WO2021151288A1 - 一种作物根系表型获取的360度多层次旋转式图像监测仪 - Google Patents

一种作物根系表型获取的360度多层次旋转式图像监测仪 Download PDF

Info

Publication number
WO2021151288A1
WO2021151288A1 PCT/CN2020/110641 CN2020110641W WO2021151288A1 WO 2021151288 A1 WO2021151288 A1 WO 2021151288A1 CN 2020110641 W CN2020110641 W CN 2020110641W WO 2021151288 A1 WO2021151288 A1 WO 2021151288A1
Authority
WO
WIPO (PCT)
Prior art keywords
image monitor
rotating
housing
wheel
root
Prior art date
Application number
PCT/CN2020/110641
Other languages
English (en)
French (fr)
Inventor
姜东�
傅秀清
吴劼
周国栋
丁艳锋
毛江美
Original Assignee
南京慧瞳作物表型组学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京慧瞳作物表型组学研究院有限公司 filed Critical 南京慧瞳作物表型组学研究院有限公司
Publication of WO2021151288A1 publication Critical patent/WO2021151288A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • A01G9/16Dismountable or portable greenhouses ; Greenhouses with sliding roofs
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/22Shades or blinds for greenhouses, or the like
    • A01G9/227Shades or blinds for greenhouses, or the like rolled up during non-use
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0098Plants or trees
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/185Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Definitions

