WO2021151249A1 - Time domain orthogonal cover codes for sounding reference signals - Google Patents

Time domain orthogonal cover codes for sounding reference signals Download PDF

Info

Publication number
WO2021151249A1
WO2021151249A1 PCT/CN2020/074110 CN2020074110W WO2021151249A1 WO 2021151249 A1 WO2021151249 A1 WO 2021151249A1 CN 2020074110 W CN2020074110 W CN 2020074110W WO 2021151249 A1 WO2021151249 A1 WO 2021151249A1
Authority
WO
WIPO (PCT)
Prior art keywords
sounding reference
time domain
orthogonal cover
reference signal
domain orthogonal
Prior art date
Application number
PCT/CN2020/074110
Other languages
French (fr)
Inventor
Alexandros MANOLAKOS
Yi Huang
Yu Zhang
Wanshi Chen
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/074110 priority Critical patent/WO2021151249A1/en
Publication of WO2021151249A1 publication Critical patent/WO2021151249A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the following relates generally to wireless communications and more specifically to time domain orthogonal cover codes for sounding reference signals.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so forth. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • one or more deices may transmit reference signals (e.g., sounding reference signals (SRSs) ) to one or more base stations.
  • SRSs sounding reference signals
  • LTE Long Term Evolution
  • SC-FDMA single-carrier frequency division multiple access
  • MIMO multiple-input multiple-output
  • a user equipment may apply one or more time domain orthogonal cover codes (TD-OCCs) to one or more sounding reference signals (SRSs) to be transmitted via an SRS resource.
  • TD-OCCs time domain orthogonal cover codes
  • SRSs sounding reference signals
  • the UE may divide the SRS resource into portions and may apply a separate TD-OCC to each portion of the SRS resource.
  • the UE may apply separate TD-OCCs to each frequency hop across the SRS resource.
  • the UE may identify a threshold number of symbols, and divide the SRS resource into portions equal to or less than the threshold number of symbols.
  • the UE may divide the SRS resource into equal portions (e.g., each portion having the same number of symbols) or may divide the SRS resource in unequal portions (one or more portions having different numbers of symbols) . Having divided the SRS resource, the UE may apply different TD-OCCs to each portion of the SRS resource. If a scheduling conflict occurs with a higher priority signal (e.g., according to a set of one or more conflict priority rules) , then the UE may drop a divided portion of the SRS resource in which the conflict occurs, including all symbols to which a TD-OCC has been or will be applied. But the UE may transmit the remaining SRSs over the divided portions of the SRS resource to which other TD-OCCs have been or will be applied.
  • a scheduling conflict occurs with a higher priority signal (e.g., according to a set of one or more conflict priority rules)
  • the UE may drop a divided portion of the SRS resource in which the conflict occurs, including all symbols to which a TD-OC
  • a UE may adjust the transmit power of an SRS to which a TD-OCC has been applied (e.g., based on a set of one or more power control priority rules, where an SRS with a TD-OCC has a higher priority than an SRS without a TD-OCC) .
  • a method of wireless communications may include identifying an SRS resource including a set of symbols, applying one or more TD-OCCs to at least a portion of the SRS resource, and transmitting one or more SRSs via the SRS resource, the one or more SRSs based on the one or more applied TD-OCCs.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify an SRS resource including a set of symbols, apply one or more TD-OCCs to at least a portion of the SRS resource, and transmit one or more SRSs via the SRS resource, the one or more SRSs based on the one or more applied TD-OCCs.
  • the apparatus may include means for identifying an SRS resource including a set of symbols, applying one or more TD-OCCs to at least a portion of the SRS resource, and transmitting one or more SRSs via the SRS resource, the one or more SRSs based on the one or more applied TD-OCCs.
  • a non-transitory computer-readable medium storing code for wireless communications is described.
  • the code may include instructions executable by a processor to identify an SRS resource including a set of symbols, apply one or more TD-OCCs to at least a portion of the SRS resource, and transmit one or more SRSs via the SRS resource, the one or more SRSs based on the one or more applied TD-OCCs.
  • FIG. 1 illustrates an example of a wireless communications system that supports time domain orthogonal cover codes (TD-OCCs) for sounding reference signals in accordance with aspects of the present disclosure.
  • TD-OCCs time domain orthogonal cover codes
  • FIG. 2 illustrates an example of a wireless communications system that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of an SRS transmission scheme that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of an SRS transmission scheme that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • FIG. 5 illustrates an example of an SRS transmission scheme that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • FIG. 6 illustrates an example of an SRS transmission scheme that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • FIG. 7 illustrates an example of an SRS transmission scheme that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • FIG. 8 illustrates an example of a process flow that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • FIGs. 9 and 10 show block diagrams of devices that support TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • FIG. 11 shows a block diagram of a communications manager that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • FIG. 12 shows a diagram of a system including a device that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • FIGs. 13 through 15 show flowcharts illustrating methods that support TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • a base station may configure one or more UEs to transmit one or more sounding reference signal (SRS) over SRS resources, where an SRS resource may refer to any collection of transmission resources available to be scheduled to carry an SRS (e.g., symbols in which transmission of SRS may occur over at least some subcarriers or resource elements) .
  • the base station may use the SRSs to measure signals transmitted by the UE and determine one or more channel metrics.
  • system efficiency may be improved by code division multiplexing (CDM) one or more SRS signals over an SRS resource.
  • CDM code division multiplexing
  • UEs may apply time domain orthogonal cover codes (TD-OCCs) to SRSs within an SRS resource.
  • TD-OCCs time domain orthogonal cover codes
  • TD-OCCs for SRSs may, however, present various challenges. For example, it may be costly with respect to power or computational resources to apply TD-OCCs to SRSs across multiple frequencies (e.g., where a frequency band spanned by an SRS resource changes from at least portion of the SRS resource to another, such as in a frequency hopping mode) . As another example, a UE may prioritize uplink transmissions according to one or more signal priority rules, and the use of TD-OCCs for SRSs may complicate such prioritizations. In one such example, a high priority signal (e.g., a physical uplink control channel (PUCCH) ) may be scheduled during one or more symbols of an SRS resource.
  • PUCCH physical uplink control channel
  • a UE thus may drop at least a portion of an SRS during the SRS resource.
  • the UE has applied a TD-OCC to the SRS within the SRS resource, then transmitted portions of the SRS may not be useful to a receiving node without the dropped portion, and thus in some systems the UE may drop the entirety of the SRS transmissions across the whole SRS resource (despite the fact that the conflicting high priority signal spans only one or a few symbols of the SRS resource) .
  • Various systems and techniques as described herein may address such challenges or otherwise support the application of TD-OCCs to SRSs with improved performance. For example, dividing an SRS resource into portions and applying separate TD-OCCs to the divided portions of the SRS resource may result in improved system efficiency, higher throughput, power savings, etc. Additionally or alternatively, one or more aspects of the systems and techniques described herein for the use of TD-OCC in the SRS context (e.g., for dividing SRS resources, power control for portions of divided SRS resources, and default or alternative CDM schemes) , may provide stability and improved efficiency for SRS signaling, including when a system supports applying TD-OCC to SRSs.
  • a UE may apply one or more TD-OCCs to one or more SRSs in an SRS resource.
  • the UE may divide the SRS resource into portions and may apply a separate TD-OCC to each portion of the SRS resource. For example, in a frequency hopping mode, the UE may apply separate TD-OCCs to each frequency hop across the SRS resource.
  • the UE may identify a threshold number of symbols, and divide the SRS resource into portions equal to or less than the threshold number of symbols.
  • the UE may divide the SRS resource into equal portions (e.g., each portion having the same number of symbols) or may divide the SRS resource in unequal portions (one or more portions having different numbers of symbols) .
  • the UE may apply different TD-OCCs to each portion of the SRS resource. If a scheduling conflict occurs with a higher priority signal (e.g., according to a set of one or more conflict priority rules) , then the UE may drop a divided portion of the SRS resource in which the conflict occurs, including all symbols to which a TD-OCC has been or will be applied. But the UE may transmit the remaining SRSs over the divided portions of the SRS resource to which other TD-OCCs have been or will be applied.
  • a scheduling conflict occurs with a higher priority signal (e.g., according to a set of one or more conflict priority rules)
  • the UE may drop a divided portion of the SRS resource in which the conflict occurs, including all symbols to which a TD-OCC has been or will be applied. But the UE may transmit the remaining SRSs over the divided portions of the SRS resource to which other TD-OCCs have been or will be applied.
  • a UE may adjust the transmit power of an SRS to which a TD-OCC has been applied (e.g., based on a set of one or more power control priority rules, where an SRS with a TD-OCC has a higher priority than an SRS without a TD-OCC) .
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are initially described in the context of SRS transmission schemes and process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to TD-OCCs for sounding reference signals.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a UE 115 may apply one or more TD-OCCs (TD-OCCs) to one or more sounding reference signals (SRSs) that are transmitted in (via, using) an SRS resource.
  • TD-OCCs TD-OCCs
  • SRSs sounding reference signals
  • the UE 115 may divide the SRS resource into portions and may apply a separate TD-OCC to each portion of the SRS resource. For example, in a frequency hopping mode, the UE 115 may apply separate TD-OCCs to each frequency hop across the SRS resource.
  • the UE 115 may identify a threshold number of symbols and divide the SRS resource into portions equal to or less than the threshold number of symbols.
  • the UE 115 may divide the SRS resource into equal portions (e.g., each portion having the same number of symbols) or may divide the SRS resource in unequal portions (one or more portions having different numbers of symbols) . Having divided the SRS resource, the UE 115 may apply different TD-OCCs to each portion of the SRS resource.
  • the UE 115 may drop a divided portion of the SRS resource in which the conflict occurs, including all symbols to which a TD-OCC has been or will be applied. But the UE 115 may transmit the remaining SRSs over the divided portions of the SRS resource to which other TD-OCCs have been or will be applied.
  • a UE 115 may adjust the transmit power of an SRS to which a TD-OCC has been applied (e.g., based on a set of one or more power control priority rules, where an SRS with a TD-OCC has a higher priority than an SRS without a TD-OCC) .
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • wireless communications system 200 may include a base station 105-a and a UE 115-a, which may be examples of corresponding devices as discussed with respect to FIG. 1.
  • the base station 105-a may transmit data and control information to the UE 115-a via downlink communications 205, and the UE 115-a may transmit data and control information to the base station 105-a via uplink communications 210.
  • base station 105-a may transmit SRS configuration information 215 to the UE 115-a, which may configure one or more SRS transmissions 220 by the UE 115-a.
  • wireless communications system 200 may support SRS resources that span a number of symbols (e.g., 1 symbol, 2 adjacent symbols, 4, adjacent symbols, or the like) with up to some number (e.g., four) ports per SRS resource.
  • UE 115-a may sound each port for an SRS resource in each symbol. Additionally, or alternatively, in some examples, UE 115-a may be restricted to transmitting SRSs in certain (e.g., the last six) symbols of a slot. In some examples, UE 115-a may transmit SRSs after a PUSCH scheduled during the same slot.
  • An SRS resource set may contain a set of SRS resources transmitted by a single UE 115 (e.g., UE 115-a) .
  • UE 115-a may transmit SRS resource sets aperiodically (e.g., via DCI signaling) , semi-persistently, or periodically.
  • base station 105-a may configure UE 115-a with multiple resources, which may be grouped into an SRS resource set based on use case (e.g., antenna switching, codebook-based, non-codebook based, beam management procedures, or the like) .
  • SRS transmissions may be wideband transmissions, subband transmissions, or the like.
  • SRS bandwidths may be multiples of a number of PRBs (e.g., four PRBs) .
  • SRS transmissions within an SRS resource may span a number of PRBs. That is, SRSs scheduled across a set of PRBs may not occupy every subcarrier or resource element within the PRBs of the set.
  • SRS transmissions may be configured with a comb value (e.g., a comb value of 4 may correspond to SRS being transmitted in every fourth subcarrier, a comb value of 2 may correspond to an SRS being transmitted in every other subcarrier, and so on) , and a number of symbols (e.g., consecutive symbols) to be spanned by the SRS.
  • Each SRS may be configured with a sounding bandwidth (e.g., number of PRBs) a comb value, an offset value (e.g., an offset relative to a lowest frequency subcarrier within a PRB that identifies the lowest frequency carrier to carry SRS) , and a number of TTIs (e.g., a number of symbols) .
  • a sounding bandwidth e.g., number of PRBs
  • an offset value e.g., an offset relative to a lowest frequency subcarrier within a PRB that identifies the lowest frequency carrier to carry SRS
  • TTIs e.g., a number of symbols
  • the SRS may occupy every fourth subcarrier within the four symbols based on the comb value (e.g., four symbols on a first subcarrier, the same four symbols on a fifth consecutive subcarrier, the same four symbols on a ninth consecutive subcarrier, etc. ) beginning with the lowest frequency subcarrier of the first PRB (e.g., based on the offset of zero) .
  • the comb value e.g., four symbols on a first subcarrier, the same four symbols on a fifth consecutive subcarrier, the same four symbols on a ninth consecutive subcarrier, etc.
  • UE 115-a may be capable of supporting a frequency hopping mode.
  • an SRS may be configured to occupy a sounding bandwidth divided into different segments during different symbols.
  • a 48 PRB sounding bandwidth may be divided into two frequency hops: a first frequency hop having a bandwidth of 24 PRBs (e.g., PRB 1-24) during a first symbol, and a second frequency hop having a bandwidth of 24 PRBs (e.g., PRBs 25-48) during a second symbol.
  • a 48 PRB sounding bandwidth may be divided into four twelve PRB frequency hops.
  • an SRS may be configured to repeat frequency hops (e.g., a first frequency hop spanning 24 PRBs during a first symbol, a repetition of the same frequency hop spanning the same 24 PRBs during a second symbol, a new frequency hop spanning a different 24 PRBs during a third symbol, and a repetition of the new frequency hop spanning the different 24 PRBs during a fourth symbol) .
  • frequency hops e.g., a first frequency hop spanning 24 PRBs during a first symbol, a repetition of the same frequency hop spanning the same 24 PRBs during a second symbol, a new frequency hop spanning a different 24 PRBs during a third symbol, and a repetition of the new frequency hop spanning the different 24 PRBs during a fourth symbol.
  • UE 115-a may encode SRS transmissions, and may map one or more ports to the SRS resource across time and frequency. For example, UE 115-a may map all four available ports to each symbol (e.g., to the frequency resources of an SRS resource during a symbol according to a comb value) . In some examples, UE 115-a may map ports to symbols accordingly to multiple combs (e.g., two ports to each symbol of a first comb pattern and two ports to each symbol of a second comb pattern) .
  • TD-OCC may be used in SRS transmissions that span two or more symbols of an SRS resource.
  • the SRS may be expanded to K symbols to which a K-symbol TD-OCC is applied.
  • UE 115-a may apply a TD-OCC with a base value equal to 2, which may comprise a sequence of two values (e.g., which may be referred to as base 2 TD-OCC, a length 2 TD-OCC, or a TD-OCC2) .
  • UE 115-a may apply the TD-OCC to the SRS for each symbol of an SRS resource (or a portion of the SRS resource, as described in greater detail with reference to FIGs. 4-7) .
  • a TD-OCC may be a sequence of values (e.g., [1, 1] , [1, -1] ) , which may correspond to coefficients by which the bits of an SRS may be multiplied.
  • UE 115-a may generate a first baseline SRS bitstream for a first port (e.g., based on a first baseline SRS sequence, where baseline may indicate that an SRS sequence or SRS bitstream has not yet had a TD-OCC applied) , and may generate a second baseline SRS bitstream for a second port (e.g., based on a second baseline SRS sequence, which may be the same or different than the first baseline SRS sequence) .
  • UE 115-a may apply a TD-OCC to the SRS resource (e.g., a two-symbol SRS resource) .
  • UE 115-a may multiply the first baseline SRS bitstream and the second baseline SRS bitstream by their respective coefficients as indicated by the values of a TD-OCC.
  • UE 115-a may CDM (e.g., simultaneously transmit) the result of applying the TD-OCC to the SRS bitstreams.
  • UE 115-a may transmit the first bitstream for the first port plus the second bitstream for the second port during the first symbol of the SRS resource (e.g., based on applying a first TD-OCC [1, 1] ) and may transmit the first bitstream for the first port minus the second bitstream for the second port during the second symbol the SRS resource (e.g., based on applying a second TD-OCC [1-1] ) .
  • UE 115-a may code multiplex multiple ports during each symbol of an SRS resource.
  • TD-OCCs of any length to SRS resources of any number of symbols, and for any number of ports.
  • a number of indices in a TD-OCC may be equal to a number of ports to be multiplexed.
  • a base value of a TD-OCC may be equal to a number of symbols in the SRS resource, or a portion of the SRS resource as described in greater detail with respect to FIGs. 3-7.
  • K UEs 115 may be multiplexed.
  • the SRS configuration information 215 may include an indication of K and the TD-OCC or sequences.
  • multiple UEs 115 may be configured with the same K, different TD-OCCs, and the same comb structure/offset and sequence.
  • an SRS may be transmitted by multiple UEs 115 and code multiplexed together based on applied TD-OCCs.
  • UE 115-a may transmit an SRS via a first port.
  • the SRS may also be transmitted via a second port (or any other number of ports that are CDM in a TD-OCC) by UE 115-a or by another UE 115.
  • UE 115-a may transmit the SRS via the first port and the other UE 115 may transmit the SRS via the second port.
  • the two transmissions from the two UEs 115 may combine over the air (e.g., as received by a receiving node, such as the base station 105-a) .
  • UE 115-a may transmit an SRS via the first port in a first symbol by multiplying the SRS with the TD-OCC (e.g., +1 for a TD-OCC of [1, 1] ) , and may transmit the SRS via the first port in a second symbol by multiplying the SRS with the TD-OCC (e.g., +1 for a TD-OCC of [1, 1] ) while the second UE 115 may transmit an SRS via the second port in the first symbol by multiplying the SRS with the TD-OCC (e.g., +1 for a TD-OCC of [1, -1] ) , and may transmit an SRS via the second port in the second symbol by multiplying the SRS with the TD-OCC (e.g., -1 for a TD-OCC of [1, -1] ) .
  • TD-OCC e.g., +1 for a TD-OCC of [1, 1]
  • an SRS may be multiplexed with other signals.
  • wireless communications system 200 may support time division multiplexing (TDM) of physical uplink shared channel (PUSCH) .
  • UE 115-a may be constrained to transmit the SRS after transmission of a PUSCH and a corresponding demodulation reference signal (DMRS) .
  • DMRS demodulation reference signal
  • wireless communications system 200 may not support the simultaneous transmission of an SRS and another signal (e.g., a PUCCH) .
  • UE 115-a may be aware of one or more priority rules.
  • UE 115-a may determine which signal is of higher priority according to the priority rules, and may drop the lower priority signal.
