WO2021152764A1 - Method for manufacturing negative-electrode material for lithium-ion secondary cell, and device for manufacturing negative-electrode material for lithium-ion secondary cell - Google Patents

Method for manufacturing negative-electrode material for lithium-ion secondary cell, and device for manufacturing negative-electrode material for lithium-ion secondary cell Download PDF

Info

Publication number
WO2021152764A1
WO2021152764A1 PCT/JP2020/003382 JP2020003382W WO2021152764A1 WO 2021152764 A1 WO2021152764 A1 WO 2021152764A1 JP 2020003382 W JP2020003382 W JP 2020003382W WO 2021152764 A1 WO2021152764 A1 WO 2021152764A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode material
ion secondary
lithium ion
secondary battery
Prior art date
Application number
PCT/JP2020/003382
Other languages
French (fr)
Japanese (ja)
Inventor
高志 久保田
清志 鈴木
健志 政吉
泰裕 加藤
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2020/003382 priority Critical patent/WO2021152764A1/en
Publication of WO2021152764A1 publication Critical patent/WO2021152764A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a negative electrode material for a lithium ion secondary battery and an apparatus for manufacturing a negative electrode material for a lithium ion secondary battery.
  • Lithium-ion secondary batteries have a higher energy density than other secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries, and lead-acid batteries, so they are widely used as power sources for portable electrical appliances such as laptop computers and mobile phones. It is used. Further, it is expected that lithium ion secondary batteries will be used not only for relatively small electric appliances but also for electric vehicles, power sources for storing electricity, and the like.
  • Graphite is widely used as the negative electrode material (negative electrode material) for lithium-ion secondary batteries.
  • a method for producing a negative electrode material using graphite for example, in Patent Document 1, a mixture obtained by mixing a carbon material, a binder and the like is heated to perform graphitization treatment, and the obtained graphitized product is further pulverized. The method is described.
  • a catalyst for promoting graphitization may be added to the mixture obtained by mixing the carbon material and the binder or the like. It is considered that most of the catalyst is decomposed by heating in the graphitization step (for example, when silicon carbide is used as a catalyst, carbon atoms form a graphite skeleton and silicon atoms sublimate). However, depending on the heating state (for example, the temperature distribution inside the heating furnace), the decomposition or sublimation of the catalyst may not proceed sufficiently, and components other than carbon derived from the catalyst may remain in a part of the graphitized product obtained. .. It is desirable that the amount of the catalyst-derived component in the graphitized product is small from the viewpoint of quality assurance of the negative electrode material. On the other hand, if the graphitization step is carried out so that the catalyst is completely removed, the production cost may increase.
  • Irradiation process of irradiating an object containing carbon with electromagnetic waves A method for manufacturing a negative electrode material for a lithium ion secondary battery, comprising a detection step of determining the presence or absence of a detection target contained in the object based on the data obtained by the irradiation.
  • a method for manufacturing a negative electrode material for a lithium ion secondary battery comprising a detection step of determining the presence or absence of a detection target contained in the object based on the data obtained by the irradiation.
  • ⁇ 4> The method for producing a negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 3>, wherein the dimension of the object in the irradiation direction of the electromagnetic wave is 50 mm to 180 mm.
  • ⁇ 5> The method for producing a negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 4>, wherein the detection target contains silicon.
  • the negative electrode material for a lithium ion secondary battery according to ⁇ 6> for use in the method for producing a negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 5>. Manufacturing equipment.
  • a method for manufacturing a negative electrode material for a lithium ion secondary battery capable of producing a negative electrode material having excellent quality with high productivity, and an apparatus for manufacturing a negative electrode material for a lithium ion secondary battery.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified and clearly considered to be essential in principle.
  • the term "process” includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
  • the numerical range indicated by using "-" in the present disclosure includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • each component may contain a plurality of applicable substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
  • a plurality of types of particles corresponding to each component may be contained.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term "layer” refers to the case where the layer is formed in the entire region when the region where the layer is present is observed, and also when the layer is formed only in a part of the region. included.
  • the method for producing a negative electrode material for a lithium ion secondary battery (hereinafter, also simply referred to as a negative electrode material) of the present disclosure includes an irradiation step of irradiating an object containing carbon with an electromagnetic wave.
  • the present invention includes a detection step of determining the presence or absence of a detection target included in the object based on the data obtained by the irradiation.
  • the presence or absence of a detection target included in the object is determined based on the data obtained by irradiating the object with electromagnetic waves. Therefore, it is possible to select and remove only the object including the detection target without destroying the object, and the quality of the product as a whole can be improved. Further, by removing an object having a high hardness substance such as silicon on the surface, it can be expected to have an effect of suppressing wear of production equipment. That is, the above method may include a step of removing an object determined to include a detection target after the detection step.
  • the determination of the presence or absence of the detection target is not limited to the determination of whether or not the object does not include the detection target at all, but is the determination of whether or not the content of the detection target exceeds the value set as the allowable range. May be good.
  • the type of electromagnetic wave irradiating the object is not particularly limited as long as it can detect the detection target contained in the object.
  • the detection target contained in the object is not particularly limited as long as it is an element other than carbon. Specific examples thereof include silicon, iron, nickel, titanium and boron. In certain embodiments, the detection target comprises silicon.
  • the method of irradiating the object with electromagnetic waves is not particularly limited as long as it can detect the detection target contained in the object.
  • the object may be irradiated with electromagnetic waves from one direction or two or more directions.
  • the source of the electromagnetic wave may be fixed or mobile.
  • X-rays are used as electromagnetic waves, irradiation intensity: tube voltage 50 kV, tube current 2.0-4.0 mA, tungsten target, irradiation time per object: 0.96 seconds-2.04 seconds.
  • the irradiation step is carried out as.
  • the method of determining the presence or absence of the detection target contained in the object based on the data obtained by irradiating the electromagnetic wave is not particularly limited, and a known method can be used.
  • the criteria for determining the presence or absence of the detection target can be set according to the quality of the desired negative electrode material and the like.
  • the size or shape of the object irradiated with the electromagnetic wave is not particularly limited as long as the surface and the inside detection target can be detected by the irradiation of the electromagnetic wave.
  • the dimension in the irradiation direction of the electromagnetic wave may be 50 mm to 180 mm or 70 mm to 100 mm, the volume may be 3,000 cm 3 to 5,000 cm 3 , and a flat surface such as a rectangular parallelepiped or a cylinder is considered in consideration of handleability. It may have a shape suitable for being placed on top.
  • the carbon-containing object may be a graphite-containing object, the graphite of a mixture containing at least one selected from the group consisting of graphitizable aggregates and graphite, and a graphitizable binder. It may be a product. Details of the mixture containing at least one selected from the group consisting of graphitizable aggregate and graphitizable binder and graphitizable binder will be described later.
  • the above method may include a step of crushing an object containing carbon after a step of irradiating electromagnetic waves and determining the presence or absence of a detection target.
  • pulverizing an object containing carbon into particles having a desired particle size it can be used as a negative electrode material for a lithium ion secondary battery.
  • the method and conditions of pulverization are not particularly limited, and can be carried out by a known method.
  • the apparatus for manufacturing the negative electrode material for a lithium ion secondary battery of the present disclosure includes an irradiation apparatus that irradiates an object containing carbon with an electromagnetic wave.
  • a detection device for determining the presence / absence of a detection target included in the object based on the data obtained by the irradiation is provided.
  • the configuration of the electromagnetic wave irradiation device and the detection device in the above device is not particularly limited, and a known device may be used.
  • the details and preferred embodiments of electromagnetic wave irradiation or detection target detection using the above device are the same as the details and preferred embodiments of magnetic wave irradiation or detection target detection in the above-described negative electrode material manufacturing method.
  • the device may include a moving device that moves an object containing carbon to the irradiation device.
  • the configuration of the mobile device is not particularly limited. From the viewpoint of work efficiency, a device such as a belt conveyor capable of continuously moving an object containing a plurality of carbons is preferable.
  • the above device may include a device for removing an object determined to include a detection target among the objects for which the presence or absence of a detection target included in the object is determined based on the data obtained by irradiation with electromagnetic waves.
  • the above device may be used, for example, in the above-mentioned method for manufacturing a negative electrode material.
  • the particles may include particles (secondary particles) in which a plurality of particles are aggregated or bonded, and the plurality of flat graphite particles have the main surfaces of the graphite particles non-parallel to each other.
  • the particles may be aggregated or combined so as to be.
  • graphite secondary particles particles in which a plurality of flat graphite particles are aggregated or bonded so that the main surfaces of the graphite particles are non-parallel to each other are particularly referred to as “graphite secondary particles”.
  • the negative electrode material When the negative electrode material is in the state of graphite secondary particles, the phenomenon that the particles of the negative electrode material are oriented along the direction of the current collector when the press for increasing the density of the negative electrode is performed is suppressed, and the negative electrode material is used. There is a tendency to secure a sufficient route for lithium ions to enter and exit.
  • the effect of the pressure applied during pressing on the individual graphite particles is reduced by the voids existing between the plurality of flat graphite particles constituting the graphite secondary particles, and the destruction of the graphite particles and the generation of cracks are suppressed. Tends to be.
  • the "flat graphite particles” refer to non-spherical graphite particles having anisotropy in shape.
  • examples of the flat graphite particles include graphite particles having a shape such as scaly, scaly, and partially lumpy.
  • the aspect ratio represented by A / B of the flat graphite particles is, for example, 1.2 to 20, when the length in the major axis direction is A and the length in the minor axis direction is B. Is preferable, and 1.3 to 10 is more preferable.
  • the aspect ratio is 1.2 or more, the contact area between the particles increases, and the conductivity tends to be further improved.
  • the aspect ratio is 20 or less, the input / output characteristics such as the rapid charge / discharge characteristics of the lithium ion secondary battery tend to be further improved.
  • the aspect ratio is obtained by observing graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring each A / B, and taking the arithmetic mean value of those measured values.
  • the length A in the major axis direction and the length B in the minor axis direction are measured as follows. That is, in the projected image of the graphite particles observed using a microscope, two parallel tangents circumscribing the outer periphery of the graphite particles, the tangent line a1 and the tangent line a2 having the maximum distance are selected, and the tangent line a1 and the tangent line a2 are selected.
  • the distance between the tangent line a1 and the tangent line a2 is defined as the length A in the major axis direction. Further, two parallel tangents circumscribing the outer periphery of the graphite particles, the tangent line b1 and the tangent line b2 having the minimum distance are selected, and the distance between the tangent line b1 and the tangent line b2 is set in the minor axis direction. Let the length be B.
  • the main surfaces of the plurality of flat graphite particles are non-parallel means that the surfaces (main surfaces) having the largest cross-sectional areas of the plurality of flat graphite particles are not aligned in a certain direction. say. Whether or not the main surfaces of the plurality of flat graphite particles are non-parallel to each other can be confirmed by microscopic observation.
  • the graphite secondary particles may partially include a structure in which a plurality of flat graphite particles are assembled or bonded so that their main surfaces are parallel to each other.
  • the "state in which a plurality of flat graphite particles are aggregated or bonded” means a state in which two or more flat graphite particles are aggregated or bonded.
  • “Bond” refers to a state in which particles are chemically bonded to each other either directly or via a carbon substance.
  • the “aggregate” refers to a state in which the particles are not chemically bonded to each other, but the shape of the aggregate is maintained due to its shape or the like.
  • the flat graphite particles may be aggregated or bonded via a carbon substance. Examples of the carbon substance include graphitized binders that can be graphitized. From the viewpoint of mechanical strength, it is preferable that two or more flat graphite particles are bonded to each other via a carbon substance. Whether or not the flat graphite particles are aggregated or bonded can be confirmed by, for example, observation with a scanning electron microscope.
  • the average particle size of the flat graphite particles is preferably, for example, 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 25 ⁇ m, and 1 ⁇ m to 15 ⁇ m from the viewpoint of ease of assembly or bonding. More preferred.
  • Examples of the method for measuring the average particle size of the flat graphite particles include a method of measuring with a scanning electron microscope.
  • the flat graphite particles and their raw materials are not particularly limited, and examples thereof include artificial graphite, scaly natural graphite, scaly natural graphite, coke, resin, tar, and pitch.
  • graphite obtained from artificial graphite, natural graphite, or coke has high crystallinity and becomes soft particles, so that the density of the negative electrode tends to be easily increased.
  • the negative electrode material may contain spherical graphite particles.
  • the spherical graphite particles themselves have a high density, so that the pressing pressure required to obtain a desired electrode density tends to be reduced.
  • spherical graphite particles examples include spherical artificial graphite and spherical natural graphite.
  • the spherical graphite particles are preferably high-density graphite particles. Specifically, it is preferably spherical natural graphite that has been subjected to a particle spheroidizing treatment so that the tap density can be increased. Further, the negative electrode material layer containing spherical natural graphite has excellent peel strength and tends to be difficult to peel from the current collector even when pressed with a strong force.
