)における先物の増減で表される。ここでいう前の時点は、測定時点より10秒前、1分前、30分前、1時間前、4時間前、1日前、10日前、1か月前、1年前、5年前等のように、測定時点に対していかなる時間幅をもって構成されるものであってもよい。つまり先物の増減データは、チャートにおけるある時点を測定時点としたとき、その測定時点における先物の、その前の時点における先物に対する増減を示すものである。或いは、この先物の増減データは、先物のチャートでいうところの足そのものを表現するものであってもよい。 The increase / decrease data of each future is data showing how much the increase / decrease of each future was at the time after acquiring the reference market information. This increase / decrease data may be counted by the actual increase / decrease price range, or may be expressed by the increase / decrease rate. This increase / decrease data is represented by the increase / decrease of the futures at the measurement time point (later time point) with respect to the futures at the previous time point (that is, the time point when the reference market information is acquired). The time point before here is 10 seconds before, 1 minute before, 30 minutes before, 1 hour before, 4 hours before, 1 day before, 10 days ago, 1 month ago, 1 year ago, 5 years ago, etc. As in the above, it may be configured with any time width with respect to the measurement time point. That is, the futures increase / decrease data indicates the increase / decrease of the futures at the measurement time point with respect to the futures at the previous time point when a certain point in the chart is set as the measurement time point. Alternatively, the futures increase / decrease data may represent the foot itself in the futures chart.
 つまり、この参照用市況情報と、先物の増減データのデータセットを通じて、参照用市況情報において生じた様々なテクニカルなイベント(例えばチャートが3日連続で上がっている、一時的に高値を付けた上ヒゲがチャート上に現れた場合等)の後の時点においてどのように先物が増減したかが分かる。つまりテクニカルなイベントに対する先物の増減結果がデータセットとなっている。このため、参照用市況情報と先物の増減データのデータセットを集めておくことにより、過去どのような市況となった後の時点で、先物がどのように増減したかを知ることが可能となる。 In other words, through this reference market information and the dataset of futures increase / decrease data, various technical events that occurred in the reference market information (for example, the chart has risen for three consecutive days, have been temporarily overpriced). You can see how futures have increased or decreased at a later point in time (such as when a beard appears on the chart). In other words, the data set is the result of increasing or decreasing futures for technical events. Therefore, by collecting a data set of reference market information and futures increase / decrease data, it is possible to know what kind of market conditions have occurred in the past and how futures have increased / decreased. ..
 図3の例では、入力データとして例えば参照用市況情報P01~P03であるものとする。このような入力データとしての参照用市況情報は、出力に連結している。この出力においては、出力解としての、先物の増減データが表示されている。 In the example of FIG. 3, it is assumed that the input data is, for example, reference market condition information P01 to P03. The reference market information as such input data is linked to the output. In this output, futures increase / decrease data as an output solution is displayed.
 参照用市況情報は、この出力解としての、先物の増減データに対して3段階以上の連関度を通じて互いに連関しあっている。参照用市況情報がこの連関度を介して左側に配列し、各先物の増減データが連関度を介して右側に配列している。連関度は、左側に配列された参照用市況情報に対して、何れの先物の増減データと関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用市況情報が、いかなる先物の増減データに紐付けられる可能性が高いかを示す指標であり、参照用市況情報から最も確からしいる先物の増減データを選択する上での的確性を示すものである。図3の例では、連関度としてw13~w19が示されている。このw13~w19は以下の表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力としての先物の増減データと互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力としての先物の増減データと互いに関連度合いが低いことを示している。 The market information for reference is related to each other through the degree of association of three or more levels with respect to the increase / decrease data of futures as this output solution. The reference market information is arranged on the left side via this degree of association, and the increase / decrease data of each futures is arranged on the right side via this degree of association. The degree of association indicates the degree to which futures increase / decrease data is highly relevant to the reference market information arranged on the left side. In other words, this degree of association is an index showing what kind of futures increase / decrease data is likely to be associated with each reference market information, and the most probable futures increase / decrease data from the reference market information. It shows the accuracy of selection. In the example of FIG. 3, w13 to w19 are shown as the degree of association. These w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the increase / decrease data of futures as an output. On the contrary, the closer to one point, the lower the degree of relevance of each combination as an intermediate node to the increase / decrease data of futures as an output.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 探索装置2は、このような図3に示す3段階以上の連関度w13~w19を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、参照用市況情報と、その場合の先物の増減データの何れが採用されたか、過去のデータを蓄積しておき、これらを分析、解析することで図3に示す連関度を作り上げておく。 The search device 2 acquires in advance the degree of association w13 to w19 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference market information and the futures increase / decrease data in that case is adopted in determining the actual search solution, and analyzes these. By analyzing, the degree of association shown in FIG. 3 is created.
 例えば、ある参照用市況情報が、とある先物チャートにおいて、先行するMACDが遅行する同平均(SIGNAL)を下から上に抜いた時であるものとする。このような市況において、当該先物がその後の時点において、仮にとうもろこしが1%上がったものが多かったものとする。このような場合には、当該先物が1%アップの連関度が強くなる。これに対して、全く同じ市況において、当該先物がその後の時点において0.5%ダウンしたものが多く、当該先物1%アップしたものが少ないものとする。かかる場合には、当該先物0.5%ダウンの連関度が強くなり、当該先物1%アップの連関度が低くなる。 For example, it is assumed that a certain reference market information is when the preceding MACD pulls out the lagging average (SIGNAL) from the bottom to the top in a certain futures chart. In such market conditions, it is assumed that many of the futures contracts had a 1% increase in corn at a later point in time. In such a case, the futures will be increased by 1% and the degree of association will be stronger. On the other hand, in exactly the same market conditions, it is assumed that many of the futures have decreased by 0.5% at a subsequent point in time, and few of the futures have increased by 1%. In such a case, the degree of association of the futures 0.5% down becomes stronger, and the degree of association of the futures 1% up becomes lower.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用市況情報P01である場合に、過去の各先物の値動きデータから分析する。これは、例えば過去の先物チャートの電子データから抽出するようにしてもよい。参照用市況情報P01である場合に、各先物の増減データA1(金 4%アップ)の事例が多い場合には、この増減データA1につながる連関度をより高く設定し、増減データA3(とうもろこし 5%アップ)の事例が多い場合には、この増減データA3につながる連関度をより高く設定する。例えば参照用市況情報P01の例では、増減データA1と、増減データA3にリンクしているが、以前の事例から増減データA1につながるw13の連関度を7点に、増減データA3につながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of reference market information P01, analysis is performed from the price movement data of each futures in the past. This may be, for example, extracted from the electronic data of past futures charts. In the case of reference market information P01, if there are many cases of increase / decrease data A1 (4% increase in gold) of each future, set a higher degree of association leading to this increase / decrease data A1 and increase / decrease data A3 (corn 5). When there are many cases of% up), the degree of association that leads to this increase / decrease data A3 is set higher. For example, in the example of the reference market information P01, the increase / decrease data A1 and the increase / decrease data A3 are linked. The degree of association is set to 2 points.
 また、この図3に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Further, the degree of association shown in FIG. 3 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たに顧客に対して先物取引の助言を行う上で、上述した学習済みデータを利用して先物の増減を予測することとなる。かかる場合には、実際に新たに先物取引を行う時期における市況に関する市況情報を取得する。この市況情報は、上述した参照用市況情報と同種のデータで構成される。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, in order to actually give new advice on futures trading to customers, the above-mentioned learned data will be used to predict the increase or decrease of futures. In such a case, market information on market conditions at the time of actual new futures trading will be acquired. This market condition information is composed of the same kind of data as the above-mentioned reference market condition information.
 新たに取得する市況情報は、上述した情報取得部9により入力される。情報取得部9は、チャートや値動きのデータ等を電子データとして取得するようにしてもよい。 The market condition information to be newly acquired is input by the above-mentioned information acquisition unit 9. The information acquisition unit 9 may acquire charts, price movement data, and the like as electronic data.
 このようにして新たに取得した市況情報に基づいて、実際にその市況情報に対して、起こりえる可能性の高い、将来の先物(即ち、将来の先物の増減データ)を予測する。かかる場合には、予め取得した図3(表1)に示す連関度を参照する。例えば、新たに取得した市況情報がP02と同一かこれに類似するものである場合には、連関度を介して増減データA2がw15、増減データA3が連関度w16で関連付けられている。かかる場合には、連関度の最も高い増減データA2を最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる増減データA3を最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Based on the market information newly acquired in this way, the future futures (that is, future futures increase / decrease data) that are likely to occur are predicted with respect to the market information. In such a case, the degree of association shown in FIG. 3 (Table 1) acquired in advance is referred to. For example, when the newly acquired market condition information is the same as or similar to P02, the increase / decrease data A2 is associated with w15 and the increase / decrease data A3 is associated with the association degree w16 via the degree of association. In such a case, the increase / decrease data A2 having the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the increase / decrease data A3 in which the degree of association is low but the association itself is recognized may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
 このようにして、新たに取得する市況情報から、将来起こりえる各先物の状況を、先物の増減データを通じて探索し、ユーザ(コンサルタント)に表示することができる。この探索結果を見ることにより、ユーザ(コンサルタント)は、探索された先物の増減データに基づいて、売買すべき先物の指針を得ることができる。先物の増減データの探索結果を見せるだけでもユーザに対して有益な助言を与えることができる。ちなみに、この助言を構成する上では、単に探索された先物の増減データのみを表示する以外に、この増減データに基づいて、具体的にどの先物をどの程度購入し、或いは売却すべきかまでを表示することで助言を構成するようにしてもよい。 In this way, from the newly acquired market information, the status of each future that may occur in the future can be searched through the futures increase / decrease data and displayed to the user (consultant). By looking at this search result, the user (consultant) can obtain a guideline for futures to be bought and sold based on the increase / decrease data of the searched futures. It is possible to give useful advice to the user just by showing the search result of the futures increase / decrease data. By the way, in constructing this advice, in addition to simply displaying the increase / decrease data of the searched futures, based on this increase / decrease data, it is also displayed specifically which futures should be purchased or sold. You may configure the advice by doing so.
 図4の例では、入力データとして例えば参照用市況情報P01~P03、参照用イベント情報P14~17であるものとする。このような入力データとしての、参照用市況情報に対して、参照用イベント情報が組み合わさったものが、図4に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、各先物の増減データが表示されている。 In the example of FIG. 4, it is assumed that the input data is, for example, reference market condition information P01 to P03 and reference event information P14 to 17. The intermediate node shown in FIG. 4 is a combination of reference event information and reference market information as such input data. Each intermediate node is further linked to the output. In this output, the increase / decrease data of each futures as an output solution is displayed.