  • UE 115-a may determine that a PUCCH that conflicts with one or more symbols of an SRS resource has a higher priority than the SRS. In such cases, UE 115-a may drop at least a portion of the SRS based on the priority rules. In some examples, UE 115-a may refrain from dropping the SRS if an aperiodic SRS overlaps with one or more symbols of a PUCCH carrying only periodic or semi-persistent CSI or level 1 RSRP reports, in which case, a PUCCH may be dropped instead of the SRS.
  • UE 115-a may apply a separate TD-OCC to each frequency hop of an SRS resource.
  • base station 105-a may configure UE 115-a with two frequency hops, each having a number of symbols (e.g., two symbols) .
  • UE 115-a may be configured to apply a TD-OCC across the entire frequency resource including each of the two frequency hops.
  • UE 115-a may apply a first TD-OCC to the first frequency hop and may apply a second TD-OCC to the second frequency hop.
  • UE 115-a may identify a threshold number of symbols. If the SRS resource is smaller than the threshold number of symbols, then UE 115-a may apply a single TD-OCC to the SRS resource. However, if the SRS resource is larger than the threshold number of symbols, then UE 115-a may divide the SRS resource according to the threshold number of symbols. For instance, if the threshold number of symbols is four symbols, and the SRS resource is 12 symbols long, then UE 115-a may divide the SRS resource in three four-symbol portions of the SRS resource, and may apply a different TD-OCC to each of the three portions.
  • UE 115-a may divide an SRS resource and may apply TD-OCCs having the same or different bases to each divided portion of the SRS resource. For example, UE 115-a may divide the SRS resource equally, such that each TD-OCC has the same base. In some examples, UE 115-a may only apply TD-OCCs to portions of the SRS resource if the duration of the SRS resource is a multiple of the base value of the TD-OCC. In some examples, UE 115-a may only use orthogonal codes having a power of 2 (e.g., TD-OCC2, TD-OCC4, TD-OCC8, or the like) .
  • orthogonal codes having a power of 2 (e.g., TD-OCC2, TD-OCC4, TD-OCC8, or the like) .
  • UE 115-a may default to a different type of orthogonal matrices (e.g., an FFT matrix) .
  • UE 115-a may divide the SRS resource into uneven segments, or may apply different TD-OCCs having different base values to different portions of the SRS resource.
  • UE 115-a may adjust the transmit power for the SRS in one or more of the divided portions of the SRS resource according to one or more power control rules.
  • UE 115-a may refrain from applying any TD-OCCs to the SRS resource.
  • UE 115-a may divide the SRS resource, apply TD-OCCs to each divided portion of the SRS resource, and may identify a conflicting signal during a symbol of the SRS resource.
  • UE 115-a may drop the SRS during the entirety of a portion of the SRS resource during which the conflict occurs if the conflicting signal has a higher priority than the SRS (e.g., according to one or more priority rules) .
  • UE 115-a may apply the transmit the SRS during the remaining portions of the SRS resource.
  • base station 105-a may turn on or off the application of TD-OCC for SRS resources.
  • base station 105-a may configure one or more SRS resources according to a pattern.
  • Base station 105-a may turn TD-OCC procedures on or off for the pattern via control signaling (e.g., a DCI, a MAC-CE, or the like) .
  • FIG. 3 illustrates an example of an SRS transmission scheme 300 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • SRS transmission scheme 300 may implement aspects of wireless communications system 100.
  • a base station 105 may configure an SRS resource for transmitting SRS 315.
  • the SRS resource may be located across (span) one or more PRBs (e.g., across one or more sets of 8 PRBs 310) .
  • the SRS resource may also span one or more TTIs (e.g., symbols 305) .
  • a UE 115 may support intra-slot frequency hopping and TD-OCC for SRS.
  • a base station 105 may configure the UE 115 in an intra-slot frequency hopping mode.
  • UE 115 may divide the SRS resource according to the frequency hops of the intra-slot frequency hopping mode. That is, if the SRS resource is X symbols long, and is configured with Y frequency hops, then the UE 115 may divide the SRS resource into Y portions, each portion of the SRS resource having a number of symbols equal to X/Y.
  • UE 115 may be configured with two frequency hops (e.g., a first frequency hop spanning a first twenty four PRBs in two symbols 305 and a second frequency hop spanning a different twenty-four PRBs in two more consecutive symbol 305) .
  • the UE 115 may be configured (e.g., by base station 105) to apply a single TD-OCC (e.g., having a base value of 4) to the four-symbol SRS resource.
  • TD-OCC e.g., having a base value of 4
  • the UE 115 may apply a first TD-OCC to the SRS resource in portion 320 of the SRS resource (e.g., a TD-OCC having a base value of two to the first frequency hop) and may apply a second TD-OCC to the SRS resource in portion 325 of the SRS resource (e.g., a TD-OCC having a base value of two to the second frequency hop) .
  • a first TD-OCC to the SRS resource in portion 320 of the SRS resource
  • a second TD-OCC to the SRS resource in portion 325 of the SRS resource
  • the UE 115 may transmit one or more SRSs over the SRS resource.
  • FIG. 4 illustrates an example of an SRS transmission scheme 400 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • SRS transmission scheme 400 may implement aspects of wireless communications system 100.
  • a base station 105 may configure an SRS resource for transmitting SRS 410.
  • the SRS resource may be located across one or more PRBs.
  • the SRS resource may also span one or more TTIs (e.g., symbols 405) .
  • a UE 115 may divide an SRS resource into portions 415.
  • the UE 115 may be operating with an intra-slot frequency hopping mode or without an intra-slot frequency mode.
  • the base station may further configure the UE 115 to apply a TD-OCC to the SRS resource.
  • the UE 115 may identify a threshold number of symbols (e.g., an SRS resource threshold duration or threshold length) .
  • the UE may divide the SRS resource into segments that are equal to or less than the threshold number of symbols. In such examples, the UE 115 may apply TD-OCCs to consecutive symbols up to the threshold number of symbols.
  • UE 115 may divide an SRS resource into portion 415-a, portion 415-b, and portion 415-c.
  • UE 115 may identify a threshold number of symbols equal to four symbols. It is to be understand that this and any other specific numbers used herein are solely for the sake of illustrative clarity, and the claims are not so limited.
  • the threshold may be standardized and known by the UE 115 and the base station 105.
  • base station 105 may signal the threshold number of symbols (e.g., via higher layer signaling, dynamic signaling, semi-persistent signaling, or the like) .
  • the UE 115 may thus divide the SRS resource and apply TD-OCCs to consecutive symbols up to the threshold number of symbols.
  • the UE 115 may apply a first TD-OCC (e.g., having a base value of 4) to the first four symbols 405 of portion 415-a, may apply a second TD-OCC (e.g., also having a base value of 4) to the first four symbols 405 of portion 415-b, and may apply a second TD-OCC (e.g., also having a base value of 4) to the first four symbols 405 of portion 415-c.
  • the UE 115 may apply a different TD-OCC having a different base to a remainder that is smaller than the threshold number of symbols.
  • the UE 115 may apply a first TD-OCC having a base value of 4 to a first portion of the SRS resource having four symbols, a second TD-OCC having a base value of 4 to a second portion of the SRS resource having four symbols, and a third TD-OCC having a base value of 2 to a third portion of the SRS resource having two symbols.
  • the UE may still sound four ports in each portion (including portions that have different numbers of symbols) and may apply TD-OCCs having the same base value to portions of the SRs resource having different numbers of symbols.
  • base station 105 may configure the UE 115 with an eight-symbol SRS resource. Based on a threshold number of symbols equal to 4 symbols, the UE 115 may apply a first TD-OCC to a first four-symbol portion of the SRS resource, and may apply a second TD-OCC to a second four-symbol portion of the SRS resource.
  • the UE 115 may transmit one or more SRSs over the SRS resource.
  • FIG. 5 illustrates an example of an SRS transmission scheme 500 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • SRS transmission scheme 500 may implement aspects of wireless communications system 100.
  • a base station 105 may configure an SRS resource for transmitting SRS 510.
  • the SRS resource may be located across one or more PRBs.
  • the SRS resource may also span one or more TTIs (e.g., symbols 505) .
  • Base station 105 may configure a UE 115 with an SRS resource for transmitting SRS 510.
  • the SRS resource may satisfy a threshold number of symbols.
  • the UE 115 may divide the SRS resource into portions 515.
  • UE 15 may support different TD-OCCs having different base values to different potions 515.
  • the UE 115 may divide the SRS resource unevenly (e.g., into portion that span different numbers of symbols) .
  • portion 515-a of the SRS resource may have a longer duration than portion 515-b (e.g., portion 515-a may span 8 symbols 505 and portion 515-b may span 4 symbols 505) .
  • the UE 115 may apply a first TD-OCC (e.g., having a base value of 8) to first portion 515-a and a second TD-OCC (e.g., having a base value of 4) to second portion 515-b.
  • the order and size of different portions 515 may vary. For example, a shorter portion (e.g., such has portion 515-b) may precede a longer portion (e.g., such as 515-a) .
  • the UE 115 may divide the SRS resource into multiple portions (e.g., three or more) . In some examples all but one portion of the SRS resource may have the same number of symbols 505.
  • each portion of the SRS resource may have a different number of symbols 505.
  • the UE 115 may apply different TD-OCCs having different base values to each portion of an SRS resource, or may apply a TD-OCC having a first base value to a group of one or more portions of the SRS resource and another TD-OCC having a second base value to another group of one or more portions of the SRS resource.
  • the UE 115 may perform one or more power control adjustments to a portion 515 of the SRS resource. Power control adjustments may be based on different base values used for different TD-OCCs across portions 515. For instance, the UE 115 may apply a TD-OCC having a base value of 8 to portion 515-a of the SRS resource, and may apply a TD-OCC having a base value of 4 to portion 515-b of the SRS resource. In such examples, the UE 115 may sound 8 ports during portion 515-a, and may only sound 4 ports during portion 515-b.
  • the UE 115 may adjust respective transmit powers for the various ports. For example, to set the transmit power of portion 515-a equal (or approximately equal) to the transmit power of portion 515-b, the UE 115 may decrease the transmit power for the ports sounding during the symbols of portion 515-a.
  • the UE 115 may identify one or more power control priority rules.
  • the UE 115 may simultaneously transmit one or more signals on one or more channels (e.g., PUSCH, PUCCH, physical random access channel (PRACH) , SRS, or the like) on one or more carriers (e.g., in a carrier aggregation mode) . If the UE is transmitting multiple signals at the same time, a total transmit power may be constrained (e.g., by a standardized requirement, a signaled command, a transmit power mask, or the like) , to not exceed a threshold. In such examples, a UE may allocate power across one or more signals or channels (e.g., PUSCH, PUCCH, PRACH, SRS, etc.
  • the UE 115 may adjust (e.g., decrease) the transmit power in descending order of priority.
  • the UE 115 may adjust (e.g., decrease) the transmit power of lower priority signal types or channels before adjusting the transmit power of higher priority signal types or channels.
  • a PRACH transmission on a primary cell may be higher priority than a PUCCH transmission with HARQ acknowledgment information or SRS or PUSCH transmissions with HARQ acknowledgement information, which may be higher priority than PUCCH transmissions with CSI or CSI, which may be higher priority than PUSCH transmissions without HARQ acknowledgment information or CSI, which may be higher in priority than SRS transmissions, with aperiodic SRS having higher priority than semi-persistent or periodic SRS, or PRACH transmissions on serving cells that are not the primary serving cell (e.g., a secondary serving cell) .
  • an SRS resource to which TD-OCCs have been applied may be higher priority than an SRS resource to which no TD-OCC has been applied.
  • the power control priority rules may indicate that although other signals may have higher priority than an SRS transmission, an SRS transmission with TD-OCC may have a higher priority than an SRS transmission without TD-OCC.
  • the power control priority rules may indicate that a TD-OCC SRS transmission with aperiodic SRS may be higher priority than an SRS transmission without TD-OCC with aperiodic SRS.
  • the power control priority rules may indicate that semi-persistent or periodic SRS transmissions with TD-OCC may have a higher priority than semi-persistent or periodic SRS transmissions without TD-OCC.
  • the UE 115 may decrease the transmit power of the SRS without TD-OCC instead of (or before) decreasing the transmit power of the SRS with TD-OCC, according to the one or more power control priority rules.
  • Ensuring that SRS transmissions with TD-OCC are prioritized over SRS transmissions without TD-OCC may increase the likelihood that power adjustments described herein (e.g., to maintain similar or equal transmit powers between portions 515 of an SRS resource that are unequal in size or have different base values for TD-OCCs) are not affected.
  • an SRS transmission may be given higher priority over other types of signals (e.g., an SRS transmission with TD-OCC may have a higher priority than one or more of a PUSCH, PUCCH, PRACH, or the like) .
  • a UE 115 may divide an SRS resource into portions (e.g., portions 415 or 515) , and may apply TD-OCCs having the same or different base values according to one or more rules or considerations. For example, in some examples, the UE 115 may apply TD-OCCs having the same base value (e.g., base value 2 or base value 4) to each portion of the SRS resource. In some examples, the UE 115 may apply TD-OCC to one or more portions of an SRS resource if the duration of the SRS resource is a multiple of the base value for TD-OCC.
  • the UE 115 may refrain from applying a TD-OCC to the SRS resource.
  • the SRS resource has a duration equal to an odd number of symbols (, then the UE 115 may divide the SRS resource into portions, apply TD-OCCs to each portion that has an even number of symbols, and refrain from applying TD-OCCs to any portion (e.g., a portion having a duration of one symbol) that does not have an even number of symbols.
  • the UE 115 may use orthogonal codes having a power of two, or may apply one or more Walsh codes (e.g., TD-OCCs having base values of two, four, eight, etc. ) as described in greater detail with reference to FIG. 6.
  • Walsh codes e.g., TD-OCCs having base values of two, four, eight, etc.
  • the UE 115 may refrain from dividing the SRS resource, or may refrain from applying one or more TD-OCCs to the SRS resource.
  • the UE 115 may determine (e.g., based on standardized information, configuration information from the base station, or the like) a first threshold number of symbols and a second threshold number of symbols. If the SRS resource is not as long as the first threshold number of symbols (e.g., a two-symbol SRS resource where the first threshold number of symbols is equal to 4) then the UE 115 may apply a TD-OCC to the SRS resource within dividing it.
  • the UE 15 may divide the SRS resource based on the first threshold number of symbols (e.g., into three four-symbol portions of the SRS resource) , and may apply a different TD-OCC to each portion of the SRS resource.
  • the UE 115 may determine not to divide the SRS resource or apply any TD-OCCs to the SRS resource.
  • FIG. 6 illustrates an example of an SRS transmission scheme 600 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • SRS transmission scheme 600 may implement aspects of wireless communications system 100.
  • a base station 105 may configure an SRS resource for transmitting SRS 510.
  • the SRS resource may be located across one or more PRBs.
  • the SRS resource may also span one or more TTIs (e.g., symbols 505) .
  • the UE 115 may use TD-OCCs with bases that are a power of two (e.g., TD-OCCs having base values of two, four, eight, etc. ) .
  • the UE 115 may use Walsh codes as TD-OCCs.
  • the UE 115 may apply a default or different coding scheme.
  • an SRS resource may have a duration of 14 symbols, and the UE 115 may divide the SRS resource into portion 615-a (e.g., having a duration of six symbols 605) portion 615-b (e.g., having a duration of six symbols 605) , and portion 615-c (e.g., having a duration of two symbols 605) . If the UE 115 is operating in a mode where it uses TD-OCCs having base values that are of the power of two, then the UE 115 may refrain from applying a TD-OCC to the portion 615-a or portion 615-b of the SRS resource.
  • the UE 15 may instead apply a default coding scheme (e.g., other types of orthogonal matrices, such as the columns of an FFT matrix) .
  • the UE 115 may apply a TD-OCC having a base value of two to portion 615-c of the SRS resource.
  • the UE 115 may transmit one or more SRSs over the SRS resource.
  • FIG. 7 illustrates an example of an SRS transmission scheme 700 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • SRS transmission scheme 700 may implement aspects of wireless communications system 100.
  • a base station 105 may configure an SRS resource for transmitting SRS 710.
  • the SRS resource may be located across one or more PRBs.
  • the SRS resource may also span one or more TTIs (e.g., symbols 505) .
  • a UE 115 may drop a portion or all of an SRS resource.
  • the UE 115 may identify a conflict with another channel (e.g., transmitted by the UE in a carrier aggregation mode, or by another device) .
  • the UE 115 may identify one or more signal type conflict priority rules. That is, the UE 115 may be aware that some signals (e.g., PUSCH signals, PUCCH signals, or the like) are scheduled to conflict with the SRS.
  • the UE may determine whether the conflicting signal is a higher priority signal or a lower priority signal based on one or more signal type conflict priority rules that identify signal priorities for different signals. If the conflicting signal is a higher priority signal the UE 115 may drop some or all of the SRS transmissions in the SRS resource.
  • UE 115 may drop SRS transmissions on only a portion (e.g., a conflicted portion) of an SRS resource.
  • base station 105 may configure a UE 115 with an SRS resource, and the UE 115 may divide the SRS resource into portions 715 (e.g., based on one or more of the techniques described above with reference to FIGs. 4-6, such as a threshold number of symbols) .
  • the UE may apply a first TD-OCC to portion 715-a of the SRS resource, a second TD-OCC to portion 715-b of the SRS resource, and a third TD-OCC to portion 715-c of the SRS resource.
  • the UE 115 may determine that a conflict is pending. For instance, during or before a symbol 705 of portion 715-a (e.g., the third symbol of a four-symbol portion 715-a of the SRS resource) , the UE 15 may receive a downlink signal indicating a request from the base station 105 to send an uplink transmission, a grant to send an uplink transmission or receive a downlink transmission, or the like.
  • the downlink signal may schedule or otherwise indicate signal that is higher priority than an SRS transmissions during one or more symbols of portion 715-b. For instance, the downlink signal may schedule a higher priority signal during the first symbol 705 of portion 715-b.
  • the UE 115 may determine, according to the signal type priority rules, that the UE 115 is to drop the SRS transmission during the first symbol of portion 715-b. Because of the TD-OCC applied to portion 715-b (e.g., having a base value of four) , the UE 115 may also drop the SRS transmissions during the entirety of portion 715-b. However, because of the distinct first TD-OCC applied to the first portion 715-a and the distinct third TD-OCC applied to the third portion 715-c, the UE 115 may transmit the one or more SRSs during first portion 715-a and third portion 715-c of the SRS resource, despite the conflict identified during portion 715-b of the SRS resource.
  • the TD-OCC applied to portion 715-b e.g., having a base value of four
  • the UE 115 may also drop the SRS transmissions during the entirety of portion 715-b. However, because of the distinct first TD-OCC applied to the first
  • the UE 115 may refrain from applying the second TD-OCC to portion 715-b based on the determination that the conflict will occur during portion 715-b, and that the SRS transmissions during portion 715-b will be dropped.
  • FIG. 8 illustrates an example of a process flow 800 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
  • process flow 800 may implement aspects of wireless communications system 100.
  • base station 105-b may configure one or more SRS resources for transmitting SRSs by one or more UEs 115 (e.g., including UE 115-b) .
  • the SRS resources may include one or more symbols.
  • the SRS resources may be periodic, aperiodic, or dynamically scheduled.
  • base station 105-a may transmit SRS resource configuration information.
  • the SRs resource configuration information may include an indication of the location (e.g., time resources including a number of symbols, and frequency resources including a number of PRBs) , a comb value, an offset value, or a combination thereof.
