WO2021151230A1 - Configuration de signal de référence de sondage - Google Patents

Configuration de signal de référence de sondage Download PDF

Info

Publication number
WO2021151230A1
WO2021151230A1 PCT/CN2020/074072 CN2020074072W WO2021151230A1 WO 2021151230 A1 WO2021151230 A1 WO 2021151230A1 CN 2020074072 W CN2020074072 W CN 2020074072W WO 2021151230 A1 WO2021151230 A1 WO 2021151230A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signals
srs
node
transmission beam
determining
Prior art date
Application number
PCT/CN2020/074072
Other languages
English (en)
Inventor
Min Huang
Chao Wei
Liangming WU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/074072 priority Critical patent/WO2021151230A1/fr
Priority to US17/758,295 priority patent/US20230030275A1/en
Priority to PCT/CN2021/070606 priority patent/WO2021147682A1/fr
Priority to EP21743688.0A priority patent/EP4094398A4/fr
Priority to CN202180009651.5A priority patent/CN114982188B/zh
Publication of WO2021151230A1 publication Critical patent/WO2021151230A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity

Definitions

  • the following relates generally to wireless communications and more specifically to sounding reference signal configuration.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a base station may schedule a UE to transmit an uplink signal to a target transmission and reception point (TRP) .
  • TRP target transmission and reception point
  • the uplink signal may interfere with an uplink signal from a different UE, which may result in delays, inefficient communications, and relatively high signaling overhead.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support sounding reference signal (SRS) configuration.
  • SRS sounding reference signal
  • the described techniques enable a UE to receive reference signals from a target transmission and reception point (TRP) and from non-target TRPs and determine a transmission beam based on an SRS resource configuration message from a base station and the reference signals.
  • the UE may transmit an SRS signal along with the determined transmission beam to the base station.
  • the base station may schedule the UE for uplink data channel transmissions based on the SRS signal.
  • the base station and UE may communicate according to the uplink data channel, which may result in reduced interference and latency at the UE, among other benefits.
  • a method of wireless communications at a UE may include receiving a SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node, determining an SRS transmission beam for transmitting an SRS signal based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals, and transmitting the SRS signal using the SRS transmission beam.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive a SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node, determine an SRS transmission beam for transmitting an SRS signal based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals, and transmit the SRS signal using the SRS transmission beam.
  • the apparatus may include means for receiving a SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node, determining an SRS transmission beam for transmitting an SRS signal based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals, and transmitting the SRS signal using the SRS transmission beam.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to receive a SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node, determine an SRS transmission beam for transmitting an SRS signal based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals, and transmit the SRS signal using the SRS transmission beam.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication of the procedure for determining the SRS transmission beam.
  • the procedure for determining the sounding reference signal transmission beam may include operations, features, means, or instructions for determining that the SRS transmission beam maximizes an uplink channel gain on an uplink channel between the UE and the first node and generates zero interference on an uplink channel between the UE and the second node.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the uplink channel gain on the uplink channel between the UE and the first node based on the one or more first reference signals.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining an interference on the uplink channel between the UE and the second node based on the one or more second reference signals.
  • the procedure for determining the sounding reference signal transmission beam may include operations, features, means, or instructions for determining that the SRS transmission beam maximizes a ratio of an uplink channel gain on an uplink channel between the UE and the first node and an interference on an uplink channel between the UE and the second node.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a transmission power of the one or more first reference signals and a transmission power of the one or more second reference signals.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying an absolute value of the transmission power of the one or more first reference signals and an absolute value of the one or more second reference signals.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying a relationship between the transmission power of the one or more first reference signals and the transmission power of the one or more second reference signals.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an indication of the transmission power of the one or more first reference signals and the transmission power of the one or more second reference signals.
  • the SRS configuration message indicates an identity of a resource associated with the one or more first reference signals, the one or more second reference signals, or both.
  • the SRS configuration message may be received via radio resource control signaling, a medium access control layer control element, a downlink control information message, or a combination thereof.
