WO2021153346A1 - Method and device for manufacturing slag material - Google Patents

Method and device for manufacturing slag material Download PDF

Info

Publication number
WO2021153346A1
WO2021153346A1 PCT/JP2021/001670 JP2021001670W WO2021153346A1 WO 2021153346 A1 WO2021153346 A1 WO 2021153346A1 JP 2021001670 W JP2021001670 W JP 2021001670W WO 2021153346 A1 WO2021153346 A1 WO 2021153346A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
molten slag
particles
slag
slag particles
Prior art date
Application number
PCT/JP2021/001670
Other languages
French (fr)
Japanese (ja)
Inventor
拓 松田
春日 昭夫
秀明 星
Original Assignee
三井住友建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井住友建設株式会社 filed Critical 三井住友建設株式会社
Priority to TW110125583A priority Critical patent/TW202237551A/en
Publication of WO2021153346A1 publication Critical patent/WO2021153346A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to a method for manufacturing a slag material and a manufacturing apparatus, and particularly to a method for manufacturing a slag material using ferronickel slag.
  • Slag discharged from steelmaking processes, alloy refining processes, etc. is used as a fine aggregate used in the production of cement concrete (hereinafter referred to as concrete) and cement mortar (hereinafter referred to as mortar).
  • concrete cement concrete
  • mortar cement mortar
  • slag has been used as a substitute for natural materials such as river sand, land sand, crushed sand, and sea sand from the viewpoint of environmental protection.
  • Japanese Patent Application Laid-Open No. 2019-163175 describes a step of making steelmaking slag into droplets and flying them in the air (wind crushing), and colliding the flying steelmaking slag with a recovery plate or a strut standing up from the recovery plate to condense and solidify.
  • a step of making the slag material and a method for producing the slag material including the slag material are disclosed. Further, Japanese Patent Application Laid-Open No. 2019-163175 describes that the composition of the slag changes depending on the flight distance of the steelmaking slag. Japanese Patent No. 60070614 discloses a method for producing a slag material having a high flatness by wind-crushing steelmaking slag at 1550 ° C. or higher and causing it to collide with a wall surface.
  • the quality of concrete and mortar may be affected by the physical structure and physical characteristics of the slag material used as the fine aggregate.
  • the desirable properties of the slag material depend on the intended use and mode of use of concrete and mortar, and therefore cannot be uniformly determined. Therefore, it is desirable to be able to manufacture slag materials having different characteristics with one manufacturing facility.
  • An object of the present invention is to provide a method for producing a slag material in which the characteristics of the slag material can be adjusted by a simpler method.
  • the outside is coagulated and solidified to form an outer shell
  • the inside is partially coagulated and solidified to form semi-molten slag particles. It also has the ability to cool the semi-molten slag particles.
  • the slag material is used as a fine aggregate of a concrete composition or a mortar composition (hydrated cured product). These hydrated cured products contain cement, an aggregate containing a slag material, water, and may contain a swelling material.
  • FIG. 1 shows a conceptual diagram of a slag material manufacturing apparatus 1 and a manufacturing method. Molten slag is supplied to the manufacturing apparatus 1. The molten slag is ferronickel slag in a molten state (hereinafter referred to as FeNi slag S1), but is not limited thereto.
  • the FeNi slag S1 is directly infused from the lower part of the ferronickel refining electric furnace into the wind crusher 2 via the slag gutter 3.
  • the temperature of the FeNi slag S1 supplied to the wind blower 2 is about 1500 to 1600 ° C.
  • the manufacturing apparatus 1 has a high-pressure air supply nozzle 4 that opens inside the wind blower 2, and a blower 5 that is connected to the supply nozzle 4 and supplies high-pressure air to the supply nozzle 4.
  • the air volume and speed of the high-pressure air can be adjusted by controlling the rotation speed of the blower 5.
  • High-pressure air is directly blown onto the FeNi slag S1 supplied to the wind crusher 2, and the FeNi slag S1 is decomposed into a large number of molten particles by the air flow.
  • the particles fly in the internal space of the windbreaker 2 by the air flow of high-pressure air. During this time, the particles are cooled and the outside is condensed and solidified to form an outer shell.
  • the inside of the particles partially condenses (crystallizes) by starting crystallization in the molten slag as the slag temperature drops, but does not coagulate and solidify as a whole.
  • Such particles are referred to as semi-molten slag particles S2.
  • semi-molten slag particles S2 such a state inside the particles is called a semi-molten state.
  • the outer shell of the semi-molten slag particles S2 may be crystalline or amorphous. May be good. No temperature control is performed inside the wind crusher 2. By air-crushing the FeNi slag S1, the FeNi slag S1 can be atomized and the particleized FeNi slag S1 can be uniformly cooled during flight.
  • a collision plate 6 is provided at a position opposite to the slag gutter 3 in the internal space of the wind crusher 2.
  • the temperature of the discharged semi-molten slag particles S2 drops to about 1300 ° C., but the inside of the particles is still in a semi-molten state. That is, the particles remain semi-molten slag particles S2.
  • the distance from the tip of the slag gutter 3 to the collision plate 6 is about 18 m, and high-pressure air having a wind speed of 120 m / s and a flow rate of 810 Nm 3 / min is supplied from the two supply nozzles 4.
  • the flight time from the tip of the slag gutter 3 of the particles to the collision plate 6 is estimated to be about 1 second, and the above-mentioned semi-molten slag particles S2 can be formed under these conditions.
  • the semi-molten slag particles S2 discharged from the wind crusher 2 are sent to the storage container 11 by batch processing.
  • the semi-molten slag particles S2 are temporarily received by the hopper 8 provided directly below the discharge port 7.
  • the hopper 8 rotates to supply the semi-molten slag particles S2 to the container 9.
  • the container 9 is transported by the conveyor 10 to the upper part of the storage container 11 (storage tank).
  • a supply port 12 for the semi-molten slag particles S2 is provided at the upper part of the storage container 11, and a discharge port 13 for the semi-molten slag particles S2 is provided at the bottom.
  • the container 9 is rotated by a first driving device 15 provided on the upper portion of the storage container 11 to supply the semi-molten slag particles S2 to the storage container 11.
  • the discharge port 13 is provided with a gate 14 for opening and closing the discharge port 13.
  • the gate 14 can be opened and closed by a second drive device 16 provided at the bottom of the storage container 11.
  • the supply of the semi-molten slag particles S2 and the opening and closing of the gate 14 are controlled by the control device 17.
  • the control device 17 stores a batch of semi-molten slag particles S2 supplied to the storage container 11 and a time when the batch is supplied to the storage container 11.
  • the control device 17 controls the timing of opening the gate 14 so that each batch is discharged from the storage container 11 immediately after staying in the storage container 11 for a predetermined time.
  • the semi-molten slag particles S2 can be retained inside the storage container 11 for a predetermined time.
  • the control device 17 has a timer for measuring the predetermined time.
  • the supply of the semi-molten slag particles S2 and the opening and closing of the gate 14 can also be performed manually.
  • the semi-molten slag particles S2 supplied to the storage container 11 stay inside the storage container 11 for a predetermined time and are gradually cooled.
  • the semi-molten slag particles S2 are slowly cooled from about 1300 ° C. to about 1100 ° C. over about 20 to 30 minutes.