  • the negative electrode material may contain the above-mentioned graphite secondary particles and spherical graphite particles.
  • the ratio of the two is not particularly limited and can be set according to a desired electrode density, pressure conditions during pressing, desired battery characteristics, and the like. ..
  • the negative electrode material contains graphite secondary particles and spherical graphite particles, a state in which the graphite secondary particles and spherical graphite particles are mixed, and a state in which the graphite secondary particles and spherical graphite particles are bonded.
  • composite particles include particles in which secondary graphite particles and spherical graphite particles are bonded via an organic carbide.
  • the average particle size of the negative electrode material produced by the above method is not particularly limited. For example, it is preferably 5 ⁇ m to 40 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m, and even more preferably 10 ⁇ m to 25 ⁇ m.
  • the average particle size may be measured with a scanning electron microscope in the same manner as the average particle size of the flat graphite particles described above, or may be a volume average particle size measured by a laser diffraction / scattering method.
  • a sample electrode is prepared, the electrode is embedded in an epoxy resin, and then mirror-polished to scan the electrode cross section with a scanning electron microscope.
  • a scanning electron microscope For example, "VE-7800” manufactured by Keyence Co., Ltd.
  • an electrode cross section is prepared using an ion milling device (for example, "E-3500” manufactured by Hitachi High-Technologies Co., Ltd.) and a scanning electron. Examples thereof include a method of measuring with a microscope (for example, “VE-7800” manufactured by Keyence Co., Ltd.).
  • the average particle size in this case is the median value of 100 particle sizes arbitrarily selected from the observed particles.
  • the sample electrode for example, a mixture of 98 parts by mass of the negative electrode material, 1 part by mass of styrene-butadiene resin as a binder, and 1 part by mass of carboxymethyl cellulose as a thickener is used as a solid content, and water is added to prepare a dispersion. Then, the dispersion liquid is coated on a copper foil having a thickness of 10 ⁇ m so as to have a thickness of about 70 ⁇ m (at the time of coating), and then dried at 105 ° C. for 1 hour to produce the dispersion.
  • the negative electrode material may have an orientation of 700 or less, or 500 or less, when it is used as a negative electrode (a negative electrode after pressing when the production of the negative electrode involves a pressing step).
  • the orientation of the negative electrode material is an index indicating the degree of orientation of the particles of the negative electrode material contained in the negative electrode.
  • the small orientation means that the particles of the negative electrode material are oriented in random directions. That is, it means that the graphite particles are suppressed from being oriented along the surface of the current collector due to the pressure at the time of pressing.
  • the method of obtaining an object containing carbon irradiated with electromagnetic waves is not particularly limited.
  • it may be obtained by a method including the following steps (a) to (c).
  • a step of obtaining a mixture containing at least one selected from the group consisting of graphitizable aggregate and graphite and a graphitizable binder (b) A step of molding the mixture to obtain a molded product (c) ) Step of graphitizing the molded product to obtain a graphitized product
  • step (a) a mixture containing at least one selected from the group consisting of graphitizable aggregate and graphite and a graphitizable binder is obtained.
  • the method for obtaining the mixture is not particularly limited, and it can be carried out using a kneader or the like.
  • the mixing is preferably carried out at a temperature at which the graphitizable binder softens.
  • the temperature may be 50 ° C. to 300 ° C.
  • the binder is a thermosetting resin
  • the temperature may be 20 ° C. to 100 ° C. ..
  • the aggregate that can be graphitized is not particularly limited as long as it is graphitized by the graphitization treatment. Specific examples thereof include coke such as fluid coke, needle coke, and mosaic coke. Examples of graphite include natural graphite and artificial graphite.
  • the graphitizable aggregate or graphite is preferably in the form of particles.
  • the binder that can be graphitized is not particularly limited as long as it is graphitized by the graphitization treatment. Specific examples thereof include coal-based, petroleum-based, artificial pitch and tar, thermoplastic resins, and thermosetting resins.
  • the compounding ratio of each material in the mixture is not particularly limited.
  • the content of the graphitizable binder may be 15 parts by mass to 150 parts by mass, or 30 parts by mass to 130 parts by mass with respect to 100 parts by mass of graphitizable aggregate or graphite. It may be 50 parts by mass to 110 parts by mass.
  • the amount of the binder is 15 parts by mass or more, the fluidity of the mixture is sufficiently ensured, and the moldability tends to be excellent.
  • the amount of the binder is 150 parts by mass or less, the amount of fixed carbon in the mixture is sufficiently secured, and the yield tends to be excellent.
  • the graphitizable aggregate, graphite and graphitizable binder contained in the mixture may be only one type or two or more types, respectively.
  • the mixture may contain components other than these.
  • components other than graphitizable aggregates, graphite and graphitizable binders include fluidity-imparting agents and graphitization catalysts.
  • the mixture contains a fluidity-imparting agent.
  • a fluidity-imparting agent when molding the mixture is performed by extrusion molding, it is preferable to include a fluidity-imparting agent in order to perform molding while flowing the mixture.
  • the inclusion of the fluidity-imparting agent in the mixture leads to a reduction in the amount of the binder that can be graphitized, and can be expected to improve the battery characteristics such as the initial charge / discharge efficiency of the negative electrode material.
  • the type of fluidity-imparting agent is not particularly limited. Specifically, hydrocarbons such as liquid paraffin, paraffin wax and polyethylene wax, fatty acids such as stearic acid, oleic acid, erucic acid and 12-hydroxystearic acid, zinc stearate, lead stearate, aluminum stearate, calcium stearate, Fatty metal salts such as magnesium stearate, stearic acid amide, oleic acid amide, erucic acid amide, methylene bisstearic acid amide, ethylene bisstearic acid amide and other fatty acid amides, stearic acid monoglyceride, stearyl stearate, hardened oil and other fatty acids Examples thereof include higher alcohols such as ester and stearic acid.
  • the amount thereof is not particularly limited.
  • the content of the fluidity-imparting agent in the entire mixture may be 0.1% by mass to 20% by mass, 0.5% by mass to 10% by mass, or 0.5% by mass to 5% by mass. It may be% by mass.
  • the mixture preferably contains a graphitization catalyst.
  • the type of graphitization catalyst is not particularly limited. Specific examples thereof include substances having a graphitizing catalytic action such as silicon, iron, nickel, titanium and boron, and carbides, oxides and nitrides of these substances.
  • the amount thereof is not particularly limited.
  • the content of the graphitizing catalyst in the whole mixture may be 0.1% by mass to 50% by mass, 0.5% by mass to 40% by mass, or 0.5% by mass to 30% by mass. May be%.
  • the mixture obtained in the step (a) is molded to obtain a molded product.
  • the molding of the mixture is carried out in order to increase the filling amount in the graphitizing reactor when graphitizing the mixture to improve the productivity and to improve the effect of the graphitizing catalyst.
  • the molding of the mixture is preferably carried out in a softened state of the graphitizable binder.
  • the softened state of the graphitizable binder contained in the mixture include a state in which the temperature of the mixture is equal to or higher than the temperature at which the graphitizable binder contained in the mixture softens.
  • the softened state of the graphitizable binder is not particularly limited as long as the mixture can be molded into a desired state.
  • the molding of the mixture may be carried out at a temperature of 80 ° C. or higher, or 100 ° C. or higher. From the viewpoint of suppressing the volatilization of volatile components in the mixture, the molding of the mixture may be carried out at a temperature of 200 ° C. or lower, or at 120 ° C. or lower.
  • the mixture formed in the step (b) may be one in which the graphitizable binder is maintained in a softened state after being obtained in the step (a), and once obtained in the step (a). It may be in a state where the graphitizable binder is softened (however, not crushed) by cooling and then heating or the like.
  • the method of molding the mixture is not particularly limited.
  • a molding method in which a mixture is placed in a container such as a mold and pressed in a uniaxial direction, a heavy weight is placed on the upper surface of the mixture in a container such as a mold, and vibration / impact is applied to the mold to form the mold.
  • vibration molding method for forming a mixture examples thereof include a vibration molding method for forming a mixture, and an extrusion molding method in which a mixture is extruded from a nozzle or the like with a horizontal pressing press.
  • the molded product obtained in the step (b) is preferably heat-treated before the molded product is graphitized in the step (c).
  • organic components contained in the mixture that do not contribute to graphitization are removed, and gas generation in the graphitization treatment tends to be suppressed.
  • the temperature of the heat treatment is not particularly limited, but it is preferably a temperature lower than the temperature of the heat treatment in the step (c). For example, it may be carried out in the range of 500 ° C. to 1000 ° C.
  • step (c) the molded product obtained in step (b) is graphitized.
  • the method for graphitizing the molded product is not particularly limited as long as the graphitizable component contained in the mixture can be graphitized.
  • a method of heat-treating the mixture in an atmosphere in which it is difficult to oxidize can be mentioned.
  • the atmosphere in which the mixture is difficult to oxidize is not particularly limited, and examples thereof include an inert atmosphere such as nitrogen and argon, and vacuum.
  • the temperature of the heat treatment for graphitization may be, for example, 1500 ° C. or higher, 2000 ° C. or higher, 2500 ° C. or higher, or 2800 ° C. or higher.
  • the upper limit of the heat treatment temperature is not particularly limited, but may be, for example, 3200 ° C. or lower.
  • the heat treatment temperature is 1500 ° C. or higher, crystal changes occur and graphitization tends to proceed easily.
  • the calcination temperature is 2000 ° C. or higher, the development of graphite crystals tends to be better.
  • the amount of ash derived from the graphitization catalyst remaining tends to be reduced.
  • the temperature of the heat treatment for graphitization is 3200 ° C. or lower, sublimation of a part of graphite tends to be suppressed.
  • the negative electrode material obtained by the manufacturing method or manufacturing apparatus of the present disclosure is used as a material for the negative electrode of a lithium ion secondary battery.
  • the method for producing the negative electrode using the negative electrode material is not particularly limited. For example, a method of forming a negative electrode material layer on a current collector using a composition containing a negative electrode material, a binder, and a solvent, and performing heat treatment, press treatment, or the like, if necessary, can be mentioned.
  • the binder contained in the composition is not particularly limited.
  • a polymer compound containing styrene-butadiene rubber, an ethylenically unsaturated carboxylic acid ester (methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hydroxyethyl (meth) acrylate, etc.) as a polymerization component Polymer compounds containing ethylenically unsaturated carboxylic acids (acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc.) as polymerization components, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile , Polypolymeric compounds such as polyimide and polyamideimide.
  • (meth) acrylate means either or both of methacrylate and acrylate.
  • the solvent contained in the composition is not particularly limited. Specifically, organic solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and ⁇ -butyrolactone, water, and the like are used.
  • the composition may contain a thickener for adjusting the viscosity, if necessary.
  • a thickener for adjusting the viscosity
  • examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid and salts thereof, oxidized starch, phosphorylated starch, casein and the like.
  • the composition may be mixed with a conductive auxiliary agent, if necessary.
  • a conductive auxiliary agent include carbon black, graphite, acetylene black, oxides exhibiting conductivity, nitrides exhibiting conductivity, and the like.
  • the material and shape of the current collector used to manufacture the negative electrode are not particularly limited.
  • a material such as a band-shaped foil made of a metal or alloy such as aluminum, copper, nickel, titanium, or stainless steel, a band-shaped perforated foil, or a band-shaped mesh can be used.
  • porous materials such as porous metal (foam metal) and carbon paper can also be used.
  • the method of forming the negative electrode material layer on the current collector using the composition is not particularly limited, and is a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, and a gravure. It can be carried out by a known method such as a coating method or a screen printing method.
  • a known method such as a roll, a press, or a combination thereof can be used.
  • heat treatment drying
  • the heat treatment may be carried out in an inert atmosphere such as helium, argon or nitrogen or in a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
  • a press treatment may be performed.
  • the electrode density of the negative electrode can be adjusted.
  • the electrode density of the negative electrode is not particularly limited, may be 1.5g / cm 3 ⁇ 1.9g / cm 3, may be 1.6g / cm 3 ⁇ 1.8g / cm 3.
  • the press treatment is preferably performed before the heat treatment.
  • the lithium ion secondary battery manufactured by the above method may include a negative electrode, a positive electrode, and an electrolyte produced by the above method.
  • the lithium ion secondary battery can be configured such that, for example, the negative electrode and the positive electrode are arranged so as to face each other via a separator, and an electrolytic solution containing an electrolyte is injected.
  • the positive electrode may be produced by forming a positive electrode layer on the surface of the current collector in the same manner as the negative electrode.
  • a material such as a band-shaped foil made of a metal or alloy such as aluminum, titanium, or stainless steel, a band-shaped perforated foil, or a band-shaped mesh can be used.
  • the separator examples include non-woven fabrics mainly composed of polyolefins such as polyethylene and polypropylene, cloths, micropore films, and combinations thereof. If the lithium ion secondary battery has a structure in which the positive electrode and the negative electrode do not come into contact with each other, it is not necessary to use a separator.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 and the like are used, and ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, sulfolane, 3 -Methyl sulfolane, 2,4-dimethyl sulfolane, 3-methyl-1,3-oxazolidine-2-one, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate , Butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, 1,3-dioxolane, methyl
  • organic electrolyte So-called organic electrolyte can be used.
  • the electrolytic solution containing fluoroethylene carbonate tends to form a stable SEI (solid electrolyte interface) on the surface of the negative electrode material, and is suitable because the cycle characteristics are remarkably improved.
  • the form of the lithium ion secondary battery is not particularly limited, and examples thereof include a paper type battery, a button type battery, a coin type battery, a laminated type battery, a cylindrical type battery, and a square type battery.
  • the negative electrode material for a lithium ion secondary battery can be applied to all electrochemical devices such as hybrid capacitors having a charging / discharging mechanism of inserting and removing lithium ions in addition to the lithium ion secondary battery. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A method for manufacturing a negative-electrode material for a lithium-ion secondary cell, the method comprising: an irradiation step for irradiating a carbon-containing object with electromagnetic waves; and a detection step for assessing, on the basis of data obtained by the irradiation, whether a detection object included in the object is present.