  • the invention relates to the technical field of crop root system phenotype acquisition, in particular to a 360-degree multi-level rotating image monitor for crop root system phenotype acquisition.
  • Crop phenotype is part or all of the identifiable physical, physiological and biochemical characteristics and traits produced by the interaction between genes and the environment, including the structure, composition, and growth and development process of the crop. It not only reflects the expression regulation at the molecular level, but also It reflects the complex traits of plant physiology and biochemistry, morphological anatomy, stress resistance and so on.
  • Phenotype is the external expression of crop genes and is the result of the interaction of crop genes and external environment. Therefore, it is particularly important to explore the relationship between crop genotypes, environmental factors, and crop phenotypic characteristics and traits.
  • Plant roots are an important part of plants and have very important functions, such as water and nutrient absorption and transportation, organic matter storage, plant anchoring, and interaction with soil. Plant root development is very important to many plant research work. It is related to a series of processes such as the selection of the best treatment time for plants, the consistency of plant growth and development status before treatment, and the timely feedback of plant root response during treatment. Due to the limitation of soil unobservability, the collection and analysis of root phenotypic traits have become the focus and difficulty of biological and phenotypic research. The core of root phenotype collection is how to observe root growth in situ.
  • the present invention provides a 360-degree multi-level rotating image monitor for obtaining the phenotype of crop roots.
  • the present invention uses buried root canals to provide a running track, and sets multiple groups of rotating image monitors at In the orbits corresponding to different root depths, the rotating image monitor is driven to realize the measurement and sampling of crop root phenotype data.
  • the present invention specifically adopts the following technical solutions.
  • a 360-degree multi-level rotating image monitor for obtaining crop root phenotypes is proposed.
  • Move internally to obtain the phenotypic image of the crop root system which includes: an image monitor housing, the main body of which is a cylindrical structure; a drive module, which is arranged at one end of the rotating image monitor, including protruding from the image monitor housing
  • the driving wheel on the surface of the side wall, the driving direction of the driving wheel is parallel to the axial direction of the housing of the image monitor;
  • the rotating module is arranged at the other end of the rotating image monitor, including protruding
  • the rotating wheel on the surface of the side wall of the housing, the rotation direction of the rotating wheel is perpendicular to the axial direction of the image monitor housing;
  • the LED light source is arranged in the middle of the rotating image monitor, and the image monitor housing
  • the middle part is at least partly set with a transparent material, and the LED light source illuminates the crop roots around the root canal through the image monitor housing made of transparent material;
  • a 360-degree multi-level rotating image monitor for obtaining crop root phenotypes according to any one of the above, wherein the driving wheel and the rotating wheel each include evenly arranged along the circumferential direction of the image monitor housing Multiple.
  • a 360-degree multi-level rotating image monitor for obtaining crop root phenotypes described above, wherein the other end of the rotating image monitor is also provided with a laser radar in addition to the rotating module, and the laser The radar is used to obtain the moving distance and position of the rotating image monitor in the root canal.
  • a 360-degree multi-level rotating image monitor for obtaining crop root phenotypes according to any one of the above, wherein a motor bracket is further provided inside the image monitor housing, and the motor bracket runs along the edge of the image monitor housing. Radially arranged; a micro motor is provided between the motor support and the inner side wall of the image monitor housing; the motor output shaft of the micro motor is perpendicular to the motor support and is located along the radial direction of the image monitor housing The inner side wall of the housing of the image monitor extends, and the motor output shaft of each micro motor drives the driving wheel respectively.
  • a 360-degree multi-level rotating image monitor for obtaining crop root phenotypes according to any one of the above, wherein the motor output shaft and the driving wheel are also connected with a driving wheel shaft, a driven bevel gear, and Driving bevel gear, in which,
  • the driving bevel gear is fixedly connected to the distal end of the motor output shaft and is driven by a micro motor to rotate synchronously with the motor output shaft; the driven bevel gear meshes with the driving bevel gear and is driven by the driving bevel gear.
  • the driving bevel gear rotates; the driving wheel shaft is perpendicular to the motor output shaft, one end of the driving wheel shaft is fixedly connected to the connected driven bevel gear, and the other end is fixedly connected to the driving wheel, the driven
  • the bevel gear drives the driving wheel to rotate in a direction parallel to the axis of the image monitor housing.
  • a 360-degree multi-level rotating image monitor for obtaining crop root phenotypes described above, wherein a flat key is also fixedly connected between the motor output shaft and the housing of the rotating module, and the rotating The wheel is mounted on the housing of the rotating module.
  • the rotation of the motor output shaft is driven by the flat key to drive the housing of the rotating module to rotate.
  • the rotating wheel is driven by the housing of the driving rotating module to be perpendicular to the axis of the image monitor housing. Rotate.
  • a 360-degree multi-level rotating image monitor for obtaining crop root phenotypes according to any of the above, wherein the rotating module further includes a driven wheel, which is parallel to the rotating wheel and runs along the circumference of the image monitor housing. It is evenly arranged between adjacent rotating wheels.
  • a 360-degree multi-level rotating image monitor for obtaining crop root phenotypes according to any one of the above, wherein the driving wheel, rotating wheel and driven wheel respectively abut the root canal to support the image monitoring There is no direct contact between the instrument shell and the inner wall of the root canal.
  • a 360-degree multi-level rotating image monitor for obtaining crop root phenotypes according to any of the above, wherein the image monitor housing is also provided with a data transceiver module, which is used to receive control signals or transmit An image of the root system of the crop around the root canal taken by the image acquisition device; a micro-motor control module, which is electrically connected to the micro-motor, outputs a drive signal, and drives the micro-motor to rotate accordingly to drive the drive wheel and/or to rotate
  • a storage module which is electrically connected to the image acquisition device, is used to store the image of the crop root system around the root canal taken by the image acquisition device.
  • the root canal is buried in the crop cultivation soil
  • the rotating image monitor is arranged in the root canal
  • the corresponding driving module and rotating module are arranged on the housing of the image monitor, so as to realize 360-degree multi-level in the root canal Rotating image acquisition effect.
  • the invention can collect data and images of various crop root growth parameters in real time, dynamically and all-weather through the splicing and processing of images at different positions and different shooting angles through an endoscopic image acquisition method.
  • the present invention is also aimed at the root canal shooting environment, correspondingly, the area of the image monitor housing corresponding to the LED light source is set to be transparent, and the LED light source provides illumination during shooting, which can avoid the change of the growing environment of the roots of the crop by the introduction of light sources in a wider range. .
  • the present invention can obtain the phenotypic characteristic data of the crop root system while reducing the impact on the crop root system as much as possible. Therefore, the phenotypic data obtained by the present invention is more direct and accurate.
  • the present invention can drive the driving wheel, the rotating wheel and the driven wheel arranged on the circumferential surface of the image monitor housing through a micro motor, and the corresponding driving and rotating image monitor walks in the root canal and turns 360° in the root canal, thereby Obtain the phenotypic traits of the entire root system of the crop near the root canal in situ.
  • this endoscopic image acquisition technology has no damage to the crop root system, continuous measurement, and high-frequency tracking observation. It can particularly collect soil root information in situ, which can avoid Methods such as hydroponics or gel culture cannot accurately reflect the shortcomings of crops in normal soil water distribution, nutrient distribution, soil structure, and microbial action.
  • This technology can be used for non-damaged, high-throughput, and fully automatic root phenotyping analysis of crop roots.
  • the invention can also be used to measure and analyze crop root and crown structure (including heel depth, crown width, etc.), root and crown area, root length and the like.
  • Fig. 1 is a schematic diagram of a 360-degree multi-level rotating image monitor for obtaining crop root phenotypes of the present invention in working state;
  • FIG. 2 is a schematic diagram of the overall structure of the rotating image monitor of the present invention.
  • Figure 3 is a cross-sectional view of the rotating image monitor of the present invention.
  • Fig. 4 is a schematic diagram of a root canal system provided by the rotating image monitor of the present invention.
  • inside and outside in the present invention means that the direction from the root canal to the internal motor of the rotating image monitor is inside, and vice versa, it is outside;
  • the specific limitation of the device mechanism of the invention is outside
  • connection in the present invention can be a direct connection between components or an indirect connection between components through other components.
  • Figure 1 is a 360-degree multi-level rotating image monitor for crop root phenotype acquisition according to the present invention.
  • the image acquisition technology realizes real-time, dynamic and all-weather collection of data and images of a variety of crop root growth parameters.
  • the root canal system includes:
  • the root canals 2 are arranged horizontally along the first direction into multiple groups.
  • Each group of root canals respectively includes multiple roots arranged underground along the growth direction of the crop roots; the spacing between the root canals of each group is used for cultivating crops. Therefore, the roots of the crops can grow naturally to the root canal, which is convenient for rooting.
  • the rotating image monitor in the tube collects pictures of the roots of the crops; in the case of a large number of crops being cultivated, the roots of the same layer can be plugged or screwed to each other through the method shown in Figure 2 to achieve roots. Extension of the length of the tube;
  • the light well 21 is perpendicular to the first direction and connects each group of root canals.
  • the light well is buried in the ground and is close to the depth of the root canal. It is provided with an opening for placing a rotating image monitor in the root canal; the light well 21 is close to the root.