  • temperature control is not performed inside the storage container 11 (that is, the semi-molten slag particles S2 are slowly cooled by natural cooling)
  • the heater and heat exchange are performed so that the particles are discharged at about 1100 ° C. after a lapse of a predetermined time. It is also possible to provide a temperature control device such as a container.
  • the formation and growth of pores of the semi-molten slag particles S2, that is, the size, number, shape, etc. of the pores are controlled. Can be done.
  • the semi-molten slag particles S2 that have been slowly cooled to about 1100 ° C. are discharged from the discharge port 13 of the storage container 11.
  • the discharged particles are cooled to room temperature by a cooler (not shown) in the cooling step P1. It is considered that the cooling rate in the cooler does not significantly affect the characteristics of the slag material. This is because the size, number, shape, etc. of the pores are almost determined by the cooling process from about 1300 ° C to about 1100 ° C.
  • Crystallization of SiO 2 which accounts for more than half of the slag component, begins at about 1300 ° C (the nuclei of SiO 2 are generated), and when cooled to about 1100 ° C, the structure of particles and pores is almost determined, and after that, the structure of the particles and pores is almost determined.
  • the cooling process does not appear to have a significant effect on the structure of particles and pores.
  • the cooled particles are lightly crushed and further sized (light crushing / sizing step P2).
  • the outer shell of the particles may have an amorphous and fragile structure due to the rapid cooling of the SiO 2 component inside the wind crusher 2.
  • the slag particles are classified by a vibrating sieve into particles having a particle size of 18 mm or more and 5 to 18 mm or less than 5 mm.
  • a vibrating sieve into particles having a particle size of 18 mm or more and 5 to 18 mm or less than 5 mm.
  • slag having a particle size of 18 mm or more is produced at 35 t / h
  • slag having a particle size of 5 to 18 mm is produced at 35 t / h
  • slag having a particle size of less than 5 mm is produced at 60 t / h.
  • the slag material formed by the above process has generally spherical open pores (pores that open on the surface of the particles, also called open pores) and approximately spherical closed pores (closed that are not connected to the surface of the particles). It is a pore and is also called a closed pore), and a capillary pore (capillary pore) is formed.
  • the capillary pores are formed by the cooling high-pressure air or the like remaining inside the semi-molten slag particles S2 spreading in a mesh pattern to a portion having low viscosity. Some of the closed pores formed near the surface of the slag material are connected to the surface of the slag material via capillary pores.
  • the open and closed pores are mainly formed by entraining air when the high temperature and low viscosity FeNi slag S1 flies in the air flow. Therefore, many closed pores are formed relatively close to the surface of the semi-molten slag particles S2.
  • the amount and size of the closed pores and the open pores are the temperature of the FeNi slag S1 when supplied to the wind crusher 2, the flight distance of the FeNi slag S1, the supply amount of the FeNi slag S1, and the ratio between the wind speed and the air volume of the high-pressure air. It can be controlled by such as.
  • the entrained air moves in the internal space of the semi-molten slag particles S2 in the semi-molten state, coalesces, and compares. It becomes a large (coarse) void (pore).
  • the open and closed pores formed in this way have a high water retention function and efficiently release the retained water during the hydration reaction.
  • self-shrinkage occurs due to the loss of water during the hydration reaction, but the slag material produced in the present embodiment efficiently releases water during the hydration reaction and concrete. And suppresses self-contraction of mortar.
  • fine aggregates used for concrete and mortar have a dense structure, a high absolute dry (surface dry) density, and a low water absorption rate, as specified in "JIS A 5011" in the relevant field. Materials with a large unit volume mass and actual volume ratio are considered to be high quality materials.
  • JIS A 5011 materials with a large unit volume mass and actual volume ratio are considered to be high quality materials.
  • a fine aggregate with a coarse void structure and a large water absorption rate the strength after hardening is increased and self-shrinkage is suppressed while ensuring the fluidity during kneading and casting of concrete and mortar. It is also reported that it is possible.
  • the fine aggregate is a natural material or a slag material
  • the quality of concrete and mortar hardened after production deteriorates (shrinkage, cracks) due to the quality characteristics (performance physical characteristics, particle shape) of the fine aggregate. And so on).
  • the slag material obtained in the present embodiment has a coarse void structure and a large water absorption rate, and concrete and mortar using this as a fine aggregate have high fluidity, strength, static elastic modulus, and small self-shrinkage.
  • the manufacturing a fine aggregate that exhibits the required performance according to the purpose of use it is possible to control the density, water absorption rate, actual volume rate, etc., which are typical indicators of aggregate quality, to the quality suitable for the purpose.
  • the wind speed of the high-pressure air supplied to the wind crusher 2 is increased, the entire particles are cooled so as to be substantially crystallized in the wind crusher 2, and a slag material having small pores and a dense structure can be obtained.
  • the particles can be coarsened, the cooling rate of the particles can be reduced, and the semi-molten slag particles S2 can be obtained.
  • the above-mentioned slag material can be obtained by aging and curing the semi-molten slag particles S2 at a high temperature for a predetermined time.
  • the residence time of the semi-molten slag particles S2 inside the storage container 11 is shortened or substantially zero, the semi-molten slag particles S2 are rapidly cooled in the cooling process on the downstream side without being aged and cured.
  • a slag material in which a large number of relatively small pores are distributed can be obtained without coarsening the pores. Therefore, once the semi-molten slag particles S2 are produced from the FeNi slag S1, a slag material having various characteristics can be obtained according to the subsequent processing.
  • the characteristics of the slag material can be variously changed by adjusting the time for the semi-molten slag particles S2 to stay inside the storage container 11.
  • the temperature range for holding the semi-molten slag particles S2 is not limited to the range of 1300 ° C. to 1100 ° C., and may be a predetermined temperature range exceeding normal temperature (normal temperature is, for example, about 25 ° C.). For example, if the temperature at which the semi-molten slag particles S2 are discharged from the discharge port 13 of the storage container 11 is lower than 1100 ° C., more pores may grow and more coarse pores may be obtained.
  • the temperature at the time of discharging the semi-molten slag particles S2 can be easily controlled by adjusting the residence time. As described above, the residence time of the slag particles S2 can be easily adjusted by the control device 17, so that the slag material manufacturing device 1 is not significantly affected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Provided is a method for manufacturing a slag material, the method making it possible to adjust the characteristics of the slag material using a simpler method. A method for manufacturing a slag material, the method including: granulating a molten slag material S1 and then cooling the same, whereby the exterior of the slag material S1 is solidified to form an external shell, and the interior of the slag material S1 forms partially solidified semi-molten slag particles S2; and cooling the semi-molten slag particles S2. The semi-molten slag particles S2 may be held within a prescribed temperature range above normal temperature for a prescribed time prior to cooling.

