WO2021153197A1 - 一酸化炭素の定量方法及び一酸化炭素測定用キット - Google Patents

一酸化炭素の定量方法及び一酸化炭素測定用キット Download PDF

Info

Publication number
WO2021153197A1
WO2021153197A1 PCT/JP2021/000521 JP2021000521W WO2021153197A1 WO 2021153197 A1 WO2021153197 A1 WO 2021153197A1 JP 2021000521 W JP2021000521 W JP 2021000521W WO 2021153197 A1 WO2021153197 A1 WO 2021153197A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon monoxide
inclusion complex
sample
quantification
general formula
Prior art date
Application number
PCT/JP2021/000521
Other languages
English (en)
French (fr)
Inventor
宏亮 北岸
斉悦 毛
Original Assignee
学校法人同志社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人同志社 filed Critical 学校法人同志社
Priority to JP2021574588A priority Critical patent/JPWO2021153197A1/ja
Publication of WO2021153197A1 publication Critical patent/WO2021153197A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to a method for quantifying carbon monoxide and a kit for measuring carbon monoxide, and in particular, is suitably used for detecting and quantifying a trace amount of carbon monoxide contained in a biological sample such as cells, animal and plant tissues, and the like.
  • the present invention relates to a method for quantifying carbon monoxide and a kit for measuring carbon monoxide.
  • Carbon monoxide is a colorless and odorless gas at normal temperature and pressure, and is a gas molecule generated by incomplete combustion of organic substances.
  • a gas molecule that is extremely toxic to humans and animals, when inhaled, carbon monoxide binds strongly to hemoglobin in the blood, inhibiting the oxygen-carrying capacity of hemoglobin.
  • so-called carbon monoxide poisoning symptoms such as headache, nausea, vomiting, poor physical condition, confusion, loss of consciousness, chest pain, shortness of breath, and coma occur.
  • This carbon monoxide remover contains an inclusion complex in which a cyclodextrin dimer encapsulates a water-soluble metal porphyrin as an active ingredient. Since this inclusion complex has a higher affinity for carbon monoxide than hemoglobin, carbon monoxide can be selectively removed.
  • Non-Patent Document 1 This report shows that a mechanism for compensating for the deficiency of endogenous carbon monoxide exists in the living body, and strongly suggests that carbon monoxide is necessary for living organisms.
  • R8-hemoCD a derivative of the cell-penetrating peptide octaarginine is introduced into an inclusion complex (hemoCD) (non-patent).
  • Non-Patent Document 3 carbon monoxide is also involved in anti-inflammatory action and regulation of body clock. As described above, carbon monoxide is attracting attention not only for its toxicity but also for the role of carbon monoxide in the living body, and it is desired to advance the elucidation of its physiological function.
  • Patent Document 2 describes a method for quantifying the carbon monoxide concentration based on the ultraviolet-visible absorption spectrum of the inclusion complex solution as follows. First, various inclusion complexes described in Non-Patent Document 2 related to this quantification method will be organized. In Non-Patent Document 2, the permethylated ⁇ -cyclodextrin dimer (abbreviated as “Py3CD” in Non-Patent Document 2) is 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrin iron (II).
  • An inclusion complex (abbreviated as "hemoCD1” in Non-Patent Document 2) formed by inclusion of a complex (abbreviated as "Fe (II) TPPS” in Non-Patent Document 2) is used.
  • Fe (II) TPPS a complex
  • metal-hemoCD1 iron is trivalent
  • met-hemoCD1 is more stable than hemoCD1, usually, met-hemoCD1 is reduced to obtain hemoCD1.
  • HemoCD1 is abbreviated as “oxy-hemoCD1” in which oxygen is bound to iron (abbreviated as “oxy-hemoCD1” in Non-Patent Document 2) and “CO-hemoCD1” in which carbon monoxide is bound to iron (in Non-Patent Document 2). )
  • oxy-hemoCD1 oxygen is bound to iron
  • CO-hemoCD1 carbon monoxide is bound to iron
  • Non-Patent Document 2 the met form (met-hemoCD1) is reduced to prepare a PBS (phosphate buffered saline) solution of hemoCD1. HemoCD1 combines with oxygen in the atmosphere to form an oxy form (oxy-hemoCD1). After adding this oxy-form PBS solution to the cells, the cells are collected and pulverized by ultrasonic waves. Filter to remove insolubles and obtain filtrate. The ultraviolet-visible absorption spectrum of the obtained filtrate is measured (spectrum a).
  • PBS phosphate buffered saline
  • the oxy form, the CO form (CO-hemoCD1; carbon monoxide in the cell is replaced with the oxygen of the oxy form), and the met form (some hemoCD1 are oxidized during the experiment) are produced. What was done) and is included.
  • carbon monoxide gas into the filtrate, all the oxy isomers are changed to CO isomers, and the ultraviolet-visible absorption spectrum is measured (spectrum b).
  • a reducing agent is subsequently added to change all the met-forms into CO-forms, and the ultraviolet-visible absorption spectrum is measured (spectrum c).
  • the types of inclusion complexes in solution for each spectral measurement are as follows.
  • A Spectrum a (filter solution) met body (iron is trivalent. Does not adsorb carbon monoxide or oxygen) Oxy body (iron is divalent and oxygen is adsorbed) CO-hemoCD1 (iron is divalent and carbon monoxide is adsorbed)
  • B Spectrum b (a + carbon monoxide gas) met body CO body
  • c spectrum c (b + reducing agent) CO body
  • a 422 a Absorbance at the peak wavelength near 422 nm of spectrum a (measured value)
  • a 422 b Absorbance at the peak wavelength near 422 nm of spectrum b (measured value)
  • a 422 c Absorbance at the peak wavelength near 422 nm of spectrum c (measured value)
  • ⁇ 422 CO Molar extinction coefficient of CO form at peak wavelength near 422 nm (known)
  • ⁇ 422 oxy Molar extinction coefficient of oxy form at peak wavelength near 422 nm (known)
  • ⁇ 422 met Molar extinction coefficient at peak wavelength near 422 nm of met body (known)
  • C CO CO-form concentration
  • C oxy oxy-form concentration
  • C met met-form concentration
  • C total Assuming that the total concentration of the added
  • C CO is a value obtained by subtracting C met from the added C total.
  • a 422 b is the measured value, and ⁇ 422 CO and ⁇ 422 met are known.
  • C total a value calculated based on the measurement result of the spectrum c can be used. Therefore, C met can be calculated from the above equation.
  • C oxy is a value obtained by subtracting C CO and C met from the added C total.
  • a 422 a is a measured value, and ⁇ 422 CO , ⁇ 422 oxy , and ⁇ 422 met are known.
  • C total a value calculated based on the measurement result of the spectrum c can be used.
  • C the met can use C the met calculated based on the measurement results of the spectrum b. Therefore, C CO can be calculated from the above equation.
  • Patent Document 1 also calculates the carbon monoxide concentration in the urine of experimental mice by a method generally similar to that of Patent Document 1.
  • the method for quantifying the carbon monoxide concentration described in Patent Document 1 and Non-Patent Document 2 can directly examine the concentration of carbon monoxide contained in the solution, and thus gas chromatography described in Non-Patent Document 4. It can be said that it is a more accurate quantification method than the method.
  • Non-Patent Document 2 extra operations such as sample preparation of oxy-hemoCD1 in Non-Patent Document 2 can be omitted, and it is not necessary to use carbon monoxide gas which is toxic to the human body, and a trace amount contained in blood or tissue can be omitted. It is an object of the present invention to propose a carbon monoxide quantification method and a carbon monoxide measurement kit capable of accurately and easily measuring carbon monoxide.
  • the method for quantifying carbon monoxide according to the present invention is a method for quantifying carbon monoxide contained in a sample.
  • the quantification inclusion complex is obtained by using a sample and a quantification inclusion complex formed by inclusion of a water-soluble metal porphyrin in a cyclodextrin dimer represented by the following general formula (A) or the following general formula (B).
  • A water-soluble metal porphyrin
  • B cyclodextrin dimer represented by the following general formula (A) or the following general formula (B).
  • the deoxy inclusion complex (II) in which the central metal is divalent and is not bonded to oxygen and carbon monoxide, and the deoxy inclusion complex (II) is carbon monoxide in the sample.
  • R represents a protecting group that protects the hydroxyl group of cyclodextrin, m represents an integer of 1 to 2, and n represents an integer of 1 to 3.
  • R represents a protecting group that protects the hydroxyl group of cyclodextrin
  • p represents an integer of 1 to 2
  • q represents an integer of 1 to 3.
  • a 422 , ⁇ 422 deo , and ⁇ 422 CO are the absorbance at the first inversion point, the molar extinction coefficient of the deoxy inclusion complex (II), and the CO-bonded inclusion complex, respectively.
  • (II) represents the molar extinction coefficient
  • C deo and C CO represent the concentration of the deoxy inclusion complex (II) and the concentration of the CO-bonded inclusion complex (II) in the spectrum measurement sample, respectively.
  • a 434 , ⁇ 434 deo , and ⁇ 434 CO are the absorbance at the second inversion point, the molar extinction coefficient of the deoxy inclusion complex (II), and the CO-bonded inclusion complex, respectively.
  • (II) represents the molar extinction coefficient
  • C deo and C CO represent the concentration of the deoxy inclusion complex (II) and the concentration of the CO-bonded inclusion complex (II) in the spectrum measurement sample, respectively.
  • an aqueous inclusion complex solution is prepared from the sample and the inclusion complex for quantification, and the amount of carbon monoxide in the sample is determined from the ultraviolet visible absorption spectrum of the inclusion complex solution.
  • a carbon monoxide measurement kit used to calculate the amount of carbon monoxide in a sample.
  • a quantitative inclusion complex in which the cyclodextrin dimer represented by the following general formula (A) or the following general formula (B) encapsulates a water-soluble metal porphyrin, or the cyclodextrin dimer and water-soluble as a raw material thereof. With the sex metal porphyrin, It contains a reducing agent for removing dissolved oxygen of the inclusion complex solution.
  • R represents a protecting group that protects the hydroxyl group of cyclodextrin, m represents an integer of 1 to 2, and n represents an integer of 1 to 3.
  • R represents a protecting group that protects the hydroxyl group of cyclodextrin
  • p represents an integer of 1 to 2
  • q represents an integer of 1 to 3.
  • the inclusion complex solution used for ultraviolet-visible absorption spectrum measurement is a CO-bonded type produced by binding with carbon monoxide in a sample as a substance derived from the inclusion complex for quantification used for solution preparation. Only the inclusion complex (II) and the other deoxy inclusion complex (II) are contained.
  • the CO-bonded inclusion complex (II) has a characteristic absorption peak near 422 nm, and the deoxy inclusion complex (II) has a characteristic absorption peak near 434 nm.
  • the peak of this deoxy inclusion complex (II) is a unique peak not found in other inclusion complexes (CO-bonded type, oxy form, met form).
  • inflection points (first inflection point, second inflection point) are observed near 422 nm and 434 nm, and they are distinguished from each other.
  • By measuring the absorbance at the wavelength corresponding to each it is possible to quantify carbon monoxide in the sample from Lambert-Beer's law. Therefore, it is not necessary to use carbon monoxide gas, which is toxic to the human body, and a trace amount of carbon monoxide contained in blood or tissue can be measured accurately and easily.
  • FIG. 5 is a graph showing the relationship between the quantitative value of the amount of carbon monoxide in the rat organ (muscular) and the organ weight according to the present invention in Example 5.
  • FIG. 5 is a graph showing the relationship between the quantitative value of the amount of carbon monoxide in the organ (lung) of the rat according to the present invention and the organ weight in Example 5.
  • FIG. 5 is a graph showing the relationship between the quantitative value of the amount of carbon monoxide in the rat organ (liver) and the organ weight according to the present invention in Example 5.
  • a sample and a predetermined quantification inclusion complex are used, and as a substance derived from the quantification inclusion complex, the metal in the inclusion complex is divalent, and oxygen and carbon monoxide are used.
  • An aqueous inclusion complex solution containing only the deoxy inclusion complex (II) which is not bound to and the CO-bonded inclusion complex (II) in which the deoxy inclusion complex (II) is bonded to carbon monoxide in the sample. Includes the step of preparing.
  • sample examples include animal and plant cells and tissues. By carrying out the present invention using these samples, it is possible to accurately quantify the concentration of trace amounts of carbon monoxide contained in cells and tissues. Moreover, blood, urine and the like may be used as a sample. If the present invention is carried out using these samples, the concentration of a trace amount of carbon monoxide contained in blood or urine can be accurately quantified. As described above, the present invention is useful for quantifying carbon monoxide in biological samples, but in addition, by carrying out the present invention, monoxide contained in various samples, not limited to biological samples, can be obtained. Carbon can be quantified.
  • the sample may be solid or liquid as long as the carbon monoxide in the sample dissolves in the inclusion complex solution finally used for the spectrum measurement and binds to the inclusion complex.
  • the simplest sample is an aqueous solution of carbon monoxide in which carbon monoxide is dissolved in water.
  • This quantification inclusion complex is formed by inclusion of a water-soluble metal porphyrin with a cyclodextrin dimer represented by the following general formula (A) or the following general formula (B).
  • R represents a protecting group that protects the hydroxyl group of cyclodextrin
  • m represents an integer of 1 to 2
  • n represents an integer of 1 to 3.
  • R represents a protecting group that protects the hydroxyl group of cyclodextrin
  • p represents an integer of 1 to 2
  • q represents an integer of 1 to 3.
