WO2021153165A1 - Method for producing laminated body and coating system - Google Patents

Method for producing laminated body and coating system Download PDF

Info

Publication number
WO2021153165A1
WO2021153165A1 PCT/JP2021/000040 JP2021000040W WO2021153165A1 WO 2021153165 A1 WO2021153165 A1 WO 2021153165A1 JP 2021000040 W JP2021000040 W JP 2021000040W WO 2021153165 A1 WO2021153165 A1 WO 2021153165A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
coating
porous base
coating liquid
roll
Prior art date
Application number
PCT/JP2021/000040
Other languages
French (fr)
Japanese (ja)
Inventor
聖司 岡田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2021574570A priority Critical patent/JPWO2021153165A1/ja
Publication of WO2021153165A1 publication Critical patent/WO2021153165A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/04Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
    • B05C1/08Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a laminate and a coating system, and more particularly to a method for producing a laminate using gravure coating and a coating system that can be suitably used for producing the laminate. ..
  • Secondary batteries such as lithium-ion secondary batteries are small and lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. Therefore, conventionally, battery members such as separators have been improved for the purpose of further improving the performance of secondary batteries.
  • a functional layer for example, heat resistance of the separator
  • a separator base material made of a microporous resin film or the like.
  • Separators having formed a protective layer for improving strength, an adhesive layer for improving adhesion between an electrode and a separator, and the like have been developed (see, for example, Patent Document 1).
  • a coating liquid containing a component forming the functional layer is gravure-coated on the long separator base material in a desired pattern, and the separator base material is formed. A method of drying the coating film formed above is used (see, for example, Patent Document 2).
  • the coating liquid filled in the groove of the gravure roll is transferred to the porous base material.
  • the amount to be transferred varies depending on the transport speed of the porous substrate and the rotation speed of the gravure roll, and the transfer amount of the coating liquid decreases particularly when the transport speed and the rotation speed are high.
  • the present invention makes it possible to stably transfer the coating liquid with high efficiency in a technique for producing a laminate by applying a coating liquid to a porous substrate by using a gravure coating. With the goal.
  • the present inventor has conducted diligent studies to achieve the above object. Then, the present inventor presents the side opposite to the gravure roll side of the porous base material at the position where the coating liquid is applied to the porous base material (that is, the position where the porous base material and the gravure roll come into contact with each other). The present invention was completed by finding that the coating liquid can be stably transferred with high efficiency by reducing the pressure.
  • the present invention aims to advantageously solve the above problems, and the method for producing a laminate of the present invention applies a coating liquid to a porous substrate using a gravure roll.
  • a method for producing a laminate including a step. In the step, the coating is applied while reducing the pressure on the side of the porous base material opposite to the gravure roll side at a position where the porous base material and the gravure roll come into contact with each other. It is characterized by applying a liquid. In this way, if the coating liquid is applied while reducing the pressure on the side of the porous base material opposite to the gravure roll side, the coating liquid can be stably transferred to the porous base material with high efficiency.
  • the porous base material is used as a separator base material, and a binder is applied to the coating liquid. Can be contained.
  • the coating liquid may further contain polymer particles having a glass transition temperature of 50 ° C. or higher and 100 ° C. or lower.
  • the glass transition temperature can be measured according to JIS Z8703.
  • the viscosity of the coating liquid is 5 mPa ⁇ s or more and 500 mPa ⁇ s or less.
  • the viscosity of the coating liquid conforms to JIS K7117-1, and uses a B-type viscometer (TVB-10M, manufactured by Toki Sangyo Co., Ltd.) at a temperature of 25 ° C., pH 8.0, and a rotation speed of 60 rpm (rotor: It can be measured by M4).
  • a B-type viscometer (TVB-10M, manufactured by Toki Sangyo Co., Ltd.) at a temperature of 25 ° C., pH 8.0, and a rotation speed of 60 rpm (rotor: It can be measured by M4).
  • the coating speed of the coating liquid is 10 m / min or more and 500 m / min or less.
  • the stability and efficiency of coating can be further improved while increasing the productivity.
  • the method for producing a laminate of the present invention it is preferable to perform the depressurization using at least one of a decompression nozzle, a decompression chamber and a suction roll. By using these devices, decompression can be easily performed.
  • the present invention aims to advantageously solve the above problems, and the coating system of the present invention comprises a transport device for transporting a porous base material and a coating liquid on the porous base material. It is characterized by comprising a gravure roll to be coated and a decompression device for reducing the pressure on the side of the porous base material opposite to the gravure roll side at a position where the porous base material and the gravure roll come into contact with each other. In this way, if a decompression device is provided to reduce the pressure on the side opposite to the gravure roll side of the porous base material, the coating liquid is applied and applied while decompressing the side opposite to the gravure roll side of the porous base material. The liquid can be stably transferred to the porous substrate with high efficiency.
  • the distance between the rolls of the first transport roll and the second transport roll and the first transport roll and the second transport roll in which the transport device is arranged so as to sandwich the position It is preferable to have an interval adjusting mechanism that fluctuates. If the interval adjusting mechanism is provided, the magnitude of the tension applied to the porous substrate when the pressure is reduced by the decompression device can be adjusted.
  • the decompression device has at least one of a decompression nozzle, a decompression chamber and a suction roll. By using these devices, decompression can be easily performed.
  • a coating liquid can be stably applied to a porous substrate by using a gravure coating with high efficiency, and a laminate can be efficiently produced.
  • FIG. 1 It is a figure which shows the schematic structure of an example of the manufacturing apparatus of a laminated body. It is a figure which shows the schematic structure of an example of a coating system, (a) is a front view, (b) is a right side view. It is a figure which shows the schematic structure of another example of a coating system, (a) is a front view, (b) is a right side view. It is a figure which shows the schematic structure of another example of a coating system, (a) is a front view, (b) is a right side view.
  • a coating liquid is applied to a porous substrate using a gravure roll, and the formed coating film is dried as necessary to produce the laminate.
  • the method for producing a laminate of the present invention is not particularly limited, and for example, a separator base material as a porous base material and a functional layer formed on at least one surface of the separator base material are used. It can be used when producing a separator having and.
  • the separator manufactured by the method for manufacturing a laminate of the present invention serves as a member for separating a positive electrode and a negative electrode to prevent a short circuit between the positive electrode and the negative electrode in a secondary battery such as a lithium ion secondary battery. Can be used. Further, the coating system of the present invention can be used when applying a coating liquid to a porous base material using a gravure roll, and a laminate is produced according to the method for producing a laminate of the present invention. Can be used in some cases.
  • the method for producing a laminate of the present invention includes a step of applying a coating liquid to a porous substrate using a gravure roll (coating step), and optionally a step of drying the formed coating film (a step of drying the formed coating film (coating step). Drying step) may be further included.
  • the porous base material is at a position where the porous base material and the gravure roll come into contact with each other (hereinafter, may be referred to as a “transfer position”) when the coating liquid is applied. It is characterized in that the coating liquid is applied while reducing the pressure on the side opposite to the gravure roll side.
  • the porous base material is a breathable member, if the coating liquid is applied while reducing the pressure on the side opposite to the gravure roll side of the porous base material in this way, the transport speed of the porous base material and the gravure Even when the rotation speed of the roll changes (particularly when the transport speed or rotation speed is increased), the coating liquid held in the groove of the gravure roll can be stably transferred with high efficiency. .. Further, in the method for producing a laminate of the present invention, a suction force acts from the gravure roll side to the opposite side of the porous base material at the time of coating, so that the porous base material and the layer formed on the porous base material are formed. It is possible to improve the adhesion with and to improve the coating shape when the coating liquid is applied in a pattern.
  • the method for producing a laminate of the present invention is not particularly limited, and the laminate can be produced by using, for example, the apparatus for producing the laminate as shown in FIG. Therefore, the method for producing the laminate of the present invention will be described below with reference to FIG.
  • the manufacturing apparatus shown in FIG. 1 is an apparatus for producing a laminate by a roll-to-roll method, and is a first device with respect to one surface of the porous base material 2 unwound from the base material roll 1.
  • the coating liquid with the gravure coater 4A of the above the coating film is dried (drying step) in the first drying furnace 6A, and then, with respect to the other surface of the porous base material 2.
  • the coating film is dried (drying process) with the second drying furnace 6B and wound up with a winding roll 7 to be porous.
  • a laminate in which layers are formed on both sides of the base material 2 is manufactured.
  • the decompression device 5A is placed at a position facing the gravure roll 41 via the porous base material 2.
  • the coating liquid can be applied while reducing the pressure on the side of the porous base material 2 opposite to the gravure roll 41 side.
  • the codes 3A to 3K represent transfer rolls, and the code 42 represents a coating liquid chamber for storing the coating liquid.
  • FIG. 1 shows a case where a coating liquid is applied to both sides of the porous base material to produce a laminated body, but in the method for producing a laminated body of the present invention, it is applied to only one side of the porous base material.
  • the liquid may be applied to produce a laminate.
  • the pressure-reducing devices 5A and 5B are used to reduce the pressure on the side of the porous base material 2 opposite to the gravure roll 41 side, and the porous base material 2 is coated with the coating liquid using the gravure roll 41. Work.
  • the porous base material 2 is an elongated porous member, and is conveyed in the longitudinal direction in FIG.
  • the porous base material 2 is not particularly limited, and examples thereof include a microporous film or a non-woven fabric containing a polyolefin resin such as polyethylene and polypropylene, and an aromatic polyamide resin.
  • porous substrate polyolefin (polyethylene, polypropylene, polybutene, etc.), polyvinyl chloride, polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimideamide, polyaramid, nylon, polytetra
  • polyolefin polyethylene, polypropylene, polybutene, etc.
  • polyvinyl chloride polyethylene terephthalate
  • polycycloolefin polyether sulfone
  • polyamide polyimide
  • polyimideamide polyaramid
  • nylon polytetra
  • microporous film made of a resin such as fluoroethylene, a woven fabric of polyolefin-based fibers, or a non-woven fabric.
  • a separator base material made of the above-mentioned microporous membrane can be used as the porous base material.
  • a microporous film made of a polyolefin resin is preferable as the separator base material.
  • the porous substrate has an air permeability of 20 seconds or more, more preferably 50 seconds or more, preferably 600 seconds or less, and more preferably 300 seconds or less.
  • air permeability refers to the time required for 100 ml of air to pass through a 1 in 2 film, and can be measured in accordance with JIS P8117 (Garley test method).
  • a coating liquid containing a component capable of forming a layer having desired performance on a porous substrate can be used depending on the use of the laminate.
