WO2021152880A1 - Bearing metal for engine - Google Patents

Bearing metal for engine Download PDF

Info

Publication number
WO2021152880A1
WO2021152880A1 PCT/JP2020/024674 JP2020024674W WO2021152880A1 WO 2021152880 A1 WO2021152880 A1 WO 2021152880A1 JP 2020024674 W JP2020024674 W JP 2020024674W WO 2021152880 A1 WO2021152880 A1 WO 2021152880A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing metal
flexible support
support portion
rigidity
engine
Prior art date
Application number
PCT/JP2020/024674
Other languages
French (fr)
Japanese (ja)
Inventor
伸朗 佐藤
剛 門脇
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Publication of WO2021152880A1 publication Critical patent/WO2021152880A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/04Connecting-rod bearings; Attachments thereof

Definitions

  • the present disclosure relates to bearing metals for engines, and in particular, bearing metals that support piston pins, crank pins, crank journals, etc. provided in engines.
  • the engine body (engine frame) has a through hole in which the crankshaft is installed.
  • a bearing metal plain bearing
  • the crank journal (main journal) constituting the crankshaft is slidably supported by the bearing metal installed in the through hole. ..
  • through holes for installing bearing metal are also formed on the inner peripheral surfaces of the small end and the large end of the connecting rod (connecting rod).
  • the large end of the connecting rod is connected to the crankshaft by installing the crankpins constituting the crankshaft in the through holes of the large end via the bearing metal.
  • the small end portion of the connecting rod is attached to the piston by a piston pin via a bearing metal installed on the inner peripheral surface of the through hole of the small end portion.
  • the various shafts of the engine have relatively low bending rigidity in the recent trend of weight reduction and high output of the engine. For this reason, it becomes easy to bend due to the load acting when the engine is driven, so that there is a region at the end of the bearing metal where the oil film pressure becomes locally high or the oil film thickness becomes thin locally.
  • One-sided contact is likely to occur. Then, this one-sided contact causes wear and seizure of the bearing, and hinders further weight reduction and high output of the engine.
  • Patent Document 1 discloses that crowning is formed at axial ends (both ends) of a sliding surface (sliding contact surface) of a bearing metal (sliding bearing) that pivotally supports a crankshaft.
  • Patent Document 2 discloses that the sliding surface on which the small end and the piston pin slide is coated with a fluororesin as an elastic lubricant to prevent the piston from tilting in the cylinder.
  • Patent Document 3 discloses that the amount of lubricating oil is increased and seizure at a small end portion is prevented by providing a plurality of recesses in a specific region of the inner peripheral surface of the pin hole.
  • Patent Document 4 discloses that by forming a three-dimensional network structure (lattice structure) on the wall surface of a small end portion, heat dissipation is improved and oil is retained by increasing the surface area.
  • Patent Document 5 discloses a part having the above-mentioned lattice structure.
  • the lower side of the bearing metal (member for forming the through hole) a thin-walled structure or a notched structure to make it a flexible structure, but due to restrictions on stress concentration in the thin-walled part and the notched part, the target softness It may be difficult to achieve the structure.
  • the stable installation caused by the decrease in the effective area of the sliding surface due to the notch bending back when the bearing metal is fitted into the through hole, and the decrease in the contact area between the bearing metal and the member forming the through hole. There are concerns about a decrease in degree and the occurrence of fretting on the contact surface due to this decrease in stability.
  • At least one embodiment of the present invention provides a bearing metal capable of preventing one-sided contact at an end when supporting a shaft such as a piston pin, a crank pin, or a crank journal. The purpose.
  • the engine bearing metal is A bearing metal for swingably supporting the connecting rod with respect to a shaft which is a piston pin installed in a through hole formed at a small end of the connecting rod.
  • the main body installed on the inner peripheral surface of the through hole and A sliding surface formed on the inner peripheral side of the main body portion and configured to be slidable with respect to the shaft is provided.
  • At least a part of the inside of the main body is formed with a flexible support portion that elastically deformably supports both end sides of the sliding surface by having a rigidity lower than that of the surrounding portion.
  • the engine bearing metal is A bearing metal for rotatably supporting a shaft, which is a crank pin of a crankshaft installed in a through hole formed at the large end of a connecting rod.
  • the main body installed on the inner peripheral surface of the through hole and A sliding surface formed on the inner peripheral side of the main body portion and configured to be slidable with respect to the shaft is provided.
  • At least a part of the inside of the main body is formed with a flexible support portion that elastically deformably supports both end sides of the sliding surface by having a rigidity lower than that of the surrounding portion.
  • the engine bearing metal is It is a bearing metal for rotatably supporting the shaft, which is the crank journal of the crankshaft installed in the through hole formed in the engine body.
  • the main body installed on the inner peripheral surface of the through hole and A sliding surface formed on the inner peripheral side of the main body portion and configured to be slidable with respect to the shaft is provided.
  • a flexible support portion is formed in at least a part of the inside of the main body portion to elastically and deformably support at least one end side of the sliding surface by having a rigidity lower than that of the surrounding portion. ..
  • a bearing metal capable of preventing one-sided contact at an end when supporting a shaft such as a piston pin, a crank pin, or a crank journal.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range in which the same effect can be obtained.
  • the shape including the part and the like shall also be represented.
  • FIG. 1 is a diagram schematically showing a front view of the connecting rod 5 according to the embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a cross section of a connecting rod 5 according to an embodiment of the present invention, and corresponds to the AA cross section of FIG.
  • FIG. 3 is a diagram schematically showing a crankshaft 9 in a state of being supported by the engine body E according to the embodiment of the present invention.
  • 4 to 6 are diagrams schematically showing a cross section of a small end portion 7 according to an embodiment of the present invention according to an embodiment of the present invention, respectively.
  • 7 to 8 are views schematically showing a front view of the small end portion 7 according to the embodiment of the present invention.
  • the axial direction of the connecting rod 5 (extending direction of the connecting rod 5s) is referred to as the rod axial direction Ds, and among the directions orthogonal to the rod axial direction Ds (radial direction), the extending direction of the following center line CL Is called the center line direction Dr.
  • a straight line (hereinafter, center line CL) passing through the cross-sectional center of the through hole T (FIGS. 4 to 6 are the piston pin hole 7t of the small end portion 7) as shown in FIGS. 4 to 6 and the center line CL.
  • the case where the cross section of the connecting rod 5 including the straight line extending in the rod axial direction Ds and intersecting with the connecting rod 5 is visually recognized is referred to as a side cross-sectional view.
  • the center line CL as shown in FIGS. 7 to 8 is visually recognized as a point is referred to as a front view.
  • the center line CL of the through hole T coincides with the center line CL of the bearing metal 1.
  • the connecting rod (hereinafter referred to as the connecting rod 5) is a component for converting the reciprocating motion of the piston (not shown) included in the engine (internal combustion engine) into the rotational motion of the crankshaft 9.
  • the connecting rod 5 has a large end portion 6, a small end portion 7, and a connecting rod 5s that connects the large end portion 6 and the small end portion 7.
  • the crankshaft 9 (see FIG. 3) is connected to the large end portion 6, and the piston pin 71 (see FIGS. 4 to 6) is connected to the small end portion 7, whereby the piston (not shown) and the crankshaft. 9 is connected by a connecting rod 5.
  • the crankshaft 9 has a crankpin 91 connected to a large end 6 of a connecting rod 5 and a crank journal 92 supported by an engine body E (engine frame) such as a cylinder block. And have.
  • the engine body E is formed with a through hole T (main shaft hole Et) for attaching the crank journal 92.
  • a sliding surface 3 is formed by installing (fitting) a bearing metal 1 (main bearing 1 m) on the inner peripheral surface of the spindle hole Et, and a crank journal 92 and a main bearing 1 m are installed.
  • the crankshaft 9 is supported by the engine body E by being inserted into the spindle hole Et.
  • crank pin hole 6t a through hole for attaching the crank pin 91 is formed at the large end portion 6.
  • a bearing metal 1 (crank pin bearing 1c) is installed (fitted) on the inner peripheral surface of the crank pin hole 6t, and a sliding surface 3 with respect to the crank pin 91 is formed.
  • the crank pin 91 is inserted into the crank pin hole 6t in which the crank pin bearing 1c is installed, so that the large end portion 6 and the crank pin 91 are slidably connected.
  • a through hole T (piston pin hole 7t) for attaching the piston pin 71 is formed in the small end portion 7.
  • a bearing metal 1 (piston pin bearing 1p) is installed (fitted) on the inner peripheral surface of the piston pin hole 7t, and a sliding surface 3 with respect to the piston pin 71 is formed. Then, the piston pin 71 connected (fixed) to the piston (not shown) is inserted into the piston pin hole 7t in which the piston pin bearing 1p is installed, so that the small end portion 7 and the piston (not shown) are connected to each other. It is slidably connected.
  • the bearing metal 1 serving as the piston pin bearing 1p, the crank pin bearing 1c, the main bearing 1 m and the like described above includes the crank pin hole 6t (see FIG. 1) and the piston pin hole 7t (FIGS. 1 to 2). (See FIGS. 4 to 8), a main body 2 installed on the inner peripheral surface of various through holes T such as a spindle hole Et (see FIG. 3), and a piston formed on the inner peripheral side of the main body 2. It includes a sliding surface 3 that is slidable with respect to a shaft S such as a pin 71, a crank pin 91 (rotary shaft), or a crank journal 92 (rotary shaft).
  • a shaft S such as a pin 71, a crank pin 91 (rotary shaft), or a crank journal 92 (rotary shaft).
  • various through holes T have a tubular shape having a perfect circular cross-sectional shape.
  • the engine is a multi-cylinder engine, and the crankshaft 9 has a plurality of crank pins 91 and a plurality of crank journals 92. It is also a V-type engine, and two connecting rods 5 connected to pistons (not shown) in each cylinder of each V-type bank are connected to each crank pin 91.
  • the small end portion 7 and the connecting rod 5s are integrally manufactured (modeled), and the connecting rod 5s and the large end portion 6 are fastened with a bolt 5b.
  • the large end portion 6, the small end portion 7, and the connecting rod 5s may be integrally manufactured.
  • a flexible support portion 4 is formed to elastically and deformably support the side (end portion) of the bearing.
  • the flexible support portions 4 may be formed on both end sides of the main body portion 2.
  • the flexible support portions 4 may be formed on both end sides of the main body portion 2 in the crank pin bearing 1c as well.
  • the flexible support portion 4 may be formed on at least one end side of the main body portion 2. That is, the flexible support portion 4 is provided on the portion of the main body portion 2 that supports the one-sided contact region of the shaft S on the sliding surface 3 of the bearing metal 1.
  • the flexible support portion 4 is provided in a portion where one-sided contact of the shaft S is likely to occur in this way, the flexible support portion 4 is elastic in the direction of one-sided contact received by bending the shaft S, depending on the size of the one-sided contact. change.
  • both ends of the piston pin 71 are on the large end portion 6 side (below the paper surface) in the rod axial direction Ds like a chain line.
  • the piston pin bearing 1p is deformed so that the illustrated cross-sectional area of the flexible support portion 4 is smaller than that when it is not bent.
  • the crank pin bearing 1c (see FIG. 2) has the same bending method of the crank pin 91 and the deformation of the flexible support portion 4 as described above. As shown by the chain line in FIG. 3, the main bearing 1 m is elastically deformed as the crank journal 92 (chain line) bends.
  • the sliding surface 3 is also elastically deformed due to the elastic deformation of the flexible support portion 4 described above. As a result, it is possible to suppress the occurrence of a region where the oil film pressure on the bearing metal 1 (sliding surface 3) is locally increased or the oil film thickness is locally thin due to one-sided contact of the shaft S. ..
  • the flexible support portion 4 is formed at the end portion of the bearing metal 1, and at this end portion, the flexible support portion 4 is at least one side or the other side of the rod axial direction Ds with respect to the center line CL described above. It may be provided on one side.
  • the piston pin bearing 1p as shown in FIG. 1, at least in the axial direction of the connecting rod 5 toward the large end side (lower side in FIG. 1) with respect to the center line CL of the piston pin hole 7t. It may be provided.
  • the crank pin bearing 1c as shown in FIG. 1, the large end side direction (lower side in FIG. 1) and the small end side direction (lower side in FIG.
  • the main bearing 1 m may be provided at least on the lower side (lower side of FIG. 3) of the engine main body E than the center line CL of the main shaft hole Et.
  • the flexible support portion 4 extends along the inner peripheral surface (circumferential direction of the bearing metal 1) of the sliding surface 3 of the bearing metal 1. It may be provided so as to do so.
  • the portion having the highest bearing load acting on the bearing metal 1 is located near the center of the flexible support portion 4, and from there to the inner peripheral surface of the sliding surface 3. It is provided so as to extend to the left and right along it. This makes it possible to provide the flexible support portion 4 so as to cover the portion of the various shafts S having a large one-sided contact.
  • the rigidity of the flexible support portion 4 is the rigidity per unit volume. The smaller the rigidity, the larger the amount of deformation for the same load, and conversely, the larger the rigidity, the smaller the amount of deformation for the same load.
  • the flexible support portion 4 is configured to elastically and deformably support the sliding surface 3 of the bearing metal 1 by having a lattice (porous) structure.
  • This lattice structure is a grid-like (mesh-like) structure, and a cavity portion is formed between the portions (connecting portions) connecting the lattice points.
  • the rigidity of the flexible support portion 4 can be arbitrarily adjusted by the volume ratio (roughness) of the hollow portion, and the rigidity of the flexible support portion 4 differs depending on this adjustment. Therefore, by providing the lattice structure at an appropriate portion of the main body 2, the end side of the sliding surface 3 of the bearing metal 1 is elastic according to the size of one side of the shaft S (the size of the bearing load). It can be made possible to bend in a targeted manner.
  • the flexible support portion 4 may be integrally molded with the main body portion 2 by a three-dimensional modeling device such as a 3D printer.
  • the portion of the main body 2 other than the soft support portion 4 is shaped so as to have a structure different from that of the soft support portion 4, and is shaped to have higher rigidity than the soft support portion 4.
  • the flexible support portion 4 is shaped so as to have a lattice structure, and the portion of the main body portion 2 other than the flexible support portion 4 is formed by simply laminating uniform layers of modeling materials in order, which is more than the lattice structure. It is shaped so that it has high rigidity.
  • the present invention is not limited to the present embodiment.
  • the flexible support portion 4 is provided on the inner side of the outer peripheral surface of the main body portion 2, but in some other embodiments, the flexible support portion 4 is the main body portion 2. It may extend to the outer peripheral surface of. Further, in some other embodiments, the flexible support portion 4 may be provided in a straight line in a front view. Further, the flexible support portion 4 may have a hollow portion, and its structure is not limited to the lattice structure. For example, in some other embodiments, the flexible support portion 4 may have a thin wall structure or a notched structure. Further, the rigidity of the flexible support portion 4 may be adjusted by forming the flexible support portion 4 into a thin-walled structure or a notched structure and then installing or fitting another member having low rigidity.
  • the flexible support in the main body 2 The position of the portion 4 may be provided at an arbitrary position on the end side of the bearing metal 1.
  • the flexible support portion 4 of the main bearing 1 m is provided only on the lower side where the one-sided contact of the shaft S with respect to the bearing metal 1 is larger, but it may be provided on the upper side.
  • the chain line showing the crank journal 92 is shown in FIG.
  • the bending method of the axis S is not limited to the bending shown in FIGS. 4 to 6.
  • the main body 2 of the bearing metal 1 is formed with a flexible support 4 for elastically deformably supporting both end sides of the sliding surface 3.
  • the shaft S pivot pin 71, crank pin 91 or crank journal 92
  • the end side of the sliding surface 3 of the bearing metal 1 can also be bent in the bending direction of the shaft S.
  • the small end portion 7 will be described as an example, but the same applies to the flexible support portion 4 of the crank pin bearing 1c and the flexible support portion 4 of the main bearing 1 m.
  • the position of the center of the bearing metal 1 in the direction of the center line is referred to as the bearing metal center C.
  • the bearing metal center C is the position of the center of the bearing metal 1 in the side sectional view shown in FIGS. 2 and 4 to 6, and is a line connecting the center lines CL of the large end portion 6 and the small end portion 7. It is also the position where The central position of the flexible support portion 4 in front view is called the front central position Cb.
  • the flexible support portion 4 is formed on the end side of the bearing metal center C in the main body portion 2.
  • the flexible support portion 4 is directed from the end of the main body portion 2 toward the bearing metal center C side in the center line direction Dr. Along the way, it is provided up to a predetermined distance (depth width W). More specifically, if the distance between the end of the main body 2 and the center C of the bearing metal along the center line direction Dr is Wa, W ⁇ Wa.
  • This depth width W may be determined according to the assumed degree of bending of the axis S. Further, it may be determined in consideration of the rigidity of the shaft S and the rigidity of the member for forming the through hole T (small end portion 7 in FIGS. 4 to 6) that supports the main body portion 2. Further, the depth width W may be the same or different at a position along the circumferential direction of the connecting rod 5s. The depth width W may be made different along the above-mentioned circumferential direction, for example, the depth width W may be made smaller toward the end side of the sliding surface 3 in the front view. By changing the depth width W in the circumferential direction, it is possible to adjust the rigidity of the flexible support portion 4.
  • the flexible support portion 4 is provided only on the end side of the center of the bearing metal 1. As a result, it is possible to appropriately prevent one-sided contact of the shaft S while maintaining the rigidity of the bearing metal 1 appropriately.
  • FIGS. 4 to 8 the same applies to FIGS. 1 and 3
  • a radius R is attached to the end portion of the flexible support portion 4 on the center C side of the bearing metal.
  • the length (height width H) along the rod axial direction Ds at the end of the flexible support portion 4 on the bearing metal center C side is continuous toward the bearing metal center C side.
  • R-Rs are provided at both ends of the flexible support portion 4 in the front view. According to the above configuration, stress concentration at the end portion of the flexible support portion 4 can be suppressed.
  • the rigidity of the bearing metal 1 is not the same along the center line direction Dr in the portion where the flexible support portion 4 is present, but changes. It may be configured to have at least a portion. As a result, the amount of deformation of the flexible support portion 4 when the engine is driven can be made larger on the end side of the bearing metal 1 than on the center side of the bearing metal. The moving surface 3 can be easily bent.
  • an arbitrary portion of the flexible support portion 4 in the side sectional view is referred to as a first portion Pa, and is more than the first portion Pa.
  • the second portion Pb the portion located on the end side of the bearing metal 1 in the center line direction Dr
  • the rigidity of the second portion Pb is lower than the rigidity of the first portion Pa. That is, the rigidity of the flexible support portion 4 is adjusted along the center line direction Dr, and the rigidity of the flexible support portion 4 is adjusted from the small region of the shaft S to the one-sided size (bearing load size) of the shaft S. The rigidity of each part of the flexible support portion 4 is reduced toward the region.
  • the flexible support portion 4 is made so that the portion on the end side of the bearing metal 1 in the center line direction Dr is relatively more easily elastically deformed than the portion on the center C side of the bearing metal. Is possible.
  • the magnitude of rigidity can be changed by changing the density of the cavity formed by the lattice structure.
  • the density of the cavity in the direction of the height width H of the flexible support portion 4 (rod axial direction Ds) is the same, for example, the longer the height width H of the flexible support portion 4, the softer the flexible support in the main body portion 2. Since the proportion of the portion 4 is increased and the rigidity of the portion (main body portion 2) is reduced, the sliding surface 3 of the bearing metal 1 is easily elastically deformed with respect to the same load.
  • the size of the unit lattice may be changed while the structure of the unit lattice forming the lattice structure is the same for the first portion Pa and the second portion Pb.
  • the second portion Pb is longer than the first portion Pa.
  • the lattice size of the second portion Pb is made larger than the lattice size of the first portion Pa
  • the volume occupied by the cavity formed inside the lattice structure is the volume occupied by the second portion Pb per unit volume. Is larger than the first portion Pa, and the cavity portion of the second portion Pb can be provided more sparsely than the cavity portion of the first portion.
  • the structure of the unit cell of the second portion Pb may have a larger cavity than the structure of the unit cell of the first portion Pa. The larger the volume of the cavity (the sparser the cavity), the smaller the rigidity of that portion.
  • the density of the cavity is changed from the center C side of the bearing metal toward the end side of the bearing metal 1 along the center line direction Dr, and the soft support portion is formed.
  • the length (height width H) in the rod axial direction Ds in No. 4 is substantially the same along the center line direction Dr except for the end portion with the radius R.
  • the desired rigidity can be set (secured) by simultaneously adjusting the density of the cavity portion in the flexible support portion 4 and the height width H (thickness).
  • the height width H of the flexible support portion 4 is made larger at the end portion on the bearing metal center C side as shown in FIG. 5, the end portion of the flexible support portion 4 on the bearing metal center side as described above is formed.
  • the rigidity of the second portion Pb is equal to the rigidity of the first portion Pa.
  • the flexible support portion 4 has a lattice structure, but the unit lattice forming the first portion Pa and the second portion Pb has the same structure, so that the first portion Pa and the first portion Pa and the second portion Pb have the same structure.
  • the rigidity of the second portion Pb may be equal.
  • the height width Hb at the position of the second portion Pb is longer than the height width Ha at the position of the first portion Pa (Hb> Ha).
  • the bearing metal 1 is configured so that its rigidity is not the same along the center line direction Dr in the portion where the flexible support portion 4 is present, but has at least a portion that changes. There is.
  • the amount of deformation of the flexible support portion 4 when the engine is driven can be appropriately set along the center line direction Dr according to the size of one side of the shaft S.
  • the present invention is not limited to this embodiment, and in some other embodiments, the rigidity of the flexible support portion 4 may be the same at an arbitrary rigidity value in almost all parts.
  • the rigidity of the bearing metal 1 is not the same along the circumferential direction of the bearing metal 1 in the portion where the flexible support portion 4 is present. It may be configured to have at least a portion that changes.
  • the amount of deformation of the flexible support portion 4 when the engine is driven is located on the center (front center position Cb) side of the flexible support portion 4 in front view, and is located on both end sides. It can be made larger than the portion with respect to the same load, and the portion located on the center side makes it possible for the sliding surface 3 to bend more easily.
  • the one-sided contact of the shaft S acting on the bearing metal 1 from the shaft S is from the center line CL to the longitudinal direction of the connecting rod 5.
  • the vicinity of the portion of the bearing metal 1 through which the line drawn along (rod axial direction Ds) passes is the largest, and from there to both sides of the sliding surface 3. It gets smaller as you go.
  • the crank pin bearing 1c and the main bearing 1 m the position of one side of the shaft S is different from that of the piston pin bearing 1p, but it becomes smaller from the largest portion toward both sides in the circumferential direction.
  • the flexible support portion 4 is provided so that the front center position Cb of the flexible support portion 4 overlaps the portion where the one-side contact of the various bearing metals 1 is highest, and then the piece of the shaft S.
  • the rigidity of the end portion of the flexible support portion 4, which is a small hit portion to the rigidity of the front center position Cb, which is a large portion, the rigidity is brought closer to the rigidity when the flexible support portion 4 is not provided. ..
  • an arbitrary portion of the flexible support portion 4 in front view is referred to as a third portion Pc, and the sliding surface 3 has a sliding surface 3 rather than the third portion Pc.
  • the fourth portion Pd the portion located on the end side
  • the rigidity of the fourth portion Pd is higher than the rigidity of the third portion Pc.
  • the magnitude of the rigidity may be changed by changing the density of the cavity formed by the lattice structure.
  • the flexible support portion 4 is more likely to be elastically deformed on the inner side. Thereby, the rigidity of the flexible support portion 4 in the above-mentioned front view can be appropriately set.
  • the front center position Cb of the flexible support portion 4 is aligned with the portion where the load acting on the bearing metal 1 is highest in the front view (for example, FIG. 7), and the above rigidity relationship is satisfied.
  • the flexible support portion 4 is configured. As a result, as shown in FIG. 7, even if the thickness of the flexible support portion 4 (height width H described above) is the same, the flexible support portion 4 is located on the front center position Cb side of the flexible support portion 4 in the bearing metal 1.
  • the part can be made easier to bend. As a result, the larger the one-sided contact of the shaft S with the bearing metal 1, the easier it is for the bearing metal 1 to bend in accordance with the one-sided contact of the shaft S.
  • the rigidity of the fourth portion Pd is equal to the rigidity of the third portion Pc.
  • the flexible support portion 4 has a lattice structure, but the unit lattice forming the third portion Pc and the fourth portion Pd has the same structure, so that the third portion The rigidity of Pc and the fourth portion Pd may be equal. Thereby, the rigidity of the flexible support portion 4 in the above-mentioned front view can be appropriately set.
  • the flexible support portion 4 is configured so as to satisfy the above-mentioned rigidity relationship.
  • the thickness of the flexible support portion 4 (height width H described above) is positioned closer to the front center position Cb side than the portion located on the end portion side (fourth portion Pd).
  • the bearing metal 1 has a portion in which the rigidity thereof is not the same along the circumferential direction of the bearing metal 1 in the portion where the flexible support portion 4 exists, but at least a part thereof changes.
  • the amount of deformation of the flexible support portion 4 when the engine is driven can be appropriately set along the center line direction Dr according to the size of one side of the shaft S.
  • the present invention is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate. (Additional note)
  • the engine bearing metal (1) is A bearing metal (1) for swingably supporting a shaft (S), which is a piston pin (71) installed in a through hole (T) formed in a small end (7) of a connecting rod (5).
  • the main body (2) installed on the inner peripheral surface of the through hole (T) and A sliding surface (3) formed on the inner peripheral side of the main body (2) and configured to be slidable with respect to the shaft (S) is provided.
  • a flexible support portion that elastically deformably supports both end sides of the sliding surface (3) by having at least a part of the inside of the main body portion (2) having a rigidity lower than that of the surrounding portion. (4) is formed.
  • the main body portion (2) of the bearing metal (1) installed in the through hole (T) formed in the small end portion (7) of the connecting rod (5) has its structure.
  • a flexible support portion (4) for elastically deformably supporting both end sides of the sliding surface (3) (bearing metal (1)) is formed.
  • the flexible support portion (4) is provided in the direction toward the large end portion (6) in the axial direction of the connecting rod (5) with respect to the center line passing through the center of the cross section of the through hole (T).
  • the flexible support portion (4) is a piston pin (2) in the main body portion (2) of the bearing metal (1) installed in the through hole (T) of the small end portion (7). It is provided in a portion where one-sided contact is likely to occur, such as a portion where one-sided contact is large in 71).
  • the one-sided contact of the shaft is larger on the connecting rod (5s) side in the through hole (T) of the small end portion (7) than on the opposite side. As a result, it is possible to prevent the piston pin (71) from hitting one end of the bearing metal (1).
  • the engine bearing metal (1) is A bearing for rotatably supporting a shaft (S) which is a crank pin (91) of a crankshaft (9) installed in a through hole (T) formed in a large end (6) of a connecting rod (5).
  • Metal (1) The main body (2) installed on the inner peripheral surface of the through hole (T) and A sliding surface (3) formed on the inner peripheral side of the main body (2) and configured to be slidable with respect to the shaft (S) is provided.
  • a flexible support portion that elastically deformably supports both end sides of the sliding surface (3) by having at least a part of the inside of the main body portion (2) having a rigidity lower than that of the surrounding portion. (4) is formed.
  • the main body portion (2) of the bearing metal (1) installed in the through hole (T) formed in the large end portion (6) of the connecting rod (5) has its structure.
  • a flexible support portion (4) for elastically deformably supporting both end sides of the sliding surface (3) is formed.
  • the flexible support portion (4) is closer to the large end portion (6) side and the small end portion (7) side in the axial direction of the connecting rod (5) than the center line passing through the center of the cross section of the through hole (T). It is provided in both directions.
  • the flexible support portion (4) is a crank pin (2) in the main body portion (2) of the bearing metal (1) installed in the through hole (T) of the large end portion (6). It is provided in a portion where one-sided contact is likely to occur, such as a portion where one-sided contact is large in 91). This makes it possible to prevent the crank pin (91) from hitting one end of the bearing metal (1).
  • the engine bearing metal (1) is A bearing metal (1) for rotatably supporting a shaft (S) which is a crank journal of a crankshaft (9) installed in a through hole (T) formed in an engine body.
  • the main body (2) installed on the inner peripheral surface of the through hole (T) and A sliding surface (3) formed on the inner peripheral side of the main body (2) and configured to be slidable with respect to the shaft (S) is provided.
  • a flexible support that elastically deformably supports at least one end side of the sliding surface (3) by having at least a part of the inside of the main body portion (2) having a rigidity lower than that of the surrounding portion.
  • the part (4) is formed.
  • the bearing metal installed in the through hole (T) formed in the engine body (engine frame) such as the cylinder block through which the crank journal constituting the crankshaft (9) is inserted.
  • a flexible support portion (4) for elastically deformably supporting both end sides of the sliding surface (3) is formed on the main body portion (2) of the (1).
  • the flexible support portion (4) is provided below the engine main body with respect to the center line passing through the center of the cross section of the through hole (T).
  • the flexible support portion (4) is a piece of the crank journal (92) in the main body portion (2) of the bearing metal (1) installed in the through hole (T) of the engine main body. It is provided in a part where one-sided contact is likely to occur, such as a part where the hit is large. This makes it possible to prevent the crank pin (91) from hitting one end of the bearing metal (1).
  • the flexible support portion (4) is formed on the end side of the main body portion (2) with respect to the center.
  • the flexible support portion (4) is provided only on the end side of the center of the bearing metal (1). As a result, it is possible to appropriately prevent one-sided contact of the shaft (S) while maintaining the rigidity of the bearing metal (1) appropriately.
  • the flexible support portions (4) are arranged on a first portion aligned with each other along a center line passing through the center of the cross section of the bearing metal (1), and on the end side of the sliding surface (3) with respect to the first portion. Including the second part located The rigidity of the second portion is lower than the rigidity of the first portion.
  • the rigidity of the flexible support portion (4) is toward the portion located at the end of the bearing metal (1) along the extending direction of the center line of the bearing metal (1). Is smaller than the central part.
  • the bearing metal (1) is placed closer to the end side. It can be configured to be easy to bend. Therefore, it is possible to more appropriately prevent one-sided contact of the shaft (S) with the end portion of the bearing metal (1).
  • the flexible support portions (4) are arranged on a first portion aligned with each other along a center line passing through the center of the cross section of the bearing metal (1), and on the end side of the sliding surface (3) with respect to the first portion. Including the second part located The rigidity of the second portion is equal to the rigidity of the first portion.
  • the rigidity of the flexible support portion (4) is set to be equal along the extending direction of the center line of the bearing metal (1).
  • the sliding surface (3) of the bearing metal (1) becomes an end in the extending direction of the center line. The part closer to the part can be bent more easily. Therefore, it is possible to more appropriately prevent the shaft (S) from hitting the end of the bearing metal (1).
  • the amount of deformation of the bearing metal (1) when the engine is driven is configured to increase toward the end side of the sliding surface (3) along the center line.
  • the portion on the outer side in the radial direction of the connecting rod (5) in the side sectional view can be easily bent, and the end of the bearing metal (1) can be easily bent. It is possible to more appropriately prevent one-sided contact of the shaft (S) with the portion.
  • the flexible support portion (4) extends along the sliding surface (3) in a front view (for example, FIGS. 7 to 8) visually recognized along a center line passing through the center of the cross section of the through hole (T). It is provided to be present. According to the configuration of (11) above, the flexible support portion (4) can be provided so as to cover the portion of the shaft (S) having a large one-sided contact.
  • the flexible support portion (4) has a third portion (Pc) and a third portion (Pc) in a front view (for example, FIG. 7) in which the bearing metal (1) is visually recognized along the extending direction of the center line. Including the fourth part (Pd) located on the end side of Pc), The rigidity of the fourth portion (Pd) is higher than the rigidity of the third portion (Pc).
  • the rigidity of the flexible support portion (4) is higher in the end side portion (Pd) than in this portion (Pd). Is also higher than the part (Pc) located on the central side.
  • the load acting on the bearing metal (1) due to one-sided contact decreases from the portion having the largest one-sided contact toward both sides of the bearing metal (1) in the circumferential direction.
  • the thickness of the flexible support portion (4) (the above height width (H)) is the same, the central portion of the flexible support portion (4) in the bearing metal (1) is positioned. The more you bend, the easier it is to bend. Therefore, for example, in the front view (for example, FIG.
  • the center (front center position) of the flexible support portion (4) extending along the circumferential direction of the bearing metal (1) is set to the axis (S) with respect to the bearing metal (1). If the flexible support portion (4) is configured so as to satisfy the above-mentioned rigidity relationship while adjusting to the portion having the largest one-sided contact with the bearing metal (1), the larger the one-sided contact of the shaft (S) with the bearing metal (1), the larger the portion. , The bearing metal (1) can be easily bent according to the one-sided contact of the shaft (S).
  • the flexible support portion (4) has a third portion (Pc) and a sliding surface (3) rather than the third portion (Pc) in a front view (for example, FIG. 8) visually recognized along the center line. Including the fourth part (Pd) located on the end side of The rigidity of the fourth portion (Pd) is equal to the rigidity of the third portion (Pc).
  • the rigidity of the flexible support portion (4) is centered on the end side portion (Pd) and this portion (Pd). It is equal to the part (Pc) located on the side.
  • the one-sided contact of the shaft (S) with respect to the bearing metal (1) becomes smaller from the portion where the one-sided contact of the shaft (S) is the largest toward both sides of the bearing metal (1) in the circumferential direction. Therefore, for example, in the front view (for example, FIG. 8), the center (front center position) of the flexible support portion (4) extending along the circumferential direction of the bearing metal (1) is set to the axis (S) with respect to the bearing metal (1).
  • the thickness of the flexible support portion (4) (the above-mentioned height width (H)). ) Is made larger at the portion (Pc) located on the center side than at the end side portion (Pd), so that the portion where the shaft (S) with the bearing metal (1) has a larger one-sided contact with the bearing metal (1) becomes larger.
  • the bearing metal (1) can be easily bent according to the one-sided contact of the shaft (S).
  • the flexible support portion (4) has a hollow portion. According to the configuration of the above (14), the rigidity of the flexible support portion (4) can be changed to a desired size by changing the density of the cavity portion in the flexible support portion (4).
  • the flexible support portion (4) has a porous structure.
  • the flexible support portion (4) has a porous structure (porous structure) such as a lattice structure.
  • the flexible support portion (4) can be appropriately provided by the lattice structure formed by using a three-dimensional modeling device such as a 3D printer.
  • the flexible support portion (4) is elastically deformed in the direction of the load received by bending the shaft (S). According to the configuration of (16) above, the flexible support portion (4) is elastically deformed in the direction of one-sided contact received from the bent shaft (S). As a result, the end side of the bearing metal (1) can be bent, so that it is possible to prevent the shaft (S) from hitting the end of the bearing metal (1).