 図4の例では、参照用市況情報と、参照用イベント情報との組み合わせが形成されていることが前提となる。参照用イベント情報とは、国内又は国外において発生した様々な社会的なニュース、出来事、事件、祝い事、慶事等に加え、各企業について起きたニュース、出来事、事件、祝い事、慶事等を含む概念である。この参照用イベント情報は、各企業や社会全体に関するブログ、アナリストレポート、有価証券報告書、広告、プレスリリース、ニュース記事等から取得することができる。これらの参照用イベント情報は、ニュース記事をテキストマイニングを通じて分析した文字列や係り受け等を介して抽出されるものであってもよい。 In the example of FIG. 4, it is premised that a combination of reference market condition information and reference event information is formed. Reference event information is a concept that includes various social news, events, incidents, celebrations, ceremonies, etc. that occurred in Japan or abroad, as well as news, events, incidents, celebrations, ceremonies, etc. that occurred about each company. be. This reference event information can be obtained from blogs, analyst reports, securities reports, advertisements, press releases, news articles, etc. regarding each company or society as a whole. These reference event information may be extracted through a character string, a dependency, or the like obtained by analyzing a news article through text mining.
 図4の例では、入力データとして例えば参照用市況情報P01~P03、参照用イベント情報P14~17であるものとする。このような入力データとしての、参照用市況情報に対して、参照用イベント情報が組み合わさったものが、図4に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、各先物の増減データが表示されている。 In the example of FIG. 4, it is assumed that the input data is, for example, reference market condition information P01 to P03 and reference event information P14 to 17. The intermediate node shown in FIG. 4 is a combination of reference event information and reference market information as such input data. Each intermediate node is further linked to the output. In this output, the increase / decrease data of each futures as an output solution is displayed.
 参照用市況情報と参照用イベント情報との各組み合わせ(中間ノード)は、この出力解としての、各先物の増減データに対して3段階以上の連関度を通じて互いに連関しあっている。参照用市況情報と参照用イベント情報がこの連関度を介して左側に配列し、各先物の増減データが連関度を介して右側に配列している。連関度は、左側に配列された参照用市況情報と参照用イベント情報に対して、各先物の増減データと関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用市況情報と参照用イベント情報が、いかなる各先物の増減データに紐付けられる可能性が高いかを示す指標であり、参照用市況情報と参照用イベント情報から最も確からしい各先物の増減データを選択する上での的確性を示すものである。市況データに加え、実際に社会全体、又は各企業において起こった様々なイベントに応じて、後の時点における各先物の増減データは異なるものとなる。このため、これらの参照用市況情報と参照用イベント情報の組み合わせで、最適な先物の増減データを探索していくこととなる。 Each combination of reference market information and reference event information (intermediate node) is associated with each other through three or more levels of association with the increase / decrease data of each future as this output solution. The reference market information and the reference event information are arranged on the left side via this degree of association, and the increase / decrease data of each future is arranged on the right side via this degree of association. The degree of association indicates the degree of relevance to the increase / decrease data of each futures with respect to the reference market information and the reference event information arranged on the left side. In other words, this degree of association is an index showing what kind of futures increase / decrease data is likely to be associated with each reference market information and reference event information, and is a reference market information and reference event. It shows the accuracy in selecting the most probable increase / decrease data for each future from the information. In addition to market data, the increase / decrease data for each future at a later point in time will differ depending on the various events that actually took place in society as a whole or in each company. Therefore, by combining these reference market condition information and reference event information, the optimum futures increase / decrease data will be searched.
 図4の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力と互いに関連度合いが低いことを示している。 In the example of FIG. 4, w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
 探索装置2は、このような図4に示す3段階以上の連関度w13~w22を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、参照用市況情報と、参照用イベント情報、並びにその場合の各先物の増減データの何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで図4に示す連関度を作り上げておく。 The search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference market condition information, the reference event information, and the increase / decrease data of each future in that case was suitable for determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 4 is created.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用市況情報P01で、参照用イベント情報P16である場合に、その各先物の増減データを過去のデータから分析する。各先物の増減データが増減データA1(金 4%アップ)の事例が多い場合には、この増減データA1につながる連関度をより高く設定し、増減データA2(金 2%ダウン)の事例が多く、増減データA1の事例が少ない場合には、増減データA2につながる連関度を高くし、増減データA1につながる連関度を低く設定する。例えば中間ノード61aの例では、増減データA1と増減データA2の出力にリンクしているが、以前の事例から増減データA1につながるw13の連関度を7点に、増減データA2につながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, when the reference market information P01 is the reference event information P16, the increase / decrease data of each future is analyzed from the past data. When there are many cases where the increase / decrease data of each future is increase / decrease data A1 (gold 4% up), the degree of association leading to this increase / decrease data A1 is set higher, and there are many cases of increase / decrease data A2 (gold 2% down). When there are few cases of increase / decrease data A1, the degree of association connected to the increase / decrease data A2 is set high, and the degree of association connected to the increase / decrease data A1 is set low. For example, in the example of the intermediate node 61a, it is linked to the output of the increase / decrease data A1 and the increase / decrease data A2. The degree is set to 2 points.
 また、この図4に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Further, the degree of association shown in FIG. 4 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
 図4に示す連関度の例で、ノード61bは、参照用市況情報P01に対して、参照用イベント情報P14の組み合わせのノードであり、増減データA3の連関度がw15、増減データA5の連関度がw16となっている。ノード61cは、参照用市況情報P02に対して、参照用イベント情報P15、P17の組み合わせのノードであり、増減データA2の連関度がw17、増減データA4の連関度がw18となっている。 In the example of the degree of association shown in FIG. 4, the node 61b is a node in which the reference event information P14 is combined with the reference market condition information P01, the degree of association of the increase / decrease data A3 is w15, and the degree of association of the increase / decrease data A5. Is w16. The node 61c is a node that is a combination of the reference event information P15 and P17 with respect to the reference market information P02, and the degree of association of the increase / decrease data A2 is w17 and the degree of association of the increase / decrease data A4 is w18.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから先物取引情報表示のための増減データの探索を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、新たに先物取引を行う時期における市況に関する市況情報を取得するとともに、新たに先物取引を行う時期に発生したイベントが反映されたイベント情報を取得する。このイベント情報は、上述した参照用イベント情報に対応するものであり、例えばニュースや新聞、ブログ等のデータを取り込み、又は直接的に入力するようにしてもよい。 Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually searching for increase / decrease data for displaying futures transaction information, the above-mentioned learned data will be used. In such a case, the market information regarding the market conditions at the time of new futures trading is acquired, and the event information reflecting the events that occurred at the time of new futures trading is acquired. This event information corresponds to the above-mentioned reference event information, and data such as news, newspapers, and blogs may be taken in or directly input.
 このようにして新たに取得した市況情報、イベント情報に基づいて、最適な各先物の増減データを探索する。かかる場合には、予め取得した図4(表1)に示す連関度を参照する。例えば、新たに取得した市況情報がP02と同一かこれに類似するものである場合であって、イベント情報がP17である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、増減データA3がw19、増減データA4が連関度w20で関連付けられている。かかる場合には、連関度の最も高い増減データA3を最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる増減データA4を最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Based on the market information and event information newly acquired in this way, the optimum increase / decrease data for each futures is searched for. In such a case, the degree of association shown in FIG. 4 (Table 1) acquired in advance is referred to. For example, when the newly acquired market condition information is the same as or similar to P02 and the event information is P17, the node 61d is associated through the degree of association, and this node In 61d, the increase / decrease data A3 is associated with w19, and the increase / decrease data A4 is associated with the degree of association w20. In such a case, the increase / decrease data A3 having the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the increase / decrease data A4 in which the degree of association is low but the association itself is recognized may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
 また、入力から伸びている連関度w1~w12の例を以下の表2に示す。 Table 2 below shows an example of the degree of association w1 to w12 extending from the input.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この入力から伸びている連関度w1~w12に基づいて中間ノード61が選択されていてもよい。つまり連関度w1~w12が大きいほど、中間ノード61の選択における重みづけを重くしてもよい。しかし、この連関度w1~w12は何れも同じ値としてもよく、中間ノード61の選択における重みづけは何れも全て同一とされていてもよい。 The intermediate node 61 may be selected based on the degree of association w1 to w12 extending from this input. That is, the larger the degree of association w1 to w12, the heavier the weighting in the selection of the intermediate node 61 may be. However, the degrees of association w1 to w12 may all have the same value, and the weights in the selection of the intermediate node 61 may all be the same.
 図5は、上述した参照用市況情報と、参照用外部環境情報との組み合わせと、当該組み合わせに対する各先物の増減データとの3段階以上の連関度が設定されている例を示している。 FIG. 5 shows an example in which the combination of the above-mentioned reference market condition information and the reference external environment information and the increase / decrease data of each futures with respect to the combination are set to three or more levels of association.
 参照用外部環境情報とは、企業の外部における、GDP、雇用統計、鉱工業生産指数、設備投資、労働力調査、景気動向指数、消費支出、新車販売台数、消費者物価指数等の、政治、経済、社会、技術等に関する様々なデータを含む。 External environmental information for reference is the politics and economy outside the company, such as GDP, employment statistics, industrial production index, capital investment, labor force survey, business conditions index, consumption expenditure, new car sales volume, consumer price index, etc. Includes various data on, society, technology, etc.
 図5の例では、入力データとして例えば参照用市況情報P01~P03、参照用外部環境情報P18~21であるものとする。このような入力データとしての、参照用市況情報に対して、参照用外部環境情報が組み合わさったものが、図5に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、各先物の増減データが表示されている。 In the example of FIG. 5, it is assumed that the input data is, for example, reference market condition information P01 to P03 and reference external environment information P18 to 21. The intermediate node shown in FIG. 5 is a combination of the reference market condition information and the reference external environment information as such input data. Each intermediate node is further linked to the output. In this output, the increase / decrease data of each futures as an output solution is displayed.
 参照用市況情報と参照用外部環境情報との各組み合わせ(中間ノード)は、この出力解としての、各先物の増減データに対して3段階以上の連関度を通じて互いに連関しあっている。参照用市況情報と参照用外部環境情報がこの連関度を介して左側に配列し、増減データが連関度を介して右側に配列している。連関度は、左側に配列された参照用市況情報と参照用外部環境情報に対して、増減データと関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用市況情報と参照用外部環境情報が、いかなる増減データに紐付けられる可能性が高いかを示す指標であり、参照用市況情報と参照用外部環境情報から最も確からしい各先物の増減データを選択する上での的確性を示すものである。市況データに加え、実際の外部環境がいかなる状態にあるのかに応じて、先物は変化する。このため、これらの参照用市況情報と参照用外部環境情報の組み合わせで、最適な各先物の増減データを探索していくこととなる。 Each combination (intermediate node) of the reference market information and the reference external environment information is associated with each other through three or more levels of association with the increase / decrease data of each future as this output solution. The reference market information and the reference external environment information are arranged on the left side via this degree of association, and the increase / decrease data is arranged on the right side via this degree of association. The degree of association indicates the degree of relevance to the increase / decrease data with respect to the reference market condition information and the reference external environment information arranged on the left side. In other words, this degree of association is an index showing what kind of increase / decrease data is likely to be associated with each reference market condition information and reference external environment information, and the reference market information and reference external environment information. It shows the accuracy in selecting the most probable increase / decrease data of each future. In addition to market data, futures will change depending on the actual state of the external environment. Therefore, by combining these reference market condition information and reference external environment information, the optimum increase / decrease data of each futures will be searched.