  • base station 105-b may transmit a TD-OCC trigger.
  • a TD-OCC trigger may turn on or turn off (e.g., activate or deactivate) TD-OCCs for one or more SRS resources.
  • the TD-OCC trigger received at 815 may turn on TD-OCCs for subsequent SRS resources of an SRS resource pattern configured at 810.
  • UE 115-b may not apply TD-OCCs to the SRS resources configured at 810.
  • UE 115-b may determine to apply TD-OCCs to all subsequent configured SRS resources.
  • UE 115-b may apply TD-OCCs to all or portions of each SRS resource, as described herein, subsequent to receiving the TD-OCC trigger at 815.
  • base station 105-b may transmit another TD-OCC trigger, which may turn off TD-OCCs for subsequent configured SRS resources.
  • the TD-OCC triggers may be carried in control signaling (e.g., DCI messages, MAC-CEs, or the like) .
  • UE 115-b may identify an SRS resource (e.g., based on SRS resource configuration information received at 810) .
  • the SRS resource may have a duration of one or more symbols.
  • UE 115-b may apply one or more TD-OCCs to at least a portion of the SRS resource identified at 820.
  • UE 115-b may divide the SRS resource into portions, and ay applied different TD-OCCs to each portion of the SRS resource.
  • UE 115-b may identify a set of frequency hops corresponding to the SRS resource, where each frequency hop has the same number of symbols, and may generate a set of TD-OCCs. In such examples, UE 115-b may apply respective TD-OCCs of the set of TD-OCCs to each frequency hop of the set of frequency hops. Each TD-OCC of the set TD-OCCs may have a base value that is equal to a number of symbols included in each frequency hop of the set of frequency hops.
  • UE 115-b may determine that the duration of the SRS resource satisfies or exceeds a threshold number of symbols, divide the SRS resource into at least two portions based on the threshold number of symbols, and generate a set of TD-OCCs to apply to the portions of the SRS resource.
  • Each TD-OCC of set of TD-OCCs may have a base value that is equal to a number of symbols included in each of the at least two portions of the SRS resource.
  • each of the at least two portions of the SRS resource may include the same number of symbols.
  • UE 115-b may determine that a number of symbols included in each of the at least two portions of the SRS resource is a multiple of a base value of the respective TD-OCC, wherein the applying is based at least in part on determining that the number of symbols is a multiple of the base value.
  • a base value for each of the set of TD-OCCs is a power of two.
  • dividing the SRS resource into at least two portions may include dividing the SRS resource into at least a first portion having a first number of symbols and at least a second portion having a second number of symbols, wherein a base value of a first TD-OCC sequence of the set of TD-OCC sequences is equal to the first number of symbols, and wherein a base value of a second TD-OCC sequence of the set of TD-OCC sequences is equal to the second number of symbols.
  • UE 115-b may set a first transmit power for the first portion, and set a second transmission power for the second portion.
  • UE 115-b may determine that a set of symbols of an SRS sequence exceed a threshold number of symbols, may refrain from applying TD-OCCs to the SRS resource, and may transmit SRS transmissions over the SRS resource without TD-OCCs.
  • UE 115-b may identify an SRS resource and determining that the number of symbols of the SRS resource do not support a TD-OCC having a base value that is a power of two, identifying a default encoding scheme, and applying the default encoding scheme to at least a portion of the SRS resource.
  • UE 115-b may identify a pending conflict, determine one or more signal type priority rules, determine whether the conflicting signal is a higher priority than the SRS resource, and determining to refrain from transmitting over the SRS resources based on the priority rules.
  • UE 115-b may identify a set of power control priority rules, and a conflict between the SRS signals on a channel during the SRS resource, and may adjust a transmission power of a signal based thereon. In some examples, UE 115-b may determine that the SRS transmissions over the SRS resource have a higher priority than the conflicting signal.
  • the conflicting signal may be another signal that has a lower priority than the SRS. In some examples, the conflicting signal may be an SRS transmission without TD-OCC that has a lower priority than the SRS with TD-OCC.
  • applying the TD-OCCs to the SRS resource may include identifying a set of antenna ports for transmitting one or more SRSs over the SRS resource, identifying a set of SRS sequences that each correspond to a respective antenna port of the set of antenna ports, combining the set of SRS sequences based at least in part on the one or more TD-OCCs, and generating the SRSs based on the combining.
  • UE 115-b may transmit one or more SRSs over the SRS resource based on the TD-OCCs applied at 825.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a UE 115 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 920.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to time domain orthogonal cover codes for sounding reference signals, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may identify a sounding reference signal resource including a set of symbols, apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource, and transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes.
  • the communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
  • the communications manager 915 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 915 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 915, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 915, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 920 may transmit signals generated by other components of the device 905.
  • the transmitter 920 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 920 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a device 905, or a UE 115 as described herein.
  • the device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1035.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to time domain orthogonal cover codes for sounding reference signals, etc. ) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the communications manager 1015 may be an example of aspects of the communications manager 915 as described herein.
  • the communications manager 1015 may include a SRS resource manager 1020, a TD-OCC manager 1025, and a SRS manager 1030.
  • the communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
  • the SRS resource manager 1020 may identify a sounding reference signal resource including a set of symbols.
  • the TD-OCC manager 1025 may apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource.
  • the SRS manager 1030 may transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes.
  • the transmitter 1035 may transmit signals generated by other components of the device 1005.
  • the transmitter 1035 may be collocated with a receiver 1010 in a transceiver module.
  • the transmitter 1035 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 1035 may utilize a single antenna or a set of antennas.
  • FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present disclosure.
  • the communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein.
  • the communications manager 1105 may include a SRS resource manager 1110, a TD-OCC manager 1115, a SRS manager 1120, a frequency hop manager 1125, a SRS resource division manager 1130, a transmission power manager 1135, and a conflict manager 1140. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the SRS resource manager 1110 may identify a sounding reference signal resource including a set of symbols. In some examples, the SRS resource manager 1110 may identify a second sounding reference signal resource including a second set of symbols. In some examples, the SRS resource manager 1110 may identify a resource pattern indicating a set of sounding reference signal resources including the sounding reference signal resource. In some examples, the SRS resource manager 1110 may receive, from a base station, control signaling indicating to apply the one or more time domain orthogonal cover codes to the sounding reference signal resource, where the applying is based on the control signaling. In some cases, the control signaling includes a DCI message, a MAC control element (CE) , or a combination thereof.
  • CE MAC control element
  • the TD-OCC manager 1115 may apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource.
  • generating a set of time domain orthogonal cover codes where the applying includes applying a respective time domain orthogonal cover code of the set of time domain orthogonal cover codes to each frequency hop of the set of frequency hops.
  • generating a set of time domain orthogonal cover codes where the applying includes applying a respective time domain orthogonal cover code of the set of time domain orthogonal cover codes to each portion of the at least two portions of the sounding reference signal resource.
  • the TD-OCC manager 1115 may determine that a number of symbols included in each of the at least two portions of the sounding reference signal resource is a multiple of a base value of the respective time domain orthogonal cover code, where the applying is based on determining that the number of symbols is a multiple of the base value. In some examples, the TD-OCC manager 1115 may refrain from applying one or more time domain orthogonal cover codes to at least a portion of the second sounding reference signal resource based on the determining.
  • the TD-OCC manager 1115 may determine that a number of symbols included in the second set of symbols does not support a time domain orthogonal cover code having a base value that is a power of two. In some examples, the TD-OCC manager 1115 may identify, based on determining that the number of symbols does not support a time domain orthogonal cover code having a base value that is a power of two, a default encoding scheme.
  • identifying at least a first portion of the sounding reference signal resource and at least a second portion of the sounding reference signal resource where the applying includes applying a first time domain orthogonal cover code of the one or more time domain orthogonal cover codes to at least the first portion of the sounding reference signal resource and applying a second time domain orthogonal cover code of the one or more time domain orthogonal cover codes to at least the second portion of the sounding reference signal resource.
  • the TD-OCC manager 1115 may identify a set of antenna ports for transmitting the one or more sounding reference. In some examples, the TD-OCC manager 1115 may identify a set of sounding reference signal sequences that each correspond to a respective antenna port of the set of antenna ports. In some examples, the TD-OCC manager 1115 may combine the set of sounding reference signal sequences based on the one or more time domain orthogonal cover codes. In some examples, the TD-OCC manager 1115 may generate, based on the combining, the one or more sounding reference signals.
  • each time domain orthogonal cover code of the set of time domain orthogonal cover codes has a base value that is equal to a number of symbols included in each frequency hop of the set of frequency hops. In some cases, each time domain orthogonal cover code of set of time domain orthogonal cover codes has a base value that is equal to a number of symbols included in each of the at least two portions of the sounding reference signal resource. In some cases, a base value for each of the set of time domain orthogonal cover codes is a power of two.
  • the signal on the second channel is a sounding reference signal without one or more time domain orthogonal cover codes, and where the one or more sounding reference signals having the applied one or more time domain orthogonal cover codes has a higher power control priority value than the sounding reference signal without one or more time domain orthogonal cover codes.
  • the SRS manager 1120 may transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes. In some examples, the SRS manager 1120 may transmit a second set of one or more sounding reference signals via the second sounding reference signal resource. In some examples, the SRS manager 1120 may apply the default encoding scheme to at least a portion of the second sounding reference signal resource based on the determining.
  • the frequency hop manager 1125 may identify a set of frequency hops corresponding to the sounding reference signal resource, each frequency hop of the set of frequency hops having the same number of symbols of the set of symbols.
  • the SRS resource division manager 1130 may determine that the set of symbols of the sounding reference signal resource exceeds a threshold number of symbols. In some examples, the SRS resource division manager 1130 may divide the sounding reference signal resource into at least two portions based on the threshold number of symbols. In some examples, the SRS resource division manager 1130 may divide the sounding reference signal resource into at least a first portion having a first number of symbols and at least a second portion having a second number of symbols, where a base value of a first time domain orthogonal cover code of the set of time domain orthogonal cover codes is equal to the first number of symbols, and where a base value of a second time domain orthogonal cover code of the set of time domain orthogonal cover codes is equal to the second number of symbols. In some examples, the SRS resource division manager 1130 may determine that the second set of symbols exceeds a threshold number of symbols. In some cases, each of the at least two portions of the sounding reference signal resource includes the same number of symbols.
  • the transmission power manager 1135 may set a first transmission power for at least the first portion. In some examples, the transmission power manager 1135 may set a second transmission power for at least the second portion, where transmitting the one or more sounding reference signals is based on the first transmission power and the second transmission power. In some examples, the transmission power manager 1135 may identify a set of power control priority rules indicating a set of signal types, each signal type of the set of signal types having a respective power control priority value.
  • the transmission power manager 1135 may select a signal for a transmit power adjustment based on the conflict and the set of power control priority rules, the selected signal including the signal on the second channel or a sounding reference signal of the one or more sounding reference signals on the first channel, where the transmitting is based on applying the transmit power adjustment to the selected signal.
  • the conflict manager 1140 may identify a pending conflict between the one or more sounding reference signals on a first channel and a signal on a second channel during a subset of at least the second portion of sounding reference signal resource. In some examples, the conflict manager 1140 may determine, based on one or more signal type priority rules, that the signal on the second channel has a higher signal type priority value than the one or more sounding reference signals.
  • determining, based on the signal on the second channel having the higher signal type priority value, to refrain from transmitting the one or more sounding reference signals during at least the second portion of the sounding reference signal resource, where transmitting the one or more sounding reference signals via the sounding reference signal resource includes transmitting the one or more sounding reference signals during at least the first portion of the sounding reference signal resource.
  • the conflict manager 1140 may identify a conflict between the one or more sounding reference signals on a first channel and a signal on a second channel during at least a portion of sounding reference signal resource.
  • the signal on the second channel has a high power control priority value than the one or more sounding reference signals.
  • FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of or include the components of device 905, device 1005, or a UE 115 as described herein.
  • the device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, an I/O controller 1215, a transceiver 1220, an antenna 1225, memory 1230, and a processor 1240. These components may be in electronic communication via one or more buses (e.g., bus 1245) .
  • buses e.g., bus 1245
  • the communications manager 1210 may identify a sounding reference signal resource including a set of symbols, apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource, and transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes.
  • the I/O controller 1215 may manage input and output signals for the device 1205.
  • the I/O controller 1215 may also manage peripherals not integrated into the device 1205.
  • the I/O controller 1215 may represent a physical connection or port to an external peripheral.
  • the I/O controller 1215 may utilize an operating system such as or another known operating system.
  • the I/O controller 1215 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 1215 may be implemented as part of a processor.
  • a user may interact with the device 1205 via the I/O controller 1215 or via hardware components controlled by the I/O controller 1215.
  • the transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1230 may include RAM and ROM.
  • the memory 1230 may store computer-readable, computer-executable code 1235 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1240 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1240.
  • the processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting time domain orthogonal cover codes for sounding reference signals) .
  • the code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may identify a sounding reference signal resource including a set of symbols.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a SRS resource manager as described with reference to FIGs. 9 through 12.
  • the UE may apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a TD-OCC manager as described with reference to FIGs. 9 through 12.
  • the UE may transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a SRS manager as described with reference to FIGs. 9 through 12.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may identify a sounding reference signal resource including a set of symbols.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a SRS resource manager as described with reference to FIGs. 9 through 12.
  • the UE may identify a set of frequency hops corresponding to the sounding reference signal resource, each frequency hop of the set of frequency hops having the same number of symbols of the set of symbols.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a frequency hop manager as described with reference to FIGs. 9 through 12.
  • the UE may generate a set of time domain orthogonal cover codes.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a TD-OCC manager as described with reference to FIGs. 9 through 12.
  • the UE may apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource, where the applying includes applying a respective time domain orthogonal cover code of the set of time domain orthogonal cover codes to each frequency hop of the set of frequency hops.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a TD-OCC manager as described with reference to FIGs. 9 through 12.
  • the UE may transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes.
  • the operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a SRS manager as described with reference to FIGs. 9 through 12.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may identify a sounding reference signal resource including a set of symbols.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a SRS resource manager as described with reference to FIGs. 9 through 12.
  • the UE may determine that the set of symbols of the sounding reference signal resource exceeds a threshold number of symbols.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a SRS resource division manager as described with reference to FIGs. 9 through 12.
  • the UE may divide the sounding reference signal resource into at least two portions based on the threshold number of symbols.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a SRS resource division manager as described with reference to FIGs. 9 through 12.
  • the UE may generate a set of time domain orthogonal cover codes.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a TD-OCC manager as described with reference to FIGs. 9 through 12.
  • the UE may apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource, where the applying includes applying a respective time domain orthogonal cover code of the set of time domain orthogonal cover codes to each portion of the at least two portions of the sounding reference signal resource.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a TD-OCC manager as described with reference to FIGs. 9 through 12.
  • the UE may transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes.
  • the operations of 1530 may be performed according to the methods described herein. In some examples, aspects of the operations of 1530 may be performed by a SRS manager as described with reference to FIGs. 9 through 12.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described. Generally, described techniques may provide for identifying a sounding reference signal (SRS) resource including a set of symbols, applying one or more time domain orthogonal cover codes (TD-OCCs), to at least a portion of the SRS resource, and transmitting one or more SRS signals via the SRS resource, the one or more SRS signals based on the one or more applied TD-OCCs.