  • the one or more first reference signals or the one or more second reference signals include channel state information reference signals, synchronization signal block reference signals, demodulation reference signals, or a combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the one or more first reference signals from the first node, and receiving the one or more second reference signals from the second node.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for sweeping a set of candidate reception beams to receive the one or more first reference signals and the one or more second reference signals.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a first uplink channel response matrix for the first node based on the one or more reference signals and a second uplink channel response matrix for the second node based on the one or more second reference signals, determining an orthogonal projection matrix of the second uplink channel response matrix, determining a projected matrix based on a projection of the first uplink channel response matrix onto the orthogonal projection matrix, and calculating a major eigen vector of the projected matrix as a beamforming weight vector of the SRS transmission beam.
  • the first node includes a target node with respect to the UE
  • the second node includes a non-target node with respect to the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving an uplink scheduling grant that may be based on the transmitted SRS signal.
  • a method of wireless communications at a base station may include transmitting a SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node and receiving, from a UE, an SRS signal using an SRS transmission beam that is based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit a SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node and receive, from a UE, an SRS signal using an SRS transmission beam that is based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the apparatus may include means for transmitting a SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node and receiving, from a UE, an SRS signal using an SRS transmission beam that is based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • a non-transitory computer-readable medium storing code for wireless communications at a base station is described.
  • the code may include instructions executable by a processor to transmit a SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node and receive, from a UE, an SRS signal using an SRS transmission beam that is based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting an indication of the procedure for determining the SRS transmission beam.
  • the procedure for determining the sounding reference signal transmission beam may include operations, features, means, or instructions for determining that the SRS transmission beam maximizes an uplink channel gain on an uplink channel between the UE and the first node and generates zero interference on an uplink channel between the UE and the second node.
  • the procedure for determining the SRS transmission beam may include operations, features, means, or instructions for determining that the SRS transmission beam maximizes a ratio of an uplink channel gain on an uplink channel between the UE and the first node and an interference on an uplink channel between the UE and the second node.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting an indication of a transmission power of the one or more first reference signals and a transmission power of the one or more second reference signals.
  • the SRS configuration message indicates an identity of a resource associated with the one or more first reference signals, the one or more second reference signals, or both.
  • the SRS configuration message may be transmitted via radio resource control signaling, a medium access control layer control element, a downlink control information message, or a combination thereof.
  • the one or more first reference signals or the one or more second reference signals include channel state information reference signals, synchronization signal block reference signals, demodulation reference signals, or a combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting an uplink scheduling grant that may be based on the SRS signal.
  • FIG. 1 illustrates an example of a system for wireless communications that supports sounding reference signal (SRS) configuration in accordance with aspects of the present disclosure.
  • SRS sounding reference signal
  • FIG. 2 illustrates an example of a system for wireless communications that supports SRS configuration in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a process flow that supports SRS configuration in accordance with aspects of the present disclosure.
  • FIGs. 4 and 5 show block diagrams of devices that support SRS configuration in accordance with aspects of the present disclosure.
  • FIG. 6 shows a block diagram of a communications manager that supports SRS configuration in accordance with aspects of the present disclosure.
  • FIG. 7 shows a diagram of a system including a device that supports SRS configuration in accordance with aspects of the present disclosure.
  • FIGs. 8 and 9 show block diagrams of devices that support SRS configuration in accordance with aspects of the present disclosure.
  • FIG. 10 shows a block diagram of a communications manager that supports SRS configuration in accordance with aspects of the present disclosure.
  • FIG. 11 shows a diagram of a system including a device that supports SRS configuration in accordance with aspects of the present disclosure.
  • FIGs. 12 through 19 show flowcharts illustrating methods that support SRS configuration in accordance with aspects of the present disclosure.
  • a base station may schedule a user equipment (UE) to transmit an uplink data channel signal to a target transmission and reception point (TRP) with the highest channel gain.
  • the UE may have a determined transmission power. Therefore, in a multi-TRP scenario, the UE may select a target TRP with a relatively high channel gain in order to transmit with full transmission power.
  • a base station may schedule one or more UEs to transmit in an uplink data channel (e.g., physical uplink shared channel (PUSCH) ) to different TRPs using the same time-frequency resource to improve spectrum efficiency and the cell throughput.
  • PUSCH physical uplink shared channel
  • the signals may interfere, resulting in latency and high signaling overhead (e.g., due to retransmitting the signals) .
