WO2021153259A1 - Reception device and method - Google Patents

Reception device and method Download PDF

Info

Publication number
WO2021153259A1
WO2021153259A1 PCT/JP2021/001157 JP2021001157W WO2021153259A1 WO 2021153259 A1 WO2021153259 A1 WO 2021153259A1 JP 2021001157 W JP2021001157 W JP 2021001157W WO 2021153259 A1 WO2021153259 A1 WO 2021153259A1
Authority
WO
WIPO (PCT)
Prior art keywords
time information
frame
packet
ofdm frame
beginning
Prior art date
Application number
PCT/JP2021/001157
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 和幸
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2021574619A priority Critical patent/JPWO2021153259A1/ja
Publication of WO2021153259A1 publication Critical patent/WO2021153259A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware

Definitions

  • the present technology relates to a receiving device and a method, and more particularly to a receiving device and a method capable of realizing time reproduction synchronization.
  • NTP Network Time Protocol
  • time information will be transmitted as part of the broadcasting signal.
  • This technology was made in view of such a situation, and makes it possible to realize time playback synchronization.
  • the receiving device of one aspect of the present technology has the same timing between the receiving unit that includes the time information and receiving the frame in which the jitter of the time information may occur and each of the frames with reference to the beginning of the frame. It is provided with an output control unit that outputs the time information.
  • frames including time information that may cause jitter in the time information are received, and the time information is received between the frames at the same timing with reference to the beginning of the frame. Is output.
  • FIG. 1 is a block diagram showing a configuration of an embodiment of a transmission system to which the present technology is applied.
  • the transmission system 1 includes data processing devices 10-1 to 10-N installed in facilities related to each broadcasting station, a transmitting device 20 installed in a transmitting station, and a receiving device 30 owned by a user. It is composed of -1 to 30-M. N and M are integers of 1 or more.
  • the data processing devices 10-1 to 10-N and the transmission device 20 are connected via communication lines 40-1 to 40-N.
  • the communication lines 40-1 to 40-N can be dedicated lines, for example.
  • the data processing device 10-1 processes contents such as a broadcast program produced by the broadcasting station A, and transmits the transmission data obtained as a result to the transmission device 20 via the communication line 40-1.
  • contents such as broadcast programs produced by each broadcasting station such as broadcasting station B and broadcasting station Z are processed in the same manner as in the data processing device 10-1.
  • the resulting transmission data is transmitted to the transmission device 20 via the communication lines 40-2 to 40-N.
  • the transmission device 20 receives the transmission data transmitted from the data processing devices 10-1 to 10-N on the broadcasting station side via the communication lines 40-1 to 40-N.
  • the transmission device 20 processes the transmission data from the data processing devices 10-1 to 10-N, and transmits the broadcast signal obtained as a result from the transmission antenna installed at the transmission station.
  • the broadcast signal from the transmission device 20 on the transmission station side is transmitted to the reception devices 30-1 to 30-M via the broadcast transmission line 50.
  • Receivers 30-1 to 30-M include television receivers, set-top boxes (STBs), recorders, game consoles, fixed receivers such as network storage, smartphones, mobile phones, tablet computers, etc. Mobile receiver. Further, the receiving devices 30-1 to 30-M may be, for example, an in-vehicle device mounted on a vehicle such as an in-vehicle television, a wearable computer such as a head-mounted display (HMD), or the like.
  • STBs set-top boxes
  • HMD head-mounted display
  • the receiving device 30-1 receives and processes a broadcasting signal transmitted from the transmitting device 20 via the broadcasting transmission line 50 to reproduce contents such as a broadcasting program according to a channel selection operation by the user. ..
  • the receiving devices 30-2 to 30-M also process the broadcast signal from the transmitting device 20 and reproduce the content according to the channel selection operation by the user.
  • the broadcast transmission line 50 will be described as being terrestrial (terrestrial broadcasting).
  • the broadcast transmission line 50 is not limited to terrestrial waves, and is, for example, satellite broadcasting using a broadcasting satellite (BS: Broadcasting Satellite) or communication satellite (CS: Communications Satellite), or cable broadcasting using a cable (CATV: Common Antenna TeleVision) may be used.
  • BS Broadcasting Satellite
  • CS Communications Satellite
  • CATV Common Antenna TeleVision
  • various servers may be connected to a communication line such as the Internet.
  • the receiving devices 30-1 to 30-M having a communication function access various servers via a communication line such as the Internet to perform bidirectional communication, and the contents, applications, etc. It may be possible to receive various types of data.
  • the data processing devices 10-1 to 10-N will be referred to as a data processing device 10 when it is not necessary to distinguish them.
  • the receiving devices 30-1 to 30-M are referred to as a receiving device 30 when it is not necessary to distinguish them.
  • next-generation terrestrial digital television broadcasting broadcasting system next-generation ISDB (Integrated Services Digital Broadcasting) -T
  • TLV Type Length Value
  • the TLV packet is a variable length packet, for example, having a size of 4 to 65536 bytes.
  • the TLV packet is also disclosed in Patent Document 1 above.
  • Transmission packets such as TLV packets are error correction blocks by adding FEC (Forward Error Correction) block header (FBH), BCH (Bose-Chaudhuri-Hocquenghem) code, and LPDC (Low Density Parity Check) code. Encapsulated in FEC block. Then, an OFDM (Orthogonal Frequency Division Multiplexing) frame is generated from one or more FEC blocks.
  • FEC Forward Error Correction
  • BCH Bose-Chaudhuri-Hocquenghem
  • LPDC Low Density Parity Check
  • This OFDM frame is a unit for transmitting data as a physical layer frame.
  • the first time is set as the reference time, and an NTP packet, which is a TLV packet containing time information, is inserted into one of the FEC blocks constituting the OFDM frame.
  • This time information represents the time at the beginning of the OFDM frame (absolute time at the beginning position). This time information is, for example, the time when the OFDM frame is generated.
  • FIGS 2 and 3 are diagrams schematically showing frames received by the receiving device.
  • one OFDM frame is composed of a plurality of FEC blocks
  • FIG. 2 shows a configuration example of the OFDM frame A in which the boundaries between the OFDM frame and the FEC block match.
  • the OFDM frame A is composed of FEC block # 0 and FEC block # 1.
  • FEC block # 1 may be followed by other FEC blocks (not shown).
  • FEC block # 0 is composed of FBH, NTP packet, TLV packet # 0, TLV packet # 1, BCH code, and LPDC code.
  • FEC block # 1 is composed of FBH, TLV packet # 2, BCH code, and LPDC code.
  • the device on the receiving side synchronizes the time reproduction. Can be easily performed.
  • FIG. 3 shows a configuration example of the OFDM frame B in which the boundaries between the OFDM frame and the FEC block do not match.
  • the OFDM frame B is composed of a part of FEC block # 0 and FEC block # 1.
  • FEC block # 0 is composed of FBH, TLV packet #z, NTP packet, TLV packet # 0, BCH code, and LPDC code.
  • FEC block # 1 is composed of FBH, TLV packet # 0, BCH code, and LPDC code.
  • the FEC block # 0 is arranged so as to straddle the previous OFDM frame and the OFDM frame B, and the latter half of the NTP packet in the FEC block # 0 is in the OFDM frame B. included. Further, in the OFDM frame B, the TLV packet # 0 is arranged across the FEC block # 0 and the FEC block # 1.
  • time information jitter occurs between OFDM frames due to the FEC block straddling of TLV packets and the FEC block frame straddling.
  • the device on the receiving side can perform time reproduction synchronization.
  • the device on the receiving side can perform time reproduction synchronization.
  • the packet of the advanced system of terrestrial digital television broadcasting has a structure in which jitter of time information occurs at the time of transmission, it is difficult for the receiving device to easily perform time reproduction synchronization.
  • a frame including time information and which may cause jitter of the time information is received, and the time information is output between the frames at the same timing with reference to the beginning of the frame. ..
  • time reproduction synchronization of the device on the receiving side is easily realized.
  • FIG. 4 is a block diagram showing a configuration example of the receiving device of FIG.
  • the receiving device 30 is configured to include a tuner 101, a demodulation unit 102, and a signal processing unit 103.
  • the tuner 101 receives a broadcast signal via an antenna (not shown), performs necessary processing on the received broadcast signal, and supplies the resulting signal to the demodulation unit 102.
  • the demodulation unit 102 is composed of, for example, a demodulation LSI (Large Scale Integration).
  • the demodulation unit 102 performs demodulation processing on the signal supplied from the tuner 101.
  • the demodulation unit 102 is configured to include an OFDM demodulation unit 111, an error correction unit 112, and a TLV packet output IF (Interface) 113.
  • the OFDM demodulation unit 111 receives the OFDM frame as a signal supplied from the tuner 101, demodulates the OFDM frame, and outputs the FEC block obtained by the demodulation to the error correction unit 112. At that time, the OFDM demodulation unit 111 outputs a timing signal indicating the beginning of the OFDM frame to the TLV packet output IF 113.
  • the error correction unit 112 corrects the error using the BCH code or LDCP code added to the FEC block supplied from the OFDM demodulation unit 111, and outputs the TLV packet obtained from the error correction result to the TLV packet output IF 113. do.
  • the TLV packet output IF 113 outputs the TLV packet supplied from the error correction unit 112 to the signal processing unit 103 in the subsequent stage.
  • the TLV packet output IF 113 is based on the timing signal indicating the beginning of the OFDM frame supplied from the OFDM demodulation unit 111, and is time information NTP between each OFDM frame at the same timing with reference to the beginning of the OFDM frame.
  • the packet is output to the signal processing unit 103 in the subsequent stage.
  • the signal processing unit 103 is composed of, for example, an SoC (System On Chip).
  • the signal processing unit 103 performs predetermined signal processing such as demultiplexing and decoding on the packet supplied from the TLV packet output IF 113. Further, in the signal processing unit 103, for example, time information is processed together with the packet, and time synchronization is performed.
  • Data such as video, audio, and subtitles obtained by signal processing by the signal processing unit 103 is subjected to decoding processing and the like in the subsequent circuit, and the resulting video and audio are output.
  • the receiving device 30 reproduces content such as a broadcast program, and outputs the video and audio thereof.
  • FIG. 5 is a diagram showing an example of output control of an NTP packet.
  • FIG. 5 shows a configuration example of the OFDM frame A and the OFDM frame B input to the demodulation unit 102, and an example of controlling the output timing of the packet by the demodulation unit 102.
  • the OFDM frame A shows a configuration example of the OFDM frame when the NTP packet arrives at the receiving device 30 with almost no delay with respect to the head of the OFDM frame.
  • the OFDM frame A is composed of FEC block # 0 and FEC block # 1.
  • FEC block # 0 is composed of FBH, NTP packet, TLV packet # 0, TLV packet # 1, BCH code, and LPDC code.
  • FEC block # 1 is composed of FBH, TLV packet # 2, BCH code, and LPDC code.
  • the TLV packet does not straddle the FEC block, and the FEC block does not straddle the OFDM frame.
  • the arrival time t A of the NTP packet in this case is substantially equal to the arrival time at the beginning of the OFDM frame A.
  • the OFDM frame B shows a configuration example of the OFDM frame when the NTP packet arrives at the receiving device 30 with the maximum delay amount with respect to the head of the OFDM frame.
  • the OFDM frame B is composed of the latter half of the FEC block #k, the FEC block # 0, and the FEC block # 1 in succession.
  • the FEC block #k is composed of FBH, TLV packet #y, TLV packet #z, BCH code, and LPDC code.
  • FEC block # 0 is composed of FBH, TLV packet # z, NTP packet, TLV packet # 0, BCH code, and LPDC code.
  • FEC block # 1 is composed of FBH, TLV packet # 0, BCH code, and LPDC code.
  • the FEC block #k is arranged so as to straddle the previous OFDM frame and the OFDM frame B, and the latter half of the TLV packet # z in the FEC block # 0 is the OFDM frame B.
  • the TLV packet #z is arranged across the FEC block # k and the FEC block # 0
  • the TLV packet # 0 is arranged across the FEC block # 0 and the FEC block # 1. Has been done.
  • the TLV packet straddles the FEC block, and the FEC block straddles the OFDM frame.
  • the delay from the beginning of the OFDM frame B of the NTP packet including the time information occurs due to the FEC block straddling of the TLV packet and the frame straddling of the FEC block, as shown by the arrow P.
  • the arrival time t B of the NTP packet in this case is determined by the FEC block length and the maximum length of the TLV packet.
  • the BCH code and the LPDC code are used for error correction in the error correction unit 112, so that only the TLV packet including the NTP packet is supplied to the TLV packet output IF113. ..
  • the TLV packet output IF113 adjusts the timing of outputting the NTP packet between each OFDM frame regardless of the arrival timing of the NTP packet with respect to the beginning of the OFDM frame.
  • the TLV packet output IF113 has a predetermined time equal to or greater than the delay amount in the OFDM frame B in which the NTP packet arrives from the beginning of the OFDM frame with the maximum delay amount with respect to the beginning of the OFDM frame in each OFDM frame.
  • the output timing of the NTP packet is adjusted to the timing when has passed.
  • the TLV packet output IF 113 temporarily holds the TLV packet after the NTP packet in the buffer provided in itself, delays the TLV packet after the NTP packet, and outputs the TLV packet.
  • the TLV packet output IF113 temporarily holds TLV packets after the NTP packet placed at the beginning of the OFDM frame in the buffer. Then, as shown by the arrow Q, the TLV packet output IF113 sets the output timing of the NTP packet from the beginning of the OFDM frame A to a predetermined time equal to or greater than the delay amount from the beginning of the OFDM frame of the NTP packet in the OFDM frame B. Is delayed to the timing when has passed.
  • the NTP packet is output to the signal processing unit 103 at the same timing after the maximum delay amount from the beginning of the OFDM frame of the NTP packet in the OFDM frame B.
  • all TLV packets after the NTP packet are output to the subsequent stage at the timing delayed by the same time as the NTP packet.
  • FIG. 6 is a flowchart illustrating a reception process of the receiving device.
  • step S101 the tuner 101 receives a broadcast signal via an antenna (not shown).
  • the tuner 101 performs necessary processing on the received broadcast signal, and supplies the signal obtained as a result to the demodulation unit 102.
  • step S102 the OFDM demodulation unit 111 receives the OFDM frame as a signal supplied from the tuner 101 and demodulates the OFDM frame.
  • the OFDM demodulation unit 111 outputs the FEC block obtained from the demodulation result to the error correction unit 112.
  • the OFDM demodulation unit 111 outputs a timing signal indicating the beginning of the OFDM frame to the TLV packet output IF 113.
  • step S103 the error correction unit 112 corrects the error by using the parity of the BCH code or LDCP code added to the FEC block supplied from the OFDM demodulation unit 111.
  • the error correction unit 112 outputs the TLV packet obtained by the error correction result to the TLV packet output IF 113.
  • step S104 the TLV packet output IF 113 outputs the TLV packet supplied from the error correction unit 112 to the signal processing unit 103 in the subsequent stage.
  • the TLV packet output IF 113 is based on the timing signal indicating the beginning of the OFDM frame supplied from the OFDM demodulation unit 111, and is based on the time information with respect to the beginning of the OFDM frame.
  • a certain NTP packet is output to the signal processing unit 103 in the subsequent stage.
  • the NTP packet is output to the signal processing unit 103 in the subsequent stage at the same timing between each OFDM frame.
  • step S105 the signal processing unit 103 performs predetermined signal processing such as demultiplexing and decoding on the packet supplied from the TLV packet output IF 113.
  • FIG. 7 is a diagram showing a modified example of output control of an NTP packet.
  • the configuration example of the OFDM frame A and the OFDM frame B input to the demodulation unit 102 is the same as the configuration example of FIG. 5, so the description thereof is omitted and only the packet output control by the demodulation unit 102 is performed. explain.
  • the TLV packet output IF113 adjusts the output timing of the NTP packet between each OFDM frame regardless of the arrival timing of the NTP packet with respect to the beginning of the OFDM frame, as in the case of FIG. Specifically, the TLV packet output IF113 has a predetermined time equal to or greater than the delay amount in the OFDM frame B in which the NTP packet arrives from the beginning of the OFDM frame with the maximum delay amount with respect to the beginning of the OFDM frame in each OFDM frame. The output timing of the NTP packet is adjusted to the timing when has passed.
  • the output timing of the TLV packet other than the time information does not affect the processing of the signal processing unit 103.
  • the TLV packet output IF113 outputs an NTP packet
  • only the NTP packet is temporarily held in the buffer, the output timing of the NTP packet is delayed, and the output order of the other TLV packets is changed and output.
  • the TLV packet output IF113 temporarily holds the NTP packet placed at the beginning of the OFDM frame in the buffer. Then, as shown by the arrow Q, the TLV packet output IF113 sets the output timing of the NTP packet from the beginning of the OFDM frame A to a predetermined time equal to or greater than the delay amount from the beginning of the OFDM frame of the NTP packet in the OFDM frame B. Is delayed to the timing when has passed.
  • the TLV packet output IF113 outputs the TLV packet # 0 and the TLV packet # 1 after the NTP packet first in the OFDM frame A, and determines a predetermined amount after the maximum delay amount from the beginning of the OFDM frame in the OFDM frame B. At the timing, NTP packet is output, and then TLV # 2 packet is output.
  • the output order of packets other than the NTP packet is changed, and only the NTP packet has the maximum delay from the beginning of the OFDM frame of the NTP packet in the OFDM frame B. It is output to the signal processing unit 103 at the same timing after the amount.
  • FIG. 8 is a diagram showing another modification of the output control of the NTP packet.
  • FIG. 8 shows a configuration example of the OFDM frame B of FIG. 5 and an example of packet output timing by the demodulation unit 102.
  • the configuration example of the OFDM frame B is the same as the configuration example of FIG. 5, the description thereof will be omitted, and only the packet output control by the demodulation unit 102 will be described.
  • the TLV packet output IF113 uses the first time of the OFDM frame as the reference time, as in the case of FIG.
  • the TLV packet output IF113 temporarily stores the time information of the NTP packet in a register or the like regardless of the arrival time. Then, the TLV packet output IF113 outputs the NTP packet by adding the time corresponding to the OFDM frame length to the time information of the accumulated NTP packet at the timing of outputting the head of the next OFDM frame.
  • the time corresponding to the frame length is added to the time information, and the NTP packet obtained by adding the time corresponding to the frame length is output at the timing of the first time of the next OFDM frame. I did.
  • ISDB which is a method adopted in Japan and the like
  • ATSC Advanced Television Systems Committee
  • DVB Digital Video Broadcasting
  • digital television broadcasting can also be used for satellite broadcasting using broadcasting satellites (BS) and communication satellites (CS), and cable broadcasting such as cable television (CATV). Can be applied.
  • BS broadcasting satellites
  • CS communication satellites
  • CATV cable television
  • packets and signaling are examples, and other names may be used.
  • difference in these names is a formal difference, and does not mean that the actual contents of the target packet, frame, signaling, etc. are different.
  • the TLV packet is an example of a transmission packet
  • the transmission packet includes, for example, an ALP (ATSC Link-Layer Protocol) packet or a GSE (Generic Stream Encapsulation) packet, which is a variable length packet.
  • ALP ATSC Link-Layer Protocol
  • GSE Generic Stream Encapsulation
  • time information (Other examples of time information)
  • NTP time information the time information specified by NTP (NTP time information)
  • 3GPP 3GPP (Third).
  • Arbitrary time information such as time information specified by the Generation Partnership Project), time information included in GPS (Global Positioning System) information, and time information in a format determined independently can be used. can.
  • the NTP time information is described as representing the time at the head position of the OFDM frame, but the time represented by the time information such as the NTP time information is the time at the head position of the OFDM frame. Not limited to this, it is possible to represent the absolute time of a predetermined position in a stream of a physical layer frame such as an OFDM frame.
  • the present technology is a predetermined method (digital television) defined on the assumption that a transmission line different from the broadcasting transmission line, that is, a communication transmission line such as a mobile communication network is used as the transmission line. It can also be applied to methods other than the broadcasting method of broadcasting).
  • a communication transmission line such as a mobile communication network is used as the transmission line of the transmission system 1 (FIG. 1), and the functions of the data processing device 10 and the transmission device 20 are determined by, for example, the communication equipment in the base station.
  • the communication device and the receiving device 30 having a communication function (for example, a mobile receiver) communicate with each other via a communication transmission path such as a mobile communication network.
  • FIG. 9 is a block diagram showing a configuration example of computer hardware that executes the above-mentioned series of processes programmatically.
  • the CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • An input / output interface 305 is further connected to the bus 304.
  • An input unit 306 including a keyboard, a mouse, and the like, and an output unit 307 including a display, a speaker, and the like are connected to the input / output interface 305.
  • the input / output interface 305 is connected to a storage unit 308 made of a hard disk, a non-volatile memory, etc., a communication unit 309 made of a network interface, etc., and a drive 310 for driving the removable media 311.
  • the CPU 301 loads the program stored in the storage unit 308 into the RAM 303 via the input / output interface 305 and the bus 304 and executes the program, thereby executing the series of processes described above. Is done.
  • the program executed by the CPU 301 is recorded on the removable media 311 or provided via a wired or wireless transmission medium such as a local area network, the Internet, or a digital broadcast, and is installed in the storage unit 308.
  • the program executed by the computer may be a program that is processed in chronological order according to the order described in this specification, or may be a program that is processed in parallel or at a necessary timing such as when a call is made. It may be a program in which processing is performed.
  • the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a device in which a plurality of modules are housed in one housing are both systems. ..
  • this technology can have a cloud computing configuration in which one function is shared and jointly processed by a plurality of devices via a network.
  • each step described in the above flowchart can be executed by one device or shared by a plurality of devices.
  • one step includes a plurality of processes
  • the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices.
  • the present technology can also have the following configurations.
  • a receiver that includes time information and receives frames that may cause jitter in the time information.
  • a receiving device including an output control unit that outputs the time information between the frames at the same timing with respect to the beginning of the frame.
  • the output control unit In each of the frames, the output control unit outputs the time information at a timing when a predetermined time equal to or greater than the maximum delay amount of the time information from the beginning of the frame has elapsed with reference to the beginning of the frame.
  • the receiving device according to (1) above.
  • the receiving device (2), wherein the output control unit delays and outputs only the time information in each of the frames.
  • the time information includes a time at the beginning of the frame.
  • the output control unit adds the time corresponding to the frame length to the time information and outputs the time information at the beginning of the next frame.
  • the frame is an OFDM (Orthogonal Frequency Division Multiplexing) frame.
  • the receiving device Receives a frame that includes time information and may cause jitter in the time information. A receiving method in which the time information is output between the frames at the same timing with respect to the beginning of the frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