Description

TIME DOMAIN ORTHOGONAL COVER CODES FOR SOUNDING REFERENCE SIGNALS
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to time domain orthogonal cover codes for sounding reference signals.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so forth. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) . In some example, one or more deices may transmit reference signals (e.g., sounding reference signals (SRSs) ) to one or more base stations.
Wireless multiple-access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is LTE. LTE is designed to improve spectral efficiency, lower costs, improve services, make use of new spectrum, and better integrate with other open standards. LTE may use OFDMA on the downlink (DL) , single-carrier frequency division multiple access (SC-FDMA) on the uplink (UL) , and multiple-input multiple-output (MIMO) antenna technology
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support the use of time domain orthogonal cover codes for sounding reference signals. Generally, a user equipment (UE) may apply one or more time domain orthogonal cover codes (TD-OCCs) to one or more sounding reference signals (SRSs) to be transmitted via an SRS resource. In some cases, the UE may divide the SRS resource into portions and may apply a separate TD-OCC to each portion of the SRS resource. For example, in a frequency hopping mode, the UE may apply separate TD-OCCs to each frequency hop across the SRS resource. In some examples, the UE may identify a threshold number of symbols, and divide the SRS resource into portions equal to or less than the threshold number of symbols. The UE may divide the SRS resource into equal portions (e.g., each portion having the same number of symbols) or may divide the SRS resource in unequal portions (one or more portions having different numbers of symbols) . Having divided the SRS resource, the UE may apply different TD-OCCs to each portion of the SRS resource. If a scheduling conflict occurs with a higher priority signal (e.g., according to a set of one or more conflict priority rules) , then the UE may drop a divided portion of the SRS resource in which the conflict occurs, including all symbols to which a TD-OCC has been or will be applied. But the UE may transmit the remaining SRSs over the divided portions of the SRS resource to which other TD-OCCs have been or will be applied. Additionally, or alternatively, a UE may adjust the transmit power of an SRS to which a TD-OCC has been applied (e.g., based on a set of one or more power control priority rules, where an SRS with a TD-OCC has a higher priority than an SRS without a TD-OCC) .
A method of wireless communications is described. The method may include identifying an SRS resource including a set of symbols, applying one or more TD-OCCs to at least a portion of the SRS resource, and transmitting one or more SRSs via the SRS resource, the one or more SRSs based on the one or more applied TD-OCCs.
An apparatus for wireless communications is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify an SRS resource including a set of symbols, apply one or more TD-OCCs to at least a portion of the SRS resource, and transmit one or more SRSs via the SRS resource, the one or more SRSs based on the one or more applied TD-OCCs.
Another apparatus for wireless communications is described. The apparatus may include means for identifying an SRS resource including a set of symbols, applying one or more TD-OCCs to at least a portion of the SRS resource, and transmitting one or more SRSs via the SRS resource, the one or more SRSs based on the one or more applied TD-OCCs.
A non-transitory computer-readable medium storing code for wireless communications is described. The code may include instructions executable by a processor to identify an SRS resource including a set of symbols, apply one or more TD-OCCs to at least a portion of the SRS resource, and transmit one or more SRSs via the SRS resource, the one or more SRSs based on the one or more applied TD-OCCs.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports time domain orthogonal cover codes (TD-OCCs) for sounding reference signals in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of an SRS transmission scheme that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of an SRS transmission scheme that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
FIG. 5 illustrates an example of an SRS transmission scheme that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
FIG. 6 illustrates an example of an SRS transmission scheme that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
FIG. 7 illustrates an example of an SRS transmission scheme that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
FIG. 8 illustrates an example of a process flow that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
FIGs. 9 and 10 show block diagrams of devices that support TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
FIG. 11 shows a block diagram of a communications manager that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
FIG. 12 shows a diagram of a system including a device that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
FIGs. 13 through 15 show flowcharts illustrating methods that support TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some examples of a wireless communications system, a base station may configure one or more UEs to transmit one or more sounding reference signal (SRS) over SRS resources, where an SRS resource may refer to any collection of transmission resources available to be scheduled to carry an SRS (e.g., symbols in which transmission of SRS may occur over at least some subcarriers or resource elements) . The base station may use the SRSs to measure signals transmitted by the UE and determine one or more channel metrics. In some examples, system efficiency may be improved by code division multiplexing (CDM) one or more SRS signals over an SRS resource. For instance, UEs may apply time domain orthogonal cover codes (TD-OCCs) to SRSs within an SRS resource.
The use of TD-OCCs for SRSs may, however, present various challenges. For example, it may be costly with respect to power or computational resources to apply TD-OCCs to SRSs across multiple frequencies (e.g., where a frequency band spanned by an SRS resource changes from at least portion of the SRS resource to another, such as in a frequency hopping mode) . As another example, a UE may prioritize uplink transmissions according to one or more signal priority rules, and the use of TD-OCCs for SRSs may complicate such prioritizations. In one such example, a high priority signal (e.g., a physical uplink control channel (PUCCH) ) may be scheduled during one or more symbols of an SRS resource. A UE thus may drop at least a portion of an SRS during the SRS resource. However, if the UE has applied a TD-OCC to the SRS within the SRS resource, then transmitted portions of the SRS may not be useful to a receiving node without the dropped portion, and thus in some systems the UE may drop the entirety of the SRS transmissions across the whole SRS resource (despite the fact that the  conflicting high priority signal spans only one or a few symbols of the SRS resource) . These potential challenges are examples only, and one of ordinary skill in the art may appreciate additional or alternative challenges related to the use of TD-OCCs for SRSs
Various systems and techniques as described herein may address such challenges or otherwise support the application of TD-OCCs to SRSs with improved performance. For example, dividing an SRS resource into portions and applying separate TD-OCCs to the divided portions of the SRS resource may result in improved system efficiency, higher throughput, power savings, etc. Additionally or alternatively, one or more aspects of the systems and techniques described herein for the use of TD-OCC in the SRS context (e.g., for dividing SRS resources, power control for portions of divided SRS resources, and default or alternative CDM schemes) , may provide stability and improved efficiency for SRS signaling, including when a system supports applying TD-OCC to SRSs.
In some examples, a UE may apply one or more TD-OCCs to one or more SRSs in an SRS resource. The UE may divide the SRS resource into portions and may apply a separate TD-OCC to each portion of the SRS resource. For example, in a frequency hopping mode, the UE may apply separate TD-OCCs to each frequency hop across the SRS resource. In some examples, the UE may identify a threshold number of symbols, and divide the SRS resource into portions equal to or less than the threshold number of symbols. The UE may divide the SRS resource into equal portions (e.g., each portion having the same number of symbols) or may divide the SRS resource in unequal portions (one or more portions having different numbers of symbols) . Having divided the SRS resource, the UE may apply different TD-OCCs to each portion of the SRS resource. If a scheduling conflict occurs with a higher priority signal (e.g., according to a set of one or more conflict priority rules) , then the UE may drop a divided portion of the SRS resource in which the conflict occurs, including all symbols to which a TD-OCC has been or will be applied. But the UE may transmit the remaining SRSs over the divided portions of the SRS resource to which other TD-OCCs have been or will be applied. Additionally, or alternatively, a UE may adjust the transmit power of an SRS to which a TD-OCC has been applied (e.g., based on a set of one or more power control priority rules, where an SRS with a TD-OCC has a higher priority than an SRS without a TD-OCC) .
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are initially described in the context of SRS  transmission schemes and process flows. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to TD-OCCs for sounding reference signals.
FIG. 1 illustrates an example of a wireless communications system 100 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base  stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) ,  control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple  carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a  number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination  thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which  different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband  protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles  in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental  features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may  support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements  associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix  indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC  connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
In some examples, a UE 115 may apply one or more TD-OCCs (TD-OCCs) to one or more sounding reference signals (SRSs) that are transmitted in (via, using) an SRS resource. The UE 115 may divide the SRS resource into portions and may apply a separate TD-OCC to each portion of the SRS resource. For example, in a frequency hopping mode, the UE 115 may apply separate TD-OCCs to each frequency hop across the SRS resource. In some examples, the UE 115 may identify a threshold number of symbols and divide the SRS resource into portions equal to or less than the threshold number of symbols. The UE 115 may divide the SRS resource into equal portions (e.g., each portion having the same number of symbols) or may divide the SRS resource in unequal portions (one or more portions having different numbers of symbols) . Having divided the SRS resource, the UE 115 may apply different TD-OCCs to each portion of the SRS resource.
If a scheduling conflict occurs with a higher priority signal (e.g., according to a set of one or more conflict priority rules) , then the UE 115 may drop a divided portion of the SRS resource in which the conflict occurs, including all symbols to which a TD-OCC has been or will be applied. But the UE 115 may transmit the remaining SRSs over the divided portions of the SRS resource to which other TD-OCCs have been or will be applied. Additionally, or alternatively, a UE 115 may adjust the transmit power of an SRS to which a TD-OCC has been  applied (e.g., based on a set of one or more power control priority rules, where an SRS with a TD-OCC has a higher priority than an SRS without a TD-OCC) .
FIG. 2 illustrates an example of a wireless communications system 200 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100.
In some examples, wireless communications system 200 may include a base station 105-a and a UE 115-a, which may be examples of corresponding devices as discussed with respect to FIG. 1. The base station 105-a may transmit data and control information to the UE 115-a via downlink communications 205, and the UE 115-a may transmit data and control information to the base station 105-a via uplink communications 210. In some examples, base station 105-a may transmit SRS configuration information 215 to the UE 115-a, which may configure one or more SRS transmissions 220 by the UE 115-a.
In some examples, wireless communications system 200 (e.g., an NR system) may support SRS resources that span a number of symbols (e.g., 1 symbol, 2 adjacent symbols, 4, adjacent symbols, or the like) with up to some number (e.g., four) ports per SRS resource. UE 115-a may sound each port for an SRS resource in each symbol. Additionally, or alternatively, in some examples, UE 115-a may be restricted to transmitting SRSs in certain (e.g., the last six) symbols of a slot. In some examples, UE 115-a may transmit SRSs after a PUSCH scheduled during the same slot. An SRS resource set may contain a set of SRS resources transmitted by a single UE 115 (e.g., UE 115-a) . UE 115-a may transmit SRS resource sets aperiodically (e.g., via DCI signaling) , semi-persistently, or periodically. In some examples, base station 105-a may configure UE 115-a with multiple resources, which may be grouped into an SRS resource set based on use case (e.g., antenna switching, codebook-based, non-codebook based, beam management procedures, or the like) . In some examples, SRS transmissions may be wideband transmissions, subband transmissions, or the like. SRS bandwidths may be multiples of a number of PRBs (e.g., four PRBs) .
In some examples, SRS transmissions within an SRS resource may span a number of PRBs. That is, SRSs scheduled across a set of PRBs may not occupy every subcarrier or resource element within the PRBs of the set. For example, SRS transmissions may be configured with a comb value (e.g., a comb value of 4 may correspond to SRS being transmitted  in every fourth subcarrier, a comb value of 2 may correspond to an SRS being transmitted in every other subcarrier, and so on) , and a number of symbols (e.g., consecutive symbols) to be spanned by the SRS. Each SRS may be configured with a sounding bandwidth (e.g., number of PRBs) a comb value, an offset value (e.g., an offset relative to a lowest frequency subcarrier within a PRB that identifies the lowest frequency carrier to carry SRS) , and a number of TTIs (e.g., a number of symbols) . For instance, a four symbol SRS having a sounding bandwidth of 48 PRBs, an offset of zero, and a comb-4 may occupy resource elements within 48 PRBs and span four symbols. Within each BWP of the 48 BWPs, the SRS may occupy every fourth subcarrier within the four symbols based on the comb value (e.g., four symbols on a first subcarrier, the same four symbols on a fifth consecutive subcarrier, the same four symbols on a ninth consecutive subcarrier, etc. ) beginning with the lowest frequency subcarrier of the first PRB (e.g., based on the offset of zero) .
In some examples, UE 115-a may be capable of supporting a frequency hopping mode. In such examples, an SRS may be configured to occupy a sounding bandwidth divided into different segments during different symbols. For example, a 48 PRB sounding bandwidth may be divided into two frequency hops: a first frequency hop having a bandwidth of 24 PRBs (e.g., PRB 1-24) during a first symbol, and a second frequency hop having a bandwidth of 24 PRBs (e.g., PRBs 25-48) during a second symbol. Or, a 48 PRB sounding bandwidth may be divided into four twelve PRB frequency hops. In some examples, an SRS may be configured to repeat frequency hops (e.g., a first frequency hop spanning 24 PRBs during a first symbol, a repetition of the same frequency hop spanning the same 24 PRBs during a second symbol, a new frequency hop spanning a different 24 PRBs during a third symbol, and a repetition of the new frequency hop spanning the different 24 PRBs during a fourth symbol) .
In some examples, UE 115-a may encode SRS transmissions, and may map one or more ports to the SRS resource across time and frequency. For example, UE 115-a may map all four available ports to each symbol (e.g., to the frequency resources of an SRS resource during a symbol according to a comb value) . In some examples, UE 115-a may map ports to symbols accordingly to multiple combs (e.g., two ports to each symbol of a first comb pattern and two ports to each symbol of a second comb pattern) .
Further, in some cases, TD-OCC may be used in SRS transmissions that span two or more symbols of an SRS resource. In such cases, for each symbol in an SRS resource, the  SRS may be expanded to K symbols to which a K-symbol TD-OCC is applied. For example, K may be two (K=2) . In such examples, UE 115-a may apply a TD-OCC with a base value equal to 2, which may comprise a sequence of two values (e.g., which may be referred to as base 2 TD-OCC, a length 2 TD-OCC, or a TD-OCC2) . In such examples, UE 115-a may apply the TD-OCC to the SRS for each symbol of an SRS resource (or a portion of the SRS resource, as described in greater detail with reference to FIGs. 4-7) . A TD-OCC may be a sequence of values (e.g., [1, 1] , [1, -1] ) , which may correspond to coefficients by which the bits of an SRS may be multiplied. That is, in an example where UE 115-a includes two ports for sounding SRSs, UE 115-a may generate a first baseline SRS bitstream for a first port (e.g., based on a first baseline SRS sequence, where baseline may indicate that an SRS sequence or SRS bitstream has not yet had a TD-OCC applied) , and may generate a second baseline SRS bitstream for a second port (e.g., based on a second baseline SRS sequence, which may be the same or different than the first baseline SRS sequence) . UE 115-a may apply a TD-OCC to the SRS resource (e.g., a two-symbol SRS resource) . For instance, UE 115-a may multiply the first baseline SRS bitstream and the second baseline SRS bitstream by their respective coefficients as indicated by the values of a TD-OCC. In such examples, UE 115-a may CDM (e.g., simultaneously transmit) the result of applying the TD-OCC to the SRS bitstreams. That is, UE 115-a may transmit the first bitstream for the first port plus the second bitstream for the second port during the first symbol of the SRS resource (e.g., based on applying a first TD-OCC [1, 1] ) and may transmit the first bitstream for the first port minus the second bitstream for the second port during the second symbol the SRS resource (e.g., based on applying a second TD-OCC [1-1] ) . Accordingly, UE 115-a may code multiplex multiple ports during each symbol of an SRS resource. One of ordinary skill in the art will appreciate that these techniques may be expanded to apply TD-OCCs of any length to SRS resources of any number of symbols, and for any number of ports.
A number of indices in a TD-OCC (e.g., a base value) may be equal to a number of ports to be multiplexed. In some examples, to support decoding by a receiving device, a base value of a TD-OCC may be equal to a number of symbols in the SRS resource, or a portion of the SRS resource as described in greater detail with respect to FIGs. 3-7. In some examples, with an OCC of K, K UEs 115 may be multiplexed. In some cases, the SRS configuration information 215 may include an indication of K and the TD-OCC or sequences. In some cases,  multiple UEs 115 may be configured with the same K, different TD-OCCs, and the same comb structure/offset and sequence.
In some examples, an SRS may be transmitted by multiple UEs 115 and code multiplexed together based on applied TD-OCCs. For example, UE 115-a may transmit an SRS via a first port. The SRS may also be transmitted via a second port (or any other number of ports that are CDM in a TD-OCC) by UE 115-a or by another UE 115. In such examples, UE 115-a may transmit the SRS via the first port and the other UE 115 may transmit the SRS via the second port. The two transmissions from the two UEs 115 may combine over the air (e.g., as received by a receiving node, such as the base station 105-a) . As one such example, UE 115-a may transmit an SRS via the first port in a first symbol by multiplying the SRS with the TD-OCC (e.g., +1 for a TD-OCC of [1, 1] ) , and may transmit the SRS via the first port in a second symbol by multiplying the SRS with the TD-OCC (e.g., +1 for a TD-OCC of [1, 1] ) while the second UE 115 may transmit an SRS via the second port in the first symbol by multiplying the SRS with the TD-OCC (e.g., +1 for a TD-OCC of [1, -1] ) , and may transmit an SRS via the second port in the second symbol by multiplying the SRS with the TD-OCC (e.g., -1 for a TD-OCC of [1, -1] ) . Thus, combining the first port and the second port may occur automatically on the wireless channel, across multiple UEs 115.
In some cases, an SRS may be multiplexed with other signals. For instance, wireless communications system 200 may support time division multiplexing (TDM) of physical uplink shared channel (PUSCH) . UE 115-a may be constrained to transmit the SRS after transmission of a PUSCH and a corresponding demodulation reference signal (DMRS) . In some cases, wireless communications system 200 may not support the simultaneous transmission of an SRS and another signal (e.g., a PUCCH) . In such examples, if a conflict occurs, UE 115-a may be aware of one or more priority rules. UE 115-a may determine which signal is of higher priority according to the priority rules, and may drop the lower priority signal. For instance, UE 115-a may determine that a PUCCH that conflicts with one or more symbols of an SRS resource has a higher priority than the SRS. In such cases, UE 115-a may drop at least a portion of the SRS based on the priority rules. In some examples, UE 115-a may refrain from dropping the SRS if an aperiodic SRS overlaps with one or more symbols of a PUCCH carrying only periodic or semi-persistent CSI or level 1 RSRP reports, in which case, a PUCCH may be dropped instead of the SRS.
In some examples, where UE 115-a is operating in an intra-slot frequency hopping mode, UE 115-a may apply a separate TD-OCC to each frequency hop of an SRS resource. For example, base station 105-a may configure UE 115-a with two frequency hops, each having a number of symbols (e.g., two symbols) . UE 115-a may be configured to apply a TD-OCC across the entire frequency resource including each of the two frequency hops. However, UE 115-a may apply a first TD-OCC to the first frequency hop and may apply a second TD-OCC to the second frequency hop.
In some examples, UE 115-a may identify a threshold number of symbols. If the SRS resource is smaller than the threshold number of symbols, then UE 115-a may apply a single TD-OCC to the SRS resource. However, if the SRS resource is larger than the threshold number of symbols, then UE 115-a may divide the SRS resource according to the threshold number of symbols. For instance, if the threshold number of symbols is four symbols, and the SRS resource is 12 symbols long, then UE 115-a may divide the SRS resource in three four-symbol portions of the SRS resource, and may apply a different TD-OCC to each of the three portions.