  • the cyclodextrin dimer represented by the general formula (A) is, for example, as described in Patent Document 1, after cyclodextrin is tosylated and epoxidized, and then the hydroxyl group of the cyclodextrin is methylated and methylated. It can be produced by binding the cyclodextrin to the linker molecule.
  • the hydroxyl group of cyclodextrin in advance with a methyl group or the like, the inner pores of cyclodextrin become hard due to the hydrogen bonds generated by the hydroxyl group, and the water-soluble metal porphyrin is less likely to be included in the inner pores of the cyclodextrin dimer. Can be prevented.
  • Examples of the protecting group R in the general formula (A) include an ethyl group, an acetyl group, a hydroxypropyl group, and the like, in addition to the methyl group.
  • cyclodextrin which is a raw material of the cyclodextrin dimer represented by the above general formula (B)
  • ⁇ -cyclodextrin it is preferable to use ⁇ -cyclodextrin as a raw material because it is easy to enclose the water-soluble metal porphyrin.
  • a method for producing a cyclodextrin dimer represented by the general formula (B) for example, as described in Patent Document 2, a partially methylated cyclodextrin (2,6-di-O-Me- ⁇ -) is used.
  • CD cyclodextrin dimer
  • a linker molecule which is an alkyl halide were synthesized by Williamson to produce an ether (cyclodextrin dimer), which was then produced. It can be produced by methylating the hydroxyl group of a cyclodextrin dimer.
  • the cyclodextrin raw material and the product cyclodextrin dimer can be separated by column chromatography or the like, so that the cyclodextrin raw material can be used without waste. ..
  • the protecting group R in the general formula (B) is not limited to the methyl group, and may be, for example, an ethyl group, an acetyl group, a hydroxypropyl group, or the like.
  • the water-soluble metal porphyrin is an organic compound having a cyclic structure formed by combining four pyrroles, and has metal ions coordinated with nitrogen in the center and has water solubility.
  • metal ions coordinated with nitrogen in the center and has water solubility.
  • those represented by the following general formulas (C) or (D) are preferably mentioned.
  • R 1 and R 2 represent any of a carboxyl group, a sulfonyl group, and a hydroxyl group, respectively, and M is Fe 2+ , Mn 2+ , Co 2+ , and Zn 2+. , Fe 3+ , Mn 3+ , Co 3+ , Zn 3+ .
  • 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrin iron complex is preferable, and the compound represented by the general formula (D) is preferable.
  • 5,15-bis (3,5-dicarboxyratphenyl) -10,20-diphenylporphyrin iron complex is preferable.
  • These compounds may be synthesized by a known method, or commercially available products (for example, Frontier scientific Co., Ltd., Tokyo Chemical Industry Co., Ltd., etc.) may be used as they are.
  • the central metal of the inclusion complex for quantification may be divalent or trivalent, but as described later, even if it is a trivalent metal, all of it is finally reduced to a divalent metal. Since trivalent is usually more stable, it is convenient to use an inclusion complex having a trivalent central metal as the inclusion complex for quantification.
  • the metal in the inclusion complex is divalent and deoxy inclusion is not bonded to oxygen and carbon monoxide. It contains only the complex (II) and the CO-bonded inclusion complex (II) in which the inclusion complex (II) is bonded to carbon monoxide in the sample solution.
  • the inclusion complex (III) in which the central metal is trivalent and the central metal are divalent as substances derived from the inclusion complex for quantification. Oxygen inclusion complex (II) bound to oxygen should not be included.
  • the inclusion complex having a divalent central metal may be used as the inclusion complex for quantification, or the inclusion complex (III) may be included for quantification. Although it is used as a complex, it may be reduced to divalent with a reducing agent.
  • the reducing agent for reducing the central metal of the inclusion complex (III) to divalent is not particularly limited, but for example, sodium dithionite (Na 2 S 2 O 4 ), sodium ascorbate, dithio. Examples include sreitol, mercaptoethanol, cysteine, glutathione and the like.
  • dissolved oxygen may be removed, and as a simple and effective method for that purpose, for example, a method of adding a reducing agent can be mentioned. Further, as another method, there is also a method of blowing an inert gas such as argon or nitrogen into the aqueous solution to replace it, or a method of removing dissolved oxygen by a freeze degassing method.
  • the reducing agent for reducing the dissolved oxygen in the sample solution include Na 2 S 2 O 4 , sodium ascorbate, dithiothreitol, mercaptoethanol, cysteine, glutathione and the like.
  • Precipitants for removing proteins include, for example, Na 2 S 2 O 4 , ammonium sulfate, urea, polyethylene glycol, sulfosalicylic acid, surfactants and the like.
  • Na 2 S 2 O 4 is particularly preferable because it can serve as both a reducing agent for the inclusion complex (III), a removing agent by reducing dissolved oxygen, and a precipitating agent for removing proteins. In order to exert these functions, an excessive amount of Na 2 S 2 O 4 may be used.
  • the inclusion complex solution for quantification may be added to the sample, or conversely, the sample may be added to the inclusion complex solution for quantification. Not limited.
  • a 422 Absorbance at the first inflection point
  • a 434 Absorbance at the second inflection point ⁇ 422 deo : Molar extinction coefficient of the deoxy inclusion complex (II) at the first inflection point (known)
  • ⁇ 434 deo Molar extinction coefficient of deoxy inclusion complex (II) at the second inflection point (known)
  • ⁇ 422 CO Molar extinction coefficient of CO-bonded inclusion complex (II) at the first inflection point (known) ⁇ 434 CO : Molar extinction coefficient of CO-bonded inclusion complex (II) at the second inflection point (known)
  • C total Assuming that the total concentration of the added quantification inclusion complex is taken, the added quantification inclusion complex exists as a CO-bonded inclusion complex (II) or a deoxy inclusion complex (II). It holds.
  • the number of moles of carbon monoxide M CO can be expressed by the following equation (4).
  • V is a volume
  • the concentration and amount of carbon monoxide can be obtained from the ratio of A 422 and A 434 in a single spectrum measurement without using carbon monoxide gas which is toxic to the human body. be able to.
  • a 422 and A 434 shall mean the corrected absorbance.
  • a 422 / A 434 is too small or too large, it will be difficult to distinguish the first and second inflection points, and the measurement accuracy may decrease, so the range is 0.8 to 3.0. Is preferable. In order to set A 422 / A 434 in the range of 0.8 to 3.0, for example, when it is less than 0.8, the amount of the inclusion complex for quantification is reduced to half, and 3.0 or more. If this is the case, the conditions should be examined so as to be within this range by doubling the amount of the inclusion complex for quantification.
  • Carbon monoxide measurement kit In the carbon monoxide measurement kit of the present invention, an aqueous inclusion complex solution is prepared from the sample and the inclusion complex for quantification, and the amount of carbon monoxide in the sample is determined from the ultraviolet visible absorption spectrum of the inclusion complex solution. It is calculated and used to measure the amount of carbon monoxide in a sample, and is suitable as a kit for carrying out the above-mentioned quantification method of the present invention.
  • the carbon monoxide measurement kit of the present invention contains the above-mentioned quantitative inclusion complex as a measurement reagent, or contains a cyclodextrin dimer and a water-soluble metal porphyrin as raw materials thereof. It also contains a reducing agent for removing dissolved oxygen in the inclusion complex solution.
  • an aqueous solution is prepared using the sample and the above-mentioned quantification inclusion complex or its raw material, and a reducing agent is further added to easily prepare an inclusion complex solution for ultraviolet-visible absorption spectrum measurement. Can be done. Dissolved oxygen has been removed from the included complex solution to be prepared by a reducing agent. Further, even if the central metal of the inclusion complex for quantification is trivalent, it can be reduced to divalent by a reducing agent. Therefore, as the inclusion complex solution, the deoxy inclusion complex (II) in which the metal in the inclusion complex is divalent and is not bonded to oxygen and carbon monoxide, and the inclusion complex (II) are samples.
  • An inclusion complex solution containing only the CO-bonded inclusion complex (II) bonded to carbon monoxide in the solution can be obtained.
  • a small amount of carbon monoxide in the sample can be measured accurately and easily.
  • the inclusion complex for quantification, the reducing agent, etc., the quantification method of the present invention is the same as the above-mentioned contents, so the description is omitted.
  • Example 1 In order to show that carbon monoxide can be quantified accurately and easily according to the present invention, a standard solution of carbon monoxide was prepared and carbon monoxide in the standard solution was quantified.
  • the amount of Fe (III) TPPS was 1.1 mg and the amount of Py3CD was 3.5 mg.
  • the above solution (1 ⁇ 10 -3 mol / L met-hemoCD aqueous solution) was appropriately diluted with PBS buffer to obtain a concentration of (1 to 5) ⁇ 10 -6 mol / L.
  • An excess amount (about 2 mg) of Na 2 S 2 O 4 is added thereto to reduce the central iron of Fe (III) TPPS from Fe (III) to Fe (II), and the dissolved oxygen in the solution is converted into water. Reduced.
  • a quantification inclusion complex solution (inclusion complex concentration (1 to 5) ⁇ 10 -6 mol / L) was obtained.
  • each inclusion complex solution for quantification prepared above was added to prepare each inclusion complex solution for spectral measurement.
  • the solubility of carbon monoxide at room temperature is 2.4 mL / 100 mL, and the concentration of the solution prepared this time is sufficiently low for this solubility, and the syringe is sealed, so that the inhaled carbon monoxide is It is considered that all of them are dissolved in the solution.
  • each molar extinction coefficient has the following values, and the carbon monoxide concentration M CO (measured value) is calculated using these values and the measured values of A 422 and A 434.
  • rice field. ⁇ 422 deo 1.52 ⁇ 10 5 L / (mol ⁇ cm)
  • ⁇ 434 deo 2.13 ⁇ 10 5 L / (mol ⁇ cm)
  • ⁇ 422 CO 3.71 ⁇ 10 5 L / (mol ⁇ cm)
  • 434 CO 6.75 ⁇ 10 4 L / (mol ⁇ cm)
  • FIG. 3 shows a graph when M CO (theoretical value) is on the horizontal axis and M CO (measured value) is on the vertical axis. Since the slope of the calibration curve is 1.0062, the value is almost the same as the theoretical value of the calibration curve. Therefore, according to the present invention, carbon monoxide can be accurately adjusted without using carbon monoxide gas which is toxic to the human body. It was found that it can be quantified well and easily.
  • a Wister male rat obtained from Shimizu laboratory materials) was used.
  • Rats were anesthetized by intraperitoneal administration with pentobarbital, and then laparotomy was performed with oral sevoflurane anesthesia. Then, the liver was collected as a residual blood sample. In addition, a flushing operation for blood removal was performed by injecting 100 mL or 200 mL of physiological saline (saline) at 20 mL / min from the cardiac vena cava, and a liver was collected as a sample after blood removal. Immediately after collection, each collected organ was frozen in liquid nitrogen and stored at -80 ° C.
  • physiological saline physiological saline
  • a 422 and A 434 are corrected by subtracting the blank spectrum measurement measurement value from the spectrum measurement measurement value of the inclusion complex solution. Using the corrected values of A 422 and A 434 and the values of each known molar extinction coefficient, carbon monoxide in the organ was quantified from the above formula (4) in the same manner as in Example 1. .. The results are shown in FIG.
  • a Wister male rat obtained from Shimizu laboratory materials was used.
  • Rats were aspirated with carbon monoxide gas (400 ppm) by oral intubation. This rat was anesthetized by intraperitoneal administration with pentobarbital, and then the abdomen was opened with sevoflurane oral anesthesia. Blood was collected from the left ventricle and the right ventricle, respectively, and the carbon monoxide concentration in the blood was measured. The carbon monoxide concentration in blood was measured using a blood gas analyzer ABL800 FLEX Radiometer. The measurement results are shown in FIG.
  • a sample to which carbon monoxide was directly administered from the outside was also prepared for the rat cerebrum 5 minutes and 20 minutes after inhalation of carbon monoxide gas by the following method.
  • a cerebral sample was placed in a 5 mL Terumo syringe, a septum rubber (for a natural rubber 7 mm test tube) was attached to the tip of the Terumo syringe, and a 25 G Terumo injection needle was inserted to deaerate. Then, carbon monoxide gas was injected into the syringe using a gas tight syringe and incubated at 4 ° C.
  • a Wister male rat obtained from Shimizu laboratory materials was used.
  • Rats were aspirated with carbon monoxide gas (400 ppm) by oral intubation for 5 minutes. Next, air was sucked by oral intubation and air was ventilated. This rat was anesthetized by intraperitoneal administration with pentobarbital, and then the abdomen was opened with sevoflurane oral anesthesia. Blood was collected from the left ventricle and the right ventricle, respectively, and the carbon monoxide concentration in the blood was measured. The carbon monoxide concentration in blood was measured using a blood gas analyzer ABL800 FLEX Radiometer. The measurement results are shown in FIG.
  • Example 5 In order to further clarify the effect of the present invention, the accuracy of quantification of the amount of carbon monoxide in the organ by the present invention was verified by confirming the proportional relationship between the weight of the organ and the amount of carbon monoxide in the organ.
  • a Wister male rat obtained from Shimizu laboratory materials was used.
  • rat organs (skeletal muscle, liver, lung) were collected 20 minutes after inhalation of carbon monoxide gas. Immediately after collection, each collected organ was frozen in liquid nitrogen and stored at -80 ° C.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