Abstract

This bearing metal is for supporting a shaft, such as a piston pin, that is installed in a through hole formed in, for example, a small end portion of a connecting rod such that the connecting rod can pivot about the shaft. The bearing metal comprises a body that is installed on an internal circumferential surface of the through hole and a sliding surface that is formed on an inner circumference of the body and configured to be slidable with respect to the shaft. A flexible support section is formed in at least a portion of the interior of the body, the flexible support section having a lower rigidity than surrounding portions and supporting both end portions of the sliding surface in an elastically deformable manner.

Description

エンジン用軸受メタルBearing metal for engine
 本開示は、エンジン用の軸受メタルに関し、特に、エンジンが備えるピストンピンやクランクピン、クランクジャーナルなどを支持する軸受メタルに関する。 The present disclosure relates to bearing metals for engines, and in particular, bearing metals that support piston pins, crank pins, crank journals, etc. provided in engines.
 エンジン本体(エンジンフレーム)には、クランクシャフトが設置される貫通孔が形成されている。この貫通孔の内周面には軸受メタル(すべり軸受)が設置されており、クランクシャフトを構成するクランクジャーナル(メインジャーナル)がこの貫通孔に設置された軸受メタルによって摺動可能に支持される。他方、コンロッド(コネクティングロッド)の小端部および大端部にも、その内周面に軸受メタルが設置される貫通孔がそれぞれ形成されている。そして、コンロッドの大端部は、クランクシャフトを構成するクランクピンが軸受メタルを介して大端部の貫通孔に設置されることで、クランクシャフトに連結される。また、コンロッドの小端部は、ピストンピンにより、小端部の貫通孔の内周面に設置された軸受メタルを介してピストンに取り付けられる。上述したクランクジャーナルや、クランクピン、ピストンピンなど、エンジンが有する各種の軸は、昨今のエンジンの軽量化・高出力化の流れの中で曲げ剛性が相対的に低くなっている。このため、エンジンの駆動時に作用する荷重により曲がり易くなることで、上記の軸受メタルの端部に、油膜圧力が局部的に高くなるもしくは油膜厚さが局部的に薄くなる領域が生じるなど、軸の片当たりが発生し易い。そして、この片当たりは、軸受の摩耗や焼き付きの原因となるなど、エンジンの更なる軽量化・高出力化の妨げとなる。 The engine body (engine frame) has a through hole in which the crankshaft is installed. A bearing metal (plain bearing) is installed on the inner peripheral surface of the through hole, and the crank journal (main journal) constituting the crankshaft is slidably supported by the bearing metal installed in the through hole. .. On the other hand, through holes for installing bearing metal are also formed on the inner peripheral surfaces of the small end and the large end of the connecting rod (connecting rod). The large end of the connecting rod is connected to the crankshaft by installing the crankpins constituting the crankshaft in the through holes of the large end via the bearing metal. Further, the small end portion of the connecting rod is attached to the piston by a piston pin via a bearing metal installed on the inner peripheral surface of the through hole of the small end portion. The various shafts of the engine, such as the crank journal, crank pin, and piston pin described above, have relatively low bending rigidity in the recent trend of weight reduction and high output of the engine. For this reason, it becomes easy to bend due to the load acting when the engine is driven, so that there is a region at the end of the bearing metal where the oil film pressure becomes locally high or the oil film thickness becomes thin locally. One-sided contact is likely to occur. Then, this one-sided contact causes wear and seizure of the bearing, and hinders further weight reduction and high output of the engine.
 例えば特許文献1には、クランクシャフトを軸支する軸受メタル(すべり軸受)の摺動面(摺接面)の軸方向の端部(両端部)にクラウニングを形成することが開示されている。また、特許文献2には、小端部とピストンピンとが摺動する摺動面に弾性潤滑剤としてのフッ素樹脂をコーティングすることで、シリンダ内でピストンが傾くのを防ぐことが開示されている。特許文献3にはピン孔の内周面のうちの特定の領域に複数の凹部を設けることで、潤滑油の量を多くし、小端部での焼き付きを防止することが開示されている。特許文献4では、小端部の壁面に三次元網目構造(ラティス構造)を形成することにより、表面積の拡大による、放熱性の向上とオイルの保持を行うことが開示されている。なお、特許文献5には、上記のラティス構造を有する部品についての開示がある。 For example, Patent Document 1 discloses that crowning is formed at axial ends (both ends) of a sliding surface (sliding contact surface) of a bearing metal (sliding bearing) that pivotally supports a crankshaft. Further, Patent Document 2 discloses that the sliding surface on which the small end and the piston pin slide is coated with a fluororesin as an elastic lubricant to prevent the piston from tilting in the cylinder. .. Patent Document 3 discloses that the amount of lubricating oil is increased and seizure at a small end portion is prevented by providing a plurality of recesses in a specific region of the inner peripheral surface of the pin hole. Patent Document 4 discloses that by forming a three-dimensional network structure (lattice structure) on the wall surface of a small end portion, heat dissipation is improved and oil is retained by increasing the surface area. In addition, Patent Document 5 discloses a part having the above-mentioned lattice structure.
国際公開第2008/072548号International Publication No. 2008/072548 特開2007-40137号公報Japanese Unexamined Patent Publication No. 2007-40137 特開2018-9634号公報JP-A-2018-9634 特開2018-168895号公報JP-A-2018-168895 特開2015-93461号公報Japanese Unexamined Patent Publication No. 2015-93461
 例えば、クランクジャーナルや、クランクピン、ピストンピンなどの各種の軸を支持している際に軸受メタル(軸受)の端部に生じ得る軸の片当たりを防止するために、特許文献1のように、軸受メタルの端部(両端部)にクラウニングやテーパ加工を施すことが考えられる。しかしながら、その加工した面積の分だけ、軸受メタルにおける平行部分(加工以外の部分)の面積が減るため、軸受面圧が上昇して軸受メタルの疲労破壊の一因となり得る。また、様々な負荷で運転されるエンジンの場合など、軸側の変形量が一定ではない場合には、予めクラウニング等の加工を行う手法では、上記の片当たりを様々なエンジンの負荷に応じて適切に防止することは難しい。 For example, as in Patent Document 1, in order to prevent one-sided contact of the shaft that may occur at the end of the bearing metal (bearing) when supporting various shafts such as a crank journal, a crank pin, and a piston pin. , It is conceivable to crank or taper the ends (both ends) of the bearing metal. However, since the area of the parallel portion (the portion other than the processed portion) in the bearing metal is reduced by the processed area, the bearing surface pressure may increase, which may contribute to fatigue failure of the bearing metal. In addition, when the amount of deformation on the shaft side is not constant, such as in the case of an engine operated with various loads, in the method of performing processing such as crowning in advance, the above-mentioned one-sided contact is made according to the loads of various engines. It is difficult to prevent properly.
 また、軸受メタルの下側(貫通孔の形成部材)を薄肉構造、切り欠き構造にして柔構造化することも考えられるが、薄肉部分や切り欠き部分の応力集中の制約により、目標とする柔構造を達成するのが難しい場合が考えられる。あるいは、軸受メタルの軸に対する摺動面の背面(本体部)を切り欠き構造にして柔構造化することも考えられる。しかし、軸受メタルを貫通孔に嵌め込む際に切り欠き部が反り返ることによる上記の摺動面の有効面積の減少、軸受メタルと貫通孔の形成部材との接触面積の減少に伴い生じる設置の安定度の低下、この安定度の低下による接触面でのフレッティングの発生などが懸念される。 It is also conceivable to make the lower side of the bearing metal (member for forming the through hole) a thin-walled structure or a notched structure to make it a flexible structure, but due to restrictions on stress concentration in the thin-walled part and the notched part, the target softness It may be difficult to achieve the structure. Alternatively, it is also conceivable to make the back surface (main body portion) of the sliding surface of the bearing metal with respect to the shaft a notched structure to form a flexible structure. However, the stable installation caused by the decrease in the effective area of the sliding surface due to the notch bending back when the bearing metal is fitted into the through hole, and the decrease in the contact area between the bearing metal and the member forming the through hole. There are concerns about a decrease in degree and the occurrence of fretting on the contact surface due to this decrease in stability.
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、ピストンピンやクランクピン、クランクジャーナルなどの軸の支持時に端部での片当たりを防止することが可能な軸受メタルを提供することを目的とする。 In view of the above circumstances, at least one embodiment of the present invention provides a bearing metal capable of preventing one-sided contact at an end when supporting a shaft such as a piston pin, a crank pin, or a crank journal. The purpose.
 本発明の少なくとも一実施形態に係るエンジン用軸受メタルは、
 コンロッドの小端部に形成された貫通孔に設置されたピストンピンである軸に対して前記コンロッドを揺動可能に支持するための軸受メタルであって、
 前記貫通孔の内周面に設置される本体部と、
 前記本体部の内周側に形成された、前記軸に対して摺動可能に構成される摺動面と、を備え、
 前記本体部の内部の少なくとも一部には、周囲の部分よりも低い剛性を有することにより、前記摺動面の両方の端部側を弾性変形可能に支持する柔支持部が形成されている。
The engine bearing metal according to at least one embodiment of the present invention is
A bearing metal for swingably supporting the connecting rod with respect to a shaft which is a piston pin installed in a through hole formed at a small end of the connecting rod.
The main body installed on the inner peripheral surface of the through hole and
A sliding surface formed on the inner peripheral side of the main body portion and configured to be slidable with respect to the shaft is provided.
At least a part of the inside of the main body is formed with a flexible support portion that elastically deformably supports both end sides of the sliding surface by having a rigidity lower than that of the surrounding portion.
 本発明の少なくとも一実施形態に係るエンジン用軸受メタルは、
 コンロッドの大端部に形成された貫通孔に設置されたクランクシャフトのクランクピンである軸を回転可能に支持するための軸受メタルであって、
 前記貫通孔の内周面に設置される本体部と、
 前記本体部の内周側に形成された、前記軸に対して摺動可能に構成される摺動面と、を備え、
 前記本体部の内部の少なくとも一部には、周囲の部分よりも低い剛性を有することにより、前記摺動面の両方の端部側を弾性変形可能に支持する柔支持部が形成されている。
The engine bearing metal according to at least one embodiment of the present invention is
A bearing metal for rotatably supporting a shaft, which is a crank pin of a crankshaft installed in a through hole formed at the large end of a connecting rod.
The main body installed on the inner peripheral surface of the through hole and
A sliding surface formed on the inner peripheral side of the main body portion and configured to be slidable with respect to the shaft is provided.
At least a part of the inside of the main body is formed with a flexible support portion that elastically deformably supports both end sides of the sliding surface by having a rigidity lower than that of the surrounding portion.
 本発明の少なくとも一実施形態に係るエンジン用軸受メタルは、
 エンジン本体に形成された貫通孔に設置されたクランクシャフトのクランクジャーナルである軸を回転可能に支持するための軸受メタルであって、
 前記貫通孔の内周面に設置される本体部と、
 前記本体部の内周側に形成された、前記軸に対して摺動可能に構成される摺動面と、を備え、
 前記本体部の内部の少なくとも一部には、周囲の部分よりも低い剛性を有することにより、前記摺動面の少なくとも一方の端部側を弾性変形可能に支持する柔支持部が形成されている。
The engine bearing metal according to at least one embodiment of the present invention is
It is a bearing metal for rotatably supporting the shaft, which is the crank journal of the crankshaft installed in the through hole formed in the engine body.
The main body installed on the inner peripheral surface of the through hole and
A sliding surface formed on the inner peripheral side of the main body portion and configured to be slidable with respect to the shaft is provided.
A flexible support portion is formed in at least a part of the inside of the main body portion to elastically and deformably support at least one end side of the sliding surface by having a rigidity lower than that of the surrounding portion. ..
 本発明の少なくとも一実施形態によれば、ピストンピンやクランクピン、クランクジャーナルなどの軸の支持時に端部での片当たりを防止することが可能な軸受メタルが提供される。 According to at least one embodiment of the present invention, there is provided a bearing metal capable of preventing one-sided contact at an end when supporting a shaft such as a piston pin, a crank pin, or a crank journal.
本発明の一実施形態に係るコンロッドの正面視を模式的に示す図である。It is a figure which shows typically the front view of the connecting rod which concerns on one Embodiment of this invention. 本発明の一実施形態に係るコンロッドの側面視における断面を模式的に示す図であり、図1のAA断面に対応する。It is a figure which shows typically the cross section in the side view of the connecting rod which concerns on one Embodiment of this invention, and corresponds to the AA cross section of FIG. 本発明の一実施形態に係るエンジン本体に支持された状態のクランクシャフトを模式的に示す図である。It is a figure which shows typically the crankshaft of the state which is supported by the engine body which concerns on one Embodiment of this invention. 本発明の一実施形態に係る小端部の断面を模式的に示す図である。It is a figure which shows typically the cross section of the small end part which concerns on one Embodiment of this invention. 本発明の他の一実施形態に係る小端部の断面を模式的に示す図である。It is a figure which shows typically the cross section of the small end part which concerns on another Embodiment of this invention. 本発明のその他の一実施形態に係る小端部の断面を模式的に示す図である。It is a figure which shows typically the cross section of the small end part which concerns on another embodiment of this invention. 本発明の一実施形態に係る小端部の正面視を模式的に示す図である。It is a figure which shows typically the front view of the small end part which concerns on one Embodiment of this invention. 本発明の他の一実施形態に係る小端部の正面視を模式的に示す図である。It is a figure which shows typically the front view of the small end part which concerns on another Embodiment of this invention.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, and are merely explanatory examples. do not have.
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。 For example, expressions that represent relative or absolute arrangements such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a state of relative displacement with tolerances or angles and distances to the extent that the same function can be obtained.
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。 For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。 For example, an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range in which the same effect can be obtained. The shape including the part and the like shall also be represented.
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。 On the other hand, the expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions that exclude the existence of other components.
 図1は、本発明の一実施形態に係るコンロッド5の正面視を模式的に示す図である。図2は、本発明の一実施形態に係るコンロッド5の断面を模式的に示す図であり、図1のAA断面に対応する。図3は、本発明の一実施形態に係るエンジン本体Eに支持された状態のクランクシャフト9を模式的に示す図である。図4~図6は、それぞれ、本発明の一実施形態に係る本発明の一実施形態に係る小端部7の断面を模式的に示す図である。また、図7~図8は、本発明の一実施形態に係る小端部7の正面視を模式的に示す図である。 FIG. 1 is a diagram schematically showing a front view of the connecting rod 5 according to the embodiment of the present invention. FIG. 2 is a diagram schematically showing a cross section of a connecting rod 5 according to an embodiment of the present invention, and corresponds to the AA cross section of FIG. FIG. 3 is a diagram schematically showing a crankshaft 9 in a state of being supported by the engine body E according to the embodiment of the present invention. 4 to 6 are diagrams schematically showing a cross section of a small end portion 7 according to an embodiment of the present invention according to an embodiment of the present invention, respectively. 7 to 8 are views schematically showing a front view of the small end portion 7 according to the embodiment of the present invention.
 以下では、コンロッド5の軸方向(連接棒5sの延在方向)をロッド軸方向Dsと呼び、このロッド軸方向Dsに直交する方向(径方向)のうち、下記の中心線CLの延在方向を中心線方向Drと呼ぶ。また、図4~図6に示すような貫通孔T(図4~図6は小端部7のピストンピン孔7t)の断面中心を通る直線(以下、中心線CL)と、この中心線CLに交差すると共にロッド軸方向Dsに延びる直線とを含むコンロッド5の断面を視認する場合を側面断面視と呼ぶ。また、図7~図8に示すような上記の中心線CLが点状に見えるように視認する場合を正面視と呼ぶ。なお、軸受メタル1が貫通孔Tに設置された状態では貫通孔Tの中心線CLは軸受メタル1の中心線CLと一致する。 In the following, the axial direction of the connecting rod 5 (extending direction of the connecting rod 5s) is referred to as the rod axial direction Ds, and among the directions orthogonal to the rod axial direction Ds (radial direction), the extending direction of the following center line CL Is called the center line direction Dr. Further, a straight line (hereinafter, center line CL) passing through the cross-sectional center of the through hole T (FIGS. 4 to 6 are the piston pin hole 7t of the small end portion 7) as shown in FIGS. 4 to 6 and the center line CL. The case where the cross section of the connecting rod 5 including the straight line extending in the rod axial direction Ds and intersecting with the connecting rod 5 is visually recognized is referred to as a side cross-sectional view. Further, the case where the center line CL as shown in FIGS. 7 to 8 is visually recognized as a point is referred to as a front view. When the bearing metal 1 is installed in the through hole T, the center line CL of the through hole T coincides with the center line CL of the bearing metal 1.