  • the techniques described herein may enable a base station to transmit a sounding reference signal (SRS) configuration message to a UE.
  • the SRS configuration message may indicate one or more reference signals associated with TRPs.
  • the UE may receive one or more first reference signals from a target TRP and a number of other reference signals from one or more non-target TRPs.
  • the UE may be configured with a procedure for determining an SRS transmission beam based on the reference signals from the target TRP and one or more reference signals from the non-target TRPs.
  • the base station may transmit an indication of a procedure for determining the SRS transmission beam (e.g., including criterion associated with the SRS transmission beam) .
  • the UE may determine the SRS transmission beam based on the procedure and the received one or more reference signals. For example, the UE may select an SRS transmission beam based on maximizing an uplink channel gain between the UE and the target TRP while creating zero interference on an uplink channel between the UE and a non-target TRP. In other examples, the UE may select an SRS transmission beam based on maximizing a ratio of an uplink channel gain between the UE and the target TRP and the interference on the uplink channel between the UE and the non-target TRP.
  • the UE may transmit an SRS signal to the base station.
  • the base station may determine scheduling for the UE in an uplink data channel (e.g., PUSCH) based on the received SRS signal, then send an uplink scheduling grant to the UE.
  • the UE may transmit a signal in the uplink data channel based on the received scheduling grant and the determined transmission beam, which may enable the UE to communicate via a target TRP without creating interference for other UEs transmitting uplink signals to TRPs using the same time-frequency resource.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra- reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra- reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or TRPs.
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a UE 115 may receive an SRS configuration message that indicates one or more first reference signals from a first access network transmission entity 145 (e.g., a first TRP) and one or more second reference signals from a second access network transmission entity 145 (e.g., a second TRP) .
  • the UE 115 may determine an SRS transmission beam for transmitting an SRS signal based on a procedure for determining SRS transmission beams and the one or more reference signals from the first and second access network transmission entities 145.
  • the UE 115 may transmit an SRS signal using the SRS transmission beam.
  • a base station 105 may receive the SRS signal and transmit an uplink scheduling grant based on the message.
  • the UE 115 and base station 105 may communicate according to the uplink scheduling grant.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports SRS configuration in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100 and may include UE 115-a, UE 115-b, base station 105-a, TRP 145-a, and TRP 145-b, which may be examples of UEs 115, a base station 105, and TRPs 145 described with reference to FIG. 1.
  • base station 105-a may configure UE 115-a and UE 115-b with an SRS configuration to reduce interference.
  • a base station 105 may communicate with one or more UEs 115 using one or more TRPs 145.
  • base station 105-a may communicate with UE 115-a and 115-b using TRP 145-a and TRP 145-b via communication links 125-a and 125-b respectively.
  • the one or more TRPs 145 may be geographically concentrated or distributed within a coverage area of the base station 105.
  • the base station 105 may transmit the signal using multiple channel links (e.g., PDSCH links) to enhance the diversity gain, downlink system capacity, downlink cell coverage, or a combination thereof.
  • a TRP 145 may jointly communicate with one or more UEs 115. In other cases, the TRP 145 may communicate with one or more UEs 115 separately.
  • a base station 105 may receive an uplink data channel signal from a UE 115 via a target TRP 145.
  • base station 105-a may receive a PUSCH signal from UE 115-a through target TRP 145-a.
  • the link between the UE 115 and the target TRP 145 may be referred to as a target link 205.
  • the UE 115 may use a channel gain to determine the target TRP 145.
  • UE 115-a may transmit a signal to base station 105-a via target TRP 145-a using full transmission power based on determining TRP 145-a has the highest channel gain.
  • the base station 105 may schedule a UE 115 to transmit in the uplink data channel to a TRP 145 at the same time-frequency resource as a different UE 115 is transmitting to a different TRP 145 to improve the spectrum efficiency and base station 105 throughput.
  • base station 105-a may schedule UE 115-a to transmit to TRP 145-aat the same time-frequency resource as UE 115-b is transmitting to TRP 145-b.
  • the transmitted signals may interfere via an interference link 210. The interference may cause unreliable signal reception.