人体に有毒な一酸化炭素ガスを使用する必要がなく、血液や組織に含まれる微量な一酸化炭素を精度よく簡便に測定することのできる一酸化炭素の定量方法及び一酸化炭素測定用キットを提案する。 試料中に含まれる一酸化炭素の定量方法であって、試料と、シクロデキストリン二量体が水溶性金属ポルフィリンを包接してなる定量用包接錯体とを用いて、前記定量用包接錯体由来の物質として、中心金属が2価であり、かつ、酸素及び一酸化炭素と結合していないデオキシ包接錯体(II)と、前記デオキシ包接錯体(II)が試料中の一酸化炭素と結合したCO結合型包接錯体(II)のみを含有する水系の包接錯体溶液を調製する工程と、前記包接錯体溶液の紫外可視吸収スペクトルを測定する工程と、前記測定により得られる紫外可視吸収スペクトルにおいて、422nm付近に見られる第1の変曲点と、434nm付近に見られる第2の変曲点のそれぞれについて、ランベルト・ベールの法則に基づき成立する式から、試料中の一酸化炭素の量を算出する工程とを含む。

Description

一酸化炭素の定量方法及び一酸化炭素測定用キット
 本発明は、一酸化炭素の定量方法及び一酸化炭素測定用キットに関し、詳しくは、特に、細胞や動植物組織などの生体サンプルに含まれる微量の一酸化炭素の検出・定量などに好適に用いられる一酸化炭素の定量方法及び一酸化炭素測定用キットに関する。
 一酸化炭素は常温・常圧で無色・無臭の気体であり、有機物の不完全燃焼により発生するガス分子である。
 人間や動物にとって毒性が非常に高いガス分子として知られており、吸入すると、一酸化炭素が血中でヘモグロビンと強く結合して、ヘモグロビンの酸素運搬能が阻害される。その結果、頭痛、吐き気、嘔吐、体調不良、錯乱、意識消失、胸痛、息切れ、昏睡などのいわゆる一酸化炭素中毒症状が起きる。
 この一酸化炭素中毒症状への対策として、注射や経口によって、患者に簡単に投与できる一酸化炭素除去剤が提案されている(特許文献1、2など参照)。
 この一酸化炭素除去剤は、シクロデキストリン二量体が水溶性金属ポルフィリンを包接した包接錯体を有効成分とするものである。この包接錯体は、ヘモグロビンよりも一酸化炭素との親和性が高いため、一酸化炭素を選択的に除去することができる。
 ところで、一酸化炭素については、体外から体内に入ったときの有毒性とその除去に焦点が当てられることが多い。
 しかし、生体内には内在性の一酸化炭素が微量に存在しており、成人では約1~2%のヘモグロビンが一酸化炭素と結合した状態で血液中を循環している。そして、マウスの体内に、シクロデキストリン二量体が水溶性金属ポルフィリンを包接した包接錯体(上記特許文献1に記載の化合物)を投与し、内在性の一酸化炭素を一時的に欠乏状態にしたところ、肝臓内で一酸化炭素を産生する酵素「ヘムオキシジナーゼ-1」の働きが著しく活性化し、それにより、生体内の一酸化炭素は常に一定のレベルに保たれることが報告されている(非特許文献1参照)。この報告では、内在性一酸化炭素の不足を補う仕組みが生体内に存在することが示され、一酸化炭素が、生物にとって必要な存在であることが強く示唆されている。
 また、包接錯体(hemoCD)に膜透過ペプチドであるオクタアルギニンを導入した誘導体(R8-hemoCD)を用いて、細胞内の一酸化炭素の生理活性を詳細に調べた研究報告もある(非特許文献2参照。)。
 その他、一酸化炭素は、抗炎症作用や体内時計の調節などにも関わるとの研究報告もある(非特許文献3参照)。
 このように、一酸化炭素は、その有毒性のみならず、生体内で一酸化炭素の果たす役割についても注目されており、その生理機能の解明の進展が望まれている。
 一酸化炭素の生理機能を研究するに当たっては、血液や組織に含まれる微量な一酸化炭素を精度よく測定することが望まれる。
 血液や組織の一酸化炭素濃度を測定する方法としては、例えば、ガスクロマトグラフィー法が知られている(例えば、非特許文献4参照)。この方法では、一酸化炭素の結合した血液や組織に含まれるヘムを酸化し、遊離の一酸化炭素の気相分析を行うが、実験手順が複雑で、かつ、気相に遊離した一酸化炭素を計測するため、不正確である可能性がある。
 また、上記特許文献2では、次のようにして、包接錯体溶液の紫外可視吸光スペクトルに基づき、一酸化炭素濃度を定量する方法が記載されている。
 まず、この定量方法に関連する非特許文献2に記載の各種包接錯体について整理しておく。
 非特許文献2では、パーメチル化β-シクロデキストリン二量体(非特許文献2では、「Py3CD」と略称)が5,10,15,20-テトラキス(4-スルホナトフェニル)ポルフィリン鉄(II)錯体(非特許文献2では、「Fe(II)TPPS」と略称)を包接してなる包接錯体(非特許文献2では、「hemoCD1」と略称)を用いている。
 hemoCD1は鉄が2価であるが、鉄が3価であるもの(非特許文献2では、「met-hemoCD1」と略称)も存在する。met-hemoCD1の方がhemoCD1よりも安定であるので、通常は、met-hemoCD1を還元してhemoCD1を得る。
 hemoCD1は、鉄に酸素が結合したもの(非特許文献2では、「oxy-hemoCD1」と略称)と、鉄に一酸化炭素が結合したもの(非特許文献2では、「CO-hemoCD1」と略称)が存在する。これに対して、met-hemoCD1は、酸素や一酸化炭素とは結合しない。
 以上を踏まえ、次に、非特許文献2における一酸化炭素濃度の定量について説明する。
 非特許文献2では、met体(met-hemoCD1)を還元してhemoCD1のPBS(リン酸緩衝生理食塩水)溶液を準備する。hemoCD1は大気中の酸素と結合して、oxy体(oxy-hemoCD1)となる。このoxy体のPBS溶液を細胞に添加したのち、細胞を回収し、超音波で粉砕する。不溶分を除去するためにろ過し、ろ液を得る。
 得られたろ液に対して、紫外可視吸光スペクトルを測定する(スペクトルa)。このろ液には、oxy体と、CO体(CO-hemoCD1。細胞中の一酸化炭素がoxy体の酸素と置き換わったもの)と、met体(実験中に一部のhemoCD1が酸化して生成されたもの)とが含まれる。
 次に、上記ろ液に一酸化炭素ガスを導入することで、oxy体を全てCO体に変化させ、紫外可視吸光スペクトルを測定する(スペクトルb)。
 上記一酸化炭素ガスの導入後に、続いて、還元剤を添加することで、met体を全てCO体に変化させ、紫外可視吸光スペクトルを測定する(スペクトルc)。
 整理すると、各スペクトル測定における溶液中の包接錯体の種類は、以下のようになる。
(a)スペクトルa(ろ液)
 met体(鉄が3価のもの。一酸化炭素や酸素を吸着しない)
 oxy体(鉄が2価で酸素吸着)
 CO-hemoCD1(鉄が2価で一酸化炭素吸着)
(b)スペクトルb(a+一酸化炭素ガス)
 met体
 CO体
(c)スペクトルc(b+還元剤)
 CO体
 ポルフィリン環を有する化合物には、422nm付近に、特徴的な吸収スペクトルであるソーレー(Soret)吸収帯のピークが見られる。
 そして、
 A422 a:スペクトルaの422nm付近のピーク波長での吸光度(測定値)
 A422 b:スペクトルbの422nm付近のピーク波長での吸光度(測定値)
 A422 c:スペクトルcの422nm付近のピーク波長での吸光度(測定値)
 ε422 CO:CO体の422nm付近のピーク波長でのモル吸光係数(既知)
 ε422 oxy:oxy体の422nm付近のピーク波長でのモル吸光係数(既知)
 ε422 met:met体の422nm付近のピーク波長でのモル吸光係数(既知)
 CCO:CO体の濃度
 Coxy:oxy体の濃度
 Cmet:met体の濃度
 Ctotal:添加した包接錯体の全濃度
とすると、ランベルト・ベールの法則から、まず、スペクトルcの測定について、以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000010
 スペクトルcの測定試料において、添加した包接錯体は、全てCO体として存在する。従って、CCOは、添加したCtotalに等しくなっている。そして、A422 cは測定値で、ε422 COは既知である。
 よって、上式からCtotalが算出できる。
 また、ランベルト・ベールの法則から、スペクトルbの測定について、以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000011
 スペクトルbの測定試料において、添加した包接錯体は、酸化されたmet体として存在するものを除き、CO体として存在する。従って、CCOは、添加したCtotalから、Cmetを差し引いた値となっている。
 A422 bは測定値で、ε422 CO、ε422 metは既知である。Ctotalは、スペクトルcの測定結果に基づいて算出した値を使用できる。
 よって、上式からCmetが算出できる。
 また、ランベルト・ベールの法則から、スペクトルaの測定について、以下の式が成り立つ。
Figure JPOXMLDOC01-appb-M000012
 スペクトルaの測定試料において、添加した包接錯体は、met体、CO体又はoxy体として存在する。従って、Coxyは、添加したCtotalから、CCOとCmetを差し引いた値となっている。
 A422 aは測定値で、ε422 CO、ε422 oxy、ε422 metは既知である。Ctotalは、スペクトルcの測定結果に基づいて算出した値を使用できる。さらに、Cmetは、スペクトルbの測定結果に基づいて算出したCmetを使用できる。
 よって、上式からCCOが算出できる。
 以上のようにして、試料中の一酸化炭素濃度を算出することができる。特許文献1もおおむね同様の方法により、実験マウスの尿中の一酸化炭素濃度を算出している。
特開2010-194475号公報 特開2013-231111号公報
H. Kitagishi et al., "Feedback Response to Selective Depletion of Endogenous Carbon Monoxide in the Blood" J. Am. Chem. Soc. 138, 5417-5425 (2016) Saika Minegishi et al., "Detection and Removal of Endogenous Carbon Monoxide by Selective and Cell-Permeable Hemoprotein Model Complexes", J. Am. Chem. Soc. 2017, 139, 5984-5991 S. Minegishi, I. Sagami, S. Negi, K. Kano, H. Kitagishi"Circadian Clock Disruption by Selective Removal of Endogenous Carbon Monoxide" Sci. Rep., 8, 11996 (2018) H. J. Vreman et al., Anal. Biochem. 341 (2005) 280-289
 特許文献1や非特許文献2に記載の一酸化炭素濃度の定量方法は、溶液中に含まれる一酸化炭素の濃度を直接的に調べることができるため、非特許文献4に記載のガスクロマトグラフィー法と比べて、より精度の高い定量方法ということができる。
 しかし、スペクトルbを得るために、人体に有毒な一酸化炭素ガスを使用する必要がある点に課題がある。また、スペクトルa、スペクトルb、スペクトルcの3種のスペクトル測定が必要である点で、やや煩雑である。さらに、oxy-hemoCD1の水溶液を得るためにはmet-hemoCD1を還元後、還元剤をゲルろ過カラムにより除去する操作が必要である点も簡便さに欠けていた。
 そこで、本発明は、非特許文献2におけるoxy-hemoCD1の試料調製のような余分な操作を省略でき、さらに人体に有毒な一酸化炭素ガスを使用する必要がなく、血液や組織に含まれる微量な一酸化炭素を精度よく簡便に測定することのできる一酸化炭素の定量方法及び一酸化炭素測定用キットを提案することを目的とするものである。
 本発明は、上記課題を解決するため、以下の構成を備える。
 すなわち、本発明にかかる一酸化炭素の定量方法は、試料中に含まれる一酸化炭素の定量方法であって、
 試料と、下記一般式(A)又は下記一般式(B)で示されるシクロデキストリン二量体が水溶性金属ポルフィリンを包接してなる定量用包接錯体とを用いて、前記定量用包接錯体由来の物質として、中心金属が2価であり、かつ、酸素及び一酸化炭素と結合していないデオキシ包接錯体(II)と、前記デオキシ包接錯体(II)が試料中の一酸化炭素と結合したCO結合型包接錯体(II)のみを含有する水系の包接錯体溶液を調製する工程と、
 前記包接錯体溶液の紫外可視吸収スペクトルを測定する工程と、
 前記測定により得られる紫外可視吸収スペクトルにおいて、422nm付近に見られる第1の変曲点と、434nm付近に見られる第2の変曲点のそれぞれについて、ランベルト・ベールの法則に基づき成立する下式(1)、(2)から、試料中の一酸化炭素の量を算出する工程と
を含む。
Figure JPOXMLDOC01-appb-C000013
(上記一般式(A)中、Rはシクロデキストリンの水酸基を保護する保護基を表し、mは1~2の整数を表し、nは1~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000014
(上記一般式(B)中、Rはシクロデキストリンの水酸基を保護する保護基を表し、pは1~2の整数を表し、qは1~3の整数を表す。)
Figure JPOXMLDOC01-appb-M000015
(上式(1)中、A422、ε422 deo、ε422 COは、それぞれ、第1の変曲点での吸光度、デオキシ包接錯体(II)のモル吸光係数、CO結合型包接錯体(II)のモル吸光係数を表し、Cdeo、CCOは、それぞれ、スペクトル測定試料中のデオキシ包接錯体(II)の濃度とCO結合型包接錯体(II)の濃度を表す。)
Figure JPOXMLDOC01-appb-M000016
(上式(2)中、A434、ε434 deo、ε434 COは、それぞれ、第2の変曲点での吸光度、デオキシ包接錯体(II)のモル吸光係数、CO結合型包接錯体(II)のモル吸光係数を表し、Cdeo、CCOは、それぞれ、スペクトル測定試料中のデオキシ包接錯体(II)の濃度とCO結合型包接錯体(II)の濃度を表す。)
 本発明にかかる一酸化炭素測定用キットは、試料と定量用包接錯体とから水系の包接錯体溶液を調製し、前記包接錯体溶液の紫外可視吸収スペクトルから試料中の一酸化炭素の量を算出して、試料中の一酸化炭素量を測定するのに用いられる一酸化炭素測定用キットであって、
 下記一般式(A)もしくは下記一般式(B)で示されるシクロデキストリン二量体が水溶性金属ポルフィリンを包接してなる定量用包接錯体、又は、その原料となるシクロデキストリン二量体及び水溶性金属ポルフィリンと、
 前記包接錯体溶液の溶存酸素を除去するための還元剤と
を含む。
Figure JPOXMLDOC01-appb-C000017
(上記一般式(A)中、Rはシクロデキストリンの水酸基を保護する保護基を表し、mは1~2の整数を表し、nは1~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000018
(上記一般式(B)中、Rはシクロデキストリンの水酸基を保護する保護基を表し、pは1~2の整数を表し、qは1~3の整数を表す。)
 本発明において、紫外可視吸収スペクトル測定に供される包接錯体溶液には、溶液調製に用いる定量用包接錯体由来の物質として、試料中の一酸化炭素と結合して生成されたCO結合型包接錯体(II)と、それ以外のデオキシ包接錯体(II)のみが含有されている。そして、CO結合型包接錯体(II)は422nm付近に特徴的な吸収ピークがあり、デオキシ包接錯体(II)は434nm付近に特徴的な吸収ピークがある。このデオキシ包接錯体(II)のピークは、他の包接錯体(CO結合型、オキシ体、met体)に見られないユニークなピークである。
 そのため、両包接錯体を含有する包接錯体溶液の吸収スペクトルでは、422nm付近と434nm付近に変曲点(第1の変曲点、第2の変曲点)が見られ、それらは区別することが可能であり、それぞれに対応する波長の吸光度を測定することにより、ランベルト・ベールの法則から、試料中の一酸化炭素を定量することができる。そのため、人体に有毒な一酸化炭素ガスを使用する必要がなく、かつ、血液や組織に含まれる微量な一酸化炭素を精度よく簡便に測定することができる。
本発明において紫外可視吸収スペクトル測定により得られるスペクトルの一例を示すグラフである(実線:実測データ、破線:ブランクのスペクトル(hemoCDの添加なし)) CO結合型包接錯体(II)単独の紫外可視吸収スペクトル(実線)と、デオキシ包接錯体(II)単独の紫外可視吸収スペクトル(破線)を示すグラフである。 実施例1において一酸化炭素標準水溶液の理論濃度(溶解度から算出された濃度)と本発明による測定濃度との相関関係を示すグラフである。 実施例2においてフラッシング前とフラッシング後(生理食塩水100mL又は200mL)の定常状態ラットの肝臓内一酸化炭素を本発明により定量した結果を示すグラフである。 実施例2においてフラッシング前とフラッシング後(生理食塩水200mL)の定常状態ラットの肝臓内一酸化炭素を本発明により定量した結果とガスクロマトグラフィー法の測定結果とを示すグラフである。 実施例3において血液中一酸化炭素濃度測定の結果を示すグラフである。 実施例3において一酸化炭素ガス吸引後のラットの臓器内一酸化炭素を本発明により定量した結果を示すグラフである。 実施例4において血液中一酸化炭素濃度測定の結果を示すグラフである。 実施例4において一酸化炭素ガス吸引・空気換気後のラットの臓器内一酸化炭素を本発明により定量した結果を示すグラフである。 実施例5において本発明によるラットの臓器(筋肉)内一酸化炭素量の定量値と臓器重量との関係を示すグラフである。 実施例5において本発明によるラットの臓器(肺)内一酸化炭素量の定量値と臓器重量との関係を示すグラフである。 実施例5において本発明によるラットの臓器(肝臓)内一酸化炭素量の定量値と臓器重量との関係を示すグラフである。
 以下、本発明にかかる一酸化炭素の定量方法及び一酸化炭素測定用キットの好ましい実施形態について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。
〔包接錯体溶液の調製〕
 本発明の定量方法は、試料と、所定の定量用包接錯体とを用いて、定量用包接錯体由来の物質として、包接錯体における金属が2価であり、かつ、酸素及び一酸化炭素と結合していないデオキシ包接錯体(II)と、デオキシ包接錯体(II)が試料中の一酸化炭素と結合したCO結合型包接錯体(II)のみを含有する水系の包接錯体溶液を調製する工程を含む。
<試料>
 試料としては、例えば、動植物の細胞や組織が挙げられる。これらの試料を用いて、本発明を実施すれば、細胞や組織内に含まれる微量の一酸化炭素濃度を正確に定量することができる。
 また、血液、尿などを試料として用いても良い。これらの試料を用いて、本発明を実施すれば、血液や尿中に含まれる微量の一酸化炭素濃度を正確に定量することができる。
 このように、本発明は、生体サンプル中の一酸化炭素の定量に有用であるが、その他にも、本発明を実施することにより、生体サンプルに限らずに様々な試料中に含まれる一酸化炭素を定量することができる。
 試料は、最終的にスペクトル測定に供される包接錯体溶液に試料中の一酸化炭素が溶け込み、包接錯体と結合するのであれば、固体でも液体でも構わない。
 最も単純な試料は、水に一酸化炭素が溶解した一酸化炭素水溶液である。
<定量用包接錯体>
 次に、本発明で用いる定量用包接錯体について説明する。
 この定量用包接錯体は、下記一般式(A)又は下記一般式(B)で示されるシクロデキストリン二量体が水溶性金属ポルフィリンを包接してなるものである。
Figure JPOXMLDOC01-appb-C000019
 上記一般式(A)中、Rはシクロデキストリンの水酸基を保護する保護基を表し、mは1~2の整数を表し、nは1~3の整数を表す。
Figure JPOXMLDOC01-appb-C000020
 上記一般式(B)中、Rは、シクロデキストリンの水酸基を保護する保護基を表し、pは1~2の整数を表し、qは1~3の整数を表す。
 上記一般式(A)で表されるシクロデキストリン二量体は、例えば、特許文献1に記載のように、シクロデキストリンをトシル化してエポキシ化したのち、このシクロデキストリンの水酸基をメチル化し、メチル化したシクロデキストリンとリンカー分子とを結合して製造することができる。
 シクロデキストリンの水酸基を予めメチル基などで保護することで、水酸基によって生じる水素結合によりシクロデキストリンの内孔が硬くなり、水溶性金属ポルフィリンがシクロデキストリン二量体の内孔に包接され難くなるのを防ぐことができる。
 上記一般式(A)における保護基Rとしては、メチル基以外に、例えば、エチル基、アセチル基、ヒドロキシプロピル基などが挙げられる。
 上記一般式(A)で表されるシクロデキストリン二量体の原料となるシクロデキストリンとしては、α-シクロデキストリン、β-シクロデキストリン(m=1、かつn=2)、γ-シクロデキストリンのいずれを用いても良いが、水溶性金属ポルフィリンを包接し易いためβ-シクロデキストリンを原料として利用するのが好ましい。
 上記一般式(B)で表されるシクロデキストリン二量体の原料となるシクロデキストリンについても、α-シクロデキストリン、β-シクロデキストリン(p=1、かつq=2)、γ-シクロデキストリンのいずれを用いても良いが、水溶性金属ポルフィリンを包接し易いためβ-シクロデキストリンを原料として利用するのが好ましい。
 上記一般式(B)で表されるシクロデキストリン二量体の製造法としては、例えば、特許文献2に記載のように、部分メチル化シクロデキストリン(2,6-di-O-Me-β-CD)と水素化ナトリウムとを反応させてナトリウムアルコキシドを生成し、このナトリウムアルコキシドとハロゲン化アルキルであるリンカー分子とをウィリアムソン合成してエーテル(シクロデキストリン二量体)を生成したのち、生成したシクロデキストリン二量体の水酸基をメチル化することによって、製造できる。
 この方法で製造する場合、シクロデキストリン二量体を合成したのち、シクロデキストリン原料と生成物であるシクロデキストリン二量体とは、カラムクロマトグラフィーなどによって分離できるので、シクロデキストリン原料は無駄なく利用できる。また、シクロデキストリン二量体の全ての水酸基は天然の立体配座を保持したままメチル化できる。
 上記一般式(B)における保護基Rも、メチル基に限定されず、例えば、エチル基、アセチル基、ヒドロキシプロピル基などであってもよい。
 水溶性金属ポルフィリンは、ピロールが4つ組み合わさって出来た環状構造を持つ有機化合物であって、中心部の窒素に金属イオンが配位され、かつ、水溶性を有するものである。
 特に限定するわけではないが、例えば、下記一般式(C)又は(D)で示されるものが好適に挙げられる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 上記一般式(C)、(D)において、R1及びR2は、それぞれカルボキシル基、スルホニル基、水酸基の何れかを表し、MはFe2+、Mn2+、Co2+、Zn2+、Fe3+、Mn3+、Co3+、Zn3+の何れかを表す。
 特に、上記一般式(C)で表される化合物の中では、5,10,15,20-テトラキス(4-スルホナトフェニル)ポルフィリン鉄錯体が好ましく、上記一般式(D)で表される化合物の中では、5,15-ビス(3,5-ジカルボキシラトフェニル)-10,20-ジフェニルポルフィリン鉄錯体が好ましい。
 なお、これらの化合物は、公知の方法により合成しても良いし、市販品(例えば、Frontier scientific社、東京化成工業株式会社など)をそのまま使用しても良い。
 定量用包接錯体の中心金属は、2価でも3価でも良いが、後述のとおり、3価金属であっても、最終的には、全て2価金属に還元される。通常は、3価の方が安定であるので、中心金属が3価の包接錯体を定量用包接錯体として用いるのが簡便である。
<包接錯体溶液>
 スペクトル測定に供される包接錯体溶液においては、定量用包接錯体由来の物質として、前記包接錯体における金属が2価であり、かつ、酸素及び一酸化炭素と結合していないデオキシ包接錯体(II)と、前記包接錯体(II)が試料溶液中の一酸化炭素と結合したCO結合型包接錯体(II)のみを含有する。
 逆に言えば、スペクトル測定に供される包接錯体溶液において、定量用包接錯体由来の物質として、中心金属が3価である包接錯体(III)や、中心金属が2価であるが酸素と結合しているオキシ包接錯体(II)は含まないようにする。
 包接錯体(III)を含まないようにするためには、中心金属が2価である包接錯体を定量用包接錯体として用いても良いし、包接錯体(III)を定量用包接錯体として用いるが、還元剤で2価に還元するようにしても良い。
 包接錯体(III)の中心金属を2価に還元するための還元剤としては、特に限定するわけではないが、例えば、亜ジチオン酸ナトリウム(Na224)、アスコルビン酸ナトリウム、ジチオスレイトール、メルカプトエタノール、システイン、グルタチオンなどが挙げられる。
 また、オキシ包接錯体(II)を含まないようにするためには、溶存酸素を除去すれば良いが、そのための簡易かつ有効な方法として、例えば、還元剤を添加する方法が挙げられる。また、その他の方法として、水溶液中にアルゴンや窒素などの不活性ガスを吹き込んで置換するか、凍結脱気法により溶存酸素を除去する方法も挙げられる。
 試料溶液中の溶存酸素を還元するための還元剤としては、例えば、Na224、アスコルビン酸ナトリウム、ジチオスレイトール、メルカプトエタノール、システイン、グルタチオンなどが挙げられる。
 生体サンプルを用いる場合においては、タンパク質を除去することが望ましい。
 タンパク質の除去は、限外ろ過フィルターなどを用いても良いが、沈殿剤を添加して沈殿させる方が簡便で低コストである。
 タンパク質を除去するための沈殿剤としては、例えば、Na224、硫酸アンモニウム、尿素、ポリエチレングリコール、スルホサリチル酸、界面活性剤などが挙げられる。
 上述のとおり、Na224は、包接錯体(III)の還元剤と、溶存酸素の還元による除去剤、タンパク質を除去するための沈殿剤を兼ねることができるので、特に好ましい。これらの機能を発揮させるためには、Na224を過剰量用いればよい。
 包接錯体溶液の調製に当たっては、試料に対し、定量用包接錯体溶液を添加しても良いし、逆に、定量用包接錯体溶液に試料を添加しても良く、添加順序等は特に限定されない。
〔包接錯体溶液のスペクトル測定と測定結果に基づく一酸化炭素量の算出〕
 次に、上記のようにして調製した包接錯体溶液の紫外可視吸収スペクトルを測定する。
 得られるスペクトルには、図1にその例を示す通り、422nm付近と434nm付近に変曲点(第1の変曲点、第2の変曲点)が見られる。第1の変曲点は主としてCO結合型包接錯体(II)の吸光によるもので、第2の変曲点は主としてデオキシ包接錯体(II)の吸光によるものである。このことは、参考として図2に示すCO結合型包接錯体(II)単独及びデオキシ包接錯体(II)単独の場合の各紫外可視吸収スペクトル(実線:CO結合型単独、破線:デオキシ型単独)からわかる。
 ここで、
 A422:第1の変曲点での吸光度
 A434:第2の変曲点での吸光度
 ε422 deo:第1の変曲点でのデオキシ包接錯体(II)のモル吸光係数(既知)
 ε434 deo:第2の変曲点でのデオキシ包接錯体(II)のモル吸光係数(既知)
 ε422 CO:第1の変曲点でのCO結合型包接錯体(II)のモル吸光係数(既知)
 ε434 CO:第2の変曲点でのCO結合型包接錯体(II)のモル吸光係数(既知)
とすると、ランベルト・ベールの法則から、以下の式(1)、(2)が成り立つ。
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
 また、
 Ctotal:添加した定量用包接錯体の全濃度
とすると、添加した定量用包接錯体は、CO結合型包接錯体(II)又はデオキシ包接錯体(II)として存在するから、下式が成り立つ。
Figure JPOXMLDOC01-appb-M000025
 包接錯体に対するCO結合型包接錯体(II)の割合RCO(=CCO/Ctotal)は、上式(1)、(2)を利用すると、吸光度の比(A422/A434)を用いて、下式(3)で表すことができる。
Figure JPOXMLDOC01-appb-M000026
 また、一酸化炭素のモル数MCOは、下式(4)で表すことができる。
Figure JPOXMLDOC01-appb-M000027
 上式(4)において、Vは体積である。
 このように、本発明によれば、人体に有毒な一酸化炭素ガスを使用せず、しかも、一回のスペクトル測定で、A422とA434の比から、一酸化炭素の濃度や量を得ることができる。
 なお、包接錯体溶液のスペクトル測定において、不純物の混入等による誤差が生じ得る場合は、定量用包接錯体非添加のブランクについてスペクトル測定を行い、誤差を補正することが好ましく、その場合、吸光度A422、A434は、補正後の吸光度を意味するものとする。
 A422/A434が小さすぎたり大きすぎたりすると、第1・第2の変曲点が判別し難くなり、測定精度が低下するおそれがあるので、0.8~3.0の範囲であることが好ましい。
 A422/A434を0.8~3.0の範囲とするためには、例えば、0.8未満となる場合には、定量用包接錯体の添加量を半量に減らし、3.0以上になる場合には、定量用包接錯体の添加量を倍量に増やすなどして、この範囲に収めるように条件検討を行う。
〔一酸化炭素測定用キット〕
 本発明の一酸化炭素測定用キットは、試料と定量用包接錯体とから水系の包接錯体溶液を調製し、前記包接錯体溶液の紫外可視吸収スペクトルから試料中の一酸化炭素の量を算出して、試料中の一酸化炭素量を測定するのに用いられ、上記した本発明の定量方法を実施するためのキットとして適している。
 本発明の一酸化炭素測定用キットは、測定用試薬として、上述した定量用包接錯体を含むか、又は、その原料となるシクロデキストリン二量体及び水溶性金属ポルフィリンを含む。
 また、包接錯体溶液の溶存酸素を除去するための還元剤を含む。
 試料と、上記の定量用包接錯体又はその原料とを用いて水系の溶液を調製し、さらに還元剤を加えることで、簡単に紫外可視吸収スペクトル測定のための包接錯体溶液を調製することができる。
 調製される包接錯体溶液は、還元剤により溶存酸素が除去されている。また、定量用包接錯体の中心金属が3価であっても、還元剤により2価に還元することができる。したがって、包接錯体溶液として、前記包接錯体における金属が2価であり、かつ、酸素及び一酸化炭素と結合していないデオキシ包接錯体(II)と、前記包接錯体(II)が試料溶液中の一酸化炭素と結合したCO結合型包接錯体(II)のみを含有する包接錯体溶液が得られる。
 この包接錯体溶液について、本発明の定量方法に従い、スペクトル測定及び一酸化炭素の算出を行うことにより、試料中の微量な一酸化炭素を精度よく簡便に測定することができる。
 試料、定量用包接錯体、還元剤などについては、本発明の定量方法について上述した内容と共通であるので、説明を割愛する。
 以下、本発明について実施例を用いて説明するが、本発明はこれら実施例に限定されるものではない。
〔実施例1〕
 本発明により一酸化炭素を精度よく簡便に定量できることを示すために、一酸化炭素の標準溶液を作って、標準溶液中の一酸化炭素を定量した。
<定量用包接錯体の作製>
 5,10,15,20-テトラキス(4-スルホナトフェニル)ポルフィリン鉄(III)錯体(Frontier Scientific社製、以下、「Fe(III)TPPS」と略す。)及びパーメチル化β-シクロデキストリン二量体(以下、「Py3CD」と略す。)をモル比が1/1.2となるようにそれぞれ電子天秤で秤量してエッペンドルフチューブに入れ、PBS緩衝液(pH7.4)1.0mLを加えて溶解させて、ポルフィリンの鉄が三価である包接錯体水溶液(met-hemoCD水溶液)を得た。
 Fe(III)TPPSの量は1.1mg、Py3CDの量は3.5mgであった。
 つぎに、上記の溶液(1×10-3mol/Lのmet-hemoCD水溶液)をPBS緩衝液で適宜希釈し、(1~5)×10-6mol/Lの濃度とした。そこへ過剰量(約2mg)のNa224を加えて、Fe(III)TPPSの中心鉄をFe(III)からFe(II)に還元するとともに、溶液中の溶存酸素を水に還元した。
 以上により、定量用包接錯体溶液(包接錯体濃度(1~5)×10-6mol/L)を得た。
<スペクトル測定のための包接錯体溶液の作製>
 脱気した50mLのミリQ水を50mLテルモシリンジに入れ、先端にセプタムラバーを取り付け、注射針を刺入し、さらに脱気した。
 その後、マイクロシリンジを用いて、1,2,3,4又は5μLの一酸化炭素ガス(99.9%)をテルモシリンジ内に導入した。ガスタイトシリンジでテルモシリンジ内の水を採取して各一酸化炭素濃度の標準溶液を調製した。
 一酸化炭素ガスの導入量と、標準溶液の一酸化炭素濃度MCO(理論値)は、下表のとおりとなる。
Figure JPOXMLDOC01-appb-T000028
 各標準溶液0.5mLに、上記で準備した定量用包接錯体溶液を0.5mL加え、スペクトル測定のための各包接錯体溶液を作製した。
 なお、室温での一酸化炭素の溶解度が2.4mL/100mLであり、この溶解度に対し、今回調製した溶液濃度が十分に薄く、また、シリンジが密閉しているため、吸入した一酸化炭素は全て溶液中に溶けていると考えられる。
<包接錯体溶液のスペクトル測定>
 上記で作製した包接錯体溶液について、分光光度計(Nanophotometer C40、Implen社製)により紫外可視吸収スペクトル測定を行った。
<スペクトル測定結果に基づく一酸化炭素の定量>
 各標準溶液について、上式(4)から算出された一酸化炭素濃度MCO(測定値)を下表にまとめた。
Figure JPOXMLDOC01-appb-T000029
 なお、各モル吸光係数は以下の値であることが分かっており、これらの値と、A422、A434の測定値とを用いて、一酸化炭素濃度MCO(測定値)の算出を行った。
 ε422 deo=1.52×105L/(mol・cm)
 ε434 deo=2.13×105L/(mol・cm)
 ε422 CO=3.71×105L/(mol・cm)
 ε434 CO=6.75×104L/(mol・cm)
 A422,A434の全ての実測データを記載することは省略するが、参考として、一酸化炭素導入量3μLの場合のA422、A434の実際の測定値(3回測定)を下表3に示す。
Figure JPOXMLDOC01-appb-T000030
 MCO(理論値)を横軸、MCO(測定値)を縦軸としたときのグラフを図3に示す。
 検量線の傾きが1.0062となるため、検量線の理論値とほぼ一致する値となることから、本発明により、人体に有毒な一酸化炭素ガスを使用することなく、一酸化炭素を精度よく簡便に定量できることが分かった。
〔実施例2〕
 本発明により、定常状態のラットにおける臓器の一酸化炭素分布を調べた(N=3~6)。ラットは、Wister系雄性ラット(清水実験材料より入手)を使用した。
<試料の準備>
 ラットにペントバルビタールで腹腔内投与麻酔を行い、その後セボフルラン経口麻酔で開腹した。
 その後、血液残存サンプルとして、肝臓を採取した。
 また、心臓大静脈から生理食塩水(saline)を20mL/minで100mL又は200mL注入することにより血液除去のためのフラッシング操作を行い、血液除去後のサンプルとして、肝臓を採取した。
 採取した各臓器は、採取後すぐ液体窒素で凍結し、-80℃で保存した。
<定量用包接錯体の作製>
 実施例1の「定量用包接錯体の作製」と同様にして、定量用包接錯体溶液(包接錯体濃度5×10-6mol/L)を調製した。
<スペクトル測定のための包接錯体溶液の作製>
 上記「試料の準備」にて凍結保存しておいた各臓器を4℃で解凍し、20mg秤量し、そこにPBS(pH7.0)0.5mLを加えた。そこへ上記「定量用包接錯体の作製」で作製した定量用包接錯体溶液を最終的なhemoCD濃度が(1~5)×10-6mol/Lとなるように加え、その後、溶液を超音波破砕器(Qsonica社製)を用いて、均質化した。遠心分離及びフィルターでのろ過を行うことにより、ろ液を得た。
 このろ液に過剰量(1~2mg)のNa224を更に加えることにより、スペクトル測定のための包接錯体溶液を作製した。
 なお、タンパク質は、過剰のNa224の添加により、沈殿除去されている。
 また、ブランクとして、包接錯体を含まない溶液を作製した。具体的には、上記「試料の準備」にて凍結保存しておいた臓器を4℃で解凍し、20mg秤量し、そこにPBS(pH7.0)1.0mLを加え、過剰量(1~2mg)のNa224をその溶液へ加えた。超音波破砕器(Qsonica社製)を用いて超音波で組織を破砕して均質化し、遠心分離及びフィルターを通して得た溶液をブランクとした。
<包接錯体溶液のスペクトル測定>
 上記で作製した包接錯体溶液について、分光光度計(Nanophotometer C40、Implen社製)により紫外可視吸収スペクトル測定を行った。
 また、ブランクについても、同様に紫外可視吸収スペクトル測定を行った。
<スペクトル測定結果に基づく一酸化炭素の定量>
 A422とA434は、包接錯体溶液のスペクトル測定実測値から、ブランクのスペクトル測定実測値を差し引いて補正した値とする。
 この補正後のA422とA434の値と、既知の各モル吸光係数の値とを用いて、上式(4)から、実施例1と同様にして、臓器内の一酸化炭素を定量した。
 結果を図4に示す。
<ガスクロマトグラフィー法との比較実験>
 本発明との比較のため、フラッシングなしと生理食塩水200mLによるフラッシングありの場合の肝臓試料について、非特許文献4のガスクロマトグラフィー法を用いて、一酸化炭素ガス測定を行った。
 具体的には、5mLテルモシリンジの先端にセプタムラバー(天然ゴム7mm試験管用)を取り付けて注射針を刺入した。試料を約100mg精秤した。超音波破砕し、破砕液とガラス球(直径5mm)を1個、シリンジに入れ、完全に脱気した。ヘリウムガス1mLと、ヘムを酸化するために5%のスルホンサリチル酸水溶液3滴をシリンジ内に吸入した。マイクロシリンジを用いてメタンガスを50μLシリンジ内に吸入した。30分振盪した後、ガスタイトシリンジでシリンジ内の気相を0.5mL採取し、GCに注入した。内部標準物質としてメタンガスを用いた。
 結果を図5及び下表に示す。
Figure JPOXMLDOC01-appb-T000031
<考察>
 図4の結果から、血液の除去により、一酸化炭素量が有意に低下することが分かった。
 生理食塩水100mLの場合と200mLの場合との比較では、一酸化炭素量に有意な差が見られなかったことから、生理食塩水100mLで十分なフラッシングができていたと考えられる。
 このように、本発明によれば、人体に有毒な一酸化炭素ガスを使用することなく、臓器中に含まれる一酸化炭素量を簡便に定量することができ、残存血液の有無の影響を確認することができた。
 また、図5及び表4に示す結果から、本発明によれば、ガスクロマトグラフィー法と比べて、簡単かつ正確に一酸化炭素を定量可能であることが分かった。
〔実施例3〕
 本発明により、一酸化炭素ガス(400ppm)吸引後のラットにおける臓器の一酸化炭素分布を調べた(N=3~6)。ラットは、Wister系雄性ラット(清水実験材料より入手)を使用した。
<試料の準備>
 ラットに経口挿管により一酸化炭素ガス(400ppm)を吸引させた。
 このラットにペントバルビタールで腹腔内投与麻酔を行い、その後セボフルラン経口麻酔で開腹し、左心室、右心室から、それぞれ、血液を採取し、血液中一酸化炭素濃度測定を行った。
 血液中一酸化炭素濃度測定は、血液ガス分析装置ABL800 FLEX Radiometerを用いて行った。測定結果を図6に示す。
 その後、心臓大静脈から生理食塩水を20mL/minで200mL注入することにより血液除去のためのフラッシング操作を行ったのち、肝臓、肺、筋肉、心臓、大脳、小脳を採取した。
 採取した臓器は、採取後すぐ液体窒素で凍結し、-80℃で保存した。
 一酸化炭素ガス吸引5分後、10分後、20分後のラットそれぞれについて、臓器を採取した。比較のため、一酸化炭素ガス吸引0分後(吸引なし)のラットについても、同様に、臓器を採取した。
 また、上記とは別に、一酸化炭素ガス吸引5分後、20分後のラットの大脳について、以下の方法により、外部から直接一酸化炭素を投与した試料も準備した。
 大脳のサンプルを5mLテルモシリンジに入れ、テルモシリンジの先端にセプタムラバー(天然ゴム7mm試験管用)を取り付けて25Gテルモ注射針を刺入し、脱気した。その後、ガスタイトシリンジを用いて一酸化炭素ガスをシリンジ内に注入し、4℃でインキュベーションした。
<定量用包接錯体の作製>
 実施例2と同様である。
<スペクトル測定のための包接錯体溶液の作製>
 用いた試料が異なること以外は、実施例2と同様である。
<包接錯体溶液のスペクトル測定>
 用いた試料が異なること以外は、実施例2と同様である。
<スペクトル測定結果に基づく一酸化炭素の定量>
 用いた試料が異なること以外は、実施例2と同様である。
 A422とA434は、ブランクで補正した値とした。
 このA422とA434の値と、既知の各モル吸光係数の値とを用いて、上式(4)から、実施例2と同様にして、臓器内の一酸化炭素を定量した。
 一酸化炭素ガス(400ppm)吸引後の臓器内一酸化炭素定量結果を図7に示す。
 また、大脳に外部から直接一酸化炭素を投与した場合の臓器内一酸化炭素量の変化について下表5に示す。
Figure JPOXMLDOC01-appb-T000032
<考察>
 図7に示す結果から、一酸化炭素ガス吸引5分後に各臓器で一酸化炭素量が増加することが分かった。一酸化炭素ガス吸引10分後では、各臓器の一酸化炭素量がほぼ一定のままで、20分後においては、各臓器の一酸化炭素量は増加せず、低下傾向もみられた。
 これに対し、図5に示す血液中一酸化炭素濃度の測定結果では、血中のCO-Hb%は時間とともにほぼ直線で増加していることが分かる。
 つまり、一酸化炭素ガスは体内に拡散しているにもかかわらず、吸引10分後、20分後では、各臓器の一酸化炭素量は増加しない結果となった。
 また、表5に示す結果から、外部から直接一酸化炭素を投与した場合には臓器内一酸化炭素ガスは増加することが観察できた。
 このように、本発明によれば、人体に有毒な一酸化炭素ガスを使用することなく、臓器中に含まれる一酸化炭素量を簡便に定量することができ、一酸化炭素を吸引させた場合と臓器に直接投与した場合の一酸化炭素量の違いについて確認することができた。
 そして、これらの結果から、一酸化炭素をラットに吸引させた場合、臓器内の一酸化炭素は、ある程度の量で飽和することが確認でき、また、この飽和量が、臓器に外部から直接一酸化炭素を投与することで結合される一酸化炭素量よりも低いことが確認できた。
〔実施例4〕
 本発明により、一酸化炭素ガス(400ppm)吸引・空気換気後のラットにおける臓器の一酸化炭素分布を調べた(N=3)。ラットは、Wister系雄性ラット(清水実験材料より入手)を使用した。
<試料の準備>
 ラットに経口挿管により一酸化炭素ガス(400ppm)を5分吸引させた。
 次に、経口挿管により空気を吸引させ、空気換気した。
 このラットにペントバルビタールで腹腔内投与麻酔を行い、その後セボフルラン経口麻酔で開腹し、左心室、右心室から、それぞれ、血液を採取し、血液中一酸化炭素濃度測定を行った。
 血液中一酸化炭素濃度測定は、血液ガス分析装置ABL800 FLEX Radiometerを用いて行った。測定結果を図8に示す。
 その後、心臓大静脈から生理食塩水を20mL/minで200mL注入することにより血液除去のためのフラッシング操作を行ったのち、肝臓、肺、筋肉、心臓、大脳、小脳肉を採取した。
 採取した臓器は、採取後すぐ液体窒素で凍結し、-80℃で保存した。
 空気換気5分後、10分後のラットそれぞれについて、臓器を採取した。また、比較のため、一酸化炭素ガス吸引0分後(吸引なし)、一酸化炭素ガス吸引5分後・空気換気なしのラットについても、同様に、臓器を採取した。
<定量用包接錯体の作製>
 実施例2と同様である。
<スペクトル測定のための包接錯体溶液の作製>
 用いた試料が異なること以外は、実施例2と同様である。
<包接錯体溶液のスペクトル測定>
 用いた試料が異なること以外は、実施例2と同様である。
<スペクトル測定結果に基づく一酸化炭素の定量>
 用いた試料が異なること以外は、実施例2と同様である。
 A422とA434は、ブランクで補正した値とした。
 このA422とA434の値と、既知の各モル吸光係数の値とを用いて、上式(4)から、実施例2と同様にして、臓器内の一酸化炭素を定量した。
 結果を図9に示す。
<考察>
 空気換気10分後、肺、肝臓、心臓および筋肉は定常状態に戻る傾向が観測された。脳においては一酸化炭素ガスを吸引させた後と有意な変化が観測されなかった。
 これに対し、図9に示す血液中一酸化炭素濃度の測定結果では、血中のCO-Hb%は、一酸化炭素ガス吸引5分後に増加し、空気換気を行ってもあまり変化していない。
 このように、本発明によれば、人体に有毒な一酸化炭素ガスを使用することなく、臓器中に含まれる一酸化炭素量を簡便に定量することができ、一酸化炭素をラットに吸引させた後の空気換気による臓器内の一酸化炭素量の変化を確認することができ、血中のCO-Hb%の変化との違いなど、有用な情報を得ることができた。
〔実施例5〕
 本発明の効果について、さらに明確にするため、臓器重さと臓器内の一酸化炭素量の比例関係を確認することにより、本発明による臓器内一酸化炭素量の定量の正確性を検証した。ラットは、Wister系雄性ラット(清水実験材料より入手)を使用した。
<試料の準備>
 実施例3に準じて、一酸化炭素ガス吸引20分後のラットの臓器(骨格筋、肝臓、肺)を採取した。
 採取した各臓器は、採取後すぐ液体窒素で凍結し、-80℃で保存した。
<定量用包接錯体の作製>
 実施例2と同様である。
<スペクトル測定のための包接錯体溶液の作製>
 用いた試料が異なること以外は、実施例2と同様である。
 試料は、上記「試料の準備」に基づき準備し、種々の臓器重さについて、定量用包接錯体を作製した。
<包接錯体溶液のスペクトル測定>
 用いた試料が異なること以外は、実施例2と同様である。
<スペクトル測定結果に基づく一酸化炭素の定量>
 用いた試料が異なること以外は、実施例2と同様である。
 A422とA434は、ブランクで補正した値とした。
 このA422とA434の値と、既知の各モル吸光係数の値とを用いて、上式(4)から、実施例2と同様にして、臓器内の一酸化炭素を定量した。
 筋肉についての結果を図10及び下表6、肺についての結果を図11及び下表7、肝臓についての結果を図12及び下表8にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
<考察>
 図10~12、表6~8の結果から、臓器重さと臓器内の一酸化炭素量の比例関係を確認することができ、本発明による臓器内一酸化炭素量の定量の正確性が示された。
                                                                                