 コネクティングロッド(以下、コンロッド5)は、エンジン(内燃機関)が備えるピストン(不図示)の往復運動をクランクシャフト9の回転運動に変換させるための部品である。図1~図2に示すように、コンロッド5は、大端部6と、小端部7と、大端部6と小端部7とを連結する連接棒5sとを有している。そして、大端部6にクランクシャフト9(図3参照)が連結され、小端部7にピストンピン71(図4~図6参照)が連結されることで、ピストン(不図示)とクランクシャフト9とがコンロッド5によって連結される。 The connecting rod (hereinafter referred to as the connecting rod 5) is a component for converting the reciprocating motion of the piston (not shown) included in the engine (internal combustion engine) into the rotational motion of the crankshaft 9. As shown in FIGS. 1 to 2, the connecting rod 5 has a large end portion 6, a small end portion 7, and a connecting rod 5s that connects the large end portion 6 and the small end portion 7. Then, the crankshaft 9 (see FIG. 3) is connected to the large end portion 6, and the piston pin 71 (see FIGS. 4 to 6) is connected to the small end portion 7, whereby the piston (not shown) and the crankshaft. 9 is connected by a connecting rod 5.
 より詳細には、図3に示すように、クランクシャフト9は、コンロッド5の大端部6と連結されるクランクピン91と、シリンダブロックといったエンジン本体E(エンジンフレーム)に支持されるクランクジャーナル92と、を有している。他方、エンジン本体Eには、クランクジャーナル92を取り付けるための貫通孔T(主軸孔Et)が形成されている。この主軸孔Etの内周面には軸受メタル1(主軸受1m)が設置(嵌合)されることで摺動面3が形成されており、クランクジャーナル92が、主軸受1mが設置された主軸孔Etに挿通されることで、クランクシャフト9がエンジン本体Eに支持される。 More specifically, as shown in FIG. 3, the crankshaft 9 has a crankpin 91 connected to a large end 6 of a connecting rod 5 and a crank journal 92 supported by an engine body E (engine frame) such as a cylinder block. And have. On the other hand, the engine body E is formed with a through hole T (main shaft hole Et) for attaching the crank journal 92. A sliding surface 3 is formed by installing (fitting) a bearing metal 1 (main bearing 1 m) on the inner peripheral surface of the spindle hole Et, and a crank journal 92 and a main bearing 1 m are installed. The crankshaft 9 is supported by the engine body E by being inserted into the spindle hole Et.
 そして、図1~図2に示すように、大端部6には、クランクピン91を取り付けるための貫通孔T(クランクピン孔6t)が形成されている。このクランクピン孔6tの内周面には軸受メタル1(クランクピン軸受1c)が設置(嵌合)されており、クランクピン91に対する摺動面3が形成されている。そして、クランクピン91が、クランクピン軸受1cが設置されたクランクピン孔6tに挿通されることで、大端部6とクランクピン91とが摺動可能に連結される。 Then, as shown in FIGS. 1 to 2, a through hole T (crank pin hole 6t) for attaching the crank pin 91 is formed at the large end portion 6. A bearing metal 1 (crank pin bearing 1c) is installed (fitted) on the inner peripheral surface of the crank pin hole 6t, and a sliding surface 3 with respect to the crank pin 91 is formed. Then, the crank pin 91 is inserted into the crank pin hole 6t in which the crank pin bearing 1c is installed, so that the large end portion 6 and the crank pin 91 are slidably connected.
 同様に、図1~図2、図4~図8に示すように、小端部7には、ピストンピン71を取り付けるための貫通孔T(ピストンピン孔7t)が形成されている。このピストンピン孔7tの内周面には軸受メタル1(ピストンピン軸受1p)が設置(嵌合)されており、ピストンピン71に対する摺動面3が形成されている。そして、ピストン(不図示)に連結(固定)されたピストンピン71が、ピストンピン軸受1pが設置されたピストンピン孔7tに挿通されることで、小端部7とピストン(不図示)とが摺動可能に連結される。 Similarly, as shown in FIGS. 1 to 2 and 4 to 8, a through hole T (piston pin hole 7t) for attaching the piston pin 71 is formed in the small end portion 7. A bearing metal 1 (piston pin bearing 1p) is installed (fitted) on the inner peripheral surface of the piston pin hole 7t, and a sliding surface 3 with respect to the piston pin 71 is formed. Then, the piston pin 71 connected (fixed) to the piston (not shown) is inserted into the piston pin hole 7t in which the piston pin bearing 1p is installed, so that the small end portion 7 and the piston (not shown) are connected to each other. It is slidably connected.
 ここで、上述したピストンピン軸受1p、クランクピン軸受1c、主軸受1mなどとなる軸受メタル1は、上記のクランクピン孔6t(図1参照)や、ピストンピン孔7t(図1~図2、図4~図8参照)、主軸孔Et(図3参照)などの各種の貫通孔Tの内周面に設置される本体部2と、この本体部2の内周側に形成された、ピストンピン71、クランクピン91(回転軸)あるいはクランクジャーナル92(回転軸)などとなる軸Sに対して摺動可能に構成される摺動面3と、を備えている。 Here, the bearing metal 1 serving as the piston pin bearing 1p, the crank pin bearing 1c, the main bearing 1 m and the like described above includes the crank pin hole 6t (see FIG. 1) and the piston pin hole 7t (FIGS. 1 to 2). (See FIGS. 4 to 8), a main body 2 installed on the inner peripheral surface of various through holes T such as a spindle hole Et (see FIG. 3), and a piston formed on the inner peripheral side of the main body 2. It includes a sliding surface 3 that is slidable with respect to a shaft S such as a pin 71, a crank pin 91 (rotary shaft), or a crank journal 92 (rotary shaft).
 図1~図8に示す実施形態について説明すると、各種の貫通孔Tは真円状の断面形状となるような筒状の形状を有している。また、エンジンは多気筒のエンジンであり、クランクシャフト9には、複数のクランクピン91と複数のクランクジャーナル92を有している。また、V型エンジンでもあり、各クランクピン91には、V型の各バンクの各々の気筒内のピストン(不図示)に連結される2つのコンロッド5が連結されるようになっている。 Explaining the embodiments shown in FIGS. 1 to 8, various through holes T have a tubular shape having a perfect circular cross-sectional shape. Further, the engine is a multi-cylinder engine, and the crankshaft 9 has a plurality of crank pins 91 and a plurality of crank journals 92. It is also a V-type engine, and two connecting rods 5 connected to pistons (not shown) in each cylinder of each V-type bank are connected to each crank pin 91.
 なお、図1~図8に示す実施形態では、小端部7と連接棒5sとが一体的に製造(造形)されており、連接棒5sと大端部6とがボルト5bで締結されるよう構成されているが、大端部6、小端部7、または連接棒5sの少なくとも2つが一体的に製造されても良い。 In the embodiments shown in FIGS. 1 to 8, the small end portion 7 and the connecting rod 5s are integrally manufactured (modeled), and the connecting rod 5s and the large end portion 6 are fastened with a bolt 5b. However, at least two of the large end portion 6, the small end portion 7, and the connecting rod 5s may be integrally manufactured.
 上述した構成を有する軸受メタル1において、その本体部2の内部の少なくとも一部には、周囲の部分よりも低い剛性を有することにより、摺動面3の少なくとも一方の端部(中心線方向Drの端部)側を弾性変形可能に支持する柔支持部4が形成されている。
 具体的には、図4~図6に示すように、ピストンピン軸受1pについては、柔支持部4は本体部2の両端部側に形成されていても良い。図示は省略するが、クランクピン軸受1cについても同様に、柔支持部4は本体部2の両端部側に形成されていても良い。他方、図3に示すように、主軸受1mについては、柔支持部4は、本体部2の少なくとも一方の端部側に形成されも良い。すなわち、柔支持部4は、軸受メタル1の摺動面3における軸Sの片当たり領域を支持する本体部2の部分に設けられる。
In the bearing metal 1 having the above-described configuration, at least a part of the inside of the main body portion 2 has a rigidity lower than that of the peripheral portion, so that at least one end portion (center line direction Dr) of the sliding surface 3 is formed. A flexible support portion 4 is formed to elastically and deformably support the side (end portion) of the bearing.
Specifically, as shown in FIGS. 4 to 6, for the piston pin bearing 1p, the flexible support portions 4 may be formed on both end sides of the main body portion 2. Although not shown, the flexible support portions 4 may be formed on both end sides of the main body portion 2 in the crank pin bearing 1c as well. On the other hand, as shown in FIG. 3, for the main bearing 1 m, the flexible support portion 4 may be formed on at least one end side of the main body portion 2. That is, the flexible support portion 4 is provided on the portion of the main body portion 2 that supports the one-sided contact region of the shaft S on the sliding surface 3 of the bearing metal 1.
 このように柔支持部4を軸Sの片当たりが生じ易い部分に設けると、柔支持部4は、軸Sが曲がることにより受ける片当たりの方向に、その片当たりの大きさに応じて弾性変形する。例えば、図4~図6に示す小端部7の側面断面視においては、図示のように、ピストンピン71の両端が鎖線のようにロッド軸方向Dsの大端部6側(紙面の下)に向けて曲がった場合には、曲がっていない場合よりも、ピストンピン軸受1pの柔支持部4の図示の断面積が小さくなるように変形する。そして、ピストンピン71の曲がりがなくなり、ピストンピン71が直線状の状態に戻ると、柔支持部4の図示の断面積は、曲がる前の元の大きさに戻る。図示は省略するが、クランクピン軸受1c(図2参照)については、クランクピン91の曲がり方と、その柔支持部4の変形の態様は上記と同様である。主軸受1mについては、図3の鎖線で示すようにクランクジャーナル92(鎖線)が曲がるのに応じて弾性変形する。 When the flexible support portion 4 is provided in a portion where one-sided contact of the shaft S is likely to occur in this way, the flexible support portion 4 is elastic in the direction of one-sided contact received by bending the shaft S, depending on the size of the one-sided contact. change. For example, in the side sectional view of the small end portion 7 shown in FIGS. 4 to 6, as shown in the drawing, both ends of the piston pin 71 are on the large end portion 6 side (below the paper surface) in the rod axial direction Ds like a chain line. When it is bent toward, the piston pin bearing 1p is deformed so that the illustrated cross-sectional area of the flexible support portion 4 is smaller than that when it is not bent. Then, when the piston pin 71 is no longer bent and the piston pin 71 returns to the linear state, the illustrated cross-sectional area of the flexible support portion 4 returns to the original size before bending. Although not shown, the crank pin bearing 1c (see FIG. 2) has the same bending method of the crank pin 91 and the deformation of the flexible support portion 4 as described above. As shown by the chain line in FIG. 3, the main bearing 1 m is elastically deformed as the crank journal 92 (chain line) bends.
 また、摺動面3も、上記の柔支持部4の弾性変形に伴って弾性変形する。これによって、軸Sの片当たりによって、軸受メタル1(摺動面3)における油膜圧力が局部的に高くなるもしくは油膜厚さが局部的に薄くなる領域が生じるのを抑制することが可能となる。 Further, the sliding surface 3 is also elastically deformed due to the elastic deformation of the flexible support portion 4 described above. As a result, it is possible to suppress the occurrence of a region where the oil film pressure on the bearing metal 1 (sliding surface 3) is locally increased or the oil film thickness is locally thin due to one-sided contact of the shaft S. ..
 このように柔支持部4は軸受メタル1の端部に形成されるが、この端部において柔支持部4は、上述した中心線CLよりも、ロッド軸方向Dsの一方側または他方側の少なくとも一方に設けられれば良い。
 具体的には、ピストンピン軸受1pについては、図1に示すように、ピストンピン孔7tの中心線CLよりも、コンロッド5の軸方向における少なくとも大端部側方向(図1の下側)に設けられても良い。クランクピン軸受1cについては、図1に示すように、ピストンピン孔7tの中心線CLよりも、コンロッド5の軸方向における大端部側方向(図1の下側)および小端部側方向(図1の上側)の両方向にそれぞれ設けられても良い。主軸受1mについては、図3に示すように、主軸孔Etの中心線CLよりも、エンジン本体Eの少なくとも下方側(図3の下側)に設けられても良い。これらの位置は、幾つかの実施形態における、エンジンでの燃料の燃焼荷重及びピストンやコンロッドの慣性力により大きな軸Sの片当たりが生じ易い位置である。
In this way, the flexible support portion 4 is formed at the end portion of the bearing metal 1, and at this end portion, the flexible support portion 4 is at least one side or the other side of the rod axial direction Ds with respect to the center line CL described above. It may be provided on one side.
Specifically, with respect to the piston pin bearing 1p, as shown in FIG. 1, at least in the axial direction of the connecting rod 5 toward the large end side (lower side in FIG. 1) with respect to the center line CL of the piston pin hole 7t. It may be provided. Regarding the crank pin bearing 1c, as shown in FIG. 1, the large end side direction (lower side in FIG. 1) and the small end side direction (lower side in FIG. 1) in the axial direction of the connecting rod 5 from the center line CL of the piston pin hole 7t ( It may be provided in both directions (upper side of FIG. 1). As shown in FIG. 3, the main bearing 1 m may be provided at least on the lower side (lower side of FIG. 3) of the engine main body E than the center line CL of the main shaft hole Et. These positions are positions in which a large one-sided contact of the shaft S is likely to occur due to the combustion load of the fuel in the engine and the inertial force of the piston or connecting rod in some embodiments.
 また、図1、図7~図8に示すように、正面視において、柔支持部4は、軸受メタル1の摺動面3の内周面(軸受メタル1の周方向)に沿って延在するように設けられても良い。本実施形態では、柔支持部4は、正面視において、軸受メタル1に作用する軸受荷重が最も高い部分が柔支持部4の中央付近に位置し、そこから摺動面3の内周面に沿って左右に延びるように設けられている。これによって、各種の軸Sの片当たりが大きい部分をカバーするように、柔支持部4を設けることを図ることが可能となる。 Further, as shown in FIGS. 1 and 7 to 8, in the front view, the flexible support portion 4 extends along the inner peripheral surface (circumferential direction of the bearing metal 1) of the sliding surface 3 of the bearing metal 1. It may be provided so as to do so. In the present embodiment, in the front view of the flexible support portion 4, the portion having the highest bearing load acting on the bearing metal 1 is located near the center of the flexible support portion 4, and from there to the inner peripheral surface of the sliding surface 3. It is provided so as to extend to the left and right along it. This makes it possible to provide the flexible support portion 4 so as to cover the portion of the various shafts S having a large one-sided contact.
 一方、上記の柔支持部4の剛性は、単位体積当たりの剛性である。剛性が小さいほど、その分だけ同じ荷重に対する変形量が大きくなり、逆に剛性が大きいほど、その分だけ同じ荷重に対する変形量が小さくなる。図1~図8に示す実施形態では、柔支持部4は、ラティス(ポーラス)構造を有することによって軸受メタル1の摺動面3を弾性変形可能に支持するように構成されている。このラティス構造は、格子状(網目状)の構造であり、格子点同士を結ぶ部分(連結部分)の間には空洞部が形成される。そして、この空洞部の体積割合(粗密)によって、柔支持部4の剛性を任意に調整可能であり、この調整によって柔支持部4の剛性が異なってくる。よって、ラティス構造が、本体部2の適切な部分に設けられることで、軸受メタル1の摺動面3の端部側が軸Sの片当たりの大きさ(軸受荷重の大きさ)に応じて弾性的に曲がることを可能にすることができる。 On the other hand, the rigidity of the flexible support portion 4 is the rigidity per unit volume. The smaller the rigidity, the larger the amount of deformation for the same load, and conversely, the larger the rigidity, the smaller the amount of deformation for the same load. In the embodiment shown in FIGS. 1 to 8, the flexible support portion 4 is configured to elastically and deformably support the sliding surface 3 of the bearing metal 1 by having a lattice (porous) structure. This lattice structure is a grid-like (mesh-like) structure, and a cavity portion is formed between the portions (connecting portions) connecting the lattice points. Then, the rigidity of the flexible support portion 4 can be arbitrarily adjusted by the volume ratio (roughness) of the hollow portion, and the rigidity of the flexible support portion 4 differs depending on this adjustment. Therefore, by providing the lattice structure at an appropriate portion of the main body 2, the end side of the sliding surface 3 of the bearing metal 1 is elastic according to the size of one side of the shaft S (the size of the bearing load). It can be made possible to bend in a targeted manner.
 なお、柔支持部4は、3Dプリンタなどの三次元造形装置などで本体部2と一体的に造形されても良い。そして、本体部2における柔支持部4以外の部分は、柔支持部4とは異なる構造を有するように造形されるなど、柔支持部4よりも剛性が高くなるように造形されている。例えば、柔支持部4はラティス構造を有するように造形され、本体部2における柔支持部4以外の部分は造形材の一様の層を単純に順次積層させて造形するなど、ラティス構造よりも剛性が高くなるように造形される。 The flexible support portion 4 may be integrally molded with the main body portion 2 by a three-dimensional modeling device such as a 3D printer. The portion of the main body 2 other than the soft support portion 4 is shaped so as to have a structure different from that of the soft support portion 4, and is shaped to have higher rigidity than the soft support portion 4. For example, the flexible support portion 4 is shaped so as to have a lattice structure, and the portion of the main body portion 2 other than the flexible support portion 4 is formed by simply laminating uniform layers of modeling materials in order, which is more than the lattice structure. It is shaped so that it has high rigidity.
 ただし、本実施形態に本発明は限定されない。図1~図8に示す実施形態では、柔支持部4は本体部2の外周面よりも内部側に設けられているが、他の幾つかの実施形態では、柔支持部4は本体部2の外周面まで延在していても良い。また、他の幾つかの実施形態では、柔支持部4は、正面視において直線状に設けられていても良い。また、上記の柔支持部4は、空洞部を有していれば良いし、その構造はラティス構造に限定もされない。例えば、他の幾つかの実施形態では、柔支持部4は、薄肉構造あるいは切り欠き構造を有していても良い。さらに、柔支持部4を、薄肉構造あるいは切り欠き構造にした上で、他の剛性の低い部材を設置あるいは嵌め込むなどして、柔支持部4の剛性が調整されていても良い。 However, the present invention is not limited to the present embodiment. In the embodiments shown in FIGS. 1 to 8, the flexible support portion 4 is provided on the inner side of the outer peripheral surface of the main body portion 2, but in some other embodiments, the flexible support portion 4 is the main body portion 2. It may extend to the outer peripheral surface of. Further, in some other embodiments, the flexible support portion 4 may be provided in a straight line in a front view. Further, the flexible support portion 4 may have a hollow portion, and its structure is not limited to the lattice structure. For example, in some other embodiments, the flexible support portion 4 may have a thin wall structure or a notched structure. Further, the rigidity of the flexible support portion 4 may be adjusted by forming the flexible support portion 4 into a thin-walled structure or a notched structure and then installing or fitting another member having low rigidity.