  • the base station 105 may design a configuration that allows for feedback from a UE 115 (e.g., channel state information (CSI) feedback) when there are multiple TRPs 145.
  • the base station 105 may use one or more SRSs from the UE 115 (e.g., UE 115-a or UE 115-b) to determine an uplink beam (e.g., beam direction, beam weight, etc. ) and uplink scheduling (e.g., resource assignment, transport format, modulation and coding scheme (MCS) , number of layers, etc. ) for the UE 115.
  • uplink beam e.g., beam direction, beam weight, etc.
  • uplink scheduling e.g., resource assignment, transport format, modulation and coding scheme (MCS) , number of layers, etc.
  • the base station 105 may determine one or more uplink beams based on the channel gains of the one or more SRSs (e.g., selecting the beams of the SRSs with the highest channel gains) .
  • the base station 105 may indicate the uplink beams to the UE 115 in an uplink data channel scheduling grant (e.g., DCI format 0_1) , and the UE 115 may transmit an uplink data channel (e.g., PUSCH) along the beams.
  • an uplink data channel scheduling grant e.g., DCI format 0_1
  • a base station 105 may configure SRS resources of a UE 115 using RRC signaling.
  • each SRS resource may include an attribute (e.g., spatial relation information (spatialRelationInfo) ) , which is associated with a resource of a reference signal. If the base station 105 indicates to the UE 115 to transmit an SRS in an SRS resource, the UE 115 may use the beam that corresponds to the reference signal.
  • spatialRelationInfo spatial relation information
  • the UE 115 may transmit the SRS along the beam that may be used to receive SSB or CSI-RS in the corresponding SSB or CSI-RS resource.
  • the resource of the reference signal is an SRS resource (srs)
  • the UE 115 may transmit the SRS along the beam that may be used to transmit SRS in the corresponding SRS resource.
  • the base station 105 may configure a UE 115 with an SRS spatial relation configuration, which may be associated with the channel gain of a target link 205 to a target TRP 145 based on a configured reference signal. If the base station 105 accounts for the channel gain, but ignores the interference in interference links 210 to non-target TRPs 145, the UE 115 may transmit an uplink data channel signal along with the beam of an SRS that enhances the target link 205 but may cause interference to the interference link 210. In some cases, the interference may weaken reception performance (e.g., by lowering SINR) of a different uplink data channel signal to different non-target TRPs 145 at the same time-frequency resource.
  • SINR SINR
  • a base station 105 may configure one or more UEs 115 with an SRS spatial relation configuration (e.g., an SRS configuration) based on one or more reference signals from one or more TRPs.
  • base station 105-a may configure UE 115-a or UE 115-b with an SRS spatial relation configuration based on reference signals from TRP 145-a and 145-b received via non-target links 215.
  • UE 115-a and UE 115-b may determine an uplink beam that enhances the channel gain to target links 205-a and 205-b respectively, while reducing the interference to the interference links 220-a and 220-b.
  • the base station 105 may transmit an SRS resource configuration message to a UE 115, the message indicating a procedure for determining the SRS transmission beam.
  • the resource configuration message may include criterion associated with a first reference signal (e.g., CSI-RS or SSB) from a target TRP 145 and one or more subsequent reference signals from one or more non-target TRPs 145.
  • a first reference signal e.g., CSI-RS or SSB
  • UE 115-a may receive an SRS resource configuration message from base station 105-a via target TRP 145-a (e.g., through communication link 125-a and target link 205-a) . Additionally, UE 115-a may receive one or more reference signals from target TRP 145-a (e.g., via target link 205-a) and non-target TRP 145-b (e.g., via non-target link 215-a) . In some examples, UE 115-a may sweep candidate reception beams to receive the reference signals.
  • UE 115-a may determine a transmission beam (e.g., an SRS transmission beam in the SRS resource) based on the reference signals and a procedure specified by base station 105-a in the SRS resource configuration message. UE 115-a may transmit an SRS signal along with the determined transmission beam to base station 105-a using target link 205-a. In some cases, base station 105-a may schedule UE 115-a in the uplink data channel based on the received SRS. Base station 105-a may transmit an uplink scheduling grant to UE 115-a via TRP 145-a and target link 205-a. UE 115-a may transmit in the uplink data channel based on the scheduling grant and determined transmission beam.