In some examples, UE 115-a may divide an SRS resource and may apply TD-OCCs having the same or different bases to each divided portion of the SRS resource. For example, UE 115-a may divide the SRS resource equally, such that each TD-OCC has the same base. In some examples, UE 115-a may only apply TD-OCCs to portions of the SRS resource if the duration of the SRS resource is a multiple of the base value of the TD-OCC. In some examples, UE 115-a may only use orthogonal codes having a power of 2 (e.g., TD-OCC2, TD-OCC4, TD-OCC8, or the like) . If one or more of the above described requirements are not satisfied, then UE 115-a may default to a different type of orthogonal matrices (e.g., an FFT matrix) . In some examples, UE 115-a may divide the SRS resource into uneven segments, or may apply different TD-OCCs having different base values to different portions of the SRS resource. In such examples, UE 115-a may adjust the transmit power for the SRS in one or more of the divided portions of the SRS resource according to one or more power control rules. In some examples, if the SRS resource is longer than a second threshold, then UE 115-a may refrain from applying any TD-OCCs to the SRS resource.
In some examples, UE 115-a may divide the SRS resource, apply TD-OCCs to each divided portion of the SRS resource, and may identify a conflicting signal during a symbol of  the SRS resource. UE 115-a may drop the SRS during the entirety of a portion of the SRS resource during which the conflict occurs if the conflicting signal has a higher priority than the SRS (e.g., according to one or more priority rules) . UE 115-a may apply the transmit the SRS during the remaining portions of the SRS resource.
In some examples, base station 105-a may turn on or off the application of TD-OCC for SRS resources. For example, base station 105-a may configure one or more SRS resources according to a pattern. Base station 105-a may turn TD-OCC procedures on or off for the pattern via control signaling (e.g., a DCI, a MAC-CE, or the like) .
FIG. 3 illustrates an example of an SRS transmission scheme 300 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure. In some examples, SRS transmission scheme 300 may implement aspects of wireless communications system 100. In some examples, a base station 105 may configure an SRS resource for transmitting SRS 315. The SRS resource may be located across (span) one or more PRBs (e.g., across one or more sets of 8 PRBs 310) . The SRS resource may also span one or more TTIs (e.g., symbols 305) .
In some examples, a UE 115 may support intra-slot frequency hopping and TD-OCC for SRS. For example, a base station 105 may configure the UE 115 in an intra-slot frequency hopping mode. UE 115 may divide the SRS resource according to the frequency hops of the intra-slot frequency hopping mode. That is, if the SRS resource is X symbols long, and is configured with Y frequency hops, then the UE 115 may divide the SRS resource into Y portions, each portion of the SRS resource having a number of symbols equal to X/Y.
For example, UE 115 may be configured with two frequency hops (e.g., a first frequency hop spanning a first twenty four PRBs in two symbols 305 and a second frequency hop spanning a different twenty-four PRBs in two more consecutive symbol 305) . The UE 115 may be configured (e.g., by base station 105) to apply a single TD-OCC (e.g., having a base value of 4) to the four-symbol SRS resource. However, the UE 115 may apply a first TD-OCC to the SRS resource in portion 320 of the SRS resource (e.g., a TD-OCC having a base value of two to the first frequency hop) and may apply a second TD-OCC to the SRS resource in portion 325 of the SRS resource (e.g., a TD-OCC having a base value of two to the second frequency hop) .
Upon applying the TD-OCCs to the  portions  320 and 325 of the SRS resource, the UE 115 may transmit one or more SRSs over the SRS resource.
FIG. 4 illustrates an example of an SRS transmission scheme 400 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure. In some examples, SRS transmission scheme 400 may implement aspects of wireless communications system 100. In some examples, a base station 105 may configure an SRS resource for transmitting SRS 410. The SRS resource may be located across one or more PRBs. The SRS resource may also span one or more TTIs (e.g., symbols 405) .
In some examples, a UE 115 may divide an SRS resource into portions 415. For example, the UE 115 may be operating with an intra-slot frequency hopping mode or without an intra-slot frequency mode. The base station may further configure the UE 115 to apply a TD-OCC to the SRS resource. The UE 115 may identify a threshold number of symbols (e.g., an SRS resource threshold duration or threshold length) . If the SRS resource satisfies the threshold number of symbols (e.g., if the SRS resource has a number of symbols that is equal to the threshold number of symbols, or if the SRS resource has a number of symbols that exceeds the threshold number of symbols) , then the UE may divide the SRS resource into segments that are equal to or less than the threshold number of symbols. In such examples, the UE 115 may apply TD-OCCs to consecutive symbols up to the threshold number of symbols.
For example, UE 115 may divide an SRS resource into portion 415-a, portion 415-b, and portion 415-c. UE 115 may identify a threshold number of symbols equal to four symbols. It is to be understand that this and any other specific numbers used herein are solely for the sake of illustrative clarity, and the claims are not so limited. In some examples, the threshold may be standardized and known by the UE 115 and the base station 105. In some examples, base station 105 may signal the threshold number of symbols (e.g., via higher layer signaling, dynamic signaling, semi-persistent signaling, or the like) . The UE 115 may thus divide the SRS resource and apply TD-OCCs to consecutive symbols up to the threshold number of symbols. That is, as one illustrative example, the UE 115 may apply a first TD-OCC (e.g., having a base value of 4) to the first four symbols 405 of portion 415-a, may apply a second TD-OCC (e.g., also having a base value of 4) to the first four symbols 405 of portion 415-b, and may apply a second TD-OCC (e.g., also having a base value of 4) to the first four symbols 405 of portion 415-c. In some examples, the UE 115 may apply a different TD-OCC  having a different base to a remainder that is smaller than the threshold number of symbols. For instance, if the SRS resource had a duration of ten symbols 405 (not shown) , and the threshold number of symbols was equal to four symbols, then the UE 115 may apply a first TD-OCC having a base value of 4 to a first portion of the SRS resource having four symbols, a second TD-OCC having a base value of 4 to a second portion of the SRS resource having four symbols, and a third TD-OCC having a base value of 2 to a third portion of the SRS resource having two symbols. In other examples of a ten-symbol SRS resource, the UE may still sound four ports in each portion (including portions that have different numbers of symbols) and may apply TD-OCCs having the same base value to portions of the SRs resource having different numbers of symbols.
In another illustrative example (not shown) , base station 105 may configure the UE 115 with an eight-symbol SRS resource. Based on a threshold number of symbols equal to 4 symbols, the UE 115 may apply a first TD-OCC to a first four-symbol portion of the SRS resource, and may apply a second TD-OCC to a second four-symbol portion of the SRS resource.
Upon applying the TD-OCCs to the portions 415 of the SRS resource, the UE 115 may transmit one or more SRSs over the SRS resource.
FIG. 5 illustrates an example of an SRS transmission scheme 500 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure. In some examples, SRS transmission scheme 500 may implement aspects of wireless communications system 100. In some examples, a base station 105 may configure an SRS resource for transmitting SRS 510. The SRS resource may be located across one or more PRBs. The SRS resource may also span one or more TTIs (e.g., symbols 505) .
Base station 105 may configure a UE 115 with an SRS resource for transmitting SRS 510. The SRS resource may satisfy a threshold number of symbols. In such examples, the UE 115 may divide the SRS resource into portions 515. In some examples, UE 15 may support different TD-OCCs having different base values to different potions 515. For example, the UE 115 may divide the SRS resource unevenly (e.g., into portion that span different numbers of symbols) . For instance, portion 515-a of the SRS resource may have a longer duration than portion 515-b (e.g., portion 515-a may span 8 symbols 505 and portion 515-b may span 4 symbols 505) . The UE 115 may apply a first TD-OCC (e.g., having a base value of 8) to first  portion 515-a and a second TD-OCC (e.g., having a base value of 4) to second portion 515-b. The order and size of different portions 515 may vary. For example, a shorter portion (e.g., such has portion 515-b) may precede a longer portion (e.g., such as 515-a) . In some examples, the UE 115 may divide the SRS resource into multiple portions (e.g., three or more) . In some examples all but one portion of the SRS resource may have the same number of symbols 505. In some examples, each portion of the SRS resource may have a different number of symbols 505. Similarly, the UE 115 may apply different TD-OCCs having different base values to each portion of an SRS resource, or may apply a TD-OCC having a first base value to a group of one or more portions of the SRS resource and another TD-OCC having a second base value to another group of one or more portions of the SRS resource.
In some examples, the UE 115 may perform one or more power control adjustments to a portion 515 of the SRS resource. Power control adjustments may be based on different base values used for different TD-OCCs across portions 515. For instance, the UE 115 may apply a TD-OCC having a base value of 8 to portion 515-a of the SRS resource, and may apply a TD-OCC having a base value of 4 to portion 515-b of the SRS resource. In such examples, the UE 115 may sound 8 ports during portion 515-a, and may only sound 4 ports during portion 515-b. To support successful transmission of the SRS 510, to increase the likelihood of reception and proper decoding of the SRS 510, or the like, the UE 115 may adjust respective transmit powers for the various ports. For example, to set the transmit power of portion 515-a equal (or approximately equal) to the transmit power of portion 515-b, the UE 115 may decrease the transmit power for the ports sounding during the symbols of portion 515-a.
In some examples, the UE 115 may identify one or more power control priority rules. The UE 115 may simultaneously transmit one or more signals on one or more channels (e.g., PUSCH, PUCCH, physical random access channel (PRACH) , SRS, or the like) on one or more carriers (e.g., in a carrier aggregation mode) . If the UE is transmitting multiple signals at the same time, a total transmit power may be constrained (e.g., by a standardized requirement, a signaled command, a transmit power mask, or the like) , to not exceed a threshold. In such examples, a UE may allocate power across one or more signals or channels (e.g., PUSCH, PUCCH, PRACH, SRS, etc. ) according to one or more power control priority rules. That is, if the total transmit power for the UE 115 exceeds a threshold, then the UE 115 may adjust (e.g., decrease) the transmit power in descending order of priority. The UE 115 may adjust (e.g., decrease) the transmit power of lower priority signal types or channels before  adjusting the transmit power of higher priority signal types or channels. For instance, a PRACH transmission on a primary cell may be higher priority than a PUCCH transmission with HARQ acknowledgment information or SRS or PUSCH transmissions with HARQ acknowledgement information, which may be higher priority than PUCCH transmissions with CSI or CSI, which may be higher priority than PUSCH transmissions without HARQ acknowledgment information or CSI, which may be higher in priority than SRS transmissions, with aperiodic SRS having higher priority than semi-persistent or periodic SRS, or PRACH transmissions on serving cells that are not the primary serving cell (e.g., a secondary serving cell) .
In some examples, an SRS resource to which TD-OCCs have been applied may be higher priority than an SRS resource to which no TD-OCC has been applied. Thus, the power control priority rules may indicate that although other signals may have higher priority than an SRS transmission, an SRS transmission with TD-OCC may have a higher priority than an SRS transmission without TD-OCC. In some examples, the power control priority rules may indicate that a TD-OCC SRS transmission with aperiodic SRS may be higher priority than an SRS transmission without TD-OCC with aperiodic SRS. In some examples, the power control priority rules may indicate that semi-persistent or periodic SRS transmissions with TD-OCC may have a higher priority than semi-persistent or periodic SRS transmissions without TD-OCC. In such examples, if the UE 115 simultaneously transmits SRS with TD-OCC and SRS without TD-OCC (e.g., across multiple carriers in a carrier aggregation mode) , and the total transmit power for the UE 115 satisfies a threshold transmit power, then the UE 115 may decrease the transmit power of the SRS without TD-OCC instead of (or before) decreasing the transmit power of the SRS with TD-OCC, according to the one or more power control priority rules. Ensuring that SRS transmissions with TD-OCC are prioritized over SRS transmissions without TD-OCC may increase the likelihood that power adjustments described herein (e.g., to maintain similar or equal transmit powers between portions 515 of an SRS resource that are unequal in size or have different base values for TD-OCCs) are not affected. Similarly, in some examples, an SRS transmission may be given higher priority over other types of signals (e.g., an SRS transmission with TD-OCC may have a higher priority than one or more of a PUSCH, PUCCH, PRACH, or the like) .
In some examples, (as described with reference to FIGs. 4-6) , a UE 115 may divide an SRS resource into portions (e.g., portions 415 or 515) , and may apply TD-OCCs having the same or different base values according to one or more rules or considerations. For example,  in some examples, the UE 115 may apply TD-OCCs having the same base value (e.g., base value 2 or base value 4) to each portion of the SRS resource. In some examples, the UE 115 may apply TD-OCC to one or more portions of an SRS resource if the duration of the SRS resource is a multiple of the base value for TD-OCC. Thus, if a TD-OCC has a base value of two, and the SRS resource has a duration of three symbols, then the UE 115 may refrain from applying a TD-OCC to the SRS resource. In some examples, (e.g., if the SRS resource has a duration equal to an odd number of symbols (, then the UE 115 may divide the SRS resource into portions, apply TD-OCCs to each portion that has an even number of symbols, and refrain from applying TD-OCCs to any portion (e.g., a portion having a duration of one symbol) that does not have an even number of symbols. In some examples, the UE 115 may use orthogonal codes having a power of two, or may apply one or more Walsh codes (e.g., TD-OCCs having base values of two, four, eight, etc. ) as described in greater detail with reference to FIG. 6.
In some examples, if the duration of the SRS resource exceeds a threshold number of symbols, then the UE 115 may refrain from dividing the SRS resource, or may refrain from applying one or more TD-OCCs to the SRS resource. In some examples, the UE 115 may determine (e.g., based on standardized information, configuration information from the base station, or the like) a first threshold number of symbols and a second threshold number of symbols. If the SRS resource is not as long as the first threshold number of symbols (e.g., a two-symbol SRS resource where the first threshold number of symbols is equal to 4) then the UE 115 may apply a TD-OCC to the SRS resource within dividing it. If the SRS resource satisfies the first threshold number of symbols but does not satisfy the second number of threshold symbols but does not satisfy the second threshold number of symbols (e.g., a 12-symbol SRS resource where the first threshold number of symbols is 4 and the second threshold number of symbols is 16) , then the UE 15 may divide the SRS resource based on the first threshold number of symbols (e.g., into three four-symbol portions of the SRS resource) , and may apply a different TD-OCC to each portion of the SRS resource. If the SRS resource satisfies the second threshold number of symbols (e.g., an 18-symbol resource where the first threshold number of symbols is 4 and the second threshold number of symbols is 16) , then the UE 115 may determine not to divide the SRS resource or apply any TD-OCCs to the SRS resource.
FIG. 6 illustrates an example of an SRS transmission scheme 600 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure. In  some examples, SRS transmission scheme 600 may implement aspects of wireless communications system 100. In some examples, a base station 105 may configure an SRS resource for transmitting SRS 510. The SRS resource may be located across one or more PRBs. The SRS resource may also span one or more TTIs (e.g., symbols 505) .
In some examples, the UE 115 may use TD-OCCs with bases that are a power of two (e.g., TD-OCCs having base values of two, four, eight, etc. ) . For example, the UE 115 may use Walsh codes as TD-OCCs. In such examples, if the UE 115 does not or cannot apply a TD-OCC that satisfies the rules (e.g., that has a base value that is a multiple of two) , then the UE 115 may apply a default or different coding scheme. For instance, an SRS resource may have a duration of 14 symbols, and the UE 115 may divide the SRS resource into portion 615-a (e.g., having a duration of six symbols 605) portion 615-b (e.g., having a duration of six symbols 605) , and portion 615-c (e.g., having a duration of two symbols 605) . If the UE 115 is operating in a mode where it uses TD-OCCs having base values that are of the power of two, then the UE 115 may refrain from applying a TD-OCC to the portion 615-a or portion 615-b of the SRS resource. For that portion (or for the whole SRS resource) , the UE 15 may instead apply a default coding scheme (e.g., other types of orthogonal matrices, such as the columns of an FFT matrix) . In some examples, the UE 115 may apply a TD-OCC having a base value of two to portion 615-c of the SRS resource.
Upon applying the TD-OCCs to the portions 615-c of the SRS resource, applying a default coding scheme to portions 615-a and 615-b the SRS resource, or both, the UE 115 may transmit one or more SRSs over the SRS resource.
FIG. 7 illustrates an example of an SRS transmission scheme 700 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure. In some examples, SRS transmission scheme 700 may implement aspects of wireless communications system 100. In some examples, a base station 105 may configure an SRS resource for transmitting SRS 710. The SRS resource may be located across one or more PRBs. The SRS resource may also span one or more TTIs (e.g., symbols 505) .
In some cases, a UE 115 may drop a portion or all of an SRS resource. The UE 115 may identify a conflict with another channel (e.g., transmitted by the UE in a carrier aggregation mode, or by another device) . In some cases, the UE 115 may identify one or more signal type conflict priority rules. That is, the UE 115 may be aware that some signals (e.g.,  PUSCH signals, PUCCH signals, or the like) are scheduled to conflict with the SRS. The UE may determine whether the conflicting signal is a higher priority signal or a lower priority signal based on one or more signal type conflict priority rules that identify signal priorities for different signals. If the conflicting signal is a higher priority signal the UE 115 may drop some or all of the SRS transmissions in the SRS resource.
In some such examples, UE 115 may drop SRS transmissions on only a portion (e.g., a conflicted portion) of an SRS resource. For example, base station 105 may configure a UE 115 with an SRS resource, and the UE 115 may divide the SRS resource into portions 715 (e.g., based on one or more of the techniques described above with reference to FIGs. 4-6, such as a threshold number of symbols) . In such examples, the UE may apply a first TD-OCC to portion 715-a of the SRS resource, a second TD-OCC to portion 715-b of the SRS resource, and a third TD-OCC to portion 715-c of the SRS resource. Prior to transmitting one or more SRSs over portion 715-b, the UE 115 may determine that a conflict is pending. For instance, during or before a symbol 705 of portion 715-a (e.g., the third symbol of a four-symbol portion 715-a of the SRS resource) , the UE 15 may receive a downlink signal indicating a request from the base station 105 to send an uplink transmission, a grant to send an uplink transmission or receive a downlink transmission, or the like. The downlink signal may schedule or otherwise indicate signal that is higher priority than an SRS transmissions during one or more symbols of portion 715-b. For instance, the downlink signal may schedule a higher priority signal during the first symbol 705 of portion 715-b. In such examples, the UE 115 may determine, according to the signal type priority rules, that the UE 115 is to drop the SRS transmission during the first symbol of portion 715-b. Because of the TD-OCC applied to portion 715-b (e.g., having a base value of four) , the UE 115 may also drop the SRS transmissions during the entirety of portion 715-b. However, because of the distinct first TD-OCC applied to the first portion 715-a and the distinct third TD-OCC applied to the third portion 715-c, the UE 115 may transmit the one or more SRSs during first portion 715-a and third portion 715-c of the SRS resource, despite the conflict identified during portion 715-b of the SRS resource. In some examples, (e.g., if the UE 115 identifies the conflict prior to applying the second TD-OCC to portion 715-b) , the UE 115 may refrain from applying the second TD-OCC to portion 715-b based on the determination that the conflict will occur during portion 715-b, and that the SRS transmissions during portion 715-b will be dropped.
FIG. 8 illustrates an example of a process flow 800 that supports TD-OCCs for sounding reference signals in accordance with aspects of the present disclosure. In some examples, process flow 800 may implement aspects of wireless communications system 100.
At 805, base station 105-b may configure one or more SRS resources for transmitting SRSs by one or more UEs 115 (e.g., including UE 115-b) . The SRS resources may include one or more symbols. The SRS resources may be periodic, aperiodic, or dynamically scheduled.
At 810, base station 105-a may transmit SRS resource configuration information. The SRs resource configuration information may include an indication of the location (e.g., time resources including a number of symbols, and frequency resources including a number of PRBs) , a comb value, an offset value, or a combination thereof.