 また、各種の軸受メタル1(摺動面3)に作用する軸Sの片当たりは、エンジンの運転条件や、クランクシャフト9の回転方向や構成などによって変化し得るため、本体部2における柔支持部4の位置は、軸受メタル1の端部側の任意の位置に設ければ良い。例えば図3に示す実施形態では、主軸受1mの柔支持部4は、軸受メタル1への軸Sの片当たりがより大きい下側にのみ設けられているが、上側に設けても良い。例えばクランクジャーナル92を示す鎖線は、図3には、紙面の左下が下方で、右上が上方となるような向きで傾いている場合が示されているが、その左下が上方、右上が下方となるような反対側の向きにも曲がる場合などがある。このように、軸Sの曲がり方は図4~図6の図示の曲がりに限定されない。 Further, since the one-sided contact of the shaft S acting on various bearing metals 1 (sliding surface 3) can change depending on the operating conditions of the engine, the rotation direction and configuration of the crankshaft 9, etc., the flexible support in the main body 2 The position of the portion 4 may be provided at an arbitrary position on the end side of the bearing metal 1. For example, in the embodiment shown in FIG. 3, the flexible support portion 4 of the main bearing 1 m is provided only on the lower side where the one-sided contact of the shaft S with respect to the bearing metal 1 is larger, but it may be provided on the upper side. For example, the chain line showing the crank journal 92 is shown in FIG. 3 in a case where the lower left of the paper is tilted downward and the upper right is upward, but the lower left is upward and the upper right is downward. In some cases, it may bend in the opposite direction. As described above, the bending method of the axis S is not limited to the bending shown in FIGS. 4 to 6.
 上記の構成によれば、軸受メタル1の本体部2には、その摺動面3の両方の端部側を弾性変形可能に支持するための柔支持部4が形成されている。この柔支持部4によって、軸S(ピストンピン71、クランクピン91あるいはクランクジャーナル92)が曲がると、軸Sの曲がる方向に軸受メタル1の摺動面3の端部側も曲がることができるので、軸受メタル1の端部への軸Sの片当たりを防止することができる。したがって、軸受メタル1の摩耗や焼き付きを防止することができ、エンジンのさらなる軽量化や高出力化を行うことができる。 According to the above configuration, the main body 2 of the bearing metal 1 is formed with a flexible support 4 for elastically deformably supporting both end sides of the sliding surface 3. When the shaft S (piston pin 71, crank pin 91 or crank journal 92) is bent by the flexible support portion 4, the end side of the sliding surface 3 of the bearing metal 1 can also be bent in the bending direction of the shaft S. , It is possible to prevent one side of the shaft S from hitting the end of the bearing metal 1. Therefore, it is possible to prevent wear and seizure of the bearing metal 1, and it is possible to further reduce the weight and increase the output of the engine.
 次に、上述した柔支持部4が設けられる位置について、図4~図8を用いてより詳細に説明する。小端部7を例に説明するが、クランクピン軸受1cの柔支持部4や、主軸受1mの柔支持部4についても同様である。また、以下では、中心線方向Drにおける軸受メタル1の中央の位置を軸受メタル中央Cと呼ぶ。この軸受メタル中央Cは、図2、図4~図6に示す側面断面視における軸受メタル1の中央の位置であり、大端部6および小端部7の各々の中心線CLを結んだ線が通る位置でもある。正面視における柔支持部4の中央の位置を正面中央位置Cbと呼ぶ。 Next, the position where the above-mentioned flexible support portion 4 is provided will be described in more detail with reference to FIGS. 4 to 8. The small end portion 7 will be described as an example, but the same applies to the flexible support portion 4 of the crank pin bearing 1c and the flexible support portion 4 of the main bearing 1 m. Further, in the following, the position of the center of the bearing metal 1 in the direction of the center line is referred to as the bearing metal center C. The bearing metal center C is the position of the center of the bearing metal 1 in the side sectional view shown in FIGS. 2 and 4 to 6, and is a line connecting the center lines CL of the large end portion 6 and the small end portion 7. It is also the position where The central position of the flexible support portion 4 in front view is called the front central position Cb.
 幾つかの実施形態では、図4~図8に示すように、柔支持部4は、本体部2における軸受メタル中央Cよりも端部側に形成されている。図4~図8に示す実施形態では、例えば図4に示すように、側面断面視において、柔支持部4は、本体部2の端から軸受メタル中央C側に向けて、中心線方向Drに沿って所定の距離(奥行幅W)の所まで設けられている。より詳細には、中心線方向Drに沿った本体部2の端と軸受メタル中央Cとの間の距離をWaとすると、W<Waとなっている。 In some embodiments, as shown in FIGS. 4 to 8, the flexible support portion 4 is formed on the end side of the bearing metal center C in the main body portion 2. In the embodiment shown in FIGS. 4 to 8, for example, as shown in FIG. 4, in the side sectional view, the flexible support portion 4 is directed from the end of the main body portion 2 toward the bearing metal center C side in the center line direction Dr. Along the way, it is provided up to a predetermined distance (depth width W). More specifically, if the distance between the end of the main body 2 and the center C of the bearing metal along the center line direction Dr is Wa, W <Wa.
 この奥行幅Wは、軸Sの想定される曲がり具合に応じて定めても良い。また、軸Sの剛性および本体部2を支持する貫通孔Tの形成部材(図4~図6では小端部7)の剛性との兼ね合いで決めても良い。また、奥行幅Wは、連接棒5sの周方向に沿った位置において同じであっても良いし、異なっていても良い。正面視における摺動面3の端部側であるほど奥行幅Wを小さくするなど、上記の周方向に沿って奥行幅Wを異ならせても良い。奥行幅Wを周方向で変えることで、柔支持部4の剛性の調整を行うことが可能となる。 This depth width W may be determined according to the assumed degree of bending of the axis S. Further, it may be determined in consideration of the rigidity of the shaft S and the rigidity of the member for forming the through hole T (small end portion 7 in FIGS. 4 to 6) that supports the main body portion 2. Further, the depth width W may be the same or different at a position along the circumferential direction of the connecting rod 5s. The depth width W may be made different along the above-mentioned circumferential direction, for example, the depth width W may be made smaller toward the end side of the sliding surface 3 in the front view. By changing the depth width W in the circumferential direction, it is possible to adjust the rigidity of the flexible support portion 4.
 上記の構成によれば、柔支持部4は、軸受メタル1の中央よりも端部側のみに設けられる。これによって、軸受メタル1の剛性を適正に保ちつつ、軸Sの片当たりを適切に防止することができる。 According to the above configuration, the flexible support portion 4 is provided only on the end side of the center of the bearing metal 1. As a result, it is possible to appropriately prevent one-sided contact of the shaft S while maintaining the rigidity of the bearing metal 1 appropriately.
 次に、上述した柔支持部4に関する幾つかの実施形態について説明する。
 幾つかの実施形態では、図4~図8(図1、図3も同様)に示すように、柔支持部4の端部(軸受メタル中央C側の端部、周方向の端部)にはアールRが設けられても良い。図4~図6に示す実施形態では、側面断面視において、柔支持部4における軸受メタル中央C側の端部にアールRが付けられている。換言すれば、側面断面視において、柔支持部4の軸受メタル中央C側の端部におけるロッド軸方向Dsに沿った長さ(高さ幅H)が、軸受メタル中央C側に向かうに従って連続的に変化させて短くされている。図7~図8に示す実施形態では、正面視における柔支持部4の両端部にアールRが設けられている。
 上記の構成によれば、柔支持部4における端部における応力集中を抑制することができる。
Next, some embodiments relating to the above-mentioned flexible support portion 4 will be described.
In some embodiments, as shown in FIGS. 4 to 8 (the same applies to FIGS. 1 and 3), at the end of the flexible support portion 4 (the end on the center C side of the bearing metal, the end in the circumferential direction). May be provided with Earl R. In the embodiment shown in FIGS. 4 to 6, in the side sectional view, a radius R is attached to the end portion of the flexible support portion 4 on the center C side of the bearing metal. In other words, in the side sectional view, the length (height width H) along the rod axial direction Ds at the end of the flexible support portion 4 on the bearing metal center C side is continuous toward the bearing metal center C side. It has been shortened by changing it to. In the embodiment shown in FIGS. 7 to 8, R-Rs are provided at both ends of the flexible support portion 4 in the front view.
According to the above configuration, stress concentration at the end portion of the flexible support portion 4 can be suppressed.
 また、幾つかの実施形態では、図4~図6に示すように、軸受メタル1は、その剛性が、柔支持部4の存在する部分において中心線方向Drに沿って同じではなく、変化する部分を少なくとも一部に有するように構成されても良い。これにより、エンジンの駆動時における柔支持部4の変形量が、軸受メタル中央側よりも軸受メタル1の端部側の方が大きくなるようにでき、軸受メタル1の端部側であるほど摺動面3が曲がり易くすることが可能となる。 Further, in some embodiments, as shown in FIGS. 4 to 6, the rigidity of the bearing metal 1 is not the same along the center line direction Dr in the portion where the flexible support portion 4 is present, but changes. It may be configured to have at least a portion. As a result, the amount of deformation of the flexible support portion 4 when the engine is driven can be made larger on the end side of the bearing metal 1 than on the center side of the bearing metal. The moving surface 3 can be easily bent.
 具体的には、幾つかの実施形態では、図4~図5に示すように、側面断面視にける柔支持部4の任意の部分を第1部分Paと呼び、この第1部分Paよりも中心線方向Drにおける軸受メタル1の端部側に位置する部分を第2部分Pbと呼んだ場合(以下同様)に、第2部分Pbの剛性は、第1部分Paの剛性よりも低い。すなわち、柔支持部4の剛性を中心線方向Drに沿って調節しており、軸Sの片当たりの大きさ(軸受荷重の大きさ)に合わせて、軸Sの片当たりの小さい領域から大きい領域に向かって、柔支持部4の各部の剛性が低くなるようにする。これによって、柔支持部4は、相対的に中心線方向Drにおける軸受メタル1の端部側の部分の方が、相対的に軸受メタル中央C側の部分よりも弾性変形し易いようにすることが可能となる。 Specifically, in some embodiments, as shown in FIGS. 4 to 5, an arbitrary portion of the flexible support portion 4 in the side sectional view is referred to as a first portion Pa, and is more than the first portion Pa. When the portion located on the end side of the bearing metal 1 in the center line direction Dr is referred to as the second portion Pb (the same applies hereinafter), the rigidity of the second portion Pb is lower than the rigidity of the first portion Pa. That is, the rigidity of the flexible support portion 4 is adjusted along the center line direction Dr, and the rigidity of the flexible support portion 4 is adjusted from the small region of the shaft S to the one-sided size (bearing load size) of the shaft S. The rigidity of each part of the flexible support portion 4 is reduced toward the region. As a result, the flexible support portion 4 is made so that the portion on the end side of the bearing metal 1 in the center line direction Dr is relatively more easily elastically deformed than the portion on the center C side of the bearing metal. Is possible.
 例えば、柔支持部4をラティス構造で形成する場合、ラティス構造により形成される空洞部の粗密を変えることにより、剛性の大きさを変えることが可能である。この際、柔支持部4の高さ幅Hの方向(ロッド軸方向Ds)における空洞部の粗密が同じであれば、例えば柔支持部4の高さ幅Hが長いほど本体部2における柔支持部4の占める割合が大きくなり、その部分(本体部2)の剛性が小さくなるので、同じ荷重に対して軸受メタル1の摺動面3が弾性変形し易くなる。 For example, when the flexible support portion 4 is formed with a lattice structure, the magnitude of rigidity can be changed by changing the density of the cavity formed by the lattice structure. At this time, if the density of the cavity in the direction of the height width H of the flexible support portion 4 (rod axial direction Ds) is the same, for example, the longer the height width H of the flexible support portion 4, the softer the flexible support in the main body portion 2. Since the proportion of the portion 4 is increased and the rigidity of the portion (main body portion 2) is reduced, the sliding surface 3 of the bearing metal 1 is easily elastically deformed with respect to the same load.
 より具体的には、ラティス構造を形成する単位格子の構造は第1部分Paおよび第2部分Pbで同じとしつつ、単位格子のサイズを変えても良い。換言すれば、単位格子の対応する連結部分の長さを比較すると、第2部分Pbの方が第1部分Paよりも長い。このように、第2部分Pbの格子サイズを第1部分Paの格子サイズよりも大きくすれば、ラティス構造の内部に形成される空洞部が占める体積は、単位体積あたりで、第2部分Pbの方が第1部分Paよりも大きくなり、第2部分Pbの空洞部を第1部分の空洞部よりも疎に設けることができる。あるいは、第2部分Pbの単位格子の構造を、第1部分Paの単位格子の構造よりも、空洞部が大きいものにしても良い。そして、空洞部の体積が大きいほど(空洞部が疎であるほど)、その部分の剛性が小さくなる。 More specifically, the size of the unit lattice may be changed while the structure of the unit lattice forming the lattice structure is the same for the first portion Pa and the second portion Pb. In other words, when comparing the lengths of the corresponding connecting portions of the unit cell, the second portion Pb is longer than the first portion Pa. In this way, if the lattice size of the second portion Pb is made larger than the lattice size of the first portion Pa, the volume occupied by the cavity formed inside the lattice structure is the volume occupied by the second portion Pb per unit volume. Is larger than the first portion Pa, and the cavity portion of the second portion Pb can be provided more sparsely than the cavity portion of the first portion. Alternatively, the structure of the unit cell of the second portion Pb may have a larger cavity than the structure of the unit cell of the first portion Pa. The larger the volume of the cavity (the sparser the cavity), the smaller the rigidity of that portion.
 図4に示す実施形態では、中心線方向Drに沿って軸受メタル中央C側から軸受メタル1の端部側に向かうに従って、空洞部の粗密が粗くなるように変化されていると共に、柔支持部4におけるロッド軸方向Dsにおける長さ(高さ幅H)は、アールRが付けられた端部以外では中心線方向Drに沿って概ね同じとなっている。 In the embodiment shown in FIG. 4, the density of the cavity is changed from the center C side of the bearing metal toward the end side of the bearing metal 1 along the center line direction Dr, and the soft support portion is formed. The length (height width H) in the rod axial direction Ds in No. 4 is substantially the same along the center line direction Dr except for the end portion with the radius R.
 他方、図5に示す実施形態では、同様に、中心線方向Drに沿って軸受メタル中央C側から軸受メタル1の端部側に向かうに従って、空洞部の粗密が粗くなるように変化されていると共に、柔支持部4の高さ幅Hは、中心線方向Drに沿って軸受メタル中央C側に向かうに従って大きくなっている。この図5に示すように、柔支持部4における空洞部の粗密と、高さ幅H(厚み)とを同時に調整することで、目的とする剛性を設定(確保)することが可能となる。特に、図5のように柔支持部4の高さ幅Hが軸受メタル中央C側の端部で大きくなるようにすることで、上述したような柔支持部4の軸受メタル中央側の端部にアールRを設ける場合に、その大きさを確保しつつ、柔支持部4の中心線方向Drにおける剛性を目標通りに設定することが可能となる。 On the other hand, in the embodiment shown in FIG. 5, similarly, the density of the cavity is changed from the center C side of the bearing metal toward the end side of the bearing metal 1 along the center line direction Dr. At the same time, the height width H of the flexible support portion 4 increases toward the center C side of the bearing metal along the center line direction Dr. As shown in FIG. 5, the desired rigidity can be set (secured) by simultaneously adjusting the density of the cavity portion in the flexible support portion 4 and the height width H (thickness). In particular, by making the height width H of the flexible support portion 4 larger at the end portion on the bearing metal center C side as shown in FIG. 5, the end portion of the flexible support portion 4 on the bearing metal center side as described above is formed. When the radius R is provided in the bearing, it is possible to set the rigidity of the flexible support portion 4 in the center line direction Dr while ensuring the size as a target.
 他の幾つかの実施形態では、図6に示すように、上記の第2部分Pbの剛性は、第1部分Paの剛性と等しい。図6に示す実施形態では、柔支持部4はラティス構造を有しているが、第1部分Paおよび第2部分Pbを形成する単位格子は、同じ構造を有することで、第1部分Paおよび第2部分Pbの剛性が等しいようにしても良い。 In some other embodiments, as shown in FIG. 6, the rigidity of the second portion Pb is equal to the rigidity of the first portion Pa. In the embodiment shown in FIG. 6, the flexible support portion 4 has a lattice structure, but the unit lattice forming the first portion Pa and the second portion Pb has the same structure, so that the first portion Pa and the first portion Pa and the second portion Pb have the same structure. The rigidity of the second portion Pb may be equal.
 ここで、軸Sの片当たりの小さい領域から大きい領域に向かって、柔支持部4の上記の中心線方向Drに沿った各位置での同一の荷重に対する弾性変形量が大きくなるようにするためには、柔支持部4の高さ幅Hを中心線方向Drに沿って調節する必要がある。本実施形態では、第1部分Paおよび第2部分Pbの剛性が等しいので、柔支持部4の高さ幅Hが長いほど、軸受メタル1の摺動面3が同じ荷重に対して弾性変形しやすくなる。このため、図6に示す実施形態では、第2部分Pbの位置における高さ幅Hbは、第1部分Paの位置における高さ幅Haよりも長くしている(Hb>Ha)。 Here, in order to increase the amount of elastic deformation of the flexible support portion 4 with respect to the same load at each position along the center line direction Dr from the small region to the large region of the shaft S. It is necessary to adjust the height width H of the flexible support portion 4 along the center line direction Dr. In the present embodiment, since the rigidity of the first portion Pa and the second portion Pb are equal, the longer the height width H of the flexible support portion 4, the elastically deforms the sliding surface 3 of the bearing metal 1 with respect to the same load. It will be easier. Therefore, in the embodiment shown in FIG. 6, the height width Hb at the position of the second portion Pb is longer than the height width Ha at the position of the first portion Pa (Hb> Ha).
 上記の構成によれば、軸受メタル1は、その剛性が、柔支持部4の存在する部分において中心線方向Drに沿って同じではなく、変化する部分を少なくとも一部に有するように構成されている。これにより、エンジンの駆動時における柔支持部4の変形量を、軸Sの片当たりの大きさに応じて、中心線方向Drに沿って適切に設定することができる。
 ただし、本実施形態に本発明は限定されず、他の幾つかの実施形態では、柔支持部4の剛性は、ほぼ全ての部分において任意の剛性値で同じになるようにしても良い。
According to the above configuration, the bearing metal 1 is configured so that its rigidity is not the same along the center line direction Dr in the portion where the flexible support portion 4 is present, but has at least a portion that changes. There is. As a result, the amount of deformation of the flexible support portion 4 when the engine is driven can be appropriately set along the center line direction Dr according to the size of one side of the shaft S.
