WO2021152851A1 - Method for producing packaging container, and packaging container - Google Patents

Method for producing packaging container, and packaging container Download PDF

Info

Publication number
WO2021152851A1
WO2021152851A1 PCT/JP2020/003791 JP2020003791W WO2021152851A1 WO 2021152851 A1 WO2021152851 A1 WO 2021152851A1 JP 2020003791 W JP2020003791 W JP 2020003791W WO 2021152851 A1 WO2021152851 A1 WO 2021152851A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage product
packaging container
paper
resin
compression ratio
Prior art date
Application number
PCT/JP2020/003791
Other languages
French (fr)
Japanese (ja)
Inventor
宏紀 長谷川
Original Assignee
株式会社エイエムジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エイエムジー filed Critical 株式会社エイエムジー
Priority to JP2020529652A priority Critical patent/JP6851673B1/en
Priority to PCT/JP2020/003791 priority patent/WO2021152851A1/en
Publication of WO2021152851A1 publication Critical patent/WO2021152851A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J3/00Manufacture of articles by pressing wet fibre pulp, or papier-mâché, between moulds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J3/00Manufacture of articles by pressing wet fibre pulp, or papier-mâché, between moulds
    • D21J3/10Manufacture of articles by pressing wet fibre pulp, or papier-mâché, between moulds of hollow bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a method for manufacturing a packaging container for packaging a container containing cosmetics such as mascara, and a packaging container.
  • paper mold is used to mean a method for producing a paper molded product, which includes a step of dispersing plant fibers in a liquid and making it with a wire mesh and a drying step.
  • molded article is used as meaning the paper molded article produced by a paper mold.
  • hygroscopicity means a property that a substance absorbs water
  • high hygroscopicity means that a substance easily absorbs water.
  • hygroscopicity means a property that the substance does not easily absorb water
  • high hygroscopicity means that the substance does not easily absorb water.
  • Paper mold does not use petroleum-derived raw materials, so it has the advantage of having a small impact on the environment.
  • the molded product produced by the paper mold easily absorbs moisture. That is, there is a disadvantageous property that the molded product has high hygroscopicity. When the molded product absorbs water and then the absorbed water evaporates, the molded product does not return to the original shape but is deformed.
  • the present invention provides a method for manufacturing a packaging container using a paper mold and a packaging container, which has a small environmental load and does not easily absorb water.
  • the first invention is a mixed liquid in which a paper and a resin fiber composed of a thermoplastic resin are put into a predetermined liquid to generate a mixed liquid containing the paper fiber constituting the paper and the resin fiber.
  • the compression ratio (d1) which is the ratio of the thickness (d1) of the second pre-stage product to the thickness (d2) of the packaging container, is set to a reference temperature (temp1) in a predetermined temperature range higher than the melting point of the plastic resin.
  • d1 / d2) is set to a predetermined reference compression ratio (n1)
  • the execution time of the molding step is set to a predetermined reference time (t1)
  • the reference compression ratio (n1) and the reference time (t1) are for the packaging.
  • a packaging container in which the ratio of the thermoplastic resin to the paper fiber in the container is defined to be relatively large in the surface side portion with respect to the center side portion in the thickness direction of the packaging container. It is a manufacturing method of.
  • the purpose of using resin in paper molds is generally to increase the mechanical strength of the molded product (hereinafter referred to as "normal purpose"). From the viewpoint of the general purpose, it is desirable that the resin is uniformly distributed inside the molded product, so that manufacturing conditions such that the resin is uniformly distributed are required.
  • standard conditions the standard manufacturing conditions for paper molds for normal purposes are referred to as "standard conditions”. If the amount of resin in the molded product is too small, the increase in mechanical strength will be insufficient. For this reason, the amount of resin is increased, but this loses the advantage of the paper mold that the load on the environment is small.
  • the inventor of the present invention has developed a technique for improving the moisture absorption resistance of a molded product while suppressing the amount of resin from the viewpoint of environmental protection for the purpose of improving the moisture absorption resistance. ..
  • the central portion in the thickness direction of the packaging container as a molded product (the thickness direction of the base material of the packaging container.
  • the "thickness direction of the second pre-stage product” has the same meaning).
  • thermoplastic resin melts and becomes a fluid when heated, but the paper fiber does not become a fluid even when heated, and the thermoplastic resin flows between the paper fibers. It controls the behavior (hereinafter referred to as "flow control").
  • flow control controls the behavior (hereinafter referred to as "flow control").
  • the molten resin is moved to the surface side of the second pre-stage product by applying a predetermined reference compression ratio when compressing the second pre-stage product while heating. Further, by applying a predetermined reference time, the behavior of the resin that has moved to the surface side of the second pre-stage product and returns to the center side is suppressed.
  • the resin located on the center side in the thickness direction of the packaging container has a small contribution to the improvement of hygroscopicity.
  • the configuration of the first invention since a relatively large amount of resin can be distributed on the surface side of the packaging container, a relatively small amount of resin is sufficient for improving hygroscopicity.
  • the second pre-stage product is deformed in the process of the molding process and finally reaches the packaging container, but the state of being deformed to reach the packaging container after the molding process is started is also "second pre-stage product". Called "goods".
  • the reference compression ratio (n1) is such that the molten thermoplastic resin is effectively moved to the surface side of the second pre-stage product of the paper mold. It is a method for manufacturing a packaging container, which is defined as a compression ratio larger than the compression ratio under the standard conditions, which is a standard manufacturing condition.
  • the inventor of the present invention controls the flow of the molten resin to the surface side of the second pre-stage product when the compression ratio when compressing the second pre-stage product to form a packaging container is a standard condition. We found that it could not be implemented effectively. It is considered that this is because when the compression ratio is small, the force for pushing the resin distributed in the central portion in the thickness direction of the second pre-stage product to the surface side is insufficient.
  • the reference compression ratio (n1) is defined as a compression ratio larger than the compression ratio under the standard conditions, which is the standard manufacturing condition of the paper mold. The flow control for moving the second pre-stage product to the surface side can be effectively implemented.
  • thermoplastic resin in a molten state is placed on the surface of the second pre-stage product in the thickness direction of the second pre-stage product during the reference time (t1).
  • the reference time (t1) is defined as a time shorter than the compression time under the standard conditions which are the standard manufacturing conditions of the paper mold. It is possible to limit the behavior of the moved resin returning to the center side.
  • the reference compression ratio (n1) is defined as a compression ratio larger than the standard compression ratio in the paper mold
  • the reference time (t1) is the paper.
  • the inventor of the present invention carries out the molding step as a condition for realizing the flow control for carrying out surface diffusion, at a compression ratio larger than the compression ratio under the standard condition and in a shorter time than the time under the standard condition. I found that it was beneficial.
  • the state in which the resin is relatively largely distributed on the surface side is maintained. Is thought to be possible.
  • the density of the molded product can be increased by the large compression ratio, the mechanical strength of the molded product can be ensured even when the amount of resin is smaller than the amount of resin under the standard conditions. can.
  • the reference compression ratio (n1) is defined as a compression ratio larger than the standard compression ratio by the paper mold, and the reference time (t1) uses the resin fiber in the paper mold. Since the time is specified as shorter than the standard time, the effect of surface diffusion can be sufficiently exerted while ensuring the mechanical strength.
  • the ratio (w2 / w1) of the weight (w2) of the resin fiber to the weight (w1) of the paper fiber is standard in the paper mold.
  • the ratio (w2 / w1) of the weight of the resin fiber (w2) to the weight of the paper fiber (w1) is higher than the standard ratio in the paper mold. Since it is specified as a small ratio, it is possible to exert the effect of surface diffusion while reducing the load on the environment.
  • the sixth invention is a packaging container produced by a base material in which a thermoplastic resin is distributed in paper fibers, and the thermoplastic resin is located on the center side of the base material in the thickness direction of the base material. It is a packaging container that is relatively abundantly distributed in the portion on the surface side of the base material with respect to the portion of the base material.
  • the present invention it is possible to provide a method for manufacturing a packaging container using a paper mold and a packaging container that have a small impact on the environment and do not easily absorb water.
  • FIG. 1 It is a figure which shows the cross section of the product of the packaging container. It is a conceptual diagram for demonstrating the moisture absorption resistance of a packaging container. It is a conceptual diagram which shows the adhesiveness of a packaging container with a plastic film. It is a conceptual diagram which shows the adhesiveness with the aluminum foil of a packaging container.
  • the packaging container 1 (hereinafter referred to as “container 1”) is generated by the base material 2.
  • the container 1 is manufactured by a paper mold using a thermoplastic resin.
  • Container 1 is an example of a packaging container.
  • the base material 2 is composed of a thermoplastic resin (hereinafter, also simply referred to as “resin”) distributed in paper fibers.
  • the base material 2 is a plate-shaped material having a predetermined thickness, and has a first surface 2a, a second surface 2b, and a side surface 2c.
  • a recessed portion 2d is formed on the base material 2 in order to store the cosmetic container.
  • the depressed portion 2d is concave on the first surface 2a and convex on the second surface 2b.
  • a cosmetic container such as a mascara container is arranged in the recessed portion 2d on the first surface 2a side. After that, the plastic film is welded to the entire surface except the recessed portion 2d of the first surface 2a.
  • a metal foil cut into a shape such as a manufacturer's logo is welded to the second surface 2b side.
  • the metal foil is, for example, an aluminum foil.
  • the first surface 2a and the second surface 2b are referred to as "surfaces” of the base material 2.
  • the area between the first surface 2a and the second surface 2b is referred to as the "inside” of the base material 2.
  • the center positions of the first surface 2a and the second surface 2b in the thickness direction of the base material 2 are referred to as "centers" of the base material 2.
  • the region including the center is called the "central region”
  • the region closer to the surface with respect to the "central region” is called the "surface side region”.
  • the "surface”, “inside” or “center” of the container 1 is synonymous with the “surface”, “inside” and “center” of the base material 2. This also applies to the surface, inside, or center of the first pre-stage product 1A and the second pre-stage product 1B, which will be described later, respectively, and the base material (plate-like material) and the first pre-stage product 1A of the first pre-stage product 1A, respectively. (Ii) It means the surface, inside or center of the base material (plate-shaped material) of the first-stage product 1B.
  • the container 1 has a technique (surface diffusion) in which a relatively large amount of resin is distributed on the surface and in the vicinity of the surface (hereinafter, also referred to as “surface side”) as compared with the central portion in the thickness direction of the base material 2. Manufactured by. As a result, in the thickness direction of the base material 2, the thermoplastic resin is distributed in a relatively large amount in the portion on the surface side with respect to the portion on the center side.
  • the standard manufacturing conditions of the paper mold when the resin is used for the purpose of increasing the mechanical strength of the molded product are referred to as "standard conditions".
  • the resin fiber is not used for the purpose of increasing the mechanical strength of the molded product, but is used for improving the moisture absorption resistance.
  • the mechanical strength is realized by a compression ratio larger than the standard condition, as will be described later.
  • the above-mentioned flow control is carried out and surface diffusion is realized by adopting a manufacturing method completely different from the standard conditions.
  • Container 1 is manufactured by the manufacturing system 100.
  • the main components of the manufacturing system 100 are a mixing liquid manufacturing tank 6, a mixing liquid adjusting device 8, a first pre-stage product generating device 10, a drying device 30, and a molding device 20.
  • the mixed liquid production tank 6 is an apparatus for producing a mixed liquid 60 containing paper fibers and resin fibers by putting paper and resin fibers composed of a thermoplastic resin into a predetermined liquid.
  • the mixture manufacturing tank 6 is an example of a mixture manufacturing means.
  • the treatment performed in the mixture manufacturing tank 6 is an example of the mixture generation step.
  • water is used as a predetermined liquid.
  • white copy paper is used.
  • the predetermined liquid is not limited to water.
  • the paper is not limited to white copy paper, and for example, colored copy paper, old newspapers, old magazines, corrugated cardboard, and the like may be used.
  • the resin fiber composed of the thermoplastic resin for example, a resin fiber composed of a polyolefin-based resin is used, but the present invention is not limited to this.
  • a grade of SWP (registered trademark) of Mitsui Chemicals, Inc. called E400 is used as the resin fiber.
  • the melting point of E400 is 135 degrees Celsius (° C.).
  • Water, paper and resin fibers are put into the mixed liquid manufacturing tank 6.
  • a water stream is generated by the stirring device 7 in this state, the paper is decomposed into paper fibers after a lapse of a predetermined time, and a mixed liquid 60 in which the paper fibers and the resin fibers are substantially uniformly dispersed is generated.
  • the ratio (w2 / w1) of the weight (w2) of the resin fiber 64 to the weight (w1) of the paper fiber 62 is a reference ratio (m1) defined in a predetermined range smaller than the ratio under the standard conditions.
  • the percentage (w2 / w1) under standard conditions is 20 percent (%) or more and 40 percent or less, while the reference percentage (m1) is defined in the range of 5 percent or more and 12 percent or less.
  • the reference ratio (m1) is 7%.
  • the mixed liquid 60 generated in the mixed liquid manufacturing tank 6 is transferred to the mixed liquid adjusting device 8 as shown by the arrow F1.
  • the mixture liquid adjusting device 8 foreign matter such as metal is removed from the mixture liquid 60.
  • a predetermined amount of water in the mixed liquid 60 is removed, and the concentration of the mixed liquid 60 is adjusted.
  • the mixture adjusting device 8 is an example of the mixture adjusting means.
  • the process performed in the mixture adjusting device 8 is an example of the mixture adjusting step.
  • the mixed liquid 60 adjusted by the mixed liquid adjusting device 8 is transferred to the first pre-stage product generating device 10 as shown by an arrow F2.
  • the first pre-stage product generation device 10 is composed of a mixing liquid tank 12 and a suction device 14.
  • the mixed liquid 60 adjusted by the mixed liquid adjusting device 8 is put into the mixed liquid tank 12.
  • the suction device 14 includes first-type members 18A and 18B in which a net-like member (not shown) having a plurality of through holes is arranged.
  • the suction device 14 sucks the mixed liquid 60 from above the first mold member 18A and below the mesh member of the first mold member 18A.
  • the first pre-stage product 1A having a predetermined thickness (d0) is produced.
  • the first first-stage product 1A is a product product in which paper fibers and resin fibers are substantially uniformly distributed.
  • the first pre-stage product generating device 10 is an example of the first pre-stage product generating means.
  • the process performed in the first pre-stage product generation device 10 is an example of the first pre-stage product generation step.
  • the first pre-stage product 1A generated by the first pre-stage product generation device 10 is transferred to the drying device 30 by the transfer device 40.
  • the first pre-stage product 1A is dried, the moisture is removed, and the second pre-stage product 1B is produced.
  • the shapes of the first pre-stage product 1A and the second pre-stage product 1B are substantially similar to those of the container 1 shown in FIGS. 1 and 2, and the outer shape thereof is larger than that of the container 1.
  • the second front stage product 1B is transferred to the molding device 20 by the transfer device 50.
  • the container 1 having a predetermined shape is produced by compression molding the second pre-stage product 1B while heating it using the second mold member 22.
  • the molding apparatus 20 is an example of a molding apparatus.
  • the process performed by the molding apparatus 20 is an example of a molding process.
  • the first pre-stage product production step will be described in detail with reference to FIGS. 4 to 7.
  • the first pre-stage product generation device 10 includes a mixing liquid tank 12 and a suction device 14.
  • the mixing liquid tank 12 is a container for storing the liquid, and the mixing liquid 60 is stored.
  • the paper fiber 62 and the resin fiber 64 are practically and uniformly dispersed in the mixed liquid 60 in the mixed liquid tank 12.
  • the suction device 14 is composed of a central member 16, intermediate members 17A and 17B, and first mold members 18A and 18B.
  • the suction device 14 is configured to be rotatable in the direction of arrow A1 in FIG. 5 with the central member 16 as a rotation axis.
  • the central member 16 is connected to a vacuum suction device (not shown).
  • the intermediate members 17A and 17B are hollow members.
  • the first mold members 18A and 18B are molds for forming a plate-shaped first pre-stage product 1A from the mixed liquid 60.
  • the first type members 18A and 18B are box-shaped members having an open surface on the side not connected to the intermediate members 17A and 17B, and the bottom 18a is a net-like member having a large number of through holes (not shown). It is composed of.
  • the bottom portion 18a has a convex portion. The negative pressure generated by the vacuum suction device acts on the net-like member forming the bottom portion 18a via the central member 16 and the intermediate members 17A and
  • the vacuum suction device is operated and the direction toward the first mold member 18A shown by the arrow Z1, that is, upward.
  • the mixed liquid 60 is sucked, as shown in FIG. 5, the paper fibers 62 and the resin fibers 64 in the mixed liquid 60 are laminated on the surface of the net-like member constituting the bottom portion 18a of the first mold member 18A, and have a thickness d0.
  • the first pre-stage product 1A is produced.
  • the thickness d0 of the first pre-stage product 1A is, for example, 3.0 mm (mm).
  • the density of the first pre-stage product 1A is, for example, 0.20 g / cubic centimeter (g / cm 3 ).
  • the suction device 14 rotates in the direction of arrow A1 as shown in FIG. 5, and the first mold member 18A moves upward as shown in FIG. Change the position. Then, the first mold member 18B is repositioned downward and placed in the mixed liquid 60.
  • the first front stage product 1A is held by the holding portion 44 of the transfer device 40.
  • the holding portion 44 of the transfer device 40 is connected to the shaft portion 42.
  • the first front stage product 1A is sucked in the direction of arrow Z1 by a suction mechanism arranged in the shaft portion 42, and is attracted to and held by the holding portion 44 as shown in FIG.
  • a second vacuum suction device may be provided outside the transfer device 40 and connected to the shaft portion 42.
  • the shaft portion 42 moves in the horizontal direction indicated by the arrow X1 to transfer the first pre-stage product 1A to the simple drying device 30.
  • the drying process will be described with reference to FIG.
  • the drying device 30 is a box-shaped device including a belt conveyor 32 and a heater (not shown).
  • the first front stage product 1A is placed on the belt conveyor 32 and moved in the direction of arrow X1.
  • Moisture contained in the first pre-stage product 1A evaporates in the process of moving in the direction of arrow X1 in the drying device 30, and the second pre-stage product 1B is produced.
  • the thickness d1 of the second pre-stage product 1B is, for example, 2.5 mm (mm).
  • the density of the second pre-stage product 1A is, for example, 0.25 g / cubic centimeter (g / cm 3 ).
  • the second front stage product 1B is transferred to the molding device 20 by the transfer device 50.
  • the configuration of the transfer device 50 is the same as the configuration of the transfer device 40.
  • the ratio of the weight of the resin fiber to the weight of the paper fiber is not substantially larger in the region on the surface side in the thickness direction than in the central region. That is, in the second pre-stage product 1B, the resin fibers are substantially uniformly distributed in the paper fibers. Alternatively, in the second pre-stage product 1B, the ratio of the weight of the resin fiber to the weight of the paper fiber is smaller in the region on the surface side in the thickness direction than in the central region.
  • the molding apparatus 20 includes a second mold member 22.
  • the second mold member 22 is composed of an upper mold member 22A and a lower mold member 22B.
  • the upper mold member 22A can move in the vertical direction shown by arrows Z1 and Z2.
  • the upper mold member 22A moves in the vertical direction to open and close the second mold member 22.
  • the upper mold member 22A and the lower mold member 22B are molds for compression molding.
  • a recess 22a is formed in the upper mold member 22A.
  • a convex portion 22b having a shape corresponding to the concave portion 22a is formed in the lower mold member 22B.
  • the shapes of the concave portion 22a and the convex portion 22b correspond to the shape of the depressed portion 2d (see FIGS. 1 and 2).
  • the upper mold member 22A and the lower mold member 22B each have a built-in heater 22c.
  • the heater 22c can generate heat and set the temperature in the cavity generated by the upper mold member 22A and the lower mold member 22B.
  • "the temperature of the upper mold member 22A and the lower mold member 22B” means the temperature in this cavity.
  • the temperature of the upper mold member 22A and the lower mold member 22B is set to a reference temperature (temp1) in a predetermined range higher than the melting point of the resin fiber 64 by adjusting the heater 22c.
  • the reference temperature (temp1) is, for example, a temperature higher than the melting point of the resin fiber 64 based on the melting point, and the degree of the height is in the range of 5 degrees Celsius (° C.) or more and 25 degrees Celsius (° C.) or less. Is regulated.
  • the melting point of the resin fiber 64 is, for example, 135 degrees Celsius (° C.).
  • the temperature in the cavity formed by the upper mold member 22A and the lower mold member 22B is set to, for example, 150 degrees Celsius.
  • the second front stage product 1B is arranged on the lower mold member 22B. Then, the upper mold member 22A is moved downward as shown by the arrow Z2, and as shown in FIGS. 10 and 11, the second front stage product 1B is compressed while being heated.
  • the temperature inside the cavity becomes the reference temperature (temp1).
  • the resin fiber 64 in the second pre-stage product 1B melts, but the paper fiber 62 does not melt. When the resin fiber 64 is melted, it passes between the paper fibers 62 by compression and moves to the surface side of the second pre-stage product 1B.
  • a resin fiber 64 in a molten state and a state in which the resin fiber 64 is solidified after being melted are referred to as “resin”.
  • the code of the resin is shown to be the same as the code of the resin fiber 64.
  • the thickness (d2) of the container 1 is defined as a predetermined thickness.
  • the thickness of the container 1 is, for example, 1.0 mm (mm).
  • the density of container 1 is, for example, 0.64 grams / cubic centimeter (g / cm 3 ).
  • the thickness (d2) of the container 1 is defined in relation to the thickness (d1) of the second first stage product 1B. Alternatively, it may be said that the thickness (d1) of the second pre-stage product 1B is defined by the thickness (d2) of the container 1.
  • the thickness (d1) for making the container 1 into the specifications specified in the present embodiment is the thickness (d1).
  • the thickness d1 of the second pre-stage product 1B is also referred to as "reference thickness d1".
  • the compression ratio (d1 / d2) which is the ratio of the thickness (d1) of the second pre-stage product 1B before entering the molding process to the thickness (d2) of the container 1, is a predetermined reference compression ratio. It is defined as (n1).
  • the reference compression ratio (n1) and the reference time (t1) are set so that the amount of resin in the container 1 is relatively large in the surface side portion with respect to the central portion in the thickness direction of the container 1. Is regulated.
  • the predetermined reference compression ratio (n1) is also defined as a compression ratio that allows the molten resin to effectively move outward in the thickness direction of the second pre-stage product 1B.
  • the reference time (t1) suppresses the behavior of the molten resin moving to the surface side of the second front stage product 1B in the thickness direction of the second front stage product 1B and then returning to the center side of the second front stage product 1B. It is defined as the time that can be done.
  • the reference compression ratio (n1) is defined as a compression ratio in a predetermined range larger than the standard compression ratio.
  • the standard compression ratio is, for example, 1.5 to 2.0, while the reference compression ratio (n1) is, for example, 2.5 or more and 5.0 or less. In this embodiment, the reference compression ratio (n1) is 2.5.
  • the reference compression ratio (n1) is 2.5.
  • the reference time (t1) is defined as a predetermined range of time shorter than the standard time.
  • the standard time is 10 seconds (second)
  • the reference time (t1) is defined between 3 and 7 seconds.
  • the reference time (t1) is 5 seconds.
  • the ratio of the resin to the paper fiber 62 on the surface side in the thickness direction of the container 1 is the paper fiber on the surface side in the thickness direction of the second pre-stage product 1B. It can also be said that it is specified to be larger than the ratio of the resin to 62. Further, in the reference compression ratio (n1) and the reference time (t1), the resin fibers 64 distributed in the central region in the thickness direction of the second pre-stage product 1B are melted, and the resin is in the thickness direction of the second pre-stage product 1B. It can also be specified that the resin moves to the surface side and the resin does not completely return to the central region.
  • the internal state of the second pre-stage product 1B from the state before the second pre-stage product 1B enters the molding process to the container 1 will be conceptually described.
  • the second pre-stage product 1B Before the second pre-stage product 1B enters the molding process, as shown in FIG. 13, the second pre-stage product 1B has a thickness d1 and the resin fiber 64 is substantially uniform in relation to the paper fiber 62. It is distributed in.
  • the second pre-stage product 1B is compressed while being heated by applying pressure from the vertical direction indicated by arrows P1 and P2 by the mold member 22.
  • the resin fiber 64 melts in a step of being compressed from above and below while being heated.
  • the paper fiber 62 does not melt. Therefore, as shown by arrows B1 and B2 in FIG. 15, the molten resin passes between the paper fibers 62 by compression and moves to the surface side of the second pre-stage product 1B.
  • the mold member 22 is completely closed, as shown in FIG. 16, the second front stage product 1B has a thickness d2.
  • the reference time (t1) elapses while the mold member 22 is completely closed, the mold member 22 opens and the temperature in the cavity generated by the mold member 22 decreases. Then, the molten resin is solidified to form the container 1. At this time, the solidified resin is distributed in a relatively large amount on the surface side of the container 1 in the thickness direction of the container 1.
  • the mixed liquid production tank 6 (FIG. 3) is a mixture of paper and resin fibers so that the ratio (w2 / w1) of the weight of the resin fibers 54 (w2) to the weight (w1) of the paper fibers 62 becomes the reference ratio (m1). (See) (see step ST1 in FIG. 17).
  • the first pre-stage product 1A having a predetermined thickness (d0) is generated (step ST2).
  • the first pre-stage product 1A is dried to produce a second pre-stage product 1B having a reference thickness (d1) (step ST3).
  • the second pre-stage product 1B is compression-molded while being heated at the reference temperature (temp1), the reference compressibility (n1), and the reference time (t1) to generate the container 1 (step ST4).
  • the reference temperature (temp1) was 150 degrees Celsius, the reference compression rate (n1) was 2.5, and the reference time (t1) was 5 seconds (sec). Then, the container 1 was left in a closed space where the humidity was set to 85% (%) and the temperature was set to 35 degrees Celsius (° C.) for 12 hours (hour), and the increase in weight was measured.
  • the reference ratio (m1) was 6%
  • the weight increase rate was 5.5%
  • the reference ratio (m1) was 12%
  • the weight increase rate was 4.8%. From this, it can be seen that by increasing the reference ratio (m1) to more than 6%, the rate of increase in weight is reduced and the moisture absorption resistance is improved. It can also be seen that the decrease in the weight increase rate is not proportional to the increase in the reference ratio (m1).
  • the decrease in the weight increase rate becomes slower as the reference ratio (m1) increases. From this, if the resin in which the resin fibers 64 are melted and solidified is distributed in an appropriate ratio in the region on the surface side of the container 1, the resin distributed on the center side of the container 1 has hygroscopicity. It can be seen that the contribution is small.
  • FIGS. 19 to 22 are micrographs of the second pre-stage product 1B and the container 1. The magnification of the micrograph was 20 times. In FIGS. 19 to 22, the higher the proportion of the resin, the whiter the appearance, and the higher the proportion of the paper fiber, the blacker the appearance.
  • thermoplastic resin is uniformly distributed between the paper fibers.
  • the region A2 on the surface side in the cross section of the second pre-stage product 1B is a region in which the ratio of the resin to the paper fiber is smaller than that in the central region A1.
  • the region A2 on the surface side is a region in which the ratio of the resin to the paper fiber is smaller than that of the central region A1 (see FIG. 20).
  • the surface side region A2 is a region in which the ratio of the resin to the paper fiber is large with respect to the central region A1 (see FIG. 22). That is, focusing on the ratio of the resin to the paper fiber, it can be seen that the characteristics of the central region A1 and the surface side region A2 are interchanged before and after the molding process.
  • the water molecules 200 that have reached the surface of the container 1 are formed by the resin obtained by dissolving and solidifying the resin fibers 64 distributed on the surface of the container 1, as shown by arrows C1 and C2. It is repelled to the outside. Therefore, the water molecule 200 cannot easily enter the inside of the container 1.
  • the plastic film 210 is integrated with the resin in which the resin fibers 64 distributed on the surface of the container 1 are dissolved and solidified. Since the plastic film 210 is made of resin, it is firmly adhered to the container 1.
  • the metal foil 220 is welded to the resin in which the resin fibers 64 distributed on the surface of the container 1 are melted and solidified.
  • the metal foil 220 is, for example, an aluminum foil.
  • the resin penetrates between the irregularities and the metal leaf 220 is firmly adhered to the surface of the container 1.
  • the metal leaf is firmly adhered to the surface of the container 1 by forming the surface of the container 1 into a shape having fine irregularities.
  • the cosmetic container of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
  • Packaging container 2 Base material 6
  • Mixing liquid manufacturing tank 8 Mixing liquid adjusting device 10
  • Molding device 20 30 Drying device 60
  • Paper fiber 64 Resin fiber 100 Manufacturing system

Abstract

The purpose of the present invention is to provide: a method for producing a packaging container by using a paper mold, the packaging container having less environmental impact and hardly absorbing moisture; and a packaging container. A packaging container 1 according to the present invention is produced by means of a substrate 2 in which a thermoplastic resin is distributed in a paper fiber 62, and in the thickness direction of the substrate 2, the thermoplastic resin is distributed relatively more in the surface-side part than in the center-side part of the substrate 2.