Description

リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池用負極材の製造装置Manufacturing method of negative electrode material for lithium ion secondary battery and manufacturing equipment for negative electrode material for lithium ion secondary battery
 本発明は、リチウムイオン二次電池用負極材の製造方法及びリチウムイオン二次電池用負極材の製造装置に関する。 The present invention relates to a method for manufacturing a negative electrode material for a lithium ion secondary battery and an apparatus for manufacturing a negative electrode material for a lithium ion secondary battery.
 リチウムイオン二次電池は、ニッケル・カドミウム電池、ニッケル・水素電池、鉛蓄電池等の他の二次電池に比べてエネルギー密度が高いため、ノートパソコン、携帯電話等の携帯電化製品用の電源として広く用いられている。また、比較的小型の電化製品のみならず、電気自動車、蓄電用電源等へのリチウムイオン二次電池の利用も期待されている。 Lithium-ion secondary batteries have a higher energy density than other secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries, and lead-acid batteries, so they are widely used as power sources for portable electrical appliances such as laptop computers and mobile phones. It is used. Further, it is expected that lithium ion secondary batteries will be used not only for relatively small electric appliances but also for electric vehicles, power sources for storing electricity, and the like.
 リチウムイオン二次電池の負極の材料(負極材)としては、黒鉛が広く使用されている。黒鉛を用いた負極材の製造方法としては、例えば、特許文献1には炭素材料、バインダー等を混合して得た混合物を加熱して黒鉛化処理を行い、得られた黒鉛化物をさらに粉砕する方法が記載されている。 Graphite is widely used as the negative electrode material (negative electrode material) for lithium-ion secondary batteries. As a method for producing a negative electrode material using graphite, for example, in Patent Document 1, a mixture obtained by mixing a carbon material, a binder and the like is heated to perform graphitization treatment, and the obtained graphitized product is further pulverized. The method is described.
国際公開第2015/147012号International Publication No. 2015/147012
 炭素材料とバインダー等を混合して得られる混合物には、黒鉛化を促進するための触媒が添加される場合がある。触媒の大部分は黒鉛化工程での加熱により分解する(例えば、触媒として炭化ケイ素を使用する場合は炭素原子が黒鉛骨格を構成し、ケイ素原子は昇華する)と考えられる。しかしながら、加熱の状態(例えば、加熱炉内部の温度分布)によっては触媒の分解又は昇華が充分に進まず、触媒に由来する炭素以外の成分が得られる黒鉛化物の一部に残存するおそれがある。
 黒鉛化物中の触媒に由来する成分の量は、負極材の品質保証の観点から少ないことが望ましい。一方、触媒が完全に除かれるように黒鉛化工程を実施すると生産コストが増大するおそれがある。
A catalyst for promoting graphitization may be added to the mixture obtained by mixing the carbon material and the binder or the like. It is considered that most of the catalyst is decomposed by heating in the graphitization step (for example, when silicon carbide is used as a catalyst, carbon atoms form a graphite skeleton and silicon atoms sublimate). However, depending on the heating state (for example, the temperature distribution inside the heating furnace), the decomposition or sublimation of the catalyst may not proceed sufficiently, and components other than carbon derived from the catalyst may remain in a part of the graphitized product obtained. ..
It is desirable that the amount of the catalyst-derived component in the graphitized product is small from the viewpoint of quality assurance of the negative electrode material. On the other hand, if the graphitization step is carried out so that the catalyst is completely removed, the production cost may increase.
 上記事情にかんがみ、本発明は、品質に優れる負極材を生産性よく製造できるリチウムイオン二次電池用負極材の製造方法、及びリチウムイオン二次電池用負極材の製造装置を提供することを課題とする。 In view of the above circumstances, it is an object of the present invention to provide a method for producing a negative electrode material for a lithium ion secondary battery capable of producing a negative electrode material having excellent quality with high productivity, and an apparatus for producing a negative electrode material for a lithium ion secondary battery. And.
 前記課題を解決するための具体的手段には以下の実施態様が含まれる。
<1>炭素を含む物体に電磁波を照射する照射工程と、
 前記照射により得られるデータに基づいて前記物体に含まれる検出対象の有無を判断する検出工程と、を備える、リチウムイオン二次電池用負極材の製造方法。
<2>前記電磁波はX線である、<1>に記載のリチウムイオン二次電池用負極材の製造方法。
<3>前記検出工程の後に、前記検出対象を含むと判断された物体を取り除く工程をさらに備える、<1>又は<2>に記載のリチウムイオン二次電池用負極材の製造方法。
<4>前記物体の前記電磁波の照射方向における寸法は50mm~180mmである、<1>~<3>のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
<5>前記検出対象はケイ素を含む、<1>~<4>のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
<6>炭素を含む物体に電磁波を照射する照射装置と、
 前記照射により得られるデータに基づいて前記物体に含まれる検出対象の有無を判断する検出装置と、を備える、リチウムイオン二次電池用負極材の製造装置。
<7><1>~<5>のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法に使用するための、<6>に記載のリチウムイオン二次電池用負極材の製造装置。
Specific means for solving the above problems include the following embodiments.
<1> Irradiation process of irradiating an object containing carbon with electromagnetic waves,
A method for manufacturing a negative electrode material for a lithium ion secondary battery, comprising a detection step of determining the presence or absence of a detection target contained in the object based on the data obtained by the irradiation.
<2> The method for manufacturing a negative electrode material for a lithium ion secondary battery according to <1>, wherein the electromagnetic wave is an X-ray.
<3> The method for producing a negative electrode material for a lithium ion secondary battery according to <1> or <2>, further comprising a step of removing an object determined to contain the detection target after the detection step.
<4> The method for producing a negative electrode material for a lithium ion secondary battery according to any one of <1> to <3>, wherein the dimension of the object in the irradiation direction of the electromagnetic wave is 50 mm to 180 mm.
<5> The method for producing a negative electrode material for a lithium ion secondary battery according to any one of <1> to <4>, wherein the detection target contains silicon.
<6> An irradiation device that irradiates an object containing carbon with electromagnetic waves,
A device for manufacturing a negative electrode material for a lithium ion secondary battery, comprising a detection device for determining the presence or absence of a detection target contained in the object based on the data obtained by the irradiation.
<7> The negative electrode material for a lithium ion secondary battery according to <6> for use in the method for producing a negative electrode material for a lithium ion secondary battery according to any one of <1> to <5>. Manufacturing equipment.
 本発明によれば、品質に優れる負極材を生産性よく製造できるリチウムイオン二次電池用負極材の製造方法、及びリチウムイオン二次電池用負極材の製造装置が提供される。 According to the present invention, there is provided a method for manufacturing a negative electrode material for a lithium ion secondary battery capable of producing a negative electrode material having excellent quality with high productivity, and an apparatus for manufacturing a negative electrode material for a lithium ion secondary battery.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合、原理的に明らかに必須であると考えられる場合等を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified and clearly considered to be essential in principle. The same applies to the numerical values and their ranges, and does not limit the present invention.
In the present disclosure, the term "process" includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
The numerical range indicated by using "-" in the present disclosure includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, a plurality of types of particles corresponding to each component may be contained. When a plurality of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
In the present disclosure, the term "layer" refers to the case where the layer is formed in the entire region when the region where the layer is present is observed, and also when the layer is formed only in a part of the region. included.
<リチウムイオン二次電池用負極材の製造方法>
 本開示のリチウムイオン二次電池用負極材(以下、単に負極材とも称する)の製造方法は、炭素を含む物体に電磁波を照射する照射工程と、
 前記照射により得られるデータに基づいて前記物体に含まれる検出対象の有無を判断する検出工程と、を備える。
<Manufacturing method of negative electrode material for lithium ion secondary battery>
The method for producing a negative electrode material for a lithium ion secondary battery (hereinafter, also simply referred to as a negative electrode material) of the present disclosure includes an irradiation step of irradiating an object containing carbon with an electromagnetic wave.
The present invention includes a detection step of determining the presence or absence of a detection target included in the object based on the data obtained by the irradiation.
 上記方法では、物体に電磁波を照射して得られるデータに基づいて物体に含まれる検出対象の有無を判断する。このため、物体を破壊することなく、検出対象を含む物体のみを選別して取り除くことが可能になり、製品全体としての品質を高めることができる。
 さらに、ケイ素のような硬度の高い物質が表面に存在する物体を取り除くことで、生産設備の摩耗が抑制されるという効果も期待できる。
 すなわち上記方法は、検出工程の後に、検出対象を含むと判断された物体を取り除く工程を備えてもよい。
In the above method, the presence or absence of a detection target included in the object is determined based on the data obtained by irradiating the object with electromagnetic waves. Therefore, it is possible to select and remove only the object including the detection target without destroying the object, and the quality of the product as a whole can be improved.
Further, by removing an object having a high hardness substance such as silicon on the surface, it can be expected to have an effect of suppressing wear of production equipment.
That is, the above method may include a step of removing an object determined to include a detection target after the detection step.
 本開示において検出対象の有無の判断は、物体が検出対象をまったく含まないか否かの判断に限られず、検出対象の含有量が許容範囲として設定した値を超えるか否かの判断であってもよい。 In the present disclosure, the determination of the presence or absence of the detection target is not limited to the determination of whether or not the object does not include the detection target at all, but is the determination of whether or not the content of the detection target exceeds the value set as the allowable range. May be good.
 物体に照射する電磁波の種類は、物体に含まれる検出対象を検出できるものであれば特に制限されない。たとえば、X線が挙げられる。
 物体に含まれる検出対象は炭素以外の元素であれば特に制限されない。具体的には、ケイ素、鉄、ニッケル、チタン、ホウ素等が挙げられる。ある実施態様では、検出対象はケイ素を含む。
The type of electromagnetic wave irradiating the object is not particularly limited as long as it can detect the detection target contained in the object. For example, X-rays can be mentioned.
The detection target contained in the object is not particularly limited as long as it is an element other than carbon. Specific examples thereof include silicon, iron, nickel, titanium and boron. In certain embodiments, the detection target comprises silicon.
 物体への電磁波の照射を行う方法は、物体に含まれる検出対象を検出できるものであれば特に制限されない。たとえば、物体に対して電磁波を1方向又は2方向以上から照射してもよい。電磁波の照射源は固定されていても移動可能であってもよい。 The method of irradiating the object with electromagnetic waves is not particularly limited as long as it can detect the detection target contained in the object. For example, the object may be irradiated with electromagnetic waves from one direction or two or more directions. The source of the electromagnetic wave may be fixed or mobile.
 ある実施態様では、電磁波としてX線を使用し、照射強度:管電圧50kV、管電流2.0~4.0mA、タングステンターゲット、物体1個あたりの照射時間:0.96秒~2.04秒として照射工程を実施する。 In one embodiment, X-rays are used as electromagnetic waves, irradiation intensity: tube voltage 50 kV, tube current 2.0-4.0 mA, tungsten target, irradiation time per object: 0.96 seconds-2.04 seconds. The irradiation step is carried out as.
 電磁波の照射により得られるデータに基づいて物体に含まれる検出対象の有無を判断する方法は特に制限されず、公知の方法により行うことができる。検出対象の有無を判断する基準は、所望の負極材の品質等に応じて設定できる。 The method of determining the presence or absence of the detection target contained in the object based on the data obtained by irradiating the electromagnetic wave is not particularly limited, and a known method can be used. The criteria for determining the presence or absence of the detection target can be set according to the quality of the desired negative electrode material and the like.
 電磁波が照射される物体の大きさ又は形状は、電磁波の照射によって表面及び内部の検出対象を検出できる状態であれば特に制限されない。例えば、電磁波の照射方向における寸法は50mm~180mm又は70mm~100mmであってもよく、体積は3,000cm~5,000cmであってもよく、取り扱い性を考慮すると直方体、円柱等の平面上に置くのに適した形状であってもよい。 The size or shape of the object irradiated with the electromagnetic wave is not particularly limited as long as the surface and the inside detection target can be detected by the irradiation of the electromagnetic wave. For example, the dimension in the irradiation direction of the electromagnetic wave may be 50 mm to 180 mm or 70 mm to 100 mm, the volume may be 3,000 cm 3 to 5,000 cm 3 , and a flat surface such as a rectangular parallelepiped or a cylinder is considered in consideration of handleability. It may have a shape suitable for being placed on top.
 ある実施態様では、炭素を含む物体は黒鉛を含む物体であってもよく、黒鉛化可能な骨材及び黒鉛からなる群より選択される少なくとも一方と、黒鉛化可能なバインダーとを含む混合物の黒鉛化物であってもよい。黒鉛化可能な骨材及び黒鉛からなる群より選択される少なくとも一方と、黒鉛化可能なバインダーとを含む混合物の詳細については、後述する。 In some embodiments, the carbon-containing object may be a graphite-containing object, the graphite of a mixture containing at least one selected from the group consisting of graphitizable aggregates and graphite, and a graphitizable binder. It may be a product. Details of the mixture containing at least one selected from the group consisting of graphitizable aggregate and graphitizable binder and graphitizable binder will be described later.
 上記方法は、電磁波の照射及び検出対象の有無を判断する工程の後に、炭素を含む物体を粉砕する工程を備えてもよい。炭素を含む物体が所望の粒子径の粒子状になるように粉砕することで、リチウムイオン二次電池の負極材として使用可能な状態になる。粉砕の方法及び条件は特に制限されず、公知の方法で実施することができる。 The above method may include a step of crushing an object containing carbon after a step of irradiating electromagnetic waves and determining the presence or absence of a detection target. By pulverizing an object containing carbon into particles having a desired particle size, it can be used as a negative electrode material for a lithium ion secondary battery. The method and conditions of pulverization are not particularly limited, and can be carried out by a known method.
<リチウムイオン二次電池用負極材の製造装置>
 本開示のリチウムイオン二次電池用負極材の製造装置は、炭素を含む物体に電磁波を照射する照射装置と、