Description

スラグ材の製造方法及び製造装置Manufacturing method and equipment for slag material
 本出願は、2020年1月31日出願の日本出願である特願2020-14685に基づき、かつ同出願に基づく優先権を主張する。この出願は、その全体が参照によって本出願に取り込まれる。 This application claims priority based on Japanese application 2020-14685, which is a Japanese application filed on January 31, 2020, and based on the same application. This application is incorporated herein by reference in its entirety.
 本発明はスラグ材の製造方法と製造装置に関し、特にフェロニッケルスラグを用いたスラグ材の製造方法に関する。 The present invention relates to a method for manufacturing a slag material and a manufacturing apparatus, and particularly to a method for manufacturing a slag material using ferronickel slag.
 セメントコンクリート(以下コンクリートと記す)やセメントモルタル(以下モルタルと記す)の製造に用いられる細骨材として、製鋼プロセス、合金精錬プロセスなどから排出されるスラグが用いられる。スラグは近年、環境保護の観点から、川砂、陸砂、砕砂、海砂などの天然材料の代替物として利用されている。特開2019-163175号公報には、製鋼スラグを液滴にして空気中を飛翔させる工程(風砕)と、飛翔する製鋼スラグを、回収板または回収板から起立した衝立に衝突させ、凝結固化させる工程と、を含むスラグ材の製造方法が開示されている。また、特開2019-163175号公報には、製鋼スラグの飛翔する距離によってスラグの組成が変わることが記載されている。特許第6070614号公報には、1550℃以上の製鋼スラグを風砕して壁面に衝突させることにより、扁平率の高いスラグ材を製造する方法が開示されている。 Slag discharged from steelmaking processes, alloy refining processes, etc. is used as a fine aggregate used in the production of cement concrete (hereinafter referred to as concrete) and cement mortar (hereinafter referred to as mortar). In recent years, slag has been used as a substitute for natural materials such as river sand, land sand, crushed sand, and sea sand from the viewpoint of environmental protection. Japanese Patent Application Laid-Open No. 2019-163175 describes a step of making steelmaking slag into droplets and flying them in the air (wind crushing), and colliding the flying steelmaking slag with a recovery plate or a strut standing up from the recovery plate to condense and solidify. A step of making the slag material and a method for producing the slag material including the slag material are disclosed. Further, Japanese Patent Application Laid-Open No. 2019-163175 describes that the composition of the slag changes depending on the flight distance of the steelmaking slag. Japanese Patent No. 60070614 discloses a method for producing a slag material having a high flatness by wind-crushing steelmaking slag at 1550 ° C. or higher and causing it to collide with a wall surface.
 コンクリートやモルタルの品質は、細骨材として使用されるスラグ材の、物理的構造や物性などの特性によって影響を受けることがある。一方、スラグ材としての望ましい特性は、コンクリートやモルタルの使用用途や使用形態などに依存するため、一律には決定できない。このため、一つの製造設備で異なる特性のスラグ材を製造できるようにすることが望ましい。しかし、スラグの飛翔する距離を調整してスラグの特性を調整する場合、特開2019-163175号公報にも開示されているように、複数の衝立を設けるなどの方策が必要となり、製造設備への影響が大きい。 The quality of concrete and mortar may be affected by the physical structure and physical characteristics of the slag material used as the fine aggregate. On the other hand, the desirable properties of the slag material depend on the intended use and mode of use of concrete and mortar, and therefore cannot be uniformly determined. Therefore, it is desirable to be able to manufacture slag materials having different characteristics with one manufacturing facility. However, when adjusting the flight distance of the slag to adjust the characteristics of the slag, as disclosed in Japanese Patent Application Laid-Open No. 2019-163175, it is necessary to take measures such as providing a plurality of tsuitates, and the manufacturing equipment must be provided. The influence of is large.
 本発明は、スラグ材の特性をより簡易な方法で調整可能なスラグ材の製造方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a slag material in which the characteristics of the slag material can be adjusted by a simpler method.
 本発明のスラグ材の製造方法は、溶融状態のスラグを粒状化し、冷却することで、外部が凝結固化して外殻が形成され、内部が部分的に凝結固化した半溶融スラグ粒子を形成することと、半溶融スラグ粒子を冷却することと、を有する。 In the method for producing a slag material of the present invention, by granulating and cooling the molten slag, the outside is coagulated and solidified to form an outer shell, and the inside is partially coagulated and solidified to form semi-molten slag particles. It also has the ability to cool the semi-molten slag particles.
 本発明によれば、スラグ材の特性をより簡易な方法で調整可能なスラグ材の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a slag material in which the characteristics of the slag material can be adjusted by a simpler method.
 上述した、およびその他の、本出願の目的、特徴、および利点は、本出願を例示した添付の図面を参照する以下に述べる詳細な説明によって明らかとなろう。 The above-mentioned and other purposes, features, and advantages of the present application will be apparent by the detailed description described below with reference to the accompanying drawings exemplifying the present application.
スラグ材の製造方法を示す概念図である。It is a conceptual diagram which shows the manufacturing method of a slag material.