Description

包装用容器の製造方法及び包装用容器Manufacturing method of packaging container and packaging container
 本発明は、マスカラなどの化粧品を格納した容器を包装するための包装用容器の製造方法及び包装用容器に関する。 The present invention relates to a method for manufacturing a packaging container for packaging a container containing cosmetics such as mascara, and a packaging container.
 近年、包装用容器として、機械的強度に加えて、環境への負荷が小さいことが要求されている。そのような要求に応じるために、紙を溶解することによって得た繊維を所望の形状に成形するペーパーモールド(パルプモールドともいう。)という技術が利用されている(例えば、特許文献1)。 In recent years, as a packaging container, in addition to mechanical strength, it is required to have a small burden on the environment. In order to meet such a demand, a technique called paper mold (also referred to as pulp mold) in which fibers obtained by melting paper are molded into a desired shape is used (for example, Patent Document 1).
特開2018-199872号公報JP-A-2018-199872
 本明細書において、「ペーパーモールド」は、植物繊維を液体に分散させ、金網で抄き上げる工程と乾燥工程を含む紙成形品の製法を意味するものとして使用する。そして、「成形品」は、ペーパーモールドによって生成された紙成形品を意味するものとして使用する。また、「吸湿性」は、物質が水分を吸収する性質を意味するものとし、「吸湿性が大きい」とは、物質が水分を吸収し易いことを意味するものとする。そして、「耐吸湿性」は、物質が水分を吸収しにくい性質を意味するものとし、「耐吸湿性が大きい」とは、物質が水分を吸収しにくいことを意味するものとする。 In the present specification, "paper mold" is used to mean a method for producing a paper molded product, which includes a step of dispersing plant fibers in a liquid and making it with a wire mesh and a drying step. And, "molded article" is used as meaning the paper molded article produced by a paper mold. Further, "hygroscopicity" means a property that a substance absorbs water, and "high hygroscopicity" means that a substance easily absorbs water. Then, "hygroscopicity" means a property that the substance does not easily absorb water, and "high hygroscopicity" means that the substance does not easily absorb water.
 ペーパーモールドは、石油由来の原料を使用しないので、環境への負荷が小さいという利点がある。その反面、ペーパーモールドによって生成した成形品は、水分を吸収し易い。すなわち、成形品の吸湿性が大きいという不利益な性質がある。成形品が水分を吸収し、その後、吸収した水分が蒸発すると、元の成形品の形状には戻らず、変形する。 Paper mold does not use petroleum-derived raw materials, so it has the advantage of having a small impact on the environment. On the other hand, the molded product produced by the paper mold easily absorbs moisture. That is, there is a disadvantageous property that the molded product has high hygroscopicity. When the molded product absorbs water and then the absorbed water evaporates, the molded product does not return to the original shape but is deformed.
 本発明は、上記を踏まえて、環境への負荷が小さく、かつ、水分を吸収しにくい、ペーパーモールドを利用した包装用容器の製造方法及び包装用容器を提供するものである。 Based on the above, the present invention provides a method for manufacturing a packaging container using a paper mold and a packaging container, which has a small environmental load and does not easily absorb water.
 第一の発明は、所定の液体中に、紙と、熱可塑性樹脂で構成される樹脂繊維とを投入し、前記紙を構成する紙繊維と前記樹脂繊維とを含む混合液を生成する混合液生成工程と、前記混合液中に、複数の貫通孔を有する網状部材が配置された第一型部材を配置し、前記混合液を前記第一型部材へ向かう方向に吸引することによって、前記網状部材と接した状態において、第一前段品を生成する第一前段品生成工程と、前記第一前段品を乾燥して第二前段品を生成する乾燥工程と、第二型部材を使用して、前記第二前段品を加熱しつつ圧縮成形することによって、所定の形状を有する包装用容器を生成する成形工程と、を有し、前記成形工程において、前記第二型部材の温度を前記熱可塑性樹脂の融点よりも高い所定の温度範囲における基準温度(temp1)に設定し、前記包装用容器の厚さ(d2)に対する前記第二前段品の厚さ(d1)の比である圧縮比(d1/d2)を所定の基準圧縮比(n1)とし、前記成形工程の実施時間を所定の基準時間(t1)とし、前記基準圧縮比(n1)及び前記基準時間(t1)は、前記包装用容器において前記紙繊維に対する前記熱可塑性樹脂の割合が、前記包装用容器の厚さ方向における中心側の部分に対して、表面側の部分において相対的に大きくなるように規定される、包装用容器の製造方法である。 The first invention is a mixed liquid in which a paper and a resin fiber composed of a thermoplastic resin are put into a predetermined liquid to generate a mixed liquid containing the paper fiber constituting the paper and the resin fiber. By arranging the first mold member in which the net-like member having a plurality of through holes is arranged in the generation step and the mixed liquid and sucking the mixed liquid in the direction toward the first mold member, the net-like shape is formed. Using the first pre-stage product generation step of producing the first pre-stage product in contact with the member, the drying step of drying the first pre-stage product to produce the second pre-stage product, and the second mold member. A molding step of producing a packaging container having a predetermined shape by compression molding while heating the second pre-stage product, and in the molding step, the temperature of the second mold member is set to the heat. The compression ratio (d1), which is the ratio of the thickness (d1) of the second pre-stage product to the thickness (d2) of the packaging container, is set to a reference temperature (temp1) in a predetermined temperature range higher than the melting point of the plastic resin. d1 / d2) is set to a predetermined reference compression ratio (n1), the execution time of the molding step is set to a predetermined reference time (t1), and the reference compression ratio (n1) and the reference time (t1) are for the packaging. A packaging container in which the ratio of the thermoplastic resin to the paper fiber in the container is defined to be relatively large in the surface side portion with respect to the center side portion in the thickness direction of the packaging container. It is a manufacturing method of.
 ペーパーモールドにおいて樹脂を使用する目的は、一般的には、成形品の機械的強度の増加(以下、「通常目的」という。)である。通常目的の観点からは、成形品の内部において樹脂が均一に分布する状態が望ましいから、樹脂が均一に分布するような製造条件が要求される。以下、通常目的におけるペーパーモールドの標準的な製造条件を「標準条件」と呼ぶ。成形品中の樹脂の量が過少であると、機械的強度の増加が不十分となる。このため、樹脂の量を増加するのであるが、そうすると、環境への負荷が小さいというペーパーモールドの利点が失われる。これに対して、本発明の発明者は、耐吸湿性の向上を目的とし、環境保護の観点から、樹脂の量を抑制しつつ、成形品の耐吸湿性を向上する技術の開発を行った。この結果、成形品としての包装用容器の厚さ方向(包装用容器の基材の厚さ方向。以下同じ。「第二前段品の厚さ方向」も同様の意味である。)の中心部に対して、表面側の領域に樹脂を相対的に多く分布させる技術に想到した。この技術は、本発明の発明者が独自に開発した技術であり、以下、「表面拡散」と呼ぶ。表面拡散は、熱可塑性樹脂は加熱されると溶融して流動体となるが、紙繊維は加熱されても流動体とはならないという性質に着目し、熱可塑性樹脂が紙繊維の間を流動する挙動を制御(以下、「流動制御」と呼ぶ。)するものである。具体的には、第一の発明の構成のとおり、第二前段品を加熱しつつ圧縮するときに所定の基準圧縮比を適用することによって、溶融した樹脂を第二前段品の表面側に移動させ、さらに、所定の基準時間を適用することによって、第二前段品の表面側に移動した樹脂が中心側に戻る挙動を抑制するものである。本発明の発明者の実験により、包装用容器の厚さ方向における中心側に位置する樹脂は、耐吸湿性向上に対する寄与が小さいことが判明した。第一の発明の構成によれば、包装用容器の表面側に相対的に多くの樹脂を分布させることができるから、耐吸湿性向上のために、樹脂が相対的に少量で足りる。これにより、環境への負荷が小さく、かつ、水分を吸収しにくい、ペーパーモールドを利用した包装用容器を製造することができる。なお、第二前段品は、成形工程の過程において、変形し、最終的に包装用容器に至るのであるが、成形工程が開始して、包装用容器に至る変形中の状態も「第二前段品」と呼ぶ。 The purpose of using resin in paper molds is generally to increase the mechanical strength of the molded product (hereinafter referred to as "normal purpose"). From the viewpoint of the general purpose, it is desirable that the resin is uniformly distributed inside the molded product, so that manufacturing conditions such that the resin is uniformly distributed are required. Hereinafter, the standard manufacturing conditions for paper molds for normal purposes are referred to as "standard conditions". If the amount of resin in the molded product is too small, the increase in mechanical strength will be insufficient. For this reason, the amount of resin is increased, but this loses the advantage of the paper mold that the load on the environment is small. On the other hand, the inventor of the present invention has developed a technique for improving the moisture absorption resistance of a molded product while suppressing the amount of resin from the viewpoint of environmental protection for the purpose of improving the moisture absorption resistance. .. As a result, the central portion in the thickness direction of the packaging container as a molded product (the thickness direction of the base material of the packaging container. The same applies hereinafter. The "thickness direction of the second pre-stage product" has the same meaning). On the other hand, we came up with a technique to distribute a relatively large amount of resin in the region on the surface side. This technique is a technique originally developed by the inventor of the present invention, and is hereinafter referred to as "surface diffusion". Surface diffusion focuses on the property that the thermoplastic resin melts and becomes a fluid when heated, but the paper fiber does not become a fluid even when heated, and the thermoplastic resin flows between the paper fibers. It controls the behavior (hereinafter referred to as "flow control"). Specifically, as in the configuration of the first invention, the molten resin is moved to the surface side of the second pre-stage product by applying a predetermined reference compression ratio when compressing the second pre-stage product while heating. Further, by applying a predetermined reference time, the behavior of the resin that has moved to the surface side of the second pre-stage product and returns to the center side is suppressed. From the experiment of the inventor of the present invention, it was found that the resin located on the center side in the thickness direction of the packaging container has a small contribution to the improvement of hygroscopicity. According to the configuration of the first invention, since a relatively large amount of resin can be distributed on the surface side of the packaging container, a relatively small amount of resin is sufficient for improving hygroscopicity. As a result, it is possible to manufacture a packaging container using a paper mold, which has a small burden on the environment and does not easily absorb water. The second pre-stage product is deformed in the process of the molding process and finally reaches the packaging container, but the state of being deformed to reach the packaging container after the molding process is started is also "second pre-stage product". Called "goods".
 第二の発明は、第一の発明の構成において、前記基準圧縮比(n1)は、溶融した前記熱可塑性樹脂が前記第二前段品の表面側に効果的に移動するために、ペーパーモールドの標準的な製造条件である標準条件における圧縮比よりも大きな圧縮比として規定される、包装用容器の製造方法である。 In the second invention, in the configuration of the first invention, the reference compression ratio (n1) is such that the molten thermoplastic resin is effectively moved to the surface side of the second pre-stage product of the paper mold. It is a method for manufacturing a packaging container, which is defined as a compression ratio larger than the compression ratio under the standard conditions, which is a standard manufacturing condition.
 本発明の発明者は、第二前段品を圧縮して包装用容器を生成するときの圧縮比が標準条件の場合には、溶融した樹脂を第二前段品の表面側へ流動させる流動制御を効果的に実施できないことを見出した。これは、圧縮比が小さい場合には、第二前段品の厚さ方向における中心部に分布する樹脂を表面側に押し出す力が不十分であることによると、考えられる。この点、第二の発明の構成によれば、基準圧縮比(n1)は、ペーパーモールドの標準的な製造条件である標準条件における圧縮比よりも大きな圧縮比として規定されているから、樹脂を第二前段品の表面側へ移動させる流動制御を効果的に実施することができる。 The inventor of the present invention controls the flow of the molten resin to the surface side of the second pre-stage product when the compression ratio when compressing the second pre-stage product to form a packaging container is a standard condition. We found that it could not be implemented effectively. It is considered that this is because when the compression ratio is small, the force for pushing the resin distributed in the central portion in the thickness direction of the second pre-stage product to the surface side is insufficient. In this regard, according to the configuration of the second invention, the reference compression ratio (n1) is defined as a compression ratio larger than the compression ratio under the standard conditions, which is the standard manufacturing condition of the paper mold. The flow control for moving the second pre-stage product to the surface side can be effectively implemented.
 第三の発明は、第一の発明の構成において、前記基準時間(t1)は、溶融した状態の前記熱可塑性樹脂が、前記第二前段品の厚さ方向において、前記第二前段品の表面側に移動した後、前記第二前段品の中心側に戻る挙動を抑制するために、ペーパーモールドの標準的な製造条件である標準条件における圧縮時間よりも短い時間として規定される、包装用容器の製造方法である。 According to the third invention, in the configuration of the first invention, the thermoplastic resin in a molten state is placed on the surface of the second pre-stage product in the thickness direction of the second pre-stage product during the reference time (t1). A packaging container specified as a time shorter than the compression time under the standard conditions, which are the standard manufacturing conditions for paper molds, in order to suppress the behavior of returning to the center side of the second pre-stage product after moving to the side. It is a manufacturing method of.