  • a transmission beam e.g., an SRS transmission beam in the SRS resource
  • UE 115-a may transmit to base station 105-awithout causing interference, or at least reducing interference, along interference link 210-a.
  • the beam determination procedure may involve improving a beamformed channel gain of a target link 205 and weakening a beamformed interference of an interference link 210.
  • UE 115-a may select a beam that maximizes the beamformed uplink channel gain of target link 205-a, while generating zero interference on interference link 210-a.
  • UE 115-a may determine the beamformed uplink channel gain of target link 205-a by using the downlink reference signal from target TRP 145-a (e.g., of target link 205-a) based on downlink-uplink channel reciprocity.
  • UE 115-a may determine that the beamformed uplink interference strength of interference link 210-a is similar to, or the same as, the beamformed downlink channel gain of interference link 210-a, which may be derived from the downlink reference signal from non-target TRP 145-b (e.g., of interference link 210-a) based on downlink-uplink channel reciprocity.
  • the beam determination procedure may be based on increasing, or maximizing, a ratio of a beamformed uplink channel gain of a target link 205 over a beamformed uplink interference strength of an interference link 210.
  • UE 115-a may select a beam based on the transmission power of one or more reference signals received from target TRP 145-a and non-target TRP 145-b.
  • base station 105-a may indicate the absolute value of the transmission power of each of the one or more reference signals to UE 115-a.
  • base station 105-a may indicate the relative transmission power of one or more reference signals (e.g., the transmission power of a second reference signal is 3 decibels higher than the transmission power of the first reference signal) to UE 115-a.
  • the beam determination procedure may be specified prior to communication between UE 115-a and base station 105-a.
  • the reference signal transmission powers may be predetermined values.
  • Base station 105-a may indicate the beam determination procedure to UE 115-a in a configuration message (e.g., the SRS resource configuration message) .
  • a base station 105 may transmit a signaling message to a UE 115.
  • base station 105-a may transmit a signaling message about SRS resource configurations to UE 115-a.
  • the signaling message may indicate the identities of one or more reference signals from a target TRP 145-a and non-target TRP 145-b, such as an SSB index or CSI-RS index (e.g., reference signal identity for an interference link may be ssb-Index, csi-RS-Index, SSB-Index, or NZP-CSI-RS-ResourceId) .
  • the signaling message may be transmitted in an RRC signaling message, a MAC-CE, a DCI, or a combination thereof.
  • the SRS spatial relation may have one or more reference signal identities (e.g., a target TRP 145-areference signal identity and a non-target TRP 145-b reference signal identity) .
  • UE 115-a may determine the beam based on the SRS resource configuration message, including a reference signal index for a target link 205-a and a reference signal index for an interference link 210 and the beam determination procedure.
  • UE 115-a may determine an SRS beam based on the procedure involving maintaining the beamformed uplink interference strength of interference link 220 (e.g., generating zero interference) .
  • UE 115-a may receive reference signals from target TRP 145-a and non-target TRP 145-b via target link 205-a and non-target link 215-a respectively.
  • UE 115-a may derive an uplink channel response matrix from target TRP 145-a and non-target TRP 145-b based on the received reference signals and the uplink-downlink channel reciprocity, denoted as H 11 and H 12 .
  • UE 115-a may calculate the orthogonal projection matrix of H 12 , denoted as P 12 (e.g., ) , such that for any matrix A with the same number of columns as H 12 , the matrix of AP 12 is orthogonal to H 12 .
  • UE 115-a may calculate the major eigen vector of the projected matrix as a beamforming weight vector of the SRS transmission beam.
  • UE 115-a may sweep a plurality of candidate reception beams to receive the one or more reference signals from target TRP 145-a and non-target TRP 145-b.
  • UE 115-a may measure the beamformed channel gains over target link 205-a and interference link 210-afor each candidate reception beam. Then, UE 115-a may choose a reception beam based on the configured beam determination procedure with the measured beamformed channel gains as input.
  • UE 115-a may select the reception beam as the SRS transmission beam.
  • the techniques described herein may allow a UE 115 to determine an SRS beam based on a beam determination procedure and TRP reference signals.
