WO2021153296A1 - Layered electret nonwoven fabric, and air filter unit and air purifier using same - Google Patents

Layered electret nonwoven fabric, and air filter unit and air purifier using same Download PDF

Info

Publication number
WO2021153296A1
WO2021153296A1 PCT/JP2021/001409 JP2021001409W WO2021153296A1 WO 2021153296 A1 WO2021153296 A1 WO 2021153296A1 JP 2021001409 W JP2021001409 W JP 2021001409W WO 2021153296 A1 WO2021153296 A1 WO 2021153296A1
Authority
WO
WIPO (PCT)
Prior art keywords
woven fabric
laminated
fabric layer
melt
laminated electret
Prior art date
Application number
PCT/JP2021/001409
Other languages
French (fr)
Japanese (ja)
Inventor
山野浩司
小出現
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202180009679.9A priority Critical patent/CN114981494A/en
Priority to JP2021503074A priority patent/JPWO2021153296A1/ja
Priority to KR1020227024089A priority patent/KR20220124188A/en
Publication of WO2021153296A1 publication Critical patent/WO2021153296A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0032Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions using electrostatic forces to remove particles, e.g. electret filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/28Plant or installations without electricity supply, e.g. using electrets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/265Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer
    • B32B5/266Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer next to one or more non-woven fabric layers
    • B32B5/267Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer next to one or more non-woven fabric layers characterised by at least one non-woven fabric layer that is a spunbonded fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/265Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer
    • B32B5/266Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer next to one or more non-woven fabric layers
    • B32B5/268Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer next to one or more non-woven fabric layers characterised by at least one non-woven fabric layer that is a melt-blown fabric
    • B32B5/269Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a non-woven fabric layer next to one or more non-woven fabric layers characterised by at least one non-woven fabric layer that is a melt-blown fabric characterised by at least one non-woven fabric layer that is a melt-blown fabric next to a non-woven fabric layer that is a spunbonded fabric
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0435Electret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0622Melt-blown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0627Spun-bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0668The layers being joined by heat or melt-bonding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Definitions