 本発明の発明者は、第二前段品を加熱しつつ圧縮するときの時間(圧縮時間)が標準条件における時間の場合には、溶融状態の熱可塑性樹脂が、いったん第二前段品の表面側へ移動した後、中心側へ戻る挙動があることを見出し、この挙動を抑制する流動制御が表面拡散に有用であることに想到した。第三の発明の構成によれば、基準時間(t1)は、ペーパーモールドの標準的な製造条件である標準条件における圧縮時間よりも短い時間として規定されるから、第二前段品の表面側へ移動した樹脂が中心側へ戻る挙動を制限することができる。 According to the inventor of the present invention, when the time for compressing the second pre-stage product while heating (compression time) is the time under the standard conditions, the molten thermoplastic resin is once placed on the surface side of the second pre-stage product. We found that there was a behavior of returning to the center side after moving to, and came up with the idea that flow control that suppresses this behavior is useful for surface diffusion. According to the configuration of the third invention, the reference time (t1) is defined as a time shorter than the compression time under the standard conditions which are the standard manufacturing conditions of the paper mold. It is possible to limit the behavior of the moved resin returning to the center side.
 第四の発明は、第一の発明の構成において、前記基準圧縮比(n1)はペーパーモールドにおける標準的な圧縮比よりも大きい圧縮比として規定されており、前記基準時間(t1)は前記ペーパーモールドにおける標準的な時間よりも短い時間として規定されている、包装用容器の製造方法である。 In the fourth invention, in the configuration of the first invention, the reference compression ratio (n1) is defined as a compression ratio larger than the standard compression ratio in the paper mold, and the reference time (t1) is the paper. A method of manufacturing a packaging container, which is defined as a shorter time than the standard time in a mold.
 本発明の発明者は、表面拡散を実施するための流動制御を実現する条件として、標準条件の圧縮比よりも大きな圧縮比で、かつ、標準条件の時間よりも短時間で成形工程を実施することが有益であることを見出した。大きな圧縮比によって、溶融した熱可塑性樹脂を第一前段品の表面側に押し出し、かつ、成形工程を短時間で実施することによって、樹脂が表面側に相対的に多く分布する状態を維持することができると考えられる。また、大きな圧縮比によって、成形品の密度を大きくすることができるから、樹脂の量が、標準条件における樹脂の量よりも少ない場合であっても、成形品の機械的強度を確保することができる。第四の発明の構成によれば、基準圧縮比(n1)はペーパーモールドによる標準的な圧縮比よりも大きい圧縮比として規定されており、基準時間(t1)はペーパーモールドにおいて樹脂繊維を使用する標準的な時間よりも短い時間として規定されているから、機械的強度を確保しつつ、表面拡散の効果を十分に奏することができる。 The inventor of the present invention carries out the molding step as a condition for realizing the flow control for carrying out surface diffusion, at a compression ratio larger than the compression ratio under the standard condition and in a shorter time than the time under the standard condition. I found that it was beneficial. By extruding the molten thermoplastic resin to the surface side of the first pre-stage product with a large compression ratio and performing the molding process in a short time, the state in which the resin is relatively largely distributed on the surface side is maintained. Is thought to be possible. Further, since the density of the molded product can be increased by the large compression ratio, the mechanical strength of the molded product can be ensured even when the amount of resin is smaller than the amount of resin under the standard conditions. can. According to the configuration of the fourth invention, the reference compression ratio (n1) is defined as a compression ratio larger than the standard compression ratio by the paper mold, and the reference time (t1) uses the resin fiber in the paper mold. Since the time is specified as shorter than the standard time, the effect of surface diffusion can be sufficiently exerted while ensuring the mechanical strength.
 第五の発明は、第一の発明の構成において、前記混合液において、前記紙繊維の重量(w1)に対する前記樹脂繊維の重量(w2)の割合(w2/w1)は、ペーパーモールドにおける標準的な割合よりも小さい範囲において規定される基準割合(m1)である、請求項1に記載の包装用容器の製造方法である。 In the fifth aspect of the invention, in the configuration of the first invention, in the mixed solution, the ratio (w2 / w1) of the weight (w2) of the resin fiber to the weight (w1) of the paper fiber is standard in the paper mold. The method for manufacturing a packaging container according to claim 1, which is a standard ratio (m1) defined in a range smaller than the above ratio.
 表面拡散によれば、成形品において、樹脂を中心側よりも表面及び表面近傍に相対的に多く分布させることができる。これにより、水分が成形品の外部から内部へ侵入することを防止することができる。すなわち、成形品の全体に樹脂を均一に分布させるのではなく、表面側に多くの樹脂を分布させるから、樹脂の量を標準条件における量よりも少なくすることができる。このことは、環境への負荷が小さいことを意味する。この点、第五の発明の構成によれば、混合液において、紙繊維の重量(w1)に対する樹脂繊維の重量(w2)の割合(w2/w1)は、ペーパーモールドにおける標準的な割合よりも小さい割合として規定されているから、環境への負荷を小さくしつつ、表面拡散の効果を奏することができる。 According to surface diffusion, in a molded product, a relatively large amount of resin can be distributed on the surface and in the vicinity of the surface rather than on the center side. As a result, it is possible to prevent moisture from entering the inside of the molded product from the outside. That is, since the resin is not uniformly distributed over the entire molded product but a large amount of resin is distributed on the surface side, the amount of resin can be made smaller than the amount under the standard conditions. This means that the burden on the environment is small. In this regard, according to the configuration of the fifth invention, in the mixed solution, the ratio (w2 / w1) of the weight of the resin fiber (w2) to the weight of the paper fiber (w1) is higher than the standard ratio in the paper mold. Since it is specified as a small ratio, it is possible to exert the effect of surface diffusion while reducing the load on the environment.
 第六の発明は、紙繊維中に熱可塑性樹脂が分布した基材によって生成された包装用容器であって、前記基材の厚さ方向において、前記熱可塑性樹脂は、前記基材の中心側の部分に対して、前記基材の表面側の部分において相対的に多く分布している、包装用容器である。 The sixth invention is a packaging container produced by a base material in which a thermoplastic resin is distributed in paper fibers, and the thermoplastic resin is located on the center side of the base material in the thickness direction of the base material. It is a packaging container that is relatively abundantly distributed in the portion on the surface side of the base material with respect to the portion of the base material.
 本発明によれば、環境への負荷が小さく、かつ、水分を吸収しにくい、ペーパーモールドを利用した包装用容器の製造方法及び包装用容器を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a packaging container using a paper mold and a packaging container that have a small impact on the environment and do not easily absorb water.
本発明の実施形態にかかる包装用容器を表側から視た概略斜視図である。It is the schematic perspective view which looked at the packaging container which concerns on embodiment of this invention from the front side. 包装用容器を裏側から視た概略斜視図である。It is a schematic perspective view which looked at the packaging container from the back side. 製造工程の全体を示す概略図である。It is the schematic which shows the whole manufacturing process. 吸引工程を示す概略図である。It is the schematic which shows the suction process. 吸引工程を示す概略図である。It is the schematic which shows the suction process. 吸引工程を示す概略図である。It is the schematic which shows the suction process. 吸引工程から乾燥工程へ移動する工程を示す概略図である。It is a schematic diagram which shows the process of moving from a suction process to a drying process. 成形工程を示す概略図である。It is a schematic diagram which shows the molding process. 成形工程を示す概略図である。It is a schematic diagram which shows the molding process. 成形工程を示す概略図である。It is a schematic diagram which shows the molding process. 成形工程を示す概略図である。It is a schematic diagram which shows the molding process. 成形工程を示す概略図である。It is a schematic diagram which shows the molding process. 第二前段品の内部の状態を示す概念図である。It is a conceptual diagram which shows the internal state of the 2nd pre-stage product. 成形工程の中間段階における第二前段品の内部の状態を示す概念図である。It is a conceptual diagram which shows the internal state of the 2nd pre-stage product in the intermediate stage of a molding process. 成形工程の中間段階における第二前段品の内部の状態を示す概念図である。It is a conceptual diagram which shows the internal state of the 2nd pre-stage product in the intermediate stage of a molding process. 成形工程の最終段階における第二前段品の内部の状態を示す概念図である。It is a conceptual diagram which shows the internal state of the 2nd pre-stage product in the final stage of a molding process. 包装用容器の製造方法を示す概略フローチャートである。It is a schematic flowchart which shows the manufacturing method of a packaging container. 実験結果を示す図である。It is a figure which shows the experimental result. 第二前段品の実施品の表面を示す図である。It is a figure which shows the surface of the implementation product of the second pre-stage product. 第二前段品の実施品の断面を示す図である。It is a figure which shows the cross section of the implementation product of the 2nd pre-stage product. 包装用容器の実施品の表面を示す図であるIt is a figure which shows the surface of the implementation product of a packaging container. 包装用容器の実施品の断面を示す図であるIt is a figure which shows the cross section of the product of the packaging container. 包装用容器の耐吸湿性を説明するための概念図である。It is a conceptual diagram for demonstrating the moisture absorption resistance of a packaging container. 包装用容器のプラスチックフィルムとの接着性を示す概念図である。It is a conceptual diagram which shows the adhesiveness of a packaging container with a plastic film. 包装用容器のアルミ箔との接着性を示す概念図である。It is a conceptual diagram which shows the adhesiveness with the aluminum foil of a packaging container.
 以下、本発明を実施するための形態(以下、実施形態)について詳細に説明する。以下の説明においては、同様の構成には同じ符号を付し、その説明を省略又は簡略する。なお、当業者が適宜実施できる構成については説明を省略し、本発明の基本的な構成についてのみ説明する。 Hereinafter, embodiments for carrying out the present invention (hereinafter, embodiments) will be described in detail. In the following description, the same components will be designated by the same reference numerals, and the description thereof will be omitted or abbreviated. The description of the configuration that can be appropriately implemented by those skilled in the art will be omitted, and only the basic configuration of the present invention will be described.
<包装用容器の構成>
 図1及び図2に示すように、包装用容器1(以下、「容器1」という。)は、基材2によって生成される。容器1は、熱可塑性樹脂を使用したペーパーモールドによって製造される。容器1は、包装用容器の一例である。
<Structure of packaging container>
As shown in FIGS. 1 and 2, the packaging container 1 (hereinafter referred to as “container 1”) is generated by the base material 2. The container 1 is manufactured by a paper mold using a thermoplastic resin. Container 1 is an example of a packaging container.
 基材2は、紙繊維中に熱可塑性樹脂(以下、単に「樹脂」ともいう。)が分布して構成されている。基材2は、所定の厚さを有する板状の素材であり、第一面2a、第二面2b及び側面2cを有する。基材2には、化粧品容器を格納するために、陥没部2dが生成されている。陥没部2dは、第一面2aにおいて凹状であり、第二面2bにおいて凸状である。第一面2a側の陥没部2dに、マスカラ容器などの化粧品容器が配置される。その後、第一面2aの陥没部2dを除く全体にプラスチックフィルムが溶着される。第二面2b側には、製造者のロゴなどの形状に切断された金属箔が溶着される。金属箔は、例えば、アルミ箔である。本実施形態において、第一面2a及び第二面2bを基材2の「表面」と呼ぶ。第一面2aと第二面2bの間を基材2の「内側」と呼ぶ。基材2の厚さ方向において、第一面2aと第二面2bの中心位置を基材2の「中心」と呼ぶ。相対的な概念として、中心を含む領域を「中心領域」、「中心領域」に対して表面に近い領域を「表面側の領域」と呼ぶ。本明細書において、容器1の「表面」、「内側」または「中心」は、基材2の「表面」、「内側」、「中心」と同義であるとする。このことは、後述の第一前段品1A及び第二前段品1Bについて、表面、内側または中心というときにも同様であり、それぞれ、第一前段品1Aの基材(板状の素材)及び第二前段品1Bの基材(板状の素材)についての表面、内側または中心を意味する。 The base material 2 is composed of a thermoplastic resin (hereinafter, also simply referred to as “resin”) distributed in paper fibers. The base material 2 is a plate-shaped material having a predetermined thickness, and has a first surface 2a, a second surface 2b, and a side surface 2c. A recessed portion 2d is formed on the base material 2 in order to store the cosmetic container. The depressed portion 2d is concave on the first surface 2a and convex on the second surface 2b. A cosmetic container such as a mascara container is arranged in the recessed portion 2d on the first surface 2a side. After that, the plastic film is welded to the entire surface except the recessed portion 2d of the first surface 2a. A metal foil cut into a shape such as a manufacturer's logo is welded to the second surface 2b side. The metal foil is, for example, an aluminum foil. In the present embodiment, the first surface 2a and the second surface 2b are referred to as "surfaces" of the base material 2. The area between the first surface 2a and the second surface 2b is referred to as the "inside" of the base material 2. The center positions of the first surface 2a and the second surface 2b in the thickness direction of the base material 2 are referred to as "centers" of the base material 2. As a relative concept, the region including the center is called the "central region", and the region closer to the surface with respect to the "central region" is called the "surface side region". In the present specification, the "surface", "inside" or "center" of the container 1 is synonymous with the "surface", "inside" and "center" of the base material 2. This also applies to the surface, inside, or center of the first pre-stage product 1A and the second pre-stage product 1B, which will be described later, respectively, and the base material (plate-like material) and the first pre-stage product 1A of the first pre-stage product 1A, respectively. (Ii) It means the surface, inside or center of the base material (plate-shaped material) of the first-stage product 1B.
 容器1は、基材2の厚さ方向において、中心側の部分に比べて、表面及び表面近傍(以下、「表面側」ともいう。)に樹脂を相対的に多く分布させる技術(表面拡散)によって製造される。この結果、基材2の厚さ方向において、熱可塑性樹脂は、中心側の部分に対して、表面側の部分において相対的に多く分布している。 The container 1 has a technique (surface diffusion) in which a relatively large amount of resin is distributed on the surface and in the vicinity of the surface (hereinafter, also referred to as “surface side”) as compared with the central portion in the thickness direction of the base material 2. Manufactured by. As a result, in the thickness direction of the base material 2, the thermoplastic resin is distributed in a relatively large amount in the portion on the surface side with respect to the portion on the center side.