  • the SRS beam may improve the channel gain of a target link 205 and reduce the interference strength of an interference link 210.
  • the interference of the interference link 210 may improve.
  • a base station 105 may schedule a different uplink data transfer at the same time-frequency resource as the transmission from UE 115.
  • the uplink transmission throughput for TRPs 145 communicating with the base station 105 may improve.
  • FIG. 3 illustrates an example of a process flow 300 that supports SRS configuration techniques for wireless communications systems in accordance with aspects of the present disclosure.
  • process flow 300 may implement aspects of wireless communications systems 100 and/or 200.
  • Process flow 300 includes UE 115-c, TRP 145-c, TRP 145-d, and base station 105-b, which may be respective examples of a UE 115, a TRP 145, and a base station 105 as described with reference to FIGs. 1 and 2.
  • a TRP 145 may be an example of a node.
  • base station 105-b may transmit an SRS configuration message to UE 115-c.
  • TRP 145-c may be a target TRP 145 and TRP 145-d may be a non-target TRP 145 for UE 115-c.
  • the SRS configuration message may indicate one or more first reference signals from target TRP 145-a and one or more second reference signals from non-target TRP 145-b.
  • base station 105-b may transmit an indication of the transmission power of the one or more first reference signals and the one or more second reference signals.
  • the SRS configuration message may indicate an identity of a resource associated with the one or more first reference signals, the one or more second reference signals, or both.
  • Base station 105-b may transmit the SRS configuration message via RRC signaling, a MAC-CE, or a combination thereof.
  • base station 105-b may transmit a beam determination procedure specifying criterion for the UE 115-c to determine the SRS transmission beam.
  • the beam determination procedure may include determining that the SRS transmission beam maximizes an uplink channel gain on an uplink channel between UE 115-c and target TRP 145-c and generates zero interference on an uplink channel between UE 115-c and non-target TRP 145-d.
  • the beam determination procedure may include determining that the SRS transmission beam maximizes a ratio of the uplink channel gain and the interference.
  • base station 105-b may transmit an indication of the transmission power for the one or more first reference signals and the one or more second reference signals to UE 115-c.
  • UE 115-c may receive one or more first reference signals from target TRP 145-c. Similarly, at 320, UE 115-c may receive one or more second reference signals from target TRP 145-d.
  • the reference signals may include CSI reference signals, SSB reference signals, demodulation reference signals, or a combination thereof.
  • UE 115-c may sweep a plurality of candidate reception beams to receive the reference signals from TRP 145-c and TRP 145-d.
  • UE 115-c may identify a transmission power of the one or more first reference signals and a transmission power of the one or more second reference signals. For example, UE 115-c may identify an absolute value of the transmission powers.
  • UE 115-c may identify a relationship between the transmission powers. For example, UE 115-c may determine a first and second uplink channel response matrix based on the reference signals from TRP 145-c and TRP 145-d respectively. UE 115-c may determine an orthogonal projection matrix of the second uplink channel response matrix. Additionally, UE 115-c may determine a projected matrix of the first uplink channel response matrix onto the orthogonal projected matrix. UE 115-c may calculate a major eigen vector of the projected matrix, which UE 115-c may use as a beamforming weight vector of the SRS transmission beam.
  • UE 115-c may determine an SRS transmission beam for an SRS signal.
  • the SRS transmission beam may be based on the beam determination procedure, the one or more first reference signals, and the one or more second reference signals.
  • UE 115-c may determine the SRS transmission beam maximizes the uplink channel gain on an uplink channel between UE 115-c and target TRP 145-c and generates zero interference on the uplink channel between UE 115-d and non-target TRP 145-d.
  • UE 115-c may determine the uplink channel gain between UE 115-c and target TRP 145-c based on the first reference signals.
  • UE 115-c may determine the interference between UE 115-c and non-target TRP 145-d based on the second reference signals.
  • the SRS transmission beam may maximize the ratio of the uplink channel gain on the uplink channel between UE 115-c and target TRP 145-c and the interference on the uplink channel between UE 115-c and non-target TRP 145-d.
  • base station 105-b may receive the SRS signal from UE 115-c.
  • UