WO2021152881A1 - Treatment planning device, particle beam therapy system, and computer program - Google Patents

Treatment planning device, particle beam therapy system, and computer program Download PDF

Info

Publication number
WO2021152881A1
WO2021152881A1 PCT/JP2020/024758 JP2020024758W WO2021152881A1 WO 2021152881 A1 WO2021152881 A1 WO 2021152881A1 JP 2020024758 W JP2020024758 W JP 2020024758W WO 2021152881 A1 WO2021152881 A1 WO 2021152881A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle beam
target
irradiation
charged particle
dose
Prior art date
Application number
PCT/JP2020/024758
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 藤井
嘉彦 長峯
嵩祐 平山
徹 梅川
伸一郎 藤高
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2021152881A1 publication Critical patent/WO2021152881A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a treatment planning device, a particle beam therapy system and a computer program.
  • Radiation therapy aimed at necrosis of tumor cells by irradiating various types of radiation has been widely used in recent years. Not only X-rays, which are the most widely used radiation, but also treatments using particle beams such as proton beams and carbon beams are spreading.
  • scanning method is widespread in particle beam therapy. This is a method of applying a high dose only to the tumor area by irradiating a thin particle beam so as to fill the inside of the tumor.
  • Various distributions can be formed without the need for patient-specific instruments such as a collimator for molding the distribution into a tumor shape.
  • the treatment planning device determines in advance the energy, irradiation amount, and irradiation position so that the desired dose distribution to the affected area and the surrounding area of the affected area can be obtained.
  • X-ray CT images (hereinafter referred to as CT images) are the most common means for confirming the state of the patient's body at the time of planning in advance.
  • the designation of the affected area and the calculation of the dose distribution in the body based on the position are often performed using CT images.
  • irradiation once a day is repeated over multiple days.
  • the treatment plan was basically made first, and the same irradiation position was irradiated with the same irradiation amount every day.
  • the irradiation position and irradiation amount have begun to be changed according to changes in the state of the body. Irradiation with a modified treatment plan is called adaptive irradiation.
  • Non-Patent Document 1 discloses a method for determining the irradiation amount in adaptive irradiation. For adaptive irradiation, it is important to recreate the treatment plan so that the effect is equivalent to the original treatment plan originally planned.
  • Non-Patent Document 1 discloses a method of deforming the dose distribution according to the image of the treatment day and determining the irradiation amount so as to reproduce the dose distribution as a target.
  • Non-Patent Document 1 an index based on the dose, for example, the maximum dose and the minimum dose to the target and normal organs around the target can be replanned so as to be equivalent to the original treatment plan.
  • the damage caused by particle beams to cells depends on both the dose and the amount called linear energy transfer (LET), but conventional adaptive irradiation has changed the treatment plan. Sometimes there was a problem that LET was not taken into consideration.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a treatment planning device, a particle beam therapy system, and a computer program capable of recreating a treatment plan closer to the original treatment plan in adaptive irradiation. ..
  • a treatment planning device in order to solve the above problems is a treatment planning device applied to a particle beam therapy system that irradiates a target with a charged particle beam, and is a three-dimensional planning device that images the target.
  • the dose distribution of the charged particle beam is calculated based on the image to determine the irradiation amount of the charged particle beam on the target, and the three-dimensional image at the time of planning is based on the pre-three-dimensional image obtained by imaging the target after the three-dimensional image at the time of planning.
  • the image is deformed, the dose distribution of the charged particle beam and the energy distribution per distance are calculated based on the deformed three-dimensional image at the time of planning, and the charged particle beam to the target is calculated based on the dose distribution and the energy distribution per distance. Redetermine the dose of.
  • An embodiment of the present invention is a particle beam therapy system that irradiates a particle beam such as a proton beam or a carbon beam, and a treatment planning device that forms a part of this particle beam therapy system.
  • the particle beam used in the particle beam therapy system of this embodiment is not limited as long as it is a particle beam that has already been put into practical use, such as the above-mentioned proton beam and carbon beam, and will be put into practical use in the future. ..
  • a particle beam therapy system and a treatment planning apparatus which are preferred embodiments of the present invention, will be described with reference to FIG.
  • the target of this embodiment is a particle beam therapy system and a treatment planning device that irradiate particle beams such as proton beams and carbon beams.
  • FIG. 1 is a diagram showing the overall configuration of the particle beam therapy system.
  • the particle beam therapy system includes a charged particle beam generator 301, a high energy beam transport system 310, a rotary irradiation device 311, a control device 314 equipped with a treatment planning program 312 and a memory 313, a display device 315, and an irradiation field formation. It includes an apparatus (irradiation apparatus) 400, a bed 407, a treatment planning apparatus 501, and a data server 502.
  • the charged particle beam generator 301 is composed of an ion source 302, a pre-stage accelerator 303, and a particle beam accelerator 304.
  • a synchrotron type particle beam accelerator is assumed as the particle beam accelerator 304, but any other particle beam accelerator such as a cyclotron may be used as the particle beam accelerator 304.
  • the synchrotron type particle beam accelerator 304 has a deflection electromagnet 305, an accelerator 306, a high frequency application device 307 for emission, a deflector 308 for emission, and a quadrupole electromagnet (FIG. Not shown).
  • FIG. 1 will explain the process from the particle beam generated from the charged particle beam generator 301 using the synchrotron type particle beam accelerator 304 to the emission toward the patient.
  • the particles supplied from the ion source 302 are accelerated by the pre-stage accelerator 303 and sent to the synchrotron which is a beam accelerator.
  • An accelerator 306 is installed in the synchrotron, and a high-frequency acceleration cavity (not shown) provided in the accelerator 306 is synchronized with the cycle in which the particle beam orbiting the synchrotron passes through the accelerator 306. A high frequency is applied to accelerate the particle beam. In this way, the particle beam is accelerated until it reaches a predetermined energy.
  • the emission start signal is output from the control device 314 after the particle beam is accelerated to a predetermined energy (for example, 70 to 250 MeV)
  • a predetermined energy for example, 70 to 250 MeV
  • the high frequency power from the high frequency power supply 309 is transferred to the high frequency applied to the high frequency application device 307.
  • the application electrode is applied to the particle beam orbiting in the synchrotron, and the particle beam is emitted from the synchrotron.
  • the high energy beam transport system 310 connects the synchrotron and the irradiation field forming device 400.
  • the particle beam taken out from the synchrotron is guided to the irradiation field forming device 400 installed in the rotary irradiation device 311 via the high energy beam transport system 310.
  • the rotary irradiation device 311 is for irradiating the beam from an arbitrary direction of the patient 406, and the rotation of the entire device can be rotated in any direction around the bed 407 in which the patient 406 is installed.
  • the irradiation field forming device 400 rotates together with the rotary irradiation device.
  • X-ray detectors 420 and 421 are provided at the tip of the irradiation field forming device, and X-ray generators 422 and 423 are provided on the opposite side of the patient 406.
  • the irradiation field forming device 400 is a device that shapes the shape of the particle beam that is finally irradiated to the patient 406, and its structure differs depending on the irradiation method.
  • the scatterer method and the scanning method are typical irradiation methods, but this embodiment targets the scanning method.
  • the scanning method a thin beam transported from the high-energy beam transport system 310 is irradiated to the target as it is, and the target is scanned three-dimensionally, so that a high-dose region can be finally formed only on the target.
  • FIG. 2 shows the configuration of the irradiation field forming device 400 corresponding to the scanning method.
  • the irradiation field forming device 400 includes two scanning electromagnets 401 and 402, a dose monitor 403, and a beam position monitor 404 from the upstream side.
  • the dose monitor 403 measures the amount of particle beam that has passed through the monitor.
  • the beam position monitor 404 can measure the position where the particle beam has passed. Based on the information from the monitors 403 and 404, the control device 314 can manage that the planned position is irradiated with the planned amount of the beam.
  • the thin particle beam transported from the charged particle beam generator 301 via the high energy beam transport system 310 is deflected in its traveling direction by the scanning electromagnets 401 and 402.
  • These scanning electromagnets are provided so that magnetic lines of force are generated in a direction perpendicular to the beam traveling direction.
  • the scanning electromagnet 401 deflects the beam in the scanning direction 405, and the scanning electromagnet 402 deflects the beam. Deflection in the vertical direction.
  • the control device 314 controls the amount of current flowing through the scanning electromagnets 401 and 402 via the scanning electromagnet magnetic field strength control device 411.
  • a current is supplied to the scanning electromagnets 401 and 402 from the scanning electromagnet power supply 410, and a magnetic field corresponding to the amount of current is excited so that the amount of deflection of the beam can be freely set.
  • the relationship between the amount of deflection of the particle beam and the amount of current is previously stored as a table in the memory 313 in the control device 314, and the relationship is referred to.
  • scanning beam scanning methods There are two types of scanning beam scanning methods. One is discrete scanning irradiation in which the particle beam is irradiated only when the irradiation position is stopped, and the irradiation of the particle beam is stopped while the irradiation position is changed. The other is continuous scanning irradiation in which the irradiation position is continuously changed without stopping the irradiation of the particle beam. Although discrete scanning irradiation is described in this embodiment, the present invention can also be applied to continuous scanning irradiation.
  • Fig. 3 shows a conceptual diagram of irradiation by discrete scanning irradiation.
  • FIG. 3 is an example of irradiating a cubic target 801. Since the particle beam stops at a certain position in the traveling direction and gives most of the energy to the stop position, the energy is adjusted so that the stopping depth of the beam is within the target region.
  • a beam of energy that stops near the surface 802 irradiated with the same energy is selected.
  • Irradiation positions spots are arranged on this surface at a spot interval of 803. The spot represents a combination of irradiation position and irradiation amount.
  • the irradiation is stopped once and the next spot is moved.
  • the movement is completed, the irradiation of the next spot is started, and when the specified amount is reached, the irradiation is stopped. After that, this is repeated.
  • the spot 804 is irradiated with a beam that passes through the locus 805 of the beam that irradiates the spot 804.
  • the spots of the same energy arranged in the target are sequentially irradiated, the depth at which the beam is stopped is changed in order to irradiate another depth position in the target.
  • a simple cubic target is irradiated with a constant irradiation amount, but in reality, since a dose distribution having a complicated shape is formed as the target, the irradiation amount for each spot is greatly different.
  • Another method of changing the beam energy is to insert a range modulator (not shown) into the irradiation field forming device 400.
  • a range modulator (not shown)
  • the thickness may be selected by using a plurality of range modulators having a plurality of thicknesses or by using opposing wedge-shaped range modulators.
  • a set of irradiation positions irradiated with the same energy is called a layer.
  • the energy of the beam irradiating the patient 406 is changed.
  • One of the methods of changing the energy is to change the setting of the particle beam accelerator, that is, the synchrotron in this embodiment.
  • the particles are accelerated to the set energy in the synchrotron, and the energy incident on the patient 406 can be changed by changing this setting value.
  • the energy extracted from the synchrotron changes, the energy when passing through the high-energy beam transport system 310 also changes, and it is necessary to change the setting of the high-energy beam transport system 310. In the case of a synchrotron, it takes about 1 second to change the energy.
  • Linear energy transfer is the amount of energy given per unit length.
  • the profile of the proton line in the LET depth direction reaches its maximum at the position where the proton line stops. Moreover, it is almost constant in the lateral direction. Focusing on the points in the target, proton beams of various energies are irradiated, and the LET value is different for each energy. Therefore, the dose average LET is often used as an index of the LET considering that particles of various energies are irradiated.
  • the average dose LET is a value obtained by dividing the sum of the values obtained by multiplying the LET and the dose for each energy for the total energy to be irradiated for each position in the body by the total dose.
  • the LET distribution is the same as the original distribution, so that the effect of the particle beam on the body is the same as the original treatment plan. create.
  • FIG. 5 shows the configuration of the treatment planning device 501.
  • the treatment planning device 501 is connected to the data server 502 and the control device 314 via a network.
  • the treatment planning device 501 includes an input device 602 for inputting parameters for irradiating particle beams, a display device 603 for displaying the treatment plan, a memory 604, and an arithmetic process for performing dose distribution calculation.
  • a device 605 (arithmetic unit) and a communication device 606 are provided.
  • the arithmetic processing unit 605 is connected to the input device 602, the display device 603, the memory (storage device) 604, and the communication device 606.
  • the arithmetic unit 605 has, for example, a CPU (Central Processing Unit), an FPGA (Field-Programmable Gate Array), and the like.
  • the storage device 604 includes, for example, a magnetic storage medium such as an HDD (Hard Disk Drive), a semiconductor storage medium such as a RAM (Random Access Memory), a ROM (Read Only Memory), and an SSD (Solid State Drive). Further, a combination of an optical disk such as a DVD (Digital Versatile Disk) and an optical disk drive is also used as a storage medium. In addition, a known storage medium such as a magnetic tape medium is also used as the storage medium.
  • the storage device 604 stores programs such as firmware. At the start of operation of the treatment planning device 501 (for example, when the power is turned on), a program such as firmware is read from this storage medium and executed to perform overall control of the treatment planning device 501. In addition to the program, the storage device 604 stores data and the like required for each process of the treatment planning device 501.
  • some of the components constituting the treatment planning device 501 may be connected to each other via a LAN (Local Area Network), or may be connected to each other via a WAN (Wide Area Network) such as the Internet. You may be.
  • LAN Local Area Network
  • WAN Wide Area Network
  • an image for treatment planning is taken.
  • the most commonly used image for treatment planning is a CT image.
  • the CT image reconstructs three-dimensional data from fluoroscopic images acquired from a plurality of directions of the patient.