<包装用容器の製造工程の概要>
 上述のように、成形品の機械的強度を増加する目的で樹脂を使用する場合のペーパーモールドの標準的な製造条件を「標準条件」と呼ぶ。本実施形態において、樹脂繊維は、成形品の機械的強度を増加する目的で使用されるのではなく、耐吸湿性を向上するために使用される。本実施形態において、機械的強度は、後述するように、標準条件よりも大きい圧縮比によって実現する。本実施形態においては、標準条件と全く異なる製造方法を採用することによって、上述の流動制御を実施し、表面拡散を実現している。以下、図3を参照して、容器1の製造工程の概要を説明する。
<Outline of the manufacturing process of packaging containers>
As described above, the standard manufacturing conditions of the paper mold when the resin is used for the purpose of increasing the mechanical strength of the molded product are referred to as "standard conditions". In the present embodiment, the resin fiber is not used for the purpose of increasing the mechanical strength of the molded product, but is used for improving the moisture absorption resistance. In this embodiment, the mechanical strength is realized by a compression ratio larger than the standard condition, as will be described later. In the present embodiment, the above-mentioned flow control is carried out and surface diffusion is realized by adopting a manufacturing method completely different from the standard conditions. Hereinafter, the outline of the manufacturing process of the container 1 will be described with reference to FIG.
 容器1は、製造システム100によって製造される。製造システム100の主な構成は、混合液製造槽6、混合液調整装置8、第一前段品生成装置10、乾燥装置30及び成形装置20である。 Container 1 is manufactured by the manufacturing system 100. The main components of the manufacturing system 100 are a mixing liquid manufacturing tank 6, a mixing liquid adjusting device 8, a first pre-stage product generating device 10, a drying device 30, and a molding device 20.
 混合液製造槽6は、所定の液体中に、紙と、熱可塑性樹脂で構成される樹脂繊維とを投入し、紙繊維と樹脂繊維とを含む混合液60を製造するための装置である。混合液製造槽6は混合液製造手段の一例である。混合液製造槽6において実施される処理は混合液生成工程の一例である。 The mixed liquid production tank 6 is an apparatus for producing a mixed liquid 60 containing paper fibers and resin fibers by putting paper and resin fibers composed of a thermoplastic resin into a predetermined liquid. The mixture manufacturing tank 6 is an example of a mixture manufacturing means. The treatment performed in the mixture manufacturing tank 6 is an example of the mixture generation step.
 本実施形態において、所定の液体として、水を使用する。紙としては、白色のコピー用紙を使用する。なお、所定の液体は、水に限定されない。また、紙としては、白色のコピー用紙に限定されず、例えば、着色したコピー用紙、古新聞、古雑誌、段ボール等を使用してもよい。熱可塑性樹脂で構成される樹脂繊維としては、例えば、ポリオレフィン系の樹脂で構成される樹脂繊維を使用するが、これに限らない。樹脂繊維は、例えば、三井化学株式会社のSWP(登録商標)のE400というグレードを使用する。E400の融点は摂氏135度(℃)である。 In this embodiment, water is used as a predetermined liquid. As the paper, white copy paper is used. The predetermined liquid is not limited to water. The paper is not limited to white copy paper, and for example, colored copy paper, old newspapers, old magazines, corrugated cardboard, and the like may be used. As the resin fiber composed of the thermoplastic resin, for example, a resin fiber composed of a polyolefin-based resin is used, but the present invention is not limited to this. As the resin fiber, for example, a grade of SWP (registered trademark) of Mitsui Chemicals, Inc. called E400 is used. The melting point of E400 is 135 degrees Celsius (° C.).
 混合液製造槽6に、水と、紙及び樹脂繊維が投入される。この状態において、攪拌装置7によって水流を発生させると、所定時間経過後に、紙は紙繊維に分解し、紙繊維と樹脂繊維が実質的に均一に分散した混合液60が生成される。 Water, paper and resin fibers are put into the mixed liquid manufacturing tank 6. When a water stream is generated by the stirring device 7 in this state, the paper is decomposed into paper fibers after a lapse of a predetermined time, and a mixed liquid 60 in which the paper fibers and the resin fibers are substantially uniformly dispersed is generated.
 混合液60において、紙繊維62の重量(w1)に対する樹脂繊維64の重量(w2)の割合(w2/w1)は、標準条件における割合よりも小さい所定範囲において規定される基準割合(m1)である。例えば、標準条件における割合(w2/w1)は20パーセント(%)以上40パーセント以下であるが、基準割合(m1)は、5パーセント以上12パーセント以下の範囲において規定される。本実施形態においては、基準割合(m1)は、7パーセントとする。 In the mixed solution 60, the ratio (w2 / w1) of the weight (w2) of the resin fiber 64 to the weight (w1) of the paper fiber 62 is a reference ratio (m1) defined in a predetermined range smaller than the ratio under the standard conditions. be. For example, the percentage (w2 / w1) under standard conditions is 20 percent (%) or more and 40 percent or less, while the reference percentage (m1) is defined in the range of 5 percent or more and 12 percent or less. In this embodiment, the reference ratio (m1) is 7%.
 混合液製造槽6において生成された混合液60は、矢印F1に示すように、混合液調整装置8に移される。混合液調整装置8において、混合液60から、金属などの異物が除去される。さらに、混合液調整装置8において、混合液60中の水分が所定量除去され、混合液60の濃度が調整される。混合液調整装置8は、混合液調整手段の一例である。混合液調整装置8において実施される処理は混合液調整工程の一例である。 The mixed liquid 60 generated in the mixed liquid manufacturing tank 6 is transferred to the mixed liquid adjusting device 8 as shown by the arrow F1. In the mixture liquid adjusting device 8, foreign matter such as metal is removed from the mixture liquid 60. Further, in the mixture liquid adjusting device 8, a predetermined amount of water in the mixed liquid 60 is removed, and the concentration of the mixed liquid 60 is adjusted. The mixture adjusting device 8 is an example of the mixture adjusting means. The process performed in the mixture adjusting device 8 is an example of the mixture adjusting step.
 混合液調整装置8において調整された混合液60は、矢印F2に示すように、第一前段品生成装置10に移される。第一前段品生成装置10は、混合液槽12及び吸引装置14から構成される。混合液槽12に、混合液調整装置8で調整された混合液60が入れられる。 The mixed liquid 60 adjusted by the mixed liquid adjusting device 8 is transferred to the first pre-stage product generating device 10 as shown by an arrow F2. The first pre-stage product generation device 10 is composed of a mixing liquid tank 12 and a suction device 14. The mixed liquid 60 adjusted by the mixed liquid adjusting device 8 is put into the mixed liquid tank 12.
 吸引装置14は、複数の貫通孔を有する網状部材(図示せず)が配置された第一型部材18A及び18Bを備える。第一型部材18Aが混合液60内に配置されている場合には、吸引装置14は、第一型部材18Aの上方から混合液60を吸引し、第一型部材18Aの網状部材の下方に所定の厚さ(d0)を有する第一前段品1Aを生成する。第一前段品1Aは、紙繊維及び樹脂繊維が実質的に均一に分布した状態の生成品である。第一前段品生成装置10は第一前段品生成手段の一例である。第一前段品生成装置10において実施される処理は第一前段品生成工程の一例である。 The suction device 14 includes first- type members 18A and 18B in which a net-like member (not shown) having a plurality of through holes is arranged. When the first mold member 18A is arranged in the mixed liquid 60, the suction device 14 sucks the mixed liquid 60 from above the first mold member 18A and below the mesh member of the first mold member 18A. The first pre-stage product 1A having a predetermined thickness (d0) is produced. The first first-stage product 1A is a product product in which paper fibers and resin fibers are substantially uniformly distributed. The first pre-stage product generating device 10 is an example of the first pre-stage product generating means. The process performed in the first pre-stage product generation device 10 is an example of the first pre-stage product generation step.
 第一前段品生成装置10によって生成された第一前段品1Aは、移送装置40によって、乾燥装置30に移送される。乾燥装置30において、第一前段品1Aの乾燥が実施され、水分が除去され、第二前段品1Bが生成される。第一前段品1A及び第二前段品1Bの形状は、図1及び図2に示す容器1と略相似形状であり、その外形は容器1よりも大きい。 The first pre-stage product 1A generated by the first pre-stage product generation device 10 is transferred to the drying device 30 by the transfer device 40. In the drying apparatus 30, the first pre-stage product 1A is dried, the moisture is removed, and the second pre-stage product 1B is produced. The shapes of the first pre-stage product 1A and the second pre-stage product 1B are substantially similar to those of the container 1 shown in FIGS. 1 and 2, and the outer shape thereof is larger than that of the container 1.
 第二前段品1Bは、移送装置50によって、成形装置20に移送される。成形装置20において、第二型部材22を使用して、第二前段品1Bを加熱しつつ圧縮成形することによって、所定の形状を有する容器1が生成される。成形装置20は成形装置の一例である。成形装置20によって実施される処理は成形工程の一例である。 The second front stage product 1B is transferred to the molding device 20 by the transfer device 50. In the molding apparatus 20, the container 1 having a predetermined shape is produced by compression molding the second pre-stage product 1B while heating it using the second mold member 22. The molding apparatus 20 is an example of a molding apparatus. The process performed by the molding apparatus 20 is an example of a molding process.
<第一前段品生成工程について>
 以下、図4乃至図7を参照して、第一前段品生成工程を詳細に説明する。図4乃至図7に示すように、第一前段品生成装置10は、混合液槽12及び吸引装置14で構成される。混合液槽12は、液体を格納するための容器であり、混合液60が格納される。図4に概念的に示すように、混合液槽12における混合液60には、紙繊維62と樹脂繊維64が実施的に均一に分散している。
<About the first pre-stage product production process>
Hereinafter, the first pre-stage product production step will be described in detail with reference to FIGS. 4 to 7. As shown in FIGS. 4 to 7, the first pre-stage product generation device 10 includes a mixing liquid tank 12 and a suction device 14. The mixing liquid tank 12 is a container for storing the liquid, and the mixing liquid 60 is stored. As conceptually shown in FIG. 4, the paper fiber 62 and the resin fiber 64 are practically and uniformly dispersed in the mixed liquid 60 in the mixed liquid tank 12.
 吸引装置14は、中心部材16、中間部材17A及び17B、第一型部材18A及び18Bから構成される。吸引装置14は、中心部材16を回動軸として、図5の矢印A1方向に回動可能に構成されている。中心部材16は、真空吸引装置(図示せず)と接続されている。中間部材17A及び17Bは中空の部材である。第一型部材18A及び18Bは、混合液60から板状の第一前段品1Aに生成するための型である。第一型部材18A及び18Bは、中間部材17A及び17Bと接続していない方の面が開口した箱状の部材であり、底部18aは多数の貫通孔が形成された網状部材(図示せず)で構成されている。
底部18aは凸部を有する。真空吸引装置によって発生させる負圧は、中心部材16及び中間部材17A及び17Bを介して底部18aを構成する網状部材に作用する。
The suction device 14 is composed of a central member 16, intermediate members 17A and 17B, and first mold members 18A and 18B. The suction device 14 is configured to be rotatable in the direction of arrow A1 in FIG. 5 with the central member 16 as a rotation axis. The central member 16 is connected to a vacuum suction device (not shown). The intermediate members 17A and 17B are hollow members. The first mold members 18A and 18B are molds for forming a plate-shaped first pre-stage product 1A from the mixed liquid 60. The first type members 18A and 18B are box-shaped members having an open surface on the side not connected to the intermediate members 17A and 17B, and the bottom 18a is a net-like member having a large number of through holes (not shown). It is composed of.
The bottom portion 18a has a convex portion. The negative pressure generated by the vacuum suction device acts on the net-like member forming the bottom portion 18a via the central member 16 and the intermediate members 17A and 17B.
 図4に示すように、第一型部材18Aが混合液60内に配置された状態において、真空吸引装置を作動させ、矢印Z1に示す第一型部材18Aに向かう方向、すなわち、上方に向かって混合液60吸引すると、図5に示すように、第一型部材18Aの底部18aを構成する網状部材の表面に混合液60中の紙繊維62及び樹脂繊維64が積層し、厚さd0を有する生成品として、第一前段品1Aが生成される。第一前段品1Aの厚さd0は、例えば、3.0ミリメートル(mm)である。第一前段品1Aの密度は、例えば、0.20グラム/立法センチメートル(g/cm)である。 As shown in FIG. 4, in a state where the first mold member 18A is arranged in the mixed liquid 60, the vacuum suction device is operated and the direction toward the first mold member 18A shown by the arrow Z1, that is, upward. When the mixed liquid 60 is sucked, as shown in FIG. 5, the paper fibers 62 and the resin fibers 64 in the mixed liquid 60 are laminated on the surface of the net-like member constituting the bottom portion 18a of the first mold member 18A, and have a thickness d0. As a product, the first pre-stage product 1A is produced. The thickness d0 of the first pre-stage product 1A is, for example, 3.0 mm (mm). The density of the first pre-stage product 1A is, for example, 0.20 g / cubic centimeter (g / cm 3 ).
 第一型部材18Aにおいて第一前段品1Aの生成が完了すると、図5に示すように、吸引装置14は矢印A1方向に回転し、図6に示すように、第一型部材18Aが上方に位置を変更する。そして、第一型部材18Bが下方に位置を変更し、混合液60中に配置される。 When the production of the first pre-stage product 1A is completed in the first mold member 18A, the suction device 14 rotates in the direction of arrow A1 as shown in FIG. 5, and the first mold member 18A moves upward as shown in FIG. Change the position. Then, the first mold member 18B is repositioned downward and placed in the mixed liquid 60.
 図6に示す状態において、第一前段品1Aは、移送装置40の保持部44によって保持される。移送装置40の保持部44は、軸部42に接続されている。第一前段品1Aは、軸部42内に配置された吸引機構によって矢印Z1方向に吸引され、図7に示すように、保持部44に吸着し、保持される。吸引機構としては、移送装置40の外部に第二の真空吸引装置を備え、軸部42に接続するように構成してもよい。 In the state shown in FIG. 6, the first front stage product 1A is held by the holding portion 44 of the transfer device 40. The holding portion 44 of the transfer device 40 is connected to the shaft portion 42. The first front stage product 1A is sucked in the direction of arrow Z1 by a suction mechanism arranged in the shaft portion 42, and is attracted to and held by the holding portion 44 as shown in FIG. As the suction mechanism, a second vacuum suction device may be provided outside the transfer device 40 and connected to the shaft portion 42.