 前記照射により得られるデータに基づいて前記物体に含まれる検出対象の有無を判断する検出装置と、を備える。
<Manufacturing equipment for negative electrode materials for lithium-ion secondary batteries>
The apparatus for manufacturing the negative electrode material for a lithium ion secondary battery of the present disclosure includes an irradiation apparatus that irradiates an object containing carbon with an electromagnetic wave.
A detection device for determining the presence / absence of a detection target included in the object based on the data obtained by the irradiation is provided.
 上記装置を用いることで、品質に優れるリチウムイオン二次電池用負極材負極材を生産性よく製造することができる。 By using the above device, it is possible to produce a negative electrode material for a lithium ion secondary battery having excellent quality with high productivity.
 上記装置における電磁波の照射装置及び検出装置の構成は特に制限されず、公知の装置を使用してもよい。
 上記装置を用いた電磁波の照射又は検出対象の検出の詳細及び好ましい態様は、上述した負極材の製造方法における磁波の照射又は検出対象の検出の詳細及び好ましい態様と同様である。
The configuration of the electromagnetic wave irradiation device and the detection device in the above device is not particularly limited, and a known device may be used.
The details and preferred embodiments of electromagnetic wave irradiation or detection target detection using the above device are the same as the details and preferred embodiments of magnetic wave irradiation or detection target detection in the above-described negative electrode material manufacturing method.
 上記装置は、炭素を含む物体を照射装置まで移動する移動装置を備えてもよい。移動装置の構成は特に制限されない。作業効率の観点からは、ベルトコンベヤー等の複数の炭素を含む物体を連続的に移動できる装置が好ましい。 The device may include a moving device that moves an object containing carbon to the irradiation device. The configuration of the mobile device is not particularly limited. From the viewpoint of work efficiency, a device such as a belt conveyor capable of continuously moving an object containing a plurality of carbons is preferable.
 上記装置は、電磁波の照射により得られるデータに基づいて物体に含まれる検出対象の有無を判断された物体のうち、検出対象を含むと判断された物体を取り除く装置を備えてもよい。 The above device may include a device for removing an object determined to include a detection target among the objects for which the presence or absence of a detection target included in the object is determined based on the data obtained by irradiation with electromagnetic waves.
 上記装置は、例えば、上述した負極材の製造方法に使用されるものであってもよい。 The above device may be used, for example, in the above-mentioned method for manufacturing a negative electrode material.
<リチウムイオン二次電池用負極材>
 本開示の製造方法又は製造装置で製造される負極材の形態は、特に制限されない。ある実施態様では、複数の粒子が集合又は結合した状態の粒子(二次粒子)を含むものであってもよく、複数の扁平状の黒鉛粒子が、前記黒鉛粒子の主面が互いに非平行となるように集合又は結合した状態の粒子であってもよい。
 以下では、複数の扁平状の黒鉛粒子が、前記黒鉛粒子の主面が互いに非平行となるように集合又は結合した状態の粒子を特に「黒鉛二次粒子」とも称する。
<Negative electrode material for lithium-ion secondary batteries>
The form of the negative electrode material manufactured by the manufacturing method or the manufacturing apparatus of the present disclosure is not particularly limited. In one embodiment, the particles may include particles (secondary particles) in which a plurality of particles are aggregated or bonded, and the plurality of flat graphite particles have the main surfaces of the graphite particles non-parallel to each other. The particles may be aggregated or combined so as to be.
Hereinafter, particles in which a plurality of flat graphite particles are aggregated or bonded so that the main surfaces of the graphite particles are non-parallel to each other are particularly referred to as “graphite secondary particles”.
 負極材が黒鉛二次粒子の状態であると、負極の高密度化のためのプレスを行ったときに負極材の粒子が集電体の方向に沿って配向する現象が抑制され、負極材を出入りするリチウムイオンの経路が充分に確保される傾向にある。 When the negative electrode material is in the state of graphite secondary particles, the phenomenon that the particles of the negative electrode material are oriented along the direction of the current collector when the press for increasing the density of the negative electrode is performed is suppressed, and the negative electrode material is used. There is a tendency to secure a sufficient route for lithium ions to enter and exit.
 さらに、黒鉛二次粒子を構成する複数の扁平状の黒鉛粒子の間に存在する空隙によってプレス時に加える圧力が個々の黒鉛粒子に与える影響が軽減され、黒鉛粒子の破壊、亀裂の発生等が抑制される傾向にある。 Furthermore, the effect of the pressure applied during pressing on the individual graphite particles is reduced by the voids existing between the plurality of flat graphite particles constituting the graphite secondary particles, and the destruction of the graphite particles and the generation of cracks are suppressed. Tends to be.
 本開示において「扁平状の黒鉛粒子」とは、形状に異方性を有する非球状の黒鉛粒子をいう。扁平状の黒鉛粒子としては、鱗状、鱗片状、一部塊状等の形状を有する黒鉛粒子が挙げられる。 In the present disclosure, the "flat graphite particles" refer to non-spherical graphite particles having anisotropy in shape. Examples of the flat graphite particles include graphite particles having a shape such as scaly, scaly, and partially lumpy.
 扁平状の黒鉛粒子は、長軸方向の長さをA、短軸方向の長さをBとしたときに、A/Bで表されるアスペクト比が、例えば、1.2~20であることが好ましく、1.3~10であることがより好ましい。アスペクト比が1.2以上であると、粒子間の接触面積が増加して、導電性がより向上する傾向にある。アスペクト比が20以下であると、リチウムイオン二次電池の急速充放電特性等の入出力特性がより向上する傾向にある。 The aspect ratio represented by A / B of the flat graphite particles is, for example, 1.2 to 20, when the length in the major axis direction is A and the length in the minor axis direction is B. Is preferable, and 1.3 to 10 is more preferable. When the aspect ratio is 1.2 or more, the contact area between the particles increases, and the conductivity tends to be further improved. When the aspect ratio is 20 or less, the input / output characteristics such as the rapid charge / discharge characteristics of the lithium ion secondary battery tend to be further improved.
 アスペクト比は、黒鉛粒子を顕微鏡で観察し、任意に100個の黒鉛粒子を選択してそれぞれのA/Bを測定し、それらの測定値の算術平均値をとったものである。アスペクト比の観察において、長軸方向の長さA及び短軸方向の長さBは、以下のようにして測定される。すなわち、顕微鏡を用いて観察される黒鉛粒子の投影像において、黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最大となる接線a1及び接線a2を選択して、この接線a1及び接線a2の間の距離を長軸方向の長さAとする。また、黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最小となる接線b1及び接線b2を選択して、この接線b1及び接線b2の間の距離を短軸方向の長さBとする。 The aspect ratio is obtained by observing graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring each A / B, and taking the arithmetic mean value of those measured values. In observing the aspect ratio, the length A in the major axis direction and the length B in the minor axis direction are measured as follows. That is, in the projected image of the graphite particles observed using a microscope, two parallel tangents circumscribing the outer periphery of the graphite particles, the tangent line a1 and the tangent line a2 having the maximum distance are selected, and the tangent line a1 and the tangent line a2 are selected. The distance between the tangent line a1 and the tangent line a2 is defined as the length A in the major axis direction. Further, two parallel tangents circumscribing the outer periphery of the graphite particles, the tangent line b1 and the tangent line b2 having the minimum distance are selected, and the distance between the tangent line b1 and the tangent line b2 is set in the minor axis direction. Let the length be B.
 本開示において複数の扁平状の黒鉛粒子の「主面が非平行である」とは、複数の扁平状の黒鉛粒子の最も断面積の大きい面(主面)が一定方向に揃っていないことをいう。複数の扁平状の黒鉛粒子の主面が互いに非平行であるか否かは、顕微鏡観察により確認することができる。複数の扁平状の黒鉛粒子が、主面が互いに非平行な状態で集合又は結合していることにより、扁平状の黒鉛粒子の負極内での主面の配向性の高まりが抑制され、充電に伴う負極の膨張が抑制され、リチウムイオン二次電池のサイクル特性が向上する傾向にある。
 なお、黒鉛二次粒子は、複数の扁平状の黒鉛粒子が、それぞれの主面が平行となるように集合又は結合した状態の構造を部分的に含んでいてもよい。
In the present disclosure, "the main surfaces of the plurality of flat graphite particles are non-parallel" means that the surfaces (main surfaces) having the largest cross-sectional areas of the plurality of flat graphite particles are not aligned in a certain direction. say. Whether or not the main surfaces of the plurality of flat graphite particles are non-parallel to each other can be confirmed by microscopic observation. By assembling or bonding a plurality of flat graphite particles in a state in which the main surfaces are non-parallel to each other, the increase in the orientation of the main surface in the negative electrode of the flat graphite particles is suppressed, and charging is performed. The accompanying expansion of the negative electrode is suppressed, and the cycle characteristics of the lithium ion secondary battery tend to be improved.
The graphite secondary particles may partially include a structure in which a plurality of flat graphite particles are assembled or bonded so that their main surfaces are parallel to each other.
 本開示において複数の扁平状の黒鉛粒子が「集合又は結合している状態」とは、2個以上の扁平状の黒鉛粒子が集合又は結合している状態をいう。「結合」とは、互いの粒子が直接又は炭素物質を介して、化学的に結合している状態をいう。「集合」とは、互いの粒子が化学的に結合してはいないが、その形状等に起因して、集合体としての形状を保っている状態をいう。扁平状の黒鉛粒子は、炭素物質を介して集合又は結合していてもよい。炭素物質としては、例えば、黒鉛化可能なバインダーの黒鉛化物が挙げられる。機械的な強度の観点からは、2個以上の扁平状の黒鉛粒子が炭素物質を介して結合している状態であることが好ましい。扁平状の黒鉛粒子が集合又は結合しているか否かは、例えば、走査型電子顕微鏡による観察により確認することができる。 In the present disclosure, the "state in which a plurality of flat graphite particles are aggregated or bonded" means a state in which two or more flat graphite particles are aggregated or bonded. "Bond" refers to a state in which particles are chemically bonded to each other either directly or via a carbon substance. The "aggregate" refers to a state in which the particles are not chemically bonded to each other, but the shape of the aggregate is maintained due to its shape or the like. The flat graphite particles may be aggregated or bonded via a carbon substance. Examples of the carbon substance include graphitized binders that can be graphitized. From the viewpoint of mechanical strength, it is preferable that two or more flat graphite particles are bonded to each other via a carbon substance. Whether or not the flat graphite particles are aggregated or bonded can be confirmed by, for example, observation with a scanning electron microscope.
 扁平状の黒鉛粒子の平均粒子径は、集合又は結合のし易さの観点から、例えば、1μm~50μmであることが好ましく、1μm~25μmであることがより好ましく、1μm~15μmであることがさらに好ましい。扁平状の黒鉛粒子の平均粒子径の測定方法としては、走査型電子顕微鏡で測定する方法が挙げられる。 The average particle size of the flat graphite particles is preferably, for example, 1 μm to 50 μm, more preferably 1 μm to 25 μm, and 1 μm to 15 μm from the viewpoint of ease of assembly or bonding. More preferred. Examples of the method for measuring the average particle size of the flat graphite particles include a method of measuring with a scanning electron microscope.
 扁平状の黒鉛粒子及びその原料は特に制限されず、人造黒鉛、鱗状天然黒鉛、鱗片状天然黒鉛、コークス、樹脂、タール、ピッチ等が挙げられる。中でも、人造黒鉛、天然黒鉛、又はコークスから得られる黒鉛は結晶度が高く軟質な粒子となるため、負極の高密度化がし易くなる傾向にある。 The flat graphite particles and their raw materials are not particularly limited, and examples thereof include artificial graphite, scaly natural graphite, scaly natural graphite, coke, resin, tar, and pitch. Among them, graphite obtained from artificial graphite, natural graphite, or coke has high crystallinity and becomes soft particles, so that the density of the negative electrode tends to be easily increased.
 負極材は、球状の黒鉛粒子を含むものであってもよい。負極材が球状の黒鉛粒子を含む場合、球状の黒鉛粒子はそれ自体が高密度であるため、所望の電極密度を得るために必要なプレス圧を軽減できる傾向にある。 The negative electrode material may contain spherical graphite particles. When the negative electrode material contains spherical graphite particles, the spherical graphite particles themselves have a high density, so that the pressing pressure required to obtain a desired electrode density tends to be reduced.
 球状の黒鉛粒子としては、球状人造黒鉛、球状天然黒鉛等が挙げられる。負極の高密度化の観点からは、球状の黒鉛粒子は高密度な黒鉛粒子であることが好ましい。具体的には、粒子球形化処理を施して高タップ密度化できるようにされた球状天然黒鉛であることが好ましい。さらに、球状天然黒鉛を含む負極材層は剥離強度に優れ、強い力でプレスしても集電体から剥がれにくい傾向にある。 Examples of spherical graphite particles include spherical artificial graphite and spherical natural graphite. From the viewpoint of increasing the density of the negative electrode, the spherical graphite particles are preferably high-density graphite particles. Specifically, it is preferably spherical natural graphite that has been subjected to a particle spheroidizing treatment so that the tap density can be increased. Further, the negative electrode material layer containing spherical natural graphite has excellent peel strength and tends to be difficult to peel from the current collector even when pressed with a strong force.
 負極材が球状の黒鉛粒子を含む場合、上述した黒鉛二次粒子と、球状の黒鉛粒子とを含むものであってもよい。負極材が上述した黒鉛二次粒子と、球状の黒鉛粒子とを含む場合、両者の割合は特に制限されず、所望の電極密度、プレス時の圧力条件、所望の電池特性等に応じて設定できる。 When the negative electrode material contains spherical graphite particles, it may contain the above-mentioned graphite secondary particles and spherical graphite particles. When the negative electrode material contains the above-mentioned graphite secondary particles and spherical graphite particles, the ratio of the two is not particularly limited and can be set according to a desired electrode density, pressure conditions during pressing, desired battery characteristics, and the like. ..
 負極材が黒鉛二次粒子と、球状の黒鉛粒子とを含む場合としては、黒鉛二次粒子と球状の黒鉛粒子とが混合された状態、黒鉛二次粒子と球状の黒鉛粒子とが結合した状態(以下、複合粒子とも称する)等が挙げられる。複合粒子としては、例えば、黒鉛二次粒子と球状の黒鉛粒子とが有機物の炭化物を介して結合した状態の粒子が挙げられる。 When the negative electrode material contains graphite secondary particles and spherical graphite particles, a state in which the graphite secondary particles and spherical graphite particles are mixed, and a state in which the graphite secondary particles and spherical graphite particles are bonded. (Hereinafter, also referred to as composite particles) and the like. Examples of the composite particles include particles in which secondary graphite particles and spherical graphite particles are bonded via an organic carbide.