This technology relates to a reception device and method which enable time reproduction synchronization. The reception device receives frames each of which contains time information and among which jitter of the time information may occur, and outputs, for each of the frames, the time information at the same timing with respect to the beginning of each frame. This technology can be applied to transmission systems for transmitting broadcast signals.

Description

受信装置および方法Receiver and method
 本技術は、受信装置および方法に関し、特に、時刻再生同期を実現することができるようにした受信装置および方法に関する。 The present technology relates to a receiving device and a method, and more particularly to a receiving device and a method capable of realizing time reproduction synchronization.
 地上デジタルテレビ放送においては、送信側の装置と受信側の装置とで同期をとるための時刻情報として、NTP(Network Time Protocol)で規定された時刻情報を用いることが知られている(例えば、非特許文献1参照)。 In terrestrial digital television broadcasting, it is known that the time information specified by NTP (Network Time Protocol) is used as the time information for synchronizing the transmitting side device and the receiving side device (for example,). See Non-Patent Document 1).
 現在検討中の地上デジタルテレビ放送の高度化方式においても、時刻情報は放送信号の一部として伝送される予定である。 Even in the advanced method of terrestrial digital television broadcasting currently under consideration, time information will be transmitted as part of the broadcasting signal.
 しかしながら、地上デジタルテレビ放送の高度化方式のパケット構造では、伝送時に時刻情報のジッタが発生するため、受信側の装置が時刻再生同期することが困難である。 However, in the packet structure of the advanced system of terrestrial digital television broadcasting, it is difficult for the receiving device to synchronize the time reproduction because the jitter of the time information occurs at the time of transmission.
 本技術はこのような状況に鑑みてなされたものであり、時刻再生同期を実現することができるようにするものである。 This technology was made in view of such a situation, and makes it possible to realize time playback synchronization.
 本技術の一側面の受信装置は、時刻情報を含み、前記時刻情報のジッタが発生する可能性のあるフレームを受信する受信部と、各前記フレーム間で、前記フレームの先頭を基準として同じタイミングで、前記時刻情報を出力させる出力制御部とを備える。 The receiving device of one aspect of the present technology has the same timing between the receiving unit that includes the time information and receiving the frame in which the jitter of the time information may occur and each of the frames with reference to the beginning of the frame. It is provided with an output control unit that outputs the time information.
 本技術の一側面においては、時刻情報を含み、前記時刻情報のジッタが発生する可能性のあるフレームが受信され、各前記フレーム間で、前記フレームの先頭を基準として同じタイミングで、前記時刻情報が出力される。 In one aspect of the present technology, frames including time information that may cause jitter in the time information are received, and the time information is received between the frames at the same timing with reference to the beginning of the frame. Is output.
本技術を適用した伝送システムの一実施の形態の構成を示すブロック図である。It is a block diagram which shows the structure of one Embodiment of the transmission system to which this technique is applied. 受信装置で受信されるフレームを模式的に示す図である。It is a figure which shows typically the frame received by the receiving device. 受信装置で受信されるフレームを模式的に示す図である。It is a figure which shows typically the frame received by the receiving device. 受信装置の構成例を示すブロック図である。It is a block diagram which shows the configuration example of the receiving device. NTPパケットの出力制御の例を示す図である。It is a figure which shows the example of the output control of an NTP packet. 受信装置の受信処理を説明するフローチャートである。It is a flowchart explaining the reception process of a receiving device. NTPパケットの出力制御の変形例を示す図である。It is a figure which shows the modification of the output control of an NTP packet. NTPパケットの出力制御の他の変形例を示す図である。It is a figure which shows the other modification of the output control of an NTP packet. コンピュータの構成例を示すブロック図である。It is a block diagram which shows the configuration example of a computer.
 以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
1.システムの構成
2.本技術の概要
3.本技術の詳細(時刻情報を含むすべてのTLVパケットの遅延)
4.変形例1(時刻情報のみの遅延)
5.変形例2(次フレームの先頭に遅延)
6.その他
Hereinafter, modes for implementing the present technology will be described. The explanation will be given in the following order.
1. 1. System configuration 2. Outline of this technology 3. Details of this technology (delay of all TLV packets including time information)
4. Modification 1 (delay of time information only)
5. Modification 2 (delayed at the beginning of the next frame)
6. others
<1.システムの構成>
 (伝送システムの構成例)
 図1は、本技術を適用した伝送システムの一実施の形態の構成を示すブロック図である。
<1. System configuration>
(Example of transmission system configuration)
FIG. 1 is a block diagram showing a configuration of an embodiment of a transmission system to which the present technology is applied.
 図1において、伝送システム1は、各放送局に関連する施設に設置されるデータ処理装置10-1乃至10-Nと、送信所に設置される送信装置20と、ユーザが所有する受信装置30-1乃至30-Mから構成される。なお、NとMは1以上の整数である。 In FIG. 1, the transmission system 1 includes data processing devices 10-1 to 10-N installed in facilities related to each broadcasting station, a transmitting device 20 installed in a transmitting station, and a receiving device 30 owned by a user. It is composed of -1 to 30-M. N and M are integers of 1 or more.
 また、この伝送システム1において、データ処理装置10-1乃至10-Nと、送信装置20とは、通信回線40-1乃至40-Nを介して接続されている。なお、通信回線40-1乃至40-Nは、例えば専用線とすることができる。 Further, in the transmission system 1, the data processing devices 10-1 to 10-N and the transmission device 20 are connected via communication lines 40-1 to 40-N. The communication lines 40-1 to 40-N can be dedicated lines, for example.
 データ処理装置10-1は、放送局Aにより制作された放送番組等のコンテンツを処理し、その結果得られる伝送データを、通信回線40-1を介して送信装置20に送信する。 The data processing device 10-1 processes contents such as a broadcast program produced by the broadcasting station A, and transmits the transmission data obtained as a result to the transmission device 20 via the communication line 40-1.
 データ処理装置10-2乃至10-Nにおいては、データ処理装置10-1と同様に、放送局Bや放送局Z等の各放送局により制作された放送番組等のコンテンツが処理される。その結果得られる伝送データは、通信回線40-2乃至40-Nを介して、送信装置20に送信される。 In the data processing devices 10-2 to 10-N, contents such as broadcast programs produced by each broadcasting station such as broadcasting station B and broadcasting station Z are processed in the same manner as in the data processing device 10-1. The resulting transmission data is transmitted to the transmission device 20 via the communication lines 40-2 to 40-N.
 送信装置20は、通信回線40-1乃至40-Nを介して、放送局側のデータ処理装置10-1乃至10-Nから送信されてくる伝送データを受信する。送信装置20は、データ処理装置10-1乃至10-Nからの伝送データを処理し、その結果得られる放送信号を、送信所に設置された送信用アンテナから送信する。 The transmission device 20 receives the transmission data transmitted from the data processing devices 10-1 to 10-N on the broadcasting station side via the communication lines 40-1 to 40-N. The transmission device 20 processes the transmission data from the data processing devices 10-1 to 10-N, and transmits the broadcast signal obtained as a result from the transmission antenna installed at the transmission station.
 これにより、送信所側の送信装置20からの放送信号は、放送伝送路50を介して、受信装置30-1乃至30-Mに送信される。 As a result, the broadcast signal from the transmission device 20 on the transmission station side is transmitted to the reception devices 30-1 to 30-M via the broadcast transmission line 50.
 受信装置30-1乃至30-Mは、テレビ受像機やセットトップボックス(STB:Set Top Box)、録画機、ゲーム機、ネットワークストレージなどの固定受信機、あるいはスマートフォンや携帯電話機、タブレット型コンピュータ等のモバイル受信機である。また、受信装置30-1乃至30-Mは、例えば車載テレビなどの車両に搭載される車載機器や、ヘッドマウントディスプレイ(HMD:Head Mounted Display)等のウェアラブルコンピュータなどであってもよい。 Receivers 30-1 to 30-M include television receivers, set-top boxes (STBs), recorders, game consoles, fixed receivers such as network storage, smartphones, mobile phones, tablet computers, etc. Mobile receiver. Further, the receiving devices 30-1 to 30-M may be, for example, an in-vehicle device mounted on a vehicle such as an in-vehicle television, a wearable computer such as a head-mounted display (HMD), or the like.
 受信装置30-1は、放送伝送路50を介して、送信装置20から送信されてくる放送信号を受信して処理することで、ユーザによる選局操作に応じた放送番組等のコンテンツを再生する。 The receiving device 30-1 receives and processes a broadcasting signal transmitted from the transmitting device 20 via the broadcasting transmission line 50 to reproduce contents such as a broadcasting program according to a channel selection operation by the user. ..
 受信装置30-2乃至30-Mにおいても、受信装置30-1と同様に、送信装置20からの放送信号が処理され、ユーザによる選局操作に応じたコンテンツが再生される。 Similarly to the receiving device 30-1, the receiving devices 30-2 to 30-M also process the broadcast signal from the transmitting device 20 and reproduce the content according to the channel selection operation by the user.
 なお、伝送システム1において、放送伝送路50は、地上波(地上波放送)であるとして説明する。ただし、放送伝送路50は、地上波に限らず、例えば、放送衛星(BS:Broadcasting Satellite)や通信衛星(CS:Communications Satellite)を利用した衛星放送、あるいは、ケーブルを用いた有線放送(CATV:Common Antenna TeleVision)などであってもよい。 In the transmission system 1, the broadcast transmission line 50 will be described as being terrestrial (terrestrial broadcasting). However, the broadcast transmission line 50 is not limited to terrestrial waves, and is, for example, satellite broadcasting using a broadcasting satellite (BS: Broadcasting Satellite) or communication satellite (CS: Communications Satellite), or cable broadcasting using a cable (CATV: Common Antenna TeleVision) may be used.
 また、伝送システム1では、図示していないが、インターネット等の通信回線に対し、各種のサーバが接続されるようにしてもよい。このようにすることで、通信機能を有する受信装置30-1乃至30-Mが、インターネット等の通信回線を介して、各種のサーバにアクセスして双方向の通信を行い、コンテンツやアプリケーション等の各種のデータを受信できるようにしてもよい。 Further, in the transmission system 1, although not shown, various servers may be connected to a communication line such as the Internet. By doing so, the receiving devices 30-1 to 30-M having a communication function access various servers via a communication line such as the Internet to perform bidirectional communication, and the contents, applications, etc. It may be possible to receive various types of data.