Claims (12)

  1.  試料中に含まれる一酸化炭素の定量方法であって、
     試料と、下記一般式(A)又は下記一般式(B)で示されるシクロデキストリン二量体が水溶性金属ポルフィリンを包接してなる定量用包接錯体とを用いて、前記定量用包接錯体由来の物質として、中心金属が2価であり、かつ、酸素及び一酸化炭素と結合していないデオキシ包接錯体(II)と、前記デオキシ包接錯体(II)が試料中の一酸化炭素と結合したCO結合型包接錯体(II)のみを含有する水系の包接錯体溶液を調製する工程と、
     前記包接錯体溶液の紫外可視吸収スペクトルを測定する工程と、
     前記測定により得られる紫外可視吸収スペクトルにおいて、422nm付近に見られる第1の変曲点と、434nm付近に見られる第2の変曲点のそれぞれについて、ランベルト・ベールの法則に基づき成立する下式(1)、(2)から、試料中の一酸化炭素の量を算出する工程と
    を含む、一酸化炭素の定量方法。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(A)中、Rはシクロデキストリンの水酸基を保護する保護基を表し、mは1~2の整数を表し、nは1~3の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(B)中、Rはシクロデキストリンの水酸基を保護する保護基を表し、pは1~2の整数を表し、qは1~3の整数を表す。)
    Figure JPOXMLDOC01-appb-M000003
    (上式(1)中、A422、ε422 deo、ε422 COは、それぞれ、第1の変曲点での吸光度、デオキシ包接錯体(II)のモル吸光係数、CO結合型包接錯体(II)のモル吸光係数を表し、Cdeo、CCOは、それぞれ、スペクトル測定試料中のデオキシ包接錯体(II)の濃度とCO結合型包接錯体(II)の濃度を表す。)
    Figure JPOXMLDOC01-appb-M000004
    (上式(2)中、A434、ε434 deo、ε434 COは、それぞれ、第2の変曲点での吸光度、デオキシ包接錯体(II)のモル吸光係数、CO結合型包接錯体(II)のモル吸光係数を表し、Cdeo、CCOは、それぞれ、スペクトル測定試料中のデオキシ包接錯体(II)の濃度とCO結合型包接錯体(II)の濃度を表す。)
  2.  前記試料中の一酸化炭素の量を算出する工程において、前記式(1)、(2)を変形した下式(3)により、定量用包接錯体全量に対するCO結合型包接錯体(II)の割合RCOを算出する、請求項1に記載の一酸化炭素の定量方法。
    Figure JPOXMLDOC01-appb-M000005
  3.  前記包接錯体溶液を調製する工程において、溶存酸素を除去することにより、デオキシ包接錯体(II)が酸素と結合したオキシ包接錯体(II)の生成を抑止する、請求項1又は2に記載の一酸化炭素の定量方法。
  4.  前記包接錯体溶液を調製する工程において、溶存酸素を除去するために、還元剤を用いる、請求項3に記載の一酸化炭素の定量方法。
  5.  前記還元剤がNa224である、請求項4に記載の一酸化炭素の定量方法。
  6.  生体サンプル中の一酸化炭素の定量に用いられる、請求項1から5までのいずれかに記載の一酸化炭素の定量方法。
  7.  前記包接錯体溶液を調製する工程において、前記生体サンプルにおけるタンパク質を沈殿分離するために、沈殿剤を用いる、請求項6に記載の一酸化炭素の定量方法。
  8.  前記沈殿剤がNa224である、請求項7に記載の一酸化炭素の定量方法。
  9.  前記定量用包接錯体のシクロデキストリン二量体が、一般式(A)で表され、m=1、かつn=2のシクロデキストリン二量体であるか、又は一般式(B)で表され、p=1、かつq=2のシクロデキストリン二量体である、請求項1から8までのいずれかに記載の一酸化炭素の定量方法。
  10.  前記定量用包接錯体の水溶性金属ポルフィリンが、下記一般式(C)又は(D)で示される、請求項1から9までのいずれかに記載の一酸化炭素の定量方法。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    (式中、R1及びR2は、それぞれカルボキシル基、スルホニル基、水酸基の何れかを表し、MはFe2+、Mn2+、Co2+、Zn2+、Fe3+、Mn3+、Co3+、Zn3+の何れかを表す。)
  11.  前記定量用包接錯体の水溶性金属ポルフィリンが、5,10,15,20-テトラキス(4-スルホナトフェニル)ポルフィリン鉄錯体である、請求項10に記載の一酸化炭素の定量方法。
  12.  試料と定量用包接錯体とから水系の包接錯体溶液を調製し、前記包接錯体溶液の紫外可視吸収スペクトルから試料中の一酸化炭素の量を算出して、試料中の一酸化炭素量を測定するのに用いられる一酸化炭素測定用キットであって、
     下記一般式(A)もしくは下記一般式(B)で示されるシクロデキストリン二量体が水溶性金属ポルフィリンを包接してなる定量用包接錯体、又は、その原料となるシクロデキストリン二量体及び水溶性金属ポルフィリンと、
     前記包接錯体溶液の溶存酸素を除去するための還元剤と
    を含む、一酸化炭素測定用キット。
    Figure JPOXMLDOC01-appb-C000008
    (上記一般式(A)中、Rはシクロデキストリンの水酸基を保護する保護基を表し、mは1~2の整数を表し、nは1~3の整数を表す。)
    Figure JPOXMLDOC01-appb-C000009
    (上記一般式(B)中、Rはシクロデキストリンの水酸基を保護する保護基を表し、pは1~2の整数を表し、qは1~3の整数を表す。)
PCT/JP2021/000521 2020-01-27 2021-01-08 一酸化炭素の定量方法及び一酸化炭素測定用キット WO2021153197A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021574588A JPWO2021153197A1 (ja) 2020-01-27 2021-01-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-010710 2020-01-27
JP2020010710 2020-01-27

Publications (1)

Publication Number Publication Date
WO2021153197A1 true WO2021153197A1 (ja) 2021-08-05

Family

ID=77078181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000521 WO2021153197A1 (ja) 2020-01-27 2021-01-08 一酸化炭素の定量方法及び一酸化炭素測定用キット

Country Status (2)

Country Link
JP (1) JPWO2021153197A1 (ja)
WO (1) WO2021153197A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519928A (ja) * 2002-02-04 2005-07-07 ハース,ベルナー Co放出能力を有する化合物の投与によって哺乳動物を治療する方法と、co放出能力を有する化合物ならびにその医薬組成物
JP2006002077A (ja) * 2004-06-18 2006-01-05 Doshisha シクロデキストリン二量体、包接錯体及びその製造方法
JP2013231111A (ja) * 2012-04-27 2013-11-14 Doshisha シクロデキストリン二量体、包接錯体及び人工血液用酸素輸液等

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005519928A (ja) * 2002-02-04 2005-07-07 ハース,ベルナー Co放出能力を有する化合物の投与によって哺乳動物を治療する方法と、co放出能力を有する化合物ならびにその医薬組成物
JP2006002077A (ja) * 2004-06-18 2006-01-05 Doshisha シクロデキストリン二量体、包接錯体及びその製造方法
JP2013231111A (ja) * 2012-04-27 2013-11-14 Doshisha シクロデキストリン二量体、包接錯体及び人工血液用酸素輸液等

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KITAGISHI, HIROAKI: "In Vivo Reactions Triggered by Selective Removal of Endogenous Carbon Monoxide in Blood Using an Artificial Hemoprotein Model Complex", ARTIFICIAL BLOOD, vol. 27, no. 1, 30 November 2018 (2018-11-30), JP, pages 44 - 52, XP009530169, ISSN: 1341-1594 *
MAO, QIYUE : "3H3-42 Biodistribution of endogenous and exogenous CO in vivo measured by supramolecular heme protein model compound", THE 100TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN (2020); MARCH 22 TO 25, 2020, 5 March 2020 (2020-03-05), pages 3H3-42, XP009530208 *
MINEGISHI SAIKA, YUMURA AKI, MIYOSHI HIROTSUNA, NEGI SHIGERU, TAKETANI SHIGERU, MOTTERLINI ROBERTO, FORESTI ROBERTA, KANO KOJI, KI: "Detection and Removal of Endogenous Carbon Monoxide by Selective and Cell -Permeable Hemoprotein Model Complexes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 139, no. 16, 30 November 2016 (2016-11-30), US, pages 5984 - 5991, XP009530166, ISSN: 0888-6652, DOI: 10.1021/jacs.7b02229 *
SAIETSU MAO, HIROAKI KITAGISHI: "P1-25: Development of carbon monoxide determination measurement in vivo", LECTURE ABSTRACTS OF THE 36TH CYCLODEXTRIN SYMPOSIUM, JAPAN, 2019, Japan, pages 133 - 134, XP009530207 *

Also Published As

Publication number Publication date
JPWO2021153197A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
McMahon et al. Nitric oxide in the human respiratory cycle
Ellis et al. Nitrite and nitrate analyses: a clinical biochemistry perspective
Lamola et al. Erythropoietic protoporphyria and lead intoxication: the molecular basis for difference in cutaneous photosensitivity. II. Different binding of erythrocyte protoporphyrin to hemoglobin.
Gladwin et al. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity
Kelm Nitric oxide metabolism and breakdown
Darling et al. The effect of methemoglobin on the equilibrium between oxygen and hemoglobin
Grobe et al. Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase
Di Iorio [4] Preparation of derivatives of ferrous and ferric hemoglobin
Michael et al. Marine metabolites and metal ion chelation: the facts and the fantasies
Zou et al. Nitric oxide in renal cortex and medulla: an in vivo microdialysis study
Mao et al. Sensitive quantification of carbon monoxide in vivo reveals a protective role of circulating hemoglobin in CO intoxication
EP2402017A1 (en) Carbon monoxide removal agent
Dijkhuizen et al. The oxygen binding capacity of human haemoglobin: Hüfner's factor redetermined
JP4262308B2 (ja) S−ニトロソチオールを負荷した赤血球およびその使用
Sharoyko et al. Biocompatibility, antioxidant activity and collagen photoprotection properties of C60 fullerene adduct with L-methionine
Kumosani L-ergothioneine level in red blood cells of healthy human males in the Western province of Saudi Arabia
WO2021153197A1 (ja) 一酸化炭素の定量方法及び一酸化炭素測定用キット
Pectol et al. Effects of glutathione and histidine on NO release from a dimeric dinitrosyl iron complex (DNIC)
EP4420665A1 (en) Detoxifying agent, detoxifying agent kit, and novel inclusion complex
Nogara et al. The long story of ebselen: From about one century of its synthesis to clinical trials
Suzuki et al. Liposomal methemoglobin as a potent antidote for hydrogen sulfide poisoning
Rifkind The autoxidation of horse hemoglobin: the effect of glutathione
JP5619500B2 (ja) シアン解毒剤
Eyring et al. Interaction of gold and penicillamine
Hirszel et al. Effect of hemodialysis on factors influencing oxygen transport

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748286

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21748286

Country of ref document: EP

Kind code of ref document: A1