 上記方法で製造される負極材の平均粒子径は、特に制限されない。例えば、5μm~40μmであることが好ましく、10μm~30μmであることがより好ましく、10μm~25μmであることがさらに好ましい。平均粒子径は、例えば、上述した扁平な黒鉛粒子の平均粒子径と同様に走査型電子顕微鏡で測定してもよく、レーザー回折・散乱法により測定される体積平均粒子径であってもよい。 The average particle size of the negative electrode material produced by the above method is not particularly limited. For example, it is preferably 5 μm to 40 μm, more preferably 10 μm to 30 μm, and even more preferably 10 μm to 25 μm. The average particle size may be measured with a scanning electron microscope in the same manner as the average particle size of the flat graphite particles described above, or may be a volume average particle size measured by a laser diffraction / scattering method.
 負極材を用いて電極(負極)を製造した場合の平均粒子径の測定方法としては、試料電極を作製し、その電極をエポキシ樹脂に埋め込んだ後、鏡面研磨して電極断面を走査型電子顕微鏡(例えば、株式会社キーエンス製、「VE-7800」)で観察する方法、イオンミリング装置(例えば、株式会社日立ハイテクノロジーズ製、「E-3500」)を用いて電極断面を作製して走査型電子顕微鏡(例えば、株式会社キーエンス製、「VE-7800」)で測定する方法等が挙げられる。この場合の平均粒子径は、観察される粒子から任意に選択した100個の粒子径の中央値である。 As a method of measuring the average particle size when an electrode (negative electrode) is manufactured using a negative electrode material, a sample electrode is prepared, the electrode is embedded in an epoxy resin, and then mirror-polished to scan the electrode cross section with a scanning electron microscope. (For example, "VE-7800" manufactured by Keyence Co., Ltd.), an electrode cross section is prepared using an ion milling device (for example, "E-3500" manufactured by Hitachi High-Technologies Co., Ltd.) and a scanning electron. Examples thereof include a method of measuring with a microscope (for example, “VE-7800” manufactured by Keyence Co., Ltd.). The average particle size in this case is the median value of 100 particle sizes arbitrarily selected from the observed particles.
 上記試料電極は、例えば、負極材98質量部、バインダーとしてのスチレンブタジエン樹脂1質量部、及び増粘剤としてのカルボキシメチルセルロース1質量部の混合物を固形分として、水を添加して分散液を作製し、前記分散液を厚さが10μmの銅箔上に70μm程度の厚み(塗工時)になるように塗工後、105℃で1時間乾燥させることによって作製することができる。 For the sample electrode, for example, a mixture of 98 parts by mass of the negative electrode material, 1 part by mass of styrene-butadiene resin as a binder, and 1 part by mass of carboxymethyl cellulose as a thickener is used as a solid content, and water is added to prepare a dispersion. Then, the dispersion liquid is coated on a copper foil having a thickness of 10 μm so as to have a thickness of about 70 μm (at the time of coating), and then dried at 105 ° C. for 1 hour to produce the dispersion.
(配向性)
 負極材は、負極(負極の作製にプレス工程を伴う場合は、プレス後の負極)としたときの配向性が700以下であってもよく、500以下であってもよい。
 負極材の配向性は、負極に含まれる負極材の粒子の配向の度合いを示す指標である。配向性が小さいことは、負極材の粒子がランダムな方向を向いていることを意味する。すなわち、プレス時の圧力によって黒鉛粒子が集電体の面に沿って配向するのが抑制されていることを意味する。
(Orientation)
The negative electrode material may have an orientation of 700 or less, or 500 or less, when it is used as a negative electrode (a negative electrode after pressing when the production of the negative electrode involves a pressing step).
The orientation of the negative electrode material is an index indicating the degree of orientation of the particles of the negative electrode material contained in the negative electrode. The small orientation means that the particles of the negative electrode material are oriented in random directions. That is, it means that the graphite particles are suppressed from being oriented along the surface of the current collector due to the pressure at the time of pressing.
 本開示において、負極の配向性は、CuKα線をX線源とするX線回折装置により、試料電極の表面を測定することにより求める。具体的には、試料電極の表面のX線回折パターンを測定し、回折角2θ=26°~27°付近に検出される炭素(002)面回折ピークと、回折角2θ=70°~80°付近に検出される炭素(110)面回折ピークとの強度から下記式(1)により求める。
 (002)面回折ピーク強度/(110)面回折ピーク強度 ・・・・式(1)
In the present disclosure, the orientation of the negative electrode is determined by measuring the surface of the sample electrode with an X-ray diffractometer using CuKα ray as an X-ray source. Specifically, the X-ray diffraction pattern on the surface of the sample electrode is measured, and the carbon (002) plane diffraction peak detected in the vicinity of the diffraction angle 2θ = 26 ° to 27 ° and the diffraction angle 2θ = 70 ° to 80 °. It is calculated by the following formula (1) from the intensity with the carbon (110) plane diffraction peak detected in the vicinity.
(002) Surface diffraction peak intensity / (110) Surface diffraction peak intensity ... Equation (1)
 本開示において、電磁波が照射される炭素を含む物体を得る方法は特に制限されない。例えば、下記工程(a)~(c)を含む方法により得てもよい。 In the present disclosure, the method of obtaining an object containing carbon irradiated with electromagnetic waves is not particularly limited. For example, it may be obtained by a method including the following steps (a) to (c).
 (a)黒鉛化可能な骨材及び黒鉛からなる群より選択される少なくとも一方と、黒鉛化可能なバインダーとを含む混合物を得る工程
 (b)前記混合物を成形して成形物を得る工程
 (c)前記成形物を黒鉛化して黒鉛化物を得る工程
(A) A step of obtaining a mixture containing at least one selected from the group consisting of graphitizable aggregate and graphite and a graphitizable binder (b) A step of molding the mixture to obtain a molded product (c) ) Step of graphitizing the molded product to obtain a graphitized product
 工程(a)では、黒鉛化可能な骨材及び黒鉛からなる群より選択される少なくとも一方と、黒鉛化可能なバインダーとを含む混合物を得る。混合物を得る方法は特に制限されず、ニーダー等を用いて行うことができる。混合は、黒鉛化可能なバインダーが軟化する温度で行う事が好ましい。具体的には、黒鉛化可能なバインダーがピッチ、タール等である場合には50℃~300℃であってもよく、熱硬化性樹脂である場合には20℃~100℃であってもよい。 In step (a), a mixture containing at least one selected from the group consisting of graphitizable aggregate and graphite and a graphitizable binder is obtained. The method for obtaining the mixture is not particularly limited, and it can be carried out using a kneader or the like. The mixing is preferably carried out at a temperature at which the graphitizable binder softens. Specifically, when the binder that can be graphitized is pitch, tar, or the like, the temperature may be 50 ° C. to 300 ° C., and when the binder is a thermosetting resin, the temperature may be 20 ° C. to 100 ° C. ..
 黒鉛化可能な骨材は、黒鉛化処理により黒鉛化するものであれば特に制限されない。具体的には、フルードコークス、ニードルコークス、モザイクコークス等のコークスが挙げられる。黒鉛としては、天然黒鉛、人造黒鉛等が挙げられる。黒鉛化可能な骨材又は黒鉛は、粒子状であることが好ましい。 The aggregate that can be graphitized is not particularly limited as long as it is graphitized by the graphitization treatment. Specific examples thereof include coke such as fluid coke, needle coke, and mosaic coke. Examples of graphite include natural graphite and artificial graphite. The graphitizable aggregate or graphite is preferably in the form of particles.
 黒鉛化可能なバインダーは、黒鉛化処理により黒鉛化するものであれば特に制限されない。具体的には、石炭系、石油系、人造等のピッチ及びタール、熱可塑性樹脂、熱硬化性樹脂などが挙げられる。 The binder that can be graphitized is not particularly limited as long as it is graphitized by the graphitization treatment. Specific examples thereof include coal-based, petroleum-based, artificial pitch and tar, thermoplastic resins, and thermosetting resins.
 混合物における各材料の配合比は、特に制限されない。例えば、黒鉛化可能なバインダーの含有率は、黒鉛化可能な骨材又は黒鉛100質量部に対し、15質量部~150質量部であってもよく、30質量部~130質量部であってもよく、50質量部~110質量部であってもよい。バインダーの量が15質量部以上であると、混合物の流動性が充分に確保され、成形性に優れる傾向にある。バインダーの量が150質量部以下であると、混合物中の固定炭素量が充分に確保され、収率に優れる傾向にある。 The compounding ratio of each material in the mixture is not particularly limited. For example, the content of the graphitizable binder may be 15 parts by mass to 150 parts by mass, or 30 parts by mass to 130 parts by mass with respect to 100 parts by mass of graphitizable aggregate or graphite. It may be 50 parts by mass to 110 parts by mass. When the amount of the binder is 15 parts by mass or more, the fluidity of the mixture is sufficiently ensured, and the moldability tends to be excellent. When the amount of the binder is 150 parts by mass or less, the amount of fixed carbon in the mixture is sufficiently secured, and the yield tends to be excellent.
 混合物に含まれる黒鉛化可能な骨材、黒鉛及び黒鉛化可能なバインダーは、それぞれ1種のみでも2種以上であってもよい。また、混合物は、これら以外の成分を含んでいてもよい。黒鉛化可能な骨材、黒鉛及び黒鉛化可能なバインダー以外の成分としては、流動性付与剤、黒鉛化触媒等が挙げられる。 The graphitizable aggregate, graphite and graphitizable binder contained in the mixture may be only one type or two or more types, respectively. In addition, the mixture may contain components other than these. Examples of components other than graphitizable aggregates, graphite and graphitizable binders include fluidity-imparting agents and graphitization catalysts.
 工程(b)において混合物を成形しやすくする観点からは、混合物は流動性付与剤を含むことが好ましい。特に、混合物の成形を押出成形により行う場合は、混合物を流動させながら成形を行うために、流動性付与剤を含むことが好ましい。さらに、混合物が流動性付与剤を含むことは黒鉛化可能なバインダーの量を抑えることにつながり、負極材の初回充放電効率等の電池特性の改善も期待できる。 From the viewpoint of facilitating the molding of the mixture in the step (b), it is preferable that the mixture contains a fluidity-imparting agent. In particular, when molding the mixture is performed by extrusion molding, it is preferable to include a fluidity-imparting agent in order to perform molding while flowing the mixture. Furthermore, the inclusion of the fluidity-imparting agent in the mixture leads to a reduction in the amount of the binder that can be graphitized, and can be expected to improve the battery characteristics such as the initial charge / discharge efficiency of the negative electrode material.
 流動性付与剤の種類は特に制限されない。具体的には、流動パラフィン、パラフィンワックス、ポリエチレンワックス等の炭化水素、ステアリン酸、オレイン酸、エルカ酸、12ヒドロキシステアリン酸等の脂肪酸、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸マグネシウム等の脂肪酸金属塩、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド等の脂肪酸アミド、ステアリン酸モノグリセリド、ステアリルステアレート、硬化油等の脂肪酸エステル、ステアリルアルコール等の高級アルコールなどが挙げられる。これらの中でも、負極材の性能に影響を与えにくく、常温で固体であるため取扱いやすく、工程(a)の温度で溶融するために均一に分散し、黒鉛化処理までの過程で消失し、安価であることから、脂肪酸が好ましく、ステアリン酸がより好ましい。 The type of fluidity-imparting agent is not particularly limited. Specifically, hydrocarbons such as liquid paraffin, paraffin wax and polyethylene wax, fatty acids such as stearic acid, oleic acid, erucic acid and 12-hydroxystearic acid, zinc stearate, lead stearate, aluminum stearate, calcium stearate, Fatty metal salts such as magnesium stearate, stearic acid amide, oleic acid amide, erucic acid amide, methylene bisstearic acid amide, ethylene bisstearic acid amide and other fatty acid amides, stearic acid monoglyceride, stearyl stearate, hardened oil and other fatty acids Examples thereof include higher alcohols such as ester and stearic acid. Among these, it does not easily affect the performance of the negative electrode material, it is easy to handle because it is solid at room temperature, it is uniformly dispersed because it melts at the temperature of step (a), and it disappears in the process up to the graphitization treatment, and it is inexpensive. Therefore, fatty acids are preferable, and stearic acid is more preferable.
 混合物が流動性付与剤を含む場合、その量は特に制限されない。例えば、混合物全体に対する流動性付与剤の含有率は0.1質量%~20質量%であってもよく、0.5質量%~10質量%であってもよく、0.5質量%~5質量%であってもよい。 When the mixture contains a fluidity-imparting agent, the amount thereof is not particularly limited. For example, the content of the fluidity-imparting agent in the entire mixture may be 0.1% by mass to 20% by mass, 0.5% by mass to 10% by mass, or 0.5% by mass to 5% by mass. It may be% by mass.
 黒鉛化可能な骨材又はバインダーの黒鉛化を促進する観点からは、混合物は黒鉛化触媒を含むことが好ましい。黒鉛化触媒の種類は特に制限されない。具体的には、ケイ素、鉄、ニッケル、チタン、ホウ素等の黒鉛化触媒作用を有する物質、これらの物質の炭化物、酸化物、窒化物などが挙げられる。 From the viewpoint of promoting graphitization of the graphitizable aggregate or binder, the mixture preferably contains a graphitization catalyst. The type of graphitization catalyst is not particularly limited. Specific examples thereof include substances having a graphitizing catalytic action such as silicon, iron, nickel, titanium and boron, and carbides, oxides and nitrides of these substances.
 混合物が黒鉛化触媒を含む場合、その量は特に制限されない。例えば、混合物全体に対する黒鉛化触媒の含有率は0.1質量%~50質量%であってもよく、0.5質量%~40質量%であってもよく、0.5質量%~30質量%であってもよい。 When the mixture contains a graphitization catalyst, the amount thereof is not particularly limited. For example, the content of the graphitizing catalyst in the whole mixture may be 0.1% by mass to 50% by mass, 0.5% by mass to 40% by mass, or 0.5% by mass to 30% by mass. May be%.
 工程(b)では、工程(a)で得た混合物を成形して成形物を得る。混合物の成形は、混合物を黒鉛化する際に黒鉛化炉への詰量を増やして生産性を向上したり、黒鉛化触媒の効果を向上したりするために行う。 In the step (b), the mixture obtained in the step (a) is molded to obtain a molded product. The molding of the mixture is carried out in order to increase the filling amount in the graphitizing reactor when graphitizing the mixture to improve the productivity and to improve the effect of the graphitizing catalyst.
 混合物の成形は、黒鉛化可能なバインダーが軟化した状態で行うことが好ましい。
 混合物に含まれる黒鉛化可能なバインダーが軟化した状態としては、例えば、混合物の温度が混合物に含まれる黒鉛化可能なバインダーが軟化する温度以上である状態が挙げられる。黒鉛化可能なバインダーの軟化の状態は、所望の状態に混合物を成形できるものであれば特に制限されない。ある実施態様では、混合物の成形は、混合物の温度が80℃以上の状態で行ってもよく、100℃以上の状態で行ってもよい。混合物中の揮発成分の揮発を抑える観点からは、混合物の成形は、混合物の温度が200℃以下の状態で行ってもよく、120℃以下の状態で行ってもよい。
The molding of the mixture is preferably carried out in a softened state of the graphitizable binder.
Examples of the softened state of the graphitizable binder contained in the mixture include a state in which the temperature of the mixture is equal to or higher than the temperature at which the graphitizable binder contained in the mixture softens. The softened state of the graphitizable binder is not particularly limited as long as the mixture can be molded into a desired state. In some embodiments, the molding of the mixture may be carried out at a temperature of 80 ° C. or higher, or 100 ° C. or higher. From the viewpoint of suppressing the volatilization of volatile components in the mixture, the molding of the mixture may be carried out at a temperature of 200 ° C. or lower, or at 120 ° C. or lower.
 工程(b)において成形される混合物は、工程(a)において得られた後に黒鉛化可能なバインダーが軟化した状態が維持されたものであってもよく、工程(a)において得られた後にいったん冷却し、その後に加熱等により黒鉛化可能なバインダーが軟化した状態(ただし、粉砕されていない)にしたものであってもよい。 The mixture formed in the step (b) may be one in which the graphitizable binder is maintained in a softened state after being obtained in the step (a), and once obtained in the step (a). It may be in a state where the graphitizable binder is softened (however, not crushed) by cooling and then heating or the like.