 図5の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力と互いに関連度合いが低いことを示している。 In the example of FIG. 5, w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
 探索装置2は、このような図5に示す3段階以上の連関度w13~w22を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、参照用市況情報と参照用外部環境情報、並びにその場合の増減データが何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで図5に示す連関度を作り上げておく。 The search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference market condition information, the reference external environment information, and the increase / decrease data in that case was suitable for determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 5 is created.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用市況情報P01で、参照用外部環境情報P20である場合に、その増減データを過去のデータから分析する。例えば中間ノード61aの例では、増減データA1と増減データA2の出力にリンクしているが、以前の事例から増減データA1につながるw13の連関度を7点に、増減データA2につながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference market condition information P01 and the reference external environment information P20, the increase / decrease data is analyzed from the past data. For example, in the example of the intermediate node 61a, it is linked to the output of the increase / decrease data A1 and the increase / decrease data A2. The degree is set to 2 points.
 また、この図5に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Further, the degree of association shown in FIG. 5 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
 図5に示す連関度の例で、ノード61bは、参照用市況情報P01に対して、参照用外部環境情報P18の組み合わせのノードであり、増減データA3の連関度がw15、増減データA5の連関度がw16となっている。ノード61cは、参照用市況情報P02に対して、参照用外部環境情報P19、P21の組み合わせのノードであり、増減データA2の連関度がw17、増減データA4の連関度がw18となっている。 In the example of the degree of association shown in FIG. 5, the node 61b is a node that is a combination of the reference market condition information P01 and the reference external environment information P18, and the degree of association of the increase / decrease data A3 is w15 and the association of the increase / decrease data A5. The degree is w16. The node 61c is a node that is a combination of the reference external environment information P19 and P21 with respect to the reference market condition information P02, and the degree of association of the increase / decrease data A2 is w17 and the degree of association of the increase / decrease data A4 is w18.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから助言を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、上述した市況データに加え、新たに先物取引を行う時期における外部環境が反映された外部環境情報を取得する。外部環境情報は、例えば、雇用統計情報であればそのデータを直接取り込むようにしてもよい。他の統計データであれば、そのデータを直接取得するようにしてもよい。 Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, when actually giving advice from now on, the above-mentioned trained data will be used. In such a case, in addition to the above-mentioned market condition data, external environment information that reflects the external environment at the time of new futures trading is acquired. As the external environment information, for example, if it is employment statistics information, the data may be directly taken in. If it is other statistical data, the data may be acquired directly.
 このようにして新たに取得した市況情報、外部環境情報に基づいて、最適な助言を構成するべく、各先物の増減データを探索する。かかる場合には、予め取得した図5(表1)に示す連関度を参照する。例えば、新たに取得した市況情報がP02と同一かこれに類似するものである場合であって、外部環境情報がP21である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、増減データA3がw19、増減データA4が連関度w20で関連付けられている。かかる場合には、連関度の最も高い増減データA3を最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる増減データA4を最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Based on the newly acquired market information and external environmental information in this way, search for increase / decrease data of each futures in order to compose optimal advice. In such a case, the degree of association shown in FIG. 5 (Table 1) acquired in advance is referred to. For example, when the newly acquired market condition information is the same as or similar to P02 and the external environment information is P21, the node 61d is associated with the node 61d through the degree of association. In the node 61d, the increase / decrease data A3 is associated with w19, and the increase / decrease data A4 is associated with the degree of association w20. In such a case, the increase / decrease data A3 having the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the increase / decrease data A4 in which the degree of association is low but the association itself is recognized may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
 図6は、上述した参照用市況情報と、参照用家計情報との組み合わせと、当該組み合わせに対する各先物の増減データとの3段階以上の連関度が設定されている例を示している。 FIG. 6 shows an example in which a combination of the above-mentioned reference market information and reference household information and three or more levels of association with the increase / decrease data of each futures for the combination are set.
 参照用家計情報とは、家計消費状況調査、家計データ、1週間の平均就業時間、貯蓄額の統計データ、年収の統計データ、家計に関する等に関する様々なデータを含む。 Reference household information includes various data related to household consumption status survey, household data, average working hours per week, savings amount statistical data, annual income statistical data, household budget, etc.
 図6の例では、入力データとして例えば参照用市況情報P01~P03、参照用家計情報P22~25であるものとする。このような入力データとしての、参照用市況情報に対して、参照用家計情報が組み合わさったものが、図6に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、各先物の増減データが表示されている。 In the example of FIG. 6, it is assumed that the input data is, for example, reference market condition information P01 to P03 and reference household information P22 to 25. The intermediate node shown in FIG. 6 is a combination of reference market information and reference household information as such input data. Each intermediate node is further linked to the output. In this output, the increase / decrease data of each futures as an output solution is displayed.
 参照用市況情報と参照用家計情報との各組み合わせ(中間ノード)は、この出力解としての、各先物の増減データに対して3段階以上の連関度を通じて互いに連関しあっている。参照用市況情報と参照用家計情報がこの連関度を介して左側に配列し、増減データが連関度を介して右側に配列している。連関度は、左側に配列された参照用市況情報と参照用家計情報に対して、増減データと関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用市況情報と参照用家計情報が、いかなる増減データに紐付けられる可能性が高いかを示す指標であり、参照用市況情報と参照用家計情報から最も確からしい各先物の増減データを選択する上での的確性を示すものである。市況データに加え、実際の家計の状況がいかなる状態にあるのかに応じて、先物は変化が変動する先物は存在する。このため、これらの参照用市況情報と参照用家計情報の組み合わせで、最適な各先物の増減データを探索していくこととなる。 Each combination of reference market information and reference household information (intermediate node) is associated with each other through three or more levels of association with the increase / decrease data of each future as this output solution. Reference market information and reference household information are arranged on the left side via this degree of association, and increase / decrease data are arranged on the right side via this degree of association. The degree of association indicates the degree of relevance to the increase / decrease data with respect to the reference market information and the reference household information arranged on the left side. In other words, this degree of association is an index showing what kind of increase / decrease data is likely to be associated with each reference market condition information and reference household budget information, and is the most from the reference market condition information and the reference household budget information. It shows the accuracy in selecting the increase / decrease data of each probable future. In addition to market data, there are futures that change depending on the actual household situation. Therefore, by combining these reference market information and reference household information, the optimum increase / decrease data for each futures will be searched for.
 図6の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力と互いに関連度合いが低いことを示している。 In the example of FIG. 6, w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
 探索装置2は、このような図6に示す3段階以上の連関度w13~w22を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、参照用市況情報と参照用家計情報、並びにその場合の増減データが何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで図6に示す連関度を作り上げておく。 The search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference market condition information, the reference household information, and the increase / decrease data in that case was suitable for determining the actual search solution. By analyzing and analyzing the above, the degree of association shown in FIG. 6 is created.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用市況情報P01で、参照用家計情報P24である場合に、その増減データを過去のデータから分析する。例えば中間ノード61aの例では、増減データA1と増減データA2の出力にリンクしているが、以前の事例から増減データA1につながるw13の連関度を7点に、増減データA2につながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference market information P01 and the reference household information P24, the increase / decrease data is analyzed from the past data. For example, in the example of the intermediate node 61a, it is linked to the output of the increase / decrease data A1 and the increase / decrease data A2. The degree is set to 2 points.
 また、この図6に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Further, the degree of association shown in FIG. 6 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
 図6に示す連関度の例で、ノード61bは、参照用市況情報P01に対して、参照用家計情報P22の組み合わせのノードであり、増減データA3の連関度がw15、増減データA5の連関度がw16となっている。ノード61cは、参照用市況情報P02に対して、参照用家計情報P23、P25の組み合わせのノードであり、増減データA2の連関度がw17、増減データA4の連関度がw18となっている。 In the example of the degree of association shown in FIG. 6, the node 61b is a node that is a combination of the reference market information P01 and the reference household information P22, and the degree of association of the increase / decrease data A3 is w15 and the degree of association of the increase / decrease data A5. Is w16. The node 61c is a node that is a combination of the reference household information P23 and P25 with respect to the reference market information P02, and the degree of association of the increase / decrease data A2 is w17 and the degree of association of the increase / decrease data A4 is w18.
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから助言を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、上述した市況データに加え、新たに先物取引を行う時期における家計に関する統計的データが反映された家計情報を取得する。家計情報は、例えば、貯蓄額の統計データ等のように各官庁が公表しているデータであれば、そのデータを直接取り込むようにしてもよい。他の統計データであれば、そのデータを直接取得するようにしてもよい。 Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, when actually giving advice from now on, the above-mentioned trained data will be used. In such a case, in addition to the above-mentioned market data, household information that reflects statistical data on the household budget at the time of new futures trading is acquired. If the household information is data published by each government agency, such as statistical data on the amount of savings, the data may be directly taken in. If it is other statistical data, the data may be acquired directly.
 このようにして新たに取得した市況情報、家計情報に基づいて、最適な助言を構成するべく、各先物の増減データを探索する。かかる場合には、予め取得した図6(表1)に示す連関度を参照する。例えば、新たに取得した市況情報がP02と同一かこれに類似するものである場合であって、家計情報がP25である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、増減データA3がw19、増減データA4が連関度w20で関連付けられている。かかる場合には、連関度の最も高い増減データA3を最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる増減データA4を最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Based on the market information and household information newly acquired in this way, search for increase / decrease data of each futures in order to compose optimal advice. In such a case, the degree of association shown in FIG. 6 (Table 1) acquired in advance is referred to. For example, when the newly acquired market condition information is the same as or similar to P02 and the household information is P25, the node 61d is associated through the degree of association, and this node In 61d, the increase / decrease data A3 is associated with w19, and the increase / decrease data A4 is associated with the degree of association w20. In such a case, the increase / decrease data A3 having the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the increase / decrease data A4 in which the degree of association is low but the association itself is recognized may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
 なお、図6に示す参照用家計情報の代替として、過去の市況の検出時期における不動産に関する統計的データが反映された参照用不動産情報を入力データとして用いるようにしてもよい。かかる場合の詳細な構成は、参照用家計情報を参照用不動産情報と読み替え、家計情報を不動産情報と読み替えることにより詳細な説明は省略する。 As an alternative to the reference household information shown in FIG. 6, reference real estate information that reflects statistical data on real estate at the time of detection of past market conditions may be used as input data. In such a case, the detailed description will be omitted by replacing the reference household information with the reference real estate information and replacing the household information with the real estate information.
 かかる場合には参照用市況情報と、参照用不動産情報との組み合わせと、上記各先物の増減データとの3段階以上の連関度を用いることになる。ノード61は、参照用市況情報と、参照用不動産情報との組み合わせと、上記各先物の増減データとの3段階以上の連関度を規定することになる。 In such a case, the combination of the reference market condition information and the reference real estate information and the degree of association with the increase / decrease data of each of the above futures will be used at three levels or more. The node 61 defines the degree of association between the combination of the reference market condition information and the reference real estate information and the increase / decrease data of each of the above futures in three or more stages.