 図7の状態から、軸部42が矢印X1に示す水平方向へ移動して、第一前段品1Aを簡乾燥装置30に移送する。 From the state shown in FIG. 7, the shaft portion 42 moves in the horizontal direction indicated by the arrow X1 to transfer the first pre-stage product 1A to the simple drying device 30.
<乾燥工程について>
 図3を参照して、乾燥工程について説明する。乾燥装置30は、ベルトコンベアー32及びヒーター(図示せず)を備える箱状の装置である。乾燥装置30の内部が所定の温度に調整された状態において、第一前段品1Aは、ベルトコンベアー32上に載置され、矢印X1方向へ移動させられる。第一前段品1Aに含まれる水分は、乾燥装置30内において矢印X1方向へ移動する過程において蒸発し、第二前段品1Bが生成される。
<About the drying process>
The drying process will be described with reference to FIG. The drying device 30 is a box-shaped device including a belt conveyor 32 and a heater (not shown). In a state where the inside of the drying device 30 is adjusted to a predetermined temperature, the first front stage product 1A is placed on the belt conveyor 32 and moved in the direction of arrow X1. Moisture contained in the first pre-stage product 1A evaporates in the process of moving in the direction of arrow X1 in the drying device 30, and the second pre-stage product 1B is produced.
 第二前段品1Bの厚さd1は、例えば、2.5ミリメートル(mm)である。第二前段品1Aの密度は、例えば、0.25グラム/立法センチメートル(g/cm)である。 The thickness d1 of the second pre-stage product 1B is, for example, 2.5 mm (mm). The density of the second pre-stage product 1A is, for example, 0.25 g / cubic centimeter (g / cm 3 ).
 第二前段品1Bは、移送装置50によって、成形装置20に移送される。移送装置50の構成は、移送装置40の構成と同様である。第二前段品1Bにおいては、厚さ方向における表面側の領域において、中心領域よりも、紙繊維の重量に対する樹脂繊維の重量の割合が実質的に大きいということはない。すなわち、第二前段品1Bにおいては、紙繊維中に樹脂繊維が実質的に一様に分布している。あるいは、第二前段品1Bにおいて、厚さ方向における表面側の領域において、中心領域よりも、紙繊維の重量に対する樹脂繊維の重量の割合は小さい。 The second front stage product 1B is transferred to the molding device 20 by the transfer device 50. The configuration of the transfer device 50 is the same as the configuration of the transfer device 40. In the second pre-stage product 1B, the ratio of the weight of the resin fiber to the weight of the paper fiber is not substantially larger in the region on the surface side in the thickness direction than in the central region. That is, in the second pre-stage product 1B, the resin fibers are substantially uniformly distributed in the paper fibers. Alternatively, in the second pre-stage product 1B, the ratio of the weight of the resin fiber to the weight of the paper fiber is smaller in the region on the surface side in the thickness direction than in the central region.
<成形工程について>
 次に、図8乃至図12を参照して、成形工程について説明する。図8に示すように、成形装置20は、第二型部材22を備える。第二型部材22は、上方型部材22A及び下方型部材22Bで構成される。上方型部材22Aは矢印Z1及びZ2に示す上下方向へ移動可能である。上方型部材22Aが上下方向へ移動することによって、第二型部材22を開閉する。上方型部材22A及び下方型部材22Bは、圧縮成形用の金型である。
<About the molding process>
Next, the molding process will be described with reference to FIGS. 8 to 12. As shown in FIG. 8, the molding apparatus 20 includes a second mold member 22. The second mold member 22 is composed of an upper mold member 22A and a lower mold member 22B. The upper mold member 22A can move in the vertical direction shown by arrows Z1 and Z2. The upper mold member 22A moves in the vertical direction to open and close the second mold member 22. The upper mold member 22A and the lower mold member 22B are molds for compression molding.
 上方型部材22Aには凹部22aが生成されている。下方型部材22Bには、凹部22aに対応する形状の凸部22bが生成されている。凹部22a及び凸部22bの形状は、陥没部2d(図1及び図2参照)の形状に対応する。 A recess 22a is formed in the upper mold member 22A. In the lower mold member 22B, a convex portion 22b having a shape corresponding to the concave portion 22a is formed. The shapes of the concave portion 22a and the convex portion 22b correspond to the shape of the depressed portion 2d (see FIGS. 1 and 2).
 上方型部材22A及び下方型部材22Bには、それぞれ、ヒーター22cが内蔵されている。ヒーター22cによって、熱を発生し、上方型部材22A及び下方型部材22Bによって生成されるキャビティ内の温度を設定することができる。本実施形態において「上方型部材22A及び下方型部材22Bの温度」は、このキャビティ内の温度を意味する。
上方型部材22A及び下方型部材22Bの温度は、ヒーター22cを調整することによって、樹脂繊維64の融点よりも高い所定範囲の基準温度(temp1)に設定される。基準温度(temp1)は、例えば、樹脂繊維64の融点を基準として、その融点よりも高い温度であり、その高さの程度は摂氏5度(℃)以上摂氏25度(℃)以下の範囲で規定される。樹脂繊維64の融点は、例えば、摂氏135度(℃)である。上方型部材22A及び下方型部材22Bによって形成されるキャビティ内の温度は、例えば、摂氏150度に設定する。
The upper mold member 22A and the lower mold member 22B each have a built-in heater 22c. The heater 22c can generate heat and set the temperature in the cavity generated by the upper mold member 22A and the lower mold member 22B. In the present embodiment, "the temperature of the upper mold member 22A and the lower mold member 22B" means the temperature in this cavity.
The temperature of the upper mold member 22A and the lower mold member 22B is set to a reference temperature (temp1) in a predetermined range higher than the melting point of the resin fiber 64 by adjusting the heater 22c. The reference temperature (temp1) is, for example, a temperature higher than the melting point of the resin fiber 64 based on the melting point, and the degree of the height is in the range of 5 degrees Celsius (° C.) or more and 25 degrees Celsius (° C.) or less. Is regulated. The melting point of the resin fiber 64 is, for example, 135 degrees Celsius (° C.). The temperature in the cavity formed by the upper mold member 22A and the lower mold member 22B is set to, for example, 150 degrees Celsius.
 図9に示すように、下方型部材22Bに、第二前段品1Bを配置する。そして、上方型部材22Aを矢印Z2に示す下方へ移動し、図10及び図11に示すように、第二前段品1Bを加熱しつつ圧縮する。第二型部材22が閉じて、凹部22aと凸部22bで構成されるキャビティが閉鎖されると、キャビティ内の温度は、基準温度(temp1)となる。この状態において、第二前段品1B内の樹脂繊維64は溶融するが、紙繊維62は溶融しない。樹脂繊維64は溶融すると、圧縮によって、紙繊維62の間を通過し、第二前段品1Bの表面側へ移動する。以下、樹脂繊維64が溶融した状態のもの、及び、溶融した後に固化した状態のものを「樹脂」と呼ぶ。なお、明細書に添付の図においては、樹脂の符号は樹脂繊維64の符号と同一に示されている。 As shown in FIG. 9, the second front stage product 1B is arranged on the lower mold member 22B. Then, the upper mold member 22A is moved downward as shown by the arrow Z2, and as shown in FIGS. 10 and 11, the second front stage product 1B is compressed while being heated. When the second mold member 22 is closed and the cavity composed of the concave portion 22a and the convex portion 22b is closed, the temperature inside the cavity becomes the reference temperature (temp1). In this state, the resin fiber 64 in the second pre-stage product 1B melts, but the paper fiber 62 does not melt. When the resin fiber 64 is melted, it passes between the paper fibers 62 by compression and moves to the surface side of the second pre-stage product 1B. Hereinafter, a resin fiber 64 in a molten state and a state in which the resin fiber 64 is solidified after being melted are referred to as “resin”. In the figure attached to the specification, the code of the resin is shown to be the same as the code of the resin fiber 64.
 図11に示すように、キャビティが閉鎖された状態で、所定の基準時間(t1)が経過すると、図12に示すように、上方型部材22Aを矢印Z1に示す上方へ移動する。そうすると、第二型部材22が開き、凹部22aと凸部22bで構成されるキャビティ内の温度は低下し、溶融した樹脂は次第に固化し、第二前段品1B内における樹脂の移動速度が低下する。樹脂が固化し、樹脂の位置が固定された段階で、容器1となる。第二前段品1Bは、成形工程において状態を変化させるが、成形工程に入る前の状態から容器1となる変化中の状態も「第二前段品1B」と呼ぶ。 As shown in FIG. 11, when a predetermined reference time (t1) elapses with the cavity closed, the upper mold member 22A is moved upward as shown by the arrow Z1 as shown in FIG. Then, the second mold member 22 opens, the temperature in the cavity composed of the concave portion 22a and the convex portion 22b decreases, the molten resin gradually solidifies, and the moving speed of the resin in the second pre-stage product 1B decreases. .. When the resin is solidified and the position of the resin is fixed, the container 1 is formed. The state of the second pre-stage product 1B is changed in the molding process, but the changing state of the container 1 from the state before entering the molding process is also referred to as "second pre-stage product 1B".
 容器1の厚さ(d2)は所定の厚さに規定される。容器1の厚さは、例えば、1.0ミリメートル(mm)である。容器1の密度は、例えば、0.64グラム/立法センチメートル(g/cm)である。 The thickness (d2) of the container 1 is defined as a predetermined thickness. The thickness of the container 1 is, for example, 1.0 mm (mm). The density of container 1 is, for example, 0.64 grams / cubic centimeter (g / cm 3 ).
 容器1の厚さ(d2)は、第二前段品1Bの厚さ(d1)との関係において規定される。あるいは、第二前段品1Bの厚さ(d1)は容器1の厚さ(d2)によって規定されると言ってもよい。容器1の厚さ(d2)が決まっているとき、容器1を本実施形態に規定する仕様にするための厚さが厚さ(d1)である。第二前段品1Bの厚さd1を「基準厚さd1」とも呼ぶ。具体的には、容器1の厚さ(d2)に対する、成形工程に入る前の第二前段品1Bの厚さ(d1)の比である圧縮比(d1/d2)が、所定の基準圧縮比(n1)として規定される。 The thickness (d2) of the container 1 is defined in relation to the thickness (d1) of the second first stage product 1B. Alternatively, it may be said that the thickness (d1) of the second pre-stage product 1B is defined by the thickness (d2) of the container 1. When the thickness (d2) of the container 1 is determined, the thickness (d1) for making the container 1 into the specifications specified in the present embodiment is the thickness (d1). The thickness d1 of the second pre-stage product 1B is also referred to as "reference thickness d1". Specifically, the compression ratio (d1 / d2), which is the ratio of the thickness (d1) of the second pre-stage product 1B before entering the molding process to the thickness (d2) of the container 1, is a predetermined reference compression ratio. It is defined as (n1).
 基準圧縮比(n1)及び基準時間(t1)は、容器1において、樹脂の量が、容器1の厚さ方向における中心側の部分に対して、表面側の部分において相対的に多くなるように規定される。 The reference compression ratio (n1) and the reference time (t1) are set so that the amount of resin in the container 1 is relatively large in the surface side portion with respect to the central portion in the thickness direction of the container 1. Is regulated.
 所定の基準圧縮比(n1)は、また、溶融した樹脂が、第二前段品1Bの厚さ方向における外側に効果的に移動することができる圧縮比として規定されている。基準時間(t1)は、溶融した樹脂が、第二前段品1Bの厚さ方向において、第二前段品1Bの表面側に移動した後、第二前段品1Bの中心側に戻る挙動を抑制することができる時間として規定されている。 The predetermined reference compression ratio (n1) is also defined as a compression ratio that allows the molten resin to effectively move outward in the thickness direction of the second pre-stage product 1B. The reference time (t1) suppresses the behavior of the molten resin moving to the surface side of the second front stage product 1B in the thickness direction of the second front stage product 1B and then returning to the center side of the second front stage product 1B. It is defined as the time that can be done.
 基準圧縮比(n1)は標準的な圧縮比よりも大きい所定範囲の圧縮比として規定されている。標準的な圧縮比は、例えば、1.5乃至2.0であるのに対して、基準圧縮比(n1)は、例えば、2.5以上5.0以下である。本実施形態において、基準圧縮比(n1)は、2.5である。基準圧縮比(n1)を標準的な圧縮比よりも大きい圧縮比とすることによって、溶融した状態の樹脂が第二前段品1Bの厚さ方向に移動し易くすると共に、最終的に製造される容器1の機械的強度も向上する。第二前段品1Bの厚さd1を標準的な条件よりも大きくし、基準圧縮比(n1)を標準的な圧縮比よりも大きくすることによって、容器1の密度が大きくなり、機械的強度が向上する。すなわち、容器1においては、密度によって、機械的強度を確保している。 The reference compression ratio (n1) is defined as a compression ratio in a predetermined range larger than the standard compression ratio. The standard compression ratio is, for example, 1.5 to 2.0, while the reference compression ratio (n1) is, for example, 2.5 or more and 5.0 or less. In this embodiment, the reference compression ratio (n1) is 2.5. By setting the reference compression ratio (n1) to a compression ratio larger than the standard compression ratio, the molten resin can be easily moved in the thickness direction of the second pre-stage product 1B, and is finally manufactured. The mechanical strength of the container 1 is also improved. By making the thickness d1 of the second pre-stage product 1B larger than the standard condition and making the reference compression ratio (n1) larger than the standard compression ratio, the density of the container 1 is increased and the mechanical strength is increased. improves. That is, in the container 1, the mechanical strength is secured by the density.
 基準時間(t1)は、標準的な時間よりも短い所定範囲の時間として規定されている。例えば、標準的な時間は10秒(second)であるのに対して、基準時間(t1)は3秒乃至7秒の間において規定される。本実施形態において、基準時間(t1)は5秒である。これにより、溶融した状態の樹脂が第二前段品1Bの表面側に移動した後、中心側に戻る挙動を抑制することができる。 The reference time (t1) is defined as a predetermined range of time shorter than the standard time. For example, the standard time is 10 seconds (second), while the reference time (t1) is defined between 3 and 7 seconds. In this embodiment, the reference time (t1) is 5 seconds. As a result, it is possible to suppress the behavior of the molten resin moving to the surface side of the second pre-stage product 1B and then returning to the center side.