 なお、以下の説明では、データ処理装置10-1乃至10-Nを、特に区別する必要がない場合には、データ処理装置10と称する。また、受信装置30-1乃至30-Mを、特に区別する必要がない場合には、受信装置30と称する。 In the following description, the data processing devices 10-1 to 10-N will be referred to as a data processing device 10 when it is not necessary to distinguish them. Further, the receiving devices 30-1 to 30-M are referred to as a receiving device 30 when it is not necessary to distinguish them.
<2.本技術の概要>
 ところで、次世代の地上デジタルテレビ放送の放送方式(次世代のISDB(Integrated Services Digital Broadcasting)-T)においては、伝送パケットとして、TLV(Type Length Value)パケットを用いたデータの伝送が検討されている。TLVパケットは可変長パケットであり、例えば、4乃至65536バイトのサイズとされる。なお、TLVパケットについては、上記特許文献1にも開示されている。
<2. Outline of this technology>
By the way, in the next-generation terrestrial digital television broadcasting broadcasting system (next-generation ISDB (Integrated Services Digital Broadcasting) -T), data transmission using TLV (Type Length Value) packets as transmission packets is being considered. There is. The TLV packet is a variable length packet, for example, having a size of 4 to 65536 bytes. The TLV packet is also disclosed in Patent Document 1 above.
 TLVパケットなどの伝送パケットは、FEC(Forward Error Correction)ブロックヘッダ(FBH)、BCH(Bose-Chaudhuri-Hocquenghem)符号、およびLPDC(Low Density Parity Check)符号を付加することで、誤り訂正ブロックであるFECブロックにカプセル化される。そして、1つまたは複数のFECブロックから、OFDM(Orthogonal Frequency Division Multiplexing)フレームが生成される。 Transmission packets such as TLV packets are error correction blocks by adding FEC (Forward Error Correction) block header (FBH), BCH (Bose-Chaudhuri-Hocquenghem) code, and LPDC (Low Density Parity Check) code. Encapsulated in FEC block. Then, an OFDM (Orthogonal Frequency Division Multiplexing) frame is generated from one or more FEC blocks.
 このOFDMフレームは、物理層フレームとして、データを伝送する単位となる。OFDMフレームにおいては、先頭の時刻が基準時刻とされており、OFDMフレームを構成するFECブロックの1つに、時刻情報を含むTLVパケットであるNTPパケットが挿入されている。この時刻情報は、OFDMフレームの先頭の時刻(先頭の位置の絶対時刻)を表している。この時刻情報は、例えば、OFDMフレームの生成時の時刻である。 This OFDM frame is a unit for transmitting data as a physical layer frame. In the OFDM frame, the first time is set as the reference time, and an NTP packet, which is a TLV packet containing time information, is inserted into one of the FEC blocks constituting the OFDM frame. This time information represents the time at the beginning of the OFDM frame (absolute time at the beginning position). This time information is, for example, the time when the OFDM frame is generated.
 図2および図3は、受信側の装置で受信されるフレームを模式的に示す図である。 2 and 3 are diagrams schematically showing frames received by the receiving device.
 ここで、1つのOFDMフレームを複数のFECブロックにより構成する際に、OFDMフレームとFECブロックとの境界が一致している場合と、OFDMフレームとFECブロックとの境界が一致していない場合とがある。それは、OFDMフレームのフレーム長がFECブロックのブロック長の整数倍になっていないためである。 Here, when one OFDM frame is composed of a plurality of FEC blocks, there are cases where the boundaries between the OFDM frame and the FEC block match and cases where the boundaries between the OFDM frame and the FEC block do not match. be. This is because the frame length of the OFDM frame is not an integral multiple of the block length of the FEC block.
 図2においては、OFDMフレームとFECブロックとの境界が一致しているOFDMフレームAの構成例が示されている。 FIG. 2 shows a configuration example of the OFDM frame A in which the boundaries between the OFDM frame and the FEC block match.
 OFDMフレームAは、FECブロック#0とFECブロック#1とが含まれて構成されている。FECブロック#1の後には、図示されないが、他のFECブロックが含まれる場合もある。FECブロック#0は、FBH、NTPパケット、TLVパケット#0、TLVパケット#1、BCH符号、LPDC符号で構成される。FECブロック#1は、FBH、TLVパケット#2、BCH符号、LPDC符号で構成される。 The OFDM frame A is composed of FEC block # 0 and FEC block # 1. FEC block # 1 may be followed by other FEC blocks (not shown). FEC block # 0 is composed of FBH, NTP packet, TLV packet # 0, TLV packet # 1, BCH code, and LPDC code. FEC block # 1 is composed of FBH, TLV packet # 2, BCH code, and LPDC code.
 このように、OFDMフレームAの場合、OFDMフレームを構成するFECブロックのうち、先頭のFECブロック#0におけるFBHの直後に、NTPパケットが挿入されているため、受信側の装置は、時刻再生同期を容易に行うことができる。 In this way, in the case of OFDM frame A, since the NTP packet is inserted immediately after FBH in the first FEC block # 0 among the FEC blocks constituting the OFDM frame, the device on the receiving side synchronizes the time reproduction. Can be easily performed.
 図3においては、OFDMフレームとFECブロックとの境界が一致していないOFDMフレームBの構成例が示されている。 FIG. 3 shows a configuration example of the OFDM frame B in which the boundaries between the OFDM frame and the FEC block do not match.
 OFDMフレームBは、FECブロック#0の一部とFECブロック#1とが含まれて構成されている。FECブロック#0は、FBH、TLVパケット#z、NTPパケット、TLVパケット#0、BCH符号、LPDC符号で構成される。FECブロック#1は、FBH、TLVパケット#0、BCH符号、LPDC符号で構成される。 The OFDM frame B is composed of a part of FEC block # 0 and FEC block # 1. FEC block # 0 is composed of FBH, TLV packet #z, NTP packet, TLV packet # 0, BCH code, and LPDC code. FEC block # 1 is composed of FBH, TLV packet # 0, BCH code, and LPDC code.
 すなわち、OFDMフレームBにおいては、FECブロック#0が、1つ前のOFDMフレームとOFDMフレームBとに跨って配置されており、FECブロック#0のうち、NTPパケットの後半が、OFDMフレームBに含まれる。また、OFDMフレームBにおいては、TLVパケット#0が、FECブロック#0とFECブロック#1に跨って配置されている。 That is, in the OFDM frame B, the FEC block # 0 is arranged so as to straddle the previous OFDM frame and the OFDM frame B, and the latter half of the NTP packet in the FEC block # 0 is in the OFDM frame B. included. Further, in the OFDM frame B, the TLV packet # 0 is arranged across the FEC block # 0 and the FEC block # 1.
 このように、OFDMフレームBの場合、TLVパケットのFECブロック跨ぎ、およびFECブロックのフレーム跨ぎにより、OFDMフレーム間で時刻情報のジッタが発生してしまう。 In this way, in the case of OFDM frame B, time information jitter occurs between OFDM frames due to the FEC block straddling of TLV packets and the FEC block frame straddling.
 なお、OFDMフレームAの場合、上述したように、受信側の装置は、時刻再生同期を行うことができる。しかしながら、OFDMフレームAのように、OFDMフレームとFECブロックとの境界を一致させるためには、前フレームのパディングにより調整を行うことが必要となり、伝送効率が悪化してしまう。 In the case of OFDM frame A, as described above, the device on the receiving side can perform time reproduction synchronization. However, as in the OFDM frame A, in order to match the boundary between the OFDM frame and the FEC block, it is necessary to perform adjustment by padding the previous frame, which deteriorates the transmission efficiency.
 以上のように、地上デジタルテレビ放送の高度化方式のパケットは、伝送時に時刻情報のジッタが発生してしまう構造のため、受信側の装置が時刻再生同期を容易に行うことが難しかった。 As described above, since the packet of the advanced system of terrestrial digital television broadcasting has a structure in which jitter of time information occurs at the time of transmission, it is difficult for the receiving device to easily perform time reproduction synchronization.
 そこで、本技術においては、時刻情報を含み、時刻情報のジッタが発生する可能性のあるフレームが受信され、各前記フレーム間で、フレームの先頭を基準として同じタイミングで、時刻情報が出力される。これにより、受信側の装置の時刻再生同期が容易に実現される。 Therefore, in the present technology, a frame including time information and which may cause jitter of the time information is received, and the time information is output between the frames at the same timing with reference to the beginning of the frame. .. As a result, time reproduction synchronization of the device on the receiving side is easily realized.
<3.本技術の詳細(時刻情報を含むすべてのTLVパケットの遅延)>
 (受信装置の構成)
 図4は、図1の受信装置の構成例を示すブロック図である。
<3. Details of this technology (delay of all TLV packets including time information)>
(Receiver configuration)
FIG. 4 is a block diagram showing a configuration example of the receiving device of FIG.
 受信装置30は、チューナー101、復調部102、および信号処理部103を含むように構成される。 The receiving device 30 is configured to include a tuner 101, a demodulation unit 102, and a signal processing unit 103.
 チューナー101は、図示せぬアンテナを介して放送信号を受信し、受信した放送信号に対し、必要な処理を施し、その結果得られる信号を、復調部102に供給する。 The tuner 101 receives a broadcast signal via an antenna (not shown), performs necessary processing on the received broadcast signal, and supplies the resulting signal to the demodulation unit 102.
 復調部102は、例えば、復調LSI(Large Scale Integration)などから構成される。復調部102は、チューナー101から供給される信号に対し、復調処理を行う。 The demodulation unit 102 is composed of, for example, a demodulation LSI (Large Scale Integration). The demodulation unit 102 performs demodulation processing on the signal supplied from the tuner 101.
 復調部102は、OFDM復調部111、エラー訂正部112、およびTLVパケット出力IF(Interface)113を含むように構成される。 The demodulation unit 102 is configured to include an OFDM demodulation unit 111, an error correction unit 112, and a TLV packet output IF (Interface) 113.
 OFDM復調部111は、チューナー101から供給される信号として、OFDMフレームを受け取り、OFDMフレームを復調し、復調により得られたFECブロックをエラー訂正部112に出力する。その際、OFDM復調部111は、OFDMフレームの先頭を示すタイミング信号を、TLVパケット出力IF113に出力する。 The OFDM demodulation unit 111 receives the OFDM frame as a signal supplied from the tuner 101, demodulates the OFDM frame, and outputs the FEC block obtained by the demodulation to the error correction unit 112. At that time, the OFDM demodulation unit 111 outputs a timing signal indicating the beginning of the OFDM frame to the TLV packet output IF 113.
 エラー訂正部112は、OFDM復調部111から供給されるFECブロックに付加されているBCH符号やLDCP符号を用いて、エラー訂正を行い、エラー訂正結果により得られるTLVパケットをTLVパケット出力IF113に出力する。 The error correction unit 112 corrects the error using the BCH code or LDCP code added to the FEC block supplied from the OFDM demodulation unit 111, and outputs the TLV packet obtained from the error correction result to the TLV packet output IF 113. do.
 TLVパケット出力IF113は、エラー訂正部112から供給されるTLVパケットを、後段の信号処理部103に出力する。その際、TLVパケット出力IF113は、OFDM復調部111から供給されるOFDMフレームの先頭を示すタイミング信号に基づき、各OFDMフレーム間で、OFDMフレームの先頭を基準として同じタイミングで、時刻情報であるNTPパケットを後段の信号処理部103に出力する。 The TLV packet output IF 113 outputs the TLV packet supplied from the error correction unit 112 to the signal processing unit 103 in the subsequent stage. At that time, the TLV packet output IF 113 is based on the timing signal indicating the beginning of the OFDM frame supplied from the OFDM demodulation unit 111, and is time information NTP between each OFDM frame at the same timing with reference to the beginning of the OFDM frame. The packet is output to the signal processing unit 103 in the subsequent stage.
 信号処理部103は、例えば、SoC(System On Chip)などから構成される。信号処理部103は、TLVパケット出力IF113から供給されるパケットに対し、デマルチプレクスおよびデコードなど、所定の信号処理を行う。また、信号処理部103においては、例えば、パケットとともに、時刻情報が処理され、時刻同期が行われる。 The signal processing unit 103 is composed of, for example, an SoC (System On Chip). The signal processing unit 103 performs predetermined signal processing such as demultiplexing and decoding on the packet supplied from the TLV packet output IF 113. Further, in the signal processing unit 103, for example, time information is processed together with the packet, and time synchronization is performed.
 信号処理部103による信号処理で得られる映像や音声、字幕などのデータに対しては、後段の回路で、復号処理などが施され、その結果得られる映像や音声が出力される。これにより、受信装置30では、放送番組などのコンテンツが再生され、その映像や音声が出力される。 Data such as video, audio, and subtitles obtained by signal processing by the signal processing unit 103 is subjected to decoding processing and the like in the subsequent circuit, and the resulting video and audio are output. As a result, the receiving device 30 reproduces content such as a broadcast program, and outputs the video and audio thereof.
 (NTPパケットの出力制御の例)
 図5は、NTPパケットの出力制御の例を示す図である。
(Example of NTP packet output control)
FIG. 5 is a diagram showing an example of output control of an NTP packet.
 図5においては、復調部102に入力されるOFDMフレームAおよびOFDMフレームBの構成例と、復調部102によるパケットの出力タイミングの制御の例が示されている。 FIG. 5 shows a configuration example of the OFDM frame A and the OFDM frame B input to the demodulation unit 102, and an example of controlling the output timing of the packet by the demodulation unit 102.
 OFDMフレームAは、OFDMフレームの先頭に対して、NTPパケットがほぼ遅延なく受信装置30に到着する場合のOFDMフレームの構成例を示す。 The OFDM frame A shows a configuration example of the OFDM frame when the NTP packet arrives at the receiving device 30 with almost no delay with respect to the head of the OFDM frame.
 OFDMフレームAは、FECブロック#0とFECブロック#1とが含まれて構成されている。FECブロック#0は、FBH、NTPパケット、TLVパケット#0、TLVパケット#1、BCH符号、LPDC符号で構成される。FECブロック#1は、FBH、TLVパケット#2、BCH符号、LPDC符号で構成される。 The OFDM frame A is composed of FEC block # 0 and FEC block # 1. FEC block # 0 is composed of FBH, NTP packet, TLV packet # 0, TLV packet # 1, BCH code, and LPDC code. FEC block # 1 is composed of FBH, TLV packet # 2, BCH code, and LPDC code.
 すなわち、OFDMフレームAにおいて、TLVパケットはFECブロックを跨いでおらず、FECブロックはOFDMフレームを跨いでいない。この場合のNTPパケットの到着時刻tAは、OFDMフレームAの先頭の到着時刻と略等しくなる。 That is, in OFDM frame A, the TLV packet does not straddle the FEC block, and the FEC block does not straddle the OFDM frame. The arrival time t A of the NTP packet in this case is substantially equal to the arrival time at the beginning of the OFDM frame A.
 OFDMフレームBは、OFDMフレームの先頭に対して、NTPパケットが最大の遅延量で受信装置30に到着する場合のOFDMフレームの構成例を示す。 The OFDM frame B shows a configuration example of the OFDM frame when the NTP packet arrives at the receiving device 30 with the maximum delay amount with respect to the head of the OFDM frame.
 OFDMフレームBは、FECブロック#kの後半、FECブロック#0、FECブロック#1が含まれて続いて構成されている。FECブロック#kは、FBH、TLVパケット#y、TLVパケット#z、BCH符号、LPDC符号で構成される。 The OFDM frame B is composed of the latter half of the FEC block #k, the FEC block # 0, and the FEC block # 1 in succession. The FEC block #k is composed of FBH, TLV packet #y, TLV packet #z, BCH code, and LPDC code.
 FECブロック#0は、FBH、TLVパケット#z、NTPパケット、TLVパケット#0、BCH符号、LPDC符号で構成される。FECブロック#1は、FBH、TLVパケット#0、BCH符号、LPDC符号で構成される。 FEC block # 0 is composed of FBH, TLV packet # z, NTP packet, TLV packet # 0, BCH code, and LPDC code. FEC block # 1 is composed of FBH, TLV packet # 0, BCH code, and LPDC code.
 OFDMフレームBの場合、FECブロック#kが、1つ前のOFDMフレームとOFDMフレームBとに跨って配置されており、FECブロック#0のうち、TLVパケット#zの後半以降が、OFDMフレームBに含まれる。また、OFDMフレームBの場合、TLVパケット#zが、FECブロック#kとFECブロック#0に跨って配置されており、TLVパケット#0が、FECブロック#0とFECブロック#1に跨って配置されている。 In the case of OFDM frame B, the FEC block #k is arranged so as to straddle the previous OFDM frame and the OFDM frame B, and the latter half of the TLV packet # z in the FEC block # 0 is the OFDM frame B. include. Further, in the case of OFDM frame B, the TLV packet #z is arranged across the FEC block # k and the FEC block # 0, and the TLV packet # 0 is arranged across the FEC block # 0 and the FEC block # 1. Has been done.
 すなわち、OFDMフレームBにおいて、TLVパケットはFECブロックを跨いでおり、かつ、FECブロックはOFDMフレームを跨いでいる。 That is, in OFDM frame B, the TLV packet straddles the FEC block, and the FEC block straddles the OFDM frame.
 したがって、OFDMフレームBの場合、TLVパケットのFECブロック跨ぎ、およびFECブロックのフレーム跨ぎにより、矢印Pに示されるように、時刻情報を含むNTPパケットのOFDMフレームBの先頭からの遅延が発生する。この場合のNTPパケットの到着時刻tBは、FECブロック長とTLVパケットの最大長で決まる。 Therefore, in the case of the OFDM frame B, the delay from the beginning of the OFDM frame B of the NTP packet including the time information occurs due to the FEC block straddling of the TLV packet and the frame straddling of the FEC block, as shown by the arrow P. The arrival time t B of the NTP packet in this case is determined by the FEC block length and the maximum length of the TLV packet.
 なお、OFDMフレームA、OFDMフレームBにおいては、BCH符号、LPDC符号は、エラー訂正部112においてエラー訂正に用いられることにより、TLVパケット出力IF113には、NTPパケットを含むTLVパケットのみが供給される。 In the OFDM frame A and the OFDM frame B, the BCH code and the LPDC code are used for error correction in the error correction unit 112, so that only the TLV packet including the NTP packet is supplied to the TLV packet output IF113. ..
 これに対して、TLVパケット出力IF113は、NTPパケットを出力するタイミングを、OFDMフレームの先頭に対するNTPパケットの到着タイミングに関わらず、各OFDMフレーム間で合わせる。具体的には、TLVパケット出力IF113は、各OFDMフレームにおいて、OFDMフレームの先頭を基準として、OFDMフレームの先頭から最大の遅延量でNTPパケットが到着するOFDMフレームBにおける遅延量以上の所定の時間が経過したタイミングに、NTPパケットの出力タイミングを合わせる。その際、TLVパケット出力IF113は、NTPパケット以降のTLVパケットを、自己に設けられたバッファに一旦保持させ、NTPパケット以降のTLVパケットも遅延させて、出力させる。 On the other hand, the TLV packet output IF113 adjusts the timing of outputting the NTP packet between each OFDM frame regardless of the arrival timing of the NTP packet with respect to the beginning of the OFDM frame. Specifically, the TLV packet output IF113 has a predetermined time equal to or greater than the delay amount in the OFDM frame B in which the NTP packet arrives from the beginning of the OFDM frame with the maximum delay amount with respect to the beginning of the OFDM frame in each OFDM frame. The output timing of the NTP packet is adjusted to the timing when has passed. At that time, the TLV packet output IF 113 temporarily holds the TLV packet after the NTP packet in the buffer provided in itself, delays the TLV packet after the NTP packet, and outputs the TLV packet.
 例えば、OFDMフレームAの場合、TLVパケット出力IF113は、OFDMフレームの先頭に配置されたNTPパケット以降のTLVパケットを、バッファに一旦保持させる。そして、TLVパケット出力IF113は、矢印Qに示されるように、NTPパケットの出力タイミングを、OFDMフレームAの先頭から、OFDMフレームBにおけるNTPパケットのOFDMフレームの先頭からの遅延量以上の所定の時間が経過したタイミングに遅延させる。 For example, in the case of OFDM frame A, the TLV packet output IF113 temporarily holds TLV packets after the NTP packet placed at the beginning of the OFDM frame in the buffer. Then, as shown by the arrow Q, the TLV packet output IF113 sets the output timing of the NTP packet from the beginning of the OFDM frame A to a predetermined time equal to or greater than the delay amount from the beginning of the OFDM frame of the NTP packet in the OFDM frame B. Is delayed to the timing when has passed.
 これにより、OFDMフレームAを含む各OFDMフレームにおいて、NTPパケットが、OFDMフレームBにおけるNTPパケットのOFDMフレームの先頭からの最大の遅延量以降の同じタイミングで、信号処理部103に出力される。 As a result, in each OFDM frame including the OFDM frame A, the NTP packet is output to the signal processing unit 103 at the same timing after the maximum delay amount from the beginning of the OFDM frame of the NTP packet in the OFDM frame B.
 また、各OFDMフレームにおいて、NTPパケット以降のすべてのTLVパケットが、NTPパケットと同様の時間だけ遅延させたタイミングで後段に出力される。 Also, in each OFDM frame, all TLV packets after the NTP packet are output to the subsequent stage at the timing delayed by the same time as the NTP packet.
 したがって、本技術によれば、出力するパケットの順序を入れ替える必要がなく、制御が容易にできる。また、NTPパケットを出力する遅延量を小さくすることができる。 Therefore, according to this technology, it is not necessary to change the order of output packets, and control can be easily performed. In addition, the amount of delay in outputting NTP packets can be reduced.
<受信装置の動作>
 図6は、受信装置の受信処理を説明するフローチャートである。
<Operation of receiver>
FIG. 6 is a flowchart illustrating a reception process of the receiving device.
 ステップS101において、チューナー101は、図示せぬアンテナを介して放送信号を受信する。チューナー101は、受信した放送信号に対し、必要な処理を施し、その結果得られる信号を、復調部102に供給する。 In step S101, the tuner 101 receives a broadcast signal via an antenna (not shown). The tuner 101 performs necessary processing on the received broadcast signal, and supplies the signal obtained as a result to the demodulation unit 102.
 ステップS102において、OFDM復調部111は、チューナー101から供給される信号として、OFDMフレームを受け取り、OFDMフレームを復調する。OFDM復調部111は、復調結果により得られたFECブロックをエラー訂正部112に出力する。その際、OFDM復調部111は、OFDMフレームの先頭を示すタイミング信号を、TLVパケット出力IF113に出力する。 In step S102, the OFDM demodulation unit 111 receives the OFDM frame as a signal supplied from the tuner 101 and demodulates the OFDM frame. The OFDM demodulation unit 111 outputs the FEC block obtained from the demodulation result to the error correction unit 112. At that time, the OFDM demodulation unit 111 outputs a timing signal indicating the beginning of the OFDM frame to the TLV packet output IF 113.
 ステップS103において、エラー訂正部112は、OFDM復調部111から供給されるFECブロックに付加されているBCH符号やLDCP符号のパリティを用いて、エラー訂正を行う。エラー訂正部112は、エラー訂正結果により得られるTLVパケットをTLVパケット出力IF113に出力する。 In step S103, the error correction unit 112 corrects the error by using the parity of the BCH code or LDCP code added to the FEC block supplied from the OFDM demodulation unit 111. The error correction unit 112 outputs the TLV packet obtained by the error correction result to the TLV packet output IF 113.
 ステップS104において、TLVパケット出力IF113は、エラー訂正部112から供給されるTLVパケットを、後段の信号処理部103に出力する。その際、図5を参照して上述したように、TLVパケット出力IF113は、OFDM復調部111から供給されるOFDMフレームの先頭を示すタイミング信号に基づき、OFDMフレームの先頭を基準として、時刻情報であるNTPパケットを後段の信号処理部103に出力する。その際、NTPパケットは、各OFDMフレーム間で同じタイミングで、後段の信号処理部103に出力される。 In step S104, the TLV packet output IF 113 outputs the TLV packet supplied from the error correction unit 112 to the signal processing unit 103 in the subsequent stage. At that time, as described above with reference to FIG. 5, the TLV packet output IF 113 is based on the timing signal indicating the beginning of the OFDM frame supplied from the OFDM demodulation unit 111, and is based on the time information with respect to the beginning of the OFDM frame. A certain NTP packet is output to the signal processing unit 103 in the subsequent stage. At that time, the NTP packet is output to the signal processing unit 103 in the subsequent stage at the same timing between each OFDM frame.
 ステップS105において、信号処理部103は、TLVパケット出力IF113から供給されるパケットに対し、デマルチプレクスおよびデコードなど、所定の信号処理を行う。 In step S105, the signal processing unit 103 performs predetermined signal processing such as demultiplexing and decoding on the packet supplied from the TLV packet output IF 113.
 以上により、信号処理部103の入力において、時刻情報であるNTPパケットはジッタしないため、時刻再生同期を実現することができる。 As described above, since the NTP packet which is the time information does not jitter at the input of the signal processing unit 103, time reproduction synchronization can be realized.
<4.変形例1(時刻情報のみの遅延)>
 (NTPパケットの出力制御の変形例)
 図7は、NTPパケットの出力制御の変形例を示す図である。
<4. Modification 1 (delay of time information only)>
(Modified example of NTP packet output control)
FIG. 7 is a diagram showing a modified example of output control of an NTP packet.
 図7において、復調部102に入力されるOFDMフレームAおよびOFDMフレームBの構成例は、図5の構成例と同様であるので、その説明を省略し、復調部102によるパケットの出力制御についてのみ説明する。 In FIG. 7, the configuration example of the OFDM frame A and the OFDM frame B input to the demodulation unit 102 is the same as the configuration example of FIG. 5, so the description thereof is omitted and only the packet output control by the demodulation unit 102 is performed. explain.
 TLVパケット出力IF113は、図5の場合と同様に、NTPパケットを出力するタイミングを、OFDMフレームの先頭に対するNTPパケットの到着タイミングに関わらず、各OFDMフレーム間で合わせる。具体的には、TLVパケット出力IF113は、各OFDMフレームにおいて、OFDMフレームの先頭を基準として、OFDMフレームの先頭から最大の遅延量でNTPパケットが到着するOFDMフレームBにおける遅延量以上の所定の時間が経過したタイミングに、NTPパケットの出力タイミングを合わせる。 The TLV packet output IF113 adjusts the output timing of the NTP packet between each OFDM frame regardless of the arrival timing of the NTP packet with respect to the beginning of the OFDM frame, as in the case of FIG. Specifically, the TLV packet output IF113 has a predetermined time equal to or greater than the delay amount in the OFDM frame B in which the NTP packet arrives from the beginning of the OFDM frame with the maximum delay amount with respect to the beginning of the OFDM frame in each OFDM frame. The output timing of the NTP packet is adjusted to the timing when has passed.
 なお、受信装置30において、時刻情報以外のTLVパケットの出力タイミングは、信号処理部103の処理に影響しない。 In the receiving device 30, the output timing of the TLV packet other than the time information does not affect the processing of the signal processing unit 103.
 そこで、TLVパケット出力IF113は、NTPパケットを出力する際、NTPパケットのみを、バッファに一旦保持させ、NTPパケットの出力タイミングを遅延させ、それ以外のTLVパケットは出力順序を入れ替えて、出力させる。 Therefore, when the TLV packet output IF113 outputs an NTP packet, only the NTP packet is temporarily held in the buffer, the output timing of the NTP packet is delayed, and the output order of the other TLV packets is changed and output.
 例えば、OFDMフレームAの場合、TLVパケット出力IF113は、OFDMフレームの先頭に配置されたNTPパケットを、バッファに一旦保持させる。そして、TLVパケット出力IF113は、矢印Qに示されるように、NTPパケットの出力タイミングを、OFDMフレームAの先頭から、OFDMフレームBにおけるNTPパケットのOFDMフレームの先頭からの遅延量以上の所定の時間が経過したタイミングに遅延させる。 For example, in the case of OFDM frame A, the TLV packet output IF113 temporarily holds the NTP packet placed at the beginning of the OFDM frame in the buffer. Then, as shown by the arrow Q, the TLV packet output IF113 sets the output timing of the NTP packet from the beginning of the OFDM frame A to a predetermined time equal to or greater than the delay amount from the beginning of the OFDM frame of the NTP packet in the OFDM frame B. Is delayed to the timing when has passed.
 すなわち、TLVパケット出力IF113は、OFDMフレームAにおいて、NTPパケット以降のTLVパケット#0とTLVパケット#1を先に出力させ、OFDMフレームBにおけるOFDMフレームの先頭からの最大の遅延量以降の所定のタイミングで、NTPパケットを出力させ、その後に、TLV#2パケットを出力させる。 That is, the TLV packet output IF113 outputs the TLV packet # 0 and the TLV packet # 1 after the NTP packet first in the OFDM frame A, and determines a predetermined amount after the maximum delay amount from the beginning of the OFDM frame in the OFDM frame B. At the timing, NTP packet is output, and then TLV # 2 packet is output.
 このようにすることで、TLVパケット出力IF113においては、必要となるバッファ量を削減することができる。 By doing so, the amount of buffer required for the TLV packet output IF113 can be reduced.
 以上のように、本技術においては、各OFDMフレームにおいて、NTPパケット以外の他のパケットの出力順序が入れ替えられ、NTPパケットのみが、OFDMフレームBにおけるNTPパケットのOFDMフレームの先頭からの最大の遅延量以降の同じタイミングで、信号処理部103に出力される。 As described above, in the present technology, in each OFDM frame, the output order of packets other than the NTP packet is changed, and only the NTP packet has the maximum delay from the beginning of the OFDM frame of the NTP packet in the OFDM frame B. It is output to the signal processing unit 103 at the same timing after the amount.
 したがって、本技術によれば、NTPパケット以外のパケットを蓄積するバッファ(メモリ)を削減することができる。また、NTPパケットを出力する遅延量を小さくすることができる。 Therefore, according to this technology, it is possible to reduce the buffer (memory) for accumulating packets other than NTP packets. In addition, the amount of delay in outputting NTP packets can be reduced.
<5.変形例2(次フレームの先頭に遅延)>
 (NTPパケットの出力制御の他の変形例)
 図8は、NTPパケットの出力制御の他の変形例を示す図である。
<5. Modification 2 (delayed at the beginning of the next frame)>
(Other variants of NTP packet output control)
FIG. 8 is a diagram showing another modification of the output control of the NTP packet.
 図8においては、図5のOFDMフレームBの構成例と、復調部102によるパケットの出力タイミングの例が示されている。図8において、OFDMフレームBの構成例は、図5の構成例と同様であるので、その説明を省略し、復調部102によるパケットの出力制御についてのみ説明する。 FIG. 8 shows a configuration example of the OFDM frame B of FIG. 5 and an example of packet output timing by the demodulation unit 102. In FIG. 8, since the configuration example of the OFDM frame B is the same as the configuration example of FIG. 5, the description thereof will be omitted, and only the packet output control by the demodulation unit 102 will be described.
 TLVパケット出力IF113は、図5の場合と同様に、OFDMフレームの先頭の時刻を基準時刻とする。 The TLV packet output IF113 uses the first time of the OFDM frame as the reference time, as in the case of FIG.
 TLVパケット出力IF113は、到着時刻に関わらず、NTPパケットの時刻情報をレジスタなどに一時蓄積しておく。そして、TLVパケット出力IF113は、次のOFDMフレームの先頭を出力するタイミングで、蓄積していたNTPパケットの時刻情報にOFDMフレーム長に対応する時間を加算して、NTPパケットを出力する。 The TLV packet output IF113 temporarily stores the time information of the NTP packet in a register or the like regardless of the arrival time. Then, the TLV packet output IF113 outputs the NTP packet by adding the time corresponding to the OFDM frame length to the time information of the accumulated NTP packet at the timing of outputting the head of the next OFDM frame.
 以上のように、本技術においては、時刻情報にフレーム長に対応する時間を加算して、フレーム長に対応する時間を加算したNTPパケットを、次のOFDMフレームの先頭の時刻のタイミングで出力するようにした。 As described above, in the present technology, the time corresponding to the frame length is added to the time information, and the NTP packet obtained by adding the time corresponding to the frame length is output at the timing of the first time of the next OFDM frame. I did.
 したがって、本技術によれば、NTPパケット以外を蓄積するバッファ(メモリ)を削減することができる。また、NTPパケットを出力するタイミングがFECブロック長およびTLVパケットの最大長に関わらず一定なので、パケットの出力を容易に制御することができる、 Therefore, according to this technology, it is possible to reduce the buffer (memory) that stores other than NTP packets. Moreover, since the timing of outputting the NTP packet is constant regardless of the FEC block length and the maximum length of the TLV packet, the packet output can be easily controlled.
<6.その他>
 (本技術の効果)
 本技術においては、時刻情報を含むOFDMフレームが受信され、OFDMフレームの先頭を基準として、各OFDMフレーム間で同じタイミングで、時刻情報が後段に出力される。
<6. Others>
(Effect of this technology)
In the present technology, an OFDM frame including time information is received, and the time information is output to the subsequent stage at the same timing between each OFDM frame with the head of the OFDM frame as a reference.
 これにより、受信装置の時刻再生同期を実現させることができる。 This makes it possible to realize time reproduction synchronization of the receiving device.
 (他の放送方式への適用)
 上述した説明では、デジタルテレビ放送の放送方式として、日本等で採用されている方式であるISDBを中心に説明したが、本技術は、米国等が採用する方式であるATSC(Advanced Television Systems Committee)や、欧州の各国等が採用する方式であるDVB(Digital Video Broadcasting)などに適用するようにしてもよい。
(Application to other broadcasting systems)
In the above explanation, ISDB, which is a method adopted in Japan and the like, has been mainly described as a broadcasting method for digital television broadcasting, but this technology is ATSC (Advanced Television Systems Committee), which is a method adopted by the United States and the like. Alternatively, it may be applied to DVB (Digital Video Broadcasting), which is a method adopted by each country in Europe.
 また、デジタルテレビ放送の放送方式としては、地上波放送のほか、放送衛星(BS)や通信衛星(CS)等を利用した衛星放送や、ケーブルテレビ(CATV)等の有線放送などの方式にも適用することができる。 In addition to terrestrial broadcasting, digital television broadcasting can also be used for satellite broadcasting using broadcasting satellites (BS) and communication satellites (CS), and cable broadcasting such as cable television (CATV). Can be applied.
 (パケットやシグナリングの他の例)
 また、上述したパケットやフレーム、シグナリング(制御情報)などの名称は、一例であって、他の名称が用いられる場合がある。ただし、これらの名称の違いは、形式的な違いであって、対象のパケットやフレーム、シグナリングなどの実質的な内容が異なるものではない。
(Other examples of packets and signaling)
Further, the above-mentioned names such as packets, frames, and signaling (control information) are examples, and other names may be used. However, the difference in these names is a formal difference, and does not mean that the actual contents of the target packet, frame, signaling, etc. are different.
 例えば、TLVパケットは、伝送パケットの一例であって、伝送パケットには、例えば、可変長のパケットであるALP(ATSC Link-Layer Protocol)パケットやGSE(Generic Stream Encapsulation)パケットなどが含まれる。なお、フレームとパケットは同一の意味で用いられる場合がある。 For example, the TLV packet is an example of a transmission packet, and the transmission packet includes, for example, an ALP (ATSC Link-Layer Protocol) packet or a GSE (Generic Stream Encapsulation) packet, which is a variable length packet. Note that frames and packets may be used interchangeably.
 (時刻情報の他の例)
 上述した説明では、時刻情報として、NTPで規定される時刻の情報(NTP時刻情報)が用いられる場合を説明したが、時刻情報はそれに限らず、例えば、PTP(Precision Time Protocol)や3GPP(Third Generation Partnership Project)で規定されている時刻の情報や、GPS(Global Positioning System)情報に含まれる時刻の情報、その他独自に決定された形式の時刻の情報等の任意の時刻の情報を用いることができる。
(Other examples of time information)
In the above description, the case where the time information specified by NTP (NTP time information) is used as the time information is described, but the time information is not limited to this, for example, PTP (Precision Time Protocol) or 3GPP (Third). Arbitrary time information such as time information specified by the Generation Partnership Project), time information included in GPS (Global Positioning System) information, and time information in a format determined independently can be used. can.
 また、上述した説明では、NTP時刻情報は、OFDMフレームの先頭の位置の時刻を表しているとして説明したが、NTP時刻情報等の時刻情報が表す時刻は、OFDMフレームの先頭の位置の時刻に限らず、OFDMフレーム等の物理層フレームのストリームにおける所定の位置の絶対時刻を表すようにすることができる。 Further, in the above description, the NTP time information is described as representing the time at the head position of the OFDM frame, but the time represented by the time information such as the NTP time information is the time at the head position of the OFDM frame. Not limited to this, it is possible to represent the absolute time of a predetermined position in a stream of a physical layer frame such as an OFDM frame.
 (伝送路の他の例)
 また、本技術は、伝送路として、放送伝送路とは異なる伝送路、すなわち、例えば、移動体通信網等の通信伝送路を利用することを想定して規定されている所定の方式(デジタルテレビ放送の放送方式以外の方式)などにも適用することができる。その場合には、伝送システム1(図1)の伝送路として、移動体通信網等の通信伝送路が利用され、データ処理装置10や送信装置20の機能は、例えば、基地局内の通信機器によって提供される。そして、当該通信機器と、通信機能を有する受信装置30(例えば、モバイル受信機)とが、移動体通信網等の通信伝送路を介して通信を行うことになる。
(Other examples of transmission lines)
Further, the present technology is a predetermined method (digital television) defined on the assumption that a transmission line different from the broadcasting transmission line, that is, a communication transmission line such as a mobile communication network is used as the transmission line. It can also be applied to methods other than the broadcasting method of broadcasting). In that case, a communication transmission line such as a mobile communication network is used as the transmission line of the transmission system 1 (FIG. 1), and the functions of the data processing device 10 and the transmission device 20 are determined by, for example, the communication equipment in the base station. Provided. Then, the communication device and the receiving device 30 having a communication function (for example, a mobile receiver) communicate with each other via a communication transmission path such as a mobile communication network.
 (コンピュータの構成例)
 上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または汎用のパーソナルコンピュータなどに、プログラム記録媒体からインストールされる。
(Computer configuration example)
The series of processes described above can be executed by hardware or software. When a series of processes are executed by software, the programs constituting the software are installed from the program recording medium on a computer embedded in dedicated hardware, a general-purpose personal computer, or the like.
 図9は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。 FIG. 9 is a block diagram showing a configuration example of computer hardware that executes the above-mentioned series of processes programmatically.
 CPU(Central Processing Unit)301、ROM(Read Only Memory)302、RAM(Random Access Memory)303は、バス304により相互に接続されている。 The CPU (Central Processing Unit) 301, ROM (Read Only Memory) 302, and RAM (Random Access Memory) 303 are connected to each other by the bus 304.
 バス304には、さらに、入出力インタフェース305が接続されている。入出力インタフェース305には、キーボード、マウスなどよりなる入力部306、ディスプレイ、スピーカなどよりなる出力部307が接続される。また、入出力インタフェース305には、ハードディスクや不揮発性のメモリなどよりなる記憶部308、ネットワークインタフェースなどよりなる通信部309、リムーバブルメディア311を駆動するドライブ310が接続される。 An input / output interface 305 is further connected to the bus 304. An input unit 306 including a keyboard, a mouse, and the like, and an output unit 307 including a display, a speaker, and the like are connected to the input / output interface 305. Further, the input / output interface 305 is connected to a storage unit 308 made of a hard disk, a non-volatile memory, etc., a communication unit 309 made of a network interface, etc., and a drive 310 for driving the removable media 311.
 以上のように構成されるコンピュータでは、CPU301が、例えば、記憶部308に記憶されているプログラムを入出力インタフェース305及びバス304を介してRAM303にロードして実行することにより、上述した一連の処理が行われる。 In the computer configured as described above, the CPU 301 loads the program stored in the storage unit 308 into the RAM 303 via the input / output interface 305 and the bus 304 and executes the program, thereby executing the series of processes described above. Is done.
 CPU301が実行するプログラムは、例えばリムーバブルメディア311に記録して、あるいは、ローカルエリアネットワーク、インターネット、デジタル放送といった、有線または無線の伝送媒体を介して提供され、記憶部308にインストールされる。 The program executed by the CPU 301 is recorded on the removable media 311 or provided via a wired or wireless transmission medium such as a local area network, the Internet, or a digital broadcast, and is installed in the storage unit 308.
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。 The program executed by the computer may be a program that is processed in chronological order according to the order described in this specification, or may be a program that is processed in parallel or at a necessary timing such as when a call is made. It may be a program in which processing is performed.
 なお、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。 In the present specification, the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a device in which a plurality of modules are housed in one housing are both systems. ..
 また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 Further, the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 The embodiment of the present technology is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present technology.
 例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。 For example, this technology can have a cloud computing configuration in which one function is shared and jointly processed by a plurality of devices via a network.
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。 In addition, each step described in the above flowchart can be executed by one device or shared by a plurality of devices.
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。 Further, when one step includes a plurality of processes, the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices.
<構成の組み合わせ例>
 本技術は、以下のような構成をとることもできる。
(1)
 時刻情報を含み、前記時刻情報のジッタが発生する可能性のあるフレームを受信する受信部と、
 各前記フレーム間で、前記フレームの先頭を基準として同じタイミングで、前記時刻情報を出力させる出力制御部と
 を備える受信装置。
(2)
 前記出力制御部は、各前記フレームにおいて、前記フレームの先頭を基準として、前記時刻情報の前記フレームの先頭からの最大の遅延量以上の所定の時間が経過したタイミングで、前記時刻情報を出力させる
 前記(1)に記載の受信装置。
(3)
 前記出力制御部は、前記フレーム内の前記時刻情報以降のパケットを遅延させて出力させる
 前記(2)に記載の受信装置。
(4)
 前記出力制御部は、各前記フレームにおいて、前記時刻情報のみを遅延させて出力させる
 前記(2)に記載の受信装置。
(5)
 前記時刻情報は、前記フレームの先頭の時刻を含む
 前記(1)に記載の受信装置。
(6)
 前記出力制御部は、前記時刻情報に前記フレーム長に対応する時間を加算して、次の前記フレームの先頭において前記時刻情報を出力させる
 前記(5)に記載の受信装置。
(7)
 前記フレームは、OFDM(Orthogonal Frequency Division Multiplexing)フレームである
 前記(1)乃至(6)のいずれかに記載の受信装置。
(8)
 受信装置が、
 時刻情報を含み、前記時刻情報のジッタが発生する可能性のあるフレームを受信し、
 各前記フレーム間で、前記フレームの先頭を基準として同じタイミングで、前記時刻情報を出力させる
 受信方法。
<Example of configuration combination>
The present technology can also have the following configurations.
(1)
A receiver that includes time information and receives frames that may cause jitter in the time information.
A receiving device including an output control unit that outputs the time information between the frames at the same timing with respect to the beginning of the frame.
(2)
In each of the frames, the output control unit outputs the time information at a timing when a predetermined time equal to or greater than the maximum delay amount of the time information from the beginning of the frame has elapsed with reference to the beginning of the frame. The receiving device according to (1) above.
(3)
The receiving device according to (2), wherein the output control unit delays and outputs packets after the time information in the frame.
(4)
The receiving device according to (2), wherein the output control unit delays and outputs only the time information in each of the frames.
(5)
The receiving device according to (1) above, wherein the time information includes a time at the beginning of the frame.
(6)
The receiving device according to (5), wherein the output control unit adds the time corresponding to the frame length to the time information and outputs the time information at the beginning of the next frame.
(7)
The receiving device according to any one of (1) to (6) above, wherein the frame is an OFDM (Orthogonal Frequency Division Multiplexing) frame.
(8)
The receiving device
Receives a frame that includes time information and may cause jitter in the time information.
A receiving method in which the time information is output between the frames at the same timing with respect to the beginning of the frame.
 1 伝送システム, 10 データ処理装置, 20 送信装置, 30 受信装置, 101 チューナー, 102 復調部, 103 信号処理部, 111 OFDM復調部, 112 エラー訂正部, 113 TLVパケット出力IF 1 Transmission system, 10 Data processing device, 20 Transmission device, 30 Receiver, 101 Tuner, 102 Demodulation unit, 103 Signal processing unit, 111 OFDM demodulation unit, 112 Error correction unit, 113 TLV packet output IF

Claims (8)

  1.  時刻情報を含み、前記時刻情報のジッタが発生する可能性のあるフレームを受信する受信部と、
     各前記フレーム間で、前記フレームの先頭を基準として同じタイミングで、前記時刻情報を出力させる出力制御部と
     を備える受信装置。
    A receiver that includes time information and receives frames that may cause jitter in the time information.
    A receiving device including an output control unit that outputs the time information between the frames at the same timing with respect to the beginning of the frame.
  2.  前記出力制御部は、各前記フレームにおいて、前記フレームの先頭を基準として、前記時刻情報の前記フレームの先頭からの最大の遅延量以上の所定の時間が経過したタイミングで、前記時刻情報を出力させる
     請求項1に記載の受信装置。
    In each of the frames, the output control unit outputs the time information at a timing when a predetermined time equal to or greater than the maximum delay amount of the time information from the beginning of the frame has elapsed with reference to the beginning of the frame. The receiving device according to claim 1.
  3.  前記出力制御部は、前記フレーム内の前記時刻情報以降のパケットを遅延させて出力させる
     請求項2に記載の受信装置。
    The receiving device according to claim 2, wherein the output control unit delays and outputs packets after the time information in the frame.
  4.  前記出力制御部は、各前記フレームにおいて、前記時刻情報のみを遅延させて出力させる
     請求項2に記載の受信装置。
    The receiving device according to claim 2, wherein the output control unit delays and outputs only the time information in each of the frames.
  5.  前記時刻情報は、前記フレームの先頭の時刻を含む
     請求項1に記載の受信装置。
    The receiving device according to claim 1, wherein the time information includes a time at the beginning of the frame.
  6.  前記出力制御部は、前記時刻情報に前記フレーム長に対応する時間を加算して、次の前記フレームの先頭において前記時刻情報を出力させる
     請求項5に記載の受信装置。
    The receiving device according to claim 5, wherein the output control unit adds the time corresponding to the frame length to the time information and outputs the time information at the beginning of the next frame.
  7.  前記フレームは、OFDM(Orthogonal Frequency Division Multiplexing)フレームである
     請求項1に記載の受信装置。
    The receiving device according to claim 1, wherein the frame is an OFDM (Orthogonal Frequency Division Multiplexing) frame.
  8.  受信装置が、
     時刻情報を含み、前記時刻情報のジッタが発生する可能性のあるフレームを受信し、
     各前記フレーム間で、前記フレームの先頭を基準として同じタイミングで、前記時刻情報を出力させる
     受信方法。
    The receiving device
    Receives a frame that includes time information and may cause jitter in the time information.
    A receiving method in which the time information is output between the frames at the same timing with respect to the beginning of the frame.
PCT/JP2021/001157 2020-01-30 2021-01-15 Reception device and method WO2021153259A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021574619A JPWO2021153259A1 (en) 2020-01-30 2021-01-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-013881 2020-01-30
JP2020013881 2020-01-30