  • the side wall of the tube is set as a glass window 23, which can directly observe the overall structure of the root system of the crop close to the light well 21;
  • the root monitoring channel 22 is set in the light well 21 and connected to each group of root canals for people and equipment to walk and move in the channel.
  • the top of the root monitoring channel 22 can be provided with materials such as transparent tempered glass to realize daylighting through natural light.
  • the rotating image monitor set in the above-mentioned root canal system moves along the inside of the root canal 2 to obtain a phenotypic image of the crop root system.
  • the specific structure adopted can include:
  • the image monitor housing 11 the main body of which is a cylindrical structure
  • the driving module 12 which is arranged at one end of the rotating image monitor 1, includes a driving wheel 122 protruding from the surface of the side wall of the image monitor housing 11, and the driving direction of the driving wheel 122 is parallel to the image monitor The axial direction of the housing 11;
  • the LED light source 14 is arranged in the middle of the rotating image monitor 1, at least part of the middle of the image monitor housing 11 is set with a transparent material, and the LED light source 14 shines through the image monitor housing 11 made of transparent material.
  • the image acquisition device is arranged in the middle of the rotating image monitor 1 and is driven by the rotating module 13 to rotate in the root canal 2 synchronously with the image monitor housing 11 to take images of the crop roots around the root canal.
  • the image acquisition device is composed of a transparent housing, a multispectral camera and a light source.
  • the multi-spectral camera is arranged in the middle of the rotating image monitor.
  • the outer shell of the camera is equipped with the housing, which can protect and support during movement.
  • Two sets of LED light sources are symmetrically distributed on the outer ring of the housing.
  • the light source is composed of multiple groups of LED arrays, which can adjust the brightness of different peak wavelength lamps according to the shooting requirements to achieve the purpose of adjusting the spectrum; when imaging, the drive module is used to control the monitor to reach the designated position. Select the appropriate spectral range according to the soil conditions, shooting targets, etc., and then perform imaging at a predetermined stop position at a speed of 3.2 seconds per image.
  • the images of the plant roots in the four rows of root canals are taken at the same time, which facilitates image splicing in the later stage;
  • the image detector is equipped with a programmable logic controller (PLC), which can be pre-programmed to define the start position, stop position and Step.
  • PLC programmable logic controller
  • the driving wheel 122 and the rotating wheel 132 respectively include a plurality of uniformly arranged along the circumferential direction of the image monitor housing 11.
  • a driven wheel 131 can be further provided between the driving wheel 122 and the rotating wheel 132.
  • the driven wheel 131 is parallel to the rotating wheel 132 and is evenly arranged between adjacent rotating wheels 132 along the circumferential direction of the image monitor housing 11.
  • the above-mentioned wheels can respectively abut the root canal 2 and support that there is no direct contact between the image monitor housing 11 and the inner side wall of the root canal 2.
  • the end where the rotation module 13 is provided may also be provided with a lidar 133 in addition to the rotation module 13.
  • the lidar 133 is driven by the drive module along the root
  • the tube moves or rotates horizontally; the lidar module sends laser light to the plant root system, and measures the distance and reflection intensity information of the laser emission azimuth during the movement, and obtains the spatial point cloud data of the plant root system, thereby obtaining the rotating image
  • the lidar can be a Velodyne VLP-16 lidar, with a size of 103 mm (diameter) x 72 mm (height).
  • the present invention can also provide a motor support 111 inside the housing 11 of the image monitor.
  • the motor support 111 is arranged along the radial direction of the image monitor housing 11; a micro motor 7 is arranged between the motor support 111 and the inner side wall of the image monitor housing 11; the motor output shaft 71 of the micro motor 7 is perpendicular to
  • the motor support 111 extends along the radial direction of the image monitor housing 11 to the inner side wall of the image monitor housing 11, and the motor output shaft 71 of each micromotor 7 drives the rotating wheel 132 and the driving wheel respectively.
  • Round 121 a driving wheel shaft 122, a driven bevel gear 123, and a driving bevel gear 124 may be connected between the motor output shaft 71 and the driving wheel 121 to realize the transmission of the wheel body.
  • the driving bevel gear 124 is fixedly connected to the distal end of the motor output shaft 71, is driven by the micro motor 7, and rotates synchronously with the motor output shaft 71;
  • the driven bevel gear 123 meshes with the driving bevel gear 124 and is driven to rotate by the driving bevel gear 124;
  • the driving wheel shaft 122 is perpendicular to the motor output shaft 71.
  • One end of the driving wheel shaft 122 is fixedly connected to the connected driven bevel gear 123, and the other end is fixedly connected to the driving wheel 121.
  • the bevel gear 123 drives the driving wheel 121 to rotate in a direction parallel to the axis of the image monitor housing 11.
  • the rotating wheel 132 is fixed and driven by the housing of the rotating module 13.
  • a flat key is also fixedly connected between the motor output shaft 71 and the housing of the rotating module 13, the rotating wheel 132 is mounted on the housing of the rotating module 13, and the motor output shaft 71 rotates.
  • the housing of the driving rotation module 13 is driven to rotate by the flat key, and the rotation wheel 132 is driven by the housing of the driving rotation module 13 to rotate in a direction perpendicular to the axis of the image monitor housing 11.
  • the micro-rotating motor is set in the housing of the rotating module 13.
  • the rightmost end of the housing is the lidar.
  • the rotating wheel 132 and the driven wheel 131 are mounted on the cylindrical housing.
  • the output shaft of the micro-rotating motor passes through the cylindrical housing.
  • the key is fixedly connected, the power is transmitted to the cylindrical shell through the output shaft to realize the rotation movement of the monitor, the instruction is received through the data transceiver module, and the instruction is sent to the micro motor control module and the micro motor control module after the logic judgment of the central control module Start and stop the micro steering motor according to the instruction to realize the precise control of the rotation angle of the monitor.
  • the present invention can provide a 360-degree multi-level rotating image monitor, which includes: a columnar structure capable of 360-degree rotation of the host, arranged on it: LED light source 14, motion
  • the motion module can be driven by a micro-motor in the above-mentioned implementation mode, and the driving wheels or rotating wheels are driven to rotate through the steering sensing structure, so as to realize the control of the overall movement or rotation direction of the 360-degree rotating host.
  • the cylindrical 360-degree rotating host performs linear scanning of the crop roots around the root canal through the image acquisition device without deforming, so that high-resolution color images can be acquired.
  • the present invention can monitor the in-situ growth status of plant roots at different depths in real time, and acquire multiple sets of crop root phenotypic data in real time, at a fixed time and at a fixed point. Therefore, the present invention can collect images of crop roots distributed near root canals of different depths through the root canal system and use the rotating host to splice multiple images in different time and space to ensure the acquisition of comprehensive information of plant roots.
  • the motion module may specifically be composed of a rotating module and a driving module, which are respectively arranged at both ends of the cylindrical 360-degree rotating host.
  • the rotating module is composed of a rotating wheel, a driven wheel and a motor.
  • the motor drives the rotating wheel to realize the rotation of the host.
  • the driven wheel increases the friction between the monitor and the root canal during the rotation process to achieve the effect of smooth rotation.
  • the drive module is composed of a micro motor, a motor support, a driving bevel gear, a driven bevel gear, an end cover, and a driving wheel.
  • the micro motor is installed inside the housing through the motor support, and is mounted on the output shaft of the micro motor.
  • Install the driving bevel gear, the gear shaft of the driven bevel gear is fixedly connected with the drive wheel axle, and its tooth surface meshes with the driving bevel gear orthogonally.
  • the output shaft of the micro motor drives the driving bevel
  • the driven bevel gear also rotates to control the rotation of the driving wheel to realize the start and stop of the monitor.
  • the end cover and the shell are installed at the back end of the host, and the micro motor, the driving bevel gear and the driven bevel gear are enclosed inside the shell. Therefore, the present invention can move to the position where sampling is required through the cooperation of the drive module and the rotation module, adjust the shooting angle and scanning speed, and realize real-time, timed, and fixed-point crop root phenotypic data collection.
  • the present invention can set the detector to realize the storage and transmission of image data by connecting the central control module and the micro motor control module, and at the same time, connecting the storage module and the data transceiver module. Therefore, after the cylindrical 360-degree rotating host collects the information of the plant roots, it can first transmit the corresponding image data to the central control module, and the central control module transmits the information to the storage module.
  • the storage module processes the information and transmits it to the data transceiving module.
  • the data transceiving module uses the network to send the information to the client. When the client confirms, it sends an instruction to the data transceiving module, and then passes it through the central control module.
  • the logic judgment sends instructions to the micro motor control module, which starts and stops the micro motor according to the instructions, drives the monitor to a specified position, cooperates with the rotation module to adjust the shooting angle, and collects the required root system information.
  • the present invention can provide a high-throughput, high-precision 360-degree multi-level rotating image monitor for the needs of plant genomics research and molecular breeding and the deficiencies of the existing root phenotype acquisition technology.
  • the invention can acquire and analyze the phenotype of field crop roots through multi-channel root canals in the state closest to nature, and solve the problem of existing root monitoring equipment that cannot carry out large-scale field experiments and cannot carry out accurate and automatic acquisition and analysis.
  • the phenotype of crop roots can be acquired and analyze the phenotype of field crop roots through multi-channel root canals in the state closest to nature, and solve the problem of existing root monitoring equipment that cannot carry out large-scale field experiments and cannot carry out accurate and automatic acquisition and analysis.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Electromagnetism (AREA)
  • Analytical Chemistry (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Botany (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Endoscopes (AREA)