 参照用不動産情報とは、オフィス空室率、坪単価、賃料相場、地価、空き家に関する統計的データ等、不動産に関するあらゆる情報を含むものである。 Reference real estate information includes all information related to real estate such as office vacancy rate, tsubo unit price, rent market price, land price, statistical data on vacant houses, etc.
 このような連関度を形成しておき、先物取引に関する助言を行う上では、新たに先物取引を行う時期における不動産に関する統計的デーが反映された不動産情報を取得し、これと同一又は類似の参照用不動産情報と参照用市況情報との組み合わせと、各先物の増減データとの3段階以上の連関度に基づいて、先物取引に関する助言を行う。 In forming such a degree of association and giving advice on futures trading, obtain real estate information that reflects the statistical day on real estate at the time of new futures trading, and refer to the same or similar. We provide advice on futures trading based on the combination of real estate information for reference and market conditions for reference, and the degree of association with the increase / decrease data of each future on three or more levels.
 図7は、上述した参照用市況情報と、参照用専門家意見情報との組み合わせと、当該組み合わせに対する各先物の増減データとの3段階以上の連関度が設定されている例を示している。 FIG. 7 shows an example in which a combination of the above-mentioned reference market condition information and reference expert opinion information and three or more levels of association with the increase / decrease data of each futures for the combination are set.
 参照用専門家意見情報とは、先物の増減に関する専門家による見解が示されたあらゆる情報を意味し、アナリストレポートや新聞記事等に掲載されている先物の予想や株の増減の理由に関する専門家のコメント、見解等である。また、参照用専門家意見情報は、単に各先物が上がるか、下がるか、変わらないか、に関する予想そのものであってもよい。この参照用専門家意見情報としては、日経平均先物全体に関する意見、或いは特定のセグメント、業種に関する意見、更には個々の先物に関する意見の何れも含まれる。また参照用専門家意見情報としては、インターネット上に掲載される専門家(アナリスト)によるコメントや上昇又は下落の予想を取り込んでくるものであってもよい。 Reference expert opinion information means any information that gives an expert opinion on the increase or decrease of futures, and is specialized in futures forecasts and reasons for increase or decrease in stocks published in analyst reports and newspaper articles. Home comments, views, etc. Also, the reference expert opinion information may simply be the prediction itself as to whether each futures will rise, fall, or remain unchanged. This reference expert opinion information includes opinions on the entire Nikkei 225 futures, opinions on specific segments and industries, and opinions on individual futures. In addition, the reference expert opinion information may include comments by experts (analysts) posted on the Internet and forecasts of increase or decrease.
 図7の例では、入力データとして例えば参照用市況情報P01~P03、参照用専門家意見情報P26~29であるものとする。このような入力データとしての、参照用市況情報に対して、参照用専門家意見情報が組み合わさったものが、図7に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、各先物の増減データが表示されている。 In the example of FIG. 7, it is assumed that the input data is, for example, reference market condition information P01 to P03 and reference expert opinion information P26 to 29. The intermediate node shown in FIG. 7 is a combination of reference market condition information and reference expert opinion information as such input data. Each intermediate node is further linked to the output. In this output, the increase / decrease data of each futures as an output solution is displayed.
 参照用市況情報と参照用専門家意見情報との各組み合わせ(中間ノード)は、この出力解としての、各先物の増減データに対して3段階以上の連関度を通じて互いに連関しあっている。参照用市況情報と参照用専門家意見情報がこの連関度を介して左側に配列し、増減データが連関度を介して右側に配列している。連関度は、左側に配列された参照用市況情報と参照用専門家意見情報に対して、増減データと関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用市況情報と参照用専門家意見情報が、いかなる増減データに紐付けられる可能性が高いかを示す指標であり、参照用市況情報と参照用専門家意見情報から最も確からしい各先物の増減データを選択する上での的確性を示すものである。先物の変動が、市況データに加え、実際の専門家の意見と相関がみられる場合がある。このため、これらの参照用市況情報と参照用専門家意見情報の組み合わせで、最適な各先物の増減データを探索していくこととなる。 Each combination (intermediate node) of the reference market condition information and the reference expert opinion information is associated with each other through three or more levels of association with the increase / decrease data of each future as this output solution. The reference market information and the reference expert opinion information are arranged on the left side through this degree of association, and the increase / decrease data is arranged on the right side through this degree of association. The degree of association indicates the degree of relevance to the increase / decrease data with respect to the reference market condition information and the reference expert opinion information arranged on the left side. In other words, this degree of association is an index showing what kind of increase / decrease data each reference market condition information and reference expert opinion information is likely to be associated with, and is a reference market information and reference expert. It shows the accuracy in selecting the most probable increase / decrease data of each future from the opinion information. Futures fluctuations may correlate with actual expert opinion in addition to market data. Therefore, by combining these reference market condition information and reference expert opinion information, the optimum increase / decrease data of each futures will be searched.
 図7の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力と互いに関連度合いが低いことを示している。 In the example of FIG. 7, w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
 探索装置2は、このような図7に示す3段階以上の連関度w13~w22を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、参照用市況情報と参照用専門家意見情報、並びにその場合の増減データが何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで図7に示す連関度を作り上げておく。 The search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. 7. That is, the search device 2 accumulates past data as to which of the reference market condition information, the reference expert opinion information, and the increase / decrease data in that case was suitable for determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 7 is created.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用市況情報P01で、参照用家計情報P28である場合に、その増減データを過去のデータから分析する。例えば中間ノード61aの例では、増減データA1と増減データA2の出力にリンクしているが、以前の事例から増減データA1につながるw13の連関度を7点に、増減データA2につながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference market information P01 and the reference household information P28, the increase / decrease data is analyzed from the past data. For example, in the example of the intermediate node 61a, it is linked to the output of the increase / decrease data A1 and the increase / decrease data A2. The degree is set to 2 points.
 また、この図7に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Further, the degree of association shown in FIG. 7 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
 図7に示す連関度の例で、ノード61bは、参照用市況情報P01に対して、参照用専門家意見情報P26の組み合わせのノードであり、増減データA3の連関度がw15、増減データA5の連関度がw16となっている。ノード61cは、参照用市況情報P02に対して、参照用専門家意見情報P27、P29の組み合わせのノードであり、増減データA2の連関度がw17、増減データA4の連関度がw18となっている。 In the example of the degree of association shown in FIG. 7, the node 61b is a node in which the reference market condition information P01 is combined with the reference expert opinion information P26, and the degree of association of the increase / decrease data A3 is w15 and the increase / decrease data A5. The degree of association is w16. The node 61c is a node that is a combination of the reference expert opinion information P27 and P29 with respect to the reference market information P02, and the degree of association of the increase / decrease data A2 is w17 and the degree of association of the increase / decrease data A4 is w18. ..
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから助言を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、上述した市況データに加え、新たに先物取引を行う時期に発表された専門家の意見が反映された専門家意見情報を取得する。専門家意見情報は、例えば、新聞記事において専門家の意見が示されたものがあれば、そのデータを直接取り込むようにしてもよい。 Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, when actually giving advice from now on, the above-mentioned trained data will be used. In such a case, in addition to the above-mentioned market conditions data, expert opinion information that reflects the expert opinions announced at the time of new futures trading will be acquired. As for the expert opinion information, for example, if there is an expert opinion expressed in a newspaper article, the data may be directly taken in.
 このようにして新たに取得した市況情報、専門家意見情報に基づいて、最適な助言を構成するべく、各先物の増減データを探索する。かかる場合には、予め取得した図7(表1)に示す連関度を参照する。例えば、新たに取得した市況情報がP02と同一かこれに類似するものである場合であって、専門家意見情報がP29である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、増減データA3がw19、増減データA4が連関度w20で関連付けられている。かかる場合には、連関度の最も高い増減データA3を最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる増減データA4を最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Based on the market information and expert opinion information newly acquired in this way, search for increase / decrease data of each futures in order to compose optimal advice. In such a case, the degree of association shown in FIG. 7 (Table 1) acquired in advance is referred to. For example, when the newly acquired market condition information is the same as or similar to P02 and the expert opinion information is P29, the node 61d is associated through the degree of association. In this node 61d, the increase / decrease data A3 is associated with w19, and the increase / decrease data A4 is associated with the degree of association w20. In such a case, the increase / decrease data A3 having the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the increase / decrease data A4 in which the degree of association is low but the association itself is recognized may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
 図8は、上述した参照用市況情報と、参照用自然環境情報との組み合わせと、当該組み合わせに対する各先物の増減データとの3段階以上の連関度が設定されている例を示している。 FIG. 8 shows an example in which the combination of the above-mentioned reference market condition information and the reference natural environment information and the increase / decrease data of each futures with respect to the combination are set to three or more levels of association.
 参照用自然環境情報とは、災害データ、気温データ、降水量データ、風向きデータ、湿度データ等、自然環境に関するあらゆる情報を意味し、気象庁が発表した過去の自然環境に関するデータ、或いは民間の企業や個人が発表した過去の自然環境に関するデータ等である。 Reference natural environment information means all information related to the natural environment such as disaster data, temperature data, precipitation data, wind direction data, humidity data, etc., and data on the past natural environment released by the Meteorological Agency, or private companies and private companies. Data on the past natural environment released by individuals.
 図8の例では、入力データとして例えば参照用市況情報P01~P03、参照用自然環境情報P30~33であるものとする。このような入力データとしての、参照用市況情報に対して、参照用自然環境情報が組み合わさったものが、図8に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、各先物の増減データが表示されている。 In the example of FIG. 8, it is assumed that the input data is, for example, reference market condition information P01 to P03 and reference natural environment information P30 to 33. The intermediate node shown in FIG. 8 is a combination of the reference market condition information and the reference natural environment information as such input data. Each intermediate node is further linked to the output. In this output, the increase / decrease data of each futures as an output solution is displayed.
 参照用市況情報と参照用自然環境情報との各組み合わせ(中間ノード)は、この出力解としての、各先物の増減データに対して3段階以上の連関度を通じて互いに連関しあっている。参照用市況情報と参照用自然環境情報がこの連関度を介して左側に配列し、増減データが連関度を介して右側に配列している。連関度は、左側に配列された参照用市況情報と参照用自然環境情報に対して、増減データと関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用市況情報と参照用自然環境情報が、いかなる増減データに紐付けられる可能性が高いかを示す指標であり、参照用市況情報と参照用自然環境情報から最も確からしい各先物の増減データを選択する上での的確性を示すものである。先物の変動が、市況データに加え、実際の専門家の意見と相関がみられる場合がある。このため、これらの参照用市況情報と参照用自然環境情報の組み合わせで、最適な各先物の増減データを探索していくこととなる。 Each combination (intermediate node) of the reference market information and the reference natural environment information is associated with each other through three or more levels of association with the increase / decrease data of each future as this output solution. The reference market information and the reference natural environment information are arranged on the left side via this degree of association, and the increase / decrease data are arranged on the right side via this degree of association. The degree of association indicates the degree of relevance to the increase / decrease data with respect to the reference market condition information and the reference natural environment information arranged on the left side. In other words, this degree of association is an index showing what kind of increase / decrease data is likely to be associated with each reference market condition information and reference natural environment information, and the reference market condition information and reference natural environment information. It shows the accuracy in selecting the most probable increase / decrease data of each future. Futures fluctuations may correlate with actual expert opinion in addition to market data. Therefore, by combining these reference market condition information and reference natural environment information, the optimum increase / decrease data of each futures will be searched.