  • the present invention comprises a laminated electret non-woven fabric, which is composed of fibers formed of a polyolefin resin, is lightweight and has excellent flexibility, has high collection efficiency with low pressure loss, and is excellent in filter workability, and the laminated electret. Regarding an air filter composed of non-woven fabric.
  • an air filter has been used to remove pollen, dust, etc. in gas, and a fiber sheet is often used as a filter medium.
  • the performance required for the air filter is that it can collect a large amount of microscopic dust (high collection performance) and that there is little resistance when gas passes through the inside of the air filter (low pressure loss). be.
  • Melt blown non-woven fabrics with an average fiber of 15 ⁇ m or less are often used for these air filter materials in order to form a dense matrix.
  • the shape used is a cup shape or a pleated shape.
  • Patent Document 1 proposes an air filter in which a melt-blown non-woven fabric and a spunbonded non-woven fabric are laminated. By appropriately controlling the surface structure and breathability of the laminated non-woven fabric, it is possible to improve the mechanical collection performance of the laminated non-woven fabric, and further, the high level of durability and flexibility that the laminated non-woven fabric aims at. , It is possible to have workability.
  • Patent Document 2 proposes a laminated electret non-woven fabric in which a melt-blown non-woven fabric and a spunbonded non-woven fabric are laminated to form an electret. This is because the fibers that make up the melt-blown non-woven fabric are a mixture of two types of fibers with different melting points, so that when laminated with spunbonded non-woven fabric and embossed rolls, the fused portion can be reduced and the pressure loss can be reduced. It is possible.
  • an object of the present invention is to have low pressure loss, high collection efficiency, and excellent ease of molding into a filter shape. It is an object of the present invention to provide a laminated electret non-woven fabric, an air filter unit using the laminated electret non-woven fabric, and an air purifier.
  • the present inventors have made one layer of a spunbonded nonwoven fabric formed of a polyolefin-based resin on at least one surface of the melt-blown nonwoven fabric formed of a polyolefin-based resin.
  • the texture is within a specific range
  • the content of the melt blown non-woven fabric is within a specific range
  • the electlet processing is performed, the pressure loss is reduced and the collection efficiency is increased.
  • it is easy to mold into a filter and the peaks of the peaks that occur when folded during molding become sharp (sharp angles), and the increase in structural pressure loss can be suppressed. It has been found that it is possible to obtain a non-woven fabric.
  • this laminated electret non-woven fabric is suitably used for an air filter unit and an air purifier incorporating the air filter unit.
  • the laminated electret nonwoven fabric of the present invention includes a spunbonded nonwoven fabric layer composed of fibers formed of a polyolefin resin (A) and a melt blow nonwoven fabric layer composed of fibers formed of a polyolefin resin (B).
  • the laminated electret non-woven fabric is a laminated electlet non-woven fabric, which contains 0.1 to 5% by mass of a hindered amine compound, and the texture of the laminated electlet non-woven fabric is 5 to 80 g / m 2 . Further, the content of the melt-blown non-woven fabric layer is 1 to 50% by mass with respect to the mass of the laminated electlet non-woven fabric.
  • the texture of the laminated electret non-woven fabric is 5 to 60 g / m 2
  • the content of the melt-blown non-woven fabric layer is relative to the mass of the laminated electret non-woven fabric. It is 1 to 15% by mass.
  • the laminated electret nonwoven fabric of the present invention contains a crystal nucleating agent.
  • the laminated electret nonwoven fabric of the present invention 0.001 to 1% by mass of the nucleating agent of the crystal is contained in the laminated electret nonwoven fabric.
  • the average single fiber diameter of the fibers constituting the spunbonded nonwoven fabric layer is 6.5 to 22 ⁇ m.
  • the hindered amine compound is a compound represented by the following general formula (1).
  • R 1 to R 3 are hydrogen or an alkyl group having 1 to 2 carbon atoms
  • R 4 is hydrogen or an alkyl group having 1 to 6 carbon atoms
  • the melt flow rate (MFR) of the fiber formed from the polyolefin resin (A) is 32 to 850 g / 10 minutes.
  • the ratio of the MFR of the polyolefin-based resin (A) to the polyolefin-based resin (B) is 1 to 13.
  • the thickness of the laminated electret non-woven fabric is 0.05 to 1 mm.
  • the longitudinal tensile strength per unit basis weight is 0.3 (N / 5 cm) / (g / m 2 ) or more.
  • the pressure loss per unit is 0.1 to 0.5 (Pa) / (g / m 2 ).
  • the air filter unit of the present invention uses the above-mentioned laminated electret non-woven fabric as a filter medium, and a pleated joint formed of the filter medium and a reinforcing material is gripped by a fixing material.
  • the air purifier of the present invention incorporates the above-mentioned air filter unit.
  • the laminated electret non-woven fabric of the present invention the laminated electret non-woven fabric exhibiting high collection performance with low pressure loss can be obtained by the above configuration, and further, the laminated electret non-woven fabric has a workability and a filter shape. An air filter unit and an air purifier having excellent moldability and excellent collection performance can be obtained.
  • FIG. 1 is a schematic side view showing a collection efficiency and pressure loss measuring device.
  • the laminated electret nonwoven fabric of the present invention includes a spunbonded nonwoven fabric layer composed of fibers formed of a polyolefin resin (A) and a melt blow nonwoven fabric layer composed of fibers formed of a polyolefin resin (B).
  • a laminated electret nonwoven a hindered amine compound is 0.1 to 5 mass%, the mass per unit area of the laminated electret nonwoven fabric, a 5 ⁇ 80g / m 2, containing the meltblown nonwoven fabric layer
  • the amount is 1 to 50% by mass with respect to the mass of the laminated electlet non-woven fabric.
  • the components thereof will be described in detail below, but the present invention is not limited to the scope described below as long as the gist thereof is not exceeded.
  • melt flow rate (MFR) showing the flow characteristics of the polyolefin-based resin (A) of the fiber constituting the spunbonded nonwoven fabric layer and the polyolefin-based resin (B) of the fiber constituting the melt-blown nonwoven fabric layer according to the present invention. (May be abbreviated) adopts the value measured by ASTM D1238 (method A).
  • polypropylene is measured at a load of 2.16 kg and a temperature of 230 ° C.
  • polyethylene is measured at a load of 2.16 kg and a temperature of 190 ° C.
  • the MFR of the polyolefin resin (A) of the fiber constituting the spunbonded non-woven fabric layer is preferably 32 to 850 g / 10 minutes.
  • the MFR of the polyolefin resin (A) is 32 g / 10 minutes or more, more preferably 60 g / 10 minutes or more, further preferably 80 g / 10 minutes or more, particularly preferably 120 g / 10 minutes or more, and most preferably 155 g / 10 minutes. That is all.
  • the MFR of the polyolefin resin (A) is 850 g / 10 minutes or less, more preferably 600 g / 10 minutes or less, and further preferably 400 g / 10 minutes or less.
  • the MFR of the polyolefin resin (B) of the fibers constituting the melt-blown non-woven fabric layer is preferably 200 to 2500 g / 10 minutes.
  • the MFR of the polyolefin resin (B) is 200 g / 10 minutes or more, more preferably 400 g / 10 minutes or more, still more preferably 600 g / 10 minutes or more, the thinning behavior when the fibers are stretched is stable. However, even if it is stretched at a high spinning speed in order to increase productivity, it can be spun stably. In addition, by stabilizing the thinning behavior, yarn sway is suppressed, and unevenness when collecting in the form of a sheet is less likely to occur.
  • fibers having an average single fiber diameter of several ⁇ m can be easily spun.
  • the MFR of the polyolefin resin (B) is 2500 g / 10 minutes or less, more preferably 2000 g / 10 minutes or less, and further preferably 1500 g / 10 minutes or less, the tension is increased when the fibers are stretched. It is possible to suppress the increase in thread sway and the decrease in mechanical strength due to the difficulty in applying.
  • Examples of the polyolefin-based resins (A) and (B) used in the present invention include polyethylene-based resins and polypropylene-based resins.
  • Examples of the polyethylene-based resin include a homopolymer of ethylene or a copolymer of ethylene and various ⁇ -olefins.
  • Examples of polypropylene-based resins include homopolymers of propylene and copolymers of propylene and various ⁇ -olefins.
  • these materials those mainly composed of polypropylene have particularly excellent electret performance. It is preferable from the viewpoint of exerting it. Further, other components may be copolymerized as long as the properties of the polymer are not impaired.
  • the proportion of the homopolymer of propylene is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more. Within the above range, good spinnability can be maintained and strength can be improved.
  • the polyolefin-based resin used in the present invention may be a mixture of two or more kinds, and a resin composition containing other polyolefin-based resin, thermoplastic elastomer, or the like can also be used.
  • the MFR of the polyolefin-based resin (A) and / or the polyolefin-based resin (B) can be adjusted by blending two or more kinds of resins having different MFRs at an arbitrary ratio.
  • the MFR of the resin to be blended with the main polyolefin resin is preferably 10 to 1000 g / 10 minutes, more preferably 20 to 800 g / 10 minutes, and further preferably 30 to 600 g / 10 minutes. Is. By doing so, it is possible to prevent the blended polyolefin resin from having partial viscosity unevenness, non-uniform fiber diameter, and deterioration of spinnability.
  • the ratio of the MFR of the polyolefin-based resin (A) to the polyolefin-based resin (B) (MFR B / MFR A) constituting each of the spunbonded non-woven fabric layer and the melt-blown non-woven fabric layer. ) Is preferably 1 to 13.
  • the ratio of the MFR of the polyolefin resin (A) to the polyolefin resin (B) (MFR B / MFR A ) is 1 or more, more preferably 1.5 or more, so that the spunbonded non-woven fabric layer and the melt-blown non-woven fabric layer can be formed.
  • a laminated electret non-woven fabric can be obtained in which the single fiber diameters of the constituent fibers are appropriately balanced, the pressure loss is low, and the collection efficiency is high.
  • the ratio of the MFR of the polyolefin resin (A) to the polyolefin resin (B) is 13 or less, more preferably 12 or less, so that the melt blown nonwoven fabric is laminated on the spunbonded nonwoven fabric. Adhesion is easy to proceed, and physical properties such as peeling strength can be improved.
  • this resin is decomposed with respect to the resin used in order to prevent the occurrence of partial viscosity unevenness, make the fineness of the fiber uniform, and further reduce the fiber diameter as described later. It is also conceivable to adjust the MFR. However, for example, it is preferable not to add a peroxide, particularly a free radical agent such as a dialkyl peroxide. When this method is used, viscosity spots are partially generated and the fineness becomes non-uniform, making it difficult to sufficiently reduce the fiber diameter, and spinnability deteriorates due to viscosity spots and air bubbles caused by decomposition gas. In some cases.
  • the melting point of the polyolefin resin used in the present invention is preferably 80 to 200 ° C, more preferably 100 to 180 ° C.
  • the melting point referred to here is a value obtained by measuring with a differential scanning calorimeter (for example, "DSC-2 type” manufactured by PerkinElmer Co., Ltd.) under the condition of a heating rate of 20 ° C./min.
  • the polyolefin-based resin used in the present invention also contains a commonly used antioxidant, weather stabilizer, light-resistant stabilizer, antistatic agent, antifoaming agent, blocking inhibitor, and lubricant as long as the effects of the present invention are not impaired.
  • a commonly used antioxidant weather stabilizer, light-resistant stabilizer, antistatic agent, antifoaming agent, blocking inhibitor, and lubricant as long as the effects of the present invention are not impaired.
  • Nuclear agents, additives such as pigments, or other polymers can be added as needed.
  • the laminated electret non-woven fabric of the present invention can be added with additives such as a heat stabilizer, a weather resistant agent and a polymerization inhibitor, and from the viewpoint of improving the chargeability and charge retention when the non-woven fabric is electret-treated. It is important that the fibrous material contains a hindered amine compound, preferably a compound represented by the general formula (1) (hindered amine compound).
  • a hindered amine compound preferably a compound represented by the general formula (1) (hindered amine compound).
  • R 1 to R 3 are hydrogen or an alkyl group having 1 to 2 carbon atoms
  • R 4 is hydrogen or an alkyl group having 1 to 6 carbon atoms.
  • the hindered amine compound is contained in an amount of 0.1 to 5% by mass, preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and 0.5% by mass or more as the lower limit. Is particularly preferred.
  • the content is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2.5% by mass or less.
  • hindered amine compound examples include poly [(6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl) ((2,2,6)). 6-Tetramethyl-4-piperidyl) imino) Hexamethylene ((2,2,6,6-tetramethyl-4-piperidyl) imino)] (BASF Japan Co., Ltd., "Kimasorb” (registered trademark) 944LD), Dimethyl-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate (BASF Japan, Inc., "Tinubin”® 622LD), and 2 -(3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalate bis (1,2,2,6,6-pentamethyl-4-piperidyl) (manufactured by BASF Japan Co., Ltd., "Tinubin” (registered trademark
  • the compound represented by the above general formula (1) (hindered amine-based additive) is preferable, and specifically, poly [(6- (1,1,3,3-tetramethyl) Butyl) Amino-1,3,5-triazin-2,4-diyl) ((2,2,6,6-tetramethyl-4-piperidyl) imino) Hexamethylene ((2,2,6,6-tetra) Methyl-4-piperidyl) imino)] (BASF Japan Co., Ltd., "Kimasorb” (registered trademark) 944LD), dibutylamine 1,3,5-triazine N, N'-bis (2,2,6) A polycondensate of 6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine / N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine (BASF Japan Co., Ltd., "Kimasorb” (registered trademark) 2020
  • the hindered amine compound such as a compound having a structure represented by the following general formula (1) may be used alone or as a mixture of a plurality of types.
  • the hindered amine compound contains a compound represented by the following general formula (1).
  • R 1 to R 3 are hydrogen or an alkyl group having 1 to 2 carbon atoms
  • R 4 is hydrogen or an alkyl group having 1 to 6 carbon atoms
  • the compound By allowing the compound to exist in the laminated electret non-woven fabric, the electric charge applied by charging can be stabilized more effectively. Therefore, when the laminated electret non-woven fabric is used for the air filter unit, the collection performance is improved. It is possible to realize an air filter with high collection performance with low pressure loss.
  • the fibers constituting the laminated electret non-woven fabric of the present invention may contain a crystal nucleating agent in addition to the compound represented by the above general formula (1).
  • crystal nucleating agent examples include sorbitol-based nucleating agents, nonitol-based nucleating agents, xylitol-based nucleating agents, phosphoric acid-based nucleating agents, triaminobenzene derivative nucleating agents, and carboxylic acid metal salt nucleating agents.
  • Sorbitol-based nucleating agents include dibenzylidene sorbitol (DBS), monomethyldibenzylidene sorbitol (eg, 1,3: 2,4-bis (p-methylbenzylidene) sorbitol (p-MDBS)), and dimethyldibenzidene sorbitol (eg, p-MDBS).
  • DBS dibenzylidene sorbitol
  • p-MDBS monomethyldibenzylidene sorbitol
  • p-MDBS dimethyldibenzidene sorbitol
  • Nonitol-based nucleating agents include, for example, 1,2,3-trideoxy-4,6: 5,7-bis-[(4-propylphenyl) methylene] -nonitol and the like, "Millad” (registered trademark). NX8000 (manufactured by Milliken Japan Co., Ltd.) and the like can be mentioned.
  • Xylitol-based nucleating agents include, for example, bis-1,3: 2,4- (5', 6', 7', 8'-tetrahydro-2-naphthaldehydebenzylidene) 1-allylxylitol and the like.
  • the phosphoric acid-based nucleating agent includes, for example, aluminum-bis (4,4', 6,6'-tetra-tert-butyl-2,2'-methylenediphenyl-phosphate) -hydroxydo, and the like. Examples thereof include “ADEKA STAB” (registered trademark) NA-11 (manufactured by ADEKA Corporation) and "ADEKA STAB” (registered trademark) NA-21 (manufactured by ADEKA Corporation).
  • the triaminobenzene derivative nucleating agent contains, for example, 1,3,5-tris (2,2-dimethylpropanamide) benzene and the like, and is represented by the following general formula (2), "Irgaclear” (registered trademark). ) XT386 "(manufactured by BASF Japan Ltd.), and the like.
  • the carboxylic acid metal salt nucleating agent includes, for example, sodium benzoate, calcium 1,2-cyclohexanedicarboxylate and the like.
  • R 1 , R 2 and R 3 are independently alkyl groups having 1 to 20 carbon atoms, alkenyl groups having 3 to 20 carbon atoms, and cycloalkyl groups having 5 to 12 carbon atoms. , A cycloalkenyl group having 5 to 9 carbon atoms, or an aryl group having 6 to 10 carbon atoms.).
  • the content of the crystal nucleating agent in the fibers constituting the laminated electret non-woven fabric is preferably 0.001 to 1% by mass.
  • the content of the crystal nucleating agent is 0.001% by mass or more, more preferably 0.005% by mass or more, the effect of the dust collecting property can be effectively enhanced.
  • fusion between fibers can be suppressed and the amount of airflow can be increased.
  • the content of the crystal nucleating agent is 1% by mass or less, more preferably 0.5% by mass or less, the spinnability is stable and the cost is superior.
  • the laminated electret non-woven fabric of the present invention is composed of a polymer containing the above-mentioned compound, and the polymer can be used as a resin material such as an antioxidant, a light stabilizer, and a heat stabilizer in addition to the above-mentioned compound. It may contain a stabilizer that is normally contained.
  • the content referred to here can be determined, for example, as follows. After Soxhlet extraction of the non-woven fabric with a mixed solution of methanol / chloroform, HPLC fractionation was repeated for the extract, and IR measurement, GC measurement, GC / MS measurement, MALDI-MS measurement, 1 H-NMR measurement, and 1 H-NMR measurement were repeated for each sample. 13 Confirm the structure by C-NMR measurement. The mass of the fraction containing the crystal nucleating agent is totaled, the ratio to the whole non-woven fabric is obtained, and this is taken as the content of the crystal nucleating agent. Similarly, for the compound represented by the above general formula (1), the masses of the preparative products contained therein are totaled, and the ratio to the entire non-woven fabric is calculated and used as the content of the compound.
  • the fiber formed of the polyolefin resin (A) constituting the spunbonded nonwoven fabric layer according to the present invention has an average single fiber diameter of 6.5 to 22 ⁇ m.
  • the average single fiber diameter is 6.5 ⁇ m or more, preferably 7.5 ⁇ m or more, more preferably 8.4 ⁇ m or more, deterioration of spinnability can be prevented, and a stable and high-quality non-woven fabric can be produced.
  • the average single fiber diameter is 22 ⁇ m or less, preferably 13 ⁇ m or less, more preferably 11.2 ⁇ m or less, and further preferably 10 ⁇ m or less, the denseness and uniformity are high, and the processing characteristics that can withstand practical use are excellent. Further, even when the content ratio of the melt blow nonwoven fabric layer is lowered, the collection efficiency can be high, so that the laminated electret nonwoven fabric having excellent flexibility can be obtained.
  • the average single fiber diameter ( ⁇ m) of the fiber formed from the polyolefin resin (A) constituting the spunbonded nonwoven fabric layer adopts a value calculated by the following procedure. And. (1) Randomly collect small pieces of sample from the laminated electret non-woven fabric. (2) In the cross section of the collected small piece sample, take a photograph capable of measuring the thickness of the fiber in the range of 500 to 2000 times with a scanning electron microscope or the like. (3) Ten fibers are arbitrarily selected from the photographs taken of each small piece sample, and the thickness thereof is measured to obtain a single fiber diameter.
  • the fiber diameter of a non-circular fiber is a circumscribed circle and an inscribed circle with respect to the fiber cross section, and the average value of each diameter is taken as a single fiber diameter.
  • the single fiber diameter calculated by rounding off the second decimal place of the measured single fiber diameter is 6.5 ⁇ m or more, and is formed from the polyolefin resin (A) constituting the spunbonded non-woven fabric layer.
  • the single fiber diameter of the resulting fiber is (5) Small pieces are sampled and measured so that the total number of fibers having a single fiber diameter of 6.5 ⁇ m or more is 100, and the arithmetic mean value thereof is defined as the average single fiber diameter ( ⁇ m).
  • the fibers formed from the polyolefin resin (B) constituting the melt-blown nonwoven fabric according to the present invention preferably have an average single fiber diameter of 0.1 to 6 ⁇ m.
  • the average single fiber diameter is 0.1 ⁇ m or more, more preferably 0.4 ⁇ m or more, deterioration of spinnability can be prevented, and a stable and high-quality melt-blown non-woven fabric layer can be formed.
  • the average single fiber diameter is 6 ⁇ m or less, more preferably 5 ⁇ m or less, the flexibility and uniformity are high, and even when the content ratio of the melt-blown non-woven fabric layer (M) is lowered, the water resistance can withstand practical use. A laminated non-woven fabric having excellent characteristics can be obtained.
  • the average single fiber diameter ( ⁇ m) of the fiber formed from the polyolefin resin (B) constituting the melt-blown non-woven fabric layer is a value calculated by the following procedure. (1) Randomly collect small pieces of sample from the laminated electret non-woven fabric. (2) In the cross section of the collected small piece sample, take a photograph capable of measuring the thickness of the fiber in the range of 500 to 2000 times with a scanning electron microscope or the like. (3) Ten fibers are arbitrarily selected from the photographs taken of each small piece sample, and the thickness thereof is measured to obtain a single fiber diameter.
  • the single fiber diameter calculated by rounding off the second decimal place of the measured single fiber diameter is 6.0 ⁇ m or less, and is formed of the polyolefin resin (B) constituting the melt blown non-woven fabric layer.
  • the single fiber diameter of the fiber is (5) Small pieces are sampled and measured so that the total number of fibers having a single fiber diameter of 6.0 ⁇ m or less is 100, and the arithmetic mean value thereof is defined as the average single fiber diameter ( ⁇ m).
  • the present invention can also be used as a composite fiber in which the above-mentioned polyolefin resin is combined.
  • the composite form of the composite fiber include a composite form such as a concentric sheath type, an eccentric core sheath type, and a sea island type. It is not particularly limited to single component fibers, composite component fibers such as core sheath type and sea island type, but in the case of composite component type fibers, depending on the selection of the resin, the charge is increased due to the difference in electrical resistance between the resins.
  • a single component fiber is a preferred embodiment because it can leak.
  • the cross-sectional shape of the fibers constituting the spunbonded nonwoven fabric of the present invention is not particularly limited as long as the obtained spunbonded nonwoven fabric is suitable for filter applications, but is circular, hollow circular, oval, flat, or. Deformed types such as X-type and Y-type, polygonal type, multi-leaf type, and the like are preferable forms.
  • the fiber diameter of a non-circular fiber is obtained by taking an circumscribed circle and an inscribed circle with respect to the fiber cross section and calculating the average value of the respective diameters as the fiber diameter.
  • laminated electret non-woven fabric of the present invention is formed by laminating a spunbonded non-woven fabric layer and a melt-blown non-woven fabric layer. With this configuration, it is possible to impart workability, collection performance, and flexibility that are higher than the level required for a non-woven fabric for an air filter unit.
  • the MFR of the laminated electret non-woven fabric of the present invention is preferably 40 g / 10 minutes to 850 g / 10 minutes, more preferably 60 g / 10 minutes or more, still more preferably 80 g / 10 minutes or more, and particularly preferably 120 g / min. 10 minutes or more, most preferably 155 g / 10 minutes or more.
  • the non-woven fabric can be made into a non-woven fabric with high collection efficiency due to the progress of thinning.
  • the weight is 850 g / 10 minutes or less, preferably 600 g / 10 minutes or less, more preferably 400 g / 10 minutes or less, the finening behavior of the fibers during spinning is stable and the productivity is increased. Even if it is drawn at a very high spinning speed, stable spinning is possible. Further, the ratio of MFR (MFR B / MFR A ) between the spunbonded non-woven fabric layer and the melt-blown non-woven fabric layer becomes small, and when the melt-blown non-woven fabric is laminated on the spunbonded non-woven fabric, adhesion easily proceeds and physical properties such as peeling strength are improved. Can be made to.
  • the value measured by ASTM D1238 (method A) is adopted.
  • polypropylene is measured at a load of 2.16 kg and a temperature of 230 ° C.
  • polyethylene is measured at a load of 2.16 kg and a temperature of 190 ° C.
  • resins such as different polyolefin resins that make up the spunbonded non-woven fabric layer and melt-blown non-woven fabric layers, the highest measured temperature of each polyolefin-based resin. Measured by temperature.
  • the laminated electret non-woven fabric of the present invention is charged (electretized). As a result, it is possible to have high collection performance while maintaining the characteristic of low pressure loss due to the electrostatic adsorption effect.
  • the pressure loss and the collection efficiency in the present invention are measured by the following measuring method or a measuring method that can obtain the same result. That is, five measurement samples of 15 cm ⁇ 15 cm were collected from an arbitrary part of the laminated electret non-woven fabric, and the pressure loss and the collection efficiency were measured for each sample by the collection performance measuring device outlined in FIG. do.
  • the basis weight of the laminated electret nonwoven fabric according to the present invention is 5 to 80 g / m 2 or less.
  • the basis weight is set to 5 g / m 2 or more, preferably 8 g / m 2 or more, and more preferably 10 g / m 2 or more.
  • the basis weight is set to 80 g / m 2 or less, preferably 60 g / m 2 or less, more preferably 50 g / m 2 or less, and further preferably 40 g / m 2 or less, the pressure loss is reduced and the flexibility is also increased. It can be in a preferred range.
  • the texture of the laminated electret non-woven fabric shall be the value measured by the following procedure in accordance with "6.2 Mass per unit area" of JIS L1913: 2010 "General non-woven fabric test method”. do. (1) Collect three 20 cm ⁇ 25 cm test pieces per 1 m of sample width. (2) Weigh each mass (g) in the standard state. (3) The arithmetic mean value is expressed by the mass per 1 m 2 (g / m 2 ), and the first decimal place is rounded off.
  • the content of the melt-blown non-woven fabric layer in the laminated electret non-woven fabric of the present invention is 1 to 50% by mass or less with respect to the mass of the laminated electret non-woven fabric.
  • the content of the melt blow nonwoven fabric layer is set to 50% by mass or less, preferably 30% by mass or less, more preferably 15% by mass or less, further preferably 12% by mass or less, and most preferably 10% by mass or less.
  • the hardness peculiar to the melt blown non-woven fabric can be reduced, and the moldability of the filter can be improved.
  • the content of the spunbonded non-woven fabric layer in the laminated electret non-woven fabric is set to more than 50% by mass and less than 99% by mass, it is possible to obtain a laminated electret non-woven fabric having excellent flexibility and workability.
  • the content ratio of the melt-blown non-woven fabric layer shall be a value measured by the following procedure. (1) Three test pieces having a width of 100 mm ⁇ 100 mm are collected at equal intervals in the width direction of the laminated electret non-woven fabric. (2) Collect only the non-adhesive part of the laminated electret non-woven fabric. (3) The masses of the collected test piece and the melt-blown non-woven fabric collected from the test piece are measured. (4) Calculate the content ratio of the melt-blown non-woven fabric in the laminated electret non-woven fabric.
  • the thickness of the laminated electret non-woven fabric of the present invention is preferably 0.05 to 1 mm.
  • the thickness is 0.05 mm or more, more preferably 0.08 mm or more, still more preferably 0.10 mm or more, the shape retention of the filter medium can be enhanced.
  • the thickness is 1 mm or less, more preferably 0.8 mm or less, still more preferably 0.5 mm or less, when the laminated electret nonwoven fabric according to the present invention is used as a filter medium for an air filter, the filter medium is stored in the unit. The sex can be improved.
  • the thickness (mm) of the laminated electret non-woven fabric is set to "6.1.1 A method” of "6.1 thickness (ISO method)" of JIS L1913: 2010 "General non-woven fabric test method”.
  • the values measured by the following procedure shall be adopted. (1) Using a pressurizer having a diameter of 10 mm, the thickness of 10 points per 1 m is measured in units of 0.01 mm at equal intervals in the width direction of the non-woven fabric under a load of 10 kPa. (2) Round off the third decimal place of the average value of the above 10 points.
  • the laminated electret non-woven fabric of the present invention preferably has a longitudinal tensile strength per unit basis weight of 0.3 (N / 5 cm) / (g / m 2 ) or more.
  • the longitudinal tensile strength per unit number is 0.3 (N / 5 cm) / (g / m 2 ) or more, preferably 0.5 (N / 5 cm) / (g / m 2 ) or more, more preferably 1.
  • By setting it to (N / 5 cm) / (g / m 2 ) or more, particularly preferably 1.5 (N / 5 cm) / (g / m 2 ) or more it does not break during processing and has excellent workability. Can be.
  • the longitudinal tensile strength per unit grain can be adjusted by adjusting the spinning speed of the fibers constituting the spunbonded non-woven fabric layer, the average single fiber diameter, and the thermal bonding conditions (adhesion rate, temperature, and linear pressure) of the spunbonded non-woven fabric. can.
  • the vertical direction referred to here is the longitudinal direction of the non-woven fabric.
  • the tensile elongation at maximum strength of the above tensile strength is preferably 15% or more, more preferably 20% or more, and further preferably 30% or more, so that the material breaks during molding or the like. Since it can be processed without being processed, it can be made excellent in processability.
  • the laminated electret non-woven fabric of the present invention preferably has a pressure loss of 0.1 to 0.5 (Pa) / (g / m 2 ) per unit grain.
  • the pressure loss per unit is 0.1 (Pa) / (g / m 2 ) or more, more preferably 0.15 (Pa) / (g / m 2 ) or more, still more preferably 0.2 (Pa) /.
  • it is (g / m 2 ) or more, the number of fibers contained per unit grain is large or the total surface area is large, so that a laminated electlet non-woven fabric having excellent workability without breaking during processing can be obtained. be able to.
  • the laminated structure of the laminated electlet non-woven fabric of the present invention is formed by laminating one spunbonded non-woven fabric layer (S) on one side of the melt-blown non-woven fabric layer (M) (SM) or laminating a plurality of layers (for example, SSM).
  • Laminated electret non-woven fabric, spunbonded non-woven fabric layer is laminated one layer at a time on both sides of the melt-blown non-woven fabric layer (SMS) or multiple layers are laminated (for example, SSMS).
  • the number of laminated spunbonded non-woven fabric layers and the number of laminated spunbonded non-woven fabric layers laminated on the other side may be the same or different).
  • each spunbonded non-woven fabric layer may be a spunbonded non-woven fabric layer having the same configuration.
  • the condition is that the hindered amine compound is contained in an amount of 0.1 to 5% by mass, the texture of the laminated electret nonwoven fabric is in the range of 5 to 80 g / m 2 , and the content of the melt blow nonwoven fabric layer is 1 to 50% by mass.
  • the configurations may be different from each other as long as they are satisfied.
  • the spunbonded non-woven fabric layers having different configurations include, for example, different types of fibers constituting one spunbonded non-woven fabric layer and the other spunbonded non-woven fabric layer, different melting points, different single components, and different composite components. If the cross-sectional shape is different, the thickness, strength, and pressure loss are different, any combination thereof may be used as long as the object of the present invention can be achieved. Then, it can be appropriately selected and used according to the purpose.
  • the laminated electret non-woven fabric of the present invention is composed of a non-woven fabric manufactured by the spunbond (S) method and the melt blow (M) method.
  • the method for producing a laminated electret non-woven fabric of the present invention can be carried out according to any method as long as the spunbonded non-woven fabric layer and the melt-blown non-woven fabric layer can be laminated. For example, a method in which fibers formed by the melt-blow method are directly deposited on a non-woven fabric layer obtained by the spunbond method to form a melt-blow non-woven fabric layer, and then the spunbond non-woven fabric layer and the melt-blow non-woven fabric layer are fused, span.
  • a method of bonding or the like can be adopted. From the viewpoint of productivity, a method of directly forming the melt-blown non-woven fabric layer on the spunbonded non-woven fabric layer is a preferable embodiment.
  • the spunbonded non-woven fabric layer (S) and the melt-blown non-woven fabric layer (M) can be laminated with SM, SMS, SMMS, SMSMS, SMS, or the like as described above.
  • spunbonded non-woven fabric layer first, a molten polyolefin resin is spun from a spinneret as long fibers, which is suction-stretched with compressed air by an ejector, and then the fibers are collected on a moving net. Layer the non-woven fabric.
  • the shape of the spinneret and the ejector various shapes such as a round shape and a rectangular shape can be adopted.
  • the combination of a rectangular base and a rectangular ejector is possible because the amount of compressed air used is relatively small and the energy cost is excellent, the threads are less likely to be fused or scratched, and the threads can be easily opened. It is preferably used.
  • the polyolefin resin is melted in an extruder, weighed and supplied to a spinneret, and spun as long fibers.
  • the spinning temperature when the polyolefin resin is melted and spun is preferably 200 to 270 ° C.
  • the spinning temperature is 200 ° C. or higher, more preferably 210 ° C. or higher, further preferably 220 ° C. or higher, or 270 ° C. or lower, more preferably 260 ° C. or lower, still more preferably 250 ° C. or lower.
  • a stable molten state can be obtained, and excellent spinning stability can be obtained.
  • the spun long fiber yarn is then cooled.
  • the method of cooling the spun yarn include a method of forcibly blowing cold air on the yarn, a method of naturally cooling at the atmospheric temperature around the yarn, and a method of adjusting the distance between the spinneret and the ejector. Etc., or a method of combining these methods can be adopted. Further, the cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature and the like.
  • the spinning speed is preferably 3000 to 6500 m / min.
  • the spinning speed is preferably 3000 to 6500 m / min.
  • high productivity can be obtained, and the polyolefin-based fiber constituting the fiber can be obtained.
  • the crystal orientation of the resin proceeds in the same direction, and high-strength long fibers can be obtained.
  • the spinnability deteriorates and the filamentous shape cannot be stably produced.
  • the intended polyolefin fiber is used. Can be stably spun.
  • the obtained long fibers are collected on a moving net to form a non-woven fabric layer.
  • the heat flat roll is brought into contact with the non-woven fabric layer from one side on the net to temporarily bond the non-woven fabric layer.
  • the surface temperature of the thermal flat roll at the time of thermal temporary bonding is -60 to -25 ° C with respect to the melting point of the polyolefin resin used.
  • the surface temperature of the thermal flat roll is ⁇ 60 ° C. or higher with respect to the melting point of the polyolefin resin, more preferably ⁇ 55 ° C. or higher with respect to the melting point of the polyolefin resin, excessive thermal bonding is suppressed during the thermal bonding described above. However, it is possible to obtain strength and breathability suitable for use in air filter applications. Further, by setting the surface temperature of the thermal flat roll to ⁇ 25 ° C. or lower with respect to the melting point of the polyolefin resin, more preferably ⁇ 30 ° C.
  • the film formation of the non-woven fabric surface is suppressed.
  • the temperature is adjusted to be within the above range with respect to the lowest temperature among the melting points of each polyolefin resin. do.
  • melt blown non-woven fabric a conventionally known method can be adopted.
  • the polyolefin-based resin is melted in an extruder and supplied to the mouthpiece, and hot air is blown onto the threads extruded from the mouthpiece to make the yarn thinner, and then a non-woven fabric layer is formed on the collection net.
  • the melt blow method fine fibers of several ⁇ m can be easily obtained without requiring a complicated process, and high collection efficiency can be easily achieved.
  • the obtained laminated non-woven fabric layer and the melt-blown non-woven fabric layer are laminated, and these are heat-bonded to obtain the intended laminated non-woven fabric.
  • the above-mentioned method of heat-bonding the heat-temporarily bonded non-woven layer includes a heat-embossed roll in which a pair of upper and lower roll surfaces are engraved (concavo-convex parts), and a roll in which one roll surface is flat (smooth).
  • a method of heat bonding with various rolls such as a thermal embossing roll consisting of a roll with engraving (unevenness) on the surface of the other roll, and a thermal calendar roll consisting of a pair of upper and lower flat (smooth) rolls.
  • a method such as ultrasonic bonding in which heat welding is performed by ultrasonic vibration of a horn.
  • a heat embossed roll consisting of a roll having a flat (smooth) surface on one roll and a roll having an engraving (unevenness) on the surface of the other roll is preferably used. It is an aspect.
  • a metal roll and a metal roll are used in order to obtain a sufficient heat bonding effect and prevent the engraving (concavo-convex part) of one embossed roll from being transferred to the surface of the other roll.
  • a pair is a preferred embodiment.
  • the embossing adhesion area ratio by such a heat embossing roll is preferably 3 to 30%.
  • the bonding area is preferably 3 to 30%.
  • the bonding area is preferably 30% or more, more preferably 5% or more, and further preferably 8% or more, strength that can be put into practical use as a non-woven fabric can be obtained.
  • the adhesive area is preferably 30% or less, more preferably 25% or less, and further preferably 20% or less, it is possible to secure appropriate air permeability particularly suitable for use in air filter applications. can. Even when ultrasonic bonding is used, the bonding area ratio is preferably in the same range.
  • the adhesive area here refers to the ratio of the adhesive portion to the entire laminated non-woven fabric. Specifically, when heat-bonding is performed by a roll having a pair of irregularities, the convex portion of the upper roll and the convex portion of the lower roll overlap and occupy the entire laminated non-woven fabric of the portion (adhesive portion) that abuts on the non-woven fabric layer. Say the percentage. Further, in the case of thermal bonding between a roll having irregularities and a flat roll, it means the ratio of the convex portion of the roll having irregularities to the entire laminated nonwoven fabric of the portion (adhesive portion) in contact with the non-woven fabric layer. Further, in the case of ultrasonic bonding, it refers to the ratio of the portion (adhesive portion) to be heat-welded by ultrasonic processing to the entire laminated non-woven fabric.
  • the shape of the bonded portion by thermal embossing roll or ultrasonic bonding a circle, an ellipse, a square, a rectangle, a parallelogram, a rhombus, a regular hexagon, a regular octagon, etc. can be used. Further, it is preferable that the bonded portions are uniformly present at regular intervals in the longitudinal direction (conveying direction) and the width direction of the spunbonded nonwoven fabric layer. By doing so, it is possible to reduce variations in the strength of the spunbonded non-woven fabric layer.
  • the surface temperature of the heat embossed roll at the time of heat bonding is ⁇ 50 to ⁇ 15 ° C. with respect to the melting point of the polyolefin resin used.
  • the surface temperature of the thermal roll is ⁇ 50 ° C. or higher with respect to the melting point of the polyolefin resin, and more preferably ⁇ 45 ° C. or higher with respect to the melting point of the polyolefin resin, the strength that can be appropriately heat-bonded and put into practical use. Spunbonded non-woven fabric can be obtained.
  • the surface temperature of the heat embossed roll to -15 ° C. or lower with respect to the melting point of the polyolefin resin, and more preferably -20 ° C. or lower with respect to the melting point of the polyolefin resin, excessive thermal adhesion is suppressed.
  • a laminated non-woven fabric it is possible to obtain appropriate air permeability and processability particularly suitable for use in air filter applications.
  • the temperature is adjusted to be within the above range with respect to the lowest temperature among the melting points of each polyolefin resin. And.
  • the linear pressure of the heat embossing roll at the time of heat bonding is preferably 10 to 500 N / cm.
  • the linear pressure of the roll is preferably 10 N / cm or more, more preferably 50 N / cm or more, further preferably 100 N / cm or more, and particularly preferably 150 N / cm, so that it can be appropriately heat-bonded and put into practical use.
  • a laminated non-woven fabric having a high strength can be obtained.
  • by setting the linear pressure of the heat embossed roll to preferably 500 N / cm or less, more preferably 400 N / cm or less, and further preferably 300 N / cm or less, it is used as a laminated electret non-woven fabric, especially for air filter applications. It is possible to obtain appropriate breathability and workability suitable for.
  • heat bonding is performed by a heat calendar roll composed of a pair of upper and lower flat rolls before and / or after heat bonding by the above heat embossing roll.
  • a pair of upper and lower flat rolls is a metal roll or an elastic roll having no unevenness on the surface of the roll, and a metal roll and a metal roll may be paired, or a metal roll and an elastic roll may be paired. Can be used.
  • the elastic roll here is a roll made of a material having elasticity as compared with a metal roll.
  • Elastic rolls include so-called paper rolls such as paper, cotton and aramid paper, and resin rolls made of urethane-based resin, epoxy-based resin, silicon-based resin, polyester-based resin and hard rubber, and a mixture thereof. And so on.
  • the charging method is not particularly limited, and the corona discharge method, the hydrocharge method, the thermal electret method and the like are preferably used.
  • the method of applying water in the hydrocharging method is a method of immersing water in a non-woven fabric sheet, a method of spraying water on the non-woven fabric sheet, a method of spraying water in a thread shape directly under the mouthpiece, or a combination of these methods as appropriate. May be good.
  • the charging process may be continuously performed at the time of manufacturing the non-woven fabric, or the manufactured non-woven fabric may be wound once and processed in a separate step.
  • composition of the reinforcing material can be arbitrarily selected as long as it has breathability, but it is preferable to use a non-woven fabric that can be easily adjusted to the desired breathability and rigidity by adjusting the type of fiber used and the basis weight. ..
  • the non-woven fabric that can be used as the reinforcing material can be manufactured by a known method such as a chemical bond method, a wet papermaking method, a spunbond method, a melt blow method, a spunlace method, or an airlaid method. Above all, it is preferable to use a non-woven fabric produced by a spun bond method or a chemical bond method, which can easily impart high rigidity as a reinforcing material.
  • the basis weight of the reinforcing material is preferably 100 to 400 g / m 2 from the viewpoint of strength and cost, the lower limit is more preferably 130 g / m 2 or more, and the upper limit is 300 g / m 2 or less. It is more preferable to do so.
  • the thickness of the reinforcing material is preferably 0.3 to 1.5 mm from the viewpoint of ensuring strength against tearing and the ease of cutting to a desired size, and the lower limit thereof is 0.5 mm or more.
  • the upper limit thereof is more preferably 1.3 mm or less.
  • the pleated joint according to the present invention is composed of the above-mentioned filter medium and reinforcing material.
  • the filter medium forms a three-dimensional shape having peaks and valleys in a pleated state.
  • the pleated folding process is a process in which the above-mentioned filtration sheet or a laminate of the same sheet and another sheet is folded in a certain direction in a mountain valley shape at a predetermined folding height, and the folding method is a reciprocating type or a rotary. A method such as an expression can be used.
  • a larger area of filter media can be mounted as a filter in a certain volume, the wind speed through the filter media with respect to the passage of air is reduced, the pressure loss is reduced, and the ventilation resistance is reduced, that is, ventilation.
  • An air filter unit having excellent properties can be obtained. Then, one of the surfaces of the filter medium becomes the inflow surface of air when mounted on the air purifier, and the opposite surface becomes the outflow surface.
  • a separator can be provided in the space generated between the adjacent mountains.
  • a separator can be provided in the space generated between the adjacent mountains.
  • the thickness of the filter medium is preferably 0.1 to 0.75 mm from the viewpoint of having a certain strength and increasing the area that can be accommodated in a certain volume when pleated. It is more preferable that the lower limit is 0.2 mm or more and the upper limit is 0.65 mm or less.
  • the combined thickness has a certain strength, and the filter medium obtained by pleating is 0.4.
  • the lower limit is preferably 0.5 mm or more, and the upper limit is more preferably 1.75 mm or less.
  • the reinforcing material is fixed to the filter medium via two or more ridges out of seven ridges from the end of the pleats of the filter medium in the mountain valley folding direction. ing.
  • the reinforcing material may extend from the end portion to eight or more mountain portions, and a part of the mountain portion and the reinforcing material may be adhered to each other to fix the reinforcing material.
  • the reinforcing material may be present on one end side of the air filter in the mountain / valley folding direction, but may also be present on the other end side.
  • a moisture / moisture curable adhesive such as a cyanoacrylate monomer or an isocyanate-based compound, a polyolefin-based resin, an ethylene-vinyl acetate copolymer resin, or the like, etc.
  • An adhesive such as a heat-sealing adhesive may be applied to the surface of the reinforcing material and / or near the apex on the ridge of the filter filter material to bond the two, or the reinforcing material may be low due to polypropylene fibers or copolymerization.
  • the pleated joint according to the present invention may have a deodorant sandwiched between the filter medium and the reinforcing material.
  • the reinforcing material has an effect of suppressing the deodorant from falling off.
  • the deodorant referred to here has the property of removing offensive odorous gas components such as ammonia and aldehydes by adsorption and reaction.
  • Examples of the type include porous substances such as activated carbon, porous silica particles, zeolite, and sepiolite, and composites of these with a drug that enhances the reactivity with a peculiar gas component.
  • a drug that enhances the reactivity with a peculiar gas component an amine-based drug such as adipic acid dihydrazide or succinic acid hydrazide, an acid-based drug such as phosphoric acid, or an alkaline drug such as sodium hydroxide or potassium hydroxide is used. Drugs can be mentioned.
  • activated carbon or porous silica particles have a large pore volume and have pores with a wide diameter and can remove various gases. Therefore, activated carbon, porous silica particles and gas components peculiar to them are used. It is preferable to use at least one selected from the group composed of a complex with an agent that enhances the reactivity of the deodorant.
  • the deodorant is preferable because the total amount of the deodorant used is in the range of 40 to 500 g / m 2 so that the gas component in the air is efficiently adsorbed and the air permeability of the filter medium is not impaired.
  • the reinforced air filter unit according to the present invention is formed by gripping the pleated joint body with a fixing material.
  • the fixing material according to the present invention is a fixing material that exists in the direction perpendicular to the direction of the ridgeline of the mountain portion in the reinforced air filter unit and is fixed to the end of the filter medium in the direction of the ridgeline of the mountain portion of the filter medium. Point to.
  • the fixing material exists on two opposite sides of the filter medium, but may be in the form of surrounding the filter medium. When the fixing material surrounds the outer circumference of the filter medium, the fixing material may be referred to as a frame.
  • the fixing material By having the fixing material, the filter unit can be held in a predetermined shape.
  • a known material such as a non-woven fabric, paper, urethane foam, or other foamed resin can be used.
  • a heat-sealing adhesive such as a polyolefin resin or an ethylene-vinyl acetate copolymer resin is applied to the surface of the fixing material member, and the side surface of the filter filter medium is applied.
  • a heat-sealing adhesive such as a polyolefin resin or an ethylene-vinyl acetate copolymer resin is applied to the surface of the fixing material member, and the side surface of the filter filter medium is applied.
  • There are methods such as crimping, solidifying and adhering to.
  • the fixing material and the reinforcing material can be made of the same member.
  • a fold groove is formed in advance in the flat plate-shaped reinforcing material, and a part of the material is attached to the side surface of the filter medium, and then the fold groove is formed.
  • a method of bending a reinforcing material at the boundary and adhering it to the mountain part of the pleats can be mentioned.
  • the reinforced air filter unit according to the present invention is suitable for air filter applications.
  • a particularly preferred embodiment is an air purifier in which the reinforced air filter unit is incorporated. Since the reinforced air filter unit has a low pressure loss and a high collection performance, this air purifier has an effect that it can be continuously used for a long time while maintaining a high collection performance.
  • the laminated electret nonwoven fabric of the present invention will be described based on examples.
  • the present invention is not limited to these examples, and any design modification according to the gist described in the present specification is included in the technical scope of the present invention.
  • the measurement is performed based on the above method.
  • Average single fiber diameter ( ⁇ m) of fiber As a scanning electron microscope, a scanning electron microscope "VHX-D500" manufactured by KEYENCE CORPORATION was used, and measurement was performed based on the above method.
  • Thickness of laminated electret non-woven fabric The measurement was performed according to the above method using a thickness gauge (“TECLOCK” (registered trademark) SM-114 manufactured by Teclock Co., Ltd.).
  • the particle counter 6 provided in the sample holder 1 the number of dusts on the upstream side and the number of dusts on the downstream side of the measurement sample M can be measured via the switching cock 7, respectively.
  • the sample holder 1 is provided with a pressure gauge 8, and can read the static pressure difference between the upstream and the downstream of the measurement sample M.
  • a polystyrene 0.309U 10% solution (manufacturer: Nacalai Tesque Co., Ltd.) is diluted up to 200 times with distilled water and filled in the dust storage box 2.
  • the measurement sample M is set in the sample holder 1, the air volume is adjusted by the flow rate adjusting valve 4 so that the filter passing speed is 6.5 m / min, and the dust concentration is 10,000 particles / (2.83).
  • the pressure loss was obtained by reading the static pressure difference between the upstream and the downstream of the measurement sample M at the time of measuring the collection efficiency with the pressure gauge 8. The average value of the five measurement samples was taken as the final pressure drop.
  • the QF value (Pa -1 ) -Ln (1-collection efficiency (%) / 100) / pressure loss (Pa).
  • Density of laminated electret non-woven fabric (g / cm 3 ): The density of the non-woven fabric is calculated by dividing the basis weight measured in (1) above by the thickness measured in (3) above. The obtained value was rounded to the fourth decimal place to calculate the density (g / cm 3) of the laminated electret non-woven fabric.
  • Flexibility (processability) of laminated electret non-woven fabric As a sensory evaluation of the tactile sensation of the laminated electret non-woven fabric, the flexibility was scored according to the following criteria. This was performed by 10 people, and the average was evaluated as the texture of the non-woven fabric. It was judged that the higher each score was, the more flexible it was and the better the workability in various processing, and 4.0 points or more were passed. ⁇ Flexibility (workability)> 5 points: Flexible (good workability) 4 points: Intermediate between 5 points and 3 points 3 points: Normal 2 points: Intermediate between 3 points and 1 point 1 point: Hard (poor workability).
  • Pleat moldability (easiness to mold): The laminated electret non-woven fabric was pleated, and the moldability was confirmed and evaluated in three stages of A, B, and C.
  • A The pleated formability is good, and the pleated peak shape is an acute angle.
  • B Pleated molding can be performed, but the pleated peaks are round.
  • C Does not retain the pleated shape.
  • Example 1 (Spanbond non-woven fabric layer (lower layer)) A polyolefin resin containing 1% by mass of the hindered amine compound "Kimasorb” (registered trademark) 944LD (manufactured by BASF Japan Co., Ltd.) represented by compound A in a polypropylene resin formed of a homopolymer having an MFR of 200 g / 10 minutes. A thread spun from a rectangular mouthpiece having a hole diameter of 0.30 mm and a hole depth of 2 mm at a spinning temperature of 235 ° C. and a single-hole discharge rate of 0.32 g / min was cooled and solidified by melting with an extruder.
  • "Kimasorb” registered trademark 944LD
  • the obtained non-woven fiber web was heat-temporarily bonded at a temperature of 120 ° C. using a flat roll.
  • a spunbonded non-woven fabric layer having a basis weight of 7.0 g / m 2 of the obtained heat-temporarily bonded non-woven web was formed.
  • the average single fiber diameter was 10.1 ⁇ m, and the spinnability was good with no yarn breakage after spinning for 1 hour.
  • the basis weight of the melt-blown non-woven fabric layer separately collected on the collection net under the same conditions was 1.0 g / m 2 , and the average single fiber diameter was 1.5 ⁇ m.
  • spunbond non-woven fabric layer (upper layer) Further, polypropylene filaments were collected on the melt-blown non-woven fabric layer under the same conditions as the condition for forming the lower spunbonded non-woven fabric layer to form the spunbonded non-woven fabric layer. As a result, a spunbond-melt blow-spunbond (SMS) laminated fiber web having a total basis weight of 15.0 g / m 2 was obtained.
  • SMS spunbond-melt blow-spunbond
  • laminated non-woven fabric (Laminated non-woven fabric) Subsequently, the obtained laminated fiber web was used as an embossing roll having an adhesive area ratio of 16% with a metal polka dot pattern engraved on the upper roll, and a pair of upper and lower thermal embossing composed of a metal flat roll on the lower roll.
  • a laminated non-woven fabric having a linear pressure of 30 N / cm and a heat bonding temperature of 130 ° C. was heat-bonded to obtain a laminated non-woven fabric having a grain size of 15.0 g / m 2.
  • (Laminated electret non-woven fabric) Water permeates the entire surface of the fiber sheet by sucking water by bringing a slit-shaped suction nozzle into contact with the surface of the laminated non-woven fabric while running along the water surface of the water tank to which pure water is supplied. Then, after draining, the non-woven fabric was dried with hot air at a temperature of 100 ° C. to obtain a laminated electret non-woven fabric. Tables 1 and 2 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
  • the obtained laminated electret non-woven fabric was slit to a width of 238 mm and then continuously pleated for 80 ridges at a folding height of 30 mm in the direction perpendicular to the slit width to obtain a pleated filter medium.
  • the polyester fiber and the acrylic resin are composed of a mass ratio of 5: 5 in the direction perpendicular to the direction of the ridgeline of the pleated mountain so that the pitch of the adjacent pleated mountain of the pleated filter medium is about 5.0 mm.
  • a chemical bond non-woven fabric with a grain size of 250 g / m 2 , a thickness of 1.1 mm, and a width of 32 mm is used as a fixing material, and a polyolefin-based heat-sealing adhesive is applied and attached to the surface, and molded into an air filter unit with a length of 400 mm and a width of 238 mm. did.
  • Example 2 (Spanbond non-woven fabric layer (lower layer) / (upper layer)) Whereas a polypropylene resin made of a homopolymer having an MFR of 200 g / 10 minutes was used, a polypropylene resin made of a homopolymer having an MFR of 800 g / 10 minutes was used. A spunbonded non-woven fabric layer made of polypropylene filaments was formed in the same manner as in Example 1 except that the amount of 0.32 g / min was changed to 0.21 g / min.
  • each spunbonded non-woven fabric layer had a texture of 7.0 g / m 2 and an average single fiber diameter of 7.2 ⁇ m. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
  • melt blow non-woven fabric layer A melt-blown non-woven fabric layer was formed in the same manner as in Example 1 except that the air pressure was changed from 0.10 MPa to 0.20 MPa.
  • the characteristics of the fibers constituting the formed melt-blow non-woven fabric layer were 1.0 g / m 2 for the basis weight of the melt-blow non-woven fabric layer and 1.0 ⁇ m for the average single fiber diameter.
  • Air filter unit-reinforced air filter With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 2 shows the pleated formability of the filter unit.
  • Example 3 (Spanbond non-woven fabric layer (lower layer) / (upper layer)) Whereas a polypropylene resin made of a homopolymer having an MFR of 200 g / 10 minutes was used, a polypropylene resin made of a homopolymer having an MFR of 39 g / 10 minutes was used. A spunbonded non-woven fabric layer made of polypropylene filaments was formed in the same manner as in Example 1 except that the amount of 0.32 g / min was changed to 0.65 g / min.
  • each spunbonded non-woven fabric layer had a texture of 7.0 g / m 2 and an average single fiber diameter of 21.5 ⁇ m. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
  • melt blow non-woven fabric layer Example 1 and Example 1 except that a polypropylene resin having an MFR of 1100 g / 10 min was used instead of a polypropylene resin having an MFR of 500 g / 10 min.
  • a melt blown non-woven fabric layer was formed in the same manner. The characteristics of the fibers constituting the formed melt-blow non-woven fabric layer were that the basis weight of the melt-blow non-woven fabric layer was 1.0 g / m 2 , and the average single fiber diameter was 4.1 ⁇ m.
  • Air filter unit-reinforced air filter With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 2 shows the pleated formability of the filter unit.
  • Example 4 (Spanbond non-woven fabric layer (lower layer) / (upper layer)) Hindered amine compound A "Kimasorb” (registered trademark) 944LD (manufactured by BASF Japan Co., Ltd.) 1% by mass in a polypropylene resin formed of a homopolymer having an MFR of 200 g / 10 minutes, and a crystal nucleating agent represented by compound B.
  • a polyolefin resin containing 0.05% by mass of "Irgaclear" (registered trademark) XT386 (manufactured by BASF Japan Co., Ltd.) is melted by an extruder to form a rectangular base with a hole diameter of 0.30 mm and a hole depth of 2 mm.
  • the yarn spun at a spinning temperature of 235 ° C. and a single-hole discharge rate of 0.32 g / min was cooled and solidified, and then pulled and stretched by compressed air having an ejector pressure of 0.35 MPa with a rectangular ejector. Collected on the collection net.
  • the obtained non-woven fiber web was heat-temporarily bonded at a temperature of 120 ° C. using a flat roll.
  • each spunbonded non-woven fabric layer had a texture of 7.0 g / m 2 and an average single fiber diameter of 10.0 ⁇ m. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
  • Single-hole discharge rate was 0.10 g / min.
  • air was injected into the yarn under the conditions of an air temperature of 290 ° C. and an air pressure of 0.10 MPa, and collected on the spunbonded non-woven fabric layer to form a melt-blown non-woven fabric layer.
  • the basis weight of the melt-blown non-woven fabric layer separately collected on the collection net under the same conditions was 1.0 g / m 2 , and the average single fiber diameter was 1.6 ⁇ m.
  • Air filter unit-reinforced air filter With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 2 shows the pleated formability of the filter unit.
  • Example 5 (Spanbond non-woven fabric layer (lower layer) / (upper layer)) Example 4 and Example 4 except that the amount of the crystalline nucleating agent "Irgaclear" (registered trademark) XT386 (manufactured by BASF Japan Ltd.) represented by compound B was changed from 0.05% by mass to 0.005% by mass.
  • a spunbonded non-woven fabric layer was obtained in the same manner. The characteristics of the long fibers constituting the formed spunbonded non-woven fabric layer were that each spunbonded non-woven fabric layer had a texture of 7.0 g / m 2 and an average single fiber diameter of 10.1 ⁇ m. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
  • melt blow non-woven fabric layer Example 4 and Example 4 except that the amount of the crystal nucleating agent "Irgaclear" (registered trademark) XT386 (manufactured by BASF Japan Ltd.) represented by compound B was changed from 0.05% by mass to 0.005% by mass.
  • a melt blown non-woven fabric layer was obtained in the same manner.
  • the characteristics of the fibers constituting the formed melt-blow non-woven fabric layer were 1.0 g / m 2 for the basis weight of the melt-blow non-woven fabric and 1.5 ⁇ m for the average single fiber diameter.
  • Air filter unit-reinforced air filter With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 2 shows the pleated formability of the filter unit.
  • Example 6 (Spanbond non-woven fabric layer (lower layer) / (upper layer)) Example 4 and Example 4 except that the amount of the crystalline nucleating agent "Irgaclear" (registered trademark) XT386 (manufactured by BASF Japan Ltd.) represented by compound B was changed from 0.05% by mass to 0.5% by mass.
  • a spunbonded non-woven fabric layer was obtained in the same manner.
  • the basis weight of each spunbonded non-woven fabric layer formed was 7.0 g / m 2 , and the average single fiber diameter was 10.1 ⁇ m. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
  • melt blow non-woven fabric layer Example 4 and Example 4 except that the amount of the crystal nucleating agent "Irgaclear" (registered trademark) XT386 (manufactured by BASF Japan Ltd.) represented by compound B was changed from 0.05% by mass to 0.5% by mass.
  • a melt blown non-woven fabric layer was obtained in the same manner.
  • the characteristics of the fibers constituting the formed melt-blow non-woven fabric layer were 1.0 g / m 2 for the basis weight of the melt-blow non-woven fabric and 1.5 ⁇ m for the average single fiber diameter.
  • Air filter unit-reinforced air filter With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 2 shows the pleated formability of the filter unit.
  • Example 7 (Spanbond non-woven fabric layer (lower layer) / (upper layer)) A polyolefin resin containing 1% by mass of the hindered amine compound "Kimasorb” (registered trademark) 2020FDL (manufactured by BASF Japan Co., Ltd.) represented by compound C in a polypropylene resin formed of a homopolymer having an MFR of 200 g / 10 minutes.
  • the obtained non-woven fiber web was heat-temporarily bonded using a flat roll at a temperature of 145 ° C., and the obtained heat-temporarily bonded non-woven web was engraved with a metal polka dot pattern on the upper roll.
  • an embossing roll with an adhesive area ratio of 16% and a pair of upper and lower thermal embossing rolls composed of metal flat rolls as the lower roll heat is applied at a linear pressure of 30 N / cm and a thermal bonding temperature of 145 ° C. Glued.
  • the basis weight of each spunbonded non-woven fabric layer formed was 7.0 g / m 2 , and the average single fiber diameter was 10.1 ⁇ m. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
  • the basis weight of the melt-blown non-woven fabric layer separately collected on the collection net under the same conditions was 1.0 g / m 2 , and the average single fiber diameter was 1.5 ⁇ m.
  • Air filter unit-reinforced air filter With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 2 shows the pleated formability of the filter unit.
  • Example 8 (Spanbond non-woven fabric layer (lower layer) / (upper layer)) A spunbonded non-woven fabric layer was obtained by the same method as in Example 1 except that the basis weight of each spunbonded nonwoven fabric layer was changed from 7.0 g / m 2 to 28.0 g / m 2.
  • melt-blow non-woven fabric layer was obtained in the same manner as in Example 1 except that the basis weight of the melt-blow non-woven fabric layer was changed from 1.0 g / m 2 to 4.0 g / m 2.
  • Air filter unit-reinforced air filter With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 4 shows the pleated formability of the filter unit.
  • Example 9 (Spanbond non-woven fabric layer (lower layer) / (upper layer)) A spunbonded non-woven fabric layer was obtained by the same method as in Example 1 except that the basis weight of each spunbonded nonwoven fabric layer was changed from 7.0 g / m 2 to 4.2 g / m 2.
  • melt-blow non-woven fabric layer was obtained in the same manner as in Example 1 except that the basis weight of the melt-blow non-woven fabric layer was changed from 1.0 g / m 2 to 0.6 g / m 2.
  • Air filter unit-reinforced air filter With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 4 shows the pleated formability of the filter unit.
  • Example 10 (Spanbond non-woven fabric layer (lower layer) / (upper layer)) Except that the basis weight of the spunbond nonwoven fabric layer was changed from 7.0 g / m 2 to 29.5 g / m 2, to obtain a spunbonded nonwoven fabric layer in the same manner as in Example 1.
  • melt blow non-woven fabric layer A melt-blown non-woven fabric layer was obtained in the same manner as in Example 1.
  • Air filter unit-reinforced air filter With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 4 shows the pleated formability of the filter unit.
  • Example 11 (Spanbond non-woven fabric layer (lower layer) / (upper layer)) Except that the basis weight of the spunbond nonwoven fabric layer was changed from 7.0 g / m 2 to 25.5 g / m 2, to obtain a spunbonded nonwoven fabric layer in the same manner as in Example 1.
  • melt-blow non-woven fabric layer was obtained in the same manner as in Example 1 except that the basis weight of the melt-blow non-woven fabric layer was changed from 1.0 g / m 2 to 9.0 g / m 2.
  • Air filter unit-reinforced air filter With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 4 shows the pleated formability of the filter unit.
  • Example 12 (Spanbond non-woven fabric layer (lower layer)) Except that the basis weight of the spunbond nonwoven fabric layer was changed from 7.0 g / m 2 to 14.0 g / m 2 was obtained spunbond nonwoven layer in the same manner as in Example 1.
  • the average single fiber diameter was 10.1 ⁇ m, and the spinnability was good with no yarn breakage after spinning for 1 hour.
  • melt-blown non-woven fabric layer was collected on the spunbonded non-woven fabric layer to form a melt-blown non-woven fabric layer.
  • basis weight of the melt-blown non-woven fabric layer separately collected on the collection net under the same conditions was 1.0 g / m 2 , and the average single fiber diameter was 1.5 ⁇ m. This gave a spunbond-melt blow (SM) laminated fiber web.
  • Air filter unit-reinforced air filter With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 4 shows the pleated formability of the filter unit.
  • Example 13 (Spanbond non-woven fabric layer (lower layer)) A spunbonded non-woven fabric layer (lower layer) was obtained in the same manner as in Example 1. The basis weight of the obtained spunbonded non-woven fabric layer was 7.0 g / m 2 , and the average single fiber diameter was 10.1 ⁇ m. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
  • melt-blown non-woven fabric layer A melt-blown non-woven fabric layer was obtained in the same manner as in Example 1.
  • the obtained melt-blown non-woven fabric layer had a basis weight of 1.0 g / m 2 and an average single fiber diameter of 1.5 ⁇ m.
  • Spanbond non-woven fabric layer (upper layer)
  • a hindered amine compound "Kimasorb” (registered trademark) 944LD (manufactured by BASF Japan Co., Ltd.) represented by compound A
  • compound A is added to a polypropylene resin formed of a homopolymer having an MFR of 100 g / 10 minutes.
  • a polyolefin resin containing 1% by mass is melted by an extruder and spun from a rectangular mouthpiece having a pore diameter of 0.30 mm and a pore depth of 2 mm at a spinning temperature of 235 ° C and a single pore discharge rate of 0.65 g / min.
  • the thread was cooled and solidified, and then pulled and stretched by compressed air having an ejector pressure of 0.50 MPa with a rectangular ejector, and collected on a collection net.
  • the obtained non-woven fiber web was heat-temporarily bonded at a temperature of 120 ° C. using a flat roll.
  • a spunbonded non-woven fabric layer having a basis weight of 7.0 g / m 2 of the obtained heat-temporarily bonded non-woven web was formed.
  • the average single fiber diameter was 15.3 ⁇ m, and the spinnability was good with no yarn breakage after spinning for 1 hour. This gave a spunbond-melt blow-spunbond (SMS) laminated fiber web.
  • SMS spunbond-melt blow-spunbond
  • Air filter unit-reinforced air filter With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 4 shows the pleated formability of the filter unit.
  • This non-woven fabric was subjected to an electret-forming treatment to obtain an electret melt-blown non-woven fabric.
  • Tables 5 and 6 show the measured values and calculated values of the electret melt blown non-woven fabric.
  • the obtained non-woven fabric was very excellent in collection efficiency, but inferior in tensile strength and high pressure loss, and did not reach the range where it could be used for air filter applications.
  • an air filter unit was obtained in the same manner as in Example 1.
  • Table 6 shows the pleated formability of the filter unit.
  • melt blow non-woven fabric layer The same method as in Example 1 except that the amount of the hindered amine compound A "Kimasorb” (registered trademark) 944LD (manufactured by BASF Japan Ltd.) added to the melt blow nonwoven fabric layer was changed from 1% by mass to 0.09% by mass. A melt blown non-woven fabric layer was obtained.
  • the obtained non-woven fabric had low collection efficiency and did not reach the range where it could be used for air filters.
  • Air filter unit With respect to the obtained laminated electret non-woven fabric, an air filter unit was obtained in the same manner as in Example 1. Table 6 shows the pleated formability of the filter unit.
  • each spunbonded non-woven fabric layer had a texture of 7.0 g / m 2 and an average single fiber diameter of 22.5 ⁇ m. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
  • melt-blown non-woven fabric layer A melt-blown non-woven fabric layer was obtained in the same manner as in Example 1.
  • the obtained melt-blown non-woven fabric layer had a basis weight of 1.0 g / m 2 and an average single fiber diameter of 1.5 ⁇ m.
  • the obtained non-woven fabric had low collection efficiency and did not reach the range where it could be used for air filters.
  • Air filter unit With respect to the obtained laminated electret non-woven fabric, an air filter unit was obtained in the same manner as in Example 1. Table 6 shows the pleated formability of the filter unit.
  • melt-blown non-woven fabric having a grain size of 15.0 g / m 2 and an average single fiber diameter of 1.5 ⁇ m was produced.
  • spunbonded non-woven fabric layer lower layer
  • the obtained laminated electret non-woven fabric corresponds to a melt-blown non-woven fabric layer having a texture changed from 1.0 g / m 2 to 15.0 g / m 2 as compared with the laminated electret non-woven fabric of Example 1. Since the content of the melt-blown non-woven fabric layer was as high as 51.7%, the pressure loss was high and the flexibility was also low.
  • Air filter unit With respect to the obtained laminated electret non-woven fabric, an air filter unit was obtained in the same manner as in Example 1.
  • Table 6 shows the pleated formability of the filter unit. As described above, since the flexibility was low, the mountain shape of the pleats became round, the pressure loss due to the structural cause increased, and the workability was not satisfactory.
  • melt-blow non-woven fabric layer was obtained in the same manner as in Example 1 except that the basis weight of the melt-blow non-woven fabric layer was changed from 1.0 g / m 2 to 5.5 g / m 2.
  • the obtained non-woven fabric had high pressure loss and low flexibility.
  • Air filter unit With respect to the obtained laminated electret non-woven fabric, an air filter unit was obtained in the same manner as in Example 1.
  • Table 6 shows the pleated formability of the filter unit. As described above, since the flexibility was low, the mountain shape of the pleats became round, the pressure loss due to the structural cause increased, and the workability was not satisfactory.
  • a high-performance laminated electret non-woven fabric having low pressure loss and exhibiting high collection performance can be obtained, and this laminated electret non-woven fabric can be preferably used as a filter medium in an air filter unit, but its application range is limited to these. It's not a thing.