 工程(b)において、混合物を成形する方法は特に制限されない。例えば、金型等の容器内に混合物を入れて一軸方向に加圧するモールド成形法、金型等の容器内に混合物を入れて、上面に重鎮を載せ、金枠に振動・衝撃を与えて成形する振動成形法、混合物を横押しプレスでノズル等から押し出して成形する押出成形法等が挙げられる。 In step (b), the method of molding the mixture is not particularly limited. For example, a molding method in which a mixture is placed in a container such as a mold and pressed in a uniaxial direction, a heavy weight is placed on the upper surface of the mixture in a container such as a mold, and vibration / impact is applied to the mold to form the mold. Examples thereof include a vibration molding method for forming a mixture, and an extrusion molding method in which a mixture is extruded from a nozzle or the like with a horizontal pressing press.
 工程(b)で得られる成形物は、工程(c)において成形物を黒鉛化する前に、熱処理を施されることが好ましい。熱処理を施すことにより、混合物に含まれる黒鉛化に寄与しない有機物成分が除去され、黒鉛化処理におけるガス発生等が抑制される傾向にある。 The molded product obtained in the step (b) is preferably heat-treated before the molded product is graphitized in the step (c). By performing the heat treatment, organic components contained in the mixture that do not contribute to graphitization are removed, and gas generation in the graphitization treatment tends to be suppressed.
 上記熱処理の温度は特に制限されないが、工程(c)における熱処理の温度よりも低い温度であることが好ましい。例えば、500℃~1000℃の範囲内で行ってもよい。 The temperature of the heat treatment is not particularly limited, but it is preferably a temperature lower than the temperature of the heat treatment in the step (c). For example, it may be carried out in the range of 500 ° C. to 1000 ° C.
 工程(c)では、工程(b)で得られた成形物を黒鉛化する。成形物を黒鉛化する方法は、混合物に含まれる黒鉛化可能な成分が黒鉛化しうる条件であれば特に制限されない。例えば、混合物が酸化し難い雰囲気で熱処理する方法が挙げられる。混合物が酸化し難い雰囲気は特に制限されず、窒素、アルゴン等の不活性雰囲気、真空等が挙げられる。 In step (c), the molded product obtained in step (b) is graphitized. The method for graphitizing the molded product is not particularly limited as long as the graphitizable component contained in the mixture can be graphitized. For example, a method of heat-treating the mixture in an atmosphere in which it is difficult to oxidize can be mentioned. The atmosphere in which the mixture is difficult to oxidize is not particularly limited, and examples thereof include an inert atmosphere such as nitrogen and argon, and vacuum.
 黒鉛化のための熱処理の温度は、例えば、1500℃以上であってもよく、2000℃以上であってもよく、2500℃以上であってもよく、2800℃以上であってもよい。熱処理の温度の上限は特に制限されないが、例えば、3200℃以下であってもよい。熱処理の温度が1500℃以上であると、結晶の変化が生じて黒鉛化が進みやすい傾向にある。焼成温度が2000℃以上であると、黒鉛の結晶の発達がより良好となる傾向にある。また、黒鉛化触媒を用いた場合に残存する黒鉛化触媒に由来する灰分量を少なくできる傾向にある。一方、黒鉛化のための熱処理の温度が3200℃以下であると、黒鉛の一部が昇華するのが抑制される傾向にある。 The temperature of the heat treatment for graphitization may be, for example, 1500 ° C. or higher, 2000 ° C. or higher, 2500 ° C. or higher, or 2800 ° C. or higher. The upper limit of the heat treatment temperature is not particularly limited, but may be, for example, 3200 ° C. or lower. When the heat treatment temperature is 1500 ° C. or higher, crystal changes occur and graphitization tends to proceed easily. When the calcination temperature is 2000 ° C. or higher, the development of graphite crystals tends to be better. Further, when a graphitization catalyst is used, the amount of ash derived from the graphitization catalyst remaining tends to be reduced. On the other hand, when the temperature of the heat treatment for graphitization is 3200 ° C. or lower, sublimation of a part of graphite tends to be suppressed.
<リチウムイオン二次電池の製造方法>
 本開示の製造方法又は製造装置で得られる負極材は、リチウムイオン二次電池の負極の材料として使用される。
 負極材を用いて負極を作製する方法は、特に制限されない。例えば、負極材と、バインダーと、溶剤とを含む組成物を用いて集電体上に負極材層を形成し、必要に応じて熱処理、プレス処理等を行う方法が挙げられる。
<Manufacturing method of lithium ion secondary battery>
The negative electrode material obtained by the manufacturing method or manufacturing apparatus of the present disclosure is used as a material for the negative electrode of a lithium ion secondary battery.
The method for producing the negative electrode using the negative electrode material is not particularly limited. For example, a method of forming a negative electrode material layer on a current collector using a composition containing a negative electrode material, a binder, and a solvent, and performing heat treatment, press treatment, or the like, if necessary, can be mentioned.
 組成物に含まれるバインダーは特に制限されない。例えば、スチレン-ブタジエンゴム、エチレン性不飽和カルボン酸エステル(メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等)を重合成分とする高分子化合物、エチレン性不飽和カルボン酸(アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等)を重合成分とする高分子化合物、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミドなどの高分子化合物が挙げられる。本開示において(メタ)アクリレートは、メタアクリレートとアクリレートのいずれか又は両方を意味する。 The binder contained in the composition is not particularly limited. For example, a polymer compound containing styrene-butadiene rubber, an ethylenically unsaturated carboxylic acid ester (methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hydroxyethyl (meth) acrylate, etc.) as a polymerization component, Polymer compounds containing ethylenically unsaturated carboxylic acids (acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc.) as polymerization components, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile , Polypolymeric compounds such as polyimide and polyamideimide. In the present disclosure, (meth) acrylate means either or both of methacrylate and acrylate.
 組成物に含まれる溶剤は特に制限されない。具体的には、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ-ブチロラクトン等の有機溶剤、水などが用いられる。 The solvent contained in the composition is not particularly limited. Specifically, organic solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and γ-butyrolactone, water, and the like are used.
 組成物は、必要に応じて、粘度を調整するための増粘剤を含んでもよい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸及びその塩、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。 The composition may contain a thickener for adjusting the viscosity, if necessary. Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid and salts thereof, oxidized starch, phosphorylated starch, casein and the like.
 組成物は、必要に応じて、導電助剤を混合してもよい。導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。 The composition may be mixed with a conductive auxiliary agent, if necessary. Examples of the conductive auxiliary agent include carbon black, graphite, acetylene black, oxides exhibiting conductivity, nitrides exhibiting conductivity, and the like.
 負極の作製に用いる集電体の材質及び形状は、特に制限されない。例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等の材料を用いることができる。また、ポーラスメタル(発泡メタル)、カーボンペーパー等の多孔性材料も使用可能である。 The material and shape of the current collector used to manufacture the negative electrode are not particularly limited. For example, a material such as a band-shaped foil made of a metal or alloy such as aluminum, copper, nickel, titanium, or stainless steel, a band-shaped perforated foil, or a band-shaped mesh can be used. Further, porous materials such as porous metal (foam metal) and carbon paper can also be used.
 組成物を用いて集電体上に負極材層を形成する方法は特に限定されず、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等の公知の方法により行うことができる。上記負極材層と集電体とを一体化する場合は、ロール、プレス、これらの組み合わせ等の公知の方法により行うことができる。 The method of forming the negative electrode material layer on the current collector using the composition is not particularly limited, and is a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, and a gravure. It can be carried out by a known method such as a coating method or a screen printing method. When the negative electrode material layer and the current collector are integrated, a known method such as a roll, a press, or a combination thereof can be used.
 負極材層を集電体上に形成した後は、熱処理(乾燥)を行ってもよい。熱処理を行うことにより、負極材層に含まれる溶剤が除去され、バインダーの硬化による高強度化が進み、粒子間及び粒子と集電体間の密着性を向上できる。熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気中又は真空雰囲気中で行ってもよい。 After forming the negative electrode material layer on the current collector, heat treatment (drying) may be performed. By performing the heat treatment, the solvent contained in the negative electrode material layer is removed, the strength is increased by curing the binder, and the adhesion between the particles and between the particles and the current collector can be improved. The heat treatment may be carried out in an inert atmosphere such as helium, argon or nitrogen or in a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
 負極材層を集電体上に形成した後は、プレス処理を行ってもよい。プレス処理することにより、負極の電極密度を調整することができる。負極の電極密度は特に制限されないが、1.5g/cm~1.9g/cmであってもよく、1.6g/cm~1.8g/cmであってもよい。電極密度が高いほど負極の体積容量が向上し、集電体への負極材層の密着性が向上し、サイクル特性が向上する傾向にある。プレス処理は、熱処理を行う前に行うことが好ましい。 After forming the negative electrode material layer on the current collector, a press treatment may be performed. By pressing, the electrode density of the negative electrode can be adjusted. The electrode density of the negative electrode is not particularly limited, may be 1.5g / cm 3 ~ 1.9g / cm 3, may be 1.6g / cm 3 ~ 1.8g / cm 3. The higher the electrode density, the higher the volume capacity of the negative electrode, the better the adhesion of the negative electrode material layer to the current collector, and the better the cycle characteristics. The press treatment is preferably performed before the heat treatment.
 上記方法により製造されるリチウムイオン二次電池は、上記方法により作製される負極と、正極と、電解質とを備えるものであってもよい。リチウムイオン二次電池は、例えば、負極と正極とがセパレータを介して対向するように配置され、電解質を含む電解液が注入された構成とすることができる。 The lithium ion secondary battery manufactured by the above method may include a negative electrode, a positive electrode, and an electrolyte produced by the above method. The lithium ion secondary battery can be configured such that, for example, the negative electrode and the positive electrode are arranged so as to face each other via a separator, and an electrolytic solution containing an electrolyte is injected.
 正極は、負極と同様にして、集電体表面上に正極層を形成して作製されるものであってもよい。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュ等の材料を用いることができる。 The positive electrode may be produced by forming a positive electrode layer on the surface of the current collector in the same manner as the negative electrode. As the current collector, a material such as a band-shaped foil made of a metal or alloy such as aluminum, titanium, or stainless steel, a band-shaped perforated foil, or a band-shaped mesh can be used.
 正極層に含まれる正極材料は、特に制限されない。例えば、リチウムイオンをドーピング又はインターカレーションすることが可能な金属化合物、金属酸化物、金属硫化物、及び導電性高分子材料が挙げられる。さらには、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素などを単独で又は2種以上を組み合わせて使用することができる。中でも、ニッケル酸リチウム(LiNiO)及びその複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)は、容量が高いために正極材料として好適である。 The positive electrode material contained in the positive electrode layer is not particularly limited. Examples include metal compounds, metal oxides, metal sulfides, and conductive polymer materials capable of doping or intercalating lithium ions. Furthermore, lithium cobaltate (LiCoO 2), lithium nickelate (LiNiO 2), lithium manganate (LiMnO 2), and these mixed oxide (LiCo x Ni y Mn z O 2, x + y + z = 1,0 <x , 0 <y; LiNi 2-x Mn x O 4 , 0 <x ≦ 2), lithium manganese spinel (LiMn 2 O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , Mn O 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Cr 3 O 8 , Cr 2 O 5 , Olivin type LiMPO 4 (M: Co, Ni, Mn, Fe) ), Polyacetylene, polyaniline, polypyrrole, polythiophene, polyacene and other conductive polymers, porous carbon and the like can be used alone or in combination of two or more. Among them, lithium nickelate (LiNiO 2) and its composite oxide (LiCo x Ni y Mn z O 2, x + y + z = 1,0 <x, 0 <y; LiNi 2-x Mn x O 4, 0 <x ≦ 2 ) Is suitable as a positive electrode material because of its high capacity.
 セパレータとしては、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム及びそれらの組み合わせが挙げられる。なお、リチウムイオン二次電池が正極と負極とが接触しない構造を有する場合は、セパレータを使用する必要はない。 Examples of the separator include non-woven fabrics mainly composed of polyolefins such as polyethylene and polypropylene, cloths, micropore films, and combinations thereof. If the lithium ion secondary battery has a structure in which the positive electrode and the negative electrode do not come into contact with each other, it is not necessary to use a separator.
 電解液としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル等の単体又は2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。なかでも、フルオロエチレンカーボネートを含有する電解液は、負極材の表面に安定なSEI(固体電解質界面)を形成する傾向があり、サイクル特性が著しく向上するために好適である。 As the electrolytic solution , lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 and the like are used, and ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, sulfolane, 3 -Methyl sulfolane, 2,4-dimethyl sulfolane, 3-methyl-1,3-oxazolidine-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate , Butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, etc. , So-called organic electrolyte can be used. Among them, the electrolytic solution containing fluoroethylene carbonate tends to form a stable SEI (solid electrolyte interface) on the surface of the negative electrode material, and is suitable because the cycle characteristics are remarkably improved.
 リチウムイオン二次電池の形態は特に限定されず、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等が挙げられる。また、前記リチウムイオン二次電池用負極材は、リチウムイオン二次電池以外にもリチウムイオンを挿入脱離することを充放電機構とする、ハイブリッドキャパシタ等の電気化学装置全般に適用することが可能である。 The form of the lithium ion secondary battery is not particularly limited, and examples thereof include a paper type battery, a button type battery, a coin type battery, a laminated type battery, a cylindrical type battery, and a square type battery. Further, the negative electrode material for a lithium ion secondary battery can be applied to all electrochemical devices such as hybrid capacitors having a charging / discharging mechanism of inserting and removing lithium ions in addition to the lithium ion secondary battery. Is.
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。 All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (7)

  1.  炭素を含む物体に電磁波を照射する照射工程と、
     前記照射により得られるデータに基づいて前記物体に含まれる検出対象の有無を判断する検出工程と、を備える、リチウムイオン二次電池用負極材の製造方法。
    An irradiation process that irradiates an object containing carbon with electromagnetic waves,
    A method for manufacturing a negative electrode material for a lithium ion secondary battery, comprising a detection step of determining the presence or absence of a detection target contained in the object based on the data obtained by the irradiation.
  2.  前記電磁波はX線である、請求項1に記載のリチウムイオン二次電池用負極材の製造方法。 The method for manufacturing a negative electrode material for a lithium ion secondary battery according to claim 1, wherein the electromagnetic wave is an X-ray.
  3.  前記検出工程の後に、前記検出対象を含むと判断された物体を取り除く工程をさらに備える、請求項1又は請求項2に記載のリチウムイオン二次電池用負極材の製造方法。 The method for manufacturing a negative electrode material for a lithium ion secondary battery according to claim 1 or 2, further comprising a step of removing an object determined to include the detection target after the detection step.
  4.  前記物体の前記電磁波の照射方向における寸法は50mm~180mmである、請求項1~請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。 The method for manufacturing a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the dimension of the object in the irradiation direction of the electromagnetic wave is 50 mm to 180 mm.
  5.  前記検出対象はケイ素を含む、請求項1~請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。 The method for producing a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the detection target contains silicon.
  6.  炭素を含む物体に電磁波を照射する照射装置と、
     前記照射により得られるデータに基づいて前記物体に含まれる検出対象の有無を判断する検出装置と、を備える、リチウムイオン二次電池用負極材の製造装置。
    An irradiation device that irradiates an object containing carbon with electromagnetic waves,
    A device for manufacturing a negative electrode material for a lithium ion secondary battery, comprising a detection device for determining the presence or absence of a detection target contained in the object based on the data obtained by the irradiation.
  7.  請求項1~請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法に使用するための、請求項6に記載のリチウムイオン二次電池用負極材の製造装置。 The apparatus for manufacturing a negative electrode material for a lithium ion secondary battery according to claim 6, for use in the method for manufacturing a negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 5.
PCT/JP2020/003382 2020-01-30 2020-01-30 Method for manufacturing negative-electrode material for lithium-ion secondary cell, and device for manufacturing negative-electrode material for lithium-ion secondary cell WO2021152764A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003382 WO2021152764A1 (en) 2020-01-30 2020-01-30 Method for manufacturing negative-electrode material for lithium-ion secondary cell, and device for manufacturing negative-electrode material for lithium-ion secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003382 WO2021152764A1 (en) 2020-01-30 2020-01-30 Method for manufacturing negative-electrode material for lithium-ion secondary cell, and device for manufacturing negative-electrode material for lithium-ion secondary cell