 図8の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力と互いに関連度合いが低いことを示している。 In the example of FIG. 8, w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
 探索装置2は、このような図8に示す3段階以上の連関度w13~w22を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で、参照用市況情報と参照用自然環境情報、並びにその場合の増減データが何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで図8に示す連関度を作り上げておく。 The search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference market condition information, the reference natural environment information, and the increase / decrease data in that case was suitable for determining the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 8 is created.
 この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用市況情報P01で、参照用自然環境情報P32である場合に、その増減データを過去のデータから分析する。例えば参照用市況情報P01で、参照用自然環境情報P32がリンクする中間ノード61aの例では、増減データA1と増減データA2の出力にリンクしているが、以前の事例から増減データA1につながるw13の連関度を7点に、増減データA2につながるw14の連関度を2点に設定している。 This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference market condition information P01 and the reference natural environment information P32, the increase / decrease data is analyzed from the past data. For example, in the example of the intermediate node 61a to which the reference natural environment information P32 is linked in the reference market condition information P01, it is linked to the output of the increase / decrease data A1 and the increase / decrease data A2. The degree of association of w14 is set to 7 points, and the degree of association of w14 connected to the increase / decrease data A2 is set to 2 points.
 また、この図8に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 Further, the degree of association shown in FIG. 8 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
 図8に示す連関度の例で、ノード61bは、参照用市況情報P01に対して、参照用自然環境情報P30の組み合わせのノードであり、増減データA3の連関度がw15、増減データA5の連関度がw16となっている。ノード61cは、参照用市況情報P02に対して、参照用専門家意見情報P31、P33の組み合わせのノードであり、増減データA2の連関度がw17、増減データA4の連関度がw18となっている。 In the example of the degree of association shown in FIG. 8, the node 61b is a node that is a combination of the reference market condition information P01 and the reference natural environment information P30, and the degree of association of the increase / decrease data A3 is w15 and the association of the increase / decrease data A5. The degree is w16. The node 61c is a node that is a combination of the reference expert opinion information P31 and P33 with respect to the reference market information P02, and the degree of association of the increase / decrease data A2 is w17 and the degree of association of the increase / decrease data A4 is w18. ..
 このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから助言を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、上述した市況データに加え、新たに先物取引を行う時期における自然環境の情報が反映された自然環境情報を取得する。自然環境情報は、例えば、気象庁や民間企業、個人が発表した自然環境に関するデータや情報、或いはこれらが記載されたサイトから直接取り込むようにしてもよい。 Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, when actually giving advice from now on, the above-mentioned trained data will be used. In such a case, in addition to the above-mentioned market condition data, the natural environment information that reflects the information on the natural environment at the time of new futures trading is acquired. Natural environment information may be imported directly from, for example, data and information on the natural environment published by the Japan Meteorological Agency, private companies, and individuals, or sites containing these.
 このようにして新たに取得した市況情報、自然環境情報に基づいて、最適な助言を構成するべく、各先物の増減データを探索する。かかる場合には、予め取得した図8(表1)に示す連関度を参照する。例えば、新たに取得した市況情報がP02と同一かこれに類似するものである場合であって、自然環境情報がP33である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、増減データA3がw19、増減データA4が連関度w20で関連付けられている。かかる場合には、連関度の最も高い増減データA3を最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる増減データA4を最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。 Based on the market information and natural environment information newly acquired in this way, search for increase / decrease data of each futures in order to compose optimal advice. In such a case, the degree of association shown in FIG. 8 (Table 1) acquired in advance is referred to. For example, when the newly acquired market condition information is the same as or similar to P02 and the natural environment information is P33, the node 61d is associated through the degree of association, and this In the node 61d, the increase / decrease data A3 is associated with w19, and the increase / decrease data A4 is associated with the degree of association w20. In such a case, the increase / decrease data A3 having the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the increase / decrease data A4 in which the degree of association is low but the association itself is recognized may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
 図9は、上述した参照用市況情報と、参照用イベント情報に加えて、更に参照用外部環境情報との組み合わせと、当該組み合わせに対する各先物の増減データとの3段階以上の連関度が設定されている例を示している。 In FIG. 9, in addition to the above-mentioned reference market condition information and reference event information, a combination of the reference external environment information and the increase / decrease data of each futures with respect to the combination are set with three or more levels of association. An example is shown.
  かかる場合において、連関度は、図9に示すように、参照用市況情報と、参照用イベント情報と、参照用外部環境情報との組み合わせの集合が上述と同様に中間ノードのノード61a~61eとして表現されることとなる。 In such a case, as shown in FIG. 9, the degree of association is such that a set of combinations of reference market condition information, reference event information, and reference external environment information is set as nodes 61a to 61e of intermediate nodes as described above. It will be expressed.
 例えば、図9において、ノード61cは、参照用市況情報P02が連関度w3で、参照用イベント情報P15が連関度w7で、参照用外部環境情報P19が連関度w11で連関している。同様にノード61eは、参照用市況情報P03が連関度w5で、参照用イベント情報P15が連関度w8で、参照用外部環境情報P18が連関度w10で連関している。 For example, in FIG. 9, in FIG. 9, the reference market condition information P02 is associated with the association degree w3, the reference event information P15 is associated with the association degree w7, and the reference external environment information P19 is associated with the association degree w11. Similarly, in the node 61e, the reference market condition information P03 is associated with the association degree w5, the reference event information P15 is associated with the association degree w8, and the reference external environment information P18 is associated with the association degree w10.
  このような連関度が設定されている場合も同様に、新たに取得した市況情報と、イベント情報と、外部環境情報とに基づいて、探索解を判別する。 Similarly, even when such a degree of association is set, the search solution is determined based on the newly acquired market condition information, the event information, and the external environment information.
 この探索解を判別する上で予め取得した図9に示す連関度を参照する。例えば、取得した市況情報が参照用市況情報P02に同一又は類似で、取得したイベント情報が参照用イベント情報P15に対応し、更に取得した外部環境情報が参照用外部環境情報P19に対応する場合、その組み合わせはノード61cが関連付けられており、このノード61cは、増減データA2が連関度w17で、また増減データA4が連関度w18で関連付けられている。このような連関度の結果、w17、w18に基づいて、実際に探索解を求めていくことになる。 In determining this search solution, refer to the degree of association shown in FIG. 9 acquired in advance. For example, when the acquired market condition information is the same as or similar to the reference market condition information P02, the acquired event information corresponds to the reference event information P15, and the acquired external environment information corresponds to the reference external environment information P19. In the combination, the node 61c is associated, and in this node 61c, the increase / decrease data A2 is associated with the association degree w17, and the increase / decrease data A4 is associated with the association degree w18. As a result of such a degree of association, a search solution is actually obtained based on w17 and w18.
 このような入力パラメータの種類を3種類以上にわたり組み合わせる場合には、参照用市況情報に加え、参照用イベント情報、参照用外部環境情報、参照用家計情報、参照用不動産情報、参照用専門家意見情報、参照用自然環境情報の何れか2以上で組み合わせが構成されたものであっても適用可能である。 When combining three or more types of such input parameters, in addition to the reference market information, the reference event information, the reference external environment information, the reference household information, the reference real estate information, and the reference expert opinion It is applicable even if the combination is composed of any two or more of the information and the reference natural environment information.
 また、出力データとしては、各先物の増減データ以外に、図10に示すように、実際の先物の購買行動(例えば、先物〇×買え、先物×〇保持)等に関する助言を直接表示するようにしてもよい。この助言は売買を助言する先物を指定する以外に具体的な購買量までも助言するようにしてもよい。かかる助言は、上述した増減データに基づいて生成するようにしてもよい。かかる場合には、将来的に先物が高くなるのであれば買うべき旨を助言し、将来的に先物が低くなるのであれば売るべき旨を助言するようにしてもよい。また、助言の中には、先物取引のリターンの可能性以外に、リスクについても表示するようにしてもよい。このとき、入力データと学習させるデータとしては、増減データの代わりに直接この助言内容をデータセットに含めて学習させるようにしてもよいことは勿論である。 In addition to the increase / decrease data of each futures, as the output data, as shown in FIG. 10, advice on actual futures purchasing behavior (for example, futures 〇 × buy, futures × 〇 retention) is directly displayed. You may. In addition to designating futures to advise on buying and selling, this advice may also advise on specific purchase volumes. Such advice may be generated based on the increase / decrease data described above. In such a case, it may be advised to buy if the futures will be high in the future, and to sell if the futures will be low in the future. In addition to the possibility of return on futures contracts, the advice may also include risks. At this time, as the input data and the data to be trained, it is of course possible to directly include this advice content in the data set instead of the increase / decrease data and train it.
 また、本発明は、先物取引を自動的に行う自動先物取引プログラムとして具現化されるものであってもよい。かかる場合には、増減データを上述した手順に基づいて探索した後、その増減データに基づいて先物の各先物を自動的に売買する。かかる場合には、先物の購買行動(例えば、先物〇×買え、先物×〇保持)等に関する助言に基づいて、システム側が自ら先物の売買を行う。かかる場合には、各先物の増減データが探索された結果、ある先物が上昇する旨が判定された場合には、その先物を自動的に購入する処理を行う。一方、ある先物が下落する旨が判定された場合には、その先物を自動的に売却するか、空売りをする処理を行う。 Further, the present invention may be embodied as an automatic futures trading program that automatically trades futures. In such a case, after searching the increase / decrease data based on the above procedure, each future of the futures is automatically bought and sold based on the increase / decrease data. In such a case, the system side buys and sells futures by itself based on advice on futures purchasing behavior (for example, futures 〇 × buy, futures × 〇 retention). In such a case, if it is determined that a certain future will rise as a result of searching the increase / decrease data of each future, the process of automatically purchasing the future is performed. On the other hand, when it is determined that a certain futures will fall, the futures are automatically sold or short-sold.
 上述した連関度は、図11に示すように人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。 The above-mentioned degree of association may be composed of the nodes of the neural network in artificial intelligence as shown in FIG. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
 また本発明は、図12に示すように参照用情報Uと参照用情報Vという2種類以上の情報の組み合わせの連関度に基づいて各先物の増減データを判別するものである。この参照用情報Yが参照用市況情報情報であり、参照用情報Vがそれ以外の参照情報(例えば、参照用イベント情報、参照用専門家意見情報等)の何れかであるものとする。 Further, as shown in FIG. 12, the present invention discriminates the increase / decrease data of each futures based on the degree of association of the combination of two or more types of information, the reference information U and the reference information V. It is assumed that the reference information Y is the reference market information information, and the reference information V is any other reference information (for example, reference event information, reference expert opinion information, etc.).