Publications (1)

Publication Number Publication Date
WO2021153259A1 true WO2021153259A1 (en) 2021-08-05

Family

ID=77078854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001157 WO2021153259A1 (en) 2020-01-30 2021-01-15 Reception device and method

Country Status (2)

Country Link
JP (1) JPWO2021153259A1 (en)
WO (1) WO2021153259A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008429A1 (en) * 2016-07-08 2018-01-11 ソニーセミコンダクタソリューションズ株式会社 Transmission apparatus, reception apparatus, and data processing method
WO2018207610A1 (en) * 2017-05-08 2018-11-15 ソニー株式会社 Transmission device and transmission method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018008429A1 (en) * 2016-07-08 2018-01-11 ソニーセミコンダクタソリューションズ株式会社 Transmission apparatus, reception apparatus, and data processing method
WO2018207610A1 (en) * 2017-05-08 2018-11-15 ソニー株式会社 Transmission device and transmission method

Also Published As

Publication number Publication date
JPWO2021153259A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
WO2016098601A1 (en) Transmission device, transmission method, receiving device, and receiving method
US10194196B2 (en) Decoding device, reception device, transmission device, transmission/reception system, decoding method, and storage medium having decoding program stored therein
JP7069542B2 (en) Transmission device and transmission method
US11653058B2 (en) Demodulation device, processing device, reception device, and data processing method
TW201731279A (en) Receiver and data processing method
US11128911B2 (en) Decoding device, reception device, transmission device, transmission/reception system, decoding method, and storage medium having decoding program stored therein
JP2023012500A (en) Reception apparatus and data processing method
JP2023164953A (en) Transmission device and transmission method
WO2021153259A1 (en) Reception device and method
JP7017029B2 (en) Transmitter and transmission method
JP7251668B2 (en) Transmission device and transmission method
EP4383595A1 (en) Retransmission device, retransmission method, receiving device, and receiving method
WO2023013124A1 (en) Retransmission device, retransmission method, receiving device, and receiving method
US10750233B2 (en) Recording apparatus, recording method, and program
JP2023093449A (en) Transmission device and transmission method
WO2022224520A1 (en) Transmission device, transmission method, reception device, and reception method
WO2023234281A1 (en) Transmission device, transmission method, reception device, and reception method
US10178040B2 (en) Data processing device, receiving device, data processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574619

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21748440

Country of ref document: EP

Kind code of ref document: A1