  • a coating liquid capable of forming a functional layer on a separator base material as a porous base material can be used as the coating liquid.
  • the coating liquid contains a binder and a dispersion medium, and optionally contains non-conductive particles and additives (for example, a dispersant such as sodium polyacrylate and a viscosity modifier such as carboxymethyl cellulose).
  • a slurry composition further containing the above can be used.
  • the binder in addition to a polymer that easily dissolves in the dispersion medium, any binder used in the field of secondary batteries such as a particulate polymer that is poorly soluble in the dispersion medium can be used.
  • the coating liquid preferably further contains polymer particles having a glass transition temperature of 50 ° C. or higher and 100 ° C. or lower, a glass transition temperature of 50 ° C. or higher and 100 ° C. or lower, and an average particle size. It is more preferable to further contain polymer particles of 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the "average particle size” refers to the volume average particle size measured by using the laser diffraction method.
  • the viscosity of the coating liquid is preferably 5 mPa ⁇ s or more, more preferably 10 mPa ⁇ s or more, preferably 500 mPa ⁇ s or less, and more preferably 300 mPa ⁇ s or less.
  • the viscosity of the coating film is within the above range, the stability and efficiency at the time of transferring the coating film can be further improved.
  • the coating liquid on the porous substrate using the gravure roll may be a full surface coating or a pattern coating, but the side opposite to the gravure roll side of the porous substrate is depressurized. Since the effect obtained by applying the coating liquid is remarkable, the pattern coating is preferable.
  • the thickness of the coating film is not particularly limited, and can be, for example, 0.5 ⁇ m or more and 9 ⁇ m or less.
  • the pattern shape can be a stripe shape, a diagonal line shape, a circular dot shape, an elliptical dot shape, or the like, and the coating area is 5%. It can be 50% or more and 50% or less.
  • the coating speed (the transport speed of the porous substrate and the rotation speed of the gravure roll) is not particularly limited, and is preferably, for example, 10 m / min or more and 500 m / min or less.
  • the coating speed is equal to or higher than the above lower limit value, the productivity of the laminated body can be sufficiently increased. Further, when the coating speed is not more than the above upper limit value, the stability and efficiency at the time of transferring the coating liquid can be further improved.
  • the depressurization on the side opposite to the gravure roll side of the porous base material is not particularly limited, and can be performed using, for example, at least one of a decompression nozzle, a decompression chamber, and a suction roll.
  • the depressurization is preferably performed over the entire width of the portion where the porous base material and the gravure roll come into contact with each other.
  • the degree of vacuum using the vacuum device may be, for example, 10 -5 Pa or 10 5 Pa or less (absolute pressure).
  • the tension applied to the porous base material during coating may be 10 N / m or more and 200 N / m or less. preferable.
  • the porous substrate on which the coating film is formed is heated in, for example, a drying furnace, and the coating film is dried to form a desired layer such as a functional layer on the porous substrate.
  • the drying temperature is not particularly limited as long as the dispersion medium in the coating liquid can be removed, and can be, for example, 40 ° C. or higher and 120 ° C. or lower. Further, the speed of transporting the porous base material in the drying furnace can be, for example, 10 m / min or more and 500 m / min or less.
  • the coating system of the present invention can be used, for example, when carrying out a coating step in the above-described method for producing a laminate of the present invention, and a transport device for transporting a porous substrate and a porous group at a transfer position. It is provided with a decompression device that depressurizes the side opposite to the gravure roll side of the material. In this way, if a decompression device that reduces the pressure on the side opposite to the gravure roll side of the porous base material is provided, when the transport speed of the porous base material or the rotation speed of the gravure roll changes (particularly, the transport speed or rotation). Even when the speed is increased), the coating liquid held in the groove of the gravure roll can be stably transferred with high efficiency.
  • a suction force is exerted from the gravure roll side to the opposite side of the porous base material, so that the adhesion between the porous base material and the layer formed on the porous base material can be enhanced, and at the same time, the adhesion can be improved. It is possible to improve the coating shape when the coating liquid is applied in a pattern.
  • the transport device is not particularly limited, and any device capable of transporting the porous base material can be used.
  • a single-wafer transport device such as a manipulator or a continuous transport device such as a transport roll can be used depending on the shape of the porous base material.
  • a transport roll can be used depending on the shape of the porous base material.
  • the coating system has a first transport roll 3C arranged on the upstream side in the transport direction and a second transport roll 3D arranged on the downstream side in the transport direction with the transfer position in between. It is preferable to have an interval adjusting mechanism for varying the distance between the rolls. If the interval adjusting mechanism is provided, when the degree of decompression by the decompression device changes, the distance between the rolls can be varied to apply a tension of an appropriate magnitude to the porous substrate.
  • the distance between the rolls 3C and 3D is not particularly limited, and can be, for example, 20 mm or more and 300 mm or less.
  • any decompression device can be used as long as the portion where the porous base material and the gravure roll come into contact can be decompressed preferably over the entire width.
  • the decompression nozzle 5a as shown in FIG. 2, the decompression chamber 5b as shown in FIG. 3, and the decompression chamber 5b as shown in FIG. 4 are shown according to the distance between the rolls 3C and 3D. Suction roll 5c or the like can be used.
  • the decompression chamber 5b can be advantageously used when the distance between the transfer rolls 3C and 3D is short and it is difficult to install a decompression nozzle or the like.
  • the tip of the decompression nozzle 5a may be brought into contact with the surface of the porous base material 2, but the transportability of the porous base material 2 and From the viewpoint of preventing damage, it is preferable that the tip of the decompression nozzle 5a and the surface of the porous base material 2 are not brought into contact with each other.
  • the distance between the tip of the decompression nozzle 5a and the surface of the porous base material 2 is preferably 0.1 mm or more and 5 mm or less, for example.
  • the end portion of the decompression chamber 5b on the porous base material 2 side may be brought into contact with the surface of the porous base material 2, but it is porous. From the viewpoint of transportability of the quality base material 2 and prevention of damage, it is preferable that the decompression chamber 5b and the surface of the porous base material 2 are not brought into contact with each other.
  • the distance between the decompression chamber 5b and the surface of the porous base material 2 is preferably 0.1 mm or more and 5 mm or less, for example.
  • the end of the decompression chamber 5b on the porous base material 2 side and the surface of the porous base material 2 are brought into contact with each other, the end of the decompression chamber 5b on the porous base material 2 side is set to the porous base material. It is preferably composed of a sealing material such as a reinforcing resin that makes smooth contact with 2.
  • a suction roll 5c as shown in FIG. 4 When a suction roll 5c as shown in FIG. 4 is used as the decompression device, it is preferable that the suction roll 5c and the porous base material 2 are brought into contact with each other at a linear pressure of, for example, 0 kg / m or more and 100 kg / m or less. ..
  • the suction roll is not particularly limited, and a ceramic suction roll or a suction roll whose surface is made of an elastic material can be used.
  • ⁇ Presence or absence of poor coating The appearance of the obtained separator was visually observed, and the presence or absence of coating defects (coating unevenness with a size of 0.2 mm or more, coating streaks, coating omissions) was evaluated.
  • ⁇ Transportability> For the obtained separator 10 samples, the difference between the mass of the separator and the mass of the separator base material used was calculated, and the average value was calculated. Then, regarding the transferability, if the magnitude of the difference between all the samples is within the range of the average value ⁇ 5%, it is evaluated as “ ⁇ (good)”, and the magnitude of the difference is outside the range of the average value ⁇ 5%. If there was a sample in, it was evaluated as "x (defective)".
  • ⁇ Pattern shape> The coating film formed on the separator base material is observed with a microscope, and the dimensional difference between the pattern shape of the coating film and the groove shape of the gravure roll at an arbitrary position in the longitudinal direction of the separator base material every 200 mm in the width direction of the separator base material. was measured and the average value was calculated. Then, if the dimensional difference from the groove shape of the gravure roll is 20% or less and the magnitude of the dimensional difference is within the range of the average value ⁇ 10% for all the measurement points, it is evaluated as " ⁇ (good)".
  • peel strength is 60 N / m or more
  • B Peel strength is 30 N / m or more and less than 60 N / m
  • C Peel strength is less than 30 N / m
  • Example 1 A polyethylene separator base material (air permeability: 150 seconds) was prepared as a porous base material.
  • non-conductive particles manufactured by Nippon Light Metal Co., Ltd., alumina particles (LS-256, volume average particle diameter: 0.8 ⁇ m)
  • particulate binder prepared by the following method, dispersant (Toa Synthetic Co., Ltd.) , Aron T-50), a viscosity modifier (Daicel FineChem, Inc., 1220), and a slurry composition containing water (viscosity: 50 mPa ⁇ s) were prepared.
  • a laminate manufacturing apparatus similar to that shown in FIG.
  • the transfer rolls 3H to 3K, the second gravure coater 4B, and the decompression device 5B are not provided, and the coating liquid is applied to one side of the separator base material.
  • a separator having a functional layer on one surface of the separator base material was prepared.
  • the shape of the groove of the gravure roll (the pattern shape of the coating film) is diagonal, and the decompression device 5A uses a decompression nozzle as shown in FIG. 2, the decompression pressure is 40 kPa, and the separator base material is used during coating.
  • the tension applied to the load was 50 N / m, the coating speed was 60 m / min, and the drying temperature was 60 ° C. Then, various evaluations were performed.
  • aqueous dispersion containing a particulate polymer (particulate binder).
  • the volume average particle size measured by laser diffraction / scattering particle size distribution was 360 nm, and the glass transition temperature was ⁇ 39 ° C.
  • Example 2 Separator was produced in the same manner as in Example 1 except that the suction roll as shown in FIG. 4 was used instead of the decompression nozzle and the transfer rolls 3C and 3D, and various evaluations were performed. The results are shown in Table 1.
  • Example 2 Separator was prepared in the same manner as in Example 1 except that the backup roll was used instead of the decompression nozzle and the transfer rolls 3C and 3D, and various evaluations were performed. The results are shown in Table 1.
  • Example 3 A separator was prepared in the same manner as in Example 1 except that the decompression device was installed near the gravure roll on the upstream side of the transfer position and a decompression chamber was used as the decompression device, and various evaluations were performed. The results are shown in Table 1.
  • Example 4 A separator was prepared in the same manner as in Example 1 except that the decompression device was installed near the gravure roll on the downstream side of the transfer position and a decompression chamber was used as the decompression device, and various evaluations were performed. The results are shown in Table 1.
  • a coating liquid can be stably applied to a porous substrate by using a gravure coating with high efficiency, and a laminate can be efficiently produced.
  • Base material roll 2 Porous base material 3A to 3K Transfer roll 4A First gravure coater 4B Second gravure coater 5A, 5B Decompression device 5a Decompression nozzle 5b Decompression chamber 5c Suction roll 6A First drying furnace 6B Second Drying oven 7 Winding roll 41 Gravure roll 42 Coating chamber

Abstract

In a technique for producing a laminated body, such as a separator, having a functional layer by applying a coating liquid to a porous base material, such as a separator base material, by means of a gravure coating method, the present invention enables stable and efficient transfer of the coating liquid. A method for producing a laminated body according to the present invention includes a step for applying a coating liquid to a porous base material using a gravure roll, wherein, at a position where the porous base material and the gravure roll are in contact with each other, the coating liquid is applied while the pressure on the opposite side of the porous base material from the gravure roll is reduced.

Description

積層体の製造方法および塗工システムLaminate manufacturing method and coating system
 本発明は、積層体の製造方法および塗工システムに関し、特には、グラビア塗工を用いた積層体の製造方法、および、当該積層体の製造に好適に使用し得る塗工システムに関するものである。 The present invention relates to a method for producing a laminate and a coating system, and more particularly to a method for producing a laminate using gravure coating and a coating system that can be suitably used for producing the laminate. ..
 リチウムイオン二次電池などの二次電池は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、従来、二次電池の更なる高性能化を目的として、セパレータなどの電池部材の改良がなされている。 Secondary batteries such as lithium-ion secondary batteries are small and lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. Therefore, conventionally, battery members such as separators have been improved for the purpose of further improving the performance of secondary batteries.
 具体的には、近年では、二次電池の高性能化を達成し得る高機能なセパレータとして、樹脂製の微多孔膜等よりなるセパレータ基材の表面に機能層(例えば、セパレータの耐熱性や強度を向上させるための保護層や、電極とセパレータとの密着性を向上させるための接着層など)を形成してなるセパレータが開発されている(例えば、特許文献1参照)。そして、セパレータ基材上に機能層を形成する方法としては、長尺状のセパレータ基材に対して機能層を形成する成分を含有する塗液を所望のパターンでグラビア塗工し、セパレータ基材上に形成された塗膜を乾燥する方法が用いられている(例えば、特許文献2参照)。 Specifically, in recent years, as a highly functional separator capable of achieving higher performance of a secondary battery, a functional layer (for example, heat resistance of the separator) is provided on the surface of a separator base material made of a microporous resin film or the like. Separators having formed a protective layer for improving strength, an adhesive layer for improving adhesion between an electrode and a separator, and the like have been developed (see, for example, Patent Document 1). Then, as a method of forming the functional layer on the separator base material, a coating liquid containing a component forming the functional layer is gravure-coated on the long separator base material in a desired pattern, and the separator base material is formed. A method of drying the coating film formed above is used (see, for example, Patent Document 2).
特開2009-26733号公報Japanese Unexamined Patent Publication No. 2009-26733 特開2015-185461号公報Japanese Unexamined Patent Publication No. 2015-185461
 しかし、セパレータ基材等の多孔質基材に対してグラビア塗工を用いて塗液を塗工する上記従来の技術には、グラビアロールの溝に充填された塗液が多孔質基材に転写される量が多孔質基材の搬送速度やグラビアロールの回転速度によって変化し、特に搬送速度や回転速度が高速の場合に塗液の転写量が低下するという点において改善の余地があった。 However, in the above-mentioned conventional technique of applying a coating liquid to a porous base material such as a separator base material by using a gravure coating, the coating liquid filled in the groove of the gravure roll is transferred to the porous base material. There was room for improvement in that the amount to be transferred varies depending on the transport speed of the porous substrate and the rotation speed of the gravure roll, and the transfer amount of the coating liquid decreases particularly when the transport speed and the rotation speed are high.
 そこで、本発明は、多孔質基材に対してグラビア塗工を用いて塗液を塗工して積層体を製造する技術において、塗液を安定的に高い効率で転写し得るようにすることを目的とする。 Therefore, the present invention makes it possible to stably transfer the coating liquid with high efficiency in a technique for producing a laminate by applying a coating liquid to a porous substrate by using a gravure coating. With the goal.
 本発明者は、上記目的を達成するために鋭意検討を行った。そして、本発明者は、多孔質基材に対して塗液を塗工する位置(即ち、多孔質基材とグラビアロールとが接触する位置)において多孔質基材のグラビアロール側とは反対側を減圧すれば塗液を安定的に高い効率で転写し得ることを見出し、本発明を完成させた。 The present inventor has conducted diligent studies to achieve the above object. Then, the present inventor presents the side opposite to the gravure roll side of the porous base material at the position where the coating liquid is applied to the porous base material (that is, the position where the porous base material and the gravure roll come into contact with each other). The present invention was completed by finding that the coating liquid can be stably transferred with high efficiency by reducing the pressure.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の積層体の製造方法は、多孔質基材に対してグラビアロールを用いて塗液を塗工する工程を含む積層体の製造方法であって、前記工程では、前記多孔質基材と前記グラビアロールとが接触する位置において前記多孔質基材のグラビアロール側とは反対側を減圧しつつ前記塗液を塗工することを特徴とする。このように、多孔質基材のグラビアロール側とは反対側を減圧しつつ塗液を塗工すれば、塗液を安定的に高い効率で多孔質基材に転写することができる。 That is, the present invention aims to advantageously solve the above problems, and the method for producing a laminate of the present invention applies a coating liquid to a porous substrate using a gravure roll. A method for producing a laminate including a step. In the step, the coating is applied while reducing the pressure on the side of the porous base material opposite to the gravure roll side at a position where the porous base material and the gravure roll come into contact with each other. It is characterized by applying a liquid. In this way, if the coating liquid is applied while reducing the pressure on the side of the porous base material opposite to the gravure roll side, the coating liquid can be stably transferred to the porous base material with high efficiency.
 ここで、積層体としてセパレータ基材上に機能層を形成してなるセパレータを製造する場合、本発明の積層体の製造方法では、前記多孔質基材をセパレータ基材とし、前記塗液にバインダーを含有させることができる。 Here, in the case of producing a separator formed by forming a functional layer on a separator base material as a laminate, in the method for producing a laminate of the present invention, the porous base material is used as a separator base material, and a binder is applied to the coating liquid. Can be contained.
 また、本発明の積層体の製造方法では、前記塗液が、ガラス転移温度が50℃以上100℃以下の重合体粒子を更に含んでいてもよい。
 ここで、ガラス転移温度は、JIS Z8703に準拠して測定することができる。
Further, in the method for producing a laminate of the present invention, the coating liquid may further contain polymer particles having a glass transition temperature of 50 ° C. or higher and 100 ° C. or lower.
Here, the glass transition temperature can be measured according to JIS Z8703.
 更に、本発明の積層体の製造方法では、前記塗液の粘度が5mPa・s以上500mPa・s以下であることが好ましい。多孔質基材のグラビアロール側とは反対側を減圧すれば、粘度が上記範囲内の塗液であっても安定的に高い効率で多孔質基材に転写することができる。
 なお、塗液の粘度は、JIS K7117-1に準拠し、B型粘度計(東機産業株式会社製、TVB-10M)を用いて、温度25℃、pH8.0、回転速度60rpm(ローター:M4)で測定することができる。
Further, in the method for producing a laminated body of the present invention, it is preferable that the viscosity of the coating liquid is 5 mPa · s or more and 500 mPa · s or less. By reducing the pressure on the side of the porous base material opposite to the gravure roll side, even a coating liquid having a viscosity within the above range can be stably transferred to the porous base material with high efficiency.
The viscosity of the coating liquid conforms to JIS K7117-1, and uses a B-type viscometer (TVB-10M, manufactured by Toki Sangyo Co., Ltd.) at a temperature of 25 ° C., pH 8.0, and a rotation speed of 60 rpm (rotor: It can be measured by M4).
 また、本発明の積層体の製造方法では、前記塗液の塗工速度が10m/分以上500m/分以下であることが好ましい。塗工速度が上記範囲内であれば、生産性を高めつつ、塗工の安定性および効率を更に高めることができる。 Further, in the method for producing a laminate of the present invention, it is preferable that the coating speed of the coating liquid is 10 m / min or more and 500 m / min or less. When the coating speed is within the above range, the stability and efficiency of coating can be further improved while increasing the productivity.
 そして、本発明の積層体の製造方法では、前記減圧を、減圧ノズル、減圧チャンバーおよびサクションロールの少なくとも一つを用いて行うことが好ましい。これらの装置を使用すれば、減圧を容易に行うことができる。 Then, in the method for producing a laminate of the present invention, it is preferable to perform the depressurization using at least one of a decompression nozzle, a decompression chamber and a suction roll. By using these devices, decompression can be easily performed.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の塗工システムは、多孔質基材を搬送する搬送装置と、前記多孔質基材に塗液を塗工するグラビアロールと、前記多孔質基材と前記グラビアロールとが接触する位置の、前記多孔質基材のグラビアロール側とは反対側を減圧する減圧装置とを備えることを特徴とする。このように、多孔質基材のグラビアロール側とは反対側を減圧する減圧装置を設ければ、多孔質基材のグラビアロール側とは反対側を減圧しつつ塗液を塗工し、塗液を安定的に高い効率で多孔質基材に転写することができる。 Further, the present invention aims to advantageously solve the above problems, and the coating system of the present invention comprises a transport device for transporting a porous base material and a coating liquid on the porous base material. It is characterized by comprising a gravure roll to be coated and a decompression device for reducing the pressure on the side of the porous base material opposite to the gravure roll side at a position where the porous base material and the gravure roll come into contact with each other. In this way, if a decompression device is provided to reduce the pressure on the side opposite to the gravure roll side of the porous base material, the coating liquid is applied and applied while decompressing the side opposite to the gravure roll side of the porous base material. The liquid can be stably transferred to the porous substrate with high efficiency.
 ここで、本発明の塗工システムは、前記搬送装置が、前記位置を挟んで配置された第1搬送ロールおよび第2搬送ロールと、前記第1搬送ロールおよび前記第2搬送ロールのロール間距離を変動させる間隔調整機構とを有することが好ましい。間隔調整機構を設ければ、減圧装置で減圧した際に多孔質基材にかかる張力の大きさを調整することができる。 Here, in the coating system of the present invention, the distance between the rolls of the first transport roll and the second transport roll and the first transport roll and the second transport roll in which the transport device is arranged so as to sandwich the position. It is preferable to have an interval adjusting mechanism that fluctuates. If the interval adjusting mechanism is provided, the magnitude of the tension applied to the porous substrate when the pressure is reduced by the decompression device can be adjusted.
 そして、本発明の塗工システムは、前記減圧装置が、減圧ノズル、減圧チャンバーおよびサクションロールの少なくとも一つを有することが好ましい。これらの装置を使用すれば、減圧を容易に行うことができる。 Then, in the coating system of the present invention, it is preferable that the decompression device has at least one of a decompression nozzle, a decompression chamber and a suction roll. By using these devices, decompression can be easily performed.
 本発明によれば、多孔質基材に対してグラビア塗工を用いて塗液を安定的に高い効率で塗工し、積層体を効率的に製造することができる。 According to the present invention, a coating liquid can be stably applied to a porous substrate by using a gravure coating with high efficiency, and a laminate can be efficiently produced.
積層体の製造装置の一例の概略構成を示す図である。It is a figure which shows the schematic structure of an example of the manufacturing apparatus of a laminated body. 塗工システムの一例の概略構成を示す図であり、(a)は正面図、(b)は右側面図である。It is a figure which shows the schematic structure of an example of a coating system, (a) is a front view, (b) is a right side view. 塗工システムの他の例の概略構成を示す図であり、(a)は正面図、(b)は右側面図である。It is a figure which shows the schematic structure of another example of a coating system, (a) is a front view, (b) is a right side view. 塗工システムの別の例の概略構成を示す図であり、(a)は正面図、(b)は右側面図である。It is a figure which shows the schematic structure of another example of a coating system, (a) is a front view, (b) is a right side view.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の積層体の製造方法は、多孔質基材に対してグラビアロールを用いて塗液を塗工し、形成された塗膜を必要に応じて乾燥させて積層体を製造する際に用いることができる。具体的には、本発明の積層体の製造方法は、特に限定されることなく、例えば、多孔質基材としてのセパレータ基材と、当該セパレータ基材の少なくとも一方の表面に形成された機能層とを有するセパレータを製造する際に用いることができる。そして、本発明の積層体の製造方法により製造されたセパレータは、例えばリチウムイオン二次電池などの二次電池において、正極と負極とを隔離して正極と負極との間の短絡を防ぐ部材として使用することができる。
 また、本発明の塗工システムは、多孔質基材に対してグラビアロールを用いて塗液を塗工する際に使用することができ、本発明の積層体の製造方法に従い積層体を製造する際に用いることができる。
Hereinafter, embodiments of the present invention will be described in detail.
Here, in the method for producing a laminate of the present invention, a coating liquid is applied to a porous substrate using a gravure roll, and the formed coating film is dried as necessary to produce the laminate. Can be used in some cases. Specifically, the method for producing a laminate of the present invention is not particularly limited, and for example, a separator base material as a porous base material and a functional layer formed on at least one surface of the separator base material are used. It can be used when producing a separator having and. The separator manufactured by the method for manufacturing a laminate of the present invention serves as a member for separating a positive electrode and a negative electrode to prevent a short circuit between the positive electrode and the negative electrode in a secondary battery such as a lithium ion secondary battery. Can be used.
Further, the coating system of the present invention can be used when applying a coating liquid to a porous base material using a gravure roll, and a laminate is produced according to the method for producing a laminate of the present invention. Can be used in some cases.
(積層体の製造方法)
 本発明の積層体の製造方法は、多孔質基材に対してグラビアロールを用いて塗液を塗工する工程(塗工工程)を含み、任意に、形成された塗膜を乾燥させる工程(乾燥工程)を更に含み得る。
 そして、本発明の積層体の製造方法では、塗液の塗工時に、多孔質基材とグラビアロールとが接触する位置(以下、「転写位置」と称することがある。)において多孔質基材のグラビアロール側とは反対側を減圧しつつ塗液を塗工することを特徴とする。多孔質基材は通気性を有する部材であるところ、このように多孔質基材のグラビアロール側とは反対側を減圧しつつ塗液を塗工すれば、多孔質基材の搬送速度やグラビアロールの回転速度が変化した場合(特に、搬送速度や回転速度を高速にした場合)であっても、グラビアロールの溝内に保持された塗液を安定的に高い効率で転写することができる。また、本発明の積層体の製造方法では、塗工時に多孔質基材のグラビアロール側から反対側へと吸引力が働くので、多孔質基材と、多孔質基材上に形成された層との密着性を高めることができると共に、塗液をパターン塗工した際の塗工形状を良好なものとすることができる。
(Manufacturing method of laminated body)
The method for producing a laminate of the present invention includes a step of applying a coating liquid to a porous substrate using a gravure roll (coating step), and optionally a step of drying the formed coating film (a step of drying the formed coating film (coating step). Drying step) may be further included.
Then, in the method for producing a laminate of the present invention, the porous base material is at a position where the porous base material and the gravure roll come into contact with each other (hereinafter, may be referred to as a “transfer position”) when the coating liquid is applied. It is characterized in that the coating liquid is applied while reducing the pressure on the side opposite to the gravure roll side. Since the porous base material is a breathable member, if the coating liquid is applied while reducing the pressure on the side opposite to the gravure roll side of the porous base material in this way, the transport speed of the porous base material and the gravure Even when the rotation speed of the roll changes (particularly when the transport speed or rotation speed is increased), the coating liquid held in the groove of the gravure roll can be stably transferred with high efficiency. .. Further, in the method for producing a laminate of the present invention, a suction force acts from the gravure roll side to the opposite side of the porous base material at the time of coating, so that the porous base material and the layer formed on the porous base material are formed. It is possible to improve the adhesion with and to improve the coating shape when the coating liquid is applied in a pattern.
 具体的には、本発明の積層体の製造方法では、特に限定されることなく、例えば図1に示すような積層体の製造装置を使用し、積層体を製造することができる。そこで、以下では図1を参照しつつ、本発明の積層体の製造方法について説明する。 Specifically, the method for producing a laminate of the present invention is not particularly limited, and the laminate can be produced by using, for example, the apparatus for producing the laminate as shown in FIG. Therefore, the method for producing the laminate of the present invention will be described below with reference to FIG.
 ここで、図1に示す製造装置は、ロール・トゥ・ロール方式で積層体を製造する装置であり、基材ロール1から巻き出された多孔質基材2の一方の表面に対し、第1のグラビアコーター4Aで塗液をグラビア塗工(塗工工程)した後、第1の乾燥炉6Aで塗膜を乾燥(乾燥工程)し、その後、多孔質基材2の他方の表面に対し、第2のグラビアコーター4Bで塗液をグラビア塗工(塗工工程)した後、第2の乾燥炉6Bで塗膜を乾燥(乾燥工程)して巻き取りロール7で巻き取ることにより、多孔質基材2の両面に層が形成された積層体を製造するものである。そして、この製造装置は、多孔質基材2と、グラビアコーター4A,4Bのグラビアロール41とが接触する場所において、多孔質基材2を介してグラビアロール41と対向する位置に減圧装置5A,5Bを設けることにより、多孔質基材2のグラビアロール41側とは反対側を減圧しつつ塗液を塗工し得るように構成されている。
 なお、図1において、符合3A~3Kは搬送ロールを表し、符合42は塗液を貯留する塗液チャンバーを表している。また、図1では、多孔質基材の両面に塗液を塗工して積層体を製造する場合を示したが、本発明の積層体の製造方法では、多孔質基材の片面のみに塗液を塗工して積層体を製造してもよい。
Here, the manufacturing apparatus shown in FIG. 1 is an apparatus for producing a laminate by a roll-to-roll method, and is a first device with respect to one surface of the porous base material 2 unwound from the base material roll 1. After gravure coating (coating step) the coating liquid with the gravure coater 4A of the above, the coating film is dried (drying step) in the first drying furnace 6A, and then, with respect to the other surface of the porous base material 2. After gravure coating (coating process) the coating liquid with the second gravure coater 4B, the coating film is dried (drying process) with the second drying furnace 6B and wound up with a winding roll 7 to be porous. A laminate in which layers are formed on both sides of the base material 2 is manufactured. Then, in this manufacturing apparatus, at the place where the porous base material 2 and the gravure roll 41 of the gravure coaters 4A and 4B come into contact with each other, the decompression device 5A, is placed at a position facing the gravure roll 41 via the porous base material 2. By providing 5B, the coating liquid can be applied while reducing the pressure on the side of the porous base material 2 opposite to the gravure roll 41 side.
In FIG. 1, the codes 3A to 3K represent transfer rolls, and the code 42 represents a coating liquid chamber for storing the coating liquid. Further, FIG. 1 shows a case where a coating liquid is applied to both sides of the porous base material to produce a laminated body, but in the method for producing a laminated body of the present invention, it is applied to only one side of the porous base material. The liquid may be applied to produce a laminate.
<塗工工程>
 塗工工程では、減圧装置5A,5Bを用いて多孔質基材2のグラビアロール41側とは反対側を減圧しつつ、多孔質基材2に対してグラビアロール41を用いて塗液を塗工する。
<Coating process>
In the coating process, the pressure-reducing devices 5A and 5B are used to reduce the pressure on the side of the porous base material 2 opposite to the gravure roll 41 side, and the porous base material 2 is coated with the coating liquid using the gravure roll 41. Work.
[多孔質基材]
 ここで、多孔質基材2は、長尺状の多孔質部材であり、図1では長手方向に向かって搬送される。そして、多孔質基材2としては、特に限定されることなく、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂や芳香族ポリアミド樹脂を含む微多孔膜または不織布などが挙げられる。具体的には、多孔質基材としては、ポリオレフィン(ポリエチレン、ポリプロピレン、ポリブテンなど)、ポリ塩化ビニル、ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ナイロン、ポリテトラフルオロエチレン等の樹脂からなる微多孔膜や、ポリオレフィン系の繊維の織布または不織布などが挙げられる。
[Porous substrate]
Here, the porous base material 2 is an elongated porous member, and is conveyed in the longitudinal direction in FIG. The porous base material 2 is not particularly limited, and examples thereof include a microporous film or a non-woven fabric containing a polyolefin resin such as polyethylene and polypropylene, and an aromatic polyamide resin. Specifically, as the porous substrate, polyolefin (polyethylene, polypropylene, polybutene, etc.), polyvinyl chloride, polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, polyimide, polyimideamide, polyaramid, nylon, polytetra Examples thereof include a microporous film made of a resin such as fluoroethylene, a woven fabric of polyolefin-based fibers, or a non-woven fabric.
 具体的には、例えば積層体として二次電池用セパレータを製造する場合には、多孔質基材としては、上述した微多孔膜よりなるセパレータ基材を用いることができる。中でも、セパレータ全体の膜厚を薄くして二次電池の体積当たりの容量を向上させる観点からは、セパレータ基材としては、ポリオレフィン樹脂よりなる微多孔膜が好ましい。 Specifically, for example, in the case of producing a separator for a secondary battery as a laminate, a separator base material made of the above-mentioned microporous membrane can be used as the porous base material. Above all, from the viewpoint of reducing the film thickness of the entire separator and improving the capacity per volume of the secondary battery, a microporous film made of a polyolefin resin is preferable as the separator base material.
 そして、多孔質基材は、通気度が20秒以上であることが好ましく、50秒以上であることがより好ましく、600秒以下であることが好ましく、300秒以下であることがより好ましい。通気度が上記範囲内であれば、塗液を転写する際の安定性および効率を更に高めることができる。
 なお、本発明において、「通気度」とは、100mlの空気が1inのフィルムを通過する時間を指し、JIS P8117(ガーレー試験法)に準拠して測定することができる。
The porous substrate has an air permeability of 20 seconds or more, more preferably 50 seconds or more, preferably 600 seconds or less, and more preferably 300 seconds or less. When the air permeability is within the above range, the stability and efficiency at the time of transferring the coating liquid can be further improved.
In the present invention, the "air permeability" refers to the time required for 100 ml of air to pass through a 1 in 2 film, and can be measured in accordance with JIS P8117 (Garley test method).
[塗液]
 塗液としては、積層体の用途に応じ、多孔質基材上に所望の性能を有する層を形成可能な成分を含有する塗液を用いることができる。
[Coating liquid]
As the coating liquid, a coating liquid containing a component capable of forming a layer having desired performance on a porous substrate can be used depending on the use of the laminate.
 例えば、積層体として二次電池用セパレータを製造する場合には、塗液としては、多孔質基材としてのセパレータ基材上に機能層を形成し得る塗液を用いることができる。より具体的には、塗液としては、バインダーおよび分散媒を含み、任意に、非導電性粒子や添加剤(例えば、ポリアクリル酸ナトリウム等の分散剤や、カルボキシメチルセルロース等の粘度調整剤など)を更に含むスラリー組成物を用いることができる。ここで、バインダーとしては、分散媒に容易に溶解する重合体の他、分散媒に難溶の粒子状重合体などの二次電池の分野において用いられている任意のバインダーを用いることができる。また、分散媒、非導電性粒子および添加剤としては、機能層の形成に使用される公知の物質(例えば、国際公開第2012/115096号に記載のもの)を用いることができる。なお、塗液は、バインダーに加え、ガラス転移温度が50℃以上100℃以下の重合体粒子を更に含むことが好ましく、ガラス転移温度が50℃以上100℃以下であり、且つ、平均粒子径が0.1μm以上10μm以下の重合体粒子を更に含むことがより好ましい。ここで、「平均粒子径」とは、レーザー回折法を用いて測定した体積平均粒子径を指す。 For example, in the case of producing a separator for a secondary battery as a laminate, a coating liquid capable of forming a functional layer on a separator base material as a porous base material can be used as the coating liquid. More specifically, the coating liquid contains a binder and a dispersion medium, and optionally contains non-conductive particles and additives (for example, a dispersant such as sodium polyacrylate and a viscosity modifier such as carboxymethyl cellulose). A slurry composition further containing the above can be used. Here, as the binder, in addition to a polymer that easily dissolves in the dispersion medium, any binder used in the field of secondary batteries such as a particulate polymer that is poorly soluble in the dispersion medium can be used. Further, as the dispersion medium, the non-conductive particles and the additive, known substances used for forming the functional layer (for example, those described in International Publication No. 2012/115096) can be used. In addition to the binder, the coating liquid preferably further contains polymer particles having a glass transition temperature of 50 ° C. or higher and 100 ° C. or lower, a glass transition temperature of 50 ° C. or higher and 100 ° C. or lower, and an average particle size. It is more preferable to further contain polymer particles of 0.1 μm or more and 10 μm or less. Here, the "average particle size" refers to the volume average particle size measured by using the laser diffraction method.
 そして、塗液の粘度は、5mPa・s以上であることが好ましく、10mPa・s以上であることがより好ましく、500mPa・s以下であることが好ましく、300mPa・s以下であることがより好ましい。塗膜の粘度が上記範囲内であれば、塗液を転写する際の安定性および効率を更に高めることができる。 The viscosity of the coating liquid is preferably 5 mPa · s or more, more preferably 10 mPa · s or more, preferably 500 mPa · s or less, and more preferably 300 mPa · s or less. When the viscosity of the coating film is within the above range, the stability and efficiency at the time of transferring the coating film can be further improved.
[塗工条件]
 グラビアロールを用いた多孔質基材への塗液の塗工は、全面塗工であってもパターン塗工であってもよいが、多孔質基材のグラビアロール側とは反対側を減圧しつつ塗液を塗工することにより得られる効果が顕著であることから、パターン塗工であることが好ましい。また、塗膜の厚みは、特に限定されることなく、例えば0.5μm以上9μm以下とすることができる。
 ここで、特に限定されるものではないが、パターン塗工する場合には、パターン形状は、ストライプ状、斜線状、円形ドット状または楕円形ドット状などとすることができ、塗布面積は5%以上50%以下とすることができる。
[Coating conditions]
The coating liquid on the porous substrate using the gravure roll may be a full surface coating or a pattern coating, but the side opposite to the gravure roll side of the porous substrate is depressurized. Since the effect obtained by applying the coating liquid is remarkable, the pattern coating is preferable. The thickness of the coating film is not particularly limited, and can be, for example, 0.5 μm or more and 9 μm or less.
Here, although not particularly limited, in the case of pattern coating, the pattern shape can be a stripe shape, a diagonal line shape, a circular dot shape, an elliptical dot shape, or the like, and the coating area is 5%. It can be 50% or more and 50% or less.
 そして、塗工速度(多孔質基材の搬送速度およびグラビアロールの回転速度)は、特に限定されることなく、例えば10m/分以上500m/分以下とすることが好ましい。塗工速度が上記下限値以上であれば、積層体の生産性を十分に高めることができる。また、塗工速度が上記上限値以下であれば、塗液を転写する際の安定性および効率を更に高めることができる。 The coating speed (the transport speed of the porous substrate and the rotation speed of the gravure roll) is not particularly limited, and is preferably, for example, 10 m / min or more and 500 m / min or less. When the coating speed is equal to or higher than the above lower limit value, the productivity of the laminated body can be sufficiently increased. Further, when the coating speed is not more than the above upper limit value, the stability and efficiency at the time of transferring the coating liquid can be further improved.
 また、多孔質基材のグラビアロール側とは反対側の減圧は、特に限定されることなく、例えば、減圧ノズル、減圧チャンバーおよびサクションロールの少なくとも一つを用いて行うことができる。なお、減圧は、多孔質基材とグラビアロールとが接触する部分の全幅に亘って行うことが好ましい。 Further, the depressurization on the side opposite to the gravure roll side of the porous base material is not particularly limited, and can be performed using, for example, at least one of a decompression nozzle, a decompression chamber, and a suction roll. The depressurization is preferably performed over the entire width of the portion where the porous base material and the gravure roll come into contact with each other.
 更に、減圧装置を用いた減圧の程度は、特に限定されることなく、例えば10-5Pa以上10Pa以下(絶対圧)とすることができる。 Furthermore, the degree of vacuum using the vacuum device, particularly without limitation, may be, for example, 10 -5 Pa or 10 5 Pa or less (absolute pressure).
 そして、減圧時に多孔質基材が減圧装置に吸引されて変形するのを抑制する観点からは、塗工時に多孔質基材に負荷する張力は、10N/m以上200N/m以下とすることが好ましい。 From the viewpoint of suppressing the porous base material from being sucked by the decompression device and deforming during depressurization, the tension applied to the porous base material during coating may be 10 N / m or more and 200 N / m or less. preferable.
<乾燥工程>
 乾燥工程では、塗膜を形成した多孔質基材を例えば乾燥炉内で加熱し、塗膜を乾燥させて機能層などの所望の層を多孔質基材上に形成する。
<Drying process>
In the drying step, the porous substrate on which the coating film is formed is heated in, for example, a drying furnace, and the coating film is dried to form a desired layer such as a functional layer on the porous substrate.
 ここで、乾燥温度は、塗液中の分散媒を除去可能であれば特に限定されず、例えば40℃以上120℃以下とすることができる。
 また、乾燥炉内で多孔質基材を搬送する速度は、例えば10m/分以上500m/分以下とすることができる。
Here, the drying temperature is not particularly limited as long as the dispersion medium in the coating liquid can be removed, and can be, for example, 40 ° C. or higher and 120 ° C. or lower.
Further, the speed of transporting the porous base material in the drying furnace can be, for example, 10 m / min or more and 500 m / min or less.
(塗工システム)
 本発明の塗工システムは、例えば上述した本発明の積層体の製造方法において塗工工程を実施する際に用いることができ、多孔質基材を搬送する搬送装置と、転写位置の多孔質基材のグラビアロール側とは反対側を減圧する減圧装置とを備えるものである。
 このように、多孔質基材のグラビアロール側とは反対側を減圧する減圧装置を設ければ、多孔質基材の搬送速度やグラビアロールの回転速度が変化した場合(特に、搬送速度や回転速度を高速にした場合)であっても、グラビアロールの溝内に保持された塗液を安定的に高い効率で転写することができる。また、塗工時に多孔質基材のグラビアロール側から反対側へと吸引力を働かせ、多孔質基材と、多孔質基材上に形成された層との密着性を高めることができると共に、塗液をパターン塗工した際の塗工形状を良好なものとすることができる。
(Coating system)
The coating system of the present invention can be used, for example, when carrying out a coating step in the above-described method for producing a laminate of the present invention, and a transport device for transporting a porous substrate and a porous group at a transfer position. It is provided with a decompression device that depressurizes the side opposite to the gravure roll side of the material.
In this way, if a decompression device that reduces the pressure on the side opposite to the gravure roll side of the porous base material is provided, when the transport speed of the porous base material or the rotation speed of the gravure roll changes (particularly, the transport speed or rotation). Even when the speed is increased), the coating liquid held in the groove of the gravure roll can be stably transferred with high efficiency. Further, at the time of coating, a suction force is exerted from the gravure roll side to the opposite side of the porous base material, so that the adhesion between the porous base material and the layer formed on the porous base material can be enhanced, and at the same time, the adhesion can be improved. It is possible to improve the coating shape when the coating liquid is applied in a pattern.
<搬送装置>
 ここで、搬送装置としては、特に限定されることなく、多孔質基材を搬送可能な任意の装置を用いることができる。具体的には、搬送装置としては、多孔質基材の形状に応じ、マニピュレーター等の枚葉の搬送装置や、搬送ロール等の連続的な搬送装置を用いることができる。中でも、塗工効率の観点からは、搬送装置としては、図1~3に示すような搬送ロール3C,3Dを用いることが好ましい。
<Transport device>
Here, the transport device is not particularly limited, and any device capable of transporting the porous base material can be used. Specifically, as the transport device, a single-wafer transport device such as a manipulator or a continuous transport device such as a transport roll can be used depending on the shape of the porous base material. Above all, from the viewpoint of coating efficiency, it is preferable to use the transport rolls 3C and 3D as shown in FIGS. 1 to 3 as the transport device.
 ここで、搬送装置として搬送ロールを用いる場合、塗工システムは、転写位置を挟んで搬送方向上流側に配置された第1搬送ロール3Cと、搬送方向下流側に配置された第2搬送ロール3Dとのロール間距離を変動させる間隔調整機構とを有することが好ましい。間隔調整機構を設ければ、減圧装置による減圧の程度が変化した際に、ロール間距離を変動させて多孔質基材に適切な大きさの張力を付与することができる。
 なお、搬送ロール3C,3D間のロール間距離は、特に限定されることなく、例えば20mm以上300mm以下とすることができる。
Here, when a transport roll is used as the transport device, the coating system has a first transport roll 3C arranged on the upstream side in the transport direction and a second transport roll 3D arranged on the downstream side in the transport direction with the transfer position in between. It is preferable to have an interval adjusting mechanism for varying the distance between the rolls. If the interval adjusting mechanism is provided, when the degree of decompression by the decompression device changes, the distance between the rolls can be varied to apply a tension of an appropriate magnitude to the porous substrate.
The distance between the rolls 3C and 3D is not particularly limited, and can be, for example, 20 mm or more and 300 mm or less.
<減圧装置>
 減圧装置としては、多孔質基材とグラビアロールとが接触する部分を好ましくは全幅に亘って減圧可能であれば特に限定されることなく、任意の減圧装置を用いることができる。具体的には、減圧装置としては、搬送ロール3C,3D間のロール間距離に応じ、図2に示すような減圧ノズル5a、図3に示すような減圧チャンバー5b、および、図4に示すようなサクションロール5cなどを用いることができる。なお、減圧チャンバー5bは、搬送ロール3C,3D間のロール間距離が短く、減圧ノズル等を設置し難い場合に有利に使用し得る。
<Decompression device>
As the decompression device, any decompression device can be used as long as the portion where the porous base material and the gravure roll come into contact can be decompressed preferably over the entire width. Specifically, as the decompression device, the decompression nozzle 5a as shown in FIG. 2, the decompression chamber 5b as shown in FIG. 3, and the decompression chamber 5b as shown in FIG. 4 are shown according to the distance between the rolls 3C and 3D. Suction roll 5c or the like can be used. The decompression chamber 5b can be advantageously used when the distance between the transfer rolls 3C and 3D is short and it is difficult to install a decompression nozzle or the like.
 ここで、減圧装置として図2に示すような減圧ノズル5aを用いる場合、減圧ノズル5aの先端と多孔質基材2の表面とは接触させてもよいが、多孔質基材2の搬送性および損傷防止の観点からは、減圧ノズル5aの先端と多孔質基材2の表面とは接触させないことが好ましい。具体的には、減圧ノズル5aの先端と多孔質基材2の表面との間の距離は、例えば0.1mm以上5mm以下であることが好ましい。 Here, when the decompression nozzle 5a as shown in FIG. 2 is used as the decompression device, the tip of the decompression nozzle 5a may be brought into contact with the surface of the porous base material 2, but the transportability of the porous base material 2 and From the viewpoint of preventing damage, it is preferable that the tip of the decompression nozzle 5a and the surface of the porous base material 2 are not brought into contact with each other. Specifically, the distance between the tip of the decompression nozzle 5a and the surface of the porous base material 2 is preferably 0.1 mm or more and 5 mm or less, for example.
 また、減圧装置として図3に示すような減圧チャンバー5bを用いる場合、減圧チャンバー5bの多孔質基材2側の端部と、多孔質基材2の表面とは接触させてもよいが、多孔質基材2の搬送性および損傷防止の観点からは、減圧チャンバー5bと多孔質基材2の表面とは接触させないことが好ましい。具体的には、減圧チャンバー5bと多孔質基材2の表面との間の距離は、例えば0.1mm以上5mm以下であることが好ましい。
 なお、減圧チャンバー5bの多孔質基材2側の端部と、多孔質基材2の表面とを接触させる場合には、減圧チャンバー5bの多孔質基材2側の端部を多孔質基材2と滑らかに接触する強化樹脂などのシール材で構成することが好ましい。
Further, when the decompression chamber 5b as shown in FIG. 3 is used as the decompression device, the end portion of the decompression chamber 5b on the porous base material 2 side may be brought into contact with the surface of the porous base material 2, but it is porous. From the viewpoint of transportability of the quality base material 2 and prevention of damage, it is preferable that the decompression chamber 5b and the surface of the porous base material 2 are not brought into contact with each other. Specifically, the distance between the decompression chamber 5b and the surface of the porous base material 2 is preferably 0.1 mm or more and 5 mm or less, for example.
When the end of the decompression chamber 5b on the porous base material 2 side and the surface of the porous base material 2 are brought into contact with each other, the end of the decompression chamber 5b on the porous base material 2 side is set to the porous base material. It is preferably composed of a sealing material such as a reinforcing resin that makes smooth contact with 2.
 そして、減圧装置として図4に示すようなサクションロール5cを用いる場合、サクションロール5cと、多孔質基材2とは、例えば0kg/m以上100kg/m以下の線圧で当接させることが好ましい。
 なお、サクションロールとしては、特に限定されることなく、セラミック製のサクションロールや、表面が弾性材料よりなるサクションロールを用いることができる。
When a suction roll 5c as shown in FIG. 4 is used as the decompression device, it is preferable that the suction roll 5c and the porous base material 2 are brought into contact with each other at a linear pressure of, for example, 0 kg / m or more and 100 kg / m or less. ..
The suction roll is not particularly limited, and a ceramic suction roll or a suction roll whose surface is made of an elastic material can be used.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、実施例および比較例において、塗工不良の有無、転写性、パターン形状および密着性は、下記の方法で測定または評価した。
Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
In Examples and Comparative Examples, the presence or absence of coating defects, transferability, pattern shape and adhesion were measured or evaluated by the following methods.
<塗工不良の有無>
 得られたセパレータの外観を目視にて観察し、塗工不良(大きさ0.2mm以上の塗工ムラ、塗工スジ、塗工ヌケ)の有無を評価した。
<転写性>
 得られたセパレータ10サンプルについて、セパレータの質量と、使用したセパレータ基材の質量との差を求め、平均値を算出した。そして、転写性について、全てのサンプルの差の大きさが平均値±5%の範囲内にあれば、「○(良好)」と評価し、差の大きさが平均値±5%の範囲外にあるサンプルがあれば、「×(不良)」と評価した。
<パターン形状>
 セパレータ基材に形成した塗膜を顕微鏡で観察し、セパレータ基材の長手方向の任意の位置においてセパレータ基材の幅方向200mm毎に塗膜のパターン形状とグラビアロールの溝の形状との寸法差を測定し、平均値を算出した。そして、全ての測定箇所について、グラビアロールの溝の形状との寸法差が20%以下かつ寸法差の大きさが平均値±10%の範囲内にあれば、「○(良好)」と評価し、グラビアロールの溝の形状との寸法差が20%超または寸法差の大きさが平均値±10%の範囲外の測定箇所があれば、「△(可)」と評価し、グラビアロールの溝の形状との寸法差が20%超および寸法差の大きさが平均値±10%の範囲外の測定箇所があれば、「×(不良)」と評価した。
<密着性>
 得られたセパレータを幅10mm、長さ50mmに切り出し、試験片とした。次に、両面テープ(日東電工製、No.5608)を貼り付けたSUS板を用意し、その両面テープに上記試験片の機能層の面を貼り付けた。そして、セパレータ基材の一端を剥離面が180°となるように速度50mm/分で引っ張って剥がしたときの強度(ピール強度)を測定した。そして、以下の基準で機能層とセパレータ基材との密着性を評価した。ピール強度が大きいほど、密着性に優れていることを示す。
 A:ピール強度が60N/m以上
 B:ピール強度が30N/m以上60N/m未満
 C:ピール強度30N/m未満
<Presence or absence of poor coating>
The appearance of the obtained separator was visually observed, and the presence or absence of coating defects (coating unevenness with a size of 0.2 mm or more, coating streaks, coating omissions) was evaluated.
<Transportability>
For the obtained separator 10 samples, the difference between the mass of the separator and the mass of the separator base material used was calculated, and the average value was calculated. Then, regarding the transferability, if the magnitude of the difference between all the samples is within the range of the average value ± 5%, it is evaluated as “○ (good)”, and the magnitude of the difference is outside the range of the average value ± 5%. If there was a sample in, it was evaluated as "x (defective)".
<Pattern shape>
The coating film formed on the separator base material is observed with a microscope, and the dimensional difference between the pattern shape of the coating film and the groove shape of the gravure roll at an arbitrary position in the longitudinal direction of the separator base material every 200 mm in the width direction of the separator base material. Was measured and the average value was calculated. Then, if the dimensional difference from the groove shape of the gravure roll is 20% or less and the magnitude of the dimensional difference is within the range of the average value ± 10% for all the measurement points, it is evaluated as "○ (good)". , If there is a measurement point where the dimensional difference from the groove shape of the gravure roll is more than 20% or the magnitude of the dimensional difference is outside the range of the average value ± 10%, it is evaluated as "△ (possible)" and the gravure roll If there was a measurement point where the dimensional difference from the groove shape was more than 20% and the size of the dimensional difference was outside the range of the average value ± 10%, it was evaluated as "x (defective)".
<Adhesion>
The obtained separator was cut into a width of 10 mm and a length of 50 mm to prepare a test piece. Next, a SUS plate to which double-sided tape (Nitto Denko, No. 5608) was attached was prepared, and the surface of the functional layer of the test piece was attached to the double-sided tape. Then, the strength (peeling strength) when one end of the separator base material was pulled at a speed of 50 mm / min so that the peeled surface was 180 ° and peeled off was measured. Then, the adhesion between the functional layer and the separator base material was evaluated according to the following criteria. The greater the peel strength, the better the adhesion.
A: Peel strength is 60 N / m or more B: Peel strength is 30 N / m or more and less than 60 N / m C: Peel strength is less than 30 N / m
(実施例1)
 多孔質基材としてポリエチレン製のセパレータ基材(通気度:150秒)を準備した。
 また、塗液として、非導電性粒子(日本軽金属社製、アルミナ粒子(LS-256、体積平均粒子径:0.8μm))、下記の方法で調製した粒子状バインダー、分散剤(東亜合成社製、アロンT-50)、粘度調整剤(ダイセルファインケム社製、1220)、および、水を含むスラリー組成物(粘度:50mPa・s)を準備した。
 そして、搬送ロール3H~3K、第2のグラビアコーター4Bおよび減圧装置5Bを有さない以外は図1に示すのと同様の積層体の製造装置を使用し、セパレータ基材の片面に塗液を塗工して、セパレータ基材の一方の表面に機能層を有するセパレータを作製した。なお、グラビアロールの溝の形状(塗膜のパターン形状)は斜線状とし、減圧装置5Aとしては、図2に示すような減圧ノズルを使用し、減圧圧力は40kPaとし、塗工時にセパレータ基材に負荷する張力は50N/mとし、塗工速度は60m/分とし、乾燥温度は60℃とした。
 そして、各種評価を行った。結果を表1に示す。
[粒子状バインダーの調製]
 撹拌機を備えた反応器に、イオン交換水70質量部、乳化剤としてラウリル硫酸ナトリウム(花王ケミカル社製、エマール(登録商標)2F)0.15質量部、および過流酸アンモニウム0.5質量部を、それぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。
 一方、別の容器でイオン交換水50質量部、分散剤としてドデシルベンゼンスルホン酸ナトリウム0.5質量部、n-ブチルアクリレート94.2質量部、メタクリル酸2質量部、アクリロニトリル2質量部、アリルメタクリレート0.3質量部およびアリルグリシジルエーテル1.5質量部を混合して単量体組成物を得た。この単量体組成物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに70℃で3時間撹拌して反応を終了し、粒子状の重合体(粒子状バインダー)を含む水分散液を製造した。
 レーザー回折散乱式粒度分布測定による体積平均粒子径は360nm、ガラス転移温度は-39℃であった。
(Example 1)
A polyethylene separator base material (air permeability: 150 seconds) was prepared as a porous base material.
In addition, as the coating liquid, non-conductive particles (manufactured by Nippon Light Metal Co., Ltd., alumina particles (LS-256, volume average particle diameter: 0.8 μm)), particulate binder prepared by the following method, dispersant (Toa Synthetic Co., Ltd.) , Aron T-50), a viscosity modifier (Daicel FineChem, Inc., 1220), and a slurry composition containing water (viscosity: 50 mPa · s) were prepared.
Then, a laminate manufacturing apparatus similar to that shown in FIG. 1 is used except that the transfer rolls 3H to 3K, the second gravure coater 4B, and the decompression device 5B are not provided, and the coating liquid is applied to one side of the separator base material. By coating, a separator having a functional layer on one surface of the separator base material was prepared. The shape of the groove of the gravure roll (the pattern shape of the coating film) is diagonal, and the decompression device 5A uses a decompression nozzle as shown in FIG. 2, the decompression pressure is 40 kPa, and the separator base material is used during coating. The tension applied to the load was 50 N / m, the coating speed was 60 m / min, and the drying temperature was 60 ° C.
Then, various evaluations were performed. The results are shown in Table 1.
[Preparation of particulate binder]
In a reactor equipped with a stirrer, 70 parts by mass of ion-exchanged water, 0.15 parts by mass of sodium lauryl sulfate (Kao Chemical Co., Ltd., Emar® 2F) as an emulsifier, and 0.5 parts by mass of ammonium perfluate. Was supplied, the gas phase portion was replaced with nitrogen gas, and the temperature was raised to 60 ° C.
On the other hand, in another container, 50 parts by mass of ion-exchanged water, 0.5 parts by mass of sodium dodecylbenzenesulfonate as a dispersant, 94.2 parts by mass of n-butyl acrylate, 2 parts by mass of methacrylic acid, 2 parts by mass of acrylonitrile, and allyl methacrylate. 0.3 parts by mass and 1.5 parts by mass of allyl glycidyl ether were mixed to obtain a monomer composition. This monomer composition was continuously added to the reactor over 4 hours for polymerization. During the addition, the reaction was carried out at 60 ° C. After completion of the addition, the reaction was further completed with stirring at 70 ° C. for 3 hours to produce an aqueous dispersion containing a particulate polymer (particulate binder).
The volume average particle size measured by laser diffraction / scattering particle size distribution was 360 nm, and the glass transition temperature was −39 ° C.
(実施例2)
 減圧ノズルおよび搬送ロール3C,3Dに替えて図4に示すようなサクションロールを使用した以外は実施例1と同様にしてセパレータを作製し、各種評価を行った。結果を表1に示す。
(Example 2)
Separator was produced in the same manner as in Example 1 except that the suction roll as shown in FIG. 4 was used instead of the decompression nozzle and the transfer rolls 3C and 3D, and various evaluations were performed. The results are shown in Table 1.
(比較例1)
 減圧ノズルを使用しなかった以外は実施例1と同様にしてセパレータを作製し、各種評価を行った。結果を表1に示す。
(Comparative Example 1)
Separator was prepared in the same manner as in Example 1 except that the decompression nozzle was not used, and various evaluations were performed. The results are shown in Table 1.
(比較例2)
 減圧ノズルおよび搬送ロール3C,3Dに替えてバックアップロールを使用した以外は実施例1と同様にしてセパレータを作製し、各種評価を行った。結果を表1に示す。
(Comparative Example 2)
Separator was prepared in the same manner as in Example 1 except that the backup roll was used instead of the decompression nozzle and the transfer rolls 3C and 3D, and various evaluations were performed. The results are shown in Table 1.
(比較例3)
 減圧装置の設置位置を転写位置の上流側のグラビアロール近傍とし、減圧装置として減圧チャンバーを用いた以外は実施例1と同様にしてセパレータを作製し、各種評価を行った。結果を表1に示す。
(Comparative Example 3)
A separator was prepared in the same manner as in Example 1 except that the decompression device was installed near the gravure roll on the upstream side of the transfer position and a decompression chamber was used as the decompression device, and various evaluations were performed. The results are shown in Table 1.
(比較例4)
 減圧装置の設置位置を転写位置の下流側のグラビアロール近傍とし、減圧装置として減圧チャンバーを用いた以外は実施例1と同様にしてセパレータを作製し、各種評価を行った。結果を表1に示す。
(Comparative Example 4)
A separator was prepared in the same manner as in Example 1 except that the decompression device was installed near the gravure roll on the downstream side of the transfer position and a decompression chamber was used as the decompression device, and various evaluations were performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~2では、比較例1~4と比較し、塗液を安定的に高い効率で塗工できることが分かる。 From Table 1, it can be seen that in Examples 1 and 2, the coating liquid can be applied stably and with high efficiency as compared with Comparative Examples 1 and 4.
 本発明によれば、多孔質基材に対してグラビア塗工を用いて塗液を安定的に高い効率で塗工し、積層体を効率的に製造することができる。 According to the present invention, a coating liquid can be stably applied to a porous substrate by using a gravure coating with high efficiency, and a laminate can be efficiently produced.
1 基材ロール
2 多孔質基材
3A~3K 搬送ロール
4A 第1のグラビアコーター
4B 第2のグラビアコーター
5A,5B 減圧装置
5a 減圧ノズル
5b 減圧チャンバー
5c サクションロール
6A 第1の乾燥炉
6B 第2の乾燥炉
7 巻き取りロール
41 グラビアロール
42 塗液チャンバー
1 Base material roll 2 Porous base material 3A to 3K Transfer roll 4A First gravure coater 4B Second gravure coater 5A, 5B Decompression device 5a Decompression nozzle 5b Decompression chamber 5c Suction roll 6A First drying furnace 6B Second Drying oven 7 Winding roll 41 Gravure roll 42 Coating chamber

Claims (9)

  1.  多孔質基材に対してグラビアロールを用いて塗液を塗工する工程を含む積層体の製造方法であって、
     前記工程では、前記多孔質基材と前記グラビアロールとが接触する位置において前記多孔質基材のグラビアロール側とは反対側を減圧しつつ前記塗液を塗工する、積層体の製造方法。
    A method for producing a laminate, which comprises a step of applying a coating liquid to a porous base material using a gravure roll.
    In the step, a method for producing a laminate, in which the coating liquid is applied while reducing the pressure on the side of the porous base material opposite to the gravure roll side at a position where the porous base material and the gravure roll come into contact with each other.
  2.  前記多孔質基材がセパレータ基材であり、
     前記塗液がバインダーを含む、請求項1に記載の積層体の製造方法。
    The porous base material is a separator base material,
    The method for producing a laminate according to claim 1, wherein the coating liquid contains a binder.
  3.  前記塗液が、ガラス転移温度が50℃以上100℃以下の重合体粒子を更に含む、請求項2に記載の積層体の製造方法。 The method for producing a laminate according to claim 2, wherein the coating liquid further contains polymer particles having a glass transition temperature of 50 ° C. or higher and 100 ° C. or lower.
  4.  前記塗液の粘度が5mPa・s以上500mPa・s以下である、請求項1~3の何れかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 3, wherein the viscosity of the coating liquid is 5 mPa · s or more and 500 mPa · s or less.
  5.  前記塗液の塗工速度が10m/分以上500m/分以下である、請求項1~4の何れかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 4, wherein the coating speed of the coating liquid is 10 m / min or more and 500 m / min or less.
  6.  前記減圧を、減圧ノズル、減圧チャンバーおよびサクションロールの少なくとも一つを用いて行う、請求項1~5の何れかに記載の積層体の製造方法。 The method for producing a laminate according to any one of claims 1 to 5, wherein the depressurization is performed using at least one of a decompression nozzle, a decompression chamber, and a suction roll.
  7.  多孔質基材を搬送する搬送装置と、
     前記多孔質基材に塗液を塗工するグラビアロールと、
     前記多孔質基材と前記グラビアロールとが接触する位置の、前記多孔質基材のグラビアロール側とは反対側を減圧する減圧装置と、
    を備える、塗工システム。
    A transport device that transports a porous substrate and
    A gravure roll that coats the porous substrate with a coating solution,
    A decompression device that reduces the pressure on the side of the porous base material opposite to the gravure roll side at the position where the porous base material and the gravure roll come into contact with each other.
    A coating system.
  8.  前記搬送装置が、前記位置を挟んで配置された第1搬送ロールおよび第2搬送ロールと、前記第1搬送ロールおよび前記第2搬送ロールのロール間距離を変動させる間隔調整機構とを有する、請求項7に記載の塗工システム。 A claim that the transport device includes a first transport roll and a second transport roll arranged with the position interposed therebetween, and an interval adjusting mechanism for varying the distance between the rolls of the first transport roll and the second transport roll. Item 7. The coating system according to item 7.
  9.  前記減圧装置が、減圧ノズル、減圧チャンバーおよびサクションロールの少なくとも一つを有する、請求項7または8に記載の塗工システム。 The coating system according to claim 7 or 8, wherein the decompression device has at least one of a decompression nozzle, a decompression chamber, and a suction roll.
PCT/JP2021/000040 2020-01-30 2021-01-04 Method for producing laminated body and coating system WO2021153165A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021574570A JPWO2021153165A1 (en) 2020-01-30 2021-01-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020013577 2020-01-30
JP2020-013577 2020-01-30

Publications (1)

Publication Number Publication Date
WO2021153165A1 true WO2021153165A1 (en) 2021-08-05

Family

ID=77079293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000040 WO2021153165A1 (en) 2020-01-30 2021-01-04 Method for producing laminated body and coating system

Country Status (2)

Country Link
JP (1) JPWO2021153165A1 (en)
WO (1) WO2021153165A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7482935B2 (en) 2022-04-28 2024-05-14 帝人株式会社 Separator for non-aqueous secondary battery and non-aqueous secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724382A (en) * 1993-07-09 1995-01-27 Okazaki Kikai Kogyo Kk Roll coater
JP2003236429A (en) * 2002-02-18 2003-08-26 Okazaki Kikai Kogyo Kk Peripheral surface immersion type gravure coater
JP2007069559A (en) * 2005-09-09 2007-03-22 Konica Minolta Holdings Inc Coating device and coating method
JP2012213677A (en) * 2011-03-31 2012-11-08 Tdk Corp System and method for forming functional film
JP2015185461A (en) * 2014-03-25 2015-10-22 日本ゼオン株式会社 Method of manufacturing separator for secondary battery
JP2016215082A (en) * 2015-05-14 2016-12-22 大日本印刷株式会社 Coating device and coating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724382A (en) * 1993-07-09 1995-01-27 Okazaki Kikai Kogyo Kk Roll coater
JP2003236429A (en) * 2002-02-18 2003-08-26 Okazaki Kikai Kogyo Kk Peripheral surface immersion type gravure coater
JP2007069559A (en) * 2005-09-09 2007-03-22 Konica Minolta Holdings Inc Coating device and coating method
JP2012213677A (en) * 2011-03-31 2012-11-08 Tdk Corp System and method for forming functional film
JP2015185461A (en) * 2014-03-25 2015-10-22 日本ゼオン株式会社 Method of manufacturing separator for secondary battery
JP2016215082A (en) * 2015-05-14 2016-12-22 大日本印刷株式会社 Coating device and coating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7482935B2 (en) 2022-04-28 2024-05-14 帝人株式会社 Separator for non-aqueous secondary battery and non-aqueous secondary battery

Also Published As

Publication number Publication date
JPWO2021153165A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
US10756321B2 (en) Ceramic coating on battery separators
JP6824559B2 (en) Separation membrane for lithium secondary battery with adhesive layer
JP7207328B2 (en) Porous film, secondary battery separator and secondary battery
CN113438986B (en) Method for manufacturing all-solid-state battery
US11894542B2 (en) Method for manufacturing all-solid-state battery
KR20150048082A (en) A method of applying binder for binding on a separator of secondary battery
JP2016514356A (en) Electrode, electrochemical cell, and method for forming electrode and electrochemical cell
CN112088447A (en) Separator for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
US20230006242A1 (en) Porous ceramic separator materials and formation processes
WO2021153165A1 (en) Method for producing laminated body and coating system
JP7234941B2 (en) Porous film, secondary battery separator and secondary battery
KR20200121750A (en) Nonaqueous electrolyte secondary battery porous layer
KR101378453B1 (en) Manufacturing method for lithium secondary battery and lithium secondary battery manufactured by the same
CN115516703A (en) Porous film, separator for secondary battery, and secondary battery
WO2023100709A1 (en) Electrode active material layer manufacturing device, and electrode active material layer manufacturing method employing same
JP7231687B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
US20170324077A1 (en) Plasma battery electrode coating on current collector pretreated with conducive material
EP4145614A1 (en) Separator for lithium secondary battery, manufacturing method therefor, and separator manufactured by same
JP7304388B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
EP4152505A1 (en) Method for manufacturing secondary battery separator, separator manufactured thereby, and secondary battery having same
CN117693827A (en) Electrode manufacturing device and electrode manufacturing method using same
KR20230120255A (en) Pre-lithiation method for negative electrode for lithium secondary battery, negative electrode intermediate, and lithium secondary battery comprising negative electrode
KR20230120254A (en) Transfer laminate, manufacturing method of negative electrode for lithium secondary battery, negative electrode for lithium secondary battery and lithium secondary battery comprising negative electrode
KR20230118514A (en) Manufacturing method for negative electrode for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
KR20230144943A (en) Separator and electrochemical device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747373

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747373

Country of ref document: EP

Kind code of ref document: A1