 以下、図面を参照して本発明のスラグ材の製造方法の実施形態について説明する。スラグ材はコンクリート組成物またはモルタル組成物(水和硬化物)の細骨材として使用される。これらの水和硬化物は、セメントと、スラグ材を含む骨材と、水とを含み、膨張材を含んでいてもよい。図1に、スラグ材の製造装置1と製造方法の概念図を示す。製造装置1には溶融スラグが供給される。溶融スラグは溶融状態のフェロニッケルスラグ(以下、FeNiスラグS1という)であるが、これに限定されない。FeNiスラグS1は、フェロニッケル精錬電気炉の下部から、スラグ樋3を経由して風砕機2に直接流下注入される。風砕機2に供給されるFeNiスラグS1の温度は約1500~1600℃である。 Hereinafter, embodiments of the method for producing the slag material of the present invention will be described with reference to the drawings. The slag material is used as a fine aggregate of a concrete composition or a mortar composition (hydrated cured product). These hydrated cured products contain cement, an aggregate containing a slag material, water, and may contain a swelling material. FIG. 1 shows a conceptual diagram of a slag material manufacturing apparatus 1 and a manufacturing method. Molten slag is supplied to the manufacturing apparatus 1. The molten slag is ferronickel slag in a molten state (hereinafter referred to as FeNi slag S1), but is not limited thereto. The FeNi slag S1 is directly infused from the lower part of the ferronickel refining electric furnace into the wind crusher 2 via the slag gutter 3. The temperature of the FeNi slag S1 supplied to the wind blower 2 is about 1500 to 1600 ° C.
 製造装置1は、風砕機2の内部に開口する高圧空気の供給ノズル4と、供給ノズル4に接続され、供給ノズル4に高圧空気を供給するブロア5と、を有している。高圧空気の風量及び風速は、ブロア5の回転数を制御することによって調整可能である。風砕機2に供給されたFeNiスラグS1に直接高圧空気が吹き付けられ、FeNiスラグS1は空気流によって多数の溶融状態の粒子に分解する。粒子は高圧空気の空気流によって風砕機2の内部空間を飛翔する。この間に粒子は冷却され、外部が凝結固化して外殻が形成される。粒子の内部は、スラグ温度の降下と共に溶融スラグ中で晶出が始まることで、部分的に凝結固化(結晶化)するが、全体的には凝結固化しない。このような粒子を半溶融スラグ粒子S2という。また、粒子の内部のこのような状態を半溶融状態という。粒子の外部が凝結固化して外殻が形成され、粒子の内部が部分的に凝結固化する限り、半溶融スラグ粒子S2の外殻は結晶質であってもよいし、非晶質であってもよい。風砕機2の内部では温度管理は行われない。FeNiスラグS1を風砕することによって、FeNiスラグS1を粒子化するとともに、粒子化したFeNiスラグS1を飛翔中に均一に冷却することができる。 The manufacturing apparatus 1 has a high-pressure air supply nozzle 4 that opens inside the wind blower 2, and a blower 5 that is connected to the supply nozzle 4 and supplies high-pressure air to the supply nozzle 4. The air volume and speed of the high-pressure air can be adjusted by controlling the rotation speed of the blower 5. High-pressure air is directly blown onto the FeNi slag S1 supplied to the wind crusher 2, and the FeNi slag S1 is decomposed into a large number of molten particles by the air flow. The particles fly in the internal space of the windbreaker 2 by the air flow of high-pressure air. During this time, the particles are cooled and the outside is condensed and solidified to form an outer shell. The inside of the particles partially condenses (crystallizes) by starting crystallization in the molten slag as the slag temperature drops, but does not coagulate and solidify as a whole. Such particles are referred to as semi-molten slag particles S2. Further, such a state inside the particles is called a semi-molten state. As long as the outside of the particles is condensed and solidified to form an outer shell and the inside of the particles is partially condensed and solidified, the outer shell of the semi-molten slag particles S2 may be crystalline or amorphous. May be good. No temperature control is performed inside the wind crusher 2. By air-crushing the FeNi slag S1, the FeNi slag S1 can be atomized and the particleized FeNi slag S1 can be uniformly cooled during flight.
 風砕機2の内部空間の、スラグ樋3と反対側の位置に、衝突板6が設けられている。飛翔する半溶融スラグ粒子S2は衝突板6に衝突し、向きを変え、重力によって下降し、風砕機2の底部の排出口7から排出される。排出される半溶融スラグ粒子S2の温度は1300℃程度まで低下するが、粒子の内部は依然として半溶融状態にある。すなわち、粒子は半溶融スラグ粒子S2のままである。本実施形態では、スラグ樋3の先端から衝突板6までの距離は約18mあり、風速120m/s、流量810Nm/分の高圧空気が2本の供給ノズル4から供給される。粒子のスラグ樋3の先端から衝突板6までの飛翔時間は1秒程度と推定され、この条件で上述の半溶融スラグ粒子S2を形成することができる。 A collision plate 6 is provided at a position opposite to the slag gutter 3 in the internal space of the wind crusher 2. The flying semi-molten slag particles S2 collide with the collision plate 6, change their direction, descend by gravity, and are discharged from the discharge port 7 at the bottom of the wind crusher 2. The temperature of the discharged semi-molten slag particles S2 drops to about 1300 ° C., but the inside of the particles is still in a semi-molten state. That is, the particles remain semi-molten slag particles S2. In the present embodiment, the distance from the tip of the slag gutter 3 to the collision plate 6 is about 18 m, and high-pressure air having a wind speed of 120 m / s and a flow rate of 810 Nm 3 / min is supplied from the two supply nozzles 4. The flight time from the tip of the slag gutter 3 of the particles to the collision plate 6 is estimated to be about 1 second, and the above-mentioned semi-molten slag particles S2 can be formed under these conditions.
 風砕機2から排出された半溶融スラグ粒子S2はバッチ処理で貯留容器11に送られる。半溶融スラグ粒子S2は排出口7の直下に設けられたホッパー8に一時的に受け入れられる。コンテナ9の受け入れ準備が整うと、ホッパー8が回転し、半溶融スラグ粒子S2をコンテナ9に供給する。コンテナ9はコンベア10によって貯留容器11(ストレージタンク)の上部まで運搬される。貯留容器11の上部には半溶融スラグ粒子S2の供給口12が、底部には半溶融スラグ粒子S2の排出口13が設けられている。コンテナ9は貯留容器11の上部に設けられた第1の駆動装置15によって回動し、半溶融スラグ粒子S2を貯留容器11に供給する。排出口13には排出口13を開閉するためのゲート14が設けられている。ゲート14は貯留容器11の下部に設けられた第2の駆動装置16によって開閉することができる。 The semi-molten slag particles S2 discharged from the wind crusher 2 are sent to the storage container 11 by batch processing. The semi-molten slag particles S2 are temporarily received by the hopper 8 provided directly below the discharge port 7. When the container 9 is ready to be received, the hopper 8 rotates to supply the semi-molten slag particles S2 to the container 9. The container 9 is transported by the conveyor 10 to the upper part of the storage container 11 (storage tank). A supply port 12 for the semi-molten slag particles S2 is provided at the upper part of the storage container 11, and a discharge port 13 for the semi-molten slag particles S2 is provided at the bottom. The container 9 is rotated by a first driving device 15 provided on the upper portion of the storage container 11 to supply the semi-molten slag particles S2 to the storage container 11. The discharge port 13 is provided with a gate 14 for opening and closing the discharge port 13. The gate 14 can be opened and closed by a second drive device 16 provided at the bottom of the storage container 11.
 半溶融スラグ粒子S2の供給及びゲート14の開閉は、制御装置17によって制御される。ここでは、簡単のために、コンテナ9で搬送される半溶融スラグ粒子S2の量は各バッチで一定であるとする。また、貯留容器11のゲート14は間歇的に開閉し、1回の開動作で1回のバッチに相当する量の粒子が排出されるとする。制御装置17は、貯留容器11に供給された半溶融スラグ粒子S2のバッチと、当該バッチが貯留容器11に供給された時刻と、を記憶する。制御装置17は各バッチが貯留容器11に所定時間滞留した直後に貯留容器11から排出されるよう、ゲート14を開けるタイミングを制御する。これによって、半溶融スラグ粒子S2を所定時間、貯留容器11の内部に滞留させることができる。制御装置17は上記所定時間を計測するタイマーを有している。半溶融スラグ粒子S2の供給及びゲート14の開閉は、手動で行うことも可能である。 The supply of the semi-molten slag particles S2 and the opening and closing of the gate 14 are controlled by the control device 17. Here, for the sake of simplicity, it is assumed that the amount of the semi-molten slag particles S2 transported in the container 9 is constant in each batch. Further, it is assumed that the gate 14 of the storage container 11 is intermittently opened and closed, and a single opening operation discharges an amount of particles corresponding to one batch. The control device 17 stores a batch of semi-molten slag particles S2 supplied to the storage container 11 and a time when the batch is supplied to the storage container 11. The control device 17 controls the timing of opening the gate 14 so that each batch is discharged from the storage container 11 immediately after staying in the storage container 11 for a predetermined time. As a result, the semi-molten slag particles S2 can be retained inside the storage container 11 for a predetermined time. The control device 17 has a timer for measuring the predetermined time. The supply of the semi-molten slag particles S2 and the opening and closing of the gate 14 can also be performed manually.
 貯留容器11に供給された半溶融スラグ粒子S2は所定時間、貯留容器11の内部に滞留し、徐々に冷却される。本実施形態では、半溶融スラグ粒子S2を、20~30分程度かけて、約1300℃から約1100℃まで徐冷する。貯留容器11の内部で温度管理は行われないが(すなわち、半溶融スラグ粒子S2は自然冷却によって徐冷される)、所定時間経過後に約1100℃で粒子が排出されるようにヒータ、熱交換器などの温度調整装置を設けることも可能である。半溶融スラグ粒子S2を約1300~1100℃の高温環境で滞留保持し熟成養生することにより、半溶融スラグ粒子S2の気孔の形成及び成長、すなわち気孔の大きさ、数、形状等を制御することができる。 The semi-molten slag particles S2 supplied to the storage container 11 stay inside the storage container 11 for a predetermined time and are gradually cooled. In the present embodiment, the semi-molten slag particles S2 are slowly cooled from about 1300 ° C. to about 1100 ° C. over about 20 to 30 minutes. Although temperature control is not performed inside the storage container 11 (that is, the semi-molten slag particles S2 are slowly cooled by natural cooling), the heater and heat exchange are performed so that the particles are discharged at about 1100 ° C. after a lapse of a predetermined time. It is also possible to provide a temperature control device such as a container. By retaining and holding the semi-molten slag particles S2 in a high temperature environment of about 1300 to 1100 ° C. and aging and curing them, the formation and growth of pores of the semi-molten slag particles S2, that is, the size, number, shape, etc. of the pores are controlled. Can be done.
 約1100℃まで徐冷された半溶融スラグ粒子S2は、貯留容器11の排出口13から排出される。排出された粒子は、冷却工程P1において、冷却器(図示せず)で常温まで冷却される。冷却器における冷却速度はスラグ材の特性に大きな影響を与えないと考えられる。これは、気孔の大きさ、数、形状等は、約1300℃から約1100℃までの冷却プロセスでほぼ決定されるためである。スラグの成分の半分以上を占めるSiOの結晶化が1300℃程度で始まり(SiOの核が発生し)、1100℃程度まで冷却されると、粒子や気孔の構造がほぼ決まり、それ以降の冷却プロセスは粒子や気孔の構造に大きな影響を与えないと考えられる。冷却された粒子は軽破砕され、さらに整粒される(軽破砕・整粒工程P2)。粒子の外郭は、SiO成分が風砕機2の内部で急速冷却されることにより、非晶質の脆弱な組織となっている可能性がある。また、多くの半溶融スラグ粒子S2は、風砕機2の内部を飛翔中に概ね球形となるが、風に乗れない半溶融スラグ粒子S2は飛翔中に落下し、扁平な形状や不規則な形状となるものもある。粒子の中には風砕機2や貯留容器11の内部で合体して不規則な形状となるものもある。軽破砕・整粒工程P2は、粒子の破砕が目的ではなく、粒子の表面研磨、脆弱組織の除去、整形を目的として行われる。さらに、粒子は振動篩(図示せず)によって分別され(分粒工程P3)、粒子径5.0mm未満の粒子だけがスラグ材として取り出される。スラグ粒子は振動篩により粒子径18mm以上、5~18mm、5mm未満に種分けされる。一例では、150t/hの半溶融スラグから、粒子径18mm以上のスラグが35t/h、粒子径5~18mmのスラグが35t/h、粒子径5mm未満のスラグが60t/h製造される。 The semi-molten slag particles S2 that have been slowly cooled to about 1100 ° C. are discharged from the discharge port 13 of the storage container 11. The discharged particles are cooled to room temperature by a cooler (not shown) in the cooling step P1. It is considered that the cooling rate in the cooler does not significantly affect the characteristics of the slag material. This is because the size, number, shape, etc. of the pores are almost determined by the cooling process from about 1300 ° C to about 1100 ° C. Crystallization of SiO 2 , which accounts for more than half of the slag component, begins at about 1300 ° C ( the nuclei of SiO 2 are generated), and when cooled to about 1100 ° C, the structure of particles and pores is almost determined, and after that, the structure of the particles and pores is almost determined. The cooling process does not appear to have a significant effect on the structure of particles and pores. The cooled particles are lightly crushed and further sized (light crushing / sizing step P2). The outer shell of the particles may have an amorphous and fragile structure due to the rapid cooling of the SiO 2 component inside the wind crusher 2. Further, many semi-molten slag particles S2 become substantially spherical during flight inside the wind crusher 2, but semi-molten slag particles S2 that cannot ride on the wind fall during flight and have a flat shape or an irregular shape. There is also something that becomes. Some particles coalesce inside the wind crusher 2 and the storage container 11 to form an irregular shape. The light crushing / sizing step P2 is performed not for the purpose of crushing particles but for the purpose of surface polishing of particles, removal of fragile tissues, and shaping. Further, the particles are separated by a vibrating sieve (not shown) (separation step P3), and only particles having a particle size of less than 5.0 mm are taken out as a slag material. The slag particles are classified by a vibrating sieve into particles having a particle size of 18 mm or more and 5 to 18 mm or less than 5 mm. In one example, from a semi-molten slag having a particle size of 150 t / h, slag having a particle size of 18 mm or more is produced at 35 t / h, slag having a particle size of 5 to 18 mm is produced at 35 t / h, and slag having a particle size of less than 5 mm is produced at 60 t / h.
 以上のプロセスで形成されたスラグ材には、概ね球形の開気孔(粒子の表面に開口する気孔であり、オープンポアともいう。)、概ね球形の閉気孔(粒子の表面につながっていない閉じた気孔であり、クローズドポアともいう。)、毛管気孔(キャピラリーポア)などが形成される。毛管気孔は、半溶融スラグ粒子S2の内部に残存した冷却用高圧空気等が、粘性の低い部分へ網目状に広がることによって形成される。スラグ材の表面付近に形成された閉気孔には、毛管気孔を介してスラグ材の表面とつながっているものもある。開気孔と閉気孔は主に、高温で粘性が低いFeNiスラグS1が、空気流で飛翔する際に空気を巻き込むことによって形成される。このため、多くの閉気孔は、半溶融スラグ粒子S2の比較的表面に近いところに形成される。閉気孔と開気孔の量や大きさは、風砕機2に供給される際のFeNiスラグS1の温度、FeNiスラグS1の飛翔距離、FeNiスラグS1の供給量、高圧空気の風速と風量との比率等により制御できる。 The slag material formed by the above process has generally spherical open pores (pores that open on the surface of the particles, also called open pores) and approximately spherical closed pores (closed that are not connected to the surface of the particles). It is a pore and is also called a closed pore), and a capillary pore (capillary pore) is formed. The capillary pores are formed by the cooling high-pressure air or the like remaining inside the semi-molten slag particles S2 spreading in a mesh pattern to a portion having low viscosity. Some of the closed pores formed near the surface of the slag material are connected to the surface of the slag material via capillary pores. The open and closed pores are mainly formed by entraining air when the high temperature and low viscosity FeNi slag S1 flies in the air flow. Therefore, many closed pores are formed relatively close to the surface of the semi-molten slag particles S2. The amount and size of the closed pores and the open pores are the temperature of the FeNi slag S1 when supplied to the wind crusher 2, the flight distance of the FeNi slag S1, the supply amount of the FeNi slag S1, and the ratio between the wind speed and the air volume of the high-pressure air. It can be controlled by such as.
 さらに、半溶融スラグ粒子S2を約1300~約1100℃の温度範囲で所定時間保持することで、巻き込まれた空気が半溶融スラグ粒子S2の半溶融状態の内部空間を移動し、合体し、比較的大きな(粗大な)空隙(気孔)となる。このように形成された開気孔及び閉気孔は保水機能が高く、且つ水和反応の際に、保有している水を効率的に放出する。コンクリートやモルタルでは、水和反応の際に水が失われることによって自己収縮が生じるが、本実施形態で作成されたスラグ材は、水和反応の際に水を効率的に放出して、コンクリートやモルタルの自己収縮を抑制する。 Further, by holding the semi-molten slag particles S2 in a temperature range of about 1300 to about 1100 ° C. for a predetermined time, the entrained air moves in the internal space of the semi-molten slag particles S2 in the semi-molten state, coalesces, and compares. It becomes a large (coarse) void (pore). The open and closed pores formed in this way have a high water retention function and efficiently release the retained water during the hydration reaction. In concrete and mortar, self-shrinkage occurs due to the loss of water during the hydration reaction, but the slag material produced in the present embodiment efficiently releases water during the hydration reaction and concrete. And suppresses self-contraction of mortar.
 一般に、コンクリート及びモルタルに利用される細骨材は、当該分野の「JIS A 5011」に規定されているように、組織が緻密で、絶乾(表乾)密度が大きく、吸水率が小さく、単位体積質量及び実積率の大きいものが、品質のよい材料とされている。一方、空隙構造が粗大で吸水率が大きい細骨材を用いることで、コンクリート及びモルタルの混錬時及び打設時の流動性を確保しつつ、硬化後の強度を高め、自己収縮を抑制することが可能である、との報告もされている。細骨材が天然材料、スラグ材のいずれであっても、細骨材の品質特性(性能物性、粒子形状)に起因して、製造後に硬化したコンクリート及びモルタルの品質が低下する(収縮、ひび割れ等々)ことがある。本実施形態で得られたスラグ材は空隙構造が粗大で吸水率が大きく、これを細骨材とするコンクリート及びモルタルは流動性、強度、静弾性係数が高く、自己収縮が小さい。 In general, fine aggregates used for concrete and mortar have a dense structure, a high absolute dry (surface dry) density, and a low water absorption rate, as specified in "JIS A 5011" in the relevant field. Materials with a large unit volume mass and actual volume ratio are considered to be high quality materials. On the other hand, by using a fine aggregate with a coarse void structure and a large water absorption rate, the strength after hardening is increased and self-shrinkage is suppressed while ensuring the fluidity during kneading and casting of concrete and mortar. It is also reported that it is possible. Regardless of whether the fine aggregate is a natural material or a slag material, the quality of concrete and mortar hardened after production deteriorates (shrinkage, cracks) due to the quality characteristics (performance physical characteristics, particle shape) of the fine aggregate. And so on). The slag material obtained in the present embodiment has a coarse void structure and a large water absorption rate, and concrete and mortar using this as a fine aggregate have high fluidity, strength, static elastic modulus, and small self-shrinkage.
 本実施形態では、利用目的別の要求性能を発揮する細骨材を製造することができる。すなわち、骨材品質を示す代表的な指標である密度、吸水率、実積率等を目的に合う品質に制御して製造することが可能である。たとえば、風砕機2に供給する高圧空気の風速を大きくすれば、風砕機2中で粒子全体をほぼ結晶化するように冷却し、気孔が小さく緻密な構造のスラグ材を得ることができる。風砕機2に供給する高圧空気の風速を小さくすれば、粒子を粗大化し、粒子の冷却速度を低下させ、半溶融スラグ粒子S2を得ることができる。 In this embodiment, it is possible to manufacture a fine aggregate that exhibits the required performance according to the purpose of use. That is, it is possible to control the density, water absorption rate, actual volume rate, etc., which are typical indicators of aggregate quality, to the quality suitable for the purpose. For example, if the wind speed of the high-pressure air supplied to the wind crusher 2 is increased, the entire particles are cooled so as to be substantially crystallized in the wind crusher 2, and a slag material having small pores and a dense structure can be obtained. By reducing the wind speed of the high-pressure air supplied to the wind crusher 2, the particles can be coarsened, the cooling rate of the particles can be reduced, and the semi-molten slag particles S2 can be obtained.
 さらに、この半溶融スラグ粒子S2を高温状態で所定時間熟成養生することで、上述のスラグ材が得られる。一方、貯留容器11の内部における半溶融スラグ粒子S2の滞留時間を短縮または実質的にゼロにすると、半溶融スラグ粒子S2は熟成養生されることなく、下流側の冷却プロセスで急速冷却される。この場合、気孔は粗大化することなく、比較的小さな気孔が多数分布するスラグ材が得られると考えられる。従って、FeNiスラグS1から一旦半溶融スラグ粒子S2を作成することで、その後の処理に応じて様々な特性を備えたスラグ材を得ることができる。スラグ材の特性は半溶融スラグ粒子S2が貯留容器11の内部に滞留する時間を調整することによって、様々に変化させることができる。半溶融スラグ粒子S2を保持する温度範囲も1300℃から1100℃の範囲に限定されず、常温(常温は例えば約25℃)を上回る所定の温度範囲であればよい。例えば、半溶融スラグ粒子S2が貯留容器11の排出口13から排出される際の温度を1100℃より低温とすれば、より気孔が成長し、より粗大化した気孔が得られる可能性がある。半溶融スラグ粒子S2の排出時の温度は滞留時間を調整することで容易に制御することができる。スラグ粒子S2の滞留時間の調整は上述の通り、制御装置17によって容易に行うことできるため、スラグ材の製造装置1に大きな影響を与えない。 Further, the above-mentioned slag material can be obtained by aging and curing the semi-molten slag particles S2 at a high temperature for a predetermined time. On the other hand, when the residence time of the semi-molten slag particles S2 inside the storage container 11 is shortened or substantially zero, the semi-molten slag particles S2 are rapidly cooled in the cooling process on the downstream side without being aged and cured. In this case, it is considered that a slag material in which a large number of relatively small pores are distributed can be obtained without coarsening the pores. Therefore, once the semi-molten slag particles S2 are produced from the FeNi slag S1, a slag material having various characteristics can be obtained according to the subsequent processing. The characteristics of the slag material can be variously changed by adjusting the time for the semi-molten slag particles S2 to stay inside the storage container 11. The temperature range for holding the semi-molten slag particles S2 is not limited to the range of 1300 ° C. to 1100 ° C., and may be a predetermined temperature range exceeding normal temperature (normal temperature is, for example, about 25 ° C.). For example, if the temperature at which the semi-molten slag particles S2 are discharged from the discharge port 13 of the storage container 11 is lower than 1100 ° C., more pores may grow and more coarse pores may be obtained. The temperature at the time of discharging the semi-molten slag particles S2 can be easily controlled by adjusting the residence time. As described above, the residence time of the slag particles S2 can be easily adjusted by the control device 17, so that the slag material manufacturing device 1 is not significantly affected.
 本発明のいくつかの好ましい実施形態を詳細に示し、説明したが、添付された請求項の趣旨または範囲から逸脱せずに様々な変更および修正が可能であることを理解されたい。 Although some preferred embodiments of the present invention have been shown and described in detail, it should be understood that various modifications and modifications can be made without departing from the spirit or scope of the appended claims.
 1 スラグ材の製造装置
 2 風砕機
 6 衝突板
 9 コンテナ
 11 貯留容器
 12 供給口
 13 排出口
 14 ゲート
 15 第1の駆動装置
 16 第2の駆動装置
 17 制御装置
 S1 FeNiスラグ
 S2 半溶融スラグ粒子
 
1 Slag material manufacturing equipment 2 Wind crusher 6 Collision plate 9 Container 11 Storage container 12 Supply port 13 Discharge port 14 Gate 15 First drive device 16 Second drive device 17 Control device S1 FeNi slag S2 Semi-molten slag particles

Claims (10)

  1.  溶融スラグを粒状化し、冷却することで、外部が凝結固化して外殻が形成され、内部が部分的に凝結固化した半溶融スラグ粒子を形成することと、
     前記半溶融スラグ粒子を冷却することと、を有するスラグ材の製造方法。
    By granulating and cooling the molten slag, the outside is condensed and solidified to form an outer shell, and the inside is partially condensed and solidified to form semi-molten slag particles.
    A method for producing a slag material, which comprises cooling the semi-molten slag particles.
  2.  前記半溶融スラグ粒子を、冷却する前に所定時間、常温を上回る所定の温度範囲に保持する、請求項1に記載の製造方法。 The production method according to claim 1, wherein the semi-molten slag particles are held in a predetermined temperature range exceeding room temperature for a predetermined time before cooling.
  3.  前記所定の温度範囲は1100℃以上、1300℃以下の温度である、請求項2に記載の製造方法。 The manufacturing method according to claim 2, wherein the predetermined temperature range is a temperature of 1100 ° C. or higher and 1300 ° C. or lower.
  4.  前記所定時間は20分以上、30分以下である、請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the predetermined time is 20 minutes or more and 30 minutes or less.
  5.  前記半溶融スラグ粒子は貯留容器の内部で前記所定時間保持される、請求項2から4のいずれか1項に記載の製造方法。 The production method according to any one of claims 2 to 4, wherein the semi-molten slag particles are held inside the storage container for the predetermined time.
  6.  前記溶融スラグを空気流で飛翔させることで前記半溶融スラグ粒子を形成する、請求項1から5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the semi-molten slag particles are formed by flying the molten slag with an air stream.
  7.  前記半溶融スラグ粒子を冷却して得られたスラグ粒子を軽破砕、整粒、分粒し、所定の粒度以下のスラグ粒子をスラグ材として取りだすことを有する、請求項1から6のいずれか1項に記載の製造方法。 Any one of claims 1 to 6, wherein the slag particles obtained by cooling the semi-molten slag particles are lightly crushed, sized, and separated, and the slag particles having a predetermined particle size or smaller are taken out as a slag material. The manufacturing method described in the section.
  8.  前記溶融スラグは溶融状態のフェロニッケルスラグである、請求項1から7のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the molten slag is a ferronickel slag in a molten state.
  9.  溶融スラグを粒状化し、冷却することで、外部が凝結固化して外殻が形成され、内部が部分的に凝結固化した半溶融スラグ粒子を形成する、半溶融スラグ粒子の製造手段と、
     前記半溶融スラグ粒子を所定時間、常温を上回る所定の温度範囲に保持する保持手段と、
     前記所定時間保持した前記半溶融スラグ粒子を冷却する冷却手段と、を有するスラグ材の製造装置。
    By granulating and cooling the molten slag, the outside is condensed and solidified to form an outer shell, and the inside is partially condensed and solidified to form semi-molten slag particles.
    A holding means for holding the semi-molten slag particles in a predetermined temperature range exceeding room temperature for a predetermined time, and
    An apparatus for producing a slag material, comprising a cooling means for cooling the semi-molten slag particles held for a predetermined time.
  10.  前記半溶融スラグ粒子を前記保持手段に供給するコンテナと、
     前記保持手段から前記半溶融スラグ粒子を排出するためのゲートと、
     前記半溶融スラグ粒子が前記保持手段に供給されてから、前記所定時間が経過した後に前記ゲートを開く制御部と、を有する、請求項9に記載の製造装置。
     
    A container that supplies the semi-molten slag particles to the holding means,
    A gate for discharging the semi-molten slag particles from the holding means, and
    The manufacturing apparatus according to claim 9, further comprising a control unit that opens the gate after the predetermined time has elapsed since the semi-molten slag particles were supplied to the holding means.
PCT/JP2021/001670 2020-01-31 2021-01-19 Method and device for manufacturing slag material WO2021153346A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110125583A TW202237551A (en) 2020-01-31 2021-07-13 Production method and production apparatus for slag material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020014685A JP2021121571A (en) 2020-01-31 2020-01-31 Method and device of producing slag material
JP2020-014685 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153346A1 true WO2021153346A1 (en) 2021-08-05

Family

ID=77078857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001670 WO2021153346A1 (en) 2020-01-31 2021-01-19 Method and device for manufacturing slag material

Country Status (3)

Country Link
JP (1) JP2021121571A (en)
TW (1) TW202237551A (en)
WO (1) WO2021153346A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311920A (en) * 1976-07-20 1978-02-02 Nippon Steel Corp Blast furnace granulated slag production process
JPS5413495A (en) * 1977-07-01 1979-01-31 Mitsubishi Heavy Ind Ltd Continuously recovering equipment for heat of molten slag
JPH11236608A (en) * 1998-02-20 1999-08-31 Nippon Steel Corp Treatment of molten blast furnace slag and treating apparatus
JP2015164883A (en) * 2014-03-03 2015-09-17 Jfeスチール株式会社 Apparatus for continuously casting slag
WO2019138879A1 (en) * 2018-01-10 2019-07-18 三井住友建設株式会社 Mortar and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311920A (en) * 1976-07-20 1978-02-02 Nippon Steel Corp Blast furnace granulated slag production process
JPS5413495A (en) * 1977-07-01 1979-01-31 Mitsubishi Heavy Ind Ltd Continuously recovering equipment for heat of molten slag
JPH11236608A (en) * 1998-02-20 1999-08-31 Nippon Steel Corp Treatment of molten blast furnace slag and treating apparatus
JP2015164883A (en) * 2014-03-03 2015-09-17 Jfeスチール株式会社 Apparatus for continuously casting slag
WO2019138879A1 (en) * 2018-01-10 2019-07-18 三井住友建設株式会社 Mortar and method for manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PACIFIC METALS CO., LTD.: "Eco-friendly products with low environmental impact [Slag products that contribute to a sound material-cycle society]", ENVIRONMENTAL REPORT 2014, 30 November 2013 (2013-11-30), JP, pages 11-13 - 15, XP009530205 *

Also Published As

Publication number Publication date
TW202237551A (en) 2022-10-01
JP2021121571A (en) 2021-08-26

Similar Documents

Publication Publication Date Title
US6335052B1 (en) Method of producing alumina particles
EP0717675B1 (en) Hollow borosilicate microspheres and method of making
LT3796B (en) Process for the production of crystalline sodium silicates
KR102247230B1 (en) Spherical eukryptite particles and manufacturing method thereof
JP4417679B2 (en) Method for producing opaque quartz glass composite material, composite material by the above method, and use thereof
EP3439811A1 (en) Use of closed-pore microspheres of expanded pearlite as a filler for the production of mouldings for the foundry industry
WO2021153346A1 (en) Method and device for manufacturing slag material
CN105837064A (en) Method for making expanded, granular and lightweight aggregates from high titania-bearing blast furnace slag, and apparatus thereof
JP3858657B2 (en) Method and apparatus for producing pulverized slag particles and exhaust gas treatment facility
EP2460772B1 (en) Method of manufacturing granulated silica powder, method of manufacturing vitreous silica crucible
JP6738956B1 (en) Mold recycled sand, resin coated sand and mold
RU74384U1 (en) EMPTY OR POROUS GRANULATED FILLER FOR CONCRETE
JP2004237288A (en) Artificial sintered sand and its producing method
JP4136520B2 (en) Foam glass manufacturing method
TWI613178B (en) Method for manufacturing solidified slag, solidified slag, method for manufacturing coarse aggregate for concrete, and coarse aggregate for concrete
JP2024001550A (en) Method for producing slag material
JP2004277191A (en) Coarse aggregate for concrete
JP4679937B2 (en) Manufacturing method of foundry sand
JP2916593B2 (en) Casting mold
ES2953398T3 (en) Expandable silica particle
TW202317500A (en) Granular solidified slag manufacturing method and manufacturing facility
JPH10182196A (en) Production of rigid granulated blast furnace slag
SU1713888A1 (en) Method of producing synthetic corundum
WO2013071324A2 (en) Method for producing porous grains from sodium silicate
JP2024068628A (en) Method and device for manufacturing glass material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747468

Country of ref document: EP

Kind code of ref document: A1