 上述の基準圧縮比(n1)及び基準時間(t1)は、容器1の厚さ方向における表面側の紙繊維62に対する樹脂の割合が、第二前段品1Bの厚さ方向における表面側の紙繊維62に対する樹脂の割合よりも大きくなるように規定されるということもできる。また、基準圧縮比(n1)及び基準時間(t1)は、第二前段品1Bの厚さ方向における中心領域に分布する樹脂繊維64が溶融し、樹脂が第二前段品1Bの厚さ方向における表面側に移動し、かつ、その樹脂が中心領域に完全には戻らないように規定されるということもできる。 In the above-mentioned reference compression ratio (n1) and reference time (t1), the ratio of the resin to the paper fiber 62 on the surface side in the thickness direction of the container 1 is the paper fiber on the surface side in the thickness direction of the second pre-stage product 1B. It can also be said that it is specified to be larger than the ratio of the resin to 62. Further, in the reference compression ratio (n1) and the reference time (t1), the resin fibers 64 distributed in the central region in the thickness direction of the second pre-stage product 1B are melted, and the resin is in the thickness direction of the second pre-stage product 1B. It can also be specified that the resin moves to the surface side and the resin does not completely return to the central region.
 図13乃至図16を参照して、第二前段品1Bが成形工程に入る前の状態から容器1に至るまでの間における、第二前段品1Bの内部の状態を概念的に説明する。第二前段品1Bが成形工程に入る前においては、図13に示すように、第二前段品1Bは厚さd1を有し、紙繊維62との関係において、樹脂繊維64は実質的に均一に分布している。この状態において、第二前段品1Bは、型部材22によって矢印P1及びP2に示す上下方向から圧力を加えられ、加熱されつつ、圧縮させられる。 With reference to FIGS. 13 to 16, the internal state of the second pre-stage product 1B from the state before the second pre-stage product 1B enters the molding process to the container 1 will be conceptually described. Before the second pre-stage product 1B enters the molding process, as shown in FIG. 13, the second pre-stage product 1B has a thickness d1 and the resin fiber 64 is substantially uniform in relation to the paper fiber 62. It is distributed in. In this state, the second pre-stage product 1B is compressed while being heated by applying pressure from the vertical direction indicated by arrows P1 and P2 by the mold member 22.
 図14及び図15に示すように、樹脂繊維64は、加熱されつつ上下方向から圧縮される工程において溶融する。一方、紙繊維62は溶融しない。このため、図15の矢印B1及びB2に示すように、溶融した樹脂は、圧縮により、紙繊維62の間を通過し、第二前段品1Bの表面側へ移動する。型部材22が完全に閉じると、図16に示すように、第二前段品1Bは、厚さd2となる。型部材22が完全に閉じた状態において、基準時間(t1)が経過すると、型部材22は開き、型部材22によって生成されるキャビティ内の温度は低下する。そうすると、溶融した樹脂は固化し、容器1が生成される。このとき、固化した樹脂は、容器1の厚さ方向において、中心部よりも表面側に相対的に多く分布する。 As shown in FIGS. 14 and 15, the resin fiber 64 melts in a step of being compressed from above and below while being heated. On the other hand, the paper fiber 62 does not melt. Therefore, as shown by arrows B1 and B2 in FIG. 15, the molten resin passes between the paper fibers 62 by compression and moves to the surface side of the second pre-stage product 1B. When the mold member 22 is completely closed, as shown in FIG. 16, the second front stage product 1B has a thickness d2. When the reference time (t1) elapses while the mold member 22 is completely closed, the mold member 22 opens and the temperature in the cavity generated by the mold member 22 decreases. Then, the molten resin is solidified to form the container 1. At this time, the solidified resin is distributed in a relatively large amount on the surface side of the container 1 in the thickness direction of the container 1.
<容器1の製造方法の概要>
 図17を参照して、上述の容器1の製造方法の概要を再度、簡潔に説明する。まず、紙繊維62の重量(w1)に対する樹脂繊維54(w2)の重量の割合(w2/w1)が基準割合(m1)となるように、紙と樹脂繊維を混合液製造槽6(図3参照)に投入する(図17のステップST1)。続いて、所定の厚さ(d0)を有する第一前段品1Aを生成する(ステップST2)。続いて、第一前段品1Aを乾燥し、基準厚さ(d1)を有する第二前段品1Bを生成する(ステップST3)。続いて、基準温度(temp1)、基準圧縮率(n1)、及び基準時間(t1)において第二前段品1Bを加熱しつつ圧縮成形し、容器1を生成する(ステップST4)。
<Outline of manufacturing method of container 1>
With reference to FIG. 17, the outline of the above-mentioned manufacturing method of the container 1 will be briefly described again. First, the mixed liquid production tank 6 (FIG. 3) is a mixture of paper and resin fibers so that the ratio (w2 / w1) of the weight of the resin fibers 54 (w2) to the weight (w1) of the paper fibers 62 becomes the reference ratio (m1). (See) (see step ST1 in FIG. 17). Subsequently, the first pre-stage product 1A having a predetermined thickness (d0) is generated (step ST2). Subsequently, the first pre-stage product 1A is dried to produce a second pre-stage product 1B having a reference thickness (d1) (step ST3). Subsequently, the second pre-stage product 1B is compression-molded while being heated at the reference temperature (temp1), the reference compressibility (n1), and the reference time (t1) to generate the container 1 (step ST4).
<実験結果について>
 容器1について、耐吸湿性の試験を実施した。図18を参照して、試験結果について説明する。紙繊維62の重量(w1)に対する樹脂繊維64の重量(w2)の割合(w2/w1)である基準割合(m1)を6%の場合と12%の場合とについて、第一前段品1Aを生成し、その第一前段品1Aから第二前段品1Bを生成した。そして、第二前段品1Bを加熱しつつ圧縮して、試験対象である容器1を生成した。樹脂繊維は、三井化学株式会社のSWP(登録商標)のE400というグレードを使用した。E400の融点は摂氏135度(℃)である。基準温度(temp1)は摂氏150度、基準圧縮率(n1)は2.5、基準時間(t1)は5秒(sec)とした。そして、容器1を、湿度85パーセント(%)、温度を摂氏35度(℃)に設定した閉鎖空間内に12時間(hour)放置し、重量の増加を測定した。基準割合(m1)が6パーセントの場合には重量の増加率は5.5パーセントであり、基準割合(m1)が12パーセントの場合には重量の増加率は4.8パーセントであった。このことから、基準割合(m1)を6%よりも大きくすることによって、重量の増加率は低下し、耐吸湿性が向上することがわかる。また、重量の増加率の低下は、基準割合(m1)の増加に比例しないこともわかる。さらに、基準割合(m1)が増加するほど、重量の増加率の低下は緩やかになることも予想できる。このことから、容器1の表面側の領域に、樹脂繊維64が溶融して固化した樹脂が相応の割合で分布していれば、容器1の中心側に分布する樹脂は、耐吸湿性への寄与は小さいことがわかる。
<Experimental results>
A moisture absorption resistance test was carried out on the container 1. The test results will be described with reference to FIG. Regarding the case where the reference ratio (m1), which is the ratio (w2 / w1) of the weight (w2) of the resin fiber 64 to the weight (w1) of the paper fiber 62, is 6% and 12%, the first pre-stage product 1A is used. The second pre-stage product 1B was produced from the first pre-stage product 1A. Then, the second pre-stage product 1B was compressed while being heated to produce a container 1 to be tested. As the resin fiber, a grade called E400 of SWP (registered trademark) of Mitsui Chemicals, Inc. was used. The melting point of E400 is 135 degrees Celsius (° C.). The reference temperature (temp1) was 150 degrees Celsius, the reference compression rate (n1) was 2.5, and the reference time (t1) was 5 seconds (sec). Then, the container 1 was left in a closed space where the humidity was set to 85% (%) and the temperature was set to 35 degrees Celsius (° C.) for 12 hours (hour), and the increase in weight was measured. When the reference ratio (m1) was 6%, the weight increase rate was 5.5%, and when the reference ratio (m1) was 12%, the weight increase rate was 4.8%. From this, it can be seen that by increasing the reference ratio (m1) to more than 6%, the rate of increase in weight is reduced and the moisture absorption resistance is improved. It can also be seen that the decrease in the weight increase rate is not proportional to the increase in the reference ratio (m1). Furthermore, it can be expected that the decrease in the weight increase rate becomes slower as the reference ratio (m1) increases. From this, if the resin in which the resin fibers 64 are melted and solidified is distributed in an appropriate ratio in the region on the surface side of the container 1, the resin distributed on the center side of the container 1 has hygroscopicity. It can be seen that the contribution is small.
<第二前段品1B及び容器1の表面及び内部の状態>
 図19乃至図22を参照して、第二前段品1B及び容器1の表面及び内部の状態を説明する。内部の状態は、それぞれの基材の厚さ方向における断面の状態を示す。図19乃至図22は、第二前段品1B及び容器1の顕微鏡写真である。顕微鏡写真の拡大率は20倍を採用した。図19乃至図22において、樹脂の割合が多いほど白く見え、紙繊維の割合が多いほど黒く見えている。
<Surface and internal condition of the second pre-stage product 1B and container 1>
The surface and internal states of the second pre-stage product 1B and the container 1 will be described with reference to FIGS. 19 to 22. The internal state indicates the state of the cross section in the thickness direction of each base material. 19 to 22 are micrographs of the second pre-stage product 1B and the container 1. The magnification of the micrograph was 20 times. In FIGS. 19 to 22, the higher the proportion of the resin, the whiter the appearance, and the higher the proportion of the paper fiber, the blacker the appearance.
 図19に示すように、第二前段品1Bの表面は、紙繊維の割合が大きい部分(黒っぽく見える部分)が露出している。これに対して、図21に示すように、容器1の表面は、全体的に白っぽく見える。これは、紙繊維の割合が大きい部分は露出せず、樹脂によって実質的に覆われていることを意味する。 As shown in FIG. 19, on the surface of the second pre-stage product 1B, a portion having a large proportion of paper fibers (a portion that looks blackish) is exposed. On the other hand, as shown in FIG. 21, the surface of the container 1 looks whitish as a whole. This means that the portion with a large proportion of paper fibers is not exposed and is substantially covered with the resin.
 図20に示すように、第二前段品1Bの断面における中心領域A1は、紙繊維の間に熱可塑性樹脂が一様に分布している。第二前段品1Bの断面における表面側の領域A2は、中心領域A1と比較して、紙繊維に対する樹脂の割合が小さい領域となっている。 As shown in FIG. 20, in the central region A1 in the cross section of the second pre-stage product 1B, the thermoplastic resin is uniformly distributed between the paper fibers. The region A2 on the surface side in the cross section of the second pre-stage product 1B is a region in which the ratio of the resin to the paper fiber is smaller than that in the central region A1.
 図22に示すように、容器1の断面において、中心領域A1と、表面側の領域A2とを対比すると、紙繊維に対する樹脂の割合は、中心領域A1よりも表面側の領域A2において大きいことがわかる。 As shown in FIG. 22, when the central region A1 and the surface side region A2 are compared in the cross section of the container 1, the ratio of the resin to the paper fiber is larger in the surface side region A2 than in the central region A1. Understand.
 図20と図22を対比すると、第二前段品1Bにおいて、中心領域A1に分布していた樹脂が、成形工程において、表面側の領域A2に移動したことがわかる。 Comparing FIGS. 20 and 22, it can be seen that the resin distributed in the central region A1 in the second pre-stage product 1B moved to the surface side region A2 in the molding process.
 また、成形工程の前において、表面側の領域A2は、中心領域A1に対して、紙繊維に対する樹脂の割合が小さい領域である(図20参照)。これに対して、成形工程後においては、表面側の領域A2は、中心領域A1に対して、紙繊維に対する樹脂の割合が大きい領域である(図22参照)。すなわち、紙繊維に対する樹脂の割合に着目すると、成形工程の前後において、中心領域A1と表面側の領域A2の特性は入れ替わっていることがわかる。 Further, before the molding step, the region A2 on the surface side is a region in which the ratio of the resin to the paper fiber is smaller than that of the central region A1 (see FIG. 20). On the other hand, after the molding step, the surface side region A2 is a region in which the ratio of the resin to the paper fiber is large with respect to the central region A1 (see FIG. 22). That is, focusing on the ratio of the resin to the paper fiber, it can be seen that the characteristics of the central region A1 and the surface side region A2 are interchanged before and after the molding process.
<容器1の耐吸湿性>
 図23に示すように、容器1の表面に到達した水分子200は、容器1の表面に分布する樹脂繊維64が溶解して固化した樹脂によって、矢印C1及びC2に示すように、容器1の外側にはじき返される。このため、水分子200は、容器1の内部には容易に侵入できない。
<Hygroscopicity of container 1>
As shown in FIG. 23, the water molecules 200 that have reached the surface of the container 1 are formed by the resin obtained by dissolving and solidifying the resin fibers 64 distributed on the surface of the container 1, as shown by arrows C1 and C2. It is repelled to the outside. Therefore, the water molecule 200 cannot easily enter the inside of the container 1.
<容器1のプラスチックフィルムとの接着性> 
 図24に示すように、プラスチックフィルム210は、容器1の表面に分布する樹脂繊維64が溶解して固化した樹脂と一体化する。プラスチックフィルム210は樹脂で構成されるから、容器1と強固に接着される。
<Adhesion of container 1 to plastic film>
As shown in FIG. 24, the plastic film 210 is integrated with the resin in which the resin fibers 64 distributed on the surface of the container 1 are dissolved and solidified. Since the plastic film 210 is made of resin, it is firmly adhered to the container 1.
<容器1の金属箔との接着性> 
 図25に示すように、金属箔220は、容器1の表面に分布する樹脂繊維64が溶解して固化した樹脂と溶着する。金属箔220は、例えば、アルミニウム箔である。特に、金属箔220の表面が平滑ではなく、ある程度の凹凸を有する非平滑面である場合には、樹脂が凹凸の間に入り込み、金属箔220は容器1の表面と強固に接着される。あるいは、容器1の表面を微細な凹凸を有する形状にすることによっても、金属箔は容器1の表面に強固に接着される。
<Adhesion of container 1 to metal foil>
As shown in FIG. 25, the metal foil 220 is welded to the resin in which the resin fibers 64 distributed on the surface of the container 1 are melted and solidified. The metal foil 220 is, for example, an aluminum foil. In particular, when the surface of the metal leaf 220 is not smooth and is a non-smooth surface having a certain degree of unevenness, the resin penetrates between the irregularities and the metal leaf 220 is firmly adhered to the surface of the container 1. Alternatively, the metal leaf is firmly adhered to the surface of the container 1 by forming the surface of the container 1 into a shape having fine irregularities.
 なお、本発明の化粧品容器は、上記実施形態に限らず、本発明の要旨を逸脱しない範囲内において種々変更を加えることができる。 The cosmetic container of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
1 包装用容器
2 基材
6 混合液製造槽
8 混合液調整装置
10 第一前段品生成装置
18A,18B 第一型部材
22 第二型部材
22A 上方型部材
22B 下方型部材
20 成形装置20
30 乾燥装置
60 混合液
62 紙繊維
64 樹脂繊維
100 製造システム
1 Packaging container 2 Base material 6 Mixing liquid manufacturing tank 8 Mixing liquid adjusting device 10 First pre-stage product generating device 18A, 18B First mold member 22 Second mold member 22A Upper mold member 22B Lower mold member 20 Molding device 20
30 Drying device 60 Mixing solution 62 Paper fiber 64 Resin fiber 100 Manufacturing system