 このとき、図12に示すように、参照用情報Uについて得られた出力をそのまま入力データとして、参照用情報Vとの組み合わせの中間ノード61を介して出力(各先物の増減データ)と関連付けられていてもよい。例えば、参照用情報Uについて、出力解を出した後、これをそのまま入力として、他の参照用情報Vとの間での連関度を利用し、出力(各先物の増減データ)を探索するようにしてもよい。 At this time, as shown in FIG. 12, the output obtained for the reference information U is used as the input data as it is, and is associated with the output (increase / decrease data of each futures) via the intermediate node 61 in combination with the reference information V. You may be. For example, for the reference information U, after the output solution is output, this is used as an input as it is, and the output (increase / decrease data of each futures) is searched by using the degree of association with other reference information V. You may do it.
 また、本発明では、市況情報、参照用市況情報について、チャートを売買シグナルのチャートパターンに当てはめてもよい。図13、14は、チャートの売買シグナルのチャートパターンの例を示している。例えば図13(a)は、移動平均線を基準に株価や先物の価値が上下動を繰り返しているときに、株価や先物の価値が移動平均線まで落ちてきたときが買いのシグナルとなる。また、図13(b)は、もみ合い相場が長く続いた後、株価が上値抵抗線を上抜けたときが買いのシグナルとなる。図13(c)は、Wボトム型と言われており、株価が安値圏で2回安値を付けたときが買いのシグナルとなる。図13(d)は、逆三尊と言われており、株価が安値圏で3回安値を付け、そのうち真ん中が最も安くなるチャートパターンであり、これが現れると買いのシグナルとなる。図14(a)は、株価が急騰した後、すぐに急落し、長い下ヒゲのローソク足または大陽線が出て反転した場合であり、これが出たときは買いのサインとなる。図14(b)は、三川明けの明星と言われており、底値圏での大陰線が出て、下マド開けてヒゲも実体も短い陽・陰線(コマ足)が現れ、上マド開けて大陽線の形が出た場合は、目先買いシグナルとなる。図14(c)は、三川明けがらすと言われ、黒三兵(三羽がらす)で突っ込んだ後の赤三兵でV型の転換を表し、買いのサインとなる。図14(d)は、三川宵の明星は、上昇局面で大陽線となり、上マド開けてヒゲも実体も短い陽・陰線(コマ足)が出て、下マド開けて大陰線が出る形で下降に転換するサインになり、売りシグナルとなる。 Further, in the present invention, the chart may be applied to the chart pattern of the trading signal for the market condition information and the reference market condition information. 13 and 14 show examples of chart patterns of chart trading signals. For example, in FIG. 13A, when the value of a stock price or futures repeatedly fluctuates with respect to the moving average, the buying signal is when the value of the stock price or futures falls to the moving average. Further, in FIG. 13B, a buy signal is obtained when the stock price breaks out of the upside resistance line after the fraying market continues for a long time. FIG. 13C is said to be a W bottom type, and when the stock price hits the low price twice in the low price range, it becomes a buy signal. FIG. 13 (d) is called the head and shoulders shoulders, which is a chart pattern in which the stock price hits the low price three times in the low price range, and the middle is the cheapest, and when this appears, it becomes a buy signal. FIG. 14A shows a case where the stock price soars and then immediately plummets, and a long lower beard candlestick or the Taiyo line appears and reverses. When this appears, it is a sign of buying. Fig. 14 (b) is said to be the bright star at the end of Mikawa. If the shape of the Taiyo line appears, it will be a signal to buy in the near future. FIG. 14 (c) is said to be Mikawa Akegarasu, and represents a V-shaped conversion with the red three soldiers after plunging with the black three soldiers (three wings), which is a sign of buying. In Fig. 14 (d), the bright star of Mikawa evening becomes the Taiyo line in the ascending phase, the upper mado opens and the beard and the substance are short, and the positive and negative lines (top legs) appear, and the lower mado opens and the large shadow line appears. It will be a sign of a downturn and a sell signal.
 このようなシグナルは先物取引のみならず株取引における過去の経験則から生まれたものであるが、本発明においては、この市況情報、参照用市況情報をこれらの売買シグナルのチャートパターンの類型に当てはめるようにしてもよい。 Such signals are born from past empirical rules not only in futures trading but also in stock trading, but in the present invention, this market information and reference market information are applied to the types of chart patterns of these trading signals. You may do so.
 この当てはめは、図15に示すような機械学習により生成した判定モデルを利用してもよい。この判定モデルでは、上述した例からなる売買シグナルのチャートパターンの画像を教師データとして用いる。入力は、各先物のチャートとし、出力を売買シグナルの類型とする。チャートを取得した場合には、この機械学習より生成した判定モデルに基づいて当てはめを行い、いかなる売買シグナルの類型に当てはめるのかを判定する。 For this fitting, a judgment model generated by machine learning as shown in FIG. 15 may be used. In this determination model, an image of a chart pattern of a trading signal consisting of the above-mentioned example is used as teacher data. The input is a chart of each futures, and the output is a type of trading signal. When the chart is acquired, fitting is performed based on the judgment model generated by this machine learning, and it is determined what type of trading signal is applied.
 例えばチャートを入力した結果、出力として、三川明けがらす、三川宵の明星等の売買シグナルの類型に当てはまるのか否かを判定することができる。 For example, as a result of inputting a chart, it is possible to determine whether or not the output corresponds to the type of trading signal such as Akegarasu Mikawa and Akegarasu Mikawa evening.
 本発明においては、参照用市況情報と各先物の増減データ間の連関度を通じて機械学習を行わせる場合において、この参照用市況情報を取得する際には、その市況を表す各先物のチャートを取得する。そして、取得したチャートを図15に示す判定モデルを通じていかなる売買シグナルの類型に当てはまるのかを判定し、それぞれの参照用市況情報を売買シグナルの類型に当てはめていく。 In the present invention, when machine learning is performed through the degree of association between the reference market information and the increase / decrease data of each futures, when the reference market information is acquired, the chart of each future representing the market condition is acquired. do. Then, it is determined what type of trading signal the acquired chart applies to through the determination model shown in FIG. 15, and each reference market condition information is applied to the type of trading signal.
 その結果、この参照用市況情報は、類型化された売買シグナルで表されることになる。このような売買シグナルに対する、その後の時点で先物の増減傾向を学習させておくことにより、上述した連関度を形成しておく。 As a result, this reference market information will be represented by categorized trading signals. By learning the increasing / decreasing tendency of futures at a subsequent time point with respect to such a trading signal, the above-mentioned degree of association is formed.
 次に、実際に市況情報を取得し場合においても、その取得したチャートを図15に示す判定モデルを通じていかなる売買シグナルの類型に当てはまるのかを判定し、それぞれの参照用市況情報を売買シグナルの類型に当てはめていく。その結果、この市況情報は、類型化された売買シグナルで表されることになる。このような市況情報の売買シグナルの類型は、参照用市況情報のいかなる売買シグナルの類型に当てはまるのかを、上述した連関度を通じて判断する。そして、市況情報の売買シグナルの類型に対応する参照用市況情報の売買シグナルの類型と各先物の増減データとの3段階以上の連関度を利用し、連関度のより高いものを優先させて上記各先物の増減データを表示する。 Next, even when the market condition information is actually acquired, it is determined what type of trading signal the acquired chart applies to through the determination model shown in FIG. 15, and each reference market condition information is used as the type of trading signal. I will apply it. As a result, this market information will be represented by typified trading signals. The type of trading signal of such market information is determined through the above-mentioned degree of association to determine what type of trading signal of the reference market information is applicable. Then, using the three or more levels of association between the type of the trading signal of the reference market information corresponding to the type of the trading signal of the market information and the increase / decrease data of each futures, the one with the higher degree of association is prioritized and described above. Display increase / decrease data for each futures.
 なお、図15に示す出力に該当する売買シグナルの類型は既存の提案されている者に限定されるものでは無く、順次新たなシグナルの類型を更新するようにしてもよい。 Note that the type of trading signal corresponding to the output shown in FIG. 15 is not limited to the existing proposed person, and a new type of signal may be sequentially updated.
 例えば、参照用市況情報や市況情報の各チャートを分析しても、図15に示す出力における既存の類型に当てはまらない場合、そのチャートの傾向を新たな類型として登録しておく。そして、この新たに登録した類型と、その後の時点における各先物の増減データとの間で連関度を形成しておく。その後、この新たに登録した類型と類似するチャートが入力された場合に、同様に各先物の増減データとの間で連関度を作ることで、この新たに登録した類型と各先物の増減データとの間で、連関度の重みづけwが形成されることになる。 For example, even if each chart of the reference market information and the market information is analyzed, if it does not correspond to the existing type in the output shown in FIG. 15, the tendency of the chart is registered as a new type. Then, a degree of association is formed between this newly registered type and the increase / decrease data of each future at a subsequent time point. After that, when a chart similar to this newly registered type is input, by creating a degree of association with the increase / decrease data of each futures in the same way, this newly registered type and the increase / decrease data of each futures can be obtained. A weighting w of the degree of association is formed between them.
 このような連関度を更新しておき、新たに市況情報が入力された場合であって、図15の判定モデルより新たに登録されたシグナルの類型であることが判別された場合には、その新たに登録された類型からなる参照用市況情報を介して探索解を探索することが可能となる。 When such a degree of association is updated and market condition information is newly input and it is determined from the determination model of FIG. 15 that it is a newly registered signal type, it is determined. It is possible to search for a search solution via reference market information consisting of newly registered types.
 上述した連関度においては、10段階評価で連関度を表現しているが、これに限定されるものではなく、3段階以上の連関度で表現されていればよく、逆に3段階以上であれば100段階でも1000段階でも構わない。一方、この連関度は、2段階、つまり互いに連関しているか否か、1又は0の何れかで表現されるものは含まれない。 In the above-mentioned degree of association, the degree of association is expressed by a 10-step evaluation, but it is not limited to this, and it may be expressed by a degree of association of 3 or more levels, and conversely, it may be expressed by 3 or more levels. For example, 100 steps or 1000 steps may be used. On the other hand, this degree of association does not include those expressed in two stages, that is, whether or not they are related to each other, either 1 or 0.
 上述した構成からなる本発明によれば、特段のスキルや経験が無くても、誰でも手軽に先物取引を行う上で最適な先物の探索や、先物取引を行う上で最適な先物の探索を行うことができる。また本発明によれば、この探索解の判断を、人間が行うよりも高精度に行うことが可能となる。更に、上述した連関度を人工知能(ニューラルネットワーク等)で構成することにより、これを学習させることでその判別精度を更に向上させることが可能となる。 According to the present invention having the above-described configuration, anyone can easily search for the optimum futures for futures trading and the optimum futures for futures trading without any special skill or experience. It can be carried out. Further, according to the present invention, it is possible to determine the search solution with higher accuracy than that performed by a human being. Further, by configuring the above-mentioned degree of association with artificial intelligence (neural network or the like), it is possible to further improve the discrimination accuracy by learning this.