Abstract

一种作物根系表型获取的360度多层次旋转式图像监测仪(1)。通过在作物栽培土壤内埋设根管(2),将旋转式图像监测仪(1)设置在根管(2)内,在图像监测仪外壳(11)上设置相应的驱动模块(12)和转动模块(13),从而在根管(2)内实现360度多层次旋转式的图像获取效果。通过内窥式的图像获取方式,通过对不同位置不同拍摄角度下图像的拼接和处理,实时、动态、全天候地采集多种作物根系生长参数的数据和图像。

Description

一种作物根系表型获取的360度多层次旋转式图像监测仪 技术领域
本发明涉及作物根系表型获取技术领域,具体而言涉及一种作物根系表型获取的360度多层次旋转式图像监测仪。
背景技术
作物表型是由基因与环境相互作用产生的部分或者全部可辨识的物理、生理和生化特征及性状,包括作物的结构、组成以及生长发育过程,其不仅反映了分子水平上的表达调控,同时反映了植物的生理生化、形态解剖、胁迫抗性等复杂性状。
作物育种领域中功能基因组学和基因技术的发展是粮食增产的最便捷和有效的手段。表型是作物基因的外部表达,是作物自身基因和外部环境共同作用的结果。因此,探索作物基因型、环境因素和作物表型特征、性状的之间关系变得尤为重要。
植物根系是植物的重要组成部分,具有非常重要的功能,如水分和养分的吸收与转运、有机物贮藏、植株锚定及与土壤互作等。植物根系发育情况对于许多植物研究工作至关重要,它关系着植物最佳处理时间的选择、处理前植物生长发育状态的一致性、处理过程中植物根系响应的及时反馈等一系列过程。由于土壤不可观测性的限制,根系表型性状的采集和分析已成为生物学及表型组学研究的重点和难点。根系表型采集的核心在于如何原位观察根系生长。
传统根系研究工作往往依赖于人工手动检测小样本植物根系的个别性状,因此数据量有限,效率低,难以开展植物根系多种性状的综合分析,且引入人为因素极易导致测量数据的误差,其可分析规模小、成本高、费时费力,缺乏 规范性且测量精度较低。现有的根系表型获取技术已成为制约植物基因组功能分析和分子育种发展的瓶颈。随着植物基因组学研究和分子育种的快速发展,目前急需一种高通量、高精度和低成本的根系表型分析装置来满足获取与植物生长、产量、品质和对生物、非生物胁迫的耐受性等相关表型数据的需求。
发明内容
本发明针对现有技术的不足,提供一种作物根系表型获取的360度多层次旋转式图像监测仪,本发明利用埋设地下的根管提供运行轨道,将多组旋转式图像监测仪设置在对应不同根系深度的运行轨道中,驱动旋转式图像监测仪实现对作物根系表型数据的测量采样。本发明具体采用如下技术方案。
首先,为实现上述目的,提出一种作物根系表型获取的360度多层次旋转式图像监测仪,所述的旋转式图像监测仪设置在埋设于作物栽培土壤内的根管中,沿根管内部移动,获取作物根系的表型图像,其包括:图像监测仪外壳,其主体为圆柱形结构;驱动模块,其设置在所述旋转式图像监测仪的一端,包括凸出于图像监测仪外壳侧壁表面的驱动轮,所述驱动轮的驱动方向平行于所述图像监测仪外壳的轴线方向;转动模块,其设置在所述旋转式图像监测仪的另一端,包括凸出于图像监测仪外壳侧壁表面的转动轮,所述转动轮的转动方向垂直于所述图像监测仪外壳的轴线方向;LED光源,其设置在所述旋转式图像监测仪的中部,所述图像监测仪外壳的中部至少部分设置为透明材质,所述LED光源透过透明材质的图像监测仪外壳照亮根管周围作物根系;图像获取装置,其设置在所述旋转式图像监测仪的中部,由转动模块驱动随图像监测仪外壳同步在根管内旋转而拍摄根管周围作物根系的图像。
可选的,上述任一的作物根系表型获取的360度多层次旋转式图像监测仪,其中,所述驱动轮和转动轮均分别包括沿所述图像监测仪外壳的周向均匀排布 的多个。
可选的,上述任一的作物根系表型获取的360度多层次旋转式图像监测仪,其中,所述旋转式图像监测仪的另一端在转动模块之外还设置有激光雷达,所述激光雷达用于获取所述旋转式图像监测仪在根管中移动的距离和位置。
可选的,上述任一的作物根系表型获取的360度多层次旋转式图像监测仪,其中,所述图像监测仪外壳的内部还设置有电机支架,所述电机支架沿图像监测仪外壳的径向设置;所述电机支架与图像监测仪外壳的内侧壁之间设置有微型电机;所述微型电机的电机输出轴垂直于所述电机支架、沿所述图像监测仪外壳的径向向所述图像监测仪外壳的内侧壁延伸,各微型电机的电机输出轴分别驱动所述驱动轮。
可选的,上述任一的作物根系表型获取的360度多层次旋转式图像监测仪,其中,所述电机输出轴与所述驱动轮之间还连接有:驱动轮轴、从动锥齿轮和主动锥齿轮,其中,
所述主动锥齿轮,其与电机输出轴的远端固定连接,由微型电机驱动,随同电机输出轴同步转动;所述从动锥齿轮,其与所述主动锥齿轮啮合,从动于所述主动锥齿轮转动;所述驱动轮轴,其垂直于所述电机输出轴,所述驱动轮轴的一端与所述连接所述从动锥齿轮固定连接,另一端与驱动轮固定连接,所述从动锥齿轮带动所述驱动轮沿平行于所述图像监测仪外壳的轴线方向转动。
可选的,上述任一的作物根系表型获取的360度多层次旋转式图像监测仪,其中,所述电机输出轴与所述转动模块的外壳之间还固定连接有平键,所述转动轮安装在转动模块的外壳上,所述电机输出轴转动通过平键带动驱动转动模块的外壳旋转,所述转动轮由驱动转动模块的外壳带动而以垂直于所述图像监 测仪外壳的轴线方向转动。
可选的,上述任一的作物根系表型获取的360度多层次旋转式图像监测仪,其中,所述转动模块还包括从动轮,其平行于所述转动轮,沿图像监测仪外壳的周向均匀排布在相邻各转动轮之间。
可选的,上述任一的作物根系表型获取的360度多层次旋转式图像监测仪,其中,所述驱动轮、转动轮以及从动轮均分别抵接所述根管,支撑所述图像监测仪外壳与根管的内侧壁之间无直接接触。
可选的,上述任一的作物根系表型获取的360度多层次旋转式图像监测仪,其中,所述图像监测仪外壳内还设置有:数据收发模块,其用于接收控制信号,或传输图像获取装置所拍摄的根管周围作物根系的图像;微型电机控制模块,其与所述微型电机电连接,输出驱动信号,相应地驱动所述微型电机转动,带动所述驱动轮和/或转动轮运转;存储模块,其与所述图像获取装置电连接,用于存储图像获取装置所拍摄的根管周围作物根系的图像。
有益效果
本发明通过在作物栽培土壤内埋设根管,将旋转式图像监测仪设置在根管内,通过在图像监测仪外壳上设置相应的驱动模块和转动模块,从而在根管内实现360度多层次旋转式的图像获取效果。本发明可通过内窥式的图像获取方式,通过对不同位置不同拍摄角度下图像的拼接和处理,实时、动态、全天候地采集多种作物根系生长参数的数据和图像。
进一步,本发明还针对根管拍摄环境,相应将图像监测仪外壳对应LED光源的区域设置成透明,通过LED光源提供拍摄时的照明,可避免更大范围引入光源对作物根系本身生长环境的改变。本发明能够在获取作物根系表型特征数 据的同时,尽可能的减少对作物根系的影响,因此,本发明所获得的表型数据更为直接也更为准确。
本发明可通过微型电机驱动设置在图像监测仪外壳周向表面的驱动轮、转动轮以及从动轮,相应的驱动旋转式图像监测仪在根管内行走并在根管内360°地转向,从而原位获取根管附近作物整个根系的表型性状。这种内窥式图像获取技术相比于现有的地下表型测量技术而言,对作物根系无损伤,可持续测量,可高频率跟踪观测,其尤其能够原位采集土壤根系信息,能够避免水培或凝胶培养等方式无法准确反应作物在正常土壤中的水分分布、营养分布、土壤结构、微生物作用的缺点。利用该技术可以对作物根系进行无损伤、高通量、全自动根系表型分析。本发明还可用于测量分析作物根冠结构(包括跟深、冠幅等)、根冠面积、根长等。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,并与本发明的实施例一起,用于解释本发明,并不构成对本发明的限制。在附图中:
图1是本发明的作物根系表型获取的360度多层次旋转式图像监测仪工作状态下的示意图;
图2是本发明的旋转式图像监测仪整体结构的示意图;
图3是本发明中旋转式图像监测仪的剖视图;
图4是本发明的旋转式图像监测仪所设置的根管系统的示意图。
图中,1表示旋转式图像监测仪;11表示图像监测仪外壳;111表示电机支架;12表示驱动模块;121表示驱动轮;122表示驱动轮轴;123表示从动 锥齿轮;124表示主动锥齿轮;13表示转动模块;131表示从动轮;132表示转动轮;133表示激光雷达;14表示LED光源;2表示根管;21表示采光井;22表示根系监测通道;23表示玻璃视窗;3表示主控单元;31表示微型电机控制模块;4表示供电电源;5表示数据收发模块;6表示存储模块;7表示微型电机;71表示电机输出轴。
具体实施方式
为使本发明实施例的目的和技术方案更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
本发明中所述的“和/或”的含义指的是各自单独存在或两者同时存在的情况均包括在内。
本发明中所述的“内、外”的含义指的是相对于旋转式图像监测仪本身而言,由根管指向旋转式图像监测仪内部电机的方向为内,反之为外;而非对本发明的装置机构的特定限定。
本发明中所述的“连接”的含义可以是部件之间的直接连接也可以是部件间通过其它部件的间接连接。
图1为根据本发明的一种作物根系表型获取的360度多层次旋转式图像监测仪,其以图2所示的方式设置在图4所示的根管系统中,由此通过内窥式的图像获取技术,实现实时、动态、全天候地采集多种作物根系生长参数的数据和图像。其所设置的根管系统包括:
根管2,其沿第一方向水平排列为多组。每组根管分别包括沿作物根系生长方向向地下逐层排列的多根;各组根管之间的间隔用于栽培作物,由此,作物根系能够以自然地向根管方向生长,便于根管内的旋转式图像监测仪采集作物根系的图片;在作物栽培数量较多的情况下,同一层的各根管之间可以通过图2所示的方式相互插接或拧接固定,实现根管长度方向的延伸;
采光井21,其垂直于第一方向,连接各组根管,采光井埋在地下,与根管深度接近,设有供放置根管内旋转式图像监测仪的开孔;采光井21接近根管的侧壁设置为玻璃视窗23,能够直接观察接近采光井21的作物的根系的整体结构;
根系监测通道22,其设置在采光井21中,连通各组根管,供人和设备在通道内行走移动,根系监测通道22的顶部可设置透明钢化玻璃等材质以通过自然光实现采光。
参考图2,上述根管系统内所设置的旋转式图像监测仪,其沿根管2内部移动,获取作物根系的表型图像。其所采用的具体结构可包括:
图像监测仪外壳11,其主体为圆柱形结构;
驱动模块12,其设置在所述旋转式图像监测仪1的一端,包括凸出于图像监测仪外壳11侧壁表面的驱动轮122,所述驱动轮122的驱动方向平行于所述图像监测仪外壳11的轴线方向;
转动模块13,其设置在所述旋转式图像监测仪1的另一端,包括凸出于图像监测仪外壳11侧壁表面的转动轮132,所述转动轮132的转动方向垂直于所述图像监测仪外壳11的轴线方向;
LED光源14,其设置在所述旋转式图像监测仪1的中部,所述图像监测仪外壳11的中部至少部分设置为透明材质,所述LED光源14透过透明材质的图像监测仪外壳11照亮根管周围作物根系;
图像获取装置,其设置在所述旋转式图像监测仪1的中部,由转动模块13驱动随图像监测仪外壳11同步在根管2内旋转而拍摄根管周围作物根系的图像。
在较为具体的实现方式下,所述的图像获取装置,其由透明外壳、多光谱相机和光源组成。多光谱相机设置在所述旋转式图像监测仪的中部,所述相机外侧装配有所述外壳,运动中可以起到保护与支撑的作用,所述外壳外圈对称分布着两组LED光源,LED光源由多组LED阵列组成,可根据拍摄需求调节不同峰值波长灯的亮度从而达到调节光谱的目的;成像时,利用驱动模块,控制监测仪到达指定的位置。根据土壤情况、拍摄目标等选择合适的光谱范围,然后,在预定的停止位置以3.2秒/每幅图像的速度进行成像。四排根管内的植物根系图像是同时拍摄的,后期利于图像拼接;图像检测仪配有可编程逻辑控制器(PLC),可以预先进行编程,定义每个图像的起始位置、停止位置和步距。
其中,为支撑图像监测仪外壳11在根管内移动或转动,所述驱动轮122和转动轮132均分别包括沿所述图像监测仪外壳11的周向均匀排布的多个。驱动轮122和转动轮132之间还可进一步的设置从动轮131。从动轮131平行于所述转动轮132,沿图像监测仪外壳11的周向均匀排布在相邻各转动轮132 之间。上述各个轮子能够分别抵接所述根管2,支撑所述图像监测仪外壳11与根管2的内侧壁之间无直接接触。
图2所示的旋转式图像监测仪1,其设置转动模块13的一端还可以在转动模块13之外还设置有激光雷达133,所述激光雷达133在驱动模块的带动下,沿所述根管水平移动或转动;所述激光雷达模块向所述植物根系发送激光,并测量移动过程中激光发射方位的距离和反射强度信息,获取植物根系的空间点云数据,从而获得所述旋转式图像监测仪1在根管2中移动的距离和位置。所述的激光雷达,其可选择为Velodyne VLP-16激光雷达,尺寸:103毫米(直径)x 72毫米(高度)。
为实现对上述驱动轮122和转动轮132的驱动,参考图3所示,本发明还可以在图像监测仪外壳11的内部设置电机支架111。所述电机支架111沿图像监测仪外壳11的径向设置;所述电机支架111与图像监测仪外壳11的内侧壁之间设置有微型电机7;所述微型电机7的电机输出轴71垂直于所述电机支架111、沿所述图像监测仪外壳11的径向向所述图像监测仪外壳11的内侧壁延伸,各微型电机7的电机输出轴71分别驱动所述转动轮132、所述驱动轮121中。进一步的可以在电机输出轴71与所述驱动轮121之间还连接驱动轮轴122、从动锥齿轮123和主动锥齿轮124实现对轮体的传动。
其中,所述主动锥齿轮124,其与电机输出轴71的远端固定连接,由微型电机7驱动,随同电机输出轴71同步转动;
所述从动锥齿轮123,其与所述主动锥齿轮124啮合,从动于所述主动锥齿轮124转动;
所述驱动轮轴122,其垂直于所述电机输出轴71,所述驱动轮轴122的一 端与所述连接所述从动锥齿轮123固定连接,另一端与驱动轮121固定连接,所述从动锥齿轮123带动所述驱动轮121沿平行于所述图像监测仪外壳11的轴线方向转动。
所述的转动轮132由转动模块13的外壳固定并提供驱动。在较为具体的实现方式下,电机输出轴71与所述转动模块13的外壳之间还固定连接有平键,所述转动轮132安装在转动模块13的外壳上,所述电机输出轴71转动通过平键带动驱动转动模块13的外壳旋转,所述转动轮132由驱动转动模块13的外壳带动而以垂直于所述图像监测仪外壳11的轴线方向转动。具体参考图2所示,微型转动电机设置在转动模块13的外壳内,外壳最右端为激光雷达,转动轮132与从动轮131安装在圆柱外壳上,微型转动电机的输出轴与圆柱外壳通过平键固定连接,通过输出轴将动力传递给圆柱外壳,实现监测仪旋转运动,通过所述数据收发模块接收指令,后经所述中央控制模块逻辑判断发送指令至微型电机控制模块,微型电机控制模块根据指令启停微型转向电机实现对监测仪旋转角度的精确控制。
在更为具体的实现方式下,本发明能够提供一种360度多层次旋转式图像监测仪,其包括:柱型结构的能够360度旋转的主机、设置在其上的:LED光源14、运动模块、中央控制模块所构成的主控单元3、微型电机控制模块31、存储模块6、数据收发模块5、供电电源4。
其中的运动模块可采用上述实现方式中利用微型电机驱动,通过转向传感结构带动各驱动轮或转动轮转动,从而实现对360度旋转的主机整体移动或转动方向的控制。
所述柱型360度旋转主机通过图像获取装置不变形地对根管周围的作物根 系进行线性扫描,由此可获取高分辨率彩色图像。配合LED光源,本发明可实时监测不同深度植物根系原位生长状况,实时、定时、定点的获取多组作物根系表型数据。由此,本发明可以通过根管系统,利用旋转主机采集分布在不同深度根管附近的作物根系图像,进行不同时间与空间多幅图片的拼接,保证对植物根系全面信息的获取。
所述运动模块具体可由转动模块与驱动模块组成,其分别安置在柱型360度旋转主机的两端。
所述转动模块由转动轮、从动轮和电机组成,通过电机驱动转动轮实现主机转动,通过所述从动轮增加转动过程中监测仪与根管之间的摩擦,达到平稳转动的效果。
所述驱动模块由微型电机、电机支架、主动锥齿轮、从动锥齿轮、端盖和驱动轮组成,所述微型电机通过所述电机支架安装在外壳内部,在所述微型电机的输出轴上安装所述主动锥齿轮,所述从动锥齿轮的齿轮轴与驱动轮轮轴固定连接,其齿面与所述主动锥齿轮正交啮合,当所述微型电机的输出轴上带动所述主动锥齿轮转动,所述从动锥齿轮也随之转动,控制所述驱动轮转动,实现监测仪的启停。其端盖和外壳安装在主机后端,将微型电机、主动锥齿轮和从动锥齿轮封闭在外壳内侧。由此,本发明通过驱动模块与转动模块相互配合,可相应的移动至需要进行采样的位置,调节拍摄角度以及扫描速度,实现实时、定时、定点的作物根系表型数据采集。
本发明可设置检测仪通过如下方式实现对图像数据的存储和传输:将所述中央控制模块和微型电机控制模块连接,同时,将所述存储模块与所述数据收发模块连接。由此,所述柱型360度旋转主机采集到植物根系的信息后,可先 将相应的图像数据传送给所述中央控制模块,所述中央控制模块将信息传递至所述存储模块,所述存储模块将信息处理后传送给所述数据收发模块,所述数据收发模块利用网络将信息发送至客户端,当客户端确认后,发送指令至所述数据收发模块,后经所述中央控制模块逻辑判断发送指令至微型电机控制模块,微型电机控制模块根据指令启停微型电机,驱动监测仪达到指定位置,配合所述转动模块调整拍摄角度,采集到所需的根系信息。
由此,本发明可针对植物基因组学研究和分子育种的需求以及现有根系表型获取技术的不足,提供一种用于高通量、高精度的360度多层次旋转式图像监测仪。本发明可以在最接近自然的状态下,通过多通道根管进行田间作物根系表型的获取与分析,解决现有根系监测设备存在的不能开展田间大批量实验、不能开展精确、自动获取与分析作物根系表型的问题。
以上仅为本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (9)

  1. 一种作物根系表型获取的360度多层次旋转式图像监测仪,其特征在于,所述旋转式图像监测仪(1)设置在埋设于作物栽培土壤内的根管(2)中,沿根管(2)内部移动,获取作物根系的表型图像,其中,所述旋转式图像监测仪(1)包括:
    图像监测仪外壳(11),其主体为圆柱形结构;
    驱动模块(12),其设置在所述旋转式图像监测仪(1)的一端,包括凸出于图像监测仪外壳(11)侧壁表面的驱动轮(122),所述驱动轮(122)的驱动方向平行于所述图像监测仪外壳(11)的轴线方向;
    转动模块(13),其设置在所述旋转式图像监测仪(1)的另一端,包括凸出于图像监测仪外壳(11)侧壁表面的转动轮(132),所述转动轮(132)的转动方向垂直于所述图像监测仪外壳(11)的轴线方向;
    LED光源(14),其设置在所述旋转式图像监测仪(1)的中部,所述图像监测仪外壳(11)的中部至少部分设置为透明材质,所述LED光源(14)透过透明材质的图像监测仪外壳(11)照亮根管周围作物根系;
    图像获取装置,其设置在所述旋转式图像监测仪(1)的中部,由转动模块(13)驱动随图像监测仪外壳(11)同步在根管(2)内旋转而拍摄根管周围作物根系的图像。
  2. 如权利要求1所述的作物根系表型获取的360度多层次旋转式图像监测仪,其特征在于,所述驱动轮(122)和转动轮(132)均分别包括沿所述图像监测仪外壳(11)的周向均匀排布的多个。
  3. 如权利要求1所述的作物根系表型获取的360度多层次旋转式图像监测仪,其特征在于,所述旋转式图像监测仪(1)的另一端在转动模块(13)之外还设置有激光雷达(133),所述激光雷达(133)用于获取所述旋转式图像监测仪(1)在根管(2)中移动的距离和位置。
  4. 如权利要求1-3所述的作物根系表型获取的360度多层次旋转式图像监测仪,其特征在于,所述图像监测仪外壳(11)的内部还设置有电机支架(111), 所述电机支架(111)沿图像监测仪外壳(11)的径向设置;所述电机支架(111)与图像监测仪外壳(11)的内侧壁之间设置有微型电机(7);所述微型电机(7)的电机输出轴(71)垂直于所述电机支架(111)、沿所述图像监测仪外壳(11)的径向向所述图像监测仪外壳(11)的内侧壁延伸,各微型电机(7)的电机输出轴(71)分别驱动所述驱动轮(121)。
  5. 如权利要求1-4所述的作物根系表型获取的360度多层次旋转式图像监测仪,其特征在于,所述电机输出轴(71)与所述驱动轮(121)之间还连接有:
    驱动轮轴(122)、从动锥齿轮(123)和主动锥齿轮(124),其中,
    所述主动锥齿轮(124),其与电机输出轴(71)的远端固定连接,由微型电机(7)驱动,随同电机输出轴(71)同步转动;
    所述从动锥齿轮(123),其与所述主动锥齿轮(124)啮合,从动于所述主动锥齿轮(124)转动;
    所述驱动轮轴(122),其垂直于所述电机输出轴(71),所述驱动轮轴(122)的一端与所述连接所述从动锥齿轮(123)固定连接,另一端与驱动轮(121)固定连接,所述从动锥齿轮(123)带动所述驱动轮(121)沿平行于所述图像监测仪外壳(11)的轴线方向转动。
  6. 如权利要求1-5所述的作物根系表型获取的360度多层次旋转式图像监测仪,其特征在于,所述电机输出轴(71)与所述转动模块(13)的外壳之间还固定连接有平键,所述转动轮(132)安装在转动模块(13)的外壳上,所述电机输出轴(71)转动通过平键带动驱动转动模块(13)的外壳旋转,所述转动轮(132)由驱动转动模块(13)的外壳带动而以垂直于所述图像监测仪外壳(11)的轴线方向转动。
  7. 如权利要求6所述的作物根系表型获取的360度多层次旋转式图像监测仪,其特征在于,所述转动模块(13)还包括从动轮(131),其平行于所述转动轮(132),沿图像监测仪外壳(11)的周向均匀排布在相邻各转动轮(132)之间。
  8. 如权利要求1-7所述的作物根系表型获取的360度多层次旋转式图像监测仪,其特征在于,所述驱动轮(121)、转动轮(132)以及从动轮(131)均分别抵接所述根管(2),支撑所述图像监测仪外壳(11)与根管(2)的内侧壁之间无直接接触。
  9. 如权利要求1-7所述的作物根系表型获取的360度多层次旋转式图像监测仪,其特征在于,所述图像监测仪外壳(11)内还设置有:
    数据收发模块(5),其用于接收控制信号,或传输图像获取装置所拍摄的根管周围作物根系的图像;
    微型电机控制模块(31),其与所述微型电机电连接,输出驱动信号,相应地驱动所述微型电机(31)转动,带动所述驱动轮(121)和/或转动轮(132)运转;
    存储模块(6),其与所述图像获取装置电连接,用于存储图像获取装置所拍摄的根管周围作物根系的图像。
PCT/CN2020/110641 2020-01-29 2020-08-21 一种作物根系表型获取的360度多层次旋转式图像监测仪 WO2021151288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010077487.9 2020-01-29
CN202010077487.9A CN111238395A (zh) 2020-01-29 2020-01-29 一种作物根系表型获取的360度多层次旋转式图像监测仪

Publications (1)

Publication Number Publication Date
WO2021151288A1 true WO2021151288A1 (zh) 2021-08-05

Family

ID=70871970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110641 WO2021151288A1 (zh) 2020-01-29 2020-08-21 一种作物根系表型获取的360度多层次旋转式图像监测仪

Country Status (2)

Country Link
CN (1) CN111238395A (zh)
WO (1) WO2021151288A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111238395A (zh) * 2020-01-29 2020-06-05 南京慧瞳作物表型组学研究院有限公司 一种作物根系表型获取的360度多层次旋转式图像监测仪
CN112104792B (zh) * 2020-09-16 2022-07-01 威海精讯畅通电子科技有限公司 一种自动根系扫描仪及扫描仪图像处理方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103867848A (zh) * 2012-12-14 2014-06-18 许雪梅 一种螺旋驱动式管道机器人
CN107655888A (zh) * 2017-09-09 2018-02-02 华中农业大学 一种应用于根盒土壤中水稻根系二维图像采集装置
CN108259825A (zh) * 2018-01-03 2018-07-06 中国科学院寒区旱区环境与工程研究所 一种野外植物根系远程监测系统
DE202017006834U1 (de) * 2017-07-05 2018-07-26 Albis Plastic Gmbh Inspektionsvorrichtung
CN108843892A (zh) * 2018-07-12 2018-11-20 浙江大学 一种多方向管道检测及自适应管径的螺旋驱动管道机器人
CN110203303A (zh) * 2019-05-09 2019-09-06 上海航天精密机械研究所 磁力自驱动小车以及用于其的导轨测量装置和方法
CN110612843A (zh) * 2019-10-28 2019-12-27 南京农业大学 一种作物表型高通量获取装置与气候舱
CN111165228A (zh) * 2020-01-29 2020-05-19 南京慧瞳作物表型组学研究院有限公司 一种用于田间作物表型获取与分析的移动表型舱
CN111239340A (zh) * 2020-01-29 2020-06-05 南京慧瞳作物表型组学研究院有限公司 一种田间作物根系表型的多通道获取系统及安装方法
CN111238395A (zh) * 2020-01-29 2020-06-05 南京慧瞳作物表型组学研究院有限公司 一种作物根系表型获取的360度多层次旋转式图像监测仪

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4404983A1 (de) * 1994-02-17 1994-09-08 Steiger Erwin Vorrichtung zur nichtmechanischen Bearbeitung und Aufbereitung von Zahnwurzelkanälen mittels Laserstrahlung
CN103685845B (zh) * 2014-01-06 2016-06-01 中国气象局沈阳大气环境研究所 根系图像扫描装置
CN206146778U (zh) * 2016-11-01 2017-05-03 北京易科泰生态技术有限公司 一种SoilTron‑Pheno植物表型观测蒸渗仪
CN107274479A (zh) * 2017-05-27 2017-10-20 浙江大学 一种检测植株根系生长状况的装置
CN107392956B (zh) * 2017-06-08 2020-04-10 北京农业信息技术研究中心 作物根系表型检测方法和装置
CN209803822U (zh) * 2019-05-16 2019-12-17 北京农业信息技术研究中心 一种作物冠层原位生长表型监测装置
CN110617768A (zh) * 2019-10-28 2019-12-27 南京农业大学 一种用于获取作物表型的根盒

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103867848A (zh) * 2012-12-14 2014-06-18 许雪梅 一种螺旋驱动式管道机器人
DE202017006834U1 (de) * 2017-07-05 2018-07-26 Albis Plastic Gmbh Inspektionsvorrichtung
CN107655888A (zh) * 2017-09-09 2018-02-02 华中农业大学 一种应用于根盒土壤中水稻根系二维图像采集装置
CN108259825A (zh) * 2018-01-03 2018-07-06 中国科学院寒区旱区环境与工程研究所 一种野外植物根系远程监测系统
CN108843892A (zh) * 2018-07-12 2018-11-20 浙江大学 一种多方向管道检测及自适应管径的螺旋驱动管道机器人
CN110203303A (zh) * 2019-05-09 2019-09-06 上海航天精密机械研究所 磁力自驱动小车以及用于其的导轨测量装置和方法
CN110612843A (zh) * 2019-10-28 2019-12-27 南京农业大学 一种作物表型高通量获取装置与气候舱
CN111165228A (zh) * 2020-01-29 2020-05-19 南京慧瞳作物表型组学研究院有限公司 一种用于田间作物表型获取与分析的移动表型舱
CN111239340A (zh) * 2020-01-29 2020-06-05 南京慧瞳作物表型组学研究院有限公司 一种田间作物根系表型的多通道获取系统及安装方法
CN111238395A (zh) * 2020-01-29 2020-06-05 南京慧瞳作物表型组学研究院有限公司 一种作物根系表型获取的360度多层次旋转式图像监测仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, JIUQING: "Study on Image Monitoring and Analysing System of Plant Root", DOCTORAL DISSERTATION, no. 08, 15 December 2005 (2005-12-15), CN, pages 1 - 121, XP009529460 *

Also Published As

Publication number Publication date
CN111238395A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2021151288A1 (zh) 一种作物根系表型获取的360度多层次旋转式图像监测仪
CN101658107B (zh) 植物根系原位动态观察和测定方法
CN204837305U (zh) 一种基于互联网的智能种植装置、系统
CN104483285A (zh) 基于近红外光谱技术的车载土壤养分检测及自动采样装置
CN104542024A (zh) 一种植物根系生长原位监测设备
CN206132218U (zh) 一种用于植物工厂的实时光谱成像及光质智能控制系统
CN111693551A (zh) 一种水稻植株及根系三维性状无损测量装置及方法
CN206728818U (zh) 诱导幼苗的水培育苗装置
WO2021151280A1 (zh) 一种田间作物根系表型的多通道获取系统及安装方法
CN112595367A (zh) 一种基于智能机器人的水稻根系性状无损测量装置
WO2021151286A1 (zh) 一种田间作物根系表型的获取系统
CN206832692U (zh) 一种水生植物根系生长发育的原位观测分析装置
CN212179805U (zh) 一种田间作物根系表型的多通道获取系统
CN105387934A (zh) 冠层内光合有效辐射自动跟踪测量装置
CN212364057U (zh) 作物根系表型获取的360度多层次旋转式图像监测仪
CN111487380A (zh) 一种植物表型监测装置
CN111855967A (zh) 土壤水分检测设备
CN114152280B (zh) 一种触手类软珊瑚监测装置
CN211401080U (zh) 一种田间作物根系表型的获取系统
CN206324008U (zh) 一种监测水下底栖动物的装置
CN105181632A (zh) 网络型多维度植物成像ndvi测量装置
CN212410553U (zh) 一种植物表型与同化作用集成检测装置
CN113068545B (zh) 一种植物病原菌繁殖及致病力测定系统
CN209727785U (zh) 单株植物根系观测装置
CN208902035U (zh) 作物冠层监测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917249

Country of ref document: EP

Kind code of ref document: A1