Claims (6)

  1.  所定の液体中に、紙と、熱可塑性樹脂で構成される樹脂繊維とを投入し、前記紙を構成する紙繊維と前記樹脂繊維とを含む混合液を生成する混合液生成工程と、
     前記混合液中に、複数の貫通孔を有する網状部材が配置された第一型部材を配置し、前記混合液を前記第一型部材へ向かう方向に吸引することによって、前記網状部材と接した状態において、第一前段品を生成する第一前段品生成工程と、
     前記第一前段品を乾燥して第二前段品を生成する乾燥工程と、
     第二型部材を使用して、前記第二前段品を加熱しつつ圧縮成形することによって、所定の形状を有する包装用容器を生成する成形工程と、
    を有し、
     前記成形工程において、前記第二型部材の温度を前記熱可塑性樹脂の融点よりも高い所定の温度範囲における基準温度(temp1)に設定し、前記包装用容器の厚さ(d2)に対する前記第二前段品の厚さ(d1)の比である圧縮比(d1/d2)を所定の基準圧縮比(n1)とし、前記成形工程の実施時間を所定の基準時間(t1)とし、
     前記基準圧縮比(n1)及び前記基準時間(t1)は、前記包装用容器において前記紙繊維に対する前記熱可塑性樹脂の割合が、前記包装用容器の厚さ方向における中心側の部分に対して、表面側の部分において相対的に大きくなるように規定される、
    包装用容器の製造方法。
    A mixed liquid generation step of pouring paper and a resin fiber composed of a thermoplastic resin into a predetermined liquid to generate a mixed liquid containing the paper fiber constituting the paper and the resin fiber.
    A first-type member in which a reticulated member having a plurality of through holes is arranged is arranged in the mixed liquid, and the mixed liquid is sucked in a direction toward the first-type member to come into contact with the reticulated member. In the state, the first pre-stage product generation step of producing the first pre-stage product and
    A drying step of drying the first pre-stage product to produce a second pre-stage product,
    A molding step of producing a packaging container having a predetermined shape by compression molding the second pre-stage product while heating it using the second mold member.
    Have,
    In the molding step, the temperature of the second mold member is set to a reference temperature (temp1) in a predetermined temperature range higher than the melting point of the thermoplastic resin, and the second type member is set with respect to the thickness (d2) of the packaging container. The compression ratio (d1 / d2), which is the ratio of the thickness (d1) of the pre-stage product, is set to a predetermined reference compression ratio (n1), and the execution time of the molding step is set to a predetermined reference time (t1).
    The reference compression ratio (n1) and the reference time (t1) are such that the ratio of the thermoplastic resin to the paper fiber in the packaging container is relative to the central portion in the thickness direction of the packaging container. It is specified to be relatively large on the surface side,
    Manufacturing method of packaging container.
  2.  前記基準圧縮比(n1)は、溶融した前記熱可塑性樹脂が前記第二前段品の表面側に効果的に移動するために、ペーパーモールドの標準的な製造条件である標準条件における圧縮比よりも大きな圧縮比として規定される、
    請求項1に記載の包装用容器の製造方法。
    The reference compression ratio (n1) is higher than the compression ratio under the standard conditions, which are the standard manufacturing conditions for paper molds, in order for the molten thermoplastic resin to effectively move to the surface side of the second pre-stage product. Specified as a large compression ratio,
    The method for manufacturing a packaging container according to claim 1.
  3.  前記基準時間(t1)は、溶融した状態の前記熱可塑性樹脂が、前記第二前段品の厚さ方向において、前記第二前段品の表面側に移動した後、前記第二前段品の中心側に戻る挙動を抑制するために、ペーパーモールドの標準的な製造条件である標準条件における圧縮時間よりも短い時間として規定される、
    請求項1に記載の包装用容器の製造方法。
    In the reference time (t1), after the thermoplastic resin in the molten state moves to the surface side of the second front stage product in the thickness direction of the second front stage product, the center side of the second front stage product is set. In order to suppress the behavior of returning to, it is specified as a time shorter than the compression time under the standard conditions, which is the standard manufacturing condition of the paper mold.
    The method for manufacturing a packaging container according to claim 1.
  4.  前記基準圧縮比(n1)はペーパーモールドにおける標準的な圧縮比よりも大きい圧縮比として規定されており、前記基準時間(t1)は前記ペーパーモールドにおける標準的な時間よりも短い時間として規定されている、
    請求項1に記載の包装用容器の製造方法。
    The reference compression ratio (n1) is defined as a compression ratio larger than the standard compression ratio in the paper mold, and the reference time (t1) is defined as a time shorter than the standard time in the paper mold. Yes,
    The method for manufacturing a packaging container according to claim 1.
  5.  前記混合液において、前記紙繊維の重量(w1)に対する前記樹脂繊維の重量(w2)の割合(w2/w1)は、ペーパーモールドにおける標準的な割合よりも小さい範囲において規定される基準割合(m1)である、
    請求項1に記載の包装用容器の製造方法。
    In the mixed solution, the ratio (w2 / w1) of the weight (w2) of the resin fiber to the weight (w1) of the paper fiber is a reference ratio (m1) defined in a range smaller than the standard ratio in the paper mold. )
    The method for manufacturing a packaging container according to claim 1.
  6.  紙繊維中に熱可塑性樹脂が分布した基材によって生成された包装用容器であって、
     前記基材の厚さ方向において、前記熱可塑性樹脂は、前記基材の中心側の部分に対して、前記基材の表面側の部分において相対的に多く分布している、包装用容器。
     