  • the CT image captured by the CT device (not shown) is stored in the data server 502.
  • the engineer (or doctor) who is the operator of the treatment planning device becomes a target from the data server 502 using a device such as a mouse which is an input device 602.
  • Read CT data That is, the treatment planning device 501 copies the CT image from the data server 502 onto the memory 604 through the network connected to the communication device 606 by operating the input device 602 (step 102).
  • a device such as a mouse corresponding to the input device 602 is used to input a slice of a three-dimensional CT image, that is, an area to be designated as a target for each two-dimensional CT image.
  • the target region to be input is a region where it is determined that a sufficient amount of particle beam should be irradiated because the tumor cells are present or may be present. This is called the target area.
  • the operator also specifies the areas such as those important organs.
  • it may be executed on images of different modality represented by MRI (step 103).
  • the operator instructs the registration of the input area.
  • the area input by the operator is saved in the memory 604 as three-dimensional position information (step 104).
  • the position information of the area can also be stored in the data server 502, and when reading the 3D CT image, the information input in the past can be read together with the 3D CT image.
  • Step 104 the operator creates a treatment plan that includes information on the position and energy of the beam to be irradiated to the registered target area.
  • the operator sets the irradiation direction.
  • the beam can be irradiated from any direction of the patient by selecting the angle between the rotary irradiation device 311 and the bed 407. It is possible to set a plurality of irradiation directions for one target. Normally, positioning is performed so that the vicinity of the center of the target region 706 coincides with the isocenter (rotation center position of the rotation irradiation device 311).
  • the prescribed dose includes the dose to be applied to the target and the maximum dose to be avoided by important organs.
  • the treatment planning device 501 automatically calculates according to the instruction of the operator (step 106). The details of the contents related to the dose calculation performed by the treatment planning apparatus 501 will be described below.
  • intensity-modulated proton beam therapy a treatment plan for an irradiation method called intensity-modulated proton beam therapy by robust optimization as an example.
  • intensity-modulated proton therapy the irradiation doses from all irradiation directions are simultaneously optimized so that the target is irradiated with a sufficient dose.
  • Intensity-modulated proton therapy provides more freedom than in the normal case of optimizing the dose for each irradiation direction, so reduce the dose at areas where irradiation should be avoided while ensuring a sufficient dose to the target. Can be done.
  • One is a method of setting a region larger than the target by the assumed error and optimizing the irradiation amount so that a sufficient dose is irradiated to that region.
  • This is a suspense suitable for a normal irradiation method in which a uniform dose distribution is formed for each irradiation direction.
  • the other is a method called robust optimization, which actually calculates the dose distribution when an error occurs and optimizes the irradiation dose so that the effect of the error on the dose distribution is minimized.
  • This method is suitable for intensity-modulated proton beam therapy in which the dose distribution in each irradiation direction is not uniform.
  • the treatment planning device 501 determines the beam irradiation position.
  • the irradiation position is set so as to cover the target area. The same operation is performed for each of a plurality of irradiation directions (angles between the rotary irradiation device 311 and the bed 407).
  • the treatment planning device 501 starts the optimization calculation of the irradiation amount.
  • the relationship between the irradiation dose and the dose distribution at each irradiation position is calculated for multiple cases. For example, if there is no error, the position of the target changes in a total of 6 directions in 3 directions orthogonal to each other and the opposite direction, and the arrival position of the proton line changes to the deep side and the shallow side, for a total of 9 cases. be.
  • the irradiation amount to each irradiation position is determined.
  • a method using an objective function that quantifies the deviation from the target dose with the irradiation amount for each irradiation position as a parameter is widely adopted.
  • the objective function is defined so that the smaller the difference from the target prescription dose set in step 105, the smaller the dose in the total of 9 cases.
  • the optimum irradiation amount is calculated by repeatedly searching for the irradiation amount that minimizes the target function. When the iterative calculation is completed, the irradiation amount required for each irradiation position is finally determined.
  • the treatment planning device 501 calculates the dose distribution by the arithmetic processing device 605 using the obtained irradiation position and irradiation amount. If necessary, the calculated dose distribution result is displayed on the display device 603.
  • the operator evaluates the displayed dose distribution and determines whether or not this dose distribution satisfies the target conditions and the degree of agreement with the target dose distribution (steps 107 and 108).
  • the process returns to step 105 and the irradiation parameters are reset.
  • the parameters to be changed include the irradiation direction and the prescribed dose.
  • the treatment planning apparatus stores spot data including energy, irradiation dose, and irradiation position in the data server 502 through the network (step 109, step 110).
  • FIGS. 7 and 8 The flowcharts shown in FIGS. 7 and 8 are performed prior to irradiation of the charged particle beam by the irradiation device 400. Usually, the re-creation of the treatment plan is performed on the day when the particle beam therapy is performed by irradiating the charged particle beam, and immediately before the irradiation of the charged particle beam.
  • the operator Before starting irradiation, the operator puts the irradiation target 51 on the couch 32 and moves it to the planned position.
  • the control device 314 reads out the energy, irradiation position, and irradiation amount information registered in the data server 502 and registers them in the memory.
  • step 201 the control device 314 performs X-ray fluoroscopy while rotating the gantry, and acquires a cone beam CT image.
  • step 202 the position of the patient is adjusted by comparing the acquired cone beam image with the CT image at the time of treatment planning.
  • Replan (recreate) the treatment plan in step 203 and evaluate that the replanned plan is in line with the goal.
  • step 203 The details of the replanning in step 203 will be described according to the flow of FIG.
  • the treatment plan program of the control device 314 reads the acquired cone beam CT image in step 211, and recreates the treatment plan according to the patient's body shape at the time of irradiation in step 212.
  • the CT image at the time of the treatment plan is deformed according to the cone beam CT image.
  • the deformation registration is to accurately match those images in one coordinate system by finding the correspondence between each pixel between the images in which the deformation or movement has occurred. Since the registration method itself is known in image processing and image conversion technology, the description thereof is omitted here.
  • the CT image used for treatment planning represents the electron density in the patient's body with high accuracy
  • the cone beam CT image has a large contribution of X-ray scattering, so it is difficult to accurately represent the electron density. This is because it is not suitable for accurately calculating the arrival position of the particle beam.
  • the spot position is arranged so as to cover the target based on the deformed contour information.
  • spots are arranged so as to cover the target in each irradiation direction.
  • the dose distribution and the LET distribution are deformed according to the deformation of the CT image as shown in FIG.
  • the dose distribution and the LET distribution are the one for each irradiation angle and the total dose distribution and the LET distribution from all the irradiation angles.
  • the total dose distribution from all irradiation angles is the sum of the doses from each irradiation angle, while the LET distribution is a distribution of values obtained by further averaging the LET distributions from each irradiation direction.
  • FIG. 11 shows the dose distribution and the LET distribution when irradiating the central target region from two left and right directions.
  • the dotted line shows the distribution for each irradiation direction, and the solid line shows the total from all irradiation directions.
  • the distribution in FIG. 11 is also deformed according to the deformation of the CT image in the same manner as in FIG.
  • step 215 dose evaluation points are set for the target and the organs around the target.
  • the dose value and the LET value at each dose evaluation point are obtained from the deformed dose distribution and the LET distribution, and are set as the target value of each evaluation point.
  • the dose value and LET value set for each evaluation point the one from each irradiation direction and the total from all irradiation directions are registered. That is, in the example of FIG. 11, a dose value and a total dose value for irradiation from the left and right directions, a LET value from the left and right directions and a total LET value, and a total of six values are set for one evaluation point. do.
  • step 217 the relationship between the irradiation amount to be irradiated to the spot position, the dose value at the dose evaluation point, and the LET is calculated, and the dose value and the total from each irradiation direction and all irradiation directions at each dose evaluation point are calculated.
  • the irradiation amount of each spot is optimized and adjusted so that the LET value approaches the target value.
  • step 204 the operator compares the treatment plan created in advance with the treatment plan created immediately before irradiation, and selects the preferred treatment plan. If a pre-prepared treatment plan is preferred, irradiation is initiated in step 207.
  • the treatment plan created immediately before irradiation is selected, the treatment plan is verified in step 205, and if approved in step 206, it is registered in the memory as the treatment plan to be irradiated and the irradiation in step 207 is started.
  • the control device 314 sets the exciting current values of the scanning electromagnets 401 and 402 in the irradiation device 400 based on the energy, irradiation position, and irradiation amount information recorded in the memory 313.
  • the operator starts a series of irradiation by pressing the irradiation start button on the operation console connected to the control device 314.
  • controller 314 controls the synchrotron to accelerate the proton beam from controller 314 to the specified energy.
  • the proton beam is incident on the synchrotron from the linac and is accelerated by the accelerator 306 while orbiting the synchrotron. Further, the control device 314 controls the beam transport system 310 and excites the electromagnet so that the proton beam can reach the irradiation device 400.
  • step 703 the control device 314 excites the X-axis scanning electromagnet and the Y-axis scanning electromagnet, respectively, in order to irradiate the first irradiation position.
  • step 704 when the excitation of the scanning electromagnets 401 and 402 is completed, the control device 314 controls the high frequency applying device 307 to apply a high frequency to the proton beam.
  • the proton beam to which the high frequency is applied is scanned by the irradiation device 400 via the beam transport system 310 and reaches the first irradiation position.
  • the irradiation amount of the proton beam passing through the irradiation device is measured by the dose monitor 403, and when the amount reaches the irradiation amount specified for the spot, the control device 314 stops the high frequency application device 307 and emits the proton beam. To stop. After the emission of the proton beam is stopped, the process returns to step 703 to irradiate the next irradiation position, and the control device 314 changes the excitation amount of the scanning electromagnet.
  • i nr (nr is the number of energies) is reached in step 707, irradiation is completed in step 708.
  • the treatment planning apparatus 501 calculates the dose distribution of the charged particle beam based on the three-dimensional image at the time of planning in which the target 406a is imaged, and the charged particle beam to the target 406a is calculated.
  • the irradiation amount is determined, the planned three-dimensional image is deformed based on the pre-three-dimensional image obtained by capturing the target 406a after the planned three-dimensional image, and the dose of the charged particle beam is based on the deformed planned three-dimensional image.
  • the distribution and the energy distribution per distance are calculated, and the irradiation amount of the charged particle beam to the target 406a is redetermined based on the dose distribution and the energy distribution per distance.
  • a treatment planning device 501 it is possible to realize a treatment planning device 501, a particle beam therapy system, and a computer program capable of recreating a treatment plan closer to the original treatment plan in adaptive irradiation.
  • both the dose distribution and the LET distribution are deformed according to the shape of the patient's body at the time of treatment, and the irradiation dose is determined using that value as the target value, thereby resulting in position error and range error. It is possible to re-plan a robust treatment plan in a short time. In addition, the replanned distribution can have the same effect on the tumor as compared to the original distribution.
  • RBE Relative Biological Effectiveness
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • the proton beam has been described as an example, but the calculation can be performed in the same manner when irradiating the carbon beam.
  • a CT image of a device called InRoomCT in which a normal CT device is placed indoors may be used, or an MRI image by an MRI device may be used. good.
  • microdosometry the amount of energy used for calculating the biological effect called microdosometry may be divided by the distance.
  • each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be placed in a memory, a recording device such as a hard disk or SSD, or a recording medium such as an IC card, SD card, or DVD.
  • control lines and information lines indicate those that are considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it can be considered that almost all configurations are interconnected.
  • 301 ... Charged particle beam generator, 302 ... Ion source, 303 ... Pre-stage accelerator, 304 ... Particle beam accelerator, 305 ... Deflection electromagnet, 306 ... Accelerator, 307 ... High frequency application device for emission, 308 ... Deflector for emission, 309 ... High frequency supply device, 310 ... High energy beam transport system, 311 ... Rotational irradiation device, 314 ... Control device, 313, 604 ... Memory, 315, 603 ... Display device, 400 ... Irradiation field forming device, 401, 402 ... Scanning Electromagnet, 403 ... Dose monitor, 404 ... Beam position monitor, 405 ... Scanning direction, 406 ...
  • Patient 406a, 801 ... Target, 410 ... Scanning electromagnet power supply, 411 ... Scanning electromagnet magnetic field strength control device, 501 ... Treatment planning device, 502 ... Data server, 602 ... Input device, 605 ... Arithmetic processing device, 606 ... Communication device

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

The present invention makes it possible to recreate a treatment plan for adaptive radiation that is more similar to an original treatment plan. A treatment planning device 501 calculates the dose distribution of charged particle beams on the basis of a three-dimensional image for planning obtained by imaging a target, and determines the irradiation dose of charged particle beams to the target. The treatment planning device 501 deforms the three-dimensional image for planning on the basis of a preliminary three-dimensional image obtained by imaging the target after the three-dimensional image for planning, calculates the dose distribution of charged particle beams and the distribution of energy per distance on the basis of the deformed three-dimensional image for planning, and redetermines the irradiation dose of charged particle beams to the target on the basis of the dose distribution and the distribution of energy per distance.