AT 815, in some examples, base station 105-b may transmit a TD-OCC trigger. A TD-OCC trigger may turn on or turn off (e.g., activate or deactivate) TD-OCCs for one or more SRS resources. Thus, the TD-OCC trigger received at 815 may turn on TD-OCCs for subsequent SRS resources of an SRS resource pattern configured at 810. For example, prior to 815, UE 115-b may not apply TD-OCCs to the SRS resources configured at 810. Upon receiving the TD-OCC trigger at 815, UE 115-b may determine to apply TD-OCCs to all subsequent configured SRS resources. UE 115-b may apply TD-OCCs to all or portions of each SRS resource, as described herein, subsequent to receiving the TD-OCC trigger at 815. At some subsequent time, base station 105-b may transmit another TD-OCC trigger, which may turn off TD-OCCs for subsequent configured SRS resources. In some examples, the TD-OCC triggers may be carried in control signaling (e.g., DCI messages, MAC-CEs, or the like) .
At 820, UE 115-b may identify an SRS resource (e.g., based on SRS resource configuration information received at 810) . The SRS resource may have a duration of one or more symbols.
At 825, UE 115-b may apply one or more TD-OCCs to at least a portion of the SRS resource identified at 820. In some examples, UE 115-b may divide the SRS resource into portions, and ay applied different TD-OCCs to each portion of the SRS resource.
In some examples, UE 115-b may identify a set of frequency hops corresponding to the SRS resource, where each frequency hop has the same number of symbols, and may  generate a set of TD-OCCs. In such examples, UE 115-b may apply respective TD-OCCs of the set of TD-OCCs to each frequency hop of the set of frequency hops. Each TD-OCC of the set TD-OCCs may have a base value that is equal to a number of symbols included in each frequency hop of the set of frequency hops.
In some examples, UE 115-b may determine that the duration of the SRS resource satisfies or exceeds a threshold number of symbols, divide the SRS resource into at least two portions based on the threshold number of symbols, and generate a set of TD-OCCs to apply to the portions of the SRS resource. Each TD-OCC of set of TD-OCCs may have a base value that is equal to a number of symbols included in each of the at least two portions of the SRS resource. In some examples, each of the at least two portions of the SRS resource may include the same number of symbols. In some examples, UE 115-b may determine that a number of symbols included in each of the at least two portions of the SRS resource is a multiple of a base value of the respective TD-OCC, wherein the applying is based at least in part on determining that the number of symbols is a multiple of the base value. In some examples, a base value for each of the set of TD-OCCs is a power of two. In some examples dividing the SRS resource into at least two portions may include dividing the SRS resource into at least a first portion having a first number of symbols and at least a second portion having a second number of symbols, wherein a base value of a first TD-OCC sequence of the set of TD-OCC sequences is equal to the first number of symbols, and wherein a base value of a second TD-OCC sequence of the set of TD-OCC sequences is equal to the second number of symbols. In such examples, UE 115-b may set a first transmit power for the first portion, and set a second transmission power for the second portion.
In some examples, UE 115-b may determine that a set of symbols of an SRS sequence exceed a threshold number of symbols, may refrain from applying TD-OCCs to the SRS resource, and may transmit SRS transmissions over the SRS resource without TD-OCCs.
UE 115-b may identify an SRS resource and determining that the number of symbols of the SRS resource do not support a TD-OCC having a base value that is a power of two, identifying a default encoding scheme, and applying the default encoding scheme to at least a portion of the SRS resource.
In some examples, UE 115-b may identify a pending conflict, determine one or more signal type priority rules, determine whether the conflicting signal is a higher priority  than the SRS resource, and determining to refrain from transmitting over the SRS resources based on the priority rules.
In some examples, UE 115-b may identify a set of power control priority rules, and a conflict between the SRS signals on a channel during the SRS resource, and may adjust a transmission power of a signal based thereon. In some examples, UE 115-b may determine that the SRS transmissions over the SRS resource have a higher priority than the conflicting signal. The conflicting signal may be another signal that has a lower priority than the SRS. In some examples, the conflicting signal may be an SRS transmission without TD-OCC that has a lower priority than the SRS with TD-OCC.
In some examples, applying the TD-OCCs to the SRS resource may include identifying a set of antenna ports for transmitting one or more SRSs over the SRS resource, identifying a set of SRS sequences that each correspond to a respective antenna port of the set of antenna ports, combining the set of SRS sequences based at least in part on the one or more TD-OCCs, and generating the SRSs based on the combining.
At 830, UE 115-b may transmit one or more SRSs over the SRS resource based on the TD-OCCs applied at 825.
FIG. 9 shows a block diagram 900 of a device 905 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a UE 115 as described herein. The device 905 may include a receiver 910, a communications manager 915, and a transmitter 920. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to time domain orthogonal cover codes for sounding reference signals, etc. ) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 910 may utilize a single antenna or a set of antennas.
The communications manager 915 may identify a sounding reference signal resource including a set of symbols, apply one or more time domain orthogonal cover codes to  at least a portion of the sounding reference signal resource, and transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes. The communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
The communications manager 915, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 915, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 915, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 915, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 920 may transmit signals generated by other components of the device 905. In some examples, the transmitter 920 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 920 may utilize a single antenna or a set of antennas.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a device 905, or a UE 115 as described herein. The device 1005 may include a receiver 1010, a communications manager  1015, and a transmitter 1035. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to time domain orthogonal cover codes for sounding reference signals, etc. ) . Information may be passed on to other components of the device 1005. The receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 1010 may utilize a single antenna or a set of antennas.
The communications manager 1015 may be an example of aspects of the communications manager 915 as described herein. The communications manager 1015 may include a SRS resource manager 1020, a TD-OCC manager 1025, and a SRS manager 1030. The communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
The SRS resource manager 1020 may identify a sounding reference signal resource including a set of symbols.
The TD-OCC manager 1025 may apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource.
The SRS manager 1030 may transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes.
The transmitter 1035 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1035 may be collocated with a receiver 1010 in a transceiver module. For example, the transmitter 1035 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 1035 may utilize a single antenna or a set of antennas.
FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present disclosure. The communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein. The communications manager 1105 may  include a SRS resource manager 1110, a TD-OCC manager 1115, a SRS manager 1120, a frequency hop manager 1125, a SRS resource division manager 1130, a transmission power manager 1135, and a conflict manager 1140. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The SRS resource manager 1110 may identify a sounding reference signal resource including a set of symbols. In some examples, the SRS resource manager 1110 may identify a second sounding reference signal resource including a second set of symbols. In some examples, the SRS resource manager 1110 may identify a resource pattern indicating a set of sounding reference signal resources including the sounding reference signal resource. In some examples, the SRS resource manager 1110 may receive, from a base station, control signaling indicating to apply the one or more time domain orthogonal cover codes to the sounding reference signal resource, where the applying is based on the control signaling. In some cases, the control signaling includes a DCI message, a MAC control element (CE) , or a combination thereof.
The TD-OCC manager 1115 may apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource. In some examples, generating a set of time domain orthogonal cover codes, where the applying includes applying a respective time domain orthogonal cover code of the set of time domain orthogonal cover codes to each frequency hop of the set of frequency hops. In some examples, generating a set of time domain orthogonal cover codes, where the applying includes applying a respective time domain orthogonal cover code of the set of time domain orthogonal cover codes to each portion of the at least two portions of the sounding reference signal resource. In some examples, the TD-OCC manager 1115 may determine that a number of symbols included in each of the at least two portions of the sounding reference signal resource is a multiple of a base value of the respective time domain orthogonal cover code, where the applying is based on determining that the number of symbols is a multiple of the base value. In some examples, the TD-OCC manager 1115 may refrain from applying one or more time domain orthogonal cover codes to at least a portion of the second sounding reference signal resource based on the determining.
In some examples, the TD-OCC manager 1115 may determine that a number of symbols included in the second set of symbols does not support a time domain orthogonal cover code having a base value that is a power of two. In some examples, the TD-OCC manager 1115  may identify, based on determining that the number of symbols does not support a time domain orthogonal cover code having a base value that is a power of two, a default encoding scheme. In some examples, identifying at least a first portion of the sounding reference signal resource and at least a second portion of the sounding reference signal resource, where the applying includes applying a first time domain orthogonal cover code of the one or more time domain orthogonal cover codes to at least the first portion of the sounding reference signal resource and applying a second time domain orthogonal cover code of the one or more time domain orthogonal cover codes to at least the second portion of the sounding reference signal resource.
In some examples, the TD-OCC manager 1115 may identify a set of antenna ports for transmitting the one or more sounding reference. In some examples, the TD-OCC manager 1115 may identify a set of sounding reference signal sequences that each correspond to a respective antenna port of the set of antenna ports. In some examples, the TD-OCC manager 1115 may combine the set of sounding reference signal sequences based on the one or more time domain orthogonal cover codes. In some examples, the TD-OCC manager 1115 may generate, based on the combining, the one or more sounding reference signals. In some cases, each time domain orthogonal cover code of the set of time domain orthogonal cover codes has a base value that is equal to a number of symbols included in each frequency hop of the set of frequency hops. In some cases, each time domain orthogonal cover code of set of time domain orthogonal cover codes has a base value that is equal to a number of symbols included in each of the at least two portions of the sounding reference signal resource. In some cases, a base value for each of the set of time domain orthogonal cover codes is a power of two. In some cases, the signal on the second channel is a sounding reference signal without one or more time domain orthogonal cover codes, and where the one or more sounding reference signals having the applied one or more time domain orthogonal cover codes has a higher power control priority value than the sounding reference signal without one or more time domain orthogonal cover codes.
The SRS manager 1120 may transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes. In some examples, the SRS manager 1120 may transmit a second set of one or more sounding reference signals via the second sounding reference signal resource. In some examples, the SRS manager 1120 may  apply the default encoding scheme to at least a portion of the second sounding reference signal resource based on the determining.
The frequency hop manager 1125 may identify a set of frequency hops corresponding to the sounding reference signal resource, each frequency hop of the set of frequency hops having the same number of symbols of the set of symbols.
The SRS resource division manager 1130 may determine that the set of symbols of the sounding reference signal resource exceeds a threshold number of symbols. In some examples, the SRS resource division manager 1130 may divide the sounding reference signal resource into at least two portions based on the threshold number of symbols. In some examples, the SRS resource division manager 1130 may divide the sounding reference signal resource into at least a first portion having a first number of symbols and at least a second portion having a second number of symbols, where a base value of a first time domain orthogonal cover code of the set of time domain orthogonal cover codes is equal to the first number of symbols, and where a base value of a second time domain orthogonal cover code of the set of time domain orthogonal cover codes is equal to the second number of symbols. In some examples, the SRS resource division manager 1130 may determine that the second set of symbols exceeds a threshold number of symbols. In some cases, each of the at least two portions of the sounding reference signal resource includes the same number of symbols.
The transmission power manager 1135 may set a first transmission power for at least the first portion. In some examples, the transmission power manager 1135 may set a second transmission power for at least the second portion, where transmitting the one or more sounding reference signals is based on the first transmission power and the second transmission power. In some examples, the transmission power manager 1135 may identify a set of power control priority rules indicating a set of signal types, each signal type of the set of signal types having a respective power control priority value. In some examples, the transmission power manager 1135 may select a signal for a transmit power adjustment based on the conflict and the set of power control priority rules, the selected signal including the signal on the second channel or a sounding reference signal of the one or more sounding reference signals on the first channel, where the transmitting is based on applying the transmit power adjustment to the selected signal.
The conflict manager 1140 may identify a pending conflict between the one or more sounding reference signals on a first channel and a signal on a second channel during a subset of at least the second portion of sounding reference signal resource. In some examples, the conflict manager 1140 may determine, based on one or more signal type priority rules, that the signal on the second channel has a higher signal type priority value than the one or more sounding reference signals. In some examples, determining, based on the signal on the second channel having the higher signal type priority value, to refrain from transmitting the one or more sounding reference signals during at least the second portion of the sounding reference signal resource, where transmitting the one or more sounding reference signals via the sounding reference signal resource includes transmitting the one or more sounding reference signals during at least the first portion of the sounding reference signal resource. In some examples, the conflict manager 1140 may identify a conflict between the one or more sounding reference signals on a first channel and a signal on a second channel during at least a portion of sounding reference signal resource.
In some cases, the signal on the second channel has a high power control priority value than the one or more sounding reference signals.
FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present disclosure. The device 1205 may be an example of or include the components of device 905, device 1005, or a UE 115 as described herein. The device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, an I/O controller 1215, a transceiver 1220, an antenna 1225, memory 1230, and a processor 1240. These components may be in electronic communication via one or more buses (e.g., bus 1245) .
The communications manager 1210 may identify a sounding reference signal resource including a set of symbols, apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource, and transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes.
The I/O controller 1215 may manage input and output signals for the device 1205. The I/O controller 1215 may also manage peripherals not integrated into the device 1205. In  some cases, the I/O controller 1215 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 1215 may utilize an operating system such as 
Figure PCTCN2020074110-appb-000001
or another known operating system. In other cases, the I/O controller 1215 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 1215 may be implemented as part of a processor. In some cases, a user may interact with the device 1205 via the I/O controller 1215 or via hardware components controlled by the I/O controller 1215.
The transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1230 may include RAM and ROM. The memory 1230 may store computer-readable, computer-executable code 1235 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1240 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1240 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 1240. The processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting time domain orthogonal cover codes for sounding reference signals) .
The code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 13 shows a flowchart illustrating a method 1300 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1305, the UE may identify a sounding reference signal resource including a set of symbols. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a SRS resource manager as described with reference to FIGs. 9 through 12.
At 1310, the UE may apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a TD-OCC manager as described with reference to FIGs. 9 through 12.
At 1315, the UE may transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a SRS manager as described with reference to FIGs. 9 through 12.
FIG. 14 shows a flowchart illustrating a method 1400 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present  disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1405, the UE may identify a sounding reference signal resource including a set of symbols. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a SRS resource manager as described with reference to FIGs. 9 through 12.
At 1410, the UE may identify a set of frequency hops corresponding to the sounding reference signal resource, each frequency hop of the set of frequency hops having the same number of symbols of the set of symbols. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a frequency hop manager as described with reference to FIGs. 9 through 12.
At 1415, the UE may generate a set of time domain orthogonal cover codes. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a TD-OCC manager as described with reference to FIGs. 9 through 12.
At 1420, the UE may apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource, where the applying includes applying a respective time domain orthogonal cover code of the set of time domain orthogonal cover codes to each frequency hop of the set of frequency hops. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a TD-OCC manager as described with reference to FIGs. 9 through 12.
At 1425, the UE may transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes. The operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the  operations of 1425 may be performed by a SRS manager as described with reference to FIGs. 9 through 12.
FIG. 15 shows a flowchart illustrating a method 1500 that supports time domain orthogonal cover codes for sounding reference signals in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE may identify a sounding reference signal resource including a set of symbols. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a SRS resource manager as described with reference to FIGs. 9 through 12.
At 1510, the UE may determine that the set of symbols of the sounding reference signal resource exceeds a threshold number of symbols. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a SRS resource division manager as described with reference to FIGs. 9 through 12.
At 1515, the UE may divide the sounding reference signal resource into at least two portions based on the threshold number of symbols. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a SRS resource division manager as described with reference to FIGs. 9 through 12.
At 1520, the UE may generate a set of time domain orthogonal cover codes. The operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by a TD-OCC manager as described with reference to FIGs. 9 through 12.
At 1525, the UE may apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource, where the applying includes applying  a respective time domain orthogonal cover code of the set of time domain orthogonal cover codes to each portion of the at least two portions of the sounding reference signal resource. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a TD-OCC manager as described with reference to FIGs. 9 through 12.
At 1530, the UE may transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based on the one or more applied time domain orthogonal cover codes. The operations of 1530 may be performed according to the methods described herein. In some examples, aspects of the operations of 1530 may be performed by a SRS manager as described with reference to FIGs. 9 through 12.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor  logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually  reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module, ” “mechanism, ” “element, ” “device, ” “component, ” and the like may not be a  substitute for the word “means. ” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for. ”
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (40)