     
    A packaging container made of a base material in which a thermoplastic resin is distributed in paper fibers.
    A packaging container in which the thermoplastic resin is distributed in a relatively large amount in a portion on the surface side of the substrate with respect to a portion on the center side of the substrate in the thickness direction of the substrate.


PCT/JP2020/003791 2020-01-31 2020-01-31 Method for producing packaging container, and packaging container WO2021152851A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020529652A JP6851673B1 (en) 2020-01-31 2020-01-31 Manufacturing method of packaging container and packaging container
PCT/JP2020/003791 WO2021152851A1 (en) 2020-01-31 2020-01-31 Method for producing packaging container, and packaging container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003791 WO2021152851A1 (en) 2020-01-31 2020-01-31 Method for producing packaging container, and packaging container

Publications (1)

Publication Number Publication Date
WO2021152851A1 true WO2021152851A1 (en) 2021-08-05

Family

ID=75154690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003791 WO2021152851A1 (en) 2020-01-31 2020-01-31 Method for producing packaging container, and packaging container

Country Status (2)

Country Link
JP (1) JP6851673B1 (en)
WO (1) WO2021152851A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243886A (en) * 1975-10-06 1977-04-06 Mitsubishi Paper Mills Ltd Process for manufacturing composite board
JP2008094020A (en) * 2006-10-13 2008-04-24 Toyota Boshoku Corp Manufacturing method for fiber molded body having air permeability
JP2010265571A (en) * 2009-04-14 2010-11-25 Toyota Tsusho Corp Papermaking material for natural fiber molded article and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253006A (en) * 1975-10-27 1977-04-28 Kazuo Fukuroku Original paper for deep drawing
JPH03113091A (en) * 1989-09-25 1991-05-14 Ube Ind Ltd Polypropylene blend paper and formed product using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243886A (en) * 1975-10-06 1977-04-06 Mitsubishi Paper Mills Ltd Process for manufacturing composite board
JP2008094020A (en) * 2006-10-13 2008-04-24 Toyota Boshoku Corp Manufacturing method for fiber molded body having air permeability
JP2010265571A (en) * 2009-04-14 2010-11-25 Toyota Tsusho Corp Papermaking material for natural fiber molded article and method for producing the same

Also Published As

Publication number Publication date
JP6851673B1 (en) 2021-03-31
JPWO2021152851A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP6210582B2 (en) Cellulose fiber-dispersed polyethylene resin composite, molded body and pellets using the same, and method for recycling cellulose fiber-attached polyethylene thin film pieces
JP2015180537A (en) Method of producing three-dimensional shaped article
TWI515239B (en) Reinforced fibrous composite material formed by the body
CN106245463A (en) Paper plastic forming method and paper finished product thereof
JP5901518B2 (en) Manufacturing method for advanced composite components
JP4710462B2 (en) Speaker diaphragm and method for manufacturing speaker diaphragm
CN101289575A (en) Composite powder, its use in a moulding method and moulds made of this composite powder
WO2002078931A1 (en) Apparatus for producing foamed moldings, and method for producing laminated foamed moldings and foamed moldings produced thereby
US11161311B2 (en) Combined primary fiber and carbon fiber component for production of reinforced polymeric articles
JP2017155248A (en) Manufacturing method of a cellulose fiber dispersed polyethylene resin composite and recycling method of cellulose fiber adhered polyethylene thin film piece
WO2018131352A1 (en) Resin composition and method for producing three-dimensionally shaped object using same
WO2021152851A1 (en) Method for producing packaging container, and packaging container
JP2005262559A (en) Method for producing woody molding
JP2021123808A (en) Method for manufacturing packaging container and packaging container
WO2020138174A1 (en) Manufacturing method for resin molded body and resin molded body
CN1108955C (en) Method for making stable disposable container from flexible film and article produced thereby
CN109177346A (en) A kind of combination board and its manufacturing method
JP7014482B1 (en) Manufacturing method of packaging container and packaging container
TWI574810B (en) Methods of manufacturing formaldehyde-free molded products and related parts
JP2022537740A (en) Biodegradable and compostable molding mass compositions, articles, and methods of manufacture
US20210129428A1 (en) Process for shaping a polymeric object
JP2019025696A (en) Board and manufacturing method of board
JP2008094020A (en) Manufacturing method for fiber molded body having air permeability
WO2019117016A1 (en) Method for producing three-dimensional molded object, and powder material used therein
CA2954550A1 (en) Controlled formation of cellular material and apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020529652

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917176

Country of ref document: EP

Kind code of ref document: A1