 なお、上述した入力データ、及び出力データは、学習させる過程で完全に同一のものが存在しない場合も多々あることから、これらの入力データと出力データを類型別に分類した情報であってもよい。つまり、入力データを構成する情報P01、P02、・・・・P15、16、・・・は、その情報の内容に応じて予めシステム側又はユーザ側において分類した基準で分類し、その分類した入力データと出力データとの間でデータセットを作り、学習させるようにしてもよい。 Note that the above-mentioned input data and output data may not be exactly the same in the process of learning, so that the input data and the output data may be classified by type. That is, the information P01, P02, ... P15, 16, ... That constitute the input data are classified according to the criteria classified in advance on the system side or the user side according to the content of the information, and the classified inputs. A data set may be created between the data and the output data and trained.
 また、本発明によれば、3段階以上に設定されている連関度を介して最適な解探索を行う点に特徴がある。連関度は、上述した10段階以外に、例えば0~100%までの数値で記述することができるが、これに限定されるものではなく3段階以上の数値で記述できるものであればいかなる段階で構成されていてもよい。 Further, according to the present invention, there is a feature that the optimum solution search is performed through the degree of association set in three or more stages. The degree of association can be described by, for example, a numerical value from 0 to 100% in addition to the above-mentioned 10 steps, but the degree of association is not limited to this, and any step can be described as long as it can be described by a numerical value of 3 or more steps. It may be configured.
 このような3段階以上の数値で表される連関度に基づいてより利益率が高く、リスクの低い先物を判別することで、探索解の可能性の候補として複数考えられる状況下において、当該連関度の高い順に探索して表示することも可能となる。 By discriminating futures with a higher rate of return and lower risk based on the degree of association expressed by such numerical values of three or more levels, the association is considered as a candidate for the possibility of a search solution. It is also possible to search and display in descending order of degree.
 これに加えて、本発明によれば、連関度が1%のような極めて低い出力の判別結果も見逃すことなく判断することができる。連関度が極めて低い判別結果であっても僅かな兆候として繋がっているものであり、何十回、何百回に一度は、その判別結果として役に立つ場合もあることをユーザに対して注意喚起することができる。 In addition to this, according to the present invention, it is possible to judge without overlooking the discrimination result of the extremely low output such as the degree of association of 1%. It warns the user that even a judgment result with an extremely low degree of association is connected as a slight sign and may be useful as the judgment result once every tens or hundreds of times. be able to.
 更に本発明によれば、このような3段階以上の連関度に基づいて探索を行うことにより、閾値の設定の仕方で、探索方針を決めることができるメリットがある。閾値を低くすれば、上述した連関度が1%のものであっても漏れなく拾うことができる反面、より適切な判別結果を好適に検出できる可能性が低く、ノイズを沢山拾ってしまう場合もある。一方、閾値を高くすれば、最適な探索解を高確率で検出できる可能性が高い反面、通常は連関度は低くてスルーされるものの何十回、何百回に一度は出てくる好適な解を見落としてしまう場合もある。いずれに重きを置くかは、ユーザ側、システム側の考え方に基づいて決めることが可能となるが、このような重点を置くポイントを選ぶ自由度を高くすることが可能となる。 Further, according to the present invention, there is an advantage that the search policy can be determined by the method of setting the threshold value by performing the search based on the degree of association of three or more stages. If the threshold value is lowered, even if the above-mentioned degree of association is 1%, it can be picked up without omission, but it is unlikely that a more appropriate discrimination result can be detected favorably, and a lot of noise may be picked up. be. On the other hand, if the threshold value is raised, there is a high possibility that the optimum search solution can be detected with a high probability. Sometimes the solution is overlooked. It is possible to decide which one to prioritize based on the ideas of the user side and the system side, but it is possible to increase the degree of freedom in selecting the points to be emphasized.
 更に本発明では、上述した連関度を更新させるようにしてもよい。この更新は、例えばインターネットを始めとした公衆通信網を介して提供された情報を反映させるようにしてもよい。また市況情報に加え、イベント情報、外部環境情報、家計情報、不動産情報、専門家意見情報、自然環境情報に関する知見、情報、データを取得した場合、これらに応じて連関度を上昇させ、或いは下降させる。同様に、イベント情報に加え、この外部環境情報の代替として、上述した専門家意見情報、自然環境情報、ファンダメンタル情報、統計情報を取得した場合、これらに応じて連関度を上昇させ、或いは下降させる。 Further, in the present invention, the above-mentioned degree of association may be updated. This update may reflect information provided via a public communication network such as the Internet. In addition to market information, when event information, external environment information, household information, real estate information, expert opinion information, and natural environment information knowledge, information, and data are acquired, the degree of association is increased or decreased accordingly. Let me. Similarly, when the above-mentioned expert opinion information, natural environment information, fundamental information, and statistical information are acquired as a substitute for this external environmental information in addition to the event information, the degree of association is increased or decreased accordingly. ..
 つまり、この更新は、人工知能でいうところの学習に相当する。新たなデータを取得し、これを学習済みデータに反映させることを行っているため、学習行為といえるものである。 In other words, this update is equivalent to learning in terms of artificial intelligence. It can be said that it is a learning act because it acquires new data and reflects it in the learned data.
 また、この連関度の更新は、公衆通信網から取得可能な情報に基づく場合以外に、専門家による研究データや論文、学会発表や、新聞記事、書籍等の内容に基づいてシステム側又はユーザ側が人為的に、又は自動的に更新するようにしてもよい。これらの更新処理においては人工知能を活用するようにしてもよい。 In addition, this update of the degree of association is not based on the information that can be obtained from the public communication network, but is also updated by the system side or the user side based on the contents of research data, papers, conference presentations, newspaper articles, books, etc. by experts. It may be updated artificially or automatically. Artificial intelligence may be utilized in these update processes.
 また学習済モデルを最初に作り上げる過程、及び上述した更新は、教師あり学習のみならず、教師なし学習、ディープラーニング、強化学習等を用いるようにしてもよい。教師なし学習の場合には、入力データと出力データのデータセットを読み込ませて学習させる代わりに、入力データに相当する情報を読み込ませて学習させ、そこから出力データに関連する連関度を自己形成させるようにしてもよい。 In addition, the process of first creating a trained model and the above-mentioned update may use not only supervised learning but also unsupervised learning, deep learning, reinforcement learning, and the like. In the case of unsupervised learning, instead of reading and learning the data set of input data and output data, information corresponding to the input data is read and trained, and the degree of association related to the output data is self-formed from there. You may let it.
1 先物取引情報表示システム
2 探索装置
21 内部バス
23 表示部
24 制御部
25 操作部
26 通信部
27 推定部
28 記憶部
61 ノード
 
1 Futures transaction information display system 2 Search device 21 Internal bus 23 Display unit 24 Control unit 25 Operation unit 26 Communication unit 27 Estimate unit 28 Storage unit 61 Node

Claims (10)

  1.  取引する先物の増減に関する情報を表示する先物取引情報表示プログラムにおいて、
     新たに先物取引を行う時期における市況に関する市況情報を取得する情報取得ステップと、
     予め取得した過去の市況に関する参照用市況情報と、その過去の市況に対する後の時点における各先物の増減データとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した市況情報に応じた参照用市況情報と各先物の増減データとの3段階以上の連関度のより高いものを優先させて上記各先物の増減データを表示する表示ステップとをコンピュータに実行させること
     を特徴とする先物取引情報表示プログラム。
    In the futures trading information display program that displays information on the increase or decrease of futures to be traded
    Information acquisition step to acquire market information about market conditions at the time of new futures trading,
    Using the reference market information about the past market conditions acquired in advance and the three or more levels of association between the increase / decrease data of each futures at a later time with respect to the past market conditions, according to the market information acquired in the above information acquisition step. The futures are characterized in that the computer is made to execute the display step of displaying the increase / decrease data of each of the above futures by giving priority to the one having a higher degree of association between the reference market information and the increase / decrease data of each future. Transaction information display program.
  2.  上記情報取得ステップでは、新たに先物取引を行う時期に発生したイベントが反映されたイベント情報を取得し、
     上記表示ステップでは、上記参照用市況情報と、上記過去の市況の検出時期に発生したイベントが反映された参照用イベント情報との組み合わせと、上記各先物の増減データとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得したイベント情報に応じた参照用イベント情報と上記参照用市況情報との組み合わせと、各先物の増減データとの3段階以上の連関度のより高いものを優先させて上記各先物の増減データを表示すること
     を特徴とする請求項1記載の先物取引情報表示プログラム。
    In the above information acquisition step, event information that reflects the event that occurred at the time of new futures trading is acquired.
    In the display step, the combination of the reference market information and the reference event information reflecting the events that occurred during the detection period of the past market conditions, and the degree of association between the increase / decrease data of each futures are three or more levels. Priority is given to the combination of the reference event information according to the event information acquired in the above information acquisition step and the above reference market condition information, and the one having a higher degree of association with the increase / decrease data of each futures in three or more stages. The futures trading information display program according to claim 1, wherein the increase / decrease data of each of the above futures is displayed.
  3.  上記情報取得ステップでは、新たに先物取引を行う時期における外部環境が反映された外部環境情報を取得し、
     上記表示ステップでは、上記参照用市況情報と、上記過去の市況の検出時期における外部環境が反映された参照用外部環境情報との組み合わせと、上記各先物の増減データとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した外部環境情報に応じた参照用外部環境情報と上記参照用市況情報との組み合わせと、各先物の増減データとの3段階以上の連関度のより高いものを優先させて上記各先物の増減データを表示すること
     を特徴とする請求項1記載の先物取引情報表示プログラム。
    In the above information acquisition step, external environment information that reflects the external environment at the time of new futures trading is acquired.
    In the above display step, the combination of the reference market condition information and the reference external environment information reflecting the external environment at the detection time of the past market condition, and the degree of association of the increase / decrease data of each of the futures in three or more stages. The combination of the reference external environment information according to the external environment information acquired in the above information acquisition step and the above reference market condition information, and the increase / decrease data of each futures have a higher degree of association of 3 levels or more. The futures transaction information display program according to claim 1, wherein the increase / decrease data of each of the above futures is displayed with priority given to.
  4.  上記情報取得ステップでは、新たに先物取引を行う時期における家計に関する統計的データが反映された家計情報を取得し、
     上記表示ステップでは、上記参照用市況情報と、上記過去の市況の検出時期における家計に関する統計的データが反映された参照用家計情報との組み合わせと、上記各先物の増減データとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した家計情報に応じた参照用家計情報と上記参照用市況情報との組み合わせと、各先物の増減データとの3段階以上の連関度のより高いものを優先させて上記各先物の増減データを表示すること
     を特徴とする請求項1記載の先物取引情報表示プログラム。
    In the above information acquisition step, household information that reflects statistical data on households at the time of new futures trading is acquired.
    In the above display step, there are three or more stages of the combination of the reference market information, the reference household information reflecting the statistical data on the household at the time when the past market is detected, and the increase / decrease data of each future. Using the degree of association, the combination of the reference household information according to the household information acquired in the above information acquisition step and the above reference market information, and the increase / decrease data of each futures have a higher degree of association of 3 levels or more. The futures transaction information display program according to claim 1, wherein the increase / decrease data of each of the above futures is displayed with priority given to.
  5.  上記情報取得ステップでは、新たに先物取引を行う時期における不動産に関する統計的デーが反映された不動産情報を取得し、
     上記表示ステップでは、上記参照用市況情報と、上記過去の市況の検出時期における不動産に関する統計的データが反映された参照用不動産情報との組み合わせと、上記各先物の増減データとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した不動産情報に応じた参照用不動産情報と上記参照用市況情報との組み合わせと、各先物の増減データとの3段階以上の連関度のより高いものを優先させて上記各先物の増減データを表示すること
     を特徴とする請求項1記載の先物取引情報表示プログラム。
    In the above information acquisition step, real estate information that reflects the statistical day regarding real estate at the time of new futures trading is acquired.
    In the above display step, there are three or more stages of the combination of the reference market information, the reference real estate information reflecting the statistical data on the real estate at the detection time of the past market condition, and the increase / decrease data of each future. Using the degree of association, the combination of the reference real estate information according to the real estate information acquired in the above information acquisition step and the above reference market condition information, and the one with a higher degree of association of three or more levels with the increase / decrease data of each futures. The futures transaction information display program according to claim 1, wherein the increase / decrease data of each of the above futures is displayed with priority given to.
  6.  上記情報取得ステップでは、新たに先物取引を行う時期に発表された専門家の意見が反映された専門家意見情報を取得し、
     上記表示ステップでは、上記参照用市況情報と、上記過去の市況の検出時期に発表された専門家の意見が反映された参照用専門家意見情報との組み合わせと、上記各先物の増減データとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した専門家意見情報に応じた参照用専門家意見情報と上記参照用市況情報との組み合わせと、各先物の増減データとの3段階以上の連関度のより高いものを優先させて上記各先物の増減データを表示すること
     を特徴とする請求項1記載の先物取引情報表示プログラム。
    In the above information acquisition step, expert opinion information that reflects the expert opinions announced at the time of new futures trading is acquired.
    In the above display step, the combination of the reference market condition information, the reference expert opinion information that reflects the expert's opinion announced at the detection time of the past market condition, and the increase / decrease data of each of the futures are obtained. Using 3 or more levels of association, the combination of the reference expert opinion information according to the expert opinion information acquired in the above information acquisition step and the above reference market condition information, and the increase / decrease data of each futures are 3 levels. The futures trading information display program according to claim 1, wherein the increase / decrease data of each of the above futures is displayed with priority given to those having a higher degree of association.
  7.  上記情報取得ステップでは、新たに先物取引を行う時期における自然環境の情報が反映された自然環境情報を取得し、
     上記表示ステップでは、上記参照用市況情報と、上記過去の市況の検出時期における自然環境の情報が反映された参照用自然環境情報との組み合わせと、上記各先物の増減データとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した自然環境情報に応じた参照用自然環境情報と上記参照用市況情報との組み合わせと、各先物の増減データとの3段階以上の連関度のより高いものを優先させて上記各先物の増減データを表示すること
     を特徴とする請求項1記載の先物取引情報表示プログラム。
    In the above information acquisition step, the natural environment information that reflects the information on the natural environment at the time of new futures trading is acquired.
    In the above display step, there are three or more stages of the combination of the reference market condition information, the reference natural environment information reflecting the information of the natural environment at the detection time of the past market condition, and the increase / decrease data of each of the futures. Using the degree of association, the combination of the reference natural environment information according to the natural environment information acquired in the above information acquisition step and the above reference market condition information, and the degree of association of three or more levels of the increase / decrease data of each future The future transaction information display program according to claim 1, wherein the higher ones are prioritized to display the increase / decrease data of each of the above futures.
  8.  上記情報取得ステップでは、上記市況情報として、各先物のチャートを取得するとともに、これを予め類型化された売買シグナルのチャートパターンに当てはめ、
     上記表示ステップでは、過去の先物のチャートを取得するとともに、これを予め類型化された売買シグナルのチャートパターンに当てはめた上記参照用市況情報と、この参照用市況情報におけるチャートパターンの類型と各先物の増減データとの3段階以上の連関度を利用し、上記情報取得ステップにおいて当てはめたチャートパターンの類型からなる上記市況情報に応じたチャートパターンの類型からなる参照用市況情報と各先物の増減データとの3段階以上の連関度のより高いものを優先させて上記各先物の増減データを表示すること
     を特徴とする請求項1記載の先物取引情報表示プログラム。
    In the above information acquisition step, the chart of each futures is acquired as the above market information, and this is applied to the chart pattern of the trading signal categorized in advance.
    In the above display step, the chart of the past futures is acquired, and the above reference market information is applied to the chart pattern of the trading signal categorized in advance, the chart pattern type and each future in this reference market information. Using the degree of association with the increase / decrease data of 3 or more levels, the reference market information consisting of the chart pattern types according to the above market information and the increase / decrease data of each futures The futures transaction information display program according to claim 1, wherein the increase / decrease data of each of the above futures is displayed by giving priority to the one having a higher degree of association with the three or more levels.
  9.  上記情報取得ステップでは、上記売買シグナルのチャートパターンの画像を教師データとして用い、入力を上記取得した各先物のチャートとし、出力を売買シグナルの類型とし、機械学習より生成した判定モデルに基づいて上記当てはめを行い、
     上記表示ステップでは、上記判定モデルにより上記当てはめを行うこと
     を特徴とする請求項8記載の先物取引情報表示プログラム。
    In the information acquisition step, the image of the chart pattern of the trading signal is used as the teacher data, the input is the chart of each acquired future, the output is the type of the trading signal, and the above is based on the judgment model generated by machine learning. Make a fit,
    The futures transaction information display program according to claim 8, wherein in the display step, the fitting is performed by the determination model.
  10.  取引する先物の増減に関する情報を表示する先物取引情報表示プログラムにおいて、
     新たに先物取引を行う時期における市況に関する市況情報を取得する情報取得ステップと、
     予め取得した過去の市況に関する参照用市況情報と、その過去の市況に対する後の時点における各先物の増減データとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した市況情報に応じた参照用市況情報と各先物の増減データとの3段階以上の連関度のより高いものを優先させて上記各先物の増減データを探索する探索ステップと、
     上記探索ステップにより探索された各先物の増減データに基づいて、上記各先物の何れか1以上を売買する自動売買ステップとをコンピュータに実行させること
     を特徴とする先物取引プログラム。
     
    In the futures trading information display program that displays information on the increase or decrease of futures to be traded
    Information acquisition step to acquire market information about market conditions at the time of new futures trading,
    Using the reference market information about the past market conditions acquired in advance and the degree of association of three or more levels of the increase / decrease data of each future with respect to the past market conditions at a later time, according to the market information acquired in the above information acquisition step. A search step for searching for the increase / decrease data of each of the above futures by giving priority to the one with a higher degree of association between the reference market information and the increase / decrease data of each future.
    A futures trading program characterized in that a computer executes an automatic trading step of buying or selling any one or more of the above futures based on the increase / decrease data of each future searched by the search step.
PCT/JP2021/002607 2020-02-01 2021-01-26 Futures trading information display program WO2021153548A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020015918 2020-02-01
JP2020-015918 2020-02-01

Publications (1)

Publication Number Publication Date
WO2021153548A1 true WO2021153548A1 (en) 2021-08-05

Family

ID=77078187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002607 WO2021153548A1 (en) 2020-02-01 2021-01-26 Futures trading information display program

Country Status (2)

Country Link
JP (12) JP2021125236A (en)
WO (1) WO2021153548A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793183A (en) * 2021-09-15 2021-12-14 中国热带农业科学院科技信息研究所 Natural rubber whole industrial chain data resource system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4358088A1 (en) 2021-06-17 2024-04-24 Toppan Inc. Information processing method and information processing system
JP2023020077A (en) 2021-07-30 2023-02-09 三菱重工業株式会社 Production method of laminated molding and laminating molding system
JP2023020076A (en) 2021-07-30 2023-02-09 三菱重工業株式会社 Production method of laminated molding and laminate molding system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744529A (en) * 1993-07-27 1995-02-14 Masuhiro Yamada Prediction and transaction aid device for time series data relating to market transaction
US6615187B1 (en) * 2000-02-09 2003-09-02 Warren S. Ashenmil Method of securitizing and trading real estate brokerage options
JP2016197367A (en) * 2015-04-06 2016-11-24 株式会社未来貯金 Defined contribution pension operation support server, defined contribution pension operation support program, defined contribution pension operation support terminal, and defined contribution pension operation support terminal program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744529A (en) * 1993-07-27 1995-02-14 Masuhiro Yamada Prediction and transaction aid device for time series data relating to market transaction
US6615187B1 (en) * 2000-02-09 2003-09-02 Warren S. Ashenmil Method of securitizing and trading real estate brokerage options
JP2016197367A (en) * 2015-04-06 2016-11-24 株式会社未来貯金 Defined contribution pension operation support server, defined contribution pension operation support program, defined contribution pension operation support terminal, and defined contribution pension operation support terminal program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113793183A (en) * 2021-09-15 2021-12-14 中国热带农业科学院科技信息研究所 Natural rubber whole industrial chain data resource system

Also Published As

Publication number Publication date
JP2021125244A (en) 2021-08-30
JP2021125250A (en) 2021-08-30
JP2021125246A (en) 2021-08-30
JP2021125239A (en) 2021-08-30
JP2021125242A (en) 2021-08-30
JP2021125243A (en) 2021-08-30
JP2021125238A (en) 2021-08-30
JP2021125245A (en) 2021-08-30
JP2021125241A (en) 2021-08-30
JP2021125237A (en) 2021-08-30
JP2021125236A (en) 2021-08-30
JP2021125240A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
WO2021153548A1 (en) Futures trading information display program
JP6955287B2 (en) Fraudulent Stock Trading Detection Program
JP2021163002A (en) Commodity demand prediction program
JP6912837B1 (en) Lender credit judgment program
WO2022039139A1 (en) Purchase price estimation program
WO2020226003A1 (en) Borrower reliability determination program and system
WO2021153547A1 (en) Exchange transaction information display program
WO2022039140A1 (en) Jewel sales price estimation program
WO2020226004A1 (en) Stock transaction information display program and system
JP2021163001A (en) Physical distribution center commodity delivery scheduling program
JP2021124801A (en) Stock trading information display program and currency trading information display program
JP2021125212A (en) Stock transaction information display program
JP2021124802A (en) Automatic trade algorithm proposal program
JP2021124797A (en) Stock transaction information display program and exchange transaction information display program
JP2021124798A (en) Stock transaction information display program and exchange transaction information display program
JP2021124799A (en) Stock trading information display program and currency trading information display program
JP2021163003A (en) Physical distribution base product delivery planning program
JP7122768B2 (en) Goods purchase timing suggestion program
JP2021174270A (en) Commodity demand prediction program
JP2022156868A (en) Buying/selling price estimation program
JP2021163000A (en) Commodity demand prediction program
JP2021140202A (en) Real estate loan condition proposal program
JP2021140375A (en) Commodity purchase timing proposal program
JP2022108346A (en) Commodity demand prediction program
JP2022108347A (en) Commodity demand prediction program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 21748129

Country of ref document: EP

Kind code of ref document: A1