However, the present invention is not limited to this embodiment, and in some other embodiments, the rigidity of the flexible support portion 4 may be the same at an arbitrary rigidity value in almost all parts.
 また、幾つかの実施形態では、図7~図8に示すように、軸受メタル1は、その剛性が、柔支持部4の存在する部分において軸受メタル1の周方向に沿って同じではなく、変化する部分を少なくとも一部に有するように構成されても良い。これにより、エンジンの駆動時における柔支持部4の変形量が、正面視における柔支持部4の中央(正面中央位置Cb)側に位置する部分の方が、その両方の端部側に位置する部分よりも、同一の荷重に対して大きくなるようにでき、中央側に位置する部分ほど摺動面3が曲がり易くすることが可能となる。 Further, in some embodiments, as shown in FIGS. 7 to 8, the rigidity of the bearing metal 1 is not the same along the circumferential direction of the bearing metal 1 in the portion where the flexible support portion 4 is present. It may be configured to have at least a portion that changes. As a result, the amount of deformation of the flexible support portion 4 when the engine is driven is located on the center (front center position Cb) side of the flexible support portion 4 in front view, and is located on both end sides. It can be made larger than the portion with respect to the same load, and the portion located on the center side makes it possible for the sliding surface 3 to bend more easily.
 ここで、正面視で視認した場合に、例えばピストンピン軸受1pの場合は、軸S(ピストンピン71)から軸受メタル1に作用する軸Sの片当たりは、中心線CLからコンロッド5の長手方向(ロッド軸方向Ds)に沿って引いた線が通る軸受メタル1の部分付近(図7~図8では柔支持部4の正面中央位置Cb)が最も大きく、そこから摺動面3の両側に向かうほど小さくなる。図示は省略するが、クランクピン軸受1cや主軸受1mでは、軸Sの片当たりの位置はピストンピン軸受1pとは異なるものの、最も大きい部分からその周方向の両側に向かうほど小さくなる。このため、図1~図8に示ように、柔支持部4を、その正面中央位置Cbが各種の軸受メタル1の片当たりが最も高い部分に重なるように設けた上で、軸Sの片当たりが小さい部分になる柔支持部4の端部の剛性を、それが大きい部分である正面中央位置Cbの剛性よりも高めることで、柔支持部4を設けない場合の剛性に近づけるようにする。 Here, when visually recognized from the front, for example, in the case of the piston pin bearing 1p, the one-sided contact of the shaft S acting on the bearing metal 1 from the shaft S (piston pin 71) is from the center line CL to the longitudinal direction of the connecting rod 5. The vicinity of the portion of the bearing metal 1 through which the line drawn along (rod axial direction Ds) passes (the front center position Cb of the flexible support portion 4 in FIGS. 7 to 8) is the largest, and from there to both sides of the sliding surface 3. It gets smaller as you go. Although not shown, in the crank pin bearing 1c and the main bearing 1 m, the position of one side of the shaft S is different from that of the piston pin bearing 1p, but it becomes smaller from the largest portion toward both sides in the circumferential direction. Therefore, as shown in FIGS. 1 to 8, the flexible support portion 4 is provided so that the front center position Cb of the flexible support portion 4 overlaps the portion where the one-side contact of the various bearing metals 1 is highest, and then the piece of the shaft S. By increasing the rigidity of the end portion of the flexible support portion 4, which is a small hit portion, to the rigidity of the front center position Cb, which is a large portion, the rigidity is brought closer to the rigidity when the flexible support portion 4 is not provided. ..
 具体的には、幾つかの実施形態では、図7に示すように、正面視における柔支持部4の任意の部分を第3部分Pcと呼び、その第3部分Pcよりも摺動面3の端部側に位置する部分を第4部分Pdと呼んだ場合(以下同様)に、第4部分Pdの剛性は、第3部分Pcの剛性よりも高い。例えば、ラティス構造により形成される空洞部の粗密を変えることにより、剛性の大きさを変えても良い。これによって、柔支持部4は、相対的に内側の方が弾性変形し易いようになっている。これによって、上記の正面視における柔支持部4の剛性を適切に設定することができる。 Specifically, in some embodiments, as shown in FIG. 7, an arbitrary portion of the flexible support portion 4 in front view is referred to as a third portion Pc, and the sliding surface 3 has a sliding surface 3 rather than the third portion Pc. When the portion located on the end side is referred to as the fourth portion Pd (the same applies hereinafter), the rigidity of the fourth portion Pd is higher than the rigidity of the third portion Pc. For example, the magnitude of the rigidity may be changed by changing the density of the cavity formed by the lattice structure. As a result, the flexible support portion 4 is more likely to be elastically deformed on the inner side. Thereby, the rigidity of the flexible support portion 4 in the above-mentioned front view can be appropriately set.
 図7に示す実施形態では、正面視(例えば図7)において柔支持部4の正面中央位置Cbを、軸受メタル1に作用する荷重が最も高い部分に合わせつつ、上記の剛性の関係を満たすように柔支持部4を構成する。これにより、図7に示すように、柔支持部4の厚さ(上記の高さ幅H)が同じであったとしても、軸受メタル1における柔支持部4の正面中央位置Cb側に位置する部分ほど曲がり易くすることができる。これによって、軸受メタル1への軸Sの片当たりが大きい部分ほど、軸受メタル1が軸Sの片当たりに合わせて曲がり易くすることができる。 In the embodiment shown in FIG. 7, the front center position Cb of the flexible support portion 4 is aligned with the portion where the load acting on the bearing metal 1 is highest in the front view (for example, FIG. 7), and the above rigidity relationship is satisfied. The flexible support portion 4 is configured. As a result, as shown in FIG. 7, even if the thickness of the flexible support portion 4 (height width H described above) is the same, the flexible support portion 4 is located on the front center position Cb side of the flexible support portion 4 in the bearing metal 1. The part can be made easier to bend. As a result, the larger the one-sided contact of the shaft S with the bearing metal 1, the easier it is for the bearing metal 1 to bend in accordance with the one-sided contact of the shaft S.
 他の幾つかの実施形態では、図8に示すように、上記の第4部分Pdの剛性は、上記の第3部分Pcの剛性と等しい。この場合、柔支持部4の高さ幅Hが長いほど、軸受メタル1が同じ荷重に対して弾性変形しやすくなる。このため、図8に示すように、第4部分Pdの位置における高さ幅Hは、第3部分Pcの位置における高さ幅Hよりも長い。また、図8に示す実施形態では、柔支持部4はラティス構造を有しているが、第3部分Pcおよび第4部分Pdを形成する単位格子は、同じ構造を有することで、第3部分Pcおよび第4部分Pdの剛性が等しいようにしても良い。これによって、上記の正面視における柔支持部4の剛性を適切に設定することができる。 In some other embodiments, as shown in FIG. 8, the rigidity of the fourth portion Pd is equal to the rigidity of the third portion Pc. In this case, the longer the height and width H of the flexible support portion 4, the more easily the bearing metal 1 is elastically deformed with respect to the same load. Therefore, as shown in FIG. 8, the height width H at the position of the fourth portion Pd is longer than the height width H at the position of the third portion Pc. Further, in the embodiment shown in FIG. 8, the flexible support portion 4 has a lattice structure, but the unit lattice forming the third portion Pc and the fourth portion Pd has the same structure, so that the third portion The rigidity of Pc and the fourth portion Pd may be equal. Thereby, the rigidity of the flexible support portion 4 in the above-mentioned front view can be appropriately set.
 図8に示す実施形態では、正面視(例えば図8)において軸受メタル1の周方向に沿って延在する柔支持部4の正面中央位置Cbを、軸受メタル1に作用する荷重が最も高い部分に合わせつつ、上記の剛性の関係を満たすように柔支持部4を構成する。これにより、図8に示すように、柔支持部4の厚さ(上記の高さ幅H)を、その端部側に位置する部分(第4部分Pd)よりも正面中央位置Cb側に位置する部分(第3部分Pc)の方を大きくすることで、軸受メタル1における柔支持部4の正面中央位置Cb側に位置する部分(第3部分Pc)ほど曲がり易くすることができる。これによって、軸受メタル1への軸Sの片当たりが大きい部分ほど、軸受メタル1が軸Sの片当たりに合わせて曲がり易くすることができる。 In the embodiment shown in FIG. 8, the portion where the load acting on the bearing metal 1 is highest at the front center position Cb of the flexible support portion 4 extending along the circumferential direction of the bearing metal 1 in the front view (for example, FIG. 8). The flexible support portion 4 is configured so as to satisfy the above-mentioned rigidity relationship. As a result, as shown in FIG. 8, the thickness of the flexible support portion 4 (height width H described above) is positioned closer to the front center position Cb side than the portion located on the end portion side (fourth portion Pd). By making the portion (third portion Pc) larger, the portion (third portion Pc) located on the front center position Cb side of the flexible support portion 4 in the bearing metal 1 can be bent more easily. As a result, the larger the one-sided contact of the shaft S with the bearing metal 1, the easier it is for the bearing metal 1 to bend in accordance with the one-sided contact of the shaft S.
 上記の構成によれば、軸受メタル1は、その剛性が、柔支持部4の存在する部分において軸受メタル1の周方向に沿って同じではなく、変化する部分を少なくとも一部に有する。これにより、エンジンの駆動時における柔支持部4の変形量を、軸Sの片当たりの大きさ応じて、中心線方向Drに沿って適切に設定することができる。 According to the above configuration, the bearing metal 1 has a portion in which the rigidity thereof is not the same along the circumferential direction of the bearing metal 1 in the portion where the flexible support portion 4 exists, but at least a part thereof changes. As a result, the amount of deformation of the flexible support portion 4 when the engine is driven can be appropriately set along the center line direction Dr according to the size of one side of the shaft S.
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
(付記)
The present invention is not limited to the above-described embodiment, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate.
(Additional note)
(1)本発明の少なくとも一実施形態に係るエンジン用軸受メタル(1)は、
 コンロッド(5)の小端部(7)に形成された貫通孔(T)に設置されたピストンピン(71)である軸(S)を揺動可能に支持するための軸受メタル(1)であって、
 前記貫通孔(T)の内周面に設置される本体部(2)と、
 前記本体部(2)の内周側に形成された、前記軸(S)に対して摺動可能に構成される摺動面(3)と、を備え、
 前記本体部(2)の内部の少なくとも一部には、周囲の部分よりも低い剛性を有することにより、前記摺動面(3)の両方の端部側を弾性変形可能に支持する柔支持部(4)が形成されている。
(1) The engine bearing metal (1) according to at least one embodiment of the present invention is
A bearing metal (1) for swingably supporting a shaft (S), which is a piston pin (71) installed in a through hole (T) formed in a small end (7) of a connecting rod (5). There,
The main body (2) installed on the inner peripheral surface of the through hole (T) and
A sliding surface (3) formed on the inner peripheral side of the main body (2) and configured to be slidable with respect to the shaft (S) is provided.
A flexible support portion that elastically deformably supports both end sides of the sliding surface (3) by having at least a part of the inside of the main body portion (2) having a rigidity lower than that of the surrounding portion. (4) is formed.
 上記(1)の構成によれば、コンロッド(5)の小端部(7)に形成されている貫通孔(T)に設置された軸受メタル(1)の本体部(2)には、その摺動面(3)(軸受メタル(1))の両方の端部側を弾性変形可能に支持するための柔支持部(4)が形成されている。これによって、軸受メタル(1)によって摺動可能に支持されるピストンピン(71)(軸(S))が曲がると、ピストンピン(71)の曲がる方向に軸受メタル(1)の摺動面(3)の端部側も曲がることができるので、軸受メタル(1)の端部へのピストンピン(71)の片当たりを防止することができる。したがって、軸受メタル(1)の摩耗や焼き付きを防止することができ、エンジンのさらなる軽量化や高出力化を行うことができる。 According to the configuration of the above (1), the main body portion (2) of the bearing metal (1) installed in the through hole (T) formed in the small end portion (7) of the connecting rod (5) has its structure. A flexible support portion (4) for elastically deformably supporting both end sides of the sliding surface (3) (bearing metal (1)) is formed. As a result, when the piston pin (71) (shaft (S)) slidably supported by the bearing metal (1) is bent, the sliding surface (1) of the bearing metal (1) is bent in the bending direction of the piston pin (71). Since the end side of 3) can also be bent, it is possible to prevent the piston pin (71) from hitting the end of the bearing metal (1). Therefore, it is possible to prevent wear and seizure of the bearing metal (1), and it is possible to further reduce the weight and increase the output of the engine.
(2)幾つかの実施形態では、上記(1)の構成において、
 前記柔支持部(4)は、前記貫通孔(T)の断面中心を通る中心線よりも、前記コンロッド(5)の軸方向における大端部(6)側方向に設けられている。
(2) In some embodiments, in the configuration of (1) above,
The flexible support portion (4) is provided in the direction toward the large end portion (6) in the axial direction of the connecting rod (5) with respect to the center line passing through the center of the cross section of the through hole (T).
 上記(2)の構成によれば、柔支持部(4)は、小端部(7)の貫通孔(T)に設置された軸受メタル(1)の本体部(2)における、ピストンピン(71)の片当たりが大きい部分などの片当たりが生じ易い部分に設けられる。軸の片当たりは、小端部(7)の貫通孔(T)における連接棒(5s)側の方が、その逆側よりも大きい。これによって、軸受メタル(1)の端部にピストンピン(71)が片当たりするのを防止することができる。 According to the configuration of (2) above, the flexible support portion (4) is a piston pin (2) in the main body portion (2) of the bearing metal (1) installed in the through hole (T) of the small end portion (7). It is provided in a portion where one-sided contact is likely to occur, such as a portion where one-sided contact is large in 71). The one-sided contact of the shaft is larger on the connecting rod (5s) side in the through hole (T) of the small end portion (7) than on the opposite side. As a result, it is possible to prevent the piston pin (71) from hitting one end of the bearing metal (1).
(3)本発明の少なくとも一実施形態に係るエンジン用軸受メタル(1)は、
 コンロッド(5)の大端部(6)に形成された貫通孔(T)に設置されたクランクシャフト(9)のクランクピン(91)である軸(S)を回転可能に支持するための軸受メタル(1)であって、
 前記貫通孔(T)の内周面に設置される本体部(2)と、
 前記本体部(2)の内周側に形成された、前記軸(S)に対して摺動可能に構成される摺動面(3)と、を備え、
 前記本体部(2)の内部の少なくとも一部には、周囲の部分よりも低い剛性を有することにより、前記摺動面(3)の両方の端部側を弾性変形可能に支持する柔支持部(4)が形成されている。
(3) The engine bearing metal (1) according to at least one embodiment of the present invention is
A bearing for rotatably supporting a shaft (S) which is a crank pin (91) of a crankshaft (9) installed in a through hole (T) formed in a large end (6) of a connecting rod (5). Metal (1)
The main body (2) installed on the inner peripheral surface of the through hole (T) and
A sliding surface (3) formed on the inner peripheral side of the main body (2) and configured to be slidable with respect to the shaft (S) is provided.
A flexible support portion that elastically deformably supports both end sides of the sliding surface (3) by having at least a part of the inside of the main body portion (2) having a rigidity lower than that of the surrounding portion. (4) is formed.
 上記(3)の構成によれば、コンロッド(5)の大端部(6)に形成されている貫通孔(T)に設置された軸受メタル(1)の本体部(2)には、その摺動面(3)の両方の端部側を弾性変形可能に支持するための柔支持部(4)が形成されている。これによって、軸受メタル(1)によって摺動可能に支持されるクランクピン(91)(軸(S))が曲がると、クランクピン(91)の曲がる方向に軸受メタル(1)の摺動面(3)の端部側も曲がることができるので、軸受メタル(1)の端部へのクランクピン(91)の片当たりを防止することができる。したがって、軸受メタル(1)の摩耗や焼き付きを防止することができ、エンジンのさらなる軽量化や高出力化を行うことができる。 According to the configuration of (3) above, the main body portion (2) of the bearing metal (1) installed in the through hole (T) formed in the large end portion (6) of the connecting rod (5) has its structure. A flexible support portion (4) for elastically deformably supporting both end sides of the sliding surface (3) is formed. As a result, when the crank pin (91) (shaft (S)) slidably supported by the bearing metal (1) is bent, the sliding surface (1) of the bearing metal (1) is bent in the bending direction of the crank pin (91). Since the end side of 3) can also be bent, it is possible to prevent the crank pin (91) from hitting the end of the bearing metal (1). Therefore, it is possible to prevent wear and seizure of the bearing metal (1), and it is possible to further reduce the weight and increase the output of the engine.
(4)幾つかの実施形態では、上記(3)の構成において、
 前記柔支持部(4)は、前記貫通孔(T)の断面中心を通る中心線よりも、前記コンロッド(5)の軸方向における大端部(6)側方向および小端部(7)側方向の両方向にそれぞれ設けられている。
(4) In some embodiments, in the configuration of (3) above,
The flexible support portion (4) is closer to the large end portion (6) side and the small end portion (7) side in the axial direction of the connecting rod (5) than the center line passing through the center of the cross section of the through hole (T). It is provided in both directions.
 上記(4)の構成によれば、柔支持部(4)は、大端部(6)の貫通孔(T)に設置された軸受メタル(1)の本体部(2)における、クランクピン(91)の片当たりが大きい部分などの片当たりが生じ易い部分に設けられる。これによって、軸受メタル(1)の端部にクランクピン(91)が片当たりするのを防止することができる。 According to the configuration of (4) above, the flexible support portion (4) is a crank pin (2) in the main body portion (2) of the bearing metal (1) installed in the through hole (T) of the large end portion (6). It is provided in a portion where one-sided contact is likely to occur, such as a portion where one-sided contact is large in 91). This makes it possible to prevent the crank pin (91) from hitting one end of the bearing metal (1).
(5)本発明の少なくとも一実施形態に係るエンジン用軸受メタル(1)は、
 エンジン本体に形成された貫通孔(T)に設置されたクランクシャフト(9)のクランクジャーナルである軸(S)を回転可能に支持するための軸受メタル(1)であって、
 前記貫通孔(T)の内周面に設置される本体部(2)と、
 前記本体部(2)の内周側に形成された、前記軸(S)に対して摺動可能に構成される摺動面(3)と、を備え、
 前記本体部(2)の内部の少なくとも一部には、周囲の部分よりも低い剛性を有することにより、前記摺動面(3)の少なくとも一方の端部側を弾性変形可能に支持する柔支持部(4)が形成されている。
(5) The engine bearing metal (1) according to at least one embodiment of the present invention is
A bearing metal (1) for rotatably supporting a shaft (S) which is a crank journal of a crankshaft (9) installed in a through hole (T) formed in an engine body.
The main body (2) installed on the inner peripheral surface of the through hole (T) and
A sliding surface (3) formed on the inner peripheral side of the main body (2) and configured to be slidable with respect to the shaft (S) is provided.
A flexible support that elastically deformably supports at least one end side of the sliding surface (3) by having at least a part of the inside of the main body portion (2) having a rigidity lower than that of the surrounding portion. The part (4) is formed.
 上記(5)の構成によれば、シリンダブロックといったエンジン本体(エンジンフレーム)に形成されている、クランクシャフト(9)を構成するクランクジャーナルが挿通される貫通孔(T)に設置された軸受メタル(1)の本体部(2)には、その摺動面(3)の両方の端部側を弾性変形可能に支持するための柔支持部(4)が形成されている。これによって、軸受メタル(1)によって摺動可能に支持されるクランクジャーナル(軸(S))が曲がると、クランクジャーナル(92)の曲がる方向に軸受メタル(1)の摺動面(3)の端部側も曲がることができるので、軸受メタル(1)の端部へのクランクジャーナル(92)の片当たりを防止することができる。したがって、軸受メタル(1)の摩耗や焼き付きを防止することができ、エンジンのさらなる軽量化や高出力化を行うことができる。 According to the configuration of (5) above, the bearing metal installed in the through hole (T) formed in the engine body (engine frame) such as the cylinder block through which the crank journal constituting the crankshaft (9) is inserted. A flexible support portion (4) for elastically deformably supporting both end sides of the sliding surface (3) is formed on the main body portion (2) of the (1). As a result, when the crank journal (shaft (S)) slidably supported by the bearing metal (1) is bent, the sliding surface (3) of the bearing metal (1) is bent in the bending direction of the crank journal (92). Since the end side can also be bent, it is possible to prevent the crank journal (92) from hitting the end of the bearing metal (1). Therefore, it is possible to prevent wear and seizure of the bearing metal (1), and it is possible to further reduce the weight and increase the output of the engine.
(6)幾つかの実施形態では、上記(5)の構成において、
 前記柔支持部(4)は、前記貫通孔(T)の断面中心を通る中心線よりも、前記エンジン本体の下方側に設けられている。
(6) In some embodiments, in the configuration of (5) above,
The flexible support portion (4) is provided below the engine main body with respect to the center line passing through the center of the cross section of the through hole (T).
 上記(6)の構成によれば、柔支持部(4)は、エンジン本体の貫通孔(T)に設置された軸受メタル(1)の本体部(2)における、クランクジャーナル(92)の片当たりが大きい部分などの片当たりが生じ易い部分に設けられる。これによって、軸受メタル(1)の端部にクランクピン(91)が片当たりするのを防止することができる。 According to the configuration of (6) above, the flexible support portion (4) is a piece of the crank journal (92) in the main body portion (2) of the bearing metal (1) installed in the through hole (T) of the engine main body. It is provided in a part where one-sided contact is likely to occur, such as a part where the hit is large. This makes it possible to prevent the crank pin (91) from hitting one end of the bearing metal (1).
(7)幾つかの実施形態では、上記(1)~(6)の構成において、
 前記柔支持部(4)は、前記本体部(2)における中央よりも端部側に形成されている。
(7) In some embodiments, in the configurations (1) to (6) above,
The flexible support portion (4) is formed on the end side of the main body portion (2) with respect to the center.
 上記(7)の構成によれば、柔支持部(4)は、軸受メタル(1)の中央よりも端部側のみに設けられる。これによって、軸受メタル(1)の剛性を適正に保ちつつ、軸(S)の片当たりを適切に防止することができる。 According to the configuration of (7) above, the flexible support portion (4) is provided only on the end side of the center of the bearing metal (1). As a result, it is possible to appropriately prevent one-sided contact of the shaft (S) while maintaining the rigidity of the bearing metal (1) appropriately.
(8)幾つかの実施形態では、上記(7)の構成において、
 前記柔支持部(4)は、前記軸受メタル(1)の断面中心を通る中心線に沿って互いに並ぶ第1部分、および前記第1部分よりも前記摺動面(3)の端部側に位置する第2部分を含み、
 前記第2部分の剛性は、前記第1部分の剛性よりも低い。
(8) In some embodiments, in the configuration of (7) above,
The flexible support portions (4) are arranged on a first portion aligned with each other along a center line passing through the center of the cross section of the bearing metal (1), and on the end side of the sliding surface (3) with respect to the first portion. Including the second part located
The rigidity of the second portion is lower than the rigidity of the first portion.
 上記(8)の構成によれば、柔支持部(4)の剛性は、軸受メタル(1)の中心線の延在方向に沿って、軸受メタル(1)の端部に位置する部分の方がその中央に位置する部分よりも小さい。これによって、上記の中心線の延在方向に沿った柔支持部(4)の厚さ(高さ幅)が同じであったとしても、軸受メタル(1)を、端部側にある部分ほど曲がり易くするように構成することができる。よって、軸受メタル(1)の端部への軸(S)の片当たりをより適切に防止することができる。 According to the configuration of (8) above, the rigidity of the flexible support portion (4) is toward the portion located at the end of the bearing metal (1) along the extending direction of the center line of the bearing metal (1). Is smaller than the central part. As a result, even if the thickness (height width) of the flexible support portion (4) along the extending direction of the center line is the same, the bearing metal (1) is placed closer to the end side. It can be configured to be easy to bend. Therefore, it is possible to more appropriately prevent one-sided contact of the shaft (S) with the end portion of the bearing metal (1).
(9)幾つかの実施形態では、上記(7)の構成において、
 前記柔支持部(4)は、前記軸受メタル(1)の断面中心を通る中心線に沿って互いに並ぶ第1部分、および前記第1部分よりも前記摺動面(3)の端部側に位置する第2部分を含み、
 前記第2部分の剛性は、前記第1部分の剛性と等しい。
(9) In some embodiments, in the configuration of (7) above,
The flexible support portions (4) are arranged on a first portion aligned with each other along a center line passing through the center of the cross section of the bearing metal (1), and on the end side of the sliding surface (3) with respect to the first portion. Including the second part located
The rigidity of the second portion is equal to the rigidity of the first portion.
 上記(9)の構成によれば、柔支持部(4)の剛性は、軸受メタル(1)の中心線の延在方向に沿って等しくなるように設定される。これによって、柔支持部(4)の厚さ(上記の高さ幅)を変えるなどすることにより、軸受メタル(1)の摺動面(3)が、上記の中心線の延在方向における端部側にある部分ほど曲がり易くすることができる。よって、軸受メタル(1)の端部へ軸(S)の片当たりをより適切に防止することができる。 According to the configuration of (9) above, the rigidity of the flexible support portion (4) is set to be equal along the extending direction of the center line of the bearing metal (1). As a result, by changing the thickness (height width) of the flexible support portion (4), the sliding surface (3) of the bearing metal (1) becomes an end in the extending direction of the center line. The part closer to the part can be bent more easily. Therefore, it is possible to more appropriately prevent the shaft (S) from hitting the end of the bearing metal (1).
(10)幾つかの実施形態では、上記(8)~(9)の構成において、
 エンジンの駆動時における前記軸受メタル(1)の変形量は、前記中心線に沿って前記摺動面(3)の端部側に向かうにつれて大きくなるように構成される。
(10) In some embodiments, in the configurations (8) to (9) above,
The amount of deformation of the bearing metal (1) when the engine is driven is configured to increase toward the end side of the sliding surface (3) along the center line.
 上記(10)の構成によれば、軸受メタル(1)において、上記の側面断面視におけるコンロッド(5)の径方向の外側にある部分ほど曲がり易くすることができ、軸受メタル(1)の端部への軸(S)の片当たりをより適切に防止することができる。 According to the configuration of the above (10), in the bearing metal (1), the portion on the outer side in the radial direction of the connecting rod (5) in the side sectional view can be easily bent, and the end of the bearing metal (1) can be easily bent. It is possible to more appropriately prevent one-sided contact of the shaft (S) with the portion.
(11)幾つかの実施形態では、上記(1)~(10)の構成において、
 前記柔支持部(4)は、前記貫通孔(T)の断面中心を通る中心線に沿って視認した正面視(例えば図7~図8)において、前記摺動面(3)に沿って延在するように設けられている。
 上記(11)の構成によれば、軸(S)の片当たりが大きい部分をカバーするように、柔支持部(4)を設けることができる。
(11) In some embodiments, in the configurations (1) to (10) above,
The flexible support portion (4) extends along the sliding surface (3) in a front view (for example, FIGS. 7 to 8) visually recognized along a center line passing through the center of the cross section of the through hole (T). It is provided to be present.
According to the configuration of (11) above, the flexible support portion (4) can be provided so as to cover the portion of the shaft (S) having a large one-sided contact.
(12)幾つかの実施形態では、上記(11)の構成において、
 前記柔支持部(4)は、前記軸受メタル(1)を前記中心線の延在方向に沿って視認した正面視(例えば図7)において、第3部分(Pc)と、前記第3部分(Pc)よりも端部側に位置する第4部分(Pd)とを含み、
 前記第4部分(Pd)の剛性は、前記第3部分(Pc)の剛性よりも高い。
(12) In some embodiments, in the configuration of (11) above,
The flexible support portion (4) has a third portion (Pc) and a third portion (Pc) in a front view (for example, FIG. 7) in which the bearing metal (1) is visually recognized along the extending direction of the center line. Including the fourth part (Pd) located on the end side of Pc),
The rigidity of the fourth portion (Pd) is higher than the rigidity of the third portion (Pc).
 上記(12)の構成によれば、上記の正面視(例えば図7)において、柔支持部(4)の剛性は、その端部側の部分(Pd)の方が、この部分(Pd)よりも中央側に位置する部分(Pc)よりも高い。片当たりにより軸受メタル(1)に作用する荷重は、片当たりが最も大きい部分から軸受メタル(1)の周方向の両側に向かうほど小さくなる。これにより、柔支持部(4)の厚さ(上記の高さ幅(H))が同じであったとしても、軸受メタル(1)における、柔支持部(4)の中央側の部分が位置する部分ほど曲がり易くすることができる。よって、例えば正面視(例えば図7)において軸受メタル(1)の周方向に沿って延在する柔支持部(4)の中央(正面中央位置)を、軸受メタル(1)への軸(S)の片当たりが最も大きい部分に合わせつつ、上記の剛性の関係を満たすように柔支持部(4)を構成すれば、軸受メタル(1)への軸(S)の片当たりが大きい部分ほど、軸受メタル(1)が軸(S)の片当たりに合わせて曲がり易くすることができる。 According to the configuration of the above (12), in the above front view (for example, FIG. 7), the rigidity of the flexible support portion (4) is higher in the end side portion (Pd) than in this portion (Pd). Is also higher than the part (Pc) located on the central side. The load acting on the bearing metal (1) due to one-sided contact decreases from the portion having the largest one-sided contact toward both sides of the bearing metal (1) in the circumferential direction. As a result, even if the thickness of the flexible support portion (4) (the above height width (H)) is the same, the central portion of the flexible support portion (4) in the bearing metal (1) is positioned. The more you bend, the easier it is to bend. Therefore, for example, in the front view (for example, FIG. 7), the center (front center position) of the flexible support portion (4) extending along the circumferential direction of the bearing metal (1) is set to the axis (S) with respect to the bearing metal (1). If the flexible support portion (4) is configured so as to satisfy the above-mentioned rigidity relationship while adjusting to the portion having the largest one-sided contact with the bearing metal (1), the larger the one-sided contact of the shaft (S) with the bearing metal (1), the larger the portion. , The bearing metal (1) can be easily bent according to the one-sided contact of the shaft (S).
(13)幾つかの実施形態では、上記(11)の構成において、
 前記柔支持部(4)は、前記中心線に沿って視認した正面視(例えば図8)において、第3部分(Pc)と、前記第3部分(Pc)よりも前記摺動面(3)の端部側に位置する第4部分(Pd)とを含み、
 前記第4部分(Pd)の剛性は、前記第3部分(Pc)の剛性と等しい。
(13) In some embodiments, in the configuration of (11) above,
The flexible support portion (4) has a third portion (Pc) and a sliding surface (3) rather than the third portion (Pc) in a front view (for example, FIG. 8) visually recognized along the center line. Including the fourth part (Pd) located on the end side of
The rigidity of the fourth portion (Pd) is equal to the rigidity of the third portion (Pc).
 上記(13)の構成によれば、上記の正面視(例えば図8)において、柔支持部(4)の剛性は、その端部側の部分(Pd)と、この部分(Pd)よりも中央側に位置する部分(Pc)とで等しい。上述したように、軸受メタル(1)への軸(S)の片当たりは、軸(S)の片当たりが最も大きい部分から軸受メタル(1)の周方向の両側に向かうほど小さくなる。よって、例えば正面視(例えば図8)において軸受メタル(1)の周方向に沿って延在する柔支持部(4)の中央(正面中央位置)を、軸受メタル(1)への軸(S)の片当たりが最も大きい部分に合わせつつ、上記の剛性の関係を満たすように柔支持部(4)を構成すれば、柔支持部(4)の厚さ(上記の高さ幅(H))を、その端部側の部分(Pd)よりも中央側に位置する部分(Pc)の方を大きくすることで、軸受メタル(1)への軸(S)の片当たりが大きい部分ほど、軸受メタル(1)が軸(S)の片当たりに合わせて曲がり易くすることができる。 According to the configuration of the above (13), in the above front view (for example, FIG. 8), the rigidity of the flexible support portion (4) is centered on the end side portion (Pd) and this portion (Pd). It is equal to the part (Pc) located on the side. As described above, the one-sided contact of the shaft (S) with respect to the bearing metal (1) becomes smaller from the portion where the one-sided contact of the shaft (S) is the largest toward both sides of the bearing metal (1) in the circumferential direction. Therefore, for example, in the front view (for example, FIG. 8), the center (front center position) of the flexible support portion (4) extending along the circumferential direction of the bearing metal (1) is set to the axis (S) with respect to the bearing metal (1). If the flexible support portion (4) is configured so as to satisfy the above-mentioned rigidity relationship while adjusting to the portion having the largest one-sided contact of), the thickness of the flexible support portion (4) (the above-mentioned height width (H)). ) Is made larger at the portion (Pc) located on the center side than at the end side portion (Pd), so that the portion where the shaft (S) with the bearing metal (1) has a larger one-sided contact with the bearing metal (1) becomes larger. The bearing metal (1) can be easily bent according to the one-sided contact of the shaft (S).
(14)幾つかの実施形態では、上記(1)~(13)の構成において、
 前記柔支持部(4)は、空洞部を有する。
 上記(14)の構成によれば、柔支持部(4)における空洞部の粗密を変えることで、柔支持部(4)の剛性を所望の大きさに変えることができる。
(14) In some embodiments, in the configurations (1) to (13) above,
The flexible support portion (4) has a hollow portion.
According to the configuration of the above (14), the rigidity of the flexible support portion (4) can be changed to a desired size by changing the density of the cavity portion in the flexible support portion (4).
(15)幾つかの実施形態では、上記(14)の構成において、
 前記柔支持部(4)は、ポーラス構造を有する。
 上記(15)の構成によれば、柔支持部(4)は、例えばラティス構造などのポーラス(多孔質)な構造(ポーラス構造)を有する。3Dプリンタといった三次元造形装置などを用いて造形されるラティス構造により柔支持部(4)を適切に設けることができる。
(15) In some embodiments, in the configuration of (14) above,
The flexible support portion (4) has a porous structure.
According to the configuration of (15) above, the flexible support portion (4) has a porous structure (porous structure) such as a lattice structure. The flexible support portion (4) can be appropriately provided by the lattice structure formed by using a three-dimensional modeling device such as a 3D printer.
(16)幾つかの実施形態では、上記(1)~(15)の構成において、
 前記柔支持部(4)は、前記軸(S)が曲がることにより受ける荷重の向きに弾性変形する。
 上記(16)の構成によれば、柔支持部(4)は、曲がった状態の軸(S)から受ける片当たりの向きに弾性変形する。これによって、軸受メタル(1)の端部側が曲がることができるので、軸受メタル(1)の端部に軸(S)が片当たりするのを防止することができる。
(16) In some embodiments, in the configurations (1) to (15) above,
The flexible support portion (4) is elastically deformed in the direction of the load received by bending the shaft (S).
According to the configuration of (16) above, the flexible support portion (4) is elastically deformed in the direction of one-sided contact received from the bent shaft (S). As a result, the end side of the bearing metal (1) can be bent, so that it is possible to prevent the shaft (S) from hitting the end of the bearing metal (1).
1    軸受メタル
1c   クランクピン軸受
1m   主軸受
1p   ピストンピン軸受
2    本体部
3    摺動面
4    柔支持部
5    コンロッド
5s   連接棒
5b   ボルト
6    大端部
6t   クランクピン孔(貫通孔)
7    小端部
71   ピストンピン(軸)
7t   ピストンピン孔(貫通孔)
9    クランクシャフト
91   クランクピン(軸)
92   クランクジャーナル(軸)
94   開口
T    貫通孔
Et   主軸孔(貫通孔)
S    軸
CL   軸受メタル、貫通孔の中心線
Ds   ロッド軸方向
Dr   中心線方向(中心線の延在方向)
C    軸受メタル中央
Cb   正面中央位置(柔支持部の正面視における中央)
R    柔支持部の端部に付けられたアール
H    柔支持部の高さ幅
W    柔支持部の奥行幅
Wa   軸受メタルの端部から中央までの距離
Pa   柔支持部の第1部分
Pb   柔支持部の第2部分
Pc   柔支持部の第3部分
Pd   柔支持部の第4部分
1 Bearing metal 1c Crank pin bearing 1m Main bearing 1p Piston pin bearing 2 Main body 3 Sliding surface 4 Flexible support 5 Connecting rod 5b Bolt 6 Large end 6t Crank pin hole (through hole)
7 Small end 71 Piston pin (shaft)
7t piston pin hole (through hole)
9 Crankshaft 91 Crank pin (shaft)
92 Crank journal (axis)
94 Aperture T Through hole Et Main shaft hole (through hole)
S-axis CL bearing metal, center line of through hole Ds rod axial direction Dr center line direction (extending direction of center line)
C Bearing metal center Cb Front center position (center in front view of flexible support)
R Height and width of the soft support part attached to the end of the soft support part W Depth width of the soft support part Wa Distance from the end to the center of the bearing metal Pa First part of the soft support part Pb Soft support part 2nd part Pc 3rd part of flexible support Pd 4th part of flexible support

Claims (16)

  1.  コンロッドの小端部に形成された貫通孔に設置されたピストンピンである軸に対して前記コンロッドを揺動可能に支持するための軸受メタルであって、
     前記貫通孔の内周面に設置される本体部と、
     前記本体部の内周側に形成された、前記軸に対して摺動可能に構成される摺動面と、を備え、
     前記本体部の内部の少なくとも一部には、周囲の部分よりも低い剛性を有することにより、前記摺動面の両方の端部側を弾性変形可能に支持する柔支持部が形成されているエンジン用軸受メタル。
    A bearing metal for swingably supporting the connecting rod with respect to a shaft which is a piston pin installed in a through hole formed at a small end of the connecting rod.
    The main body installed on the inner peripheral surface of the through hole and
    A sliding surface formed on the inner peripheral side of the main body portion and configured to be slidable with respect to the shaft is provided.
    An engine in which at least a part of the inside of the main body has a flexible support portion that elastically deformably supports both end sides of the sliding surface by having a rigidity lower than that of the surrounding portion. For bearing metal.
  2.  前記柔支持部は、前記貫通孔の断面中心を通る中心線よりも、前記コンロッドの軸方向における大端部側方向に設けられている請求項1に記載のエンジン用軸受メタル。 The engine bearing metal according to claim 1, wherein the flexible support portion is provided in the direction toward the large end portion in the axial direction of the connecting rod with respect to the center line passing through the cross-sectional center of the through hole.
  3.  コンロッドの大端部に形成された貫通孔に設置されたクランクシャフトのクランクピンである軸を回転可能に支持するための軸受メタルであって、
     前記貫通孔の内周面に設置される本体部と、
     前記本体部の内周側に形成された、前記軸に対して摺動可能に構成される摺動面と、を備え、
     前記本体部の内部の少なくとも一部には、周囲の部分よりも低い剛性を有することにより、前記摺動面の両方の端部側を弾性変形可能に支持する柔支持部が形成されているエンジン用軸受メタル。
    A bearing metal for rotatably supporting a shaft, which is a crank pin of a crankshaft installed in a through hole formed at the large end of a connecting rod.
    The main body installed on the inner peripheral surface of the through hole and
    A sliding surface formed on the inner peripheral side of the main body portion and configured to be slidable with respect to the shaft is provided.
    An engine in which at least a part of the inside of the main body has a flexible support portion that elastically deformably supports both end sides of the sliding surface by having a rigidity lower than that of the surrounding portion. For bearing metal.
  4.  前記柔支持部は、前記貫通孔の断面中心を通る中心線よりも、前記コンロッドの軸方向における大端部側方向および小端部側方向の両方向にそれぞれ設けられている請求項3に記載のエンジン用軸受メタル。 The third aspect of the present invention, wherein the flexible support portion is provided in both the large end side direction and the small end side direction in the axial direction of the connecting rod with respect to the center line passing through the cross-sectional center of the through hole. Bearing metal for engines.
  5.  エンジン本体に形成された貫通孔に設置されたクランクシャフトのクランクジャーナルである軸を回転可能に支持するための軸受メタルであって、
     前記貫通孔の内周面に設置される本体部と、
     前記本体部の内周側に形成された、前記軸に対して摺動可能に構成される摺動面と、を備え、
     前記本体部の内部の少なくとも一部には、周囲の部分よりも低い剛性を有することにより、前記摺動面の少なくとも一方の端部側を弾性変形可能に支持する柔支持部が形成されているエンジン用軸受メタル。
    It is a bearing metal for rotatably supporting the shaft, which is the crank journal of the crankshaft installed in the through hole formed in the engine body.
    The main body installed on the inner peripheral surface of the through hole and
    A sliding surface formed on the inner peripheral side of the main body portion and configured to be slidable with respect to the shaft is provided.
    A flexible support portion is formed in at least a part of the inside of the main body portion to elastically and deformably support at least one end side of the sliding surface by having a rigidity lower than that of the surrounding portion. Bearing metal for engines.
  6.  前記柔支持部は、前記貫通孔の断面中心を通る中心線よりも、前記エンジン本体の下方側に設けられている請求項5に記載のエンジン用軸受メタル。 The engine bearing metal according to claim 5, wherein the flexible support portion is provided below the center line passing through the center of the cross section of the through hole.
  7.  前記柔支持部は、前記本体部における中央よりも端部側に形成されている請求項1~6のいずれか1項に記載のエンジン用軸受メタル。 The engine bearing metal according to any one of claims 1 to 6, wherein the flexible support portion is formed on the end side of the main body portion with respect to the center.
  8.  前記柔支持部は、前記軸受メタルの断面中心を通る中心線に沿って互いに並ぶ第1部分、および前記第1部分よりも前記摺動面の端部側に位置する第2部分を含み、
     前記第2部分の剛性は、前記第1部分の剛性よりも低い請求項7に記載のエンジン用軸受メタル。
    The flexible support includes a first portion aligned with each other along a center line passing through the center of the cross section of the bearing metal, and a second portion located closer to the end of the sliding surface than the first portion.
    The engine bearing metal according to claim 7, wherein the rigidity of the second portion is lower than the rigidity of the first portion.
  9.  前記柔支持部は、前記軸受メタルの断面中心を通る中心線に沿って互いに並ぶ第1部分、および前記第1部分よりも前記摺動面の端部側に位置する第2部分を含み、
     前記第2部分の剛性は、前記第1部分の剛性と等しい請求項7に記載のエンジン用軸受メタル。
    The flexible support includes a first portion aligned with each other along a center line passing through the center of the cross section of the bearing metal, and a second portion located closer to the end of the sliding surface than the first portion.
    The engine bearing metal according to claim 7, wherein the rigidity of the second portion is equal to the rigidity of the first portion.
  10.  エンジンの駆動時における前記軸受メタルの変形量は、前記中心線に沿って前記摺動面の端部側に向かうにつれて大きくなるように構成される請求項8または9に記載のエンジン用軸受メタル。 The engine bearing metal according to claim 8 or 9, wherein the amount of deformation of the bearing metal when the engine is driven increases toward the end side of the sliding surface along the center line.
  11.  前記柔支持部は、前記貫通孔の断面中心を通る中心線に沿って視認した正面視において、前記摺動面に沿って延在するように設けられている請求項1~10のいずれか1項に記載のエンジン用軸受メタル。 Any one of claims 1 to 10 provided so that the flexible support portion extends along the sliding surface in a front view viewed along a center line passing through the center of the cross section of the through hole. Bearing metal for engines as described in the section.
  12.  前記柔支持部は、前記軸受メタルを前記中心線の延在方向に沿って視認した正面視において、第3部分と、前記第3部分よりも端部側に位置する第4部分とを含み、
     前記第4部分の剛性は、前記第3部分の剛性よりも高い請求項11に記載のエンジン用軸受メタル。
    The flexible support portion includes a third portion and a fourth portion located on the end side of the third portion in a front view in which the bearing metal is visually recognized along the extending direction of the center line.
    The engine bearing metal according to claim 11, wherein the rigidity of the fourth portion is higher than the rigidity of the third portion.
  13.  前記柔支持部は、前記中心線に沿って視認した正面視において、第3部分と、前記第3部分よりも前記摺動面の端部側に位置する第4部分とを含み、
     前記第4部分の剛性は、前記第3部分の剛性と等しい請求項11に記載のエンジン用軸受メタル。
    The flexible support portion includes a third portion and a fourth portion located closer to the end portion of the sliding surface than the third portion in a front view viewed along the center line.
    The engine bearing metal according to claim 11, wherein the rigidity of the fourth portion is equal to the rigidity of the third portion.
  14.  前記柔支持部は、空洞部を有する請求項1~13のいずれか1項に記載のエンジン用軸受メタル。 The engine bearing metal according to any one of claims 1 to 13, wherein the flexible support portion has a hollow portion.
  15.  前記柔支持部は、ポーラス構造を有する請求項14に記載のエンジン用軸受メタル。 The engine bearing metal according to claim 14, wherein the flexible support portion has a porous structure.
  16.  前記柔支持部は、前記軸が曲がることにより受ける荷重の向きに弾性変形する請求項1~15のいずれか1項に記載のエンジン用軸受メタル。 The engine bearing metal according to any one of claims 1 to 15, wherein the flexible support portion is elastically deformed in the direction of a load received by bending the shaft.
PCT/JP2020/024674 2020-01-31 2020-06-23 Bearing metal for engine WO2021152880A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-015542 2020-01-31
JP2020015542A JP7471097B2 (en) 2020-01-31 2020-01-31 Engine bearing metal

Publications (1)

Publication Number Publication Date
WO2021152880A1 true WO2021152880A1 (en) 2021-08-05

Family

ID=77079844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024674 WO2021152880A1 (en) 2020-01-31 2020-06-23 Bearing metal for engine

Country Status (2)

Country Link
JP (1) JP7471097B2 (en)
WO (1) WO2021152880A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154545U (en) * 1984-09-17 1986-04-12
JPH07167149A (en) * 1993-12-16 1995-07-04 Mitsubishi Heavy Ind Ltd Partial contact prevention bearing metal
JPH09273537A (en) * 1996-04-05 1997-10-21 Mitsubishi Heavy Ind Ltd Connecting rod bearing
JP2002266848A (en) * 2001-03-07 2002-09-18 Daido Metal Co Ltd Sliding bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6154545U (en) * 1984-09-17 1986-04-12
JPH07167149A (en) * 1993-12-16 1995-07-04 Mitsubishi Heavy Ind Ltd Partial contact prevention bearing metal
JPH09273537A (en) * 1996-04-05 1997-10-21 Mitsubishi Heavy Ind Ltd Connecting rod bearing
JP2002266848A (en) * 2001-03-07 2002-09-18 Daido Metal Co Ltd Sliding bearing

Also Published As

Publication number Publication date
JP2021124124A (en) 2021-08-30
JP7471097B2 (en) 2024-04-19

Similar Documents

Publication Publication Date Title
US8881695B2 (en) Variable compression ratio internal combustion engine
JP6185702B2 (en) Slide bearing and bearing device
US11225998B2 (en) Half bearing and sliding bearing
JP5218305B2 (en) Crankshaft of an internal combustion engine having a multi-link type piston-crank mechanism
JP2015145710A (en) slide bearing
JP5577913B2 (en) Connecting pin bearing structure of link mechanism
JP4967733B2 (en) Crankshaft
EP3171045B1 (en) Crank shaft for reciprocating engine
US10385911B2 (en) Crankshaft for reciprocating engine, and design method thereof
CN106164508B (en) Rub the plain bearing arrangement minimized
WO2021152880A1 (en) Bearing metal for engine
JP2007232112A (en) Bearing structure of double-link piston crank
JP4888273B2 (en) Multi-link type piston-crank mechanism upper pin connection structure
JP7150626B2 (en) connecting rod
US10330142B2 (en) Crankshaft for reciprocating engine
JP7083770B2 (en) Connecting rod
JP7124571B2 (en) internal combustion engine
JP2017180523A (en) Bearing cap
KR101799744B1 (en) Link-type piston crank mechanism of internal combustion engine
JP7089898B2 (en) Variable compression ratio internal combustion engine
JP2021148173A (en) Slide bearing
JP2022170586A (en) Bearing metal for engine
JP2008115936A (en) Connecting rod
JP2022180014A (en) internal combustion engine
JP5321148B2 (en) Double link variable compression ratio internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916918

Country of ref document: EP

Kind code of ref document: A1