Abstract

A goal of the present invention is to provide: a layered electret nonwoven fabric that has low pressure loss and high trapping efficiency, as well as superior moldability into filter form; and an air filter unit and an air purifier that use said layered electret nonwoven fabric. A layered electret nonwoven fabric according to the present invention is such that a spunbond nonwoven fabric layer constituted of fibers formed from a polyolefin resin (A), and a melt-blown nonwoven fabric layer constituted of fibers formed from a polyolefin resin (B), are layered. The layered electret nonwoven fabric contains 0.1–5% by mass of a hindered amine compound. The fabric weight of the layered electret nonwoven fabric is 5–60 g/m2. The melt-blown nonwoven fabric layer constitutes 1–15% by mass of the mass of the layered electret nonwoven fabric.

Description

積層エレクトレット不織布ならびにこれを用いてなるエアフィルターユニット、空気清浄機Laminated electret non-woven fabric, air filter unit using this, air purifier
 本発明は、ポリオレフィン系樹脂から形成されてなる繊維から構成され、軽量かつ柔軟性に優れ、さらに低圧力損失で高い捕集効率であり、フィルター加工性に優れた積層エレクトレット不織布と、該積層エレクトレット不織布から構成されるエアフィルターに関する。 The present invention comprises a laminated electret non-woven fabric, which is composed of fibers formed of a polyolefin resin, is lightweight and has excellent flexibility, has high collection efficiency with low pressure loss, and is excellent in filter workability, and the laminated electret. Regarding an air filter composed of non-woven fabric.
 従来から、気体中の花粉・塵等を除去するためにエアフィルターが使用されており、濾材として繊維シートが多く用いられている。エアフィルターに要求される性能は、ミクロなダストを多く捕集できること(捕集性能が高いこと)、および、エアフィルター内部を気体が通過する際に抵抗が少ないこと(圧力損失が低いこと)である。 Conventionally, an air filter has been used to remove pollen, dust, etc. in gas, and a fiber sheet is often used as a filter medium. The performance required for the air filter is that it can collect a large amount of microscopic dust (high collection performance) and that there is little resistance when gas passes through the inside of the air filter (low pressure loss). be.
 これらのエアフィルター材には、緻密なマトリックスを形成するために平均繊維15μm以下のメルトブロー不織布が多く用いられている。使用される形状はカップ形状にしたものや、プリーツ成形したものが使用されている。 Melt blown non-woven fabrics with an average fiber of 15 μm or less are often used for these air filter materials in order to form a dense matrix. The shape used is a cup shape or a pleated shape.
 一方、メルトブロー不織布は強度が低いため、エアフィルター材として用いる場合には、パッキング材または補強材が必要であった。特許文献1には、メルトブロー不織布とスパンボンド不織布を積層したエアフィルターが提案されている。これは、積層不織布の表面構造および通気性を適切に制御することによって、積層不織布の機械的な捕集性能を向上でき、さらに、この積層不織布が目的とする高い水準の耐久性や、柔軟性、加工性を持たせることが可能である。 On the other hand, since the melt blown non-woven fabric has low strength, a packing material or a reinforcing material was required when it was used as an air filter material. Patent Document 1 proposes an air filter in which a melt-blown non-woven fabric and a spunbonded non-woven fabric are laminated. By appropriately controlling the surface structure and breathability of the laminated non-woven fabric, it is possible to improve the mechanical collection performance of the laminated non-woven fabric, and further, the high level of durability and flexibility that the laminated non-woven fabric aims at. , It is possible to have workability.
 ところで、繊維シートを帯電させ、物理的作用に加えて静電気的作用を利用することにより、捕集性能を向上させる技術が知られている。特許文献2には、メルトブロー不織布とスパンボンド不織布を積層しエレクトレット化させた積層エレクトレット不織布が提案されている。これは、メルトブロー不織布を構成する繊維を2種類の融点の異なる繊維の混繊とすることで、スパンボンド不織布とエンボスロールにより積層する際に、融着部を減少させ圧力損失を低くすることが可能である。 By the way, there is known a technique for improving the collection performance by charging the fiber sheet and utilizing the electrostatic action in addition to the physical action. Patent Document 2 proposes a laminated electret non-woven fabric in which a melt-blown non-woven fabric and a spunbonded non-woven fabric are laminated to form an electret. This is because the fibers that make up the melt-blown non-woven fabric are a mixture of two types of fibers with different melting points, so that when laminated with spunbonded non-woven fabric and embossed rolls, the fused portion can be reduced and the pressure loss can be reduced. It is possible.
日本国特開2019-151962号公報Japanese Patent Application Laid-Open No. 2019-151962 国際公開第2011/004696号International Publication No. 2011/004696
 しかしながら、特許文献1のような積層不織布では、電気的な捕集効果が作用しないため、捕集効率は低く、捕集性能としては低いことが課題である。また特許文献2のような積層エレクトレット不織布では、高い捕集効率を得るために積層エレクトレット不織布の目付とメルトブローの含有量を増やす必要があるため、柔軟性が低くなり、フィルター成形時にブリーツの山形状が丸状となり、フィルターとしての構造圧損上昇が課題である。 However, in the laminated non-woven fabric as in Patent Document 1, since the electrical collection effect does not work, the collection efficiency is low and the collection performance is low. Further, in the laminated electret non-woven fabric as in Patent Document 2, since it is necessary to increase the grain size and the melt blow content of the laminated electret non-woven fabric in order to obtain high collection efficiency, the flexibility is lowered and the bleeds have a mountain shape during filter molding. Is rounded, and an increase in structural pressure loss as a filter is an issue.
 そこで、本発明は、上記の事情に鑑みてなされたものであって、その目的は、圧力損失が低く、かつ、捕集効率が高く、さらにはフィルター形状への成形しやすさにも優れた積層エレクトレット不織布と、該積層エレクトレット不織布を用いてなるエアフィルターユニット、空気清浄機を提供することである。 Therefore, the present invention has been made in view of the above circumstances, and an object of the present invention is to have low pressure loss, high collection efficiency, and excellent ease of molding into a filter shape. It is an object of the present invention to provide a laminated electret non-woven fabric, an air filter unit using the laminated electret non-woven fabric, and an air purifier.
 本発明者らは、従来技術の問題を解決すべく鋭意検討を行った結果、ポリオレフィン系樹脂から形成されてなるメルトブロー不織布の少なくとも片面に、ポリオレフィン系樹脂から形成されてなるスパンボンド不織布を1層又は複数層積層した構造で目付を特定の範囲内とし、かつメルトブロー不織布の含有量を特定の範囲内とし、エレクトレット加工することで、圧力損失を低くしつつも、かつ捕集効率を高くすることができ、さらに、柔軟性にも優れることから、フィルターへの成形しやすさに優れ、成形時に折り畳まれる際に生じる山部分の頂点がシャープ(鋭角)となり、構造圧損の上昇を抑えられる積層エレクトレット不織布を得ることが可能であることを見出した。さらに、この積層エレクトレット不織布は、エアフィルターユニット、そして、これを組み込まれてなる空気清浄機に好適に用いられることを見出した。 As a result of diligent studies to solve the problems of the prior art, the present inventors have made one layer of a spunbonded nonwoven fabric formed of a polyolefin-based resin on at least one surface of the melt-blown nonwoven fabric formed of a polyolefin-based resin. Alternatively, by using a structure in which multiple layers are laminated, the texture is within a specific range, the content of the melt blown non-woven fabric is within a specific range, and the electlet processing is performed, the pressure loss is reduced and the collection efficiency is increased. In addition, because of its excellent flexibility, it is easy to mold into a filter, and the peaks of the peaks that occur when folded during molding become sharp (sharp angles), and the increase in structural pressure loss can be suppressed. It has been found that it is possible to obtain a non-woven fabric. Furthermore, it has been found that this laminated electret non-woven fabric is suitably used for an air filter unit and an air purifier incorporating the air filter unit.
 本発明はこれら知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。 The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
 本発明の積層エレクトレット不織布は、ポリオレフィン系樹脂(A)から形成されてなる繊維で構成されるスパンボンド不織布層と、ポリオレフィン系樹脂(B)から形成されてなる繊維で構成されるメルトブロー不織布層とが積層されてなる、積層エレクトレット不織布であって、前記の積層エレクトレット不織布は、ヒンダードアミン系化合物を0.1~5質量%含有し、前記の積層エレクトレット不織布の目付が、5~80g/mであり、さらに、前記のメルトブロー不織布層の含有量が前記の積層エレクトレット不織布の質量に対し、1~50質量%である。 The laminated electret nonwoven fabric of the present invention includes a spunbonded nonwoven fabric layer composed of fibers formed of a polyolefin resin (A) and a melt blow nonwoven fabric layer composed of fibers formed of a polyolefin resin (B). The laminated electret non-woven fabric is a laminated electlet non-woven fabric, which contains 0.1 to 5% by mass of a hindered amine compound, and the texture of the laminated electlet non-woven fabric is 5 to 80 g / m 2 . Further, the content of the melt-blown non-woven fabric layer is 1 to 50% by mass with respect to the mass of the laminated electlet non-woven fabric.
 本発明の積層エレクトレット不織布の好ましい態様によれば、前記の積層エレクトレット不織布の目付が、5~60g/mであり、前記のメルトブロー不織布層の含有量が前記の積層エレクトレット不織布の質量に対し、1~15質量%である。 According to a preferred embodiment of the laminated electret non-woven fabric of the present invention, the texture of the laminated electret non-woven fabric is 5 to 60 g / m 2 , and the content of the melt-blown non-woven fabric layer is relative to the mass of the laminated electret non-woven fabric. It is 1 to 15% by mass.
 本発明の積層エレクトレット不織布の好ましい態様によれば、前記の積層エレクトレット不織布が、結晶核剤を含有する。 According to a preferred embodiment of the laminated electret nonwoven fabric of the present invention, the laminated electret nonwoven fabric contains a crystal nucleating agent.
 本発明の積層エレクトレット不織布の好ましい態様によれば、前記の積層エレクトレット不織布に対し、前記結晶の核剤が0.001~1質量%含有されてなる。 According to a preferred embodiment of the laminated electret nonwoven fabric of the present invention, 0.001 to 1% by mass of the nucleating agent of the crystal is contained in the laminated electret nonwoven fabric.
 本発明の積層エレクトレット不織布の好ましい態様によれば、前記のスパンボンド不織布層を構成する繊維の平均単繊維径が6.5~22μmである。 According to a preferred embodiment of the laminated electret nonwoven fabric of the present invention, the average single fiber diameter of the fibers constituting the spunbonded nonwoven fabric layer is 6.5 to 22 μm.
 本発明の積層エレクトレット不織布の好ましい態様によれば、前記のヒンダードアミン系化合物が下記一般式(1)で表される化合物である According to a preferred embodiment of the laminated electret nonwoven fabric of the present invention, the hindered amine compound is a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(ここで、R~Rは水素または炭素原子数1~2のアルキル基、Rは水素または炭素数1~6のアルキル基である)。 (Here, R 1 to R 3 are hydrogen or an alkyl group having 1 to 2 carbon atoms, and R 4 is hydrogen or an alkyl group having 1 to 6 carbon atoms).
 本発明の積層エレクトレット不織布の好ましい態様によれば、前記のポリオレフィン系樹脂(A)から形成されてなる繊維のメルトフローレート(MFR)が、32~850g/10分である。 According to a preferred embodiment of the laminated electret nonwoven fabric of the present invention, the melt flow rate (MFR) of the fiber formed from the polyolefin resin (A) is 32 to 850 g / 10 minutes.
 本発明の積層エレクトレット不織布の好ましい態様によれば、前記のポリオレフィン系樹脂(A)と前記のポリオレフィン系樹脂(B)のMFRの比(MFR/MFR)が、1~13である。 According to a preferred embodiment of the laminated electret non-woven fabric of the present invention, the ratio of the MFR of the polyolefin-based resin (A) to the polyolefin-based resin (B) (MFR B / MFR A ) is 1 to 13.
 本発明の積層エレクトレット不織布の好ましい態様によれば、前記の積層エレクトレット不織布の厚みが、0.05~1mmである。 According to a preferred embodiment of the laminated electret non-woven fabric of the present invention, the thickness of the laminated electret non-woven fabric is 0.05 to 1 mm.
 本発明の積層エレクトレット不織布の好ましい態様によれば、単位目付あたりの縦方向の引張強度が0.3(N/5cm)/(g/m)以上である。 According to a preferred embodiment of the laminated electret nonwoven fabric of the present invention, the longitudinal tensile strength per unit basis weight is 0.3 (N / 5 cm) / (g / m 2 ) or more.
 本発明の積層エレクトレット不織布の好ましい態様によれば、単位目付あたりの圧力損失が0.1~0.5(Pa)/(g/m)である。 According to a preferred embodiment of the laminated electret nonwoven fabric of the present invention, the pressure loss per unit is 0.1 to 0.5 (Pa) / (g / m 2 ).
 本発明のエアフィルターユニットは、前記の積層エレクトレット不織布を濾材とし、該濾材と補強材とから形成されてなるプリーツ接合体が固定材によって把持されてなる。 The air filter unit of the present invention uses the above-mentioned laminated electret non-woven fabric as a filter medium, and a pleated joint formed of the filter medium and a reinforcing material is gripped by a fixing material.
 また、本発明の空気清浄機は、前記のエアフィルターユニットが組み込まれてなる。 Further, the air purifier of the present invention incorporates the above-mentioned air filter unit.
 本発明の積層エレクトレット不織布によれば、前記の構成とすることで、低い圧力損失で高い捕集性能を示す積層エレクトレット不織布が得られ、さらに、この積層エレクトレット不織布は、加工性やフィルター形状への成形性に優れたものとすることができ、捕集性能に優れたエアフィルターユニットおよび空気清浄機が得られる。 According to the laminated electret non-woven fabric of the present invention, the laminated electret non-woven fabric exhibiting high collection performance with low pressure loss can be obtained by the above configuration, and further, the laminated electret non-woven fabric has a workability and a filter shape. An air filter unit and an air purifier having excellent moldability and excellent collection performance can be obtained.
図1は、捕集効率および圧力損失の測定装置を示す概略側面図である。FIG. 1 is a schematic side view showing a collection efficiency and pressure loss measuring device.
 本発明の積層エレクトレット不織布は、ポリオレフィン系樹脂(A)から形成されてなる繊維で構成されるスパンボンド不織布層と、ポリオレフィン系樹脂(B)から形成されてなる繊維で構成されるメルトブロー不織布層とが積層されてなる、積層エレクトレット不織布であって、ヒンダードアミン系化合物を0.1~5質量%含有し、前記積層エレクトレット不織布の目付が、5~80g/mであって、メルトブロー不織布層の含有量が積層エレクトレット不織布質量に対し、1~50質量%である。以下に、その構成要素について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではない。 The laminated electret nonwoven fabric of the present invention includes a spunbonded nonwoven fabric layer composed of fibers formed of a polyolefin resin (A) and a melt blow nonwoven fabric layer composed of fibers formed of a polyolefin resin (B). there are laminated, a laminated electret nonwoven, a hindered amine compound is 0.1 to 5 mass%, the mass per unit area of the laminated electret nonwoven fabric, a 5 ~ 80g / m 2, containing the meltblown nonwoven fabric layer The amount is 1 to 50% by mass with respect to the mass of the laminated electlet non-woven fabric. The components thereof will be described in detail below, but the present invention is not limited to the scope described below as long as the gist thereof is not exceeded.
 [ポリオレフィン系樹脂(A)、ポリオレフィン系樹脂(B)]
 本発明に係る、スパンボンド不織布層を構成する繊維のポリオレフィン系樹脂(A)、および、メルトブロー不織布層を構成する繊維のポリオレフィン系樹脂(B)について、その流動特性を示すメルトフローレート(MFRと略記することがある)は、ASTM D1238 (A法)によって測定される値を採用する。
[Polyolefin-based resin (A), Polyolefin-based resin (B)]
The melt flow rate (MFR) showing the flow characteristics of the polyolefin-based resin (A) of the fiber constituting the spunbonded nonwoven fabric layer and the polyolefin-based resin (B) of the fiber constituting the melt-blown nonwoven fabric layer according to the present invention. (May be abbreviated) adopts the value measured by ASTM D1238 (method A).
 なお、この規格によれば、例えば、ポリプロピレンは荷重:2.16kg、温度:230℃にて、ポリエチレンは荷重:2.16kg、温度:190℃にて測定することが規定されている。 According to this standard, for example, polypropylene is measured at a load of 2.16 kg and a temperature of 230 ° C., and polyethylene is measured at a load of 2.16 kg and a temperature of 190 ° C.
 まず、前記のスパンボンド不織布層を構成する繊維のポリオレフィン系樹脂(A)のMFRは、32~850g/10分であることが好ましい。ポリオレフィン系樹脂(A)のMFRが、32g/10分以上、より好ましくは60g/10分以上、さらに好ましくは80g/10分以上、特に好ましくは120g/10分以上、最も好ましくは155g/10分以上である。このようにすることで、スパンボンド不織布層を構成する繊維を紡糸する際、溶融したポリオレフィン系樹脂が口金から吐出し、冷却され、固化されるまでの、繊維が均一に細くなっていく挙動(以下、繊維の細化挙動と略記することがある)が安定し、生産性を高くするために速い紡糸速度で延伸したとしても、安定した紡糸が可能となる他、細化挙動を安定させることにより糸揺れを抑制し、シート状に捕集する際のムラが発生しにくくなる。一方で、ポリオレフィン系樹脂(A)のMFRが、850g/10分以下、より好ましくは600g/10分以下、さらに好ましくは400g/10分以下である。このようにすることで、安定して速い紡糸速度で延伸することが可能となり、繊維を構成するポリオレフィン系樹脂の結晶配向が整う方向に進み、高い機械強度を有する繊維とすることができるため、好ましい。 First, the MFR of the polyolefin resin (A) of the fiber constituting the spunbonded non-woven fabric layer is preferably 32 to 850 g / 10 minutes. The MFR of the polyolefin resin (A) is 32 g / 10 minutes or more, more preferably 60 g / 10 minutes or more, further preferably 80 g / 10 minutes or more, particularly preferably 120 g / 10 minutes or more, and most preferably 155 g / 10 minutes. That is all. By doing so, when spinning the fibers constituting the spunbonded non-woven fabric layer, the melted polyolefin resin is discharged from the mouthpiece, cooled, and solidified, and the fibers are uniformly thinned (behavior). Hereinafter, it may be abbreviated as fiber thinning behavior), and even if it is drawn at a high spinning speed in order to increase productivity, stable spinning is possible and the thinning behavior is stabilized. As a result, the yarn sway is suppressed, and unevenness when collecting in the form of a sheet is less likely to occur. On the other hand, the MFR of the polyolefin resin (A) is 850 g / 10 minutes or less, more preferably 600 g / 10 minutes or less, and further preferably 400 g / 10 minutes or less. By doing so, it becomes possible to draw the fiber at a stable and high spinning speed, the crystal orientation of the polyolefin resin constituting the fiber is aligned, and the fiber can be made into a fiber having high mechanical strength. preferable.
 また、前記のメルトブロー不織布層を構成する繊維のポリオレフィン系樹脂(B)のMFRは、200~2500g/10分であることが好ましい。ポリオレフィン系樹脂(B)のMFRが、200g/10分以上、より好ましくは400g/10分以上、さらに好ましくは600g/10分以上であることで、繊維が延伸される際の細化挙動が安定し、生産性を高くするために速い紡糸速度で延伸したとしても、安定して紡糸することができる。また細化挙動を安定させることにより糸揺れを抑制し、シート状に捕集する際のムラが発生しにくくなる。さらに、平均単繊維径が数μmレベルの繊維を容易に紡糸することができる。一方で、ポリオレフィン系樹脂(B)のMFRが、2500g/10分以下、より好ましくは2000g/10分以下、さらに好ましくは1500g/10分以下であることで、繊維が延伸される際に張力がかかりにくくなって糸揺れが増加したり、機械強度が低下したりすることを抑制することができる。 Further, the MFR of the polyolefin resin (B) of the fibers constituting the melt-blown non-woven fabric layer is preferably 200 to 2500 g / 10 minutes. When the MFR of the polyolefin resin (B) is 200 g / 10 minutes or more, more preferably 400 g / 10 minutes or more, still more preferably 600 g / 10 minutes or more, the thinning behavior when the fibers are stretched is stable. However, even if it is stretched at a high spinning speed in order to increase productivity, it can be spun stably. In addition, by stabilizing the thinning behavior, yarn sway is suppressed, and unevenness when collecting in the form of a sheet is less likely to occur. Further, fibers having an average single fiber diameter of several μm can be easily spun. On the other hand, when the MFR of the polyolefin resin (B) is 2500 g / 10 minutes or less, more preferably 2000 g / 10 minutes or less, and further preferably 1500 g / 10 minutes or less, the tension is increased when the fibers are stretched. It is possible to suppress the increase in thread sway and the decrease in mechanical strength due to the difficulty in applying.
 なお、本発明で用いられるポリオレフィン系樹脂(A)、(B)について、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂等が挙げられる。ポリエチレン系樹脂としては、例えば、エチレンの単独重合体もしくはエチレンと各種α-オレフィンとの共重合体などが挙げられる。また、ポリプロピレン系樹脂としては、例えば、プロピレンの単独重合体もしくはプロピレンと各種α-オレフィンとの共重合体などが挙げられるが、これらの材料の中でも、ポリプロピレンを主体とするものはエレクトレット性能を特に発揮する点から好ましい。またポリマーの性質を損なわない範囲で他の成分が共重合されていてもよい。 Examples of the polyolefin-based resins (A) and (B) used in the present invention include polyethylene-based resins and polypropylene-based resins. Examples of the polyethylene-based resin include a homopolymer of ethylene or a copolymer of ethylene and various α-olefins. Examples of polypropylene-based resins include homopolymers of propylene and copolymers of propylene and various α-olefins. Among these materials, those mainly composed of polypropylene have particularly excellent electret performance. It is preferable from the viewpoint of exerting it. Further, other components may be copolymerized as long as the properties of the polymer are not impaired.
 本発明で用いられるポリオレフィン系樹脂について、プロピレンの単独重合体の割合が60質量%以上であることが好ましく、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上である。上記範囲とすることで良好な紡糸性を維持し、かつ強度を向上させることができる。 Regarding the polyolefin resin used in the present invention, the proportion of the homopolymer of propylene is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more. Within the above range, good spinnability can be maintained and strength can be improved.
 本発明で用いられるポリオレフィン系樹脂としては、2種以上の混合物であってもよく、またその他のポリオレフィン系樹脂や熱可塑性エラストマー等を含有する樹脂組成物を用いることもできる。当然、MFRの異なる2種類以上の樹脂を任意の割合でブレンドして、ポリオレフィン系樹脂(A)および/またはポリオレフィン系樹脂(B)のMFRを調整することもできる。この場合、主となるポリオレフィン系樹脂に対してブレンドする樹脂のMFRは、10~1000g/10分であることが好ましく、より好ましくは20~800g/10分、さらに好ましくは30~600g/10分である。このようにすることにより、ブレンドしたポリオレフィン系樹脂に部分的に粘度斑が生じたり、繊維径が不均一化したり、紡糸性が悪化したりすることを防ぐことができる。 The polyolefin-based resin used in the present invention may be a mixture of two or more kinds, and a resin composition containing other polyolefin-based resin, thermoplastic elastomer, or the like can also be used. Of course, the MFR of the polyolefin-based resin (A) and / or the polyolefin-based resin (B) can be adjusted by blending two or more kinds of resins having different MFRs at an arbitrary ratio. In this case, the MFR of the resin to be blended with the main polyolefin resin is preferably 10 to 1000 g / 10 minutes, more preferably 20 to 800 g / 10 minutes, and further preferably 30 to 600 g / 10 minutes. Is. By doing so, it is possible to prevent the blended polyolefin resin from having partial viscosity unevenness, non-uniform fiber diameter, and deterioration of spinnability.
 本発明の積層エレクトレット不織布においては、スパンボンド不織布層とメルトブロー不織布層のそれぞれを構成する、前記のポリオレフィン系樹脂(A)と前記のポリオレフィン系樹脂(B)のMFRの比(MFR/MFR)が1~13であることが好ましい。ポリオレフィン系樹脂(A)とポリオレフィン系樹脂(B)のMFRの比(MFR/MFR)が、1以上、より好ましくは1.5以上であることで、スパンボンド不織布層とメルトブロー不織布層を構成する繊維の単繊維径が適度なバランスとなり、圧力損失が低く、かつ、捕集効率が高い積層エレクトレット不織布が得られる。一方で、ポリオレフィン系樹脂(A)とポリオレフィン系樹脂(B)のMFRの比(MFR/MFR)が、13以下、より好ましくは12以下であることで、スパンボンド不織布にメルトブロー不織布を積層する際に接着が進みやすく、剥離強力等の物性が向上できる。 In the laminated electret non-woven fabric of the present invention, the ratio of the MFR of the polyolefin-based resin (A) to the polyolefin-based resin (B) (MFR B / MFR A) constituting each of the spunbonded non-woven fabric layer and the melt-blown non-woven fabric layer. ) Is preferably 1 to 13. The ratio of the MFR of the polyolefin resin (A) to the polyolefin resin (B) (MFR B / MFR A ) is 1 or more, more preferably 1.5 or more, so that the spunbonded non-woven fabric layer and the melt-blown non-woven fabric layer can be formed. A laminated electret non-woven fabric can be obtained in which the single fiber diameters of the constituent fibers are appropriately balanced, the pressure loss is low, and the collection efficiency is high. On the other hand, the ratio of the MFR of the polyolefin resin (A) to the polyolefin resin (B) (MFR B / MFR A ) is 13 or less, more preferably 12 or less, so that the melt blown nonwoven fabric is laminated on the spunbonded nonwoven fabric. Adhesion is easy to proceed, and physical properties such as peeling strength can be improved.
 また、後述する繊維を紡出する際、部分的な粘度斑の発生を防ぎ、繊維の繊度を均一化し、さらに繊維径を後述するように細くするため、用いる樹脂に対して、この樹脂を分解してMFRを調整することも考えられる。しかしながら、例えば、過酸化物、特に、ジアルキル過酸化物等の遊離ラジカル剤などを添加しないことが好ましい。この手法を用いた場合、部分的に粘度斑が発生して繊度が不均一なものとなり、十分に繊維径を細くすることが困難となる他、粘度斑や分解ガスによる気泡で紡糸性が悪化する場合もある。 Further, when spinning the fiber described later, this resin is decomposed with respect to the resin used in order to prevent the occurrence of partial viscosity unevenness, make the fineness of the fiber uniform, and further reduce the fiber diameter as described later. It is also conceivable to adjust the MFR. However, for example, it is preferable not to add a peroxide, particularly a free radical agent such as a dialkyl peroxide. When this method is used, viscosity spots are partially generated and the fineness becomes non-uniform, making it difficult to sufficiently reduce the fiber diameter, and spinnability deteriorates due to viscosity spots and air bubbles caused by decomposition gas. In some cases.
 本発明で用いるポリオレフィン系樹脂の融点は、80~200℃であることが好ましく、より好ましくは100~180℃である。融点を好ましくは80℃以上とし、より好ましくは100℃以上とすることにより、実用に耐え得る耐熱性が得られやすくなる。また、融点を好ましくは200℃以下、より好ましくは180℃以下とすることにより、口金から吐出された糸条を冷却し易くなり、繊維同士の融着を抑制し安定した紡糸が行い易くなる。なお、ここでいう融点は、示差走査型熱量計(例えば、パーキンエルマー社製「DSC-2型」など)を用い、昇温速度20℃/分の条件で測定して得られる値である。 The melting point of the polyolefin resin used in the present invention is preferably 80 to 200 ° C, more preferably 100 to 180 ° C. By setting the melting point to preferably 80 ° C. or higher, and more preferably 100 ° C. or higher, it becomes easy to obtain heat resistance that can withstand practical use. Further, by setting the melting point to preferably 200 ° C. or lower, more preferably 180 ° C. or lower, it becomes easier to cool the yarn discharged from the mouthpiece, fusion of fibers is suppressed, and stable spinning becomes easier. The melting point referred to here is a value obtained by measuring with a differential scanning calorimeter (for example, "DSC-2 type" manufactured by PerkinElmer Co., Ltd.) under the condition of a heating rate of 20 ° C./min.
 また、本発明で用いるポリオレフィン系樹脂にも、本発明の効果を損なわない範囲で、通常用いられる酸化防止剤、耐候安定剤、耐光安定剤、帯電防止剤、紡曇剤、ブロッキング防止剤、滑剤、核剤、および顔料等の添加物、あるいは他の重合体を必要に応じて添加することができる。 Further, the polyolefin-based resin used in the present invention also contains a commonly used antioxidant, weather stabilizer, light-resistant stabilizer, antistatic agent, antifoaming agent, blocking inhibitor, and lubricant as long as the effects of the present invention are not impaired. , Nuclear agents, additives such as pigments, or other polymers can be added as needed.
 本発明の積層エレクトレット不織布は、熱安定剤、耐候剤および重合禁止剤等の添加剤を添加することができ、不織布をエレクトレット処理した際の帯電性、電荷保持性をより良好にするという観点から、前記の繊維材料にヒンダードアミン系化合物、好ましくは一般式(1)で表される化合物(ヒンダードアミン系化合物)を含有することが重要である。 The laminated electret non-woven fabric of the present invention can be added with additives such as a heat stabilizer, a weather resistant agent and a polymerization inhibitor, and from the viewpoint of improving the chargeability and charge retention when the non-woven fabric is electret-treated. It is important that the fibrous material contains a hindered amine compound, preferably a compound represented by the general formula (1) (hindered amine compound).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(ここで、R~Rは水素または炭素原子数1~2のアルキル基、Rは水素または炭素数1~6のアルキル基である)
 ヒンダードアミン系化合物は0.1~5質量%含有することが重要であり、下限として好ましくは0.2質量%以上とし、より好ましくは0.3質量%以上とし、0.5質量%以上含有することが特に好ましい。また、含有量は4質量%以下が好ましく、3質量%以下がより好ましく、2.5質量%以下が特に好ましい。
(Here, R 1 to R 3 are hydrogen or an alkyl group having 1 to 2 carbon atoms, and R 4 is hydrogen or an alkyl group having 1 to 6 carbon atoms).
It is important that the hindered amine compound is contained in an amount of 0.1 to 5% by mass, preferably 0.2% by mass or more, more preferably 0.3% by mass or more, and 0.5% by mass or more as the lower limit. Is particularly preferred. The content is preferably 4% by mass or less, more preferably 3% by mass or less, and particularly preferably 2.5% by mass or less.
 ヒンダードアミン系化合物としては、例えば、ポリ[(6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル)((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)ヘキサメチレン((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)](BASFジャパン株式会社製、“キマソーブ”(登録商標)944LD)、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物(BASFジャパン株式会社製、“チヌビン”(登録商標)622LD)、および2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)(BASFジャパン株式会社製、“チヌビン”(登録商標)144)、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6ーテトラメチルー4-ピペリジル-1,6-ヘキサメチレンジアミン・N-(2,2,6,6ーテトラメチルー4-ピペリジル)ブチルアミンの重縮合物(BASFジャパン株式会社製、“キマソーブ”(登録商標)2020FDL)などが挙げられる。なかでも、スパンボンド不織布にエレクトレット処理した際の帯電性、電荷保持性の点から上記一般式(1)で表される化合物(ヒンダードアミン系添加剤)が好ましく、具体的にはポリ[(6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル)((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)ヘキサメチレン((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)](BASFジャパン株式会社製、“キマソーブ”(登録商標)944LD)、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6ーテトラメチルー4-ピペリジル-1,6-ヘキサメチレンジアミン・N-(2,2,6,6ーテトラメチルー4-ピペリジル)ブチルアミンの重縮合物(BASFジャパン株式会社製、“キマソーブ”(登録商標)2020FDL)が好ましい。 Examples of the hindered amine compound include poly [(6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl) ((2,2,6)). 6-Tetramethyl-4-piperidyl) imino) Hexamethylene ((2,2,6,6-tetramethyl-4-piperidyl) imino)] (BASF Japan Co., Ltd., "Kimasorb" (registered trademark) 944LD), Dimethyl-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate (BASF Japan, Inc., "Tinubin"® 622LD), and 2 -(3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalate bis (1,2,2,6,6-pentamethyl-4-piperidyl) (manufactured by BASF Japan Co., Ltd., "Tinubin" (registered trademark) 144), dibutylamine 1,3,5-triazine N, N'-bis (2,2,6,6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine N- (2,2,6,6-tetramethyl-4-piperidyl) A polycondensate of butylamine (manufactured by BASF Japan Co., Ltd., "Kimasorb" (registered trademark) 2020FDL) and the like can be mentioned. From the viewpoint of chargeability and charge retention, the compound represented by the above general formula (1) (hindered amine-based additive) is preferable, and specifically, poly [(6- (1,1,3,3-tetramethyl) Butyl) Amino-1,3,5-triazin-2,4-diyl) ((2,2,6,6-tetramethyl-4-piperidyl) imino) Hexamethylene ((2,2,6,6-tetra) Methyl-4-piperidyl) imino)] (BASF Japan Co., Ltd., "Kimasorb" (registered trademark) 944LD), dibutylamine 1,3,5-triazine N, N'-bis (2,2,6) A polycondensate of 6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine / N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine (BASF Japan Co., Ltd., "Kimasorb" (registered trademark) 2020FDL) Is preferable.
 なお、下記一般式(1)で表される構造を有する化合物等のヒンダードアミン系化合物は、1種の使用であっても複数種の混合物であってもよい。 The hindered amine compound such as a compound having a structure represented by the following general formula (1) may be used alone or as a mixture of a plurality of types.
 中でも、前記のヒンダードアミン系化合物が下記の一般式(1)で表される化合物を含むことが好ましい。 Among them, it is preferable that the hindered amine compound contains a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(ここで、R~Rは水素または炭素原子数1~2のアルキル基、Rは水素または炭素数1~6のアルキル基である)
 このようにすることで、帯電により付与された電荷をより効果的に安定化できる。
(Here, R 1 to R 3 are hydrogen or an alkyl group having 1 to 2 carbon atoms, and R 4 is hydrogen or an alkyl group having 1 to 6 carbon atoms).
By doing so, the electric charge applied by the electric charge can be stabilized more effectively.
 該化合物を積層エレクトレット不織布に存在させることにより、帯電により付与された電荷をより効果的に安定化できるため、該積層エレクトレット不織布をエアフィルターユニットに使用した場合には、捕集性能が向上し、低い圧力損失で高い捕集性能を有したエアフィルターを実現できるのである。 By allowing the compound to exist in the laminated electret non-woven fabric, the electric charge applied by charging can be stabilized more effectively. Therefore, when the laminated electret non-woven fabric is used for the air filter unit, the collection performance is improved. It is possible to realize an air filter with high collection performance with low pressure loss.
 本発明の積層エレクトレット不織布を構成する繊維は、上記の一般式(1)で表される化合物以外に、結晶核剤を含有させることができる。 The fibers constituting the laminated electret non-woven fabric of the present invention may contain a crystal nucleating agent in addition to the compound represented by the above general formula (1).
 結晶核剤としては、例えば、ソルビトール系核剤、ノニトール系核剤、キシリトール系核剤、リン酸系核剤、トリアミノベンゼン誘導体核剤、およびカルボン酸金属塩核剤などが挙げられる。 Examples of the crystal nucleating agent include sorbitol-based nucleating agents, nonitol-based nucleating agents, xylitol-based nucleating agents, phosphoric acid-based nucleating agents, triaminobenzene derivative nucleating agents, and carboxylic acid metal salt nucleating agents.
 ソルビトール系核剤には、ジベンジリデンソルビトール(DBS)、モノメチルジベンジリデンソルビトール(例えば、1,3:2,4-ビス(p-メチルベンジリデン)ソルビトール(p-MDBS))、ジメチルジベンジリデンソルビトール(例えば、1,3:2,4-ビス(3,4-ジメチルベンジリデン)ソルビトール(3,4-DMDBS))などが含まれ、“Millad”(登録商標)3988(ミリケン・ジャパン株式会社製)、および“ゲルオール”(登録商標)E-200(新日本理化株式会社製)などが挙げられる。 Sorbitol-based nucleating agents include dibenzylidene sorbitol (DBS), monomethyldibenzylidene sorbitol (eg, 1,3: 2,4-bis (p-methylbenzylidene) sorbitol (p-MDBS)), and dimethyldibenzidene sorbitol (eg, p-MDBS). , 1,3: 2,4-bis (3,4-dimethylbenzylidene) sorbitol (3,4-DMDBS)), "Milllad" (registered trademark) 3988 (manufactured by Milliken Japan Co., Ltd.), and Examples thereof include "Gerol" (registered trademark) E-200 (manufactured by Shin Nihon Rika Co., Ltd.).
 ノニトール系核剤には、例えば、1,2,3―トリデオキシ-4,6:5,7-ビス-[(4-プロピルフェニル)メチレン]-ノニトールなどが含まれ、“Millad”(登録商標)NX8000(ミリケン・ジャパン株式会社製)などが挙げられる。 Nonitol-based nucleating agents include, for example, 1,2,3-trideoxy-4,6: 5,7-bis-[(4-propylphenyl) methylene] -nonitol and the like, "Millad" (registered trademark). NX8000 (manufactured by Milliken Japan Co., Ltd.) and the like can be mentioned.
 キシリトール系核剤には、例えば、ビス-1,3:2,4-(5’,6’,7’,8’-テトラヒドロ-2-ナフトアルデヒドベンジリデン)1-アリルキシリトールなどが含まれる。また、リン酸系核剤には、例えば、アルミニウム-ビス(4,4’,6,6’-テトラ-tert-ブチル-2,2’-メチレンジフェニル-ホスファート)-ヒドロキシドなどが含まれ、“アデカスタブ”(登録商標)NA-11(株式会社ADEKA製)や、“アデカスタブ”(登録商標)NA-21(株式会社ADEKA製)などが挙げられる。 Xylitol-based nucleating agents include, for example, bis-1,3: 2,4- (5', 6', 7', 8'-tetrahydro-2-naphthaldehydebenzylidene) 1-allylxylitol and the like. Further, the phosphoric acid-based nucleating agent includes, for example, aluminum-bis (4,4', 6,6'-tetra-tert-butyl-2,2'-methylenediphenyl-phosphate) -hydroxydo, and the like. Examples thereof include "ADEKA STAB" (registered trademark) NA-11 (manufactured by ADEKA Corporation) and "ADEKA STAB" (registered trademark) NA-21 (manufactured by ADEKA Corporation).
 トリアミノベンゼン誘導体核剤には、例えば、1,3,5-トリス(2,2-ジメチルプロパンアミド)ベンゼンなどが含まれ、下記一般式(2)で表される、“Irgaclear”(登録商標)XT386”(BASFジャパン株式会社製)などが挙げられる。さらに、カルボン酸金属塩核剤には、例えば、安息香酸ナトリウムや、1,2-シクロヘキサンジカルボキシル酸カルシウム塩などが含まれる。 The triaminobenzene derivative nucleating agent contains, for example, 1,3,5-tris (2,2-dimethylpropanamide) benzene and the like, and is represented by the following general formula (2), "Irgaclear" (registered trademark). ) XT386 "(manufactured by BASF Japan Ltd.), and the like. Further, the carboxylic acid metal salt nucleating agent includes, for example, sodium benzoate, calcium 1,2-cyclohexanedicarboxylate and the like.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(一般式(2)中、R、RおよびRは、それぞれ独立して、炭素数1~20のアルキル基、炭素数3~20のアルケニル基、炭素数5~12のシクロアルキル基、炭素数5~9のシクロアルケニル基、または炭素数6~10のアリール基を表す。)。 (In the general formula (2), R 1 , R 2 and R 3 are independently alkyl groups having 1 to 20 carbon atoms, alkenyl groups having 3 to 20 carbon atoms, and cycloalkyl groups having 5 to 12 carbon atoms. , A cycloalkenyl group having 5 to 9 carbon atoms, or an aryl group having 6 to 10 carbon atoms.).
 積層エレクトレット不織布を構成する繊維中の結晶核剤の含有量は、好ましくは0.001~1質量%である。結晶核剤の含有量が0.001質量%以上、より好ましくは、0.005質量%以上では、塵埃捕集特性の効果を有効に高めることができる。また、繊維間の融着を抑制し、通気量を大きくすることができる。一方、結晶核剤の含有量が1質量%以下、より好ましくは、0.5質量%以下では、紡糸性が安定し、コスト的にも優位になる。 The content of the crystal nucleating agent in the fibers constituting the laminated electret non-woven fabric is preferably 0.001 to 1% by mass. When the content of the crystal nucleating agent is 0.001% by mass or more, more preferably 0.005% by mass or more, the effect of the dust collecting property can be effectively enhanced. In addition, fusion between fibers can be suppressed and the amount of airflow can be increased. On the other hand, when the content of the crystal nucleating agent is 1% by mass or less, more preferably 0.5% by mass or less, the spinnability is stable and the cost is superior.
 本発明の積層エレクトレット不織布は、上述のような化合物を含有するポリマーから成るが、また、該ポリマーは上述した化合物に加えて、酸化防止剤、光安定剤、熱安定剤などの、樹脂材料に通常含まれる安定剤を含んでいてもよい。 The laminated electret non-woven fabric of the present invention is composed of a polymer containing the above-mentioned compound, and the polymer can be used as a resin material such as an antioxidant, a light stabilizer, and a heat stabilizer in addition to the above-mentioned compound. It may contain a stabilizer that is normally contained.
 本発明における上記の一般式(1)で表される化合物および結晶核剤の含有量は、次のようにして求める。 The contents of the compound represented by the above general formula (1) and the crystal nucleating agent in the present invention are determined as follows.
 ここでいう含有量は、例えば次のようにして求めることができる。不織布をメタノール/クロロホルム混合溶液でソックスレー抽出後、その抽出物についてHPLC分取を繰り返し、各分取物についてIR測定、GC測定、GC/MS測定、MALDI-MS測定、H-NMR測定、および13C-NMR測定で構造を確認する。該結晶核剤の含まれる分取物の質量を合計し、不織布全体に対する割合を求め、これを結晶核剤の含有量とする。また、上記の一般式(1)で表される化合物についても同様にこれの含まれる分取物の質量を合計し、不織布全体に対する割合を求め、当該化合物の含有量とする。 The content referred to here can be determined, for example, as follows. After Soxhlet extraction of the non-woven fabric with a mixed solution of methanol / chloroform, HPLC fractionation was repeated for the extract, and IR measurement, GC measurement, GC / MS measurement, MALDI-MS measurement, 1 H-NMR measurement, and 1 H-NMR measurement were repeated for each sample. 13 Confirm the structure by C-NMR measurement. The mass of the fraction containing the crystal nucleating agent is totaled, the ratio to the whole non-woven fabric is obtained, and this is taken as the content of the crystal nucleating agent. Similarly, for the compound represented by the above general formula (1), the masses of the preparative products contained therein are totaled, and the ratio to the entire non-woven fabric is calculated and used as the content of the compound.
 [繊維]
 本発明に係るスパンボンド不織布層を構成するポリオレフィン系樹脂(A)から形成されてなる繊維は、その平均単繊維径が6.5~22μmである。平均単繊維径が6.5μm以上、好ましくは7.5μm以上、より好ましくは8.4μm以上であることで、紡糸性の低下を防ぎ、安定して品質の良い不織布を生産することができる。一方、平均単繊維径が22μm以下、好ましくは13μm以下、より好ましくは11.2μm以下、さらに好ましくは10μm以下であることで、緻密性や均一性が高く、実用に耐えうる加工特性に優れ、さらにメルトブロー不織布層の含有比率を低くした場合においても、高捕集効率とすることができるため、柔軟性に優れた積層エレクトレット不織布とすることができる。