  1. A method for wireless communications, comprising:
    identifying a sounding reference signal resource comprising a set of symbols;
    applying one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource; and
    transmitting one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based at least in part on the one or more applied time domain orthogonal cover codes.
  2. The method of claim 1, further comprising:
    identifying a set of frequency hops corresponding to the sounding reference signal resource, each frequency hop of the set of frequency hops having the same number of symbols of the set of symbols; and
    generating a set of time domain orthogonal cover codes, wherein the applying comprises applying a respective time domain orthogonal cover code of the set of time domain orthogonal cover codes to each frequency hop of the set of frequency hops.
  3. The method of claim 2, wherein each time domain orthogonal cover code of the set of time domain orthogonal cover codes has a base value that is equal to a number of symbols included in each frequency hop of the set of frequency hops.
  4. The method of claim 1, further comprising:
    determining that the set of symbols of the sounding reference signal resource exceeds a threshold number of symbols;
    dividing the sounding reference signal resource into at least two portions based at least in part on the threshold number of symbols; and
    generating a set of time domain orthogonal cover codes, wherein the applying comprises applying a respective time domain orthogonal cover code of the set of time domain orthogonal cover codes to each portion of the at least two portions of the sounding reference signal resource.
  5. The method of claim 4, wherein each time domain orthogonal cover code of set of time domain orthogonal cover codes has a base value that is equal to a number of symbols included in each of the at least two portions of the sounding reference signal resource.
  6. The method of claim 4, wherein each of the at least two portions of the sounding reference signal resource comprises the same number of symbols.
  7. The method of claim 4, further comprising:
    determining that a number of symbols included in each of the at least two portions of the sounding reference signal resource is a multiple of a base value of the respective time domain orthogonal cover code, wherein the applying is based at least in part on determining that the number of symbols is a multiple of the base value.
  8. The method of claim 4, wherein a base value for each of the set of time domain orthogonal cover codes is a power of two.
  9. The method of claim 4, wherein dividing the sounding reference signal resource into at least two portions further comprises:
    dividing the sounding reference signal resource into at least a first portion having a first number of symbols and at least a second portion having a second number of symbols, wherein a base value of a first time domain orthogonal cover code of the set of time domain orthogonal cover codes is equal to the first number of symbols, and wherein a base value of a second time domain orthogonal cover code of the set of time domain orthogonal cover codes is equal to the second number of symbols.
  10. The method of claim 9, further comprising:
    setting a first transmission power for at least the first portion; and
    setting a second transmission power for at least the second portion, wherein transmitting the one or more sounding reference signals is based at least in part on the first transmission power and the second transmission power.
  11. The method of claim 1, further comprising:
    identifying a second sounding reference signal resource comprising a second set of symbols;
    determining that the second set of symbols exceeds a threshold number of symbols;
    refraining from applying one or more time domain orthogonal cover codes to at least a portion of the second sounding reference signal resource based at least in part on the determining; and
    transmitting a second set of one or more sounding reference signals via the second sounding reference signal resource.
  12. The method of claim 1, further comprising:
    identifying a second sounding reference signal resource comprising a second set of symbols;
    determining that a number of symbols included in the second set of symbols does not support a time domain orthogonal cover code having a base value that is a power of two;
    identifying, based at least in part on the determining, a default encoding scheme; and
    applying the default encoding scheme to at least a portion of the second sounding reference signal resource based at least in part on the determining.
  13. The method of claim 1, further comprising:
    identifying at least a first portion of the sounding reference signal resource and at least a second portion of the sounding reference signal resource, wherein the applying comprises applying a first time domain orthogonal cover code of the one or more time domain orthogonal cover codes to at least the first portion of the sounding reference signal resource and applying a second time domain orthogonal cover code of the one or more time domain orthogonal cover codes to at least the second portion of the sounding reference signal resource;
    identifying a pending conflict between the one or more sounding reference signals on a first channel and a signal on a second channel during a subset of at least the second portion of sounding reference signal resource;
    determining, based at least in part on one or more signal type priority rules, that the signal on the second channel has a higher signal type priority value than the one or more sounding reference signals; and
    determining, based at least in part on the signal on the second channel having the higher signal type priority value, to refrain from transmitting the one or more sounding reference signals during at least the second portion of the sounding reference signal resource, wherein transmitting the one or more sounding reference signals via the sounding reference signal resource comprises transmitting the one or more sounding reference signals during at least the first portion of the sounding reference signal resource.
  14. The method of claim 1, further comprising:
    identifying a resource pattern indicating a set of sounding reference signal resources comprising the sounding reference signal resource; and
    receiving, from a base station, control signaling indicating to apply the one or more time domain orthogonal cover codes to the sounding reference signal resource, wherein the applying is based at least in part on the control signaling.
  15. The method of claim 14, wherein the control signaling comprises a downlink control information (DCI) message, a media access control (MAC) control element (CE) , or a combination thereof.
  16. The method of claim 1, further comprising:
    identifying a set of power control priority rules indicating a set of signal types, each signal type of the set of signal types having a respective power control priority value;
    identifying a conflict between the one or more sounding reference signals on a first channel and a signal on a second channel during at least a portion of sounding reference signal resource; and
    selecting a signal for a transmit power adjustment based at least in part on the conflict and the set of power control priority rules, the selected signal comprising the signal on the second channel or a sounding reference signal of the one or more sounding reference signals on the first channel, wherein the transmitting is based at least in part on applying the transmit power adjustment to the selected signal.
  17. The method of claim 16, wherein the signal on the second channel has a high power control priority value than the one or more sounding reference signals.
  18. The method of claim 16, wherein the signal on the second channel is a sounding reference signal without one or more time domain orthogonal cover codes, and
    wherein the one or more sounding reference signals having the applied one or more time domain orthogonal cover codes has a higher power control priority value than the sounding reference signal without one or more time domain orthogonal cover codes.
  19. The method of claim 1, wherein the applying comprises:
    identifying a set of antenna ports for transmitting the one or more sounding reference;
    identifying a set of sounding reference signal sequences that each correspond to a respective antenna port of the set of antenna ports;
    combining the set of sounding reference signal sequences based at least in part on the one or more time domain orthogonal cover codes; and
    generating, based at least in part on the combining, the one or more sounding reference signals.
  20. An apparatus for wireless communications, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a sounding reference signal resource comprising a set of symbols;
    apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource; and
    transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based at least in part on the one or more applied time domain orthogonal cover codes.
  21. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a set of frequency hops corresponding to the sounding reference signal resource, each frequency hop of the set of frequency hops having the same number of symbols of the set of symbols; and
    generate a set of time domain orthogonal cover codes, wherein the instructions to apply the one or more time domain orthogonal cover codes are executable by the processor  to cause the apparatus to apply a respective time domain orthogonal cover code of the set of time domain orthogonal cover codes to each frequency hop of the set of frequency hops.
  22. The apparatus of claim 21, wherein each time domain orthogonal cover code of the set of time domain orthogonal cover codes has a base value that is equal to a number of symbols included in each frequency hop of the set of frequency hops.
  23. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the set of symbols of the sounding reference signal resource exceeds a threshold number of symbols;
    divide the sounding reference signal resource into at least two portions based at least in part on the threshold number of symbols; and
    generate a set of time domain orthogonal cover codes, wherein the instructions to apply the one or more time domain orthogonal cover codes are executable by the processor to cause the apparatus to apply a respective time domain orthogonal cover code of the set of time domain orthogonal cover codes to each portion of the at least two portions of the sounding reference signal resource.
  24. The apparatus of claim 23, wherein each time domain orthogonal cover code of set of time domain orthogonal cover codes has a base value that is equal to a number of symbols included in each of the at least two portions of the sounding reference signal resource.
  25. The apparatus of claim 23, wherein each of the at least two portions of the sounding reference signal resource comprises the same number of symbols.
  26. The apparatus of claim 23, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that a number of symbols included in each of the at least two portions of the sounding reference signal resource is a multiple of a base value of the respective time domain orthogonal cover code, wherein the instructions to apply the one or more time domain orthogonal cover codes are executable by the processor to cause the apparatus to apply the one or more time domain orthogonal cover codes based at least in part on the determining that the number of symbols is a multiple of the base value.
  27. The apparatus of claim 23, wherein a base value for each of the set of time domain orthogonal cover codes is a power of two.
  28. The apparatus of claim 23, wherein the instructions to divide the sounding reference signal resource into at least two portions are executable by the processor to cause the apparatus to:
    divide the sounding reference signal resource into at least a first portion having a first number of symbols and at least a second portion having a second number of symbols, wherein a base value of a first time domain orthogonal cover code of the set of time domain orthogonal cover codes is equal to the first number of symbols, and wherein a base value of a second time domain orthogonal cover code of the set of time domain orthogonal cover codes is equal to the second number of symbols.
  29. The apparatus of claim 28, wherein the instructions are further executable by the processor to cause the apparatus to:
    set a first transmission power for at least the first portion; and
    set a second transmission power for at least the second portion, wherein the instructions to transmit the one or more sounding reference signals are executable by the processor to cause the apparatus to transmit the one or more sounding reference signals based at least in part on the first transmission power and the second transmission power.
  30. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a second sounding reference signal resource comprising a second set of symbols;
    determine that the second set of symbols exceeds a threshold number of symbols;
    refrain from applying one or more time domain orthogonal cover codes to at least a portion of the second sounding reference signal resource based at least in part on the determining; and
    transmit a second set of one or more sounding reference signals via the second sounding reference signal resource.
  31. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a second sounding reference signal resource comprising a second set of symbols;
    determine that a number of symbols included in the second set of symbols does not support a time domain orthogonal cover code having a base value that is a power of two;
    identify, based at least in part on the determining, a default encoding scheme; and
    apply the default encoding scheme to at least a portion of the second sounding reference signal resource based at least in part on the determining.
  32. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify at least a first portion of the sounding reference signal resource and at least a second portion of the sounding reference signal resource, wherein the instructions to apply the one or more time domain orthogonal cover codes are executable by the processor to cause the apparatus to apply a first time domain orthogonal cover code of the one or more time domain orthogonal cover codes to at least the first portion of the sounding reference signal resource and apply a second time domain orthogonal cover code of the one or more time domain orthogonal cover codes to at least the second portion of the sounding reference signal resource;
    identify a pending conflict between the one or more sounding reference signals on a first channel and a signal on a second channel during a subset of at least the second portion of sounding reference signal resource;
    determine, based at least in part on one or more signal type priority rules, that the signal on the second channel has a higher signal type priority value than the one or more sounding reference signals; and
    determine, based at least in part on the signal on the second channel having the higher signal type priority value, to refrain from transmitting the one or more sounding reference signals during at least the second portion of the sounding reference signal resource, wherein
    transmitting the one or more sounding reference signals via the sounding reference signal resource comprises transmitting the one or more sounding reference signals during at least the first portion of the sounding reference signal resource.
  33. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a resource pattern indicating a set of sounding reference signal resources comprising the sounding reference signal resource; and
    receive, from a base station, control signaling indicating to apply the one or more time domain orthogonal cover codes to the sounding reference signal resource, wherein the instructions to apply the one or more time domain orthogonal cover codes are executable by the processor to cause the apparatus to apply the one or more time domain orthogonal cover codes based at least in part on the control signaling.
  34. The apparatus of claim 33, wherein the control signaling comprises a downlink control information (DCI) message, a media access control (MAC) control element (CE) , or a combination thereof.
  35. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify a set of power control priority rules indicating a set of signal types, each signal type of the set of signal types having a respective power control priority value;
    identify a conflict between the one or more sounding reference signals on a first channel and a signal on a second channel during at least a portion of sounding reference signal resource; and
    select a signal for a transmit power adjustment based at least in part on the conflict and the set of power control priority rules, the selected signal comprising the signal on the second channel or a sounding reference signal of the one or more sounding reference signals on the first channel, wherein the instructions to transmit the one or more sounding reference signals are executable by the processor to cause the apparatus to transmit the one or more sounding reference signals based at least in part on the transmit power adjustment.
  36. The apparatus of claim 35, wherein the signal on the second channel has a high power control priority value than the one or more sounding reference signals.
  37. The apparatus of claim 35, wherein the signal on the second channel is a sounding reference signal without one or more time domain orthogonal cover codes, and wherein the one or more sounding reference signals having the applied one or more time domain orthogonal cover codes has a higher power control priority value than the sounding reference signal without one or more time domain orthogonal cover codes.
  38. The apparatus of claim 20, wherein the instructions to apply the one or more time domain orthogonal cover codes are executable to cause the processor to:
    identify a set of antenna ports for transmitting the one or more sounding reference;
    identify a set of sounding reference signal sequences that each correspond to a respective antenna port of the set of antenna ports;
    combine the set of sounding reference signal sequences based at least in part on the one or more time domain orthogonal cover codes; and
    generate, based at least in part on the combining, the one or more sounding reference signals.
  39. An apparatus for wireless communications, comprising:
    means for identifying a sounding reference signal resource comprising a set of symbols;
    means for applying one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource; and
    means for transmitting one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based at least in part on the one or more applied time domain orthogonal cover codes.
  40. A non-transitory computer-readable medium storing code for wireless communications, the code comprising instructions executable by a processor to:
    identify a sounding reference signal resource comprising a set of symbols;
    apply one or more time domain orthogonal cover codes to at least a portion of the sounding reference signal resource; and
    transmit one or more sounding reference signals via the sounding reference signal resource, the one or more sounding reference signals based at least in part on the one or more applied time domain orthogonal cover codes.
PCT/CN2020/074110 2020-01-31 2020-01-31 Time domain orthogonal cover codes for sounding reference signals WO2021151249A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074110 WO2021151249A1 (en) 2020-01-31 2020-01-31 Time domain orthogonal cover codes for sounding reference signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074110 WO2021151249A1 (en) 2020-01-31 2020-01-31 Time domain orthogonal cover codes for sounding reference signals