Publications (1)

Publication Number Publication Date
WO2021152764A1 true WO2021152764A1 (en) 2021-08-05

Family

ID=77078717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003382 WO2021152764A1 (en) 2020-01-30 2020-01-30 Method for manufacturing negative-electrode material for lithium-ion secondary cell, and device for manufacturing negative-electrode material for lithium-ion secondary cell

Country Status (1)

Country Link
WO (1) WO2021152764A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239776A (en) * 2003-02-06 2004-08-26 Mitsubishi Chemicals Corp Foreign substance detection method of carbonaceous material
JP2010267466A (en) * 2009-05-14 2010-11-25 Hitachi Maxell Ltd Flat nonaqueous battery
JP2011100565A (en) * 2009-11-04 2011-05-19 Automotive Energy Supply Corp Method of inspecting electrode for lithium ion secondary battery, manufacturing method using this, and manufacturing device
JP2012109029A (en) * 2010-11-15 2012-06-07 Hitachi Ltd Device for manufacturing electrode plate for lithium secondary battery, and method for manufacturing lithium secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239776A (en) * 2003-02-06 2004-08-26 Mitsubishi Chemicals Corp Foreign substance detection method of carbonaceous material
JP2010267466A (en) * 2009-05-14 2010-11-25 Hitachi Maxell Ltd Flat nonaqueous battery
JP2011100565A (en) * 2009-11-04 2011-05-19 Automotive Energy Supply Corp Method of inspecting electrode for lithium ion secondary battery, manufacturing method using this, and manufacturing device
JP2012109029A (en) * 2010-11-15 2012-06-07 Hitachi Ltd Device for manufacturing electrode plate for lithium secondary battery, and method for manufacturing lithium secondary battery

Similar Documents

Publication Publication Date Title
JP6555051B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6555050B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7371689B2 (en) Negative electrode materials for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries
JP7226559B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
JP7004093B2 (en) Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7238884B2 (en) Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7272350B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6939880B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
JP7226558B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
WO2021152764A1 (en) Method for manufacturing negative-electrode material for lithium-ion secondary cell, and device for manufacturing negative-electrode material for lithium-ion secondary cell
JP7238885B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
TWI853980B (en) Anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
WO2021152765A1 (en) Method for producing negative electrode material for lithium ion secondary batteries and apparatus for producing negative electrode material for lithium ion secondary batteries
WO2022162949A1 (en) Method for manufacturing negative electrode material for lithium-ion secondary cell, and method for manufacturing lithium-ion secondary cell
KR102161026B1 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
WO2024028993A1 (en) Method for manufacturing negative electrode material for lithium-ion secondary battery, and method for manufacturing lithium-ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 20.09.22)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20916801

Country of ref document: EP

Kind code of ref document: A1