Description

治療計画装置、粒子線治療システム及びコンピュータプログラムTreatment planning equipment, particle beam therapy system and computer program
 本発明は、治療計画装置、粒子線治療システム及びコンピュータプログラムに関する。 The present invention relates to a treatment planning device, a particle beam therapy system and a computer program.
 各種放射線を照射することで腫瘍細胞を壊死させることを目的とする放射線治療は、近年広く行われている。用いられる放射線としては最も広く利用されているX線だけでなく、陽子線や炭素線をはじめとする粒子線を使った治療も広がりつつある。 Radiation therapy aimed at necrosis of tumor cells by irradiating various types of radiation has been widely used in recent years. Not only X-rays, which are the most widely used radiation, but also treatments using particle beams such as proton beams and carbon beams are spreading.
 粒子線治療において、スキャニング法の利用が広がっている。これは細い粒子ビームを、腫瘍内部を塗りつぶすように照射することで腫瘍領域にのみ高い線量を付与するという方法である。分布を腫瘍形状に成型するためのコリメータ等の患者固有の器具が基本的に必要なく、様々な分布を形成できる。 The use of scanning method is widespread in particle beam therapy. This is a method of applying a high dose only to the tumor area by irradiating a thin particle beam so as to fill the inside of the tumor. Various distributions can be formed without the need for patient-specific instruments such as a collimator for molding the distribution into a tumor shape.
 粒子線治療は、事前に詳細な治療計画を立てる必要がある(例えば特許文献1参照)。治療計画装置により、事前に患部および患部周囲への所望の線量分布が得られるようにエネルギー、照射量、照射位置が決定される。事前の計画時に患者の体内の様子を確認する手段は、X線CT画像(以下、CT画像)が最も一般的である。患部位置の指定、それに基づく体内の線量分布計算もCT画像を用いて行われることが多い。 For particle beam therapy, it is necessary to make a detailed treatment plan in advance (see, for example, Patent Document 1). The treatment planning device determines in advance the energy, irradiation amount, and irradiation position so that the desired dose distribution to the affected area and the surrounding area of the affected area can be obtained. X-ray CT images (hereinafter referred to as CT images) are the most common means for confirming the state of the patient's body at the time of planning in advance. The designation of the affected area and the calculation of the dose distribution in the body based on the position are often performed using CT images.
 粒子線治療では、1日1回の照射を複数日に渡って繰り返す。従来、治療計画は基本的に最初に立て、毎日同じ照射位置に同じ照射量が照射されていた。患者固有具が不要なスキャニング照射法が普及したことで、体内の状態変化に合わせて照射位置と照射量を変更することが行われ始めている。治療計画を変更して照射することは、アダプティブ照射と呼ばれている。 In particle beam therapy, irradiation once a day is repeated over multiple days. Conventionally, the treatment plan was basically made first, and the same irradiation position was irradiated with the same irradiation amount every day. With the widespread use of scanning irradiation methods that do not require patient-specific tools, the irradiation position and irradiation amount have begun to be changed according to changes in the state of the body. Irradiation with a modified treatment plan is called adaptive irradiation.
 アダプティブ照射において照射量を決定する手法が非特許文献1に開示されている。アダプティブ照射では、最初に計画した元治療計画と効果が等価になるように治療計画を再作成することが重要である。非特許文献1では、線量分布を治療日の画像に合わせて変形し、その線量分布を目標として再現するように照射量を決定する手法が開示されている。 Non-Patent Document 1 discloses a method for determining the irradiation amount in adaptive irradiation. For adaptive irradiation, it is important to recreate the treatment plan so that the effect is equivalent to the original treatment plan originally planned. Non-Patent Document 1 discloses a method of deforming the dose distribution according to the image of the treatment day and determining the irradiation amount so as to reproduce the dose distribution as a target.
特開2013-248133号公報Japanese Unexamined Patent Publication No. 2013-248133
 上述した非特許文献1の手法では、線量に基づく指標、例えば標的及び標的周辺の正常臓器への最大線量、最小線量を、元治療計画と同等になるように再計画することができる。一方、粒子線が細胞へ与えるダメージは、線量と線エネルギー付与(LET:Linear Energy Transfer)と呼ばれる量との両方に依存することが知られているが、これまでのアダプティブ照射では治療計画の変更時にLETを考慮していないという課題があった。 In the method of Non-Patent Document 1 described above, an index based on the dose, for example, the maximum dose and the minimum dose to the target and normal organs around the target can be replanned so as to be equivalent to the original treatment plan. On the other hand, it is known that the damage caused by particle beams to cells depends on both the dose and the amount called linear energy transfer (LET), but conventional adaptive irradiation has changed the treatment plan. Sometimes there was a problem that LET was not taken into consideration.
 本発明は上記の課題に鑑みてなされたもので、アダプティブ照射において元の治療計画により近い治療計画を再作成することが可能な治療計画装置、粒子線治療システム及びコンピュータプログラムを提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a treatment planning device, a particle beam therapy system, and a computer program capable of recreating a treatment plan closer to the original treatment plan in adaptive irradiation. ..
 上記課題を解決すべく、本発明の一つの観点に従う治療計画装置は、標的に荷電粒子線を照射する粒子線治療システムに適用される治療計画装置であって、標的を撮像した計画時三次元画像に基づいて荷電粒子線の線量分布を算出して標的への荷電粒子線の照射量を決定し、計画時三次元画像よりも後に標的を撮像した事前三次元画像に基づいて計画時三次元画像を変形し、変形した計画時三次元画像に基づいて荷電粒子線の線量分布と距離当たりエネルギーの分布とを算出し、線量分布と距離当たりエネルギーの分布とに基づいて標的への荷電粒子線の照射量を再決定する。 A treatment planning device according to one aspect of the present invention in order to solve the above problems is a treatment planning device applied to a particle beam therapy system that irradiates a target with a charged particle beam, and is a three-dimensional planning device that images the target. The dose distribution of the charged particle beam is calculated based on the image to determine the irradiation amount of the charged particle beam on the target, and the three-dimensional image at the time of planning is based on the pre-three-dimensional image obtained by imaging the target after the three-dimensional image at the time of planning. The image is deformed, the dose distribution of the charged particle beam and the energy distribution per distance are calculated based on the deformed three-dimensional image at the time of planning, and the charged particle beam to the target is calculated based on the dose distribution and the energy distribution per distance. Redetermine the dose of.
 本発明によれば、アダプティブ照射において元の治療計画により近い治療計画を再作成することが可能となる。 According to the present invention, it is possible to recreate a treatment plan that is closer to the original treatment plan in adaptive irradiation.
実施例に係る粒子線治療システムを示す概略構成図である。It is a schematic block diagram which shows the particle beam therapy system which concerns on Example. 実施形態に係る粒子線治療システムに用いられる照射野形成装置の構成を示す図である。It is a figure which shows the structure of the irradiation field forming apparatus used in the particle beam therapy system which concerns on embodiment. 粒子線スキャニング照射法における照射位置の概念を示す図である。It is a figure which shows the concept of the irradiation position in the particle beam scanning irradiation method. 粒子線スキャニング照射法におけるエネルギー変更の概念を示す図である。It is a figure which shows the concept of energy change in a particle beam scanning irradiation method. 実施例に係る治療計画装置を示す図である。It is a figure which shows the treatment planning apparatus which concerns on Example. 実施例に係る治療計画装置の治療計画作成動作を説明するためのフローチャートである。It is a flowchart for demonstrating the treatment plan creation operation of the treatment plan apparatus which concerns on Example. 実施例に係る治療計画装置の治療計画再作成動作を説明するためのフローチャートである。It is a flowchart for demonstrating the operation of recreating the treatment plan of the treatment planning apparatus which concerns on Example. 実施例に係る治療計画装置の治療計画再作成動作を説明するためのフローチャートである。It is a flowchart for demonstrating the operation of recreating the treatment plan of the treatment planning apparatus which concerns on Example. 実施例に係る治療計画装置における線量分布及びLET分布の変形の一例を示す図である。It is a figure which shows an example of the modification of the dose distribution and the LET distribution in the treatment planning apparatus which concerns on an Example. 実施例に係る粒子線治療システムによる粒子線照射の手順を説明するためのフローチャートである。It is a flowchart for demonstrating the procedure of particle beam irradiation by the particle beam therapy system which concerns on Example. 実施例に係る治療計画装置における照射方向毎の線量分布及びLET分布の一例を示す図である。It is a figure which shows an example of the dose distribution and LET distribution for each irradiation direction in the treatment planning apparatus which concerns on Example.
 以下、本発明の実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the embodiments described below do not limit the invention according to the claims, and all of the elements and combinations thereof described in the embodiments are indispensable for the means for solving the invention. Is not always.
 本発明の実施例は、陽子線や炭素線などの粒子線を照射する粒子線治療システムとこの粒子線治療システムの一部を為す治療計画装置である。なお、本実施例の粒子線治療システム等に用いられる粒子線は、上述した陽子線、炭素線など、既に実用化され、また、今後実用化されるであろう粒子線であれば限定はない。 An embodiment of the present invention is a particle beam therapy system that irradiates a particle beam such as a proton beam or a carbon beam, and a treatment planning device that forms a part of this particle beam therapy system. The particle beam used in the particle beam therapy system of this embodiment is not limited as long as it is a particle beam that has already been put into practical use, such as the above-mentioned proton beam and carbon beam, and will be put into practical use in the future. ..
 なお、実施例を説明する図において、同一の機能を有する箇所には同一の符号を付し、その繰り返しの説明は省略する。 In the figure for explaining the embodiment, the same reference numerals are given to the parts having the same function, and the repeated description thereof will be omitted.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawing may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range and the like disclosed in the drawings.
 同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。 When there are multiple components having the same or similar functions, the same code may be described with different subscripts. However, when it is not necessary to distinguish between these plurality of components, the subscripts may be omitted for explanation.
 本発明の好適な一実施例である粒子線治療システムと治療計画装置を、図1を用いて説明する。本実施例の対象は、陽子線や炭素線などの粒子線を照射する粒子線治療システムと治療計画装置である。 A particle beam therapy system and a treatment planning apparatus, which are preferred embodiments of the present invention, will be described with reference to FIG. The target of this embodiment is a particle beam therapy system and a treatment planning device that irradiate particle beams such as proton beams and carbon beams.
 図1は、粒子線治療システムの全体構成を示す図である。図1において、粒子線治療システムは、荷電粒子ビーム発生装置301、高エネルギービーム輸送系310、回転照射装置311、治療計画プログラム312とメモリ313を搭載した制御装置314、表示装置315、照射野形成装置(照射装置)400、ベッド407、治療計画装置501、データサーバ502を備えている。 FIG. 1 is a diagram showing the overall configuration of the particle beam therapy system. In FIG. 1, the particle beam therapy system includes a charged particle beam generator 301, a high energy beam transport system 310, a rotary irradiation device 311, a control device 314 equipped with a treatment planning program 312 and a memory 313, a display device 315, and an irradiation field formation. It includes an apparatus (irradiation apparatus) 400, a bed 407, a treatment planning apparatus 501, and a data server 502.
 荷電粒子ビーム発生装置301は、イオン源302、前段加速器303、粒子ビーム加速装置304から構成される。本実施例は、粒子ビーム加速装置304としてシンクロトロン型の粒子ビーム加速装置を想定したものだが、粒子ビーム加速装置304としてサイクロトロン等、他のどの粒子ビーム加速装置を用いてもよい。シンクロトロン型の粒子ビーム加速装置304は、図1に示すように、その周回軌道上に偏向電磁石305、加速装置306、出射用の高周波印加装置307、出射用デフレクタ308、および4極電磁石(図示せず)を備える。 The charged particle beam generator 301 is composed of an ion source 302, a pre-stage accelerator 303, and a particle beam accelerator 304. In this embodiment, a synchrotron type particle beam accelerator is assumed as the particle beam accelerator 304, but any other particle beam accelerator such as a cyclotron may be used as the particle beam accelerator 304. As shown in FIG. 1, the synchrotron type particle beam accelerator 304 has a deflection electromagnet 305, an accelerator 306, a high frequency application device 307 for emission, a deflector 308 for emission, and a quadrupole electromagnet (FIG. Not shown).
 図1を用いて、粒子ビームが、シンクロトロン型の粒子ビーム加速装置304を利用した荷電粒子ビーム発生装置301から発生し、患者へ向けて出射されるまでの経過を説明する。イオン源302より供給された粒子は、前段加速器303にて加速され、ビーム加速装置であるシンクロトロンへと送られる。シンクロトロンには加速装置306が設置されており、シンクロトロン内を周回する粒子ビームが加速装置306を通過する周期に同期させて加速装置306に設けられた高周波加速空胴(図示せず)に高周波を印加し、粒子ビームを加速する。このようにして粒子ビームが所定のエネルギーに達するまで加速される。 FIG. 1 will explain the process from the particle beam generated from the charged particle beam generator 301 using the synchrotron type particle beam accelerator 304 to the emission toward the patient. The particles supplied from the ion source 302 are accelerated by the pre-stage accelerator 303 and sent to the synchrotron which is a beam accelerator. An accelerator 306 is installed in the synchrotron, and a high-frequency acceleration cavity (not shown) provided in the accelerator 306 is synchronized with the cycle in which the particle beam orbiting the synchrotron passes through the accelerator 306. A high frequency is applied to accelerate the particle beam. In this way, the particle beam is accelerated until it reaches a predetermined energy.
 所定のエネルギー(例えば70~250MeV)まで粒子ビームが加速された後、制御装置314より、出射開始信号が出力されると、高周波電源309からの高周波電力が、高周波印加装置307に設置された高周波印加電極により、シンクロトロン内を周回している粒子ビームに印加され、粒子ビームがシンクロトロンから出射される。 When the emission start signal is output from the control device 314 after the particle beam is accelerated to a predetermined energy (for example, 70 to 250 MeV), the high frequency power from the high frequency power supply 309 is transferred to the high frequency applied to the high frequency application device 307. The application electrode is applied to the particle beam orbiting in the synchrotron, and the particle beam is emitted from the synchrotron.
 高エネルギービーム輸送系310は、シンクロトロンと照射野形成装置400とを連絡している。シンクロトロンから取り出された粒子ビームは、高エネルギービーム輸送系310を介して回転照射装置311に設置された照射野形成装置400まで導かれる。回転照射装置311は、患者406の任意の方向からビームを照射するためにあって、装置全体が回転することで患者406の設置されたベッド407の周囲どの方向へも回転することができる。照射野形成装置400は、回転照射装置と共に回転する。照射野形成装置の先端には、X線検出器420、421を備えており、患者406を挟んだ反対側にはX線発生装置422、423を備える。 The high energy beam transport system 310 connects the synchrotron and the irradiation field forming device 400. The particle beam taken out from the synchrotron is guided to the irradiation field forming device 400 installed in the rotary irradiation device 311 via the high energy beam transport system 310. The rotary irradiation device 311 is for irradiating the beam from an arbitrary direction of the patient 406, and the rotation of the entire device can be rotated in any direction around the bed 407 in which the patient 406 is installed. The irradiation field forming device 400 rotates together with the rotary irradiation device. X-ray detectors 420 and 421 are provided at the tip of the irradiation field forming device, and X-ray generators 422 and 423 are provided on the opposite side of the patient 406.
 照射野形成装置400は、最終的に患者406へ照射する粒子ビームの形状を整形する装置であり、その構造は照射方式により異なる。散乱体法とスキャニング法が、代表的な照射方式だが、本実施例はスキャニング法を対象とする。スキャニング法は、高エネルギービーム輸送系310から輸送された細いビームをそのまま標的へ照射し、これを3次元的に走査することで、最終的に標的のみに高線量領域を形成することができる。 The irradiation field forming device 400 is a device that shapes the shape of the particle beam that is finally irradiated to the patient 406, and its structure differs depending on the irradiation method. The scatterer method and the scanning method are typical irradiation methods, but this embodiment targets the scanning method. In the scanning method, a thin beam transported from the high-energy beam transport system 310 is irradiated to the target as it is, and the target is scanned three-dimensionally, so that a high-dose region can be finally formed only on the target.
 図2は、スキャニング法に対応した照射野形成装置400の構成を示す。図2を使って、照射野形成装置400内の機器のそれぞれの役割と機能とを簡単に述べる。照射野形成装置400は、上流側から二つの走査電磁石401および402、線量モニタ403、ビーム位置モニタ404を備える。線量モニタ403はモニタを通過した粒子ビームの量を計測する。一方、ビーム位置モニタ404は、粒子ビームが通過した位置を計測することができる。これらのモニタ403、404からの情報により、計画通りの位置に、計画通りの量のビームが照射されていることを、制御装置314が管理することが可能となる。 FIG. 2 shows the configuration of the irradiation field forming device 400 corresponding to the scanning method. With reference to FIG. 2, the roles and functions of the devices in the irradiation field forming apparatus 400 will be briefly described. The irradiation field forming device 400 includes two scanning electromagnets 401 and 402, a dose monitor 403, and a beam position monitor 404 from the upstream side. The dose monitor 403 measures the amount of particle beam that has passed through the monitor. On the other hand, the beam position monitor 404 can measure the position where the particle beam has passed. Based on the information from the monitors 403 and 404, the control device 314 can manage that the planned position is irradiated with the planned amount of the beam.
 荷電粒子ビーム発生装置301から高エネルギービーム輸送系310を経て輸送された細い粒子ビームは、走査電磁石401、402によりその進行方向を偏向される。これらの走査電磁石は、ビーム進行方向と垂直な方向に磁力線が生じるように設けられており、例えば図2では、走査電磁石401は走査方向405の方向にビームを偏向させ、走査電磁石402はこれに垂直な方向に偏向させる。この二つの電磁石を利用することで、ビーム進行方向と垂直な面内において任意の位置にビームを移動させることができ、標的406aへのビーム照射が可能となる。 The thin particle beam transported from the charged particle beam generator 301 via the high energy beam transport system 310 is deflected in its traveling direction by the scanning electromagnets 401 and 402. These scanning electromagnets are provided so that magnetic lines of force are generated in a direction perpendicular to the beam traveling direction. For example, in FIG. 2, the scanning electromagnet 401 deflects the beam in the scanning direction 405, and the scanning electromagnet 402 deflects the beam. Deflection in the vertical direction. By using these two electromagnets, the beam can be moved to an arbitrary position in a plane perpendicular to the beam traveling direction, and the target 406a can be irradiated with the beam.
 制御装置314は、走査電磁石磁場強度制御装置411を介して、走査電磁石401および402に流す電流の量を制御する。走査電磁石401、402には、走査電磁石用電源410より電流が供給され、電流量に応じた磁場が励起されることでビームの偏向量を自由に設定できる。粒子ビームの偏向量と電流量との関係は、あらかじめテーブルとして制御装置314の中のメモリ313に保持されており、それを参照する。 The control device 314 controls the amount of current flowing through the scanning electromagnets 401 and 402 via the scanning electromagnet magnetic field strength control device 411. A current is supplied to the scanning electromagnets 401 and 402 from the scanning electromagnet power supply 410, and a magnetic field corresponding to the amount of current is excited so that the amount of deflection of the beam can be freely set. The relationship between the amount of deflection of the particle beam and the amount of current is previously stored as a table in the memory 313 in the control device 314, and the relationship is referred to.
 スキャニング法のビームの走査方式は二通りある。一つは照射位置を停止させた状態のみで粒子線を照射し、照射位置を変更する間は粒子線の照射を停止する離散スキャニング照射である。もう一つは、粒子線の照射を停止することなく連続的に照射位置を変化させる連続スキャニング照射である。本実施例では、離散スキャニング照射について記述するが、本発明は連続スキャニング照射に対しても適用することができる。 There are two types of scanning beam scanning methods. One is discrete scanning irradiation in which the particle beam is irradiated only when the irradiation position is stopped, and the irradiation of the particle beam is stopped while the irradiation position is changed. The other is continuous scanning irradiation in which the irradiation position is continuously changed without stopping the irradiation of the particle beam. Although discrete scanning irradiation is described in this embodiment, the present invention can also be applied to continuous scanning irradiation.
 離散スキャニング照射による照射の概念図を図3に示す。 Fig. 3 shows a conceptual diagram of irradiation by discrete scanning irradiation.
 図3は、立方体の標的801を照射する例である。粒子線は、進行方向におけるある位置で停止し、その停止位置にエネルギーの大部分を付与するため、ビームの停止する深さが標的領域内となるようにエネルギーが調整される。図3では、同一エネルギーで照射される面802付近で停止するエネルギーのビームが選ばれている。この面上に、照射位置(スポット)がスポット間隔803で配置されている。スポットは、照射位置と照射量の組み合わせを表す。 FIG. 3 is an example of irradiating a cubic target 801. Since the particle beam stops at a certain position in the traveling direction and gives most of the energy to the stop position, the energy is adjusted so that the stopping depth of the beam is within the target region. In FIG. 3, a beam of energy that stops near the surface 802 irradiated with the same energy is selected. Irradiation positions (spots) are arranged on this surface at a spot interval of 803. The spot represents a combination of irradiation position and irradiation amount.
 一つのスポットで規定量を照射すると、一旦照射を停止して次のスポットへ移動する。移動が完了すると次のスポットの照射を開始し、規定量に達すると照射を停止する。以降、これを繰り返す。 When the specified amount is irradiated at one spot, the irradiation is stopped once and the next spot is moved. When the movement is completed, the irradiation of the next spot is started, and when the specified amount is reached, the irradiation is stopped. After that, this is repeated.
 スポット804は、スポット804を照射するビームの軌跡805を通るビームで照射される。標的内に配置された同一エネルギーのスポットを順次照射し終わると、標的内の他の深さ位置を照射するために、ビームを停止させる深さが変更される。ここでは、単純な立方体標的に一定の照射量を照射することを仮定しているが、実際には複雑な形状の線量分布を標的に形成するため、スポット毎の照射量は、それぞれ大きく異なる。 The spot 804 is irradiated with a beam that passes through the locus 805 of the beam that irradiates the spot 804. When the spots of the same energy arranged in the target are sequentially irradiated, the depth at which the beam is stopped is changed in order to irradiate another depth position in the target. Here, it is assumed that a simple cubic target is irradiated with a constant irradiation amount, but in reality, since a dose distribution having a complicated shape is formed as the target, the irradiation amount for each spot is greatly different.
 図3の例では、同一エネルギーで照射される面802に相当する領域に主にエネルギーを付与していた。エネルギーを変更することで、例えば図4のような状況となる。図4では、図3で使用したエネルギーよりも低いエネルギーのビームが照射される。そのため、ビームはより浅い位置で停止する。この面を同一エネルギーで照射される面901で表わす。このエネルギーのビームに対応するスポットの一つであるスポット902は、スポット902を照射するビームの軌跡903を通るビームで照射される。 In the example of FIG. 3, energy was mainly applied to the region corresponding to the surface 802 irradiated with the same energy. By changing the energy, for example, the situation shown in FIG. 4 is obtained. In FIG. 4, a beam having an energy lower than the energy used in FIG. 3 is irradiated. Therefore, the beam stops at a shallower position. This surface is represented by the surface 901 irradiated with the same energy. The spot 902, which is one of the spots corresponding to the beam of this energy, is irradiated with a beam passing through the trajectory 903 of the beam irradiating the spot 902.
 ビームエネルギーを変化させるもう一つの方法は、照射野形成装置400内に飛程変調体(図示せず)を挿入することである。変化させたいエネルギーに応じて、飛程変調体の厚みを選択する。厚みの選択は、複数の厚みを持つ複数の飛程変調体を用いる方法や、対向する楔形の飛程変調体を用いてもよい。 Another method of changing the beam energy is to insert a range modulator (not shown) into the irradiation field forming device 400. Select the thickness of the range modulator according to the energy you want to change. The thickness may be selected by using a plurality of range modulators having a plurality of thicknesses or by using opposing wedge-shaped range modulators.
 本実施例では、同一エネルギーで照射される照射位置の集合をレイヤーと呼ぶ。 In this embodiment, a set of irradiation positions irradiated with the same energy is called a layer.
 ビームの停止する深さを変化させるためには、患者406に照射するビームのエネルギーを変化させる。エネルギーを変化させる方法の一つは、粒子ビーム加速装置、すなわち本実施例においてはシンクロトロンの設定を変更することである。粒子はシンクロトロンにおいて設定されたエネルギーになるまで加速されるが、この設定値を変更することで患者406に入射するエネルギーを変更することができる。この場合、シンクロトロンから取り出されるエネルギーが変化するため、高エネルギービーム輸送系310を通過する際のエネルギーも変化し、高エネルギービーム輸送系310の設定変更も必要になる。シンクロトロンの場合、エネルギー変更には1秒程度の時間を要する。 In order to change the stopping depth of the beam, the energy of the beam irradiating the patient 406 is changed. One of the methods of changing the energy is to change the setting of the particle beam accelerator, that is, the synchrotron in this embodiment. The particles are accelerated to the set energy in the synchrotron, and the energy incident on the patient 406 can be changed by changing this setting value. In this case, since the energy extracted from the synchrotron changes, the energy when passing through the high-energy beam transport system 310 also changes, and it is necessary to change the setting of the high-energy beam transport system 310. In the case of a synchrotron, it takes about 1 second to change the energy.
 線エネルギー付与(LET)は、単位長さ当りに与えられるエネルギー量である。LETが大きいほど生物細胞へのダメージに関係する電離が密に起こるため、同じ線量でもLETの大きさに依存して生物細胞へのダメージは異なる。陽子線のLETの深さ方向へのプロファイルは、陽子線が停止する位置で最大に達する。また、横方向へはほぼ一定である。標的内の点に着目すると、様々なエネルギーの陽子線が照射され、エネルギー毎にLETの値も異なる。そこで、様々なエネルギーの粒子が照射されることを考慮したLETの指標として、線量平均LETが用いられることが多い。線量平均LETは、体内の位置毎に、照射する全エネルギーについてエネルギー毎にLETと線量を掛け合わせた値の合計を、線量の合計で割った値である。 Linear energy transfer (LET) is the amount of energy given per unit length. The larger the LET, the denser the ionization related to the damage to the living cells, so that the damage to the living cells differs depending on the size of the LET even at the same dose. The profile of the proton line in the LET depth direction reaches its maximum at the position where the proton line stops. Moreover, it is almost constant in the lateral direction. Focusing on the points in the target, proton beams of various energies are irradiated, and the LET value is different for each energy. Therefore, the dose average LET is often used as an index of the LET considering that particles of various energies are irradiated. The average dose LET is a value obtained by dividing the sum of the values obtained by multiplying the LET and the dose for each energy for the total energy to be irradiated for each position in the body by the total dose.
 これまで陽子線治療では、体内における細胞へのダメージは物理線量または物理線量に定数を掛けた等価線量によって表されてきた。一方で、細胞へのダメージにLETへの依存性があることは広く知られているものの、その依存性が不確定なため、これまで取り入れられていない。 Until now, in proton therapy, damage to cells in the body has been represented by the physical dose or the equivalent dose obtained by multiplying the physical dose by a constant. On the other hand, although it is widely known that damage to cells has a dependence on LET, it has not been adopted so far because the dependence is uncertain.
 本実施例では、LETが細胞に及ぼす不確定な部分に関係なく、元の分布と同等のLET分布とすることで、体内への粒子線による効果が元の治療計画と同等な治療計画を再作成する。 In this example, regardless of the uncertain part that LET has on the cells, the LET distribution is the same as the original distribution, so that the effect of the particle beam on the body is the same as the original treatment plan. create.
 図5は、治療計画装置501の構成を示す。 FIG. 5 shows the configuration of the treatment planning device 501.
 まず、治療計画装置501は、ネットワークによりデータサーバ502、制御装置314と接続される。治療計画装置501は、図6に示すように、粒子線を照射するためのパラメータを入力するための入力装置602、治療計画を表示する表示装置603、メモリ604、線量分布計算を実施する演算処理装置605(演算装置)、通信装置606を備える。演算処理装置605が、入力装置602、表示装置603、メモリ(記憶装置)604、通信装置606に接続される。 First, the treatment planning device 501 is connected to the data server 502 and the control device 314 via a network. As shown in FIG. 6, the treatment planning device 501 includes an input device 602 for inputting parameters for irradiating particle beams, a display device 603 for displaying the treatment plan, a memory 604, and an arithmetic process for performing dose distribution calculation. A device 605 (arithmetic unit) and a communication device 606 are provided. The arithmetic processing unit 605 is connected to the input device 602, the display device 603, the memory (storage device) 604, and the communication device 606.
 演算装置605は、例えばCPU(Central Processing Unit)、FPGA(Field-Programmable Gate Array)等を有する。記憶装置604は、例えばHDD(Hard Disk Drive)などの磁気記憶媒体、RAM(Random Access Memory)、ROM(Read Only Memory)、SSD(Solid State Drive)などの半導体記憶媒体等を有する。また、DVD(Digital Versatile Disk)等の光ディスク及び光ディスクドライブの組み合わせも記憶媒体として用いられる。その他、磁気テープメディアなどの公知の記憶媒体も記憶媒体として用いられる。 The arithmetic unit 605 has, for example, a CPU (Central Processing Unit), an FPGA (Field-Programmable Gate Array), and the like. The storage device 604 includes, for example, a magnetic storage medium such as an HDD (Hard Disk Drive), a semiconductor storage medium such as a RAM (Random Access Memory), a ROM (Read Only Memory), and an SSD (Solid State Drive). Further, a combination of an optical disk such as a DVD (Digital Versatile Disk) and an optical disk drive is also used as a storage medium. In addition, a known storage medium such as a magnetic tape medium is also used as the storage medium.
 記憶装置604には、ファームウェアなどのプログラムが格納されている。治療計画装置501の動作開始時(例えば電源投入時)にファームウェア等のプログラムをこの記憶媒体から読み出して実行し、治療計画装置501の全体制御を行う。また、記憶装置604には、プログラム以外にも、治療計画装置501の各処理に必要なデータ等が格納されている。 The storage device 604 stores programs such as firmware. At the start of operation of the treatment planning device 501 (for example, when the power is turned on), a program such as firmware is read from this storage medium and executed to perform overall control of the treatment planning device 501. In addition to the program, the storage device 604 stores data and the like required for each process of the treatment planning device 501.
 あるいは、治療計画装置501を構成する構成要素の一部がLAN(Local Area Network)を介して相互に接続されていてもよいし、インターネット等のWAN(Wide Area Network)を介して相互に接続されていてもよい。 Alternatively, some of the components constituting the treatment planning device 501 may be connected to each other via a LAN (Local Area Network), or may be connected to each other via a WAN (Wide Area Network) such as the Internet. You may be.
 ここから、治療計画作成時における治療計画装置501を用いた操作の流れを、図6に沿って説明する。治療に先立ち、治療計画用の画像が撮像される。治療計画用の画像として最も一般的に利用されるのはCT画像である。CT画像は、患者の複数の方向から取得した透視画像から、3次元のデータを再構成する。CT装置(図示せず)により撮像されたCT画像は、データサーバ502に保存されている。 From here, the flow of the operation using the treatment planning device 501 at the time of creating the treatment plan will be described with reference to FIG. Prior to treatment, an image for treatment planning is taken. The most commonly used image for treatment planning is a CT image. The CT image reconstructs three-dimensional data from fluoroscopic images acquired from a plurality of directions of the patient. The CT image captured by the CT device (not shown) is stored in the data server 502.
 治療計画の立案が開始されると(ステップ101)、本治療計画装置の操作者である技師(または医師)は、入力装置602であるマウス等の機器を用いて、データサーバ502から対象となるCTデータを読み込む。すなわち、治療計画装置501は、入力装置602の操作により、通信装置606に接続されたネットワークを通じて、データサーバ502からCT画像をメモリ604上にコピーする(ステップ102)。 When the treatment planning is started (step 101), the engineer (or doctor) who is the operator of the treatment planning device becomes a target from the data server 502 using a device such as a mouse which is an input device 602. Read CT data. That is, the treatment planning device 501 copies the CT image from the data server 502 onto the memory 604 through the network connected to the communication device 606 by operating the input device 602 (step 102).
 データサーバ502からメモリ604への3次元CT画像の読み込みが完了し、3次元CT画像が表示装置603に表示されると、操作者は表示装置603に表示された3次元CT画像を確認しながら、入力装置602に相当するマウス等の機器を用いて、3次元CT画像のスライス、すなわち2次元CT画像ごとに標的として指定すべき領域を入力する。ここで入力すべき標的領域は、腫瘍細胞が存在する、あるいは存在する可能性があるために十分な量の粒子線を照射すべきと判断された領域である。これを標的領域と呼ぶ。照射線量を極力抑えるべき重要臓器が標的領域の近傍に存在するなど、他に評価、制御を必要とする領域がある場合、操作者はそれら重要臓器等の領域も同様に指定する。他にも、MRIに代表される異なるモダリティの画像上で実行されてもよい(ステップ103)。 When the reading of the 3D CT image from the data server 502 to the memory 604 is completed and the 3D CT image is displayed on the display device 603, the operator confirms the 3D CT image displayed on the display device 603. , A device such as a mouse corresponding to the input device 602 is used to input a slice of a three-dimensional CT image, that is, an area to be designated as a target for each two-dimensional CT image. The target region to be input here is a region where it is determined that a sufficient amount of particle beam should be irradiated because the tumor cells are present or may be present. This is called the target area. If there are other areas that require evaluation and control, such as the presence of important organs whose irradiation dose should be suppressed as much as possible near the target area, the operator also specifies the areas such as those important organs. Alternatively, it may be executed on images of different modality represented by MRI (step 103).
 すべての3次元CT画像に対して領域の入力が終わると、操作者は入力した領域の登録を指示する。登録することで、操作者が入力した領域は3次元の位置情報としてメモリ604内に保存される(ステップ104)。領域の位置情報はデータサーバ502にも保存可能であり、3次元CT画像を読み込むにあたり過去に入力された情報を3次元CT画像と共に読み込むこともできる。 When the input of the area is completed for all the 3D CT images, the operator instructs the registration of the input area. By registering, the area input by the operator is saved in the memory 604 as three-dimensional position information (step 104). The position information of the area can also be stored in the data server 502, and when reading the 3D CT image, the information input in the past can be read together with the 3D CT image.
 次に操作者は、登録された標的領域に対して照射すべきビームの位置やエネルギーの情報を含む治療計画を作成する。(ステップ104)。まず、操作者は、照射方向を設定する。本実施例を適用した粒子線治療システムは、回転照射装置311とベッド407の角度を選択することで、患者の任意の方向からビームの照射を行うことができる。照射方向は一つの標的に対して複数設定することが可能である。通常、標的領域706の中心付近がアイソセンタ(回転照射装置311の回転中心位置)に一致するように位置決めがされる。 Next, the operator creates a treatment plan that includes information on the position and energy of the beam to be irradiated to the registered target area. (Step 104). First, the operator sets the irradiation direction. In the particle beam therapy system to which this embodiment is applied, the beam can be irradiated from any direction of the patient by selecting the angle between the rotary irradiation device 311 and the bed 407. It is possible to set a plurality of irradiation directions for one target. Normally, positioning is performed so that the vicinity of the center of the target region 706 coincides with the isocenter (rotation center position of the rotation irradiation device 311).
 他に操作者が決定すべき照射のためのパラメータとしては、ステップ104で登録した領域に照射すべき線量値(処方線量)がある。処方線量は標的に照射すべき線量や、重要臓器が避けるべき最大線量が含まれる。 Another parameter for irradiation that the operator should determine is the dose value (prescription dose) that should be irradiated to the area registered in step 104. The prescribed dose includes the dose to be applied to the target and the maximum dose to be avoided by important organs.
 以上のパラメータが決まった後、操作者の指示に従って治療計画装置501が自動で計算を行う(ステップ106)。以下で、治療計画装置501が行う線量計算に係わる内容の詳細に関して説明する。 After the above parameters are determined, the treatment planning device 501 automatically calculates according to the instruction of the operator (step 106). The details of the contents related to the dose calculation performed by the treatment planning apparatus 501 will be described below.
 ここでは、ロバスト最適化により強度変調陽子線治療と呼ばれる照射方法の治療計画作成を例に説明する。通常の照射では、照射方向毎に標的に一様な線量分布を形成する。そのため、照射量の最適化においても、照射方向毎に照射量を最適化する。一方、強度変調陽子線治療では、標的に十分な線量が照射されるように、全ての照射方向からの照射量を同時に最適化する。強度変調陽子線治療では、照射方向毎に照射量を最適化する通常の場合よりも自由度が高まるため、標的への線量を十分に確保しつつ、照射を避けるべき部位の線量を低減することができる。 Here, we will explain the creation of a treatment plan for an irradiation method called intensity-modulated proton beam therapy by robust optimization as an example. In normal irradiation, a uniform dose distribution is formed on the target in each irradiation direction. Therefore, even in the optimization of the irradiation amount, the irradiation amount is optimized for each irradiation direction. On the other hand, in intensity-modulated proton therapy, the irradiation doses from all irradiation directions are simultaneously optimized so that the target is irradiated with a sufficient dose. Intensity-modulated proton therapy provides more freedom than in the normal case of optimizing the dose for each irradiation direction, so reduce the dose at areas where irradiation should be avoided while ensuring a sufficient dose to the target. Can be done.
 治療計画の作成では、患者の位置誤差や粒子線が到達する深さの誤差を考慮する。すなわち、これらの誤差が発生した場合にも標的に十分な線量が照射されるように治療計画を作成する。 When creating a treatment plan, consider the position error of the patient and the error of the depth reached by the particle beam. That is, a treatment plan is created so that a sufficient dose is applied to the target even when these errors occur.
 誤差を考慮する方法には主に2通りある。ひとつは、想定する誤差の分だけ標的より大きな領域を設定し、その領域に十分な線量が照射されるように照射量を最適化する手法である。照射方向毎に一様な線量分布を形成する通常の照射方法の場合に適した周防である。もうひとつは、誤差が発生した場合の線量分布を実際に計算し、誤差が線量分布に与える影響を最小にするように照射量を最適化するロバスト最適化と呼ばれる手法である。照射方向毎の線量分布が一様ではない強度変調陽子線治療に適した手法である。 There are two main methods to consider the error. One is a method of setting a region larger than the target by the assumed error and optimizing the irradiation amount so that a sufficient dose is irradiated to that region. This is a suspense suitable for a normal irradiation method in which a uniform dose distribution is formed for each irradiation direction. The other is a method called robust optimization, which actually calculates the dose distribution when an error occurs and optimizes the irradiation dose so that the effect of the error on the dose distribution is minimized. This method is suitable for intensity-modulated proton beam therapy in which the dose distribution in each irradiation direction is not uniform.
 初めに、治療計画装置501は、ビーム照射位置を決定する。照射位置は標的領域を覆うように設定される。複数の照射方向(回転照射装置311とベッド407の角度)毎に同じ操作を行う。 First, the treatment planning device 501 determines the beam irradiation position. The irradiation position is set so as to cover the target area. The same operation is performed for each of a plurality of irradiation directions (angles between the rotary irradiation device 311 and the bed 407).
 全ての照射位置が決定されると、治療計画装置501は照射量の最適化計算を開始する。 When all the irradiation positions are determined, the treatment planning device 501 starts the optimization calculation of the irradiation amount.
 最初に、各照射位置の照射量と線量分布の関係を複数のケースに対して計算する。例えば、誤差がない場合、互いに直交する3方向とその逆方向の合計6方向に標的の位置が変化した場合、陽子線の到達位置が深い側と浅い側へ変化した場合の合計9ケースについてである。 First, the relationship between the irradiation dose and the dose distribution at each irradiation position is calculated for multiple cases. For example, if there is no error, the position of the target changes in a total of 6 directions in 3 directions orthogonal to each other and the opposite direction, and the arrival position of the proton line changes to the deep side and the shallow side, for a total of 9 cases. be.
 次に、各照射位置への照射量が決定される。照射位置ごとの照射量をパラメータとして目標線量からのずれを数値化した目的関数を用いる方法が広く採用されている。目的関数は、合計9ケースの線量のうち、ステップ105で設定された目標の処方線量との差が最も大きいものが小さくなるほど、小さな値となるように定義されている。目標関数が最小となるような照射量を反復計算により探索することで、最適とされる照射量を算出する。反復計算が終了すると、最終的に各照射位置に必要な照射量が定まる。 Next, the irradiation amount to each irradiation position is determined. A method using an objective function that quantifies the deviation from the target dose with the irradiation amount for each irradiation position as a parameter is widely adopted. The objective function is defined so that the smaller the difference from the target prescription dose set in step 105, the smaller the dose in the total of 9 cases. The optimum irradiation amount is calculated by repeatedly searching for the irradiation amount that minimizes the target function. When the iterative calculation is completed, the irradiation amount required for each irradiation position is finally determined.
 次に、治療計画装置501は演算処理装置605により、得られた照射位置と照射量を用いて、線量分布を計算する。必要があれば、計算した線量分布結果は、表示装置603に表示される。 Next, the treatment planning device 501 calculates the dose distribution by the arithmetic processing device 605 using the obtained irradiation position and irradiation amount. If necessary, the calculated dose distribution result is displayed on the display device 603.
 操作者は表示された線量分布を評価し、この線量分布が目標とする条件や、目標とする線量分布との一致度を満たしているか否かを判断する(ステップ107、108)。 The operator evaluates the displayed dose distribution and determines whether or not this dose distribution satisfies the target conditions and the degree of agreement with the target dose distribution (steps 107 and 108).
 線量分布を評価した結果、操作者が望ましくない分布であると判断した場合は、ステップ105に戻り、照射パラメータを設定し直す。変更すべきパラメータとしては、照射方向や処方線量がある。望ましい結果が得られた後、治療計画装置は、エネルギー、照射量、照射位置を含むスポットデータをネットワークを通じてデータサーバ502に保存する(ステップ109、ステップ110)。 As a result of evaluating the dose distribution, if the operator determines that the distribution is not desirable, the process returns to step 105 and the irradiation parameters are reset. The parameters to be changed include the irradiation direction and the prescribed dose. After obtaining the desired results, the treatment planning apparatus stores spot data including energy, irradiation dose, and irradiation position in the data server 502 through the network (step 109, step 110).
 次に、図7と図8のフローを用いて、アダプティブ照射により治療計画を再作成して標的に線量分布を形成する手順を説明する。図7及び図8に示すフローチャートは、照射装置400による荷電粒子線の照射に先立っておこなわれる。通常、治療計画の再作成は、荷電粒子線を照射することにより粒子線治療を行う当日であって、荷電粒子線の照射の直前に行われる。 Next, using the flow of FIGS. 7 and 8, the procedure of recreating the treatment plan by adaptive irradiation and forming the dose distribution on the target will be described. The flowcharts shown in FIGS. 7 and 8 are performed prior to irradiation of the charged particle beam by the irradiation device 400. Usually, the re-creation of the treatment plan is performed on the day when the particle beam therapy is performed by irradiating the charged particle beam, and immediately before the irradiation of the charged particle beam.
 照射を開始する前に、オペレータは照射対象51をカウチ32の上に乗せ、計画した位置に移動させる。制御装置314はデータサーバ502に登録されたエネルギー、照射位置、照射量の情報を読み出しメモリに登録する。 Before starting irradiation, the operator puts the irradiation target 51 on the couch 32 and moves it to the planned position. The control device 314 reads out the energy, irradiation position, and irradiation amount information registered in the data server 502 and registers them in the memory.
 制御装置314は、ステップ201において、ガントリーを回転させながらX線透視を実施し、コーンビームCT画像を取得する。ステップ202において、取得したコーンビーム画像と治療計画時のCT画像を比較して患者の位置を調整する。 In step 201, the control device 314 performs X-ray fluoroscopy while rotating the gantry, and acquires a cone beam CT image. In step 202, the position of the patient is adjusted by comparing the acquired cone beam image with the CT image at the time of treatment planning.
 ステップ203において治療計画を再計画(再作成)し、再計画された計画が目標通りのものであることを評価する。 Replan (recreate) the treatment plan in step 203 and evaluate that the replanned plan is in line with the goal.
 ステップ203における再計画の詳細を、図8のフローに従い説明する。 The details of the replanning in step 203 will be described according to the flow of FIG.
 制御装置314の治療計画プログラムは、ステップ211において、取得したコーンビームCT画像を読み込み、ステップ212において、照射時の患者体形に合わせて治療計画を再作成する。事前の治療計画で使用したCT画像と取得したコーンビームCT画像を比較し、変形レジストレーションを実施することで治療計画時のCT画像をコーンビームCT画像に合わせて変形する。ここで、変形レジストレーションとは、変形や移動が生じた画像間で各画素間の対応を求めることにより、それらの画像を1つの座標系で正確に一致させることである。レジストレーションの手法そのものは画像処理、画像変換技術において公知であるので、ここでの説明は省略する。 The treatment plan program of the control device 314 reads the acquired cone beam CT image in step 211, and recreates the treatment plan according to the patient's body shape at the time of irradiation in step 212. By comparing the CT image used in the prior treatment plan with the acquired cone beam CT image and performing deformation registration, the CT image at the time of the treatment plan is deformed according to the cone beam CT image. Here, the deformation registration is to accurately match those images in one coordinate system by finding the correspondence between each pixel between the images in which the deformation or movement has occurred. Since the registration method itself is known in image processing and image conversion technology, the description thereof is omitted here.
 治療計画に用いるCT画像は、患者体内の電子密度を高精度に表しているのに対して、コーンビームCT画像はX線の散乱寄与が大きいため、電子密度を精度良く表すことが困難であり、粒子線の到達位置を精度良く計算することに適さないためである。 While the CT image used for treatment planning represents the electron density in the patient's body with high accuracy, the cone beam CT image has a large contribution of X-ray scattering, so it is difficult to accurately represent the electron density. This is because it is not suitable for accurately calculating the arrival position of the particle beam.
 変形されたCT画像と、同様に変形した輪郭情報を元に治療計画を再作成する。ステップ213において、変形した輪郭情報をもとに標的を覆うようにスポット位置を配置する。複数の照射方向から照射する場合には、照射方向毎に標的を覆うようにスポットを配置する。また、ステップ214において、図9に示すようにCT画像の変形に合わせて線量分布とLET分布を変形する。 Recreate the treatment plan based on the deformed CT image and the similarly deformed contour information. In step 213, the spot position is arranged so as to cover the target based on the deformed contour information. When irradiating from a plurality of irradiation directions, spots are arranged so as to cover the target in each irradiation direction. Further, in step 214, the dose distribution and the LET distribution are deformed according to the deformation of the CT image as shown in FIG.
 ここで、線量分布とLET分布は、照射角度毎のものと、全照射角度からの合計の線量分布とLET分布である。全照射角度からの合計の線量分布は、各照射角度からの線量の和であるのに対して、LET分布は、各照射方向からのLET分布をさらに線量平均した値の分布である。 Here, the dose distribution and the LET distribution are the one for each irradiation angle and the total dose distribution and the LET distribution from all the irradiation angles. The total dose distribution from all irradiation angles is the sum of the doses from each irradiation angle, while the LET distribution is a distribution of values obtained by further averaging the LET distributions from each irradiation direction.
 図11に示すのは、中心の標的領域に対して左右2方向から照射する場合の線量分布とLET分布である。点線で示すのが照射方向毎の分布であり、実線で描かれたものが、全照射方向からの合計である。図11の分布についても図9と同様にCT画像の変形に合わせて変形する。 FIG. 11 shows the dose distribution and the LET distribution when irradiating the central target region from two left and right directions. The dotted line shows the distribution for each irradiation direction, and the solid line shows the total from all irradiation directions. The distribution in FIG. 11 is also deformed according to the deformation of the CT image in the same manner as in FIG.
 次にステップ215において、標的及び標的の回りの臓器に対して線量評価点を設定する。 Next, in step 215, dose evaluation points are set for the target and the organs around the target.
 ステップ216において、変形した線量分布及びLET分布から、各線量評価点における線量値及びLETの値を求め、各評価点の目標値とする。各評価点に設定する線量値とLETの値は、各照射方向からのものと、全照射方向からの合計のものを登録する。すなわち、図11の例では、左右方向からの照射に対する線量値と合計の線量値、左右方向からのLETの値と合計のLETの値、全6個の値をひとつの評価点に対して設定する。 In step 216, the dose value and the LET value at each dose evaluation point are obtained from the deformed dose distribution and the LET distribution, and are set as the target value of each evaluation point. For the dose value and LET value set for each evaluation point, the one from each irradiation direction and the total from all irradiation directions are registered. That is, in the example of FIG. 11, a dose value and a total dose value for irradiation from the left and right directions, a LET value from the left and right directions and a total LET value, and a total of six values are set for one evaluation point. do.
 ステップ217において、スポット位置に照射する照射量と、線量評価点における線量値及びLETの関係を計算し、各線量評価点における各照射方向からのものと全照射方向からの合計のものの線量値及びLETの値が目標値に近づくように、各スポットの照射量を最適化して調整する。 In step 217, the relationship between the irradiation amount to be irradiated to the spot position, the dose value at the dose evaluation point, and the LET is calculated, and the dose value and the total from each irradiation direction and all irradiation directions at each dose evaluation point are calculated. The irradiation amount of each spot is optimized and adjusted so that the LET value approaches the target value.
 図7に戻って、ステップ204において、操作者は、事前に作成していた治療計画と、照射直前に作成した治療計画を比較して、好ましいほうの治療計画を選択する。事前に作成した治療計画が好ましい場合、ステップ207において照射を開始する。 Returning to FIG. 7, in step 204, the operator compares the treatment plan created in advance with the treatment plan created immediately before irradiation, and selects the preferred treatment plan. If a pre-prepared treatment plan is preferred, irradiation is initiated in step 207.
 照射直前に作成した治療計画を選択した場合、ステップ205において、その治療計画を検証し、ステップ206において承認すると、照射する治療計画としてメモリに登録し、ステップ207の照射を開始する。 When the treatment plan created immediately before irradiation is selected, the treatment plan is verified in step 205, and if approved in step 206, it is registered in the memory as the treatment plan to be irradiated and the irradiation in step 207 is started.
 制御装置314はメモリ313に記録されたエネルギー、照射位置、照射量の情報を元に照射装置400内の走査電磁石401、402の励磁電流値を設定する。 The control device 314 sets the exciting current values of the scanning electromagnets 401 and 402 in the irradiation device 400 based on the energy, irradiation position, and irradiation amount information recorded in the memory 313.
 オペレータが制御装置314に接続された操作卓にある照射開始ボタンを押すことで一連の照射を開始する。 The operator starts a series of irradiation by pressing the irradiation start button on the operation console connected to the control device 314.
 照射手順について図10を用いて説明する。 The irradiation procedure will be described with reference to FIG.
 ステップ701においてエネルギー番号i=1、スポット番号j=1から照射を開始する。ステップ702において、制御装置314はシンクロトロンを制御して制御装置314から指定されたエネルギーまで陽子線を加速する。陽子線は、ライナックからシンクロトロンに入射され、シンクロトロン内を周回しながら加速装置306により加速される。また、制御装置314はビーム輸送系310を制御し、陽子線が照射装置400へ到達できるように電磁石を励磁する。 In step 701, irradiation is started from energy number i = 1 and spot number j = 1. In step 702, controller 314 controls the synchrotron to accelerate the proton beam from controller 314 to the specified energy. The proton beam is incident on the synchrotron from the linac and is accelerated by the accelerator 306 while orbiting the synchrotron. Further, the control device 314 controls the beam transport system 310 and excites the electromagnet so that the proton beam can reach the irradiation device 400.
 ステップ703において、制御装置314は最初の照射位置を照射するためにX軸走査電磁石とY軸走査電磁石をそれぞれ励磁する。 In step 703, the control device 314 excites the X-axis scanning electromagnet and the Y-axis scanning electromagnet, respectively, in order to irradiate the first irradiation position.
 ステップ704において、走査電磁石401、402の励磁が完了すると、制御装置314は高周波印加装置307を制御して陽子線に高周波を印加する。高周波を印加された陽子線はビーム輸送系310を経て照射装置400で走査され、最初の照射位置に達する。陽子線が照射装置を通過した照射量は線量モニタ403により計測されており、その量がスポットに規定された照射量に達すると、制御装置314は高周波印加装置307を停止し、陽子線の出射を停止する。陽子線の出射停止後、次の照射位置を照射するためステップ703へ戻り、制御装置314は走査電磁石の励磁量を変更する。 In step 704, when the excitation of the scanning electromagnets 401 and 402 is completed, the control device 314 controls the high frequency applying device 307 to apply a high frequency to the proton beam. The proton beam to which the high frequency is applied is scanned by the irradiation device 400 via the beam transport system 310 and reaches the first irradiation position. The irradiation amount of the proton beam passing through the irradiation device is measured by the dose monitor 403, and when the amount reaches the irradiation amount specified for the spot, the control device 314 stops the high frequency application device 307 and emits the proton beam. To stop. After the emission of the proton beam is stopped, the process returns to step 703 to irradiate the next irradiation position, and the control device 314 changes the excitation amount of the scanning electromagnet.
 ステップ705においてj=ns(nsはエネルギーに含まれるスポット数)を満たすとステップ706において制御装置314はシンクロトロンを制御して減速し、ステップ702において次のエネルギーの照射に備える。 When j = ns (ns is the number of spots contained in the energy) is satisfied in step 705, the control device 314 controls the synchrotron to decelerate in step 706, and prepares for the next energy irradiation in step 702.
 ステップ707でi=nr(nrはエネルギー数)に達するとステップ708にて照射を完了する。 When i = nr (nr is the number of energies) is reached in step 707, irradiation is completed in step 708.
 このように構成される本実施例によれば、治療計画装置501が、標的406aを撮像した計画時三次元画像に基づいて荷電粒子線の線量分布を算出して標的406aへの荷電粒子線の照射量を決定し、計画時三次元画像よりも後に標的406aを撮像した事前三次元画像に基づいて計画時三次元画像を変形し、変形した計画時三次元画像に基づいて荷電粒子線の線量分布と距離当たりエネルギーの分布とを算出し、線量分布と距離当たりエネルギーの分布とに基づいて標的406aへの荷電粒子線の照射量を再決定している。 According to the present embodiment configured as described above, the treatment planning apparatus 501 calculates the dose distribution of the charged particle beam based on the three-dimensional image at the time of planning in which the target 406a is imaged, and the charged particle beam to the target 406a is calculated. The irradiation amount is determined, the planned three-dimensional image is deformed based on the pre-three-dimensional image obtained by capturing the target 406a after the planned three-dimensional image, and the dose of the charged particle beam is based on the deformed planned three-dimensional image. The distribution and the energy distribution per distance are calculated, and the irradiation amount of the charged particle beam to the target 406a is redetermined based on the dose distribution and the energy distribution per distance.
 従って、本実施例によれば、アダプティブ照射において元の治療計画により近い治療計画を再作成することが可能な治療計画装置501、粒子線治療システム及びコンピュータプログラムを実現することができる。 Therefore, according to this embodiment, it is possible to realize a treatment planning device 501, a particle beam therapy system, and a computer program capable of recreating a treatment plan closer to the original treatment plan in adaptive irradiation.
 言い換えれば、本実施例のように線量分布とLET分布の両方を、治療時の患者体内形状に合わせて変形し、その値を目標値として照射量を決定することで、位置誤差、飛程誤差に対してロバストな治療計画を短時間に再計画することが可能である。さらに、再計画された分布は、元の分布と比較して、腫瘍に対して同等の効果を与えることができる。 In other words, as in this example, both the dose distribution and the LET distribution are deformed according to the shape of the patient's body at the time of treatment, and the irradiation dose is determined using that value as the target value, thereby resulting in position error and range error. It is possible to re-plan a robust treatment plan in a short time. In addition, the replanned distribution can have the same effect on the tumor as compared to the original distribution.
 LET分布以外に一般的に適用可能であると考えられる指標として、生物学的効果比(RBE:Relative Biological Effectiveness)と呼ばれる指標が知られている。しかしながら、RBEは組織毎に値が異なり、また、モデル毎に値が異なりうる相対的値である。一方、LETは物理量そのものであるので、同様に物理量である線量分布と同様に目標値として精確な治療計画を作成することが可能である。 An index called Relative Biological Effectiveness (RBE) is known as an index that is generally considered to be applicable in addition to the LET distribution. However, RBE is a relative value that varies from tissue to tissue and can vary from model to model. On the other hand, since LET is a physical quantity itself, it is possible to create an accurate treatment plan as a target value in the same manner as the dose distribution which is also a physical quantity.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 一例として、本実施例では陽子線を例に説明したが、炭素線を照射する場合にも同様に計算が可能である。 As an example, in this embodiment, the proton beam has been described as an example, but the calculation can be performed in the same manner when irradiating the carbon beam.
 また、本実施例では、再計画時の最適化について、照射方向毎と全方向積算の線量分布とLET分布を用いて計算する例を用いた。照射方向毎と全方向積算の両方を用いて計算することで再現性を高めることができる。一方、全方向積算のみを用いて計算することも可能である。この場合、計算時間を短縮することができる。 Further, in this embodiment, an example was used in which the optimization at the time of replanning was calculated using the dose distribution and the LET distribution integrated for each irradiation direction and in all directions. The reproducibility can be improved by calculating using both the irradiation direction and the omnidirectional integration. On the other hand, it is also possible to calculate using only omnidirectional integration. In this case, the calculation time can be shortened.
 さらに、本実施例ではコーンビームCT画像を用いた例を示したが、通常のCT装置を室内に置くInRoomCTと呼ばれる装置のCT画像を用いてもよいし、MRI装置によるMRI画像を用いてもよい。 Further, in this embodiment, an example using a cone beam CT image is shown, but a CT image of a device called InRoomCT in which a normal CT device is placed indoors may be used, or an MRI image by an MRI device may be used. good.
 そして、本実施例では、LETを例に計算したが、マイクロドシメトリと呼ばれる生物効果計算に用いられるエネルギーを距離で割った量を用いてもよい。 Then, in this embodiment, the calculation was performed using LET as an example, but the amount of energy used for calculating the biological effect called microdosometry may be divided by the distance.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 Further, each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be placed in a memory, a recording device such as a hard disk or SSD, or a recording medium such as an IC card, SD card, or DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 In addition, the control lines and information lines indicate those that are considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it can be considered that almost all configurations are interconnected.
301…荷電粒子ビーム発生装置、302…イオン源、303…前段加速器、304…粒子ビーム加速装置、305…偏向電磁石、306…加速装置、307…出射用の高周波印加装置、308…出射用デフレクタ、309…高周波供給装置、310…高エネルギービーム輸送系、311…回転照射装置、314…制御装置、313、604…メモリ、315、603…表示装置、400…照射野形成装置、401、402…走査電磁石、403…線量モニタ、404…ビーム位置モニタ、405…走査方向、406…患者、406a、801…標的、410…走査電磁石用電源、411…走査電磁石磁場強度制御装置、501…治療計画装置、502…データサーバ、602…入力装置、605…演算処理装置、606…通信装置
 
 

 
301 ... Charged particle beam generator, 302 ... Ion source, 303 ... Pre-stage accelerator, 304 ... Particle beam accelerator, 305 ... Deflection electromagnet, 306 ... Accelerator, 307 ... High frequency application device for emission, 308 ... Deflector for emission, 309 ... High frequency supply device, 310 ... High energy beam transport system, 311 ... Rotational irradiation device, 314 ... Control device, 313, 604 ... Memory, 315, 603 ... Display device, 400 ... Irradiation field forming device, 401, 402 ... Scanning Electromagnet, 403 ... Dose monitor, 404 ... Beam position monitor, 405 ... Scanning direction, 406 ... Patient, 406a, 801 ... Target, 410 ... Scanning electromagnet power supply, 411 ... Scanning electromagnet magnetic field strength control device, 501 ... Treatment planning device, 502 ... Data server, 602 ... Input device, 605 ... Arithmetic processing device, 606 ... Communication device


Claims (9)

  1.  標的に荷電粒子線を照射する粒子線治療システムに適用される治療計画装置であって、
     前記標的を撮像した計画時三次元画像に基づいて前記荷電粒子線の線量分布を算出して前記標的への前記荷電粒子線の照射量を決定し、
     前記計画時三次元画像よりも後に前記標的を撮像した事前三次元画像に基づいて前記計画時三次元画像を変形し、
     変形した前記計画時三次元画像に基づいて前記荷電粒子線の前記線量分布と距離当たりエネルギーの分布とを算出し、
     前記線量分布と前記距離当たりエネルギーの分布とに基づいて前記標的への前記荷電粒子線の照射量を再決定する
    ことを特徴とする治療計画装置。
    A treatment planning device applied to a particle beam therapy system that irradiates a target with a charged particle beam.
    The dose distribution of the charged particle beam is calculated based on the planned three-dimensional image of the target, and the irradiation amount of the charged particle beam on the target is determined.
    The planning time 3D image is deformed based on the pre-three-dimensional image obtained by capturing the target after the planning time 3D image.
    The dose distribution of the charged particle beam and the energy distribution per distance are calculated based on the deformed three-dimensional image at the time of planning.
    A treatment planning apparatus comprising redetermining the irradiation amount of the charged particle beam to the target based on the dose distribution and the energy distribution per distance.
  2.  前記事前三次元画像は、前記粒子線治療システムによる前記荷電粒子線の照射直前に撮像されたものであることを特徴とする請求項1に記載の治療計画装置。 The treatment planning apparatus according to claim 1, wherein the pre-three-dimensional image is taken immediately before irradiation of the charged particle beam by the particle beam therapy system.
  3.  前記治療計画装置は、
     前記標的及び前記標的の周囲にそれぞれ線量評価点を設定し、
     変形した前記計画時三次元画像に基づく前記荷電粒子線の前記線量分布と前記距離当たりエネルギーの分布とから前記線量評価点における前記線量分布と前記距離当たりエネルギーの分布とを算出し、
     前記線量評価点における前記線量分布と前記距離当たりエネルギーの分布とを目標値として前記標的への前記荷電粒子線の照射量を決定する
    ことを特徴とする請求項1に記載の治療計画装置。
    The treatment planning device
    Dose evaluation points are set for the target and around the target, respectively.
    The dose distribution and the energy per distance distribution at the dose evaluation point are calculated from the dose distribution and the energy per distance distribution of the charged particle beam based on the deformed three-dimensional image at the time of planning.
    The treatment planning apparatus according to claim 1, wherein the irradiation amount of the charged particle beam to the target is determined by setting the dose distribution at the dose evaluation point and the energy distribution per distance as target values.
  4.  前記距離当たりエネルギーの分布は、LET分布、または線量平均LET分布であることを特徴とする請求項1に記載の治療計画装置。 The treatment planning apparatus according to claim 1, wherein the energy distribution per distance is a LET distribution or a dose average LET distribution.
  5.  前記距離当たりエネルギーの分布は、マイクロドシメトリにおける変数分布であることを特徴とする請求項1に記載の治療計画装置。 The treatment planning apparatus according to claim 1, wherein the energy distribution per distance is a variable distribution in microdosometry.
  6.  標的に荷電粒子線を照射し、治療計画装置を有する粒子線治療システムであって、
     前記治療計画装置は、
     前記標的を撮像した計画時三次元画像に基づいて前記荷電粒子線の線量分布を算出して前記標的への前記荷電粒子線の照射量を決定し、
     前記計画時三次元画像よりも後に前記標的を撮像した事前三次元画像に基づいて前記計画時三次元画像を変形し、
     変形した前記計画時三次元画像に基づいて前記荷電粒子線の前記線量分布と距離当たりエネルギーの分布とを算出し、
     前記線量分布と前記距離当たりエネルギーの分布とに基づいて前記標的への前記荷電粒子線の照射量を再決定する
    ことを特徴とする粒子線治療システム。
    A particle beam therapy system that irradiates a target with a charged particle beam and has a treatment planning device.
    The treatment planning device
    The dose distribution of the charged particle beam is calculated based on the planned three-dimensional image of the target, and the irradiation amount of the charged particle beam on the target is determined.
    The planning time 3D image is deformed based on the pre-three-dimensional image obtained by capturing the target after the planning time 3D image.
    The dose distribution of the charged particle beam and the energy distribution per distance are calculated based on the deformed three-dimensional image at the time of planning.
    A particle beam therapy system comprising redetermining the dose of the charged particle beam to the target based on the dose distribution and the energy distribution per distance.
  7.  前記粒子線治療システムは、前記標的を複数の小領域に分割し、これら小領域に前記荷電粒子線を順次照射するものであることを特徴とする請求項6に記載の粒子線治療システム。 The particle beam therapy system according to claim 6, wherein the particle beam therapy system divides the target into a plurality of small regions and sequentially irradiates these small regions with the charged particle beam.
  8.  標的に荷電粒子線を照射する粒子線治療システムに適用されるコンピュータにより実行されるコンピュータプログラムであって、
     前記標的を撮像した計画時三次元画像に基づいて前記荷電粒子線の線量分布を算出して前記標的への前記荷電粒子線の照射量を決定する機能と、
     前記計画時三次元画像よりも後に前記標的を撮像した事前三次元画像に基づいて前記計画時三次元画像を変形する機能と、
     変形した前記計画時三次元画像に基づいて前記荷電粒子線の前記線量分布と距離当たりエネルギーの分布とを算出する機能と、
     前記線量分布と前記距離当たりエネルギーの分布とに基づいて前記標的への前記荷電粒子線の照射量を再決定する機能と
    を実現させるコンピュータプログラム。
    A computer program executed by a computer applied to a particle beam therapy system that irradiates a target with charged particle beams.
    A function of calculating the dose distribution of the charged particle beam based on the planned three-dimensional image of the target and determining the irradiation amount of the charged particle beam on the target.
    A function of transforming the 3D image at the time of planning based on a pre-three-dimensional image obtained by capturing the target after the 3D image at the time of planning.
    A function to calculate the dose distribution and the energy distribution per distance of the charged particle beam based on the deformed three-dimensional image at the time of planning, and
    A computer program that realizes a function of redetermining the irradiation amount of the charged particle beam on the target based on the dose distribution and the energy distribution per distance.
  9.  標的に荷電粒子線を照射する粒子線治療システムに適用される治療計画装置であって、
     前記標的を撮像した三次元画像に基づいて、前記荷電粒子線の一照射方向毎の線量分布と、前記荷電粒子線の全照射方向からの線量分布とを算出して治療計画を作成する
    ことを特徴とする治療計画装置。
     
     
    A treatment planning device applied to a particle beam therapy system that irradiates a target with a charged particle beam.
    Based on the three-dimensional image of the target, the dose distribution for each irradiation direction of the charged particle beam and the dose distribution from all irradiation directions of the charged particle beam are calculated to create a treatment plan. A featured treatment planning device.

PCT/JP2020/024758 2020-01-31 2020-06-24 Treatment planning device, particle beam therapy system, and computer program WO2021152881A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-014906 2020-01-31
JP2020014906A JP2021121273A (en) 2020-01-31 2020-01-31 Treatment planning device, particle beam treatment system, and computer program

Publications (1)

Publication Number Publication Date
WO2021152881A1 true WO2021152881A1 (en) 2021-08-05

Family

ID=77079904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024758 WO2021152881A1 (en) 2020-01-31 2020-06-24 Treatment planning device, particle beam therapy system, and computer program

Country Status (2)

Country Link
JP (1) JP2021121273A (en)
WO (1) WO2021152881A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023161447A (en) * 2022-04-25 2023-11-07 株式会社日立製作所 Therapeutic planning evaluation system, therapeutic planning evaluation method, and radiotherapy system comprising therapeutic planning evaluation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017176533A (en) * 2016-03-30 2017-10-05 株式会社日立製作所 Particle beam dose evaluation system, planning device, particle beam irradiation system, and dose evaluation method
JP2018187089A (en) * 2017-05-08 2018-11-29 株式会社日立製作所 Treatment planning device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017176533A (en) * 2016-03-30 2017-10-05 株式会社日立製作所 Particle beam dose evaluation system, planning device, particle beam irradiation system, and dose evaluation method
JP2018187089A (en) * 2017-05-08 2018-11-29 株式会社日立製作所 Treatment planning device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KURZ CHRISTOPHER, NIJHUIS REINOUD, REINER MICHAEL, GANSWINDT UTE, THIEKE CHRISTIAN, BELKA CLAUS, PARODI KATIA, LANDRY GUILLAUME: "Feasibility of automated proton therapy plan adaptation for head and neck tumors using cone beam CT images", RADIATION ONCOLOGY, vol. 11, no. 1, 1 December 2016 (2016-12-01), XP055844216, DOI: 10.1186/s13014-016-0641-7 *
NENOFF LENA, MATTER MICHAEL, HEDLUND LINDMAR JOHANNA, WEBER DAMIEN CHARLES, LOMAX ANTONY JOHN, ALBERTINI FRANCESCA: "Daily adaptive proton therapy – the key to innovative planning approaches for paranasal cancer treatments", ACTA ONCOLOGICA., INFORMA HEALTHCARE, LONDON, GB, vol. 58, no. 10, 3 October 2019 (2019-10-03), GB, pages 1423 - 1428, XP055844218, ISSN: 0284-186X, DOI: 10.1080/0284186X.2019.1641217 *
SATO, TATSUHIKO: "Integration of macro-dosimetry with micro- dosimetry", HOSHASEN KAGAKU - RADIATION CHEMSTRY, 30 November 2009 (2009-11-30), pages 25 - 29, XP009530233, ISSN: 0286-6722 *
WENHUA CAO; AZIN KHABAZIAN; PABLO P YEPES; GINO LIM; FALK POENISCH; DAVID R GROSSHANS; RADHE MOHAN: "Linear energy transfer incorporated intensity modulated proton therapy optimization", PHYSICS IN MEDICINE AND BIOLOGY, INSTITUTE OF PHYSICS PUBLISHING, BRISTOL GB, vol. 63, no. 1, 19 December 2018 (2018-12-19), Bristol GB, pages 015013, XP020322774, ISSN: 0031-9155, DOI: 10.1088/1361-6560/aa9a2e *

Also Published As

Publication number Publication date
JP2021121273A (en) 2021-08-26

Similar Documents

Publication Publication Date Title
AU2020232818B2 (en) Method of providing rotational radiation therapy using particles
JP6974232B2 (en) Particle therapy planning device, particle beam therapy system and dose distribution calculation program
JP6377762B2 (en) Image guided radiation therapy
JP5722559B2 (en) Treatment planning device
JP6247856B2 (en) Treatment planning device
EP2116277A1 (en) Device and method for particle therapy monitoring and verification
JP6375097B2 (en) Radiation treatment planning apparatus and treatment planning method
JP6421194B2 (en) Radiotherapy planning apparatus, radiotherapy planning method, and radiotherapy system
Li et al. Monte Carlo dose verification for intensity-modulated arc therapy
JP6717453B2 (en) Radiation irradiation planning device, clinical decision support device and program
WO2021152881A1 (en) Treatment planning device, particle beam therapy system, and computer program
WO2022224692A1 (en) Therapeutic planning device, particle-beam radiation therapy system, therapeutic plan generation method, and computer program
JP2021040899A (en) Treatment planning device, particle beam treatment system, and computer program
JP7482048B2 (en) Treatment planning device, treatment planning method and computer program
JP6063982B2 (en) Particle beam therapy system
JP7220403B2 (en) Particle beam therapy system, measurement particle beam CT image generation method, and CT image generation program
US20240108914A1 (en) Devices and methods for adaptively controlling a radiotherapy apparatus
EP3338860A1 (en) Registration of particle beam radiography data
JP2013132489A (en) Therapy planning apparatus and particle beam therapy system
US20240100363A1 (en) Devices and methods for adaptively controlling a radiotherapy apparatus
EP4344735A1 (en) Devices and methods for adaptively controlling a radiotherapy apparatus
WO2023079811A1 (en) Positioning device, radiation therapy device, and positioning method
WO2022107399A1 (en) Positioning device, radiotherapy system, and positioning method
WO2022241474A1 (en) Continuous scanning for particle radiation therapy
JP2023023437A (en) Particle beam care system and treatment planning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916660

Country of ref document: EP

Kind code of ref document: A1