[fiber]
The fiber formed of the polyolefin resin (A) constituting the spunbonded nonwoven fabric layer according to the present invention has an average single fiber diameter of 6.5 to 22 μm. When the average single fiber diameter is 6.5 μm or more, preferably 7.5 μm or more, more preferably 8.4 μm or more, deterioration of spinnability can be prevented, and a stable and high-quality non-woven fabric can be produced. On the other hand, when the average single fiber diameter is 22 μm or less, preferably 13 μm or less, more preferably 11.2 μm or less, and further preferably 10 μm or less, the denseness and uniformity are high, and the processing characteristics that can withstand practical use are excellent. Further, even when the content ratio of the melt blow nonwoven fabric layer is lowered, the collection efficiency can be high, so that the laminated electret nonwoven fabric having excellent flexibility can be obtained.
 なお、本発明においては、前記のスパンボンド不織布層を構成するポリオレフィン系樹脂(A)から形成されてなる繊維の平均単繊維径(μm)は、以下の手順によって算出される値を採用するものとする。
(1)積層エレクトレット不織布からランダムに小片サンプルを採取する。
(2)採取した小片サンプルの断面において、走査型電子顕微鏡等で500~2000倍の範囲で繊維の太さを計測することが可能な写真を撮影する。
(3)各小片サンプルの撮影した写真から10本繊維を任意に選び出して、その太さを測定し、単繊維径とする。また、円形でない繊維の繊維径は、繊維断面に対して外接円と、内接円を取り、それぞれの直径の平均値を単繊維径とする。
(4)測定した単繊維径の小数点以下第二位を四捨五入して算出した単繊維径が、6.5μm以上であるものを、スパンボンド不織布層を構成するポリオレフィン系樹脂(A)から形成されてなる繊維の単繊維径とする。
(5)単繊維径が6.5μm以上である繊維が計100本となるよう、小片サンプル採取から測定までを行い、それらの算術平均値を平均単繊維径(μm)とする。
In the present invention, the average single fiber diameter (μm) of the fiber formed from the polyolefin resin (A) constituting the spunbonded nonwoven fabric layer adopts a value calculated by the following procedure. And.
(1) Randomly collect small pieces of sample from the laminated electret non-woven fabric.
(2) In the cross section of the collected small piece sample, take a photograph capable of measuring the thickness of the fiber in the range of 500 to 2000 times with a scanning electron microscope or the like.
(3) Ten fibers are arbitrarily selected from the photographs taken of each small piece sample, and the thickness thereof is measured to obtain a single fiber diameter. The fiber diameter of a non-circular fiber is a circumscribed circle and an inscribed circle with respect to the fiber cross section, and the average value of each diameter is taken as a single fiber diameter.
(4) The single fiber diameter calculated by rounding off the second decimal place of the measured single fiber diameter is 6.5 μm or more, and is formed from the polyolefin resin (A) constituting the spunbonded non-woven fabric layer. The single fiber diameter of the resulting fiber.
(5) Small pieces are sampled and measured so that the total number of fibers having a single fiber diameter of 6.5 μm or more is 100, and the arithmetic mean value thereof is defined as the average single fiber diameter (μm).
 一方、本発明に係るメルトブロー不織布を構成するポリオレフィン系樹脂(B)から形成されてなる繊維は、その平均単繊維径が0.1~6μmであることが好ましい。平均単繊維径が0.1μm以上、より好ましくは0.4μm以上であることで、紡糸性の低下を防ぎ、安定して品質の良いメルトブロー不織布層を形成することができる。一方で、平均単繊維径が6μm以下、より好ましくは5μm以下であることで、柔軟性や均一性が高く、メルトブロー不織布層(M)の含有比率を低くした場合においても、実用に耐えうる耐水特性に優れた積層不織布とすることができる。 On the other hand, the fibers formed from the polyolefin resin (B) constituting the melt-blown nonwoven fabric according to the present invention preferably have an average single fiber diameter of 0.1 to 6 μm. When the average single fiber diameter is 0.1 μm or more, more preferably 0.4 μm or more, deterioration of spinnability can be prevented, and a stable and high-quality melt-blown non-woven fabric layer can be formed. On the other hand, when the average single fiber diameter is 6 μm or less, more preferably 5 μm or less, the flexibility and uniformity are high, and even when the content ratio of the melt-blown non-woven fabric layer (M) is lowered, the water resistance can withstand practical use. A laminated non-woven fabric having excellent characteristics can be obtained.
 なお、本発明においては、メルトブロー不織布層を構成するポリオレフィン系樹脂(B)から形成されてなる繊維の平均単繊維径(μm)は、以下の手順によって算出される値を採用するものとする。
(1)積層エレクトレット不織布からランダムに小片サンプルを採取する。
(2)採取した小片サンプルの断面において、走査型電子顕微鏡等で500~2000倍の範囲で繊維の太さを計測することが可能な写真を撮影する。
(3)各小片サンプルの撮影した写真から10本繊維を任意に選び出して、その太さを測定し、単繊維径とする。
(4)測定した単繊維径の小数点以下第二位を四捨五入して算出した単繊維径が、6.0μm以下であるものを、メルトブロー不織布層を構成するポリオレフィン系樹脂(B)から形成されてなる繊維の単繊維径とする。
(5)単繊維径が6.0μm以下である繊維が計100本となるよう、小片サンプル採取から測定までを行い、それらの算術平均値を平均単繊維径(μm)とする。
In the present invention, the average single fiber diameter (μm) of the fiber formed from the polyolefin resin (B) constituting the melt-blown non-woven fabric layer is a value calculated by the following procedure.
(1) Randomly collect small pieces of sample from the laminated electret non-woven fabric.
(2) In the cross section of the collected small piece sample, take a photograph capable of measuring the thickness of the fiber in the range of 500 to 2000 times with a scanning electron microscope or the like.
(3) Ten fibers are arbitrarily selected from the photographs taken of each small piece sample, and the thickness thereof is measured to obtain a single fiber diameter.
(4) The single fiber diameter calculated by rounding off the second decimal place of the measured single fiber diameter is 6.0 μm or less, and is formed of the polyolefin resin (B) constituting the melt blown non-woven fabric layer. The single fiber diameter of the fiber.
(5) Small pieces are sampled and measured so that the total number of fibers having a single fiber diameter of 6.0 μm or less is 100, and the arithmetic mean value thereof is defined as the average single fiber diameter (μm).
 また、本発明では、上記のポリオレフィン系樹脂を組み合わせた複合型繊維としても用いることができる。複合型繊維の複合形態としては、例えば、同心芯鞘型、偏心芯鞘型および海島型などの複合形態を挙げることができる。単成分繊維や、芯鞘型、海島型といった複合成分型繊維等、特に限定されるものではないが、複合成分型繊維の場合、樹脂の選択次第では、樹脂間の電気抵抗の相違より電荷が漏洩する可能性があるため、単成分繊維であることが好ましい態様である。 Further, in the present invention, it can also be used as a composite fiber in which the above-mentioned polyolefin resin is combined. Examples of the composite form of the composite fiber include a composite form such as a concentric sheath type, an eccentric core sheath type, and a sea island type. It is not particularly limited to single component fibers, composite component fibers such as core sheath type and sea island type, but in the case of composite component type fibers, depending on the selection of the resin, the charge is increased due to the difference in electrical resistance between the resins. A single component fiber is a preferred embodiment because it can leak.
 さらに本発明のスパンボンド不織布を構成する繊維の断面形状は、得られるスパンボンド不織布がフィルター用途に適していれば特に限定されるものではないが、円形、中空円形、楕円形、扁平型、あるいはX型、Y型等の異形型、多角型、多葉型、等が好ましい形態である。円形でない繊維の繊維径は、繊維断面に対して外接円と、内接円を取り、それぞれの直径の平均値を繊維径として求めたものである。 Further, the cross-sectional shape of the fibers constituting the spunbonded nonwoven fabric of the present invention is not particularly limited as long as the obtained spunbonded nonwoven fabric is suitable for filter applications, but is circular, hollow circular, oval, flat, or. Deformed types such as X-type and Y-type, polygonal type, multi-leaf type, and the like are preferable forms. The fiber diameter of a non-circular fiber is obtained by taking an circumscribed circle and an inscribed circle with respect to the fiber cross section and calculating the average value of the respective diameters as the fiber diameter.
 [積層エレクトレット不織布]
 本発明の積層エレクトレット不織布は、スパンボンド不織布層とメルトブロー不織布層とを積層させてなることが重要である。このように構成することにより、エアフィルターユニット用の不織布として要求されるレベル以上の加工性と捕集性能および柔軟性を付与することができる。
[Laminated electret non-woven fabric]
It is important that the laminated electret non-woven fabric of the present invention is formed by laminating a spunbonded non-woven fabric layer and a melt-blown non-woven fabric layer. With this configuration, it is possible to impart workability, collection performance, and flexibility that are higher than the level required for a non-woven fabric for an air filter unit.
 本発明の積層エレクトレット不織布のMFRは、40g/10分~850g/10分であることが好ましく、より好ましくは60g/10分以上、さらに好ましくは、80g/10分以上、特に好ましくは、120g/10分以上、最も好ましくは155g/10分以上である。これにより、細化が進み、捕集効率の高い不織布とすることができる。一方、850g/10分以下、好ましくは、600g/10分以下、より好ましくは、400g/10分以下とすることにより、紡糸する際の繊維の細化挙動が安定し、生産性を高くするために速い紡糸速度で延伸したとしても、安定した紡糸が可能となる。さらに、前記のスパンボンド不織布層とメルトブロー不織布層のMFRの比(MFR/MFR)が小さくなり、スパンボンド不織布にメルトブロー不織布を積層する際に接着が進みやすく、剥離強力等の物性を向上させることができる。 The MFR of the laminated electret non-woven fabric of the present invention is preferably 40 g / 10 minutes to 850 g / 10 minutes, more preferably 60 g / 10 minutes or more, still more preferably 80 g / 10 minutes or more, and particularly preferably 120 g / min. 10 minutes or more, most preferably 155 g / 10 minutes or more. As a result, the non-woven fabric can be made into a non-woven fabric with high collection efficiency due to the progress of thinning. On the other hand, by setting the weight to 850 g / 10 minutes or less, preferably 600 g / 10 minutes or less, more preferably 400 g / 10 minutes or less, the finening behavior of the fibers during spinning is stable and the productivity is increased. Even if it is drawn at a very high spinning speed, stable spinning is possible. Further, the ratio of MFR (MFR B / MFR A ) between the spunbonded non-woven fabric layer and the melt-blown non-woven fabric layer becomes small, and when the melt-blown non-woven fabric is laminated on the spunbonded non-woven fabric, adhesion easily proceeds and physical properties such as peeling strength are improved. Can be made to.
 本発明の積層エレクトレット不織布のMFRは、ASTM D1238(A法)によって測定される値を採用する。なお、この規格によれば、例えば、ポリプロピレンは荷重:2.16kg、温度:230℃にて、ポリエチレンは荷重:2.16kg、温度:190℃にて測定することが規定されている。またスパンボンド不織布層を構成するポリオレフィン系樹脂とメルトブロー不織布層を構成するポリオレフィン系樹脂が異なるなど、複数種類の樹脂が使用されている場合は、それぞれのポリオレフィン系樹脂の測定温度のなかで最も高い温度で測定される。 For the MFR of the laminated electret non-woven fabric of the present invention, the value measured by ASTM D1238 (method A) is adopted. According to this standard, for example, polypropylene is measured at a load of 2.16 kg and a temperature of 230 ° C., and polyethylene is measured at a load of 2.16 kg and a temperature of 190 ° C. When multiple types of resins are used, such as different polyolefin resins that make up the spunbonded non-woven fabric layer and melt-blown non-woven fabric layers, the highest measured temperature of each polyolefin-based resin. Measured by temperature.
 さらに、本発明の積層エレクトレット不織布は帯電(エレクトレット化)している。このことによって、静電気吸着効果によって、低い圧力損失という特性を維持したまま、高い捕集性能を有させることができる。 Further, the laminated electret non-woven fabric of the present invention is charged (electretized). As a result, it is possible to have high collection performance while maintaining the characteristic of low pressure loss due to the electrostatic adsorption effect.
 ここで、本発明における圧力損失および捕集効率は以下の測定方法、あるいはこれと同等の結果が得られる測定方法で測定されるものである。すなわち、積層エレクトレット不織布の任意の部分から、15cm×15cmの測定用サンプルを5個採取し、それぞれのサンプルについて、図1に概略を示した捕集性能測定装置で圧力損失と捕集効率を測定する。 Here, the pressure loss and the collection efficiency in the present invention are measured by the following measuring method or a measuring method that can obtain the same result. That is, five measurement samples of 15 cm × 15 cm were collected from an arbitrary part of the laminated electret non-woven fabric, and the pressure loss and the collection efficiency were measured for each sample by the collection performance measuring device outlined in FIG. do.
 また、本発明に係る積層エレクトレット不織布の目付は、5~80g/m以下であることが重要である。目付を5g/m以上、好ましくは8g/m以上とし、より好ましくは10g/m以上とすることにより、不織布の強度や剛性を高めることができる。一方、目付を80g/m以下、好ましくは60g/m以下、より好ましくは50g/m以下とし、さらに好ましくは40g/m以下とすることにより、圧力損失を低減し、柔軟性でも好ましい範囲とすることができる。 Further, it is important that the basis weight of the laminated electret nonwoven fabric according to the present invention is 5 to 80 g / m 2 or less. By setting the basis weight to 5 g / m 2 or more, preferably 8 g / m 2 or more, and more preferably 10 g / m 2 or more, the strength and rigidity of the non-woven fabric can be increased. On the other hand, by setting the basis weight to 80 g / m 2 or less, preferably 60 g / m 2 or less, more preferably 50 g / m 2 or less, and further preferably 40 g / m 2 or less, the pressure loss is reduced and the flexibility is also increased. It can be in a preferred range.
 なお、本発明において、積層エレクトレット不織布の目付は、JIS L1913:2010「一般不織布試験方法」の「6.2 単位面積当たりの質量」に準じ、以下の手順によって測定される値を採用するものとする。
(1)20cm×25cmの試験片を、試料の幅1m当たり3枚採取する。
(2)標準状態におけるそれぞれの質量(g)を量る。
(3)その算術平均値を1m当たりの質量(g/m)で表し、小数点以下第1位を四捨五入する。
In the present invention, the texture of the laminated electret non-woven fabric shall be the value measured by the following procedure in accordance with "6.2 Mass per unit area" of JIS L1913: 2010 "General non-woven fabric test method". do.
(1) Collect three 20 cm × 25 cm test pieces per 1 m of sample width.
(2) Weigh each mass (g) in the standard state.
(3) The arithmetic mean value is expressed by the mass per 1 m 2 (g / m 2 ), and the first decimal place is rounded off.
 本発明の積層エレクトレット不織布は、メルトブロー不織布層の含有量が積層エレクトレット不織布質量に対し、1~50質量%以下であることが重要である。メルトブロー不織布層の含有量を1質量%以上、好ましくは2質量%以上とすることにより、捕集効率を高めることできる。また、メルトブロー不織布層の含有量を、50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下、さらに好ましくは12質量%以下、最も好ましくは10質量%以下とすることにより、メルトブロー不織布特有の硬さを軽減でき、フィルターの成形性を高めることができる。 It is important that the content of the melt-blown non-woven fabric layer in the laminated electret non-woven fabric of the present invention is 1 to 50% by mass or less with respect to the mass of the laminated electret non-woven fabric. By setting the content of the melt blow nonwoven fabric layer to 1% by mass or more, preferably 2% by mass or more, the collection efficiency can be improved. Further, the content of the melt blow nonwoven fabric layer is set to 50% by mass or less, preferably 30% by mass or less, more preferably 15% by mass or less, further preferably 12% by mass or less, and most preferably 10% by mass or less. The hardness peculiar to the melt blown non-woven fabric can be reduced, and the moldability of the filter can be improved.
 また、積層エレクトレット不織布におけるスパンボンド不織布層の含有量を、50質量%より多く99質量%未満とすることにより、柔軟性と加工性に優れた積層エレクトレット不織布とすることができる。 Further, by setting the content of the spunbonded non-woven fabric layer in the laminated electret non-woven fabric to more than 50% by mass and less than 99% by mass, it is possible to obtain a laminated electret non-woven fabric having excellent flexibility and workability.
 なお、本発明において、メルトブロー不織布層の含有比率は、以下の手順によって測定される値を採用するものとする。
(1)幅100mm×100mmの試験片を積層エレクトレット不織布の幅方向等間隔に3枚採取する。
(2)積層エレクトレット不織布の非接着部のみを採取する。
(3)採取した試験片および、試験片から採取したメルトブロー不織布の質量をそれぞれ測定する。
(4)積層エレクトレット不織布におけるメルトブロー不織布の含有比率を算出する。
In the present invention, the content ratio of the melt-blown non-woven fabric layer shall be a value measured by the following procedure.
(1) Three test pieces having a width of 100 mm × 100 mm are collected at equal intervals in the width direction of the laminated electret non-woven fabric.
(2) Collect only the non-adhesive part of the laminated electret non-woven fabric.
(3) The masses of the collected test piece and the melt-blown non-woven fabric collected from the test piece are measured.
(4) Calculate the content ratio of the melt-blown non-woven fabric in the laminated electret non-woven fabric.
 本発明の積層エレクトレット不織布の厚みは、0.05~1mmであることが好ましい。厚みを0.05mm以上、より好ましくは0.08mm以上、さらに好ましくは0.10mm以上であることで、濾材の形状保持性を高めることができる。一方、厚みを1mm以下、より好ましくは0.8mm以下、さらに好ましくは0.5mm以下であることで、本発明に係る積層エレクトレット不織布をエアフィルターの濾材として用いる際の、濾材のユニットへの収納性を向上させることができる。 The thickness of the laminated electret non-woven fabric of the present invention is preferably 0.05 to 1 mm. When the thickness is 0.05 mm or more, more preferably 0.08 mm or more, still more preferably 0.10 mm or more, the shape retention of the filter medium can be enhanced. On the other hand, when the thickness is 1 mm or less, more preferably 0.8 mm or less, still more preferably 0.5 mm or less, when the laminated electret nonwoven fabric according to the present invention is used as a filter medium for an air filter, the filter medium is stored in the unit. The sex can be improved.
 なお、本発明において、積層エレクトレット不織布の厚さ(mm)は、JIS L1913:2010「一般不織布試験方法」の「6.1 厚さ(ISO法)」の「6.1.1 A法」に準拠して、以下の手順によって測定される値を採用するものとする。
(1)直径10mmの加圧子を使用し、荷重10kPaで不織布の幅方向等間隔に1mあたり10点の厚さを0.01mm単位で測定する。
(2)上記10点の平均値の小数点以下第三位を四捨五入する。
In the present invention, the thickness (mm) of the laminated electret non-woven fabric is set to "6.1.1 A method" of "6.1 thickness (ISO method)" of JIS L1913: 2010 "General non-woven fabric test method". In accordance with this, the values measured by the following procedure shall be adopted.
(1) Using a pressurizer having a diameter of 10 mm, the thickness of 10 points per 1 m is measured in units of 0.01 mm at equal intervals in the width direction of the non-woven fabric under a load of 10 kPa.
(2) Round off the third decimal place of the average value of the above 10 points.
 本発明の積層エレクトレット不織布は、単位目付あたりの縦方向の引張強度が0.3(N/5cm)/(g/m)以上であることが好ましい。単位目付あたりの縦方向の引張強度を0.3(N/5cm)/(g/m)以上、好ましくは0.5(N/5cm)/(g/m)以上、さらに好ましくは1(N/5cm)/(g/m)以上、特に好ましくは1.5(N/5cm)/(g/m)以上とすることにより、加工時に破断せず、加工性に優れたものとすることができる。単位目付あたりの縦方向の引張強度は、スパンボンド不織布層を構成する繊維の紡糸速度や平均単繊維径、スパンボンド不織布の熱接着条件(接着率、温度および線圧)などにより調整することができる。なお、ここでいう縦方向とは不織布の長手方向である。 The laminated electret non-woven fabric of the present invention preferably has a longitudinal tensile strength per unit basis weight of 0.3 (N / 5 cm) / (g / m 2 ) or more. The longitudinal tensile strength per unit number is 0.3 (N / 5 cm) / (g / m 2 ) or more, preferably 0.5 (N / 5 cm) / (g / m 2 ) or more, more preferably 1. By setting it to (N / 5 cm) / (g / m 2 ) or more, particularly preferably 1.5 (N / 5 cm) / (g / m 2 ) or more, it does not break during processing and has excellent workability. Can be. The longitudinal tensile strength per unit grain can be adjusted by adjusting the spinning speed of the fibers constituting the spunbonded non-woven fabric layer, the average single fiber diameter, and the thermal bonding conditions (adhesion rate, temperature, and linear pressure) of the spunbonded non-woven fabric. can. The vertical direction referred to here is the longitudinal direction of the non-woven fabric.
 また、上記引張強度の最高強力時の引張伸び率について、好ましくは15%以上であり、より好ましくは20%以上であり、さらに好ましくは30%以上であることで、成形加工時などに破断せず加工が可能であることから、加工性に優れたものとすることができる。 Further, the tensile elongation at maximum strength of the above tensile strength is preferably 15% or more, more preferably 20% or more, and further preferably 30% or more, so that the material breaks during molding or the like. Since it can be processed without being processed, it can be made excellent in processability.
 本発明の積層エレクトレット不織布は、単位目付あたりの圧力損失が0.1~0.5(Pa)/(g/m)であることが好ましい。単位目付あたりの圧力損失が0.1(Pa)/(g/m)以上、より好ましくは0.15(Pa)/(g/m)以上、さらに好ましくは0.2(Pa)/(g/m)以上であることにより、単位目付当たりに含まれる繊維の本数が多く、または総表面積が大きくなるため、加工時に破断せず、加工性に優れた強度の積層エレクトレット不織布を得ることができる。一方、0.5(Pa)/(g/m)以下、より好ましくは0.45(Pa)/(g/m)以下、さらに好ましくは0.4(Pa)/(g/m)以下とすることにより、単位目付当たりに含まれる繊維の本数、または総表面積が適度になり圧力損失の低い積層エレクトレット不織布を得ることができる。 The laminated electret non-woven fabric of the present invention preferably has a pressure loss of 0.1 to 0.5 (Pa) / (g / m 2 ) per unit grain. The pressure loss per unit is 0.1 (Pa) / (g / m 2 ) or more, more preferably 0.15 (Pa) / (g / m 2 ) or more, still more preferably 0.2 (Pa) /. When it is (g / m 2 ) or more, the number of fibers contained per unit grain is large or the total surface area is large, so that a laminated electlet non-woven fabric having excellent workability without breaking during processing can be obtained. be able to. On the other hand, 0.5 (Pa) / (g / m 2 ) or less, more preferably 0.45 (Pa) / (g / m 2 ) or less, still more preferably 0.4 (Pa) / (g / m 2) or less. ) By setting the following, it is possible to obtain a laminated electret non-woven fabric in which the number of fibers contained per unit grain or the total surface area is appropriate and the pressure loss is low.
 本発明の積層エレクトレット不織布の積層構成は、メルトブロー不織布層(M)の片面にスパンボンド不織布層(S)を1層積層されてなる(SM)あるいは複数層積層されてなる(例えば、SSMなど)積層エレクトレット不織布、メルトブロー不織布層の両面にスパンボンド不織布層を1層ずつ積層されてなる(SMS)あるいは複数層積層されてなる(例えば、SSMSなど)積層エレクトレット不織布(ただし、メルトブロー不織布層の片面に積層されるスパンボンド不織布層の積層数ともう片面に積層されるスパンボンド不織布層の積層数とは同一でも異なっていてもよい)が挙げられる。ここにおいて、メルトブロー不織布層に積層されるスパンボンド不織布層の総積層枚数が複数枚の場合には、それぞれのスパンボンド不織布層は、同一の構成からなるスパンボンド不織布層であっても良く、「ヒンダードアミン系化合物を0.1~5質量%含有しており、かつ積層エレクトレット不織布の目付が5~80g/mの範囲で、さらにメルトブロー不織布層の含有量が1~50質量%」という条件を満たしさえすれば、その構成が互いに異なっていても良い。構成が互いに異なるスパンボンド不織布層とは、例えば、一方のスパンボンド不織布層と他方のスパンボンド不織布層を構成する繊維の種類が異なる場合、融点が異なる場合、単成分、複合成分で異なる場合、断面形状が異なる場合、厚さ、強度、圧力損失が異なる場合、これらの組み合わせなど、本発明の目的が達成できる限り、どのような相違であってもよい。そして目的に応じて適宜選定して用いることが出来る。 The laminated structure of the laminated electlet non-woven fabric of the present invention is formed by laminating one spunbonded non-woven fabric layer (S) on one side of the melt-blown non-woven fabric layer (M) (SM) or laminating a plurality of layers (for example, SSM). Laminated electret non-woven fabric, spunbonded non-woven fabric layer is laminated one layer at a time on both sides of the melt-blown non-woven fabric layer (SMS) or multiple layers are laminated (for example, SSMS). The number of laminated spunbonded non-woven fabric layers and the number of laminated spunbonded non-woven fabric layers laminated on the other side may be the same or different). Here, when the total number of laminated non-woven fabric layers of the spunbonded non-woven fabric layer laminated on the melt-blown non-woven fabric layer is a plurality of, each spunbonded non-woven fabric layer may be a spunbonded non-woven fabric layer having the same configuration. The condition is that the hindered amine compound is contained in an amount of 0.1 to 5% by mass, the texture of the laminated electret nonwoven fabric is in the range of 5 to 80 g / m 2 , and the content of the melt blow nonwoven fabric layer is 1 to 50% by mass. The configurations may be different from each other as long as they are satisfied. The spunbonded non-woven fabric layers having different configurations include, for example, different types of fibers constituting one spunbonded non-woven fabric layer and the other spunbonded non-woven fabric layer, different melting points, different single components, and different composite components. If the cross-sectional shape is different, the thickness, strength, and pressure loss are different, any combination thereof may be used as long as the object of the present invention can be achieved. Then, it can be appropriately selected and used according to the purpose.
 [積層エレクトレット不織布の製造方法]
 次に、本発明の積層エレクトレット不織布を製造する方法の一例を説明する。
[Manufacturing method of laminated electret non-woven fabric]
Next, an example of the method for producing the laminated electret nonwoven fabric of the present invention will be described.
 本発明の積層エレクトレット不織布は、スパンボンド(S)法とメルトブロー(M)法により製造される不織布から構成される。本発明の積層エレクトレット不織布の製造方法は、スパンボンド不織布層とメルトブロー不織布層とを積層できる方法であれば、いずれの方法にしたがっても行うことができる。例えば、メルトブロー法によって形成される繊維を、スパンボンド法で得られる不織布層の上に直接堆積させてメルトブロー不織布層を形成した後、スパンボンド不織布層とメルトブロー不織布層とを融着させる方法、スパンボンド不織布層とメルトブロー不織布層とを重ね合わせ、加熱加圧により両不織布層を融着させる方法、スパンボンド不織布層とメルトブロー不織布層とを、ホットメルト接着剤や溶剤系接着剤等の接着剤によって接着する方法等を採用することができる。生産性の観点からは、スパンボンド不織布層の上に、直接メルトブロー不織布層を形成する方法が好ましい態様である。 The laminated electret non-woven fabric of the present invention is composed of a non-woven fabric manufactured by the spunbond (S) method and the melt blow (M) method. The method for producing a laminated electret non-woven fabric of the present invention can be carried out according to any method as long as the spunbonded non-woven fabric layer and the melt-blown non-woven fabric layer can be laminated. For example, a method in which fibers formed by the melt-blow method are directly deposited on a non-woven fabric layer obtained by the spunbond method to form a melt-blow non-woven fabric layer, and then the spunbond non-woven fabric layer and the melt-blow non-woven fabric layer are fused, span. A method of superimposing a bonded non-woven fabric layer and a melt-blown non-woven fabric layer and fusing the two non-woven fabric layers by heating and pressurizing. A method of bonding or the like can be adopted. From the viewpoint of productivity, a method of directly forming the melt-blown non-woven fabric layer on the spunbonded non-woven fabric layer is a preferable embodiment.
 また、目的に応じて、前記のようにスパンボンド不織布層(S)とメルトブロー不織布層(M)を、SM、SMS、SMMS、SSMMS、あるいはSMSMSなどと積層した構造とすることができる。 Further, depending on the purpose, the spunbonded non-woven fabric layer (S) and the melt-blown non-woven fabric layer (M) can be laminated with SM, SMS, SMMS, SMSMS, SMS, or the like as described above.
 本発明に係るスパンボンド不織布層は、まず、溶融したポリオレフィン系樹脂を紡糸口金から長繊維として紡出し、これをエジェクターにより圧縮エアで吸引延伸した後、移動するネット上に繊維を捕集して不織布層化する。 In the spunbonded non-woven fabric layer according to the present invention, first, a molten polyolefin resin is spun from a spinneret as long fibers, which is suction-stretched with compressed air by an ejector, and then the fibers are collected on a moving net. Layer the non-woven fabric.
 紡糸口金やエジェクターの形状としては、丸形や矩形等、種々の形状のものを採用することができる。なかでも、圧縮エアの使用量が比較的少なくエネルギーコストに優れること、糸条同士の融着や擦過が起こりにくく、糸条の開繊も容易であることから、矩形口金と矩形エジェクターの組み合わせが好ましく用いられる。 As the shape of the spinneret and the ejector, various shapes such as a round shape and a rectangular shape can be adopted. Among them, the combination of a rectangular base and a rectangular ejector is possible because the amount of compressed air used is relatively small and the energy cost is excellent, the threads are less likely to be fused or scratched, and the threads can be easily opened. It is preferably used.
 本発明では、ポリオレフィン系樹脂を押出機において溶融し、計量して紡糸口金へと供給し、長繊維として紡出する。ポリオレフィン系樹脂を溶融し紡糸する際の紡糸温度は、200~270℃であることが好ましい。紡糸温度を200℃以上、より好ましくは、210℃以上、さらに好ましくは、220℃以上とすることで、あるいは、270℃以下、より好ましくは260℃以下、さらに好ましくは250℃以下とすることで、安定した溶融状態とし、優れた紡糸安定性を得ることができる。 In the present invention, the polyolefin resin is melted in an extruder, weighed and supplied to a spinneret, and spun as long fibers. The spinning temperature when the polyolefin resin is melted and spun is preferably 200 to 270 ° C. The spinning temperature is 200 ° C. or higher, more preferably 210 ° C. or higher, further preferably 220 ° C. or higher, or 270 ° C. or lower, more preferably 260 ° C. or lower, still more preferably 250 ° C. or lower. , A stable molten state can be obtained, and excellent spinning stability can be obtained.
 紡出された長繊維の糸条は、次に冷却される。紡出された糸条を冷却する方法としては、例えば、冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度で自然冷却する方法、および紡糸口金とエジェクター間の距離を調整する方法等が挙げられ、またはこれらの方法を組み合わせる方法を採用することができる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸温度および雰囲気温度等を考慮して、適宜調整して採用することができる。 The spun long fiber yarn is then cooled. Examples of the method of cooling the spun yarn include a method of forcibly blowing cold air on the yarn, a method of naturally cooling at the atmospheric temperature around the yarn, and a method of adjusting the distance between the spinneret and the ejector. Etc., or a method of combining these methods can be adopted. Further, the cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature and the like.
 次に、冷却固化された糸条は、エジェクターから噴射される圧縮エアによって牽引され、延伸される。紡糸速度は、3000~6500m/分であることが好ましい。紡糸速度を、3000~6500m/分、より好ましくは、3500~6500m/分、さらに好ましくは、4000~6500m/分とすることで、高い生産性を有することになり、また繊維を構成するポリオレフィン系樹脂の結晶配向が整う方向に進み、高強度の長繊維を得ることができる。通常では紡糸速度を上げていくと、紡糸性は悪化して糸状を安定して生産することができないが、前述したとおり特定の範囲のMFRを有するポリオレフィン系樹脂を用いることにより、意図するポリオレフィン繊維を安定して紡糸することができる。 Next, the cooled and solidified yarn is towed and stretched by the compressed air injected from the ejector. The spinning speed is preferably 3000 to 6500 m / min. By setting the spinning speed to 3000 to 6500 m / min, more preferably 3500 to 6500 m / min, and even more preferably 4000 to 6500 m / min, high productivity can be obtained, and the polyolefin-based fiber constituting the fiber can be obtained. The crystal orientation of the resin proceeds in the same direction, and high-strength long fibers can be obtained. Normally, as the spinning speed is increased, the spinnability deteriorates and the filamentous shape cannot be stably produced. However, as described above, by using a polyolefin resin having a specific range of MFR, the intended polyolefin fiber is used. Can be stably spun.
 続いて、得られた長繊維を、移動するネット上に捕集し、不織布層を形成する。本発明では、不織布層に対して、ネット上でその片面から熱フラットロールを当接して仮接着させることも好ましい態様である。このようにすることにより、ネット上を搬送中に不織布層の表層がめくれたり吹き流れたりして地合が悪化することを防ぎ、糸条を捕集してから熱接着するまでの搬送性を改善することができる。 Subsequently, the obtained long fibers are collected on a moving net to form a non-woven fabric layer. In the present invention, it is also a preferred embodiment that the heat flat roll is brought into contact with the non-woven fabric layer from one side on the net to temporarily bond the non-woven fabric layer. By doing so, it is possible to prevent the surface layer of the non-woven fabric layer from being turned over or blown off during transportation on the net and to deteriorate the formation, and to improve the transportability from collecting the threads to heat bonding. Can be improved.
 本発明においては、得られた不織繊維ウェブの交点を熱接着前に熱フラットロールで仮接着することがエアフィルター用途としては好ましい態様である。 In the present invention, it is a preferable aspect for an air filter application that the intersections of the obtained non-woven fiber webs are temporarily bonded with a heat flat roll before heat bonding.
 熱仮接着時の熱フラットロールの表面温度は、使用しているポリオレフィン系樹脂の融点に対し-60~-25℃とすることが好ましい態様である。熱フラットロールの表面温度を、ポリオレフィン系樹脂の融点に対し-60℃以上、より好ましくはポリオレフィン系樹脂の融点に対し-55℃以上とすることにより、前記した熱接着時に過度な熱接着を抑制し、エアフィルター用途での使用に適した強度と通気性を得ることができる。また、熱フラットロールの表面温度を、ポリオレフィン系樹脂の融点に対し-25℃以下、より好ましくはポリオレフィン系樹脂の融点に対し-30℃以下とすることにより、不織布表面がフィルム化することを抑制し、適度な通気性を得ることができる。なお、2種以上のポリオレフィン系樹脂をブレンドである場合において、二つ以上の融点が観測される場合は、それぞれのポリオレフィン系樹脂の融点のなかで最も低い温度に対して上記範囲となるよう調整する。 It is preferable that the surface temperature of the thermal flat roll at the time of thermal temporary bonding is -60 to -25 ° C with respect to the melting point of the polyolefin resin used. By setting the surface temperature of the thermal flat roll to −60 ° C. or higher with respect to the melting point of the polyolefin resin, more preferably −55 ° C. or higher with respect to the melting point of the polyolefin resin, excessive thermal bonding is suppressed during the thermal bonding described above. However, it is possible to obtain strength and breathability suitable for use in air filter applications. Further, by setting the surface temperature of the thermal flat roll to −25 ° C. or lower with respect to the melting point of the polyolefin resin, more preferably −30 ° C. or lower with respect to the melting point of the polyolefin resin, the film formation of the non-woven fabric surface is suppressed. However, it is possible to obtain appropriate air permeability. When two or more types of polyolefin resins are blended and two or more melting points are observed, the temperature is adjusted to be within the above range with respect to the lowest temperature among the melting points of each polyolefin resin. do.
 次に、メルトブロー不織布は、従来公知の方法を採用することができる。まず、ポリオレフィン系樹脂を押出機内で溶融して口金部に供給し、口金から押し出した糸条に熱風を吹きつけ、細化させた後、捕集ネット上に不織布層を形成する。メルトブロー法では、複雑な工程を必要とせず、数μmの細繊維を容易に得ることができ、高い捕集効率を達成しやすくすることができる。 Next, as the melt blown non-woven fabric, a conventionally known method can be adopted. First, the polyolefin-based resin is melted in an extruder and supplied to the mouthpiece, and hot air is blown onto the threads extruded from the mouthpiece to make the yarn thinner, and then a non-woven fabric layer is formed on the collection net. In the melt blow method, fine fibers of several μm can be easily obtained without requiring a complicated process, and high collection efficiency can be easily achieved.
 続いて、得られたスパンボンド不織布層とメルトブロー不織布層を積層し、これらを熱接着することによって、意図する積層不織布を得ることができる。 Subsequently, the obtained laminated non-woven fabric layer and the melt-blown non-woven fabric layer are laminated, and these are heat-bonded to obtain the intended laminated non-woven fabric.
 前記した、熱仮接着された不織布層を熱接着する方法としては、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロール、および上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど、各種ロールにより熱接着する方法や、ホーンの超音波振動により熱溶着させる超音波接着などの方法が挙げられる。なかでも、生産性に優れ、部分的な熱接着部で強度を付与し、かつ非接着部で不織布ならではの風合いや肌触りを保持することができることから、上下一対のロール表面にそれぞれ彫刻(凹凸部)が施された熱エンボスロール、または片方のロール表面がフラット(平滑)なロールと他方のロール表面に彫刻(凹凸部)が施されたロールとの組み合わせからなる熱エンボスロールを用いることが好ましい態様である。 The above-mentioned method of heat-bonding the heat-temporarily bonded non-woven layer includes a heat-embossed roll in which a pair of upper and lower roll surfaces are engraved (concavo-convex parts), and a roll in which one roll surface is flat (smooth). A method of heat bonding with various rolls, such as a thermal embossing roll consisting of a roll with engraving (unevenness) on the surface of the other roll, and a thermal calendar roll consisting of a pair of upper and lower flat (smooth) rolls. , A method such as ultrasonic bonding in which heat welding is performed by ultrasonic vibration of a horn. Among them, it is highly productive, it can give strength with a partial heat-bonded part, and it can maintain the texture and feel unique to non-woven fabric with a non-bonded part. ) Is applied, or a heat embossed roll consisting of a roll having a flat (smooth) surface on one roll and a roll having an engraving (unevenness) on the surface of the other roll is preferably used. It is an aspect.
 熱エンボスロールの表面材質としては、十分な熱接着効果を得て、かつ片方のエンボスロールの彫刻(凹凸部)が他方のロール表面に転写することを防ぐため、金属製ロールと金属製ロールを対にすることが好ましい態様である。 As the surface material of the heat embossed roll, a metal roll and a metal roll are used in order to obtain a sufficient heat bonding effect and prevent the engraving (concavo-convex part) of one embossed roll from being transferred to the surface of the other roll. A pair is a preferred embodiment.
 このような熱エンボスロールによるエンボス接着面積率は、3~30%であることが好ましい。接着面積を3%以上とし、より好ましくは5%以上とし、さらに好ましくは8%以上することにより、不織布として実用に供し得る強度を得ることができる。一方、接着面積を好ましくは30%以下とし、より好ましくは25%以下とし、さらに好ましくは20%以下とすることにより、特にエアフィルター用途での使用に適した適度な通気性を確保することができる。超音波接着を用いる場合でも、接着面積率は同様の範囲であることが好ましい。 The embossing adhesion area ratio by such a heat embossing roll is preferably 3 to 30%. By setting the bonding area to 3% or more, more preferably 5% or more, and further preferably 8% or more, strength that can be put into practical use as a non-woven fabric can be obtained. On the other hand, by setting the adhesive area to preferably 30% or less, more preferably 25% or less, and further preferably 20% or less, it is possible to secure appropriate air permeability particularly suitable for use in air filter applications. can. Even when ultrasonic bonding is used, the bonding area ratio is preferably in the same range.
 ここでいう接着面積とは、接着部が積層不織布全体に占める割合のことを言う。具体的には、一対の凹凸を有するロールにより熱接着する場合は、上側ロールの凸部と下側ロールの凸部とが重なって不織布層に当接する部分(接着部)の積層不織布全体に占める割合のことを言う。また、凹凸を有するロールとフラットロールにより熱接着する場合は、凹凸を有するロールの凸部が不織布層に当接する部分(接着部)の積層不織布全体に占める割合のことを言う。また、超音波接着する場合は、超音波加工により熱溶着させる部分(接着部)の積層不織布全体に占める割合のことを言う。 The adhesive area here refers to the ratio of the adhesive portion to the entire laminated non-woven fabric. Specifically, when heat-bonding is performed by a roll having a pair of irregularities, the convex portion of the upper roll and the convex portion of the lower roll overlap and occupy the entire laminated non-woven fabric of the portion (adhesive portion) that abuts on the non-woven fabric layer. Say the percentage. Further, in the case of thermal bonding between a roll having irregularities and a flat roll, it means the ratio of the convex portion of the roll having irregularities to the entire laminated nonwoven fabric of the portion (adhesive portion) in contact with the non-woven fabric layer. Further, in the case of ultrasonic bonding, it refers to the ratio of the portion (adhesive portion) to be heat-welded by ultrasonic processing to the entire laminated non-woven fabric.
 熱エンボスロールや超音波接着による接着部の形状としては、円形、楕円形、正方形、長方形、平行四辺形、ひし形、正六角形および正八角形などを用いることができる。また接着部は、スパンボンド不織布層の長手方向(搬送方向)と幅方向に、それぞれ一定の間隔で均一に存在していることが好ましい。このようにすることにより、スパンボンド不織布層の強度のばらつきを低減することができる。 As the shape of the bonded portion by thermal embossing roll or ultrasonic bonding, a circle, an ellipse, a square, a rectangle, a parallelogram, a rhombus, a regular hexagon, a regular octagon, etc. can be used. Further, it is preferable that the bonded portions are uniformly present at regular intervals in the longitudinal direction (conveying direction) and the width direction of the spunbonded nonwoven fabric layer. By doing so, it is possible to reduce variations in the strength of the spunbonded non-woven fabric layer.
 熱接着時の熱エンボスロールの表面温度は、使用しているポリオレフィン系樹脂の融点に対し-50~-15℃とすることが好ましい態様である。熱ロールの表面温度をポリオレフィン系樹脂の融点に対し好ましくは-50℃以上とし、より好ましくはポリオレフィン系樹脂の融点に対し-45℃以上とすることにより、適度に熱接着させ実用に供しうる強度のスパンボンド不織布を得ることができる。また、熱エンボスロールの表面温度をポリオレフィン系樹脂の融点に対し好ましくは-15℃以下とし、より好ましくはポリオレフィン系樹脂の融点に対し-20℃以下とすることにより、過度な熱接着を抑制し、積層不織布として、特にエアフィルター用途での使用に適した適度な通気性・加工性を得ることができる。 It is preferable that the surface temperature of the heat embossed roll at the time of heat bonding is −50 to −15 ° C. with respect to the melting point of the polyolefin resin used. By setting the surface temperature of the thermal roll to −50 ° C. or higher with respect to the melting point of the polyolefin resin, and more preferably −45 ° C. or higher with respect to the melting point of the polyolefin resin, the strength that can be appropriately heat-bonded and put into practical use. Spunbonded non-woven fabric can be obtained. Further, by setting the surface temperature of the heat embossed roll to -15 ° C. or lower with respect to the melting point of the polyolefin resin, and more preferably -20 ° C. or lower with respect to the melting point of the polyolefin resin, excessive thermal adhesion is suppressed. As a laminated non-woven fabric, it is possible to obtain appropriate air permeability and processability particularly suitable for use in air filter applications.
 なお、2種以上のポリオレフィン系樹脂をブレンドである場合において、2つ以上の融点が観測される場合は、それぞれのポリオレフィン系樹脂の融点のなかで最も低い温度に対して上記範囲となるよう調整とする。 When two or more types of polyolefin resins are blended and two or more melting points are observed, the temperature is adjusted to be within the above range with respect to the lowest temperature among the melting points of each polyolefin resin. And.
 熱接着時の熱エンボスロールの線圧は、10~500N/cmであることが好ましい。ロールの線圧を好ましくは10N/cm以上とし、より好ましくは50N/cm以上とし、さらに好ましくは100N/cm以上とし、特に好ましくは150N/cmとすることにより、適度に熱接着させ実用に供しうる強度の積層不織布を得ることができる。一方、熱エンボスロールの線圧を好ましくは500N/cm以下とし、より好ましくは400N/cm以下とし、さらに好ましくは300N/cm以下とすることにより、積層エレクトレット不織布として、特にエアフィルター用途での使用に適した適度な通気性・加工性を得ることができる。 The linear pressure of the heat embossing roll at the time of heat bonding is preferably 10 to 500 N / cm. The linear pressure of the roll is preferably 10 N / cm or more, more preferably 50 N / cm or more, further preferably 100 N / cm or more, and particularly preferably 150 N / cm, so that it can be appropriately heat-bonded and put into practical use. A laminated non-woven fabric having a high strength can be obtained. On the other hand, by setting the linear pressure of the heat embossed roll to preferably 500 N / cm or less, more preferably 400 N / cm or less, and further preferably 300 N / cm or less, it is used as a laminated electret non-woven fabric, especially for air filter applications. It is possible to obtain appropriate breathability and workability suitable for.
 また、本発明では、積層エレクトレット不織布の厚みを調整することを目的に、上記の熱エンボスロールによる熱接着の前および/あるいは後に、上下一対のフラットロールからなる熱カレンダーロールにより熱接着を施すことができる。上下一対のフラットロールとは、ロールの表面に凹凸のない金属製ロールや弾性ロールのことであり、金属製ロールと金属製ロールを対にしたり、金属製ロールと弾性ロールを対にしたりして用いることができる。 Further, in the present invention, for the purpose of adjusting the thickness of the laminated electret non-woven fabric, heat bonding is performed by a heat calendar roll composed of a pair of upper and lower flat rolls before and / or after heat bonding by the above heat embossing roll. Can be done. A pair of upper and lower flat rolls is a metal roll or an elastic roll having no unevenness on the surface of the roll, and a metal roll and a metal roll may be paired, or a metal roll and an elastic roll may be paired. Can be used.
 また、ここで弾性ロールとは、金属製ロールと比較して弾性を有する材質から形成されてなるロールのことである。弾性ロールとしては、ペーパー、コットンおよびアラミドペーパー等のいわゆるペーパーロールや、ウレタン系樹脂、エポキシ系樹脂、シリコン系樹脂、ポリエステル系樹脂および硬質ゴム、およびこれらの混合物から形成されてなる樹脂製のロールなどが挙げられる。 Further, the elastic roll here is a roll made of a material having elasticity as compared with a metal roll. Elastic rolls include so-called paper rolls such as paper, cotton and aramid paper, and resin rolls made of urethane-based resin, epoxy-based resin, silicon-based resin, polyester-based resin and hard rubber, and a mixture thereof. And so on.
 積層エレクトレット不織布を製造するにあたり、帯電方法は特に限定されるものではなく、コロナ放電法、ハイドロチャージ法、熱エレクトレット法などが好適に用いられる。ハイドロチャージ法における水の付与方法としては、不織布シートに水を浸漬する方法、不織布シートに水を噴霧する方法、口金直下の糸状に水を噴霧する方法であり、またはこれらの方法を適宜組み合わせてもよい。また帯電加工は、不織布の製造時に連続して行ってもよいし、いったん、製造した不織布を巻取り、別工程で加工を行ってもよい。 In manufacturing the laminated electret non-woven fabric, the charging method is not particularly limited, and the corona discharge method, the hydrocharge method, the thermal electret method and the like are preferably used. The method of applying water in the hydrocharging method is a method of immersing water in a non-woven fabric sheet, a method of spraying water on the non-woven fabric sheet, a method of spraying water in a thread shape directly under the mouthpiece, or a combination of these methods as appropriate. May be good. Further, the charging process may be continuously performed at the time of manufacturing the non-woven fabric, or the manufactured non-woven fabric may be wound once and processed in a separate step.
 [補強材]
 本発明に係る補強材は、プリーツ加工した濾材の山部の一部に接着させることによって、エアフィルターユニットへの山谷折り方向の外力に対し、濾材の変形を抑制する効果が得られる。
[Reinforcing material]
By adhering the reinforcing material according to the present invention to a part of the mountain portion of the pleated filter medium, it is possible to obtain the effect of suppressing the deformation of the filter medium against the external force in the mountain valley folding direction on the air filter unit.
 補強材の構成は、通気性を有するものであれば任意に選択できるが、中でも使用する繊維の種類や目付の調整によって、所望する通気性や剛性への調整が容易な不織布を用いることが好ましい。 The composition of the reinforcing material can be arbitrarily selected as long as it has breathability, but it is preferable to use a non-woven fabric that can be easily adjusted to the desired breathability and rigidity by adjusting the type of fiber used and the basis weight. ..
 上記補強材に使用できる不織布としては、ケミカルボンド法、湿式抄紙法、スパンボンド法、メルトブロー法、スパンレース法、エアレイド法など公知の方法を用いて製造することができる。中でも補強材として高い剛性を付与することが容易なスパンボンド法やケミカルボンド法により製造した不織布を用いることが好ましい。 The non-woven fabric that can be used as the reinforcing material can be manufactured by a known method such as a chemical bond method, a wet papermaking method, a spunbond method, a melt blow method, a spunlace method, or an airlaid method. Above all, it is preferable to use a non-woven fabric produced by a spun bond method or a chemical bond method, which can easily impart high rigidity as a reinforcing material.
 補強材の目付としては、強度やコストなどの観点から100~400g/mとすることが好ましく、その下限は130g/m以上とすることがより好ましく、その上限は300g/m以下とすることがより好ましい。 The basis weight of the reinforcing material is preferably 100 to 400 g / m 2 from the viewpoint of strength and cost, the lower limit is more preferably 130 g / m 2 or more, and the upper limit is 300 g / m 2 or less. It is more preferable to do so.
 補強材の厚みとしては、破れなどに対する強度の確保、所望のサイズへのカットのしやすさの等の観点から、0.3~1.5mmとすることが好ましく、その下限は0.5mm以上とすることがより好ましく、その上限は1.3mm以下とすることがより好ましい。 The thickness of the reinforcing material is preferably 0.3 to 1.5 mm from the viewpoint of ensuring strength against tearing and the ease of cutting to a desired size, and the lower limit thereof is 0.5 mm or more. The upper limit thereof is more preferably 1.3 mm or less.
 [プリーツ接合体]
 本発明に係るプリーツ接合体は、前記の濾材と補強材とから構成される。
[Pleated joint]
The pleated joint according to the present invention is composed of the above-mentioned filter medium and reinforcing material.
 本発明に係るプリーツ接合体において、前記の濾材はプリーツ折り加工された状態で山谷を有する立体形状を形成している。ここで、プリーツ折り加工とは、上記した濾過シートまたはそれと他のシートとの積層体を一定方向に所定の折高さで山谷形状に折り込んだものであり、折り込みの方法としてはレシプロ式、ロータリー式などの方法を用いることができる。プリーツ折り加工をすることによってフィルターとして一定容積の中により多くの面積の濾材を搭載することができ、空気の通過に対する濾材貫通風速が下がり、圧力損失が低減され、通気抵抗が下がった、すなわち通気性に優れたエアフィルターユニットを得ることができる。そして、濾材の面のいずれかが、空気清浄機に搭載時の空気の流入面となり、一方反対の面が流出面となる。 In the pleated joint according to the present invention, the filter medium forms a three-dimensional shape having peaks and valleys in a pleated state. Here, the pleated folding process is a process in which the above-mentioned filtration sheet or a laminate of the same sheet and another sheet is folded in a certain direction in a mountain valley shape at a predetermined folding height, and the folding method is a reciprocating type or a rotary. A method such as an expression can be used. By pleating, a larger area of filter media can be mounted as a filter in a certain volume, the wind speed through the filter media with respect to the passage of air is reduced, the pressure loss is reduced, and the ventilation resistance is reduced, that is, ventilation. An air filter unit having excellent properties can be obtained. Then, one of the surfaces of the filter medium becomes the inflow surface of air when mounted on the air purifier, and the opposite surface becomes the outflow surface.
 また、プリーツ加工によって形成された複数の山谷形状同士の間隔を一定に保持するために、隣接する山間に生じるスペースに、セパレーターを設けることができる。溶融樹脂をプリーツの山の稜線に沿うよう線状に塗布し、隣接する樹脂同士を接着固定するビード接着など、公知の方法を用いて、複数の山谷形状にプリーツ加工された濾材の間隔を一定に保持させてもよい。 Further, in order to keep the distance between the plurality of mountain valley shapes formed by the pleating process constant, a separator can be provided in the space generated between the adjacent mountains. Using a known method such as bead bonding in which molten resin is applied linearly along the ridgeline of the pleated peaks and adjacent resins are bonded and fixed to each other, the intervals between the filter media pleated into a plurality of peaks and valleys are fixed. May be retained by.
 さらに、濾材の厚みとしては、一定の強度を有し、かつプリーツ折り加工をした際に一定容積に収容できる面積を増やす観点から、0.1~0.75mmであることが好ましく、さらに、その下限は0.2mm以上、その上限は0.65mm以下であることがより好ましい。 Further, the thickness of the filter medium is preferably 0.1 to 0.75 mm from the viewpoint of having a certain strength and increasing the area that can be accommodated in a certain volume when pleated. It is more preferable that the lower limit is 0.2 mm or more and the upper limit is 0.65 mm or less.
 濾材にさらにPTFE膜などを積層した場合には、合わせた厚みとしては、一定の強度を有し、かつプリーツ折り加工によって得られる濾材において、一定容積に収容できる面積を増やす観点から、0.4~1.9mmとすることが好ましく、さらに、その下限は0.5mm以上、その上限は1.75mm以下とすることがより好ましい。 When a PTFE film or the like is further laminated on the filter medium, the combined thickness has a certain strength, and the filter medium obtained by pleating is 0.4. The lower limit is preferably 0.5 mm or more, and the upper limit is more preferably 1.75 mm or less.
 本発明に係るプリーツ接合体において、前記の補強材は、前記の濾材のプリーツの山谷折り方向の端部から7個までの山部のうち、2個以上の山部を介して濾材に固定されている。その結果、2個以上の山部が補強材によって連結された状態となり、外力に対して連結された山部同士の間隔が保持される。なお、端部から8個以上の山部まで補強材が伸び、山部の一部と補強材とが接着し、補強材が固定されていてもよい。また補強材はエアフィルターの山谷折り方向の一方の端部側にあってもいいが、他方の端部側にも存在していてもよい。 In the pleated joint according to the present invention, the reinforcing material is fixed to the filter medium via two or more ridges out of seven ridges from the end of the pleats of the filter medium in the mountain valley folding direction. ing. As a result, two or more mountain portions are connected by the reinforcing material, and the distance between the connected mountain portions is maintained against an external force. In addition, the reinforcing material may extend from the end portion to eight or more mountain portions, and a part of the mountain portion and the reinforcing material may be adhered to each other to fix the reinforcing material. Further, the reinforcing material may be present on one end side of the air filter in the mountain / valley folding direction, but may also be present on the other end side.
 前記の濾材の山部と前記の補強材とを接着させる方法としては、シアノアクリレートモノマーやイソシアネート系化合物などの水分・湿気硬化型接着剤や、ポリオレフィン系樹脂やエチレン-酢酸ビニル共重合体樹脂など熱融着型接着剤などの接着剤を、補強材の表面および/またはフィルター濾材の稜線上の頂点部付近に塗布して、双方を接着させる方法や、補強材にポリプロピレン繊維や共重合による低融点ポリエステルなど、熱融着性の材質で構成したものを用い、補強材を加熱し低融点部を溶着させ、フィルター濾材の頂点部に接着させる方法、超音波による振動熱を利用し補強材および/または濾材の山部の接触部を溶融接着させる方法など、公知の方法より選択することができる。 As a method for adhering the mountain portion of the filter medium and the reinforcing material, a moisture / moisture curable adhesive such as a cyanoacrylate monomer or an isocyanate-based compound, a polyolefin-based resin, an ethylene-vinyl acetate copolymer resin, or the like, etc. An adhesive such as a heat-sealing adhesive may be applied to the surface of the reinforcing material and / or near the apex on the ridge of the filter filter material to bond the two, or the reinforcing material may be low due to polypropylene fibers or copolymerization. A method of heating a reinforcing material to weld a low melting point part and adhering it to the apex part of a filter filter medium using a material composed of a heat-sealing material such as melting point polyester. / Or can be selected from known methods such as a method of melt-bonding the contact portion of the mountain portion of the filter medium.
 さらに、本発明に係るプリーツ接合体は、前記の濾材と補強材との間に脱臭剤を挟み込んだものであってもよい。この場合、前記の補強材は脱臭剤の脱落を抑制する効果を有するものであることが好ましい。 Further, the pleated joint according to the present invention may have a deodorant sandwiched between the filter medium and the reinforcing material. In this case, it is preferable that the reinforcing material has an effect of suppressing the deodorant from falling off.
 ここで言う脱臭剤とは、例えばアンモニアやアルデヒド類といった悪臭を有するガス成分を吸着、反応などにより除去する性質を有するものである。その種類としては活性炭、多孔質シリカ粒子、ゼオライト、セピオライトなどの多孔質物質や、それらと特有のガス成分との反応性を高める薬剤との複合体などが挙げられる。ここで、特有のガス成分との反応性を高める薬剤としては、アジピン酸ジヒドラジド、コハク酸ヒドラジドなどのアミン系薬剤や、リン酸などの酸系薬剤、水酸化ナトリウム、水酸化カリウムなどのアルカリ系薬剤が挙げられる。中でも活性炭または多孔性シリカ粒子は細孔容積が大きく、かつ幅広い径の細孔を有しており様々なガスの除去が可能であるため、活性炭、多孔性シリカ粒子およびそれらと特有のガス成分との反応性を高める薬剤との複合体から構成されてなる群より選ばれる少なくとも1つを脱臭剤として使用することが好ましい。 The deodorant referred to here has the property of removing offensive odorous gas components such as ammonia and aldehydes by adsorption and reaction. Examples of the type include porous substances such as activated carbon, porous silica particles, zeolite, and sepiolite, and composites of these with a drug that enhances the reactivity with a peculiar gas component. Here, as a drug that enhances the reactivity with a peculiar gas component, an amine-based drug such as adipic acid dihydrazide or succinic acid hydrazide, an acid-based drug such as phosphoric acid, or an alkaline drug such as sodium hydroxide or potassium hydroxide is used. Drugs can be mentioned. Among them, activated carbon or porous silica particles have a large pore volume and have pores with a wide diameter and can remove various gases. Therefore, activated carbon, porous silica particles and gas components peculiar to them are used. It is preferable to use at least one selected from the group composed of a complex with an agent that enhances the reactivity of the deodorant.
 前記の脱臭剤は、の使用量としては合計で40~500g/mの範囲にあることにより空気中のガス成分を効率的に吸着し、かつ濾材の通気性を阻害しないため好ましい。 The deodorant is preferable because the total amount of the deodorant used is in the range of 40 to 500 g / m 2 so that the gas component in the air is efficiently adsorbed and the air permeability of the filter medium is not impaired.
 [補強エアフィルターユニット]
 本発明に係る補強エアフィルターユニットは、前記のプリーツ接合体が固定材によって把持されてなる。
[Reinforced air filter unit]
The reinforced air filter unit according to the present invention is formed by gripping the pleated joint body with a fixing material.
 本発明にかかる固定材とは、補強エアフィルターユニットにおいては、山部の稜線の方向に垂直な方向に存在し、濾材の山部の稜線方向の濾材の端部に固定されている固定材を指す。固定材は濾材における対向する2つの側面に存在しているが、濾材を囲む形であってもいい。固定材が濾材の外周を囲む場合には、その固定材を枠体ということがある。固定材を有することで、フィルターユニットを所定の形状に保持することができる。固定材に用いる材料としては、不織布、紙、ウレタンフォームなど樹脂を発泡したものなど公知の材質を用いることができる。固定材用部材をフィルター濾材の側面に接着させる方法としては、ポリオレフィン系樹脂やエチレン-酢酸ビニル共重合体樹脂など熱融着型接着剤を固定材用部材の表面に塗布し、フィルター濾材の側面に圧着、固化させて接着するなどの方法が挙げられる。さらに、固定材と補強材とを同一の部材で作成することもできる。この場合、濾材の側面およびプリーツの山部との接着方法としては、平板状の補強材に予め折溝を入れておき、また材料の一部を濾材の側面に貼り付けた後、折溝を境に補強材を折り曲げ、プリーツの山部に接着させる方法などが挙げられる。 The fixing material according to the present invention is a fixing material that exists in the direction perpendicular to the direction of the ridgeline of the mountain portion in the reinforced air filter unit and is fixed to the end of the filter medium in the direction of the ridgeline of the mountain portion of the filter medium. Point to. The fixing material exists on two opposite sides of the filter medium, but may be in the form of surrounding the filter medium. When the fixing material surrounds the outer circumference of the filter medium, the fixing material may be referred to as a frame. By having the fixing material, the filter unit can be held in a predetermined shape. As the material used for the fixing material, a known material such as a non-woven fabric, paper, urethane foam, or other foamed resin can be used. As a method of adhering the fixing material member to the side surface of the filter filter medium, a heat-sealing adhesive such as a polyolefin resin or an ethylene-vinyl acetate copolymer resin is applied to the surface of the fixing material member, and the side surface of the filter filter medium is applied. There are methods such as crimping, solidifying and adhering to. Further, the fixing material and the reinforcing material can be made of the same member. In this case, as a method of adhering to the side surface of the filter medium and the mountain portion of the pleats, a fold groove is formed in advance in the flat plate-shaped reinforcing material, and a part of the material is attached to the side surface of the filter medium, and then the fold groove is formed. A method of bending a reinforcing material at the boundary and adhering it to the mountain part of the pleats can be mentioned.
 本発明に係る補強エアフィルターユニットは、エアフィルター用途に適している。特に好ましい態様は、前記の補強エアフィルターユニットが組み込まれてなる、空気清浄機である。この空気清浄機は、前記の補強エアフィルターユニットが低い圧力損失、高い捕集性能であることから、捕集性能を高く維持したまま長時間継続使用ができるという効果を有する。 The reinforced air filter unit according to the present invention is suitable for air filter applications. A particularly preferred embodiment is an air purifier in which the reinforced air filter unit is incorporated. Since the reinforced air filter unit has a low pressure loss and a high collection performance, this air purifier has an effect that it can be continuously used for a long time while maintaining a high collection performance.
 次に、本発明の積層エレクトレット不織布について、実施例に基づき説明する。ただし、本発明はこれらの実施例のみに限定されるものではなく、本明細書に記載の趣旨に沿って設計変更することはいずれも本発明の技術的範囲に含まれるものである。なお、各物性の測定において、特段の記載がないものは、前記の方法に基づいて測定を行ったものである。 Next, the laminated electret nonwoven fabric of the present invention will be described based on examples. However, the present invention is not limited to these examples, and any design modification according to the gist described in the present specification is included in the technical scope of the present invention. In addition, in the measurement of each physical property, if there is no particular description, the measurement is performed based on the above method.
 [測定方法]
 (1)積層エレクトレット不織布の目付(g/m):
 前記の方法に基づいて測定を行った。
[Measuring method]
(1) Metsuke of laminated electret non-woven fabric (g / m 2 ):
The measurement was performed based on the above method.
 (2)繊維の平均単繊維径(μm):
 走査型電子顕微鏡として、株式会社キーエンス製走査型電子顕微鏡「VHX-D500」を用い、前記の方法に基づいて測定を行った。
(2) Average single fiber diameter (μm) of fiber:
As a scanning electron microscope, a scanning electron microscope "VHX-D500" manufactured by KEYENCE CORPORATION was used, and measurement was performed based on the above method.
 (3)積層エレクトレット不織布の厚み(mm):
 厚み計(株式会社テクロック製“TECLOCK”(登録商標)SM-114)を使用して、前記の方法に従って測定した。
(3) Thickness of laminated electret non-woven fabric (mm):
The measurement was performed according to the above method using a thickness gauge (“TECLOCK” (registered trademark) SM-114 manufactured by Teclock Co., Ltd.).
 (4)積層エレクトレット不織布の捕集性能(捕集効率(%)、圧力損失(Pa)、QF値(Pa-1)):
 積層エレクトレット不織布の幅方向5カ所で、タテ×ヨコ=15cm×15cmの測定用サンプルを採取し、それぞれのサンプルについて、図1に示す捕集効率測定装置を用いて捕集効率を測定した。この図1の捕集効率測定装置には、測定サンプルMをセットするサンプルホルダー1の上流側に、ダスト収納箱2を連結し、下流側に流量計3、流量調整バルブ4およびブロワ5が連結されている。また、サンプルホルダー1に備えられたパーティクルカウンター6を使用し、切替コック7を介して、測定サンプルMの上流側のダスト個数と下流側のダスト個数とをそれぞれ測定することができる。さらに、サンプルホルダー1は圧力計8を備え、測定サンプルMの上流と下流での静圧差を読み取ることができる。
(4) Collection performance of laminated electret non-woven fabric (collection efficiency (%), pressure loss (Pa), QF value (Pa -1 )):
Measurement samples of vertical × horizontal = 15 cm × 15 cm were collected at five locations in the width direction of the laminated electret non-woven fabric, and the collection efficiency of each sample was measured using the collection efficiency measuring device shown in FIG. In the collection efficiency measuring device of FIG. 1, a dust storage box 2 is connected to the upstream side of the sample holder 1 in which the measurement sample M is set, and a flow meter 3, a flow rate adjusting valve 4 and a blower 5 are connected to the downstream side. Has been done. Further, using the particle counter 6 provided in the sample holder 1, the number of dusts on the upstream side and the number of dusts on the downstream side of the measurement sample M can be measured via the switching cock 7, respectively. Further, the sample holder 1 is provided with a pressure gauge 8, and can read the static pressure difference between the upstream and the downstream of the measurement sample M.
 捕集効率の測定にあたっては、ポリスチレン0.309U 10%溶液(メーカー:ナカライテスク株式会社)を蒸留水で200倍まで希釈し、ダスト収納箱2に充填する。次に、測定サンプルMを、サンプルホルダー1にセットし、風量をフィルター通過速度が6.5m/分になるように、流量調整バルブ4で調整し、ダスト濃度を1万個/(2.83×10-4)以上4万個/(2.83×10-4)以下の範囲(2.83×10-4は0.01ftに等しい)の範囲で安定させ、測定サンプルMの上流のダスト個数Dおよび下流のダスト個数dをパーティクルカウンター6(リオン株式会社製「KC-01D」)で1個の測定サンプル当り3回測定し、JIS K0901:1991「気体中のダスト試料捕集用ろ過材の形状、寸法並びに性能試験方法」の「5.2 捕集率試験」および「5.3 圧力損失試験」に準拠して、下記の計算式を用いて、0.3~0.5μmの粒子の捕集効率(%)を求めた。3個の測定サンプルの平均値を、最終的な捕集効率とした
   捕集効率(%)=〔1-(d/D)〕×100
(ただし、dは下流ダストの3回測定トータル個数を表し、Dは上流のダストの3回測定トータル個数を表す。)。
In measuring the collection efficiency, a polystyrene 0.309U 10% solution (manufacturer: Nacalai Tesque Co., Ltd.) is diluted up to 200 times with distilled water and filled in the dust storage box 2. Next, the measurement sample M is set in the sample holder 1, the air volume is adjusted by the flow rate adjusting valve 4 so that the filter passing speed is 6.5 m / min, and the dust concentration is 10,000 particles / (2.83). × 10 -4 m 3) or more 40,000 /(2.83×10 -4 m 3) the range of (2.83 × 10 -4 m 3 stabilizes in a range of equal to 0.01ft 3), The number of dust D upstream and the number d downstream of the measurement sample M were measured three times per measurement sample with a particle counter 6 (“KC-01D” manufactured by Rion Co., Ltd.), and JIS K0901: 1991 “in gas”. In accordance with "5.2 Collection Rate Test" and "5.3 Pressure Loss Test" of "Shape, Dimensions and Performance Test Method of Dust Sample Collection Filter Material", use the following formula to calculate 0. The collection efficiency (%) of particles of 3 to 0.5 μm was determined. The average value of the three measurement samples was used as the final collection efficiency. Collection efficiency (%) = [1- (d / D)] × 100
(However, d represents the total number of downstream dusts measured three times, and D represents the total number of upstream dusts measured three times.).
 高捕集の不織布ほど、下流ダスト個数が少なくなるため、捕集効率の値は高くなる。また、圧力損失は、捕集効率測定時の測定サンプルMの上流と下流の静圧差を圧力計8で読み取り求めた。5個の測定サンプルの平均値を最終的な圧力損失とした。なお、圧力損失が25Pa以下であり、かつ、下記式に従って算出される捕集性能の指数であるQF値が0.15Pa-1以上である場合に合格と判定した
   QF値(Pa-1)=-ln(1-捕集効率(%)/100)/圧力損失(Pa)。
The higher the collection of the non-woven fabric, the smaller the number of downstream dusts, and therefore the higher the collection efficiency value. Further, the pressure loss was obtained by reading the static pressure difference between the upstream and the downstream of the measurement sample M at the time of measuring the collection efficiency with the pressure gauge 8. The average value of the five measurement samples was taken as the final pressure drop. When the pressure loss is 25 Pa or less and the QF value, which is an index of collection performance calculated according to the following formula, is 0.15 Pa -1 or more, the QF value (Pa -1 ) = -Ln (1-collection efficiency (%) / 100) / pressure loss (Pa).
 (5)積層エレクトレット不織布の単位目付あたりの引張強度((N/5cm)/(g/m)):
 縦方向の引張強度は、JIS L1913:2010「一般不織布試験方法」の「6.3 引張強さ及び伸び率(ISO法)」の「6.3.1 標準時」に準拠して、以下のように測定される値を採用するものとする。
(A)積層エレクトレット不織布から幅5cm×30cmの試験片を2枚採取する。
(B)試験片をつかみ間隔20cmで引張試験機にセットする。
(C)引張速度10cm/分で引張試験を行い、サンプルが破断したときの強度を引張強度(N/5cm)とし、3点の平均値を、小数点以下第二位を四捨五入して算出する。ここで得られた引張強度を上記(1)で測定した目付で除することで単位目付あたりの不織布の引張強度を算出する。なお、0.3(N/5cm)/(g/m)以上の場合に、引張強度があるとした。
(5) Tensile strength per unit basis weight of laminated electret non-woven fabric ((N / 5 cm) / (g / m 2 )):
The tensile strength in the vertical direction is as follows, in accordance with JIS L1913: 2010 "General non-woven fabric test method""6.3 Tensile strength and elongation (ISO method)""6.3.1 Standard time". The value measured in shall be adopted.
(A) Two test pieces having a width of 5 cm × 30 cm are collected from the laminated electret non-woven fabric.
(B) Grasp the test piece and set it in the tensile tester at an interval of 20 cm.
(C) A tensile test is performed at a tensile speed of 10 cm / min, and the strength when the sample breaks is defined as the tensile strength (N / 5 cm), and the average value of the three points is calculated by rounding off the second decimal place. The tensile strength of the non-woven fabric per unit basis weight is calculated by dividing the tensile strength obtained here by the basis weight measured in (1) above. In addition, when it was 0.3 (N / 5cm) / (g / m 2 ) or more, it was considered that there was tensile strength.
 (6)積層エレクトレット不織布の単位目付あたりの圧力損失((Pa)/(g/m)):
 上記(4)で測定した圧力損失を上記(1)で測定した目付で除することで単位目付あたりの不織布の圧力損失を算出し、得られた値を、小数点以下第3位を四捨五入する。なお、単位目付あたりの不織布の圧力損失は、0.5(Pa)/(g/m)以下である場合に合格と判定した。
(6) Pressure loss per unit basis weight of laminated electret non-woven fabric ((Pa) / (g / m 2 )):
By dividing the pressure loss measured in (4) above by the scale measured in (1) above, the pressure loss of the non-woven fabric per unit scale is calculated, and the obtained value is rounded off to the third decimal place. When the pressure loss of the non-woven fabric per unit basis weight was 0.5 (Pa) / (g / m 2 ) or less, it was judged to be acceptable.
 (7)積層エレクトレット不織布の密度(g/cm):
 上記(1)で測定した目付を上記(3)で測定した厚みで除することで不織布の密度を算出する。得られた値を、小数点以下第4位を四捨五入して、積層エレクトレット不織布の密度(g/cm)を算出した。
(7) Density of laminated electret non-woven fabric (g / cm 3 ):
The density of the non-woven fabric is calculated by dividing the basis weight measured in (1) above by the thickness measured in (3) above. The obtained value was rounded to the fourth decimal place to calculate the density (g / cm 3) of the laminated electret non-woven fabric.
 (8)積層エレクトレット不織布の柔軟性(加工性):
 積層エレクトレット不織布の触感の官能評価として、柔軟性について、次の基準で点数付けを行った。これを10名で行いその平均を不織布触感として評価した。それぞれの点数が高いほど柔軟性に優れ、各種加工における加工性が良好であると判断し、4.0点以上を合格とした。
<柔軟性(加工性)>
5点:柔軟(加工性良好)
4点:5点と3点の中間
3点:普通
2点:3点と1点の中間
1点:硬い(加工性不良)。
(8) Flexibility (processability) of laminated electret non-woven fabric:
As a sensory evaluation of the tactile sensation of the laminated electret non-woven fabric, the flexibility was scored according to the following criteria. This was performed by 10 people, and the average was evaluated as the texture of the non-woven fabric. It was judged that the higher each score was, the more flexible it was and the better the workability in various processing, and 4.0 points or more were passed.
<Flexibility (workability)>
5 points: Flexible (good workability)
4 points: Intermediate between 5 points and 3 points 3 points: Normal 2 points: Intermediate between 3 points and 1 point 1 point: Hard (poor workability).
 (9)プリーツ成形性(成形しやすさ):
 積層エレクトレット不織布をプリーツ加工し、成形性を確認してA、B、Cの3段階で評価した。
A:プリーツ成形性が良好であり、プリーツの山形状が鋭角である。
B:プリーツ成形は実施できるが、プリーツの山形状が丸状である。(AとCの中間の評価)
C:プリーツ形状を保持しない。
(9) Pleat moldability (easiness to mold):
The laminated electret non-woven fabric was pleated, and the moldability was confirmed and evaluated in three stages of A, B, and C.
A: The pleated formability is good, and the pleated peak shape is an acute angle.
B: Pleated molding can be performed, but the pleated peaks are round. (Evaluation between A and C)
C: Does not retain the pleated shape.
 [実施例1]
 (スパンボンド不織布層(下層))
 MFRが200g/10分のホモポリマーから形成されてなるポリプロピレン樹脂に化合物Aで表されるヒンダードアミン系化合物“キマソーブ”(登録商標)944LD(BASFジャパン株式会社製)を1質量%含むポリオレフィン系樹脂を、押出機で溶融し、孔径φが0.30mm、孔深度が2mmの矩形口金から、紡糸温度が235℃、単孔吐出量が0.32g/分で紡出した糸条を、冷却固化した後、矩形エジェクターでエジェクターの圧力を0.35MPaとした圧縮エアによって牽引、延伸し、捕集ネット上に捕集した。得られた不織繊維ウェブを、フラットロールを用いて120℃の温度で熱仮接着した。得られた熱仮接着された不織ウェブの目付が7.0g/mのスパンボンド不織布層を形成した。平均単繊維径は10.1μmであり、紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
[Example 1]
(Spanbond non-woven fabric layer (lower layer))
A polyolefin resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944LD (manufactured by BASF Japan Co., Ltd.) represented by compound A in a polypropylene resin formed of a homopolymer having an MFR of 200 g / 10 minutes. A thread spun from a rectangular mouthpiece having a hole diameter of 0.30 mm and a hole depth of 2 mm at a spinning temperature of 235 ° C. and a single-hole discharge rate of 0.32 g / min was cooled and solidified by melting with an extruder. After that, it was towed and stretched by compressed air having an ejector pressure of 0.35 MPa with a rectangular ejector, and collected on a collection net. The obtained non-woven fiber web was heat-temporarily bonded at a temperature of 120 ° C. using a flat roll. A spunbonded non-woven fabric layer having a basis weight of 7.0 g / m 2 of the obtained heat-temporarily bonded non-woven web was formed. The average single fiber diameter was 10.1 μm, and the spinnability was good with no yarn breakage after spinning for 1 hour.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 (メルトブロー不織布層)
 次に、MFRが1100g/分のホモポリマーから形成されてなるポリプロピレン樹脂に化合物Aで表されるヒンダードアミン系化合物“キマソーブ”(登録商標)944LD(BASFジャパン株式会社製)を1質量%含むポリオレフィン系樹脂を、押出機で溶融し、孔径φが0.25mmの口金から、紡糸温度が260℃、単孔吐出量が0.10g/分で紡出した。その後、エア温度が290℃、エア圧力が0.10MPaの条件でエアを糸条に噴射し、前記のスパンボンド不織布層上に捕集し、メルトブロー不織布層を形成した。この時、同条件で捕集ネット上に別途採取したメルトブロー不織布層の目付は1.0g/mであり、平均単繊維径は1.5μmであった。
(Melt blow non-woven fabric layer)
Next, a polyolefin resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944LD (manufactured by BASF Japan Ltd.) represented by compound A in a polypropylene resin having an MFR of 1100 g / min formed of a homopolymer. The resin was melted by an extruder and spun from a base having a pore diameter of 0.25 mm at a spinning temperature of 260 ° C. and a single-hole discharge rate of 0.10 g / min. Then, air was injected into the yarn under the conditions of an air temperature of 290 ° C. and an air pressure of 0.10 MPa, and collected on the spunbonded non-woven fabric layer to form a melt-blown non-woven fabric layer. At this time, the basis weight of the melt-blown non-woven fabric layer separately collected on the collection net under the same conditions was 1.0 g / m 2 , and the average single fiber diameter was 1.5 μm.
 (スパンボンド不織布層(上層))
 さらに、このメルトブロー不織布層の上に、下層のスパンボンド不織布層を形成した条件と同じ条件で、ポリプロピレン長繊維を捕集させ、スパンボンド不織布層を形成した。これによって、総目付15.0g/mの、スパンボンド-メルトブロー-スパンボンド(SMS)積層繊維ウェブを得た。
(Spanbond non-woven fabric layer (upper layer))
Further, polypropylene filaments were collected on the melt-blown non-woven fabric layer under the same conditions as the condition for forming the lower spunbonded non-woven fabric layer to form the spunbonded non-woven fabric layer. As a result, a spunbond-melt blow-spunbond (SMS) laminated fiber web having a total basis weight of 15.0 g / m 2 was obtained.
 (積層不織布)
 引き続き、得られた積層繊維ウェブを、上ロールに金属製で水玉柄の彫刻がなされた接着面積率16%のエンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の熱エンボスロールを用いて、線圧が30N/cmで、熱接着温度が130℃の温度で熱接着し、目付が15.0g/mの積層不織布を得た。
(Laminated non-woven fabric)
Subsequently, the obtained laminated fiber web was used as an embossing roll having an adhesive area ratio of 16% with a metal polka dot pattern engraved on the upper roll, and a pair of upper and lower thermal embossing composed of a metal flat roll on the lower roll. Using a roll, a laminated non-woven fabric having a linear pressure of 30 N / cm and a heat bonding temperature of 130 ° C. was heat-bonded to obtain a laminated non-woven fabric having a grain size of 15.0 g / m 2.
 (積層エレクトレット不織布)
 この積層不織布に対して、純水が供給される水槽の水面に沿って走行させながら、その表面にスリット状の吸引ノズルを当接させて水を吸引することにより、繊維シート全面に水を浸透させ、次いで、水切り後に100℃の温度で熱風乾燥することにより、積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表1、表2に示す。
(Laminated electret non-woven fabric)
Water permeates the entire surface of the fiber sheet by sucking water by bringing a slit-shaped suction nozzle into contact with the surface of the laminated non-woven fabric while running along the water surface of the water tank to which pure water is supplied. Then, after draining, the non-woven fabric was dried with hot air at a temperature of 100 ° C. to obtain a laminated electret non-woven fabric. Tables 1 and 2 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 (濾材)
 得られた積層エレクトレット不織布を、幅238mmにスリット後、スリット幅と垂直な方向に折高さ30mmにて80山分、連続してプリーツ折り加工を施し、プリーツ状の濾材を得た。
(Filter material)
The obtained laminated electret non-woven fabric was slit to a width of 238 mm and then continuously pleated for 80 ridges at a folding height of 30 mm in the direction perpendicular to the slit width to obtain a pleated filter medium.
 (エアフィルターユニット)
 プリーツ状の濾材の隣接するプリーツ山のピッチがおよそ5.0mmとなるよう、プリーツ山の稜線の方向と垂直な方向に、ポリエステル繊維とアクリル系樹脂とが5:5の質量比率から構成されてなる目付250g/m、厚み1.1mm、幅32mmのケミカルボンド不織布を固定材として表面にポリオレフィン系熱融着接着剤を塗布して貼り付け、長さ400mm、幅238mmのエアフィルターユニットに成形した。
(Air filter unit)
The polyester fiber and the acrylic resin are composed of a mass ratio of 5: 5 in the direction perpendicular to the direction of the ridgeline of the pleated mountain so that the pitch of the adjacent pleated mountain of the pleated filter medium is about 5.0 mm. A chemical bond non-woven fabric with a grain size of 250 g / m 2 , a thickness of 1.1 mm, and a width of 32 mm is used as a fixing material, and a polyolefin-based heat-sealing adhesive is applied and attached to the surface, and molded into an air filter unit with a length of 400 mm and a width of 238 mm. did.
 (補強エアフィルター)
 得られたエアフィルターユニットに対し、補強材として、通気度が12cm/(cm・秒)のスパンボンド不織布(東レ株式会社製“アクスター”(登録商標)「G2260-1SBKO」)を切り出し、長さ7mm、幅130mmのものを4枚準備した。エアフィルターユニットの空気の上流側、および下流側両面それぞれの面、山谷折り方向の両端計4カ所において、補強材をプリーツによる山部に対して接着材を用いて接着し、補強エアフィルターを得た。フィルターユニットのプリーツ成形性について、表2に示す。
(Reinforced air filter)
A spunbonded non-woven fabric (“Axter” (registered trademark) “G2260-1SBKO” manufactured by Toray Industries, Inc.) with a breathability of 12 cm 3 / (cm 2 seconds) was cut out from the obtained air filter unit as a reinforcing material. Four sheets having a length of 7 mm and a width of 130 mm were prepared. Reinforcing material is adhered to the pleated ridges at a total of four locations on both the upstream and downstream sides of the air of the air filter unit, and at both ends in the mountain valley folding direction, to obtain a reinforced air filter. rice field. Table 2 shows the pleated formability of the filter unit.
 [実施例2]
 (スパンボンド不織布層(下層)・(上層))
 MFRが200g/10分のホモポリマーから形成されてなるポリプロピレン樹脂を用いていたところをMFRが800g/10分のホモポリマーから形成されてなるポリプロピレン樹脂を用いることとし、さらに、単孔吐出量が0.32g/分であったところを0.21g/分に変えたこと以外は、実施例1と同様にしてポリプロピレン長繊維から構成されてなるスパンボンド不織布層を形成した。形成したスパンボンド不織布層を構成する長繊維の特性は、各スパンボンド不織布層の目付は7.0g/m、平均単繊維径は7.2μmであった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
[Example 2]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
Whereas a polypropylene resin made of a homopolymer having an MFR of 200 g / 10 minutes was used, a polypropylene resin made of a homopolymer having an MFR of 800 g / 10 minutes was used. A spunbonded non-woven fabric layer made of polypropylene filaments was formed in the same manner as in Example 1 except that the amount of 0.32 g / min was changed to 0.21 g / min. The characteristics of the long fibers constituting the formed spunbonded non-woven fabric layer were that each spunbonded non-woven fabric layer had a texture of 7.0 g / m 2 and an average single fiber diameter of 7.2 μm. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
 (メルトブロー不織布層)
 エア圧力を0.10MPaであったところを0.20MPaに変えたこと以外は、実施例1と同様にしてメルトブロー不織布層を形成した。形成したメルトブロー不織布層を構成する繊維の特性は、メルトブロー不織布層の目付は1.0g/m、平均単繊維径は1.0μmであった。
(Melt blow non-woven fabric layer)
A melt-blown non-woven fabric layer was formed in the same manner as in Example 1 except that the air pressure was changed from 0.10 MPa to 0.20 MPa. The characteristics of the fibers constituting the formed melt-blow non-woven fabric layer were 1.0 g / m 2 for the basis weight of the melt-blow non-woven fabric layer and 1.0 μm for the average single fiber diameter.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付15.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表1、表2に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 15.0 g / m 2 was obtained. Tables 1 and 2 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 (エアフィルターユニット~補強エアフィルター)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニット、そして、補強エアフィルターを得た。フィルターユニットのプリーツ成形性について、表2に示す。
(Air filter unit-reinforced air filter)
With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 2 shows the pleated formability of the filter unit.
 [実施例3]
 (スパンボンド不織布層(下層)・(上層))
 MFRが200g/10分のホモポリマーから形成されてなるポリプロピレン樹脂を用いていたところをMFRが39g/10分のホモポリマーから形成されてなるポリプロピレン樹脂を用いることとし、さらに、単孔吐出量が0.32g/分であったところを0.65g/分としたこと以外は、実施例1と同様にしてポリプロピレン長繊維から構成されてなるスパンボンド不織布層を形成した。形成したスパンボンド不織布層を構成する長繊維の特性は、各スパンボンド不織布層の目付は7.0g/m、平均単繊維径は21.5μmであった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
[Example 3]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
Whereas a polypropylene resin made of a homopolymer having an MFR of 200 g / 10 minutes was used, a polypropylene resin made of a homopolymer having an MFR of 39 g / 10 minutes was used. A spunbonded non-woven fabric layer made of polypropylene filaments was formed in the same manner as in Example 1 except that the amount of 0.32 g / min was changed to 0.65 g / min. The characteristics of the long fibers constituting the formed spunbonded non-woven fabric layer were that each spunbonded non-woven fabric layer had a texture of 7.0 g / m 2 and an average single fiber diameter of 21.5 μm. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
 (メルトブロー不織布層)
 MFRが1100g/10分のホモポリマーから形成されてなるポリプロピレン樹脂を用いていたところをMFRが500g/10分のホモポリマーから形成されてなるポリプロピレン樹脂を用いることとした以外は、実施例1と同様にしてメルトブロー不織布層を形成した。形成したメルトブロー不織布層を構成する繊維の特性は、メルトブロー不織布層の目付は1.0g/m、平均単繊維径が4.1μmであった。
(Melt blow non-woven fabric layer)
Example 1 and Example 1 except that a polypropylene resin having an MFR of 1100 g / 10 min was used instead of a polypropylene resin having an MFR of 500 g / 10 min. A melt blown non-woven fabric layer was formed in the same manner. The characteristics of the fibers constituting the formed melt-blow non-woven fabric layer were that the basis weight of the melt-blow non-woven fabric layer was 1.0 g / m 2 , and the average single fiber diameter was 4.1 μm.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付15.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表1、表2に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 15.0 g / m 2 was obtained. Tables 1 and 2 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 (エアフィルターユニット~補強エアフィルター)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニット、そして、補強エアフィルターを得た。フィルターユニットのプリーツ成形性について、表2に示す。
(Air filter unit-reinforced air filter)
With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 2 shows the pleated formability of the filter unit.
 [実施例4]
 (スパンボンド不織布層(下層)・(上層))
 MFRが200g/10分のホモポリマーから形成されてなるポリプロピレン樹脂にヒンダードアミン系化合物A“キマソーブ”(登録商標)944LD(BASFジャパン株式会社製)1質量%と、化合物Bで表される結晶核剤“Irgaclear”(登録商標)XT386(BASFジャパン株式会社製)を0.05質量%とを含むポリオレフィン系樹脂を、押出機で溶融し、孔径φが0.30mm、孔深度が2mmの矩形口金から、紡糸温度が235℃、単孔吐出量が0.32g/分で紡出した糸条を、冷却固化した後、矩形エジェクターでエジェクターの圧力を0.35MPaとした圧縮エアによって牽引、延伸し、捕集ネット上に捕集した。得られた不織繊維ウェブを、フラットロールを用いて120℃の温度で熱仮接着した。形成したスパンボンド不織布層を構成する長繊維の特性は、各スパンボンド不織布層の目付は7.0g/m、平均単繊維径は10.0μmであった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
[Example 4]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
Hindered amine compound A "Kimasorb" (registered trademark) 944LD (manufactured by BASF Japan Co., Ltd.) 1% by mass in a polypropylene resin formed of a homopolymer having an MFR of 200 g / 10 minutes, and a crystal nucleating agent represented by compound B. A polyolefin resin containing 0.05% by mass of "Irgaclear" (registered trademark) XT386 (manufactured by BASF Japan Co., Ltd.) is melted by an extruder to form a rectangular base with a hole diameter of 0.30 mm and a hole depth of 2 mm. The yarn spun at a spinning temperature of 235 ° C. and a single-hole discharge rate of 0.32 g / min was cooled and solidified, and then pulled and stretched by compressed air having an ejector pressure of 0.35 MPa with a rectangular ejector. Collected on the collection net. The obtained non-woven fiber web was heat-temporarily bonded at a temperature of 120 ° C. using a flat roll. The characteristics of the long fibers constituting the formed spunbonded non-woven fabric layer were that each spunbonded non-woven fabric layer had a texture of 7.0 g / m 2 and an average single fiber diameter of 10.0 μm. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 (メルトブロー不織布層)
 MFRが1100g/10分のホモポリマーから形成されてなるポリプロピレン樹脂にヒンダードアミン系化合物A“キマソーブ”(登録商標)944LD(BASFジャパン株式会社製)1質量%と、化合物Bで表される結晶核剤“Irgaclear”(登録商標)XT386(BASFジャパン株式会社製)を0.05質量%とを含むポリオレフィン系樹脂を、押出機で溶融し、孔径φが0.25mmの口金から、紡糸温度が260℃、単孔吐出量が0.10g/分で紡出した。その後、エア温度が290℃、エア圧力が0.10MPaの条件でエアを糸条に噴射し、前記のスパンボンド不織布層上に捕集し、メルトブロー不織布層を形成した。この時、同条件で捕集ネット上に別途採取したメルトブロー不織布層の目付は1.0g/mであり、平均単繊維径は1.6μmであった。
(Melt blow non-woven fabric layer)
1% by mass of hindered amine compound A "Kimasorb" (registered trademark) 944LD (manufactured by BASF Japan Ltd.) and a crystal nucleating agent represented by compound B in a polypropylene resin formed of a homopolymer having an MFR of 1100 g / 10 minutes. A polyolefin resin containing 0.05% by mass of "Irgaclear" (registered trademark) XT386 (manufactured by BASF Japan Ltd.) is melted by an extruder, and the spinning temperature is 260 ° C. from a base having a pore diameter of 0.25 mm. , Single-hole discharge rate was 0.10 g / min. Then, air was injected into the yarn under the conditions of an air temperature of 290 ° C. and an air pressure of 0.10 MPa, and collected on the spunbonded non-woven fabric layer to form a melt-blown non-woven fabric layer. At this time, the basis weight of the melt-blown non-woven fabric layer separately collected on the collection net under the same conditions was 1.0 g / m 2 , and the average single fiber diameter was 1.6 μm.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付15.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表1、表2に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 15.0 g / m 2 was obtained. Tables 1 and 2 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 (エアフィルターユニット~補強エアフィルター)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニット、そして、補強エアフィルターを得た。フィルターユニットのプリーツ成形性について、表2に示す。
(Air filter unit-reinforced air filter)
With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 2 shows the pleated formability of the filter unit.
 [実施例5]
 (スパンボンド不織布層(下層)・(上層))
 化合物Bで表される結晶核剤“Irgaclear”(登録商標)XT386(BASFジャパン株式会社製)の添加量を0.05質量%から0.005質量%に変えたこと以外は、実施例4と同様にしてスパンボンド不織布層を得た。形成したスパンボンド不織布層を構成する長繊維の特性は、各スパンボンド不織布層の目付は7.0g/m、平均単繊維径は10.1μmであった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
[Example 5]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
Example 4 and Example 4 except that the amount of the crystalline nucleating agent "Irgaclear" (registered trademark) XT386 (manufactured by BASF Japan Ltd.) represented by compound B was changed from 0.05% by mass to 0.005% by mass. A spunbonded non-woven fabric layer was obtained in the same manner. The characteristics of the long fibers constituting the formed spunbonded non-woven fabric layer were that each spunbonded non-woven fabric layer had a texture of 7.0 g / m 2 and an average single fiber diameter of 10.1 μm. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
 (メルトブロー不織布層)
 化合物Bで表される結晶核剤“Irgaclear”(登録商標)XT386(BASFジャパン株式会社製)の添加量を0.05質量%から0.005質量%に変えたこと以外は、実施例4と同様にしてメルトブロー不織布層を得た。形成したメルトブロー不織布層を構成する繊維の特性は、メルトブロー不織布の目付は1.0g/m、平均単繊維径が1.5μmであった。
(Melt blow non-woven fabric layer)
Example 4 and Example 4 except that the amount of the crystal nucleating agent "Irgaclear" (registered trademark) XT386 (manufactured by BASF Japan Ltd.) represented by compound B was changed from 0.05% by mass to 0.005% by mass. A melt blown non-woven fabric layer was obtained in the same manner. The characteristics of the fibers constituting the formed melt-blow non-woven fabric layer were 1.0 g / m 2 for the basis weight of the melt-blow non-woven fabric and 1.5 μm for the average single fiber diameter.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付15.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表1、表2に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 15.0 g / m 2 was obtained. Tables 1 and 2 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 (エアフィルターユニット~補強エアフィルター)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニット、そして、補強エアフィルターを得た。フィルターユニットのプリーツ成形性について、表2に示す。
(Air filter unit-reinforced air filter)
With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 2 shows the pleated formability of the filter unit.
 [実施例6]
 (スパンボンド不織布層(下層)・(上層))
 化合物Bで表される結晶核剤“Irgaclear”(登録商標)XT386(BASFジャパン株式会社製)の添加量を0.05質量%から0.5質量%に変えたこと以外は、実施例4と同様にしてスパンボンド不織布層を得た。形成した各スパンボンド不織布層の目付は7.0g/m、平均単繊維径は10.1μmであった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
[Example 6]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
Example 4 and Example 4 except that the amount of the crystalline nucleating agent "Irgaclear" (registered trademark) XT386 (manufactured by BASF Japan Ltd.) represented by compound B was changed from 0.05% by mass to 0.5% by mass. A spunbonded non-woven fabric layer was obtained in the same manner. The basis weight of each spunbonded non-woven fabric layer formed was 7.0 g / m 2 , and the average single fiber diameter was 10.1 μm. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
 (メルトブロー不織布層)
 化合物Bで表される結晶核剤“Irgaclear”(登録商標)XT386(BASFジャパン株式会社製)の添加量を0.05質量%から0.5質量%に変えたこと以外は、実施例4と同様にしてメルトブロー不織布層を得た。形成したメルトブロー不織布層を構成する繊維の特性は、メルトブロー不織布の目付は1.0g/m、平均単繊維径が1.5μmであった。
(Melt blow non-woven fabric layer)
Example 4 and Example 4 except that the amount of the crystal nucleating agent "Irgaclear" (registered trademark) XT386 (manufactured by BASF Japan Ltd.) represented by compound B was changed from 0.05% by mass to 0.5% by mass. A melt blown non-woven fabric layer was obtained in the same manner. The characteristics of the fibers constituting the formed melt-blow non-woven fabric layer were 1.0 g / m 2 for the basis weight of the melt-blow non-woven fabric and 1.5 μm for the average single fiber diameter.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付15.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表1、表2に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 15.0 g / m 2 was obtained. Tables 1 and 2 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 (エアフィルターユニット~補強エアフィルター)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニット、そして、補強エアフィルターを得た。フィルターユニットのプリーツ成形性について、表2に示す。
(Air filter unit-reinforced air filter)
With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 2 shows the pleated formability of the filter unit.
 [実施例7]
 (スパンボンド不織布層(下層)・(上層))
 MFRが200g/10分のホモポリマーから形成されてなるポリプロピレン樹脂に化合物Cで表されるヒンダードアミン系化合物“キマソーブ”(登録商標)2020FDL(BASFジャパン株式会社製)1質量%を含むポリオレフィン系樹脂を、押出機で溶融し、孔径φが0.30mm、孔深度が2mmの矩形口金から、紡糸温度が235℃、単孔吐出量が0.32g/分で紡出した糸条を、冷却固化した後、矩形エジェクターでエジェクターの圧力を0.35MPaとした圧縮エアによって牽引、延伸し、捕集ネット上に捕集した。得られた不織繊維ウェブを、フラットロールを用いて145℃の温度で熱仮接着し、得られた熱仮接着された不織ウェブを、上ロールに金属製で水玉柄の彫刻がなされた接着面積率16%のエンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の熱エンボスロールを用いて、線圧が30N/cmで、熱接着温度が145℃の温度で熱接着した。形成した各スパンボンド不織布層の目付は7.0g/m、平均単繊維径は10.1μmであった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
[Example 7]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
A polyolefin resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 2020FDL (manufactured by BASF Japan Co., Ltd.) represented by compound C in a polypropylene resin formed of a homopolymer having an MFR of 200 g / 10 minutes. A thread spun from a rectangular mouthpiece having a hole diameter of 0.30 mm and a hole depth of 2 mm at a spinning temperature of 235 ° C. and a single-hole discharge rate of 0.32 g / min was cooled and solidified by melting with an extruder. After that, it was towed and stretched by compressed air having an ejector pressure of 0.35 MPa with a rectangular ejector, and collected on a collection net. The obtained non-woven fiber web was heat-temporarily bonded using a flat roll at a temperature of 145 ° C., and the obtained heat-temporarily bonded non-woven web was engraved with a metal polka dot pattern on the upper roll. Using an embossing roll with an adhesive area ratio of 16% and a pair of upper and lower thermal embossing rolls composed of metal flat rolls as the lower roll, heat is applied at a linear pressure of 30 N / cm and a thermal bonding temperature of 145 ° C. Glued. The basis weight of each spunbonded non-woven fabric layer formed was 7.0 g / m 2 , and the average single fiber diameter was 10.1 μm. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 (メルトブロー不織布層)
 MFRが1100g/10分のホモポリマーから形成されてなるポリプロピレン樹脂にヒンダードアミン系化合物A“キマソーブ”(登録商標)2020FDL(BASFジャパン株式会社製)1質量%を含むポリオレフィン系樹脂を、押出機で溶融し、孔径φが0.25mmの口金から、紡糸温度が260℃、単孔吐出量が0.10g/分で紡出した。その後、エア温度が290℃、エア圧力が0.10MPaの条件でエアを糸条に噴射し、前記のスパンボンド不織布層上に捕集し、メルトブロー不織布層を形成した。この時、同条件で捕集ネット上に別途採取したメルトブロー不織布層の目付は1.0g/mであり、平均単繊維径は1.5μmであった。
(Melt blow non-woven fabric layer)
A polyolefin resin containing 1% by mass of hindered amine compound A "Kimasorb" (registered trademark) 2020FDL (manufactured by BASF Japan Ltd.) in a polypropylene resin formed of a homopolymer having an MFR of 1100 g / 10 min is melted by an extruder. Then, from a base having a hole diameter of 0.25 mm, spinning was performed at a spinning temperature of 260 ° C. and a single-hole discharge rate of 0.10 g / min. Then, air was injected into the yarn under the conditions of an air temperature of 290 ° C. and an air pressure of 0.10 MPa, and collected on the spunbonded non-woven fabric layer to form a melt-blown non-woven fabric layer. At this time, the basis weight of the melt-blown non-woven fabric layer separately collected on the collection net under the same conditions was 1.0 g / m 2 , and the average single fiber diameter was 1.5 μm.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付15.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表1、表2に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 15.0 g / m 2 was obtained. Tables 1 and 2 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 (エアフィルターユニット~補強エアフィルター)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニット、そして、補強エアフィルターを得た。フィルターユニットのプリーツ成形性について、表2に示す。
(Air filter unit-reinforced air filter)
With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 2 shows the pleated formability of the filter unit.
 [実施例8]
 (スパンボンド不織布層(下層)・(上層))
 各スパンボンド不織布層の目付を7.0g/mから28.0g/mに変えたこと以外は、実施例1と同じ方法でスパンボンド不織布層を得た。
[Example 8]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
A spunbonded non-woven fabric layer was obtained by the same method as in Example 1 except that the basis weight of each spunbonded nonwoven fabric layer was changed from 7.0 g / m 2 to 28.0 g / m 2.
 (メルトブロー不織布層)
 メルトブロー不織布層の目付を1.0g/mから4.0g/mに変えたこと以外は、実施例1と同じ方法でメルトブロー不織布層を得た。
(Melt blow non-woven fabric layer)
A melt-blow non-woven fabric layer was obtained in the same manner as in Example 1 except that the basis weight of the melt-blow non-woven fabric layer was changed from 1.0 g / m 2 to 4.0 g / m 2.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付60.0g/mの積層不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表3、表4に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated non-woven fabric having a total basis weight of 60.0 g / m 2 was obtained. Tables 3 and 4 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 (エアフィルターユニット~補強エアフィルター)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニット、そして、補強エアフィルターを得た。フィルターユニットのプリーツ成形性について、表4に示す。
(Air filter unit-reinforced air filter)
With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 4 shows the pleated formability of the filter unit.
 [実施例9]
 (スパンボンド不織布層(下層)・(上層))
 各スパンボンド不織布層の目付を7.0g/mから4.2g/mに変えたこと以外は、実施例1と同じ方法でスパンボンド不織布層を得た。
[Example 9]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
A spunbonded non-woven fabric layer was obtained by the same method as in Example 1 except that the basis weight of each spunbonded nonwoven fabric layer was changed from 7.0 g / m 2 to 4.2 g / m 2.
 (メルトブロー不織布層)
 メルトブロー不織布層の目付を1.0g/mから0.6g/mに変えたこと以外は、実施例1と同じ方法でメルトブロー不織布層を得た。
(Melt blow non-woven fabric layer)
A melt-blow non-woven fabric layer was obtained in the same manner as in Example 1 except that the basis weight of the melt-blow non-woven fabric layer was changed from 1.0 g / m 2 to 0.6 g / m 2.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付9.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表3、表4に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 9.0 g / m 2 was obtained. Tables 3 and 4 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 (エアフィルターユニット~補強エアフィルター)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニット、そして、補強エアフィルターを得た。フィルターユニットのプリーツ成形性について、表4に示す。
(Air filter unit-reinforced air filter)
With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 4 shows the pleated formability of the filter unit.
 [実施例10]
 (スパンボンド不織布層(下層)・(上層))
 各スパンボンド不織布層の目付を7.0g/mから29.5g/mに変えたこと以外は、実施例1と同じ方法でスパンボンド不織布層を得た。
[Example 10]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
Except that the basis weight of the spunbond nonwoven fabric layer was changed from 7.0 g / m 2 to 29.5 g / m 2, to obtain a spunbonded nonwoven fabric layer in the same manner as in Example 1.
 (メルトブロー不織布層)
 実施例1と同じ方法でメルトブロー不織布層を得た。
(Melt blow non-woven fabric layer)
A melt-blown non-woven fabric layer was obtained in the same manner as in Example 1.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付60.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表3、表4に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 60.0 g / m 2 was obtained. Tables 3 and 4 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 (エアフィルターユニット~補強エアフィルター)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニット、そして、補強エアフィルターを得た。フィルターユニットのプリーツ成形性について、表4に示す。
(Air filter unit-reinforced air filter)
With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 4 shows the pleated formability of the filter unit.
 [実施例11]
 (スパンボンド不織布層(下層)・(上層))
 各スパンボンド不織布層の目付を7.0g/mから25.5g/mに変えたこと以外は、実施例1と同じ方法でスパンボンド不織布層を得た。
[Example 11]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
Except that the basis weight of the spunbond nonwoven fabric layer was changed from 7.0 g / m 2 to 25.5 g / m 2, to obtain a spunbonded nonwoven fabric layer in the same manner as in Example 1.
 (メルトブロー不織布層)
 メルトブロー不織布層の目付を1.0g/mから9.0g/mに変えたこと以外は、実施例1と同じ方法でメルトブロー不織布層を得た。
(Melt blow non-woven fabric layer)
A melt-blow non-woven fabric layer was obtained in the same manner as in Example 1 except that the basis weight of the melt-blow non-woven fabric layer was changed from 1.0 g / m 2 to 9.0 g / m 2.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付60.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表3、表4に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 60.0 g / m 2 was obtained. Tables 3 and 4 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 (エアフィルターユニット~補強エアフィルター)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニット、そして、補強エアフィルターを得た。フィルターユニットのプリーツ成形性について、表4に示す。
(Air filter unit-reinforced air filter)
With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 4 shows the pleated formability of the filter unit.
 [実施例12]
 (スパンボンド不織布層(下層))
 スパンボンド不織布層の目付を7.0g/mから14.0g/mに変えたこと以外は、実施例1と同じ方法でスパンボンド不織布層を得た。平均単繊維径は10.1μmであり、紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
[Example 12]
(Spanbond non-woven fabric layer (lower layer))
Except that the basis weight of the spunbond nonwoven fabric layer was changed from 7.0 g / m 2 to 14.0 g / m 2 was obtained spunbond nonwoven layer in the same manner as in Example 1. The average single fiber diameter was 10.1 μm, and the spinnability was good with no yarn breakage after spinning for 1 hour.
 (メルトブロー不織布層)
 次に、MFRが1100g/分のホモポリマーから形成されてなるポリプロピレン樹脂に化合物Aで表されるヒンダードアミン系化合物“キマソーブ”(登録商標)944LD(BASFジャパン株式会社製)を1質量%含むポリオレフィン系樹脂を、押出機で溶融し、孔径φが0.25mmの口金から、紡糸温度が260℃、単孔吐出量が0.10g/分で紡出した。その後、エア温度が290℃、エア圧力が0.10MPaの条件でエアを糸条に噴射し、前記のスパンボンド不織布層上に捕集し、メルトブロー不織布層を形成した。この時、同条件で捕集ネット上に別途採取したメルトブロー不織布層の目付は1.0g/mであり、平均単繊維径は1.5μmであった。これによって、スパンボンド-メルトブロー(SM)積層繊維ウェブを得た。
(Melt blow non-woven fabric layer)
Next, a polyolefin resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944LD (manufactured by BASF Japan Ltd.) represented by compound A in a polypropylene resin having an MFR of 1100 g / min formed of a homopolymer. The resin was melted by an extruder and spun from a base having a pore diameter of 0.25 mm at a spinning temperature of 260 ° C. and a single-hole discharge rate of 0.10 g / min. Then, air was injected into the yarn under the conditions of an air temperature of 290 ° C. and an air pressure of 0.10 MPa, and collected on the spunbonded non-woven fabric layer to form a melt-blown non-woven fabric layer. At this time, the basis weight of the melt-blown non-woven fabric layer separately collected on the collection net under the same conditions was 1.0 g / m 2 , and the average single fiber diameter was 1.5 μm. This gave a spunbond-melt blow (SM) laminated fiber web.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付15.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表3、表4に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 15.0 g / m 2 was obtained. Tables 3 and 4 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 (エアフィルターユニット~補強エアフィルター)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニット、そして、補強エアフィルターを得た。フィルターユニットのプリーツ成形性について、表4に示す。
(Air filter unit-reinforced air filter)
With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 4 shows the pleated formability of the filter unit.
 [実施例13]
 (スパンボンド不織布層(下層))
 実施例1と同様にして、スパンボンド不織布層(下層)を得た。得られたスパンボンド不織布層の目付は7.0g/m、平均単繊維径は10.1μmであった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
[Example 13]
(Spanbond non-woven fabric layer (lower layer))
A spunbonded non-woven fabric layer (lower layer) was obtained in the same manner as in Example 1. The basis weight of the obtained spunbonded non-woven fabric layer was 7.0 g / m 2 , and the average single fiber diameter was 10.1 μm. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
 (メルトブロー不織布層)
 実施例1と同様にして、メルトブロー不織布層を得た。得られたメルトブロー不織布層の目付は1.0g/m、平均単繊維径は1.5μmであった。
(Melt blow non-woven fabric layer)
A melt-blown non-woven fabric layer was obtained in the same manner as in Example 1. The obtained melt-blown non-woven fabric layer had a basis weight of 1.0 g / m 2 and an average single fiber diameter of 1.5 μm.
 (スパンボンド不織布層(上層))
 このメルトブロー不織布層の上に、MFRが100g/10分のホモポリマーから形成されてなるポリプロピレン樹脂に化合物Aで表されるヒンダードアミン系化合物“キマソーブ”(登録商標)944LD(BASFジャパン株式会社製)を1質量%含むポリオレフィン系樹脂を、押出機で溶融し、孔径φが0.30mm、孔深度が2mmの矩形口金から、紡糸温度が235℃、単孔吐出量が0.65g/分で紡出した糸条を、冷却固化した後、矩形エジェクターでエジェクターの圧力を0.50MPaとした圧縮エアによって牽引、延伸し、捕集ネット上に捕集した。得られた不織繊維ウェブを、フラットロールを用いて120℃の温度で熱仮接着した。得られた熱仮接着された不織ウェブの目付が7.0g/mのスパンボンド不織布層を形成した。平均単繊維径は15.3μmであり、紡糸性については、1時間の紡糸において糸切れは見られず良好であった。これによって、スパンボンド-メルトブロー-スパンボンド(SMS)積層繊維ウェブを得た。
(Spanbond non-woven fabric layer (upper layer))
On this melt-blown non-woven fabric layer, a hindered amine compound "Kimasorb" (registered trademark) 944LD (manufactured by BASF Japan Co., Ltd.) represented by compound A is added to a polypropylene resin formed of a homopolymer having an MFR of 100 g / 10 minutes. A polyolefin resin containing 1% by mass is melted by an extruder and spun from a rectangular mouthpiece having a pore diameter of 0.30 mm and a pore depth of 2 mm at a spinning temperature of 235 ° C and a single pore discharge rate of 0.65 g / min. The thread was cooled and solidified, and then pulled and stretched by compressed air having an ejector pressure of 0.50 MPa with a rectangular ejector, and collected on a collection net. The obtained non-woven fiber web was heat-temporarily bonded at a temperature of 120 ° C. using a flat roll. A spunbonded non-woven fabric layer having a basis weight of 7.0 g / m 2 of the obtained heat-temporarily bonded non-woven web was formed. The average single fiber diameter was 15.3 μm, and the spinnability was good with no yarn breakage after spinning for 1 hour. This gave a spunbond-melt blow-spunbond (SMS) laminated fiber web.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付15.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表3、表4に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 15.0 g / m 2 was obtained. Tables 3 and 4 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 (エアフィルターユニット~補強エアフィルター)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニット、そして、補強エアフィルターを得た。フィルターユニットのプリーツ成形性について、表4に示す。
(Air filter unit-reinforced air filter)
With respect to the obtained laminated electret non-woven fabric, an air filter unit and a reinforced air filter were obtained in the same manner as in Example 1. Table 4 shows the pleated formability of the filter unit.
 [比較例1]
 MFRが800g/分のホモポリマーから形成されてなるポリプロピレン樹脂を押出機で溶融し、孔径φが0.25mmの口金から、紡糸温度が260℃、単孔吐出量が0.10g/分で紡出した。その後、エア温度が290℃、エア圧力が0.10MPaの条件でエアを糸条に噴射し、前記の熱融着性不織布層上に捕集し、メルトブロー不織布を形成した。不織布の目付は15g/mであり、平均単繊維径は4.0μmであった。
[Comparative Example 1]
A polypropylene resin made of a homopolymer having an MFR of 800 g / min is melted by an extruder and spun from a mouthpiece having a pore diameter of φ0.25 mm at a spinning temperature of 260 ° C. and a single-hole discharge rate of 0.10 g / min. I put it out. Then, air was injected into the yarn under the conditions of an air temperature of 290 ° C. and an air pressure of 0.10 MPa, and collected on the heat-sealing non-woven fabric layer to form a melt-blown non-woven fabric. The basis weight of the non-woven fabric was 15 g / m 2 , and the average single fiber diameter was 4.0 μm.
 この不織布に対してエレクトレット化処理を行い、エレクトレットメルトブロー不織布を得た。エレクトレットメルトブロー不織布の各測定値と算出値を、表5、表6に示す。 This non-woven fabric was subjected to an electret-forming treatment to obtain an electret melt-blown non-woven fabric. Tables 5 and 6 show the measured values and calculated values of the electret melt blown non-woven fabric.
 得られた不織布は、捕集効率は非常に優れるが、引張強力に劣り、圧力損失は高く、エアフィルター用途に使用できる範囲には至らなかった。 The obtained non-woven fabric was very excellent in collection efficiency, but inferior in tensile strength and high pressure loss, and did not reach the range where it could be used for air filter applications.
 得られたエレクトレットメルトブロー不織布について、実施例1と同様にして、エアフィルターユニットを得た。フィルターユニットのプリーツ成形性について、表6に示す。 For the obtained electret melt blown non-woven fabric, an air filter unit was obtained in the same manner as in Example 1. Table 6 shows the pleated formability of the filter unit.
 [比較例2]
 (スパンボンド不織布層(下層)・(上層))
 各スパンボンド不織布層のヒンダードアミン系化合物A“キマソーブ”(登録商標)944LD(BASFジャパン株式会社製)の添加量を1質量%から0.09質量%に変えたこと以外は、実施例1と同じ方法でスパンボンド不織布層を得た。
[Comparative Example 2]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
Same as Example 1 except that the amount of the hindered amine compound A "Kimasorb" (registered trademark) 944LD (manufactured by BASF Japan Ltd.) added to each spunbonded non-woven fabric layer was changed from 1% by mass to 0.09% by mass. A spunbonded non-woven fabric layer was obtained by the method.
 (メルトブロー不織布層)
 メルトブロー不織布層のヒンダードアミン系化合物A“キマソーブ”(登録商標)944LD(BASFジャパン株式会社製)の添加量を1質量%から0.09質量%に変えたこと以外は、実施例1と同じ方法でメルトブロー不織布層を得た。
(Melt blow non-woven fabric layer)
The same method as in Example 1 except that the amount of the hindered amine compound A "Kimasorb" (registered trademark) 944LD (manufactured by BASF Japan Ltd.) added to the melt blow nonwoven fabric layer was changed from 1% by mass to 0.09% by mass. A melt blown non-woven fabric layer was obtained.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付15.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表5、表6に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 15.0 g / m 2 was obtained. Tables 5 and 6 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 得られた不織布は、捕集効率が低く、エアフィルター用途に使用できる範囲には至らなかった。 The obtained non-woven fabric had low collection efficiency and did not reach the range where it could be used for air filters.
 (エアフィルターユニット)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニットを得た。フィルターユニットのプリーツ成形性について、表6に示す。
(Air filter unit)
With respect to the obtained laminated electret non-woven fabric, an air filter unit was obtained in the same manner as in Example 1. Table 6 shows the pleated formability of the filter unit.
 [比較例3]
 (スパンボンド不織布層(下層)・(上層))
 MFRが200g/10分のホモポリマーから形成されてなるポリプロピレン樹脂を用いていたところをMFRが30g/10分のホモポリマーから形成されてなるポリプロピレン樹脂を用いることとし、さらに、単孔吐出量が0.32g/分であったところを0.70g/分に変えたこと以外は、実施例1と同様にしてポリプロピレン長繊維から構成されてなるスパンボンド不織布層を形成した。形成したスパンボンド不織布層を構成する長繊維の特性は、各スパンボンド不織布層の目付は7.0g/m、平均単繊維径は22.5μmであった。紡糸性については、1時間の紡糸において糸切れは見られず良好であった。
[Comparative Example 3]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
Whereas a polypropylene resin made of a homopolymer having an MFR of 200 g / 10 minutes was used, a polypropylene resin made of a homopolymer having an MFR of 30 g / 10 minutes was used. A spunbonded non-woven fabric layer made of polypropylene filaments was formed in the same manner as in Example 1 except that the amount of 0.32 g / min was changed to 0.70 g / min. The characteristics of the long fibers constituting the formed spunbonded non-woven fabric layer were that each spunbonded non-woven fabric layer had a texture of 7.0 g / m 2 and an average single fiber diameter of 22.5 μm. As for spinnability, no yarn breakage was observed after spinning for 1 hour, which was good.
 (メルトブロー不織布層)
 実施例1と同様にして、メルトブロー不織布層を得た。得られたメルトブロー不織布層の目付は1.0g/m、平均単繊維径は1.5μmであった。
(Melt blow non-woven fabric layer)
A melt-blown non-woven fabric layer was obtained in the same manner as in Example 1. The obtained melt-blown non-woven fabric layer had a basis weight of 1.0 g / m 2 and an average single fiber diameter of 1.5 μm.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付15.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表5、表6に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 15.0 g / m 2 was obtained. Tables 5 and 6 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 得られた不織布は、捕集効率が低く、エアフィルター用途に使用できる範囲には至らなかった。 The obtained non-woven fabric had low collection efficiency and did not reach the range where it could be used for air filters.
 (エアフィルターユニット)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニットを得た。フィルターユニットのプリーツ成形性について、表6に示す。
(Air filter unit)
With respect to the obtained laminated electret non-woven fabric, an air filter unit was obtained in the same manner as in Example 1. Table 6 shows the pleated formability of the filter unit.
 [比較例4]
 (スパンボンド不織布層(下層)・(上層))
 実施例1と同じ方法でスパンボンド不織布層を得た。
[Comparative Example 4]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
A spunbonded non-woven fabric layer was obtained in the same manner as in Example 1.
 (メルトブロー不織布層)
 MFRが1100g/分のホモポリマーから形成されてなるポリプロピレン樹脂に化合物Aで表されるヒンダードアミン系化合物“キマソーブ”(登録商標)944LD(BASFジャパン株式会社製)を1質量%含むポリオレフィン系樹脂を、押出機で溶融し、孔径φが0.25mmの口金から、紡糸温度が260℃、単孔吐出量が0.10g/分で紡出した。その後、エア温度が290℃、エア圧力が0.10MPaの条件でエアを糸条に噴射することで、目付15.0g/m、平均単繊維径1.5μmのメルトブロー不織布を作製し、これをメルトブロー不織布層として前記のスパンボンド不織布層(下層)上に積層した。
(Melt blow non-woven fabric layer)
A polyolefin resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944LD (manufactured by BASF Japan Ltd.) represented by compound A in a polypropylene resin formed of a homopolymer having an MFR of 1100 g / min. It was melted by an extruder and spun from a mouthpiece having a pore diameter of 0.25 mm at a spinning temperature of 260 ° C. and a single-hole discharge rate of 0.10 g / min. Then, by injecting air onto the yarn under the conditions of an air temperature of 290 ° C. and an air pressure of 0.10 MPa, a melt-blown non-woven fabric having a grain size of 15.0 g / m 2 and an average single fiber diameter of 1.5 μm was produced. Was laminated on the spunbonded non-woven fabric layer (lower layer) as a melt-blown non-woven fabric layer.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付29.0g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表5、表6に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 29.0 g / m 2 was obtained. Tables 5 and 6 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 得られた積層エレクトレット不織布は、実施例1の積層エレクトレット不織布と比べて、メルトブロー不織布層の目付が1.0g/mから15.0g/mに変わったものに相当するものであるが、メルトブロー不織布層の含有量が51.7%と高くなったことで、圧力損失が高く、柔軟性も低いものとなった。 The obtained laminated electret non-woven fabric corresponds to a melt-blown non-woven fabric layer having a texture changed from 1.0 g / m 2 to 15.0 g / m 2 as compared with the laminated electret non-woven fabric of Example 1. Since the content of the melt-blown non-woven fabric layer was as high as 51.7%, the pressure loss was high and the flexibility was also low.
 (エアフィルターユニット)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニットを得た。フィルターユニットのプリーツ成形性について、表6に示す。前記のとおり、柔軟性が低いものであったため、プリーツの山形状が丸状となり、構造的な原因による圧力損失が上昇した上、加工性に満足いくものは得られなかった。
(Air filter unit)
With respect to the obtained laminated electret non-woven fabric, an air filter unit was obtained in the same manner as in Example 1. Table 6 shows the pleated formability of the filter unit. As described above, since the flexibility was low, the mountain shape of the pleats became round, the pressure loss due to the structural cause increased, and the workability was not satisfactory.
 [比較例5]
 (スパンボンド不織布層(下層)・(上層))
 各スパンボンド不織布層の目付を15.0g/mから38.5g/mに変えたこと以外は、実施例1と同じ方法でスパンボンド不織布層を得た。
[Comparative Example 5]
(Spanbond non-woven fabric layer (lower layer) / (upper layer))
Except that the basis weight of the spunbond nonwoven fabric layer was changed from 15.0 g / m 2 to 38.5 g / m 2, to obtain a spunbonded nonwoven fabric layer in the same manner as in Example 1.
 (メルトブロー不織布層)
 メルトブロー不織布層の目付を1.0g/mから5.5g/mに変えたこと以外は、実施例1と同じ方法でメルトブロー不織布層を得た。
(Melt blow non-woven fabric layer)
A melt-blow non-woven fabric layer was obtained in the same manner as in Example 1 except that the basis weight of the melt-blow non-woven fabric layer was changed from 1.0 g / m 2 to 5.5 g / m 2.
 (積層不織布~積層エレクトレット不織布)
 実施例1と同様にして、総目付82.5g/mの積層エレクトレット不織布を得た。得られた積層エレクトレット不織布の各測定値と算出値を、表5、表6に示す。
(Laminated non-woven fabric-laminated electret non-woven fabric)
In the same manner as in Example 1, a laminated electret non-woven fabric having a total basis weight of 82.5 g / m 2 was obtained. Tables 5 and 6 show the measured values and the calculated values of the obtained laminated electret non-woven fabric.
 得られた不織布は、圧力損失が高く、柔軟性も低いものであった。 The obtained non-woven fabric had high pressure loss and low flexibility.
 (エアフィルターユニット)
 得られた積層エレクトレット不織布について、実施例1と同様にして、エアフィルターユニットを得た。フィルターユニットのプリーツ成形性について、表6に示す。前記のとおり、柔軟性が低いものであったため、プリーツの山形状が丸状となり、構造的な原因による圧力損失が上昇した上、加工性に満足いくものは得られなかった。
(Air filter unit)
With respect to the obtained laminated electret non-woven fabric, an air filter unit was obtained in the same manner as in Example 1. Table 6 shows the pleated formability of the filter unit. As described above, since the flexibility was low, the mountain shape of the pleats became round, the pressure loss due to the structural cause increased, and the workability was not satisfactory.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 本発明により、圧力損失が低く、高い捕集性能を示す高性能積層エレクトレット不織布が得られ、この積層エレクトレット不織布は濾材としてエアフィルターユニットに好ましく用いることができるが、その応用範囲はこれらに限られるものではない。 INDUSTRIAL APPLICABILITY According to the present invention, a high-performance laminated electret non-woven fabric having low pressure loss and exhibiting high collection performance can be obtained, and this laminated electret non-woven fabric can be preferably used as a filter medium in an air filter unit, but its application range is limited to these. It's not a thing.
1:サンプルホルダー
2:ダスト収納箱
3:流量計
4:流量調整バルブ
5:ブロワ
6:パーティクルカウンター
7:切替コック
8:圧力計
M:測定サンプル
1: Sample holder 2: Dust storage box 3: Flow meter 4: Flow rate adjustment valve 5: Blower 6: Particle counter 7: Switching cock 8: Pressure gauge M: Measurement sample

Claims (13)

  1.  ポリオレフィン系樹脂(A)から形成されてなる繊維で構成されるスパンボンド不織布層と、ポリオレフィン系樹脂(B)から形成されてなる繊維で構成されるメルトブロー不織布層とが積層されてなる、積層エレクトレット不織布であって、前記積層エレクトレット不織布は、ヒンダードアミン系化合物を0.1~5質量%含有し、前記積層エレクトレット不織布の目付が、5~80g/mであり、さらに、前記メルトブロー不織布層の含有量が前記積層エレクトレット不織布の質量に対し、1~50質量%である、積層エレクトレット不織布。 Laminated electlet in which a spunbonded non-woven fabric layer made of fibers made of a polyolefin resin (A) and a melt-blown non-woven fabric layer made of fibers made of a polyolefin resin (B) are laminated. The laminated non-woven fabric contains 0.1 to 5% by mass of a hindered amine compound, the laminated electlet non-woven fabric has a texture of 5 to 80 g / m 2 , and further contains the melt-blown non-woven fabric layer. A laminated electrette nonwoven fabric whose amount is 1 to 50% by mass with respect to the mass of the laminated electrette nonwoven fabric.
  2.  前記積層エレクトレット不織布の目付が、5~60g/mであり、さらに、前記メルトブロー不織布層の含有量が前記積層エレクトレット不織布の質量に対し、1~15質量%である、積層エレクトレット不織布。 A laminated electret non-woven fabric having a texture of 5 to 60 g / m 2 and a content of the melt-blown non-woven fabric layer of 1 to 15% by mass with respect to the mass of the laminated electret non-woven fabric.
  3.  前記積層エレクトレット不織布が、結晶核剤を含有する、請求項1または2に記載の積層エレクトレット不織布。 The laminated electret non-woven fabric according to claim 1 or 2, wherein the laminated electret non-woven fabric contains a crystal nucleating agent.
  4.  前記積層エレクトレット不織布に対し、前記結晶核剤が0.001~1質量%含有されてなる、請求項3に記載の積層エレクトレット不織布。 The laminated electret nonwoven fabric according to claim 3, wherein the crystal nucleating agent is contained in an amount of 0.001 to 1% by mass with respect to the laminated electret nonwoven fabric.
  5.  前記スパンボンド不織布層を構成する繊維の平均単繊維径が6.5~22μmである、請求項1~4のいずれかに記載の積層エレクトレット不織布。 The laminated electret non-woven fabric according to any one of claims 1 to 4, wherein the average single fiber diameter of the fibers constituting the spunbonded non-woven fabric layer is 6.5 to 22 μm.
  6.  前記ヒンダードアミン系化合物が下記一般式(1)で表される化合物である、請求項1~5のいずれかに記載の積層エレクトレット不織布。
    Figure JPOXMLDOC01-appb-C000001
    (ここで、R~Rは水素または炭素原子数1~2のアルキル基、Rは水素または炭素数1~6のアルキル基である)
    The laminated electret nonwoven fabric according to any one of claims 1 to 5, wherein the hindered amine compound is a compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Here, R 1 to R 3 are hydrogen or an alkyl group having 1 to 2 carbon atoms, and R 4 is hydrogen or an alkyl group having 1 to 6 carbon atoms).
  7.  前記ポリオレフィン系樹脂(A)から形成されてなる繊維のメルトフローレート(MFR)が、32~850g/10分である、請求項1~6のいずれかに記載の積層エレクトレット不織布。 The laminated electret non-woven fabric according to any one of claims 1 to 6, wherein the melt flow rate (MFR) of the fiber formed from the polyolefin resin (A) is 32 to 850 g / 10 minutes.
  8.  前記ポリオレフィン系樹脂(A)と前記ポリオレフィン系樹脂(B)のMFRの比(MFR/MFR)が、1~13である、請求項1~7のいずれかに記載の積層エレクトレット不織布。 The laminated electret nonwoven fabric according to any one of claims 1 to 7, wherein the ratio of the MFR of the polyolefin resin (A) to the polyolefin resin (B) (MFR B / MFR A) is 1 to 13.
  9.  前記積層エレクトレット不織布の厚みが、0.05~1mmである、請求項1~8のいずれかに記載の積層エレクトレット不織布。 The laminated electret non-woven fabric according to any one of claims 1 to 8, wherein the thickness of the laminated electret non-woven fabric is 0.05 to 1 mm.
  10.  単位目付あたりの縦方向の引張強度が0.3(N/5cm)/(g/m)以上である、請求項1~9のいずれかに記載の積層エレクトレット不織布。 The laminated electret non-woven fabric according to any one of claims 1 to 9, wherein the tensile strength in the vertical direction per unit basis weight is 0.3 (N / 5 cm) / (g / m 2) or more.
  11.  単位目付あたりの圧力損失が0.1~0.5(Pa)/(g/m)である、請求項1~10のいずれかに記載の積層エレクトレット不織布。 The laminated electret non-woven fabric according to any one of claims 1 to 10, wherein the pressure loss per unit is 0.1 to 0.5 (Pa) / (g / m 2).
  12.  請求項1~11のいずれかに記載の積層エレクトレット不織布を濾材とし、該濾材と補強材とから形成されてなるプリーツ接合体が固定材によって把持されてなるエアフィルターユニット。 An air filter unit in which the laminated electret non-woven fabric according to any one of claims 1 to 11 is used as a filter medium, and a pleated joint formed of the filter medium and the reinforcing material is gripped by a fixing material.
  13.  請求項12に記載のエアフィルターが組み込まれてなる、空気清浄機。 An air purifier incorporating the air filter according to claim 12.
PCT/JP2021/001409 2020-01-27 2021-01-18 Layered electret nonwoven fabric, and air filter unit and air purifier using same WO2021153296A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180009679.9A CN114981494A (en) 2020-01-27 2021-01-18 Laminated electret nonwoven fabric, and air filter unit and air cleaner using same
JP2021503074A JPWO2021153296A1 (en) 2020-01-27 2021-01-18
KR1020227024089A KR20220124188A (en) 2020-01-27 2021-01-18 Laminated electret nonwoven fabric, and air filter unit and air purifier using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-010612 2020-01-27
JP2020010612 2020-01-27

Publications (1)

Publication Number Publication Date
WO2021153296A1 true WO2021153296A1 (en) 2021-08-05

Family

ID=77078343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001409 WO2021153296A1 (en) 2020-01-27 2021-01-18 Layered electret nonwoven fabric, and air filter unit and air purifier using same

Country Status (5)

Country Link
JP (1) JPWO2021153296A1 (en)
KR (1) KR20220124188A (en)
CN (1) CN114981494A (en)
TW (1) TW202146730A (en)
WO (1) WO2021153296A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276484A1 (en) * 2021-07-02 2023-01-05 東レ株式会社 Electret fiber sheet, laminated sheet, air filter, and method for manufacturing electret fiber sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275327A (en) * 2008-05-16 2009-11-26 Toray Ind Inc Spunbonded nonwoven fabric and air filter using the same
JP2009275312A (en) * 2008-05-15 2009-11-26 Kuraray Kuraflex Co Ltd Laminate and method for producing the same
JP2013540904A (en) * 2010-08-23 2013-11-07 ファイバーウェブ コロビン ゲーエムベーハー Nonwoven webs and fibers having electret properties, methods for their production and their use
JP2019093367A (en) * 2017-11-27 2019-06-20 東レ株式会社 Electret fiber sheet and production method thereof
JP2019151962A (en) * 2018-02-28 2019-09-12 東レ株式会社 Laminated nonwoven fabric and filter material
JP2019155244A (en) * 2018-03-09 2019-09-19 日本バイリーン株式会社 Laminate charge filter medium
WO2020022260A1 (en) * 2018-07-27 2020-01-30 東レ株式会社 Spun-bonded nonwoven fabric and air filter constituted from spun-bonded nonwoven fabric

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004696A1 (en) 2009-07-08 2011-01-13 チッソ株式会社 Air filter material using multilayer electret nonwoven fabric
JP2018095973A (en) * 2016-12-08 2018-06-21 東レ株式会社 Melt-blown nonwoven fabric

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275312A (en) * 2008-05-15 2009-11-26 Kuraray Kuraflex Co Ltd Laminate and method for producing the same
JP2009275327A (en) * 2008-05-16 2009-11-26 Toray Ind Inc Spunbonded nonwoven fabric and air filter using the same
JP2013540904A (en) * 2010-08-23 2013-11-07 ファイバーウェブ コロビン ゲーエムベーハー Nonwoven webs and fibers having electret properties, methods for their production and their use
JP2019093367A (en) * 2017-11-27 2019-06-20 東レ株式会社 Electret fiber sheet and production method thereof
JP2019151962A (en) * 2018-02-28 2019-09-12 東レ株式会社 Laminated nonwoven fabric and filter material
JP2019155244A (en) * 2018-03-09 2019-09-19 日本バイリーン株式会社 Laminate charge filter medium
WO2020022260A1 (en) * 2018-07-27 2020-01-30 東レ株式会社 Spun-bonded nonwoven fabric and air filter constituted from spun-bonded nonwoven fabric

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276484A1 (en) * 2021-07-02 2023-01-05 東レ株式会社 Electret fiber sheet, laminated sheet, air filter, and method for manufacturing electret fiber sheet
JP7226655B1 (en) * 2021-07-02 2023-02-21 東レ株式会社 Electret fiber sheet and laminated sheet, air filter, method for producing electret fiber sheet

Also Published As

Publication number Publication date
TW202146730A (en) 2021-12-16
KR20220124188A (en) 2022-09-13
CN114981494A (en) 2022-08-30
JPWO2021153296A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
US10335728B2 (en) Filter medium for air filter, filter pack, and air filter unit
EP2452737B1 (en) Air filter material using multilayer electret nonwoven fabric
EP3553214B1 (en) Electret fiber sheet
KR101975428B1 (en) Blended filament nonwoven fabric
KR101997482B1 (en) Mixed fiber non-woven fabric and filter element using same
JP6730677B2 (en) Laminated nonwoven sheet
JP6390612B2 (en) Mixed fiber nonwoven fabric and method for producing the same
JP5205650B2 (en) Laminated body and method for producing the same
JPWO2020022260A1 (en) Air filter composed of spunbonded non-woven fabric and spunbonded non-woven fabric
JP2015183327A (en) Melt-blown nonwoven fabric and composite filter medium
WO2021153296A1 (en) Layered electret nonwoven fabric, and air filter unit and air purifier using same
JPWO2019159654A1 (en) Non-woven fabric and air filter filter media using this
JP2013177703A (en) Mixed fiber nonwoven fabric
EP3705615B1 (en) Spunbonded nonwoven fabric
JP2021115521A (en) Reinforced air filter unit and air cleaner
JP2020196974A (en) Spinneret for producing melt-blown nonwoven fabric and production apparatus and production method of melt-blown nonwoven fabric
JP7147329B2 (en) Laminated nonwoven fabric and filter material
JP7173022B2 (en) LAMINATED NONWOVEN FABRIC AND METHOD FOR MANUFACTURING SAME
JP2021147711A (en) Laminated electret nonwoven fabric and manufacturing method thereof and air filter medium, filter
WO2024085211A1 (en) Filtration material and filter
JP2022098993A (en) Melt-blown nonwoven fabric and air filter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021503074

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747807

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747807

Country of ref document: EP

Kind code of ref document: A1