Publications (1)

Publication Number Publication Date
WO2021151249A1 true WO2021151249A1 (en) 2021-08-05

Family

ID=77078026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074110 WO2021151249A1 (en) 2020-01-31 2020-01-31 Time domain orthogonal cover codes for sounding reference signals

Country Status (1)

Country Link
WO (1) WO2021151249A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115426015A (en) * 2022-07-14 2022-12-02 中信科移动通信技术股份有限公司 Beam management method and system
WO2023096784A1 (en) * 2021-11-29 2023-06-01 Qualcomm Incorporated Time-division multiplexing sounding reference signal ports
WO2023164935A1 (en) * 2022-03-04 2023-09-07 Apple Inc. Sounding reference signal capacity enhancement
WO2024012558A1 (en) * 2022-07-15 2024-01-18 维沃移动通信有限公司 Method for processing conflict between srs and uplink resource, terminal, and network side device
WO2024033892A1 (en) * 2022-08-12 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Time domain orthogonal cover codes for uplink sounding reference signal
EP4101111A4 (en) * 2020-02-07 2024-03-13 Qualcomm Inc Sounding reference signal (srs) enhancements
WO2024065444A1 (en) * 2022-09-29 2024-04-04 Apple Inc. Flexible multiple port srs transmission using multiple symbols

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083223A (en) * 2010-03-05 2011-06-01 大唐移动通信设备有限公司 DCI (Downlink Control Information) sending method, system and device as well as uplink transmission method, system and device
US20120033587A1 (en) * 2010-08-03 2012-02-09 Samsung Electronics Co., Ltd. Transmission of uplink control signals in a communication system
CN103095442A (en) * 2011-10-31 2013-05-08 中兴通讯股份有限公司 Sounding reference signal configuration method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083223A (en) * 2010-03-05 2011-06-01 大唐移动通信设备有限公司 DCI (Downlink Control Information) sending method, system and device as well as uplink transmission method, system and device
US20120033587A1 (en) * 2010-08-03 2012-02-09 Samsung Electronics Co., Ltd. Transmission of uplink control signals in a communication system
CN103095442A (en) * 2011-10-31 2013-05-08 中兴通讯股份有限公司 Sounding reference signal configuration method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC.: "Evaluation of Long-PUCCH for moderate UCI payload with multiplexing capacity", 3GPP DRAFT; R1-1716479 EVALUATION OF LONG-PUCCH FOR MODERATE UCI PAYLOAD WITH MULTIPLEXING CAPACITY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 17 September 2017 (2017-09-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051339932 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4101111A4 (en) * 2020-02-07 2024-03-13 Qualcomm Inc Sounding reference signal (srs) enhancements
WO2023096784A1 (en) * 2021-11-29 2023-06-01 Qualcomm Incorporated Time-division multiplexing sounding reference signal ports
WO2023164935A1 (en) * 2022-03-04 2023-09-07 Apple Inc. Sounding reference signal capacity enhancement
CN115426015A (en) * 2022-07-14 2022-12-02 中信科移动通信技术股份有限公司 Beam management method and system
CN115426015B (en) * 2022-07-14 2023-12-08 中信科移动通信技术股份有限公司 Beam management method and system
WO2024012558A1 (en) * 2022-07-15 2024-01-18 维沃移动通信有限公司 Method for processing conflict between srs and uplink resource, terminal, and network side device
WO2024033892A1 (en) * 2022-08-12 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Time domain orthogonal cover codes for uplink sounding reference signal
WO2024065444A1 (en) * 2022-09-29 2024-04-04 Apple Inc. Flexible multiple port srs transmission using multiple symbols

Similar Documents

Publication Publication Date Title
US11917591B2 (en) Semi-persistent scheduling for subband full-duplex slots
US20210194556A1 (en) Aperiodic channel state information physical uplink shared channel repetition with demodulation reference signal bundling
WO2021151249A1 (en) Time domain orthogonal cover codes for sounding reference signals
US20240106598A1 (en) Enhanced tracking reference signal patterns
WO2021227080A1 (en) Channel status report based on sounding reference signal resource usage in full duplex
US20210377914A1 (en) Transmit beam selection schemes for multiple transmission reception points
WO2021155505A1 (en) Repetition and time domain cover code based sounding reference signal resources for antenna switching
WO2022016440A1 (en) Transmit power prioritization for multi-panel uplink transmission
US11799604B2 (en) Techniques for adapting a number of tracking reference signal symbols
CN114946150A (en) Beam switching techniques for uplink transmissions
WO2022032522A1 (en) Handling of cross link interference collisions with reference signal measurements
CN115004763A (en) Channel state information scheduling request
US20210274544A1 (en) Physical (phy) layer and media access control (mac) layer operations following uplink cancellation indication (ulci)
US11395329B2 (en) Uplink traffic prioritization across multiple links
WO2021259159A1 (en) Support of flexible sounding reference signal switching capability
US20210377984A1 (en) Timing for cross scheduling and reference signal triggering
US20220361198A1 (en) Available slots for uplink shared channel repetitions
WO2022174389A1 (en) Sidelink channel state information reference signal triggering and resource selection
US20230232394A1 (en) Dynamic uplink control multiplexing between physical uplink channels
WO2021207963A1 (en) User equipment receiver based downlink channel repetition
US11576201B2 (en) Candidate uplink grants for channel access
US11470511B2 (en) Resolving conflicting rate matching resource indications
US20240113834A1 (en) Signaling of sounding reference signal grouping
WO2023070239A1 (en) Sidelink synchronization signal transmission prioritization
US20220061084A1 (en) Configured grant scheduling request

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916713

Country of ref document: EP

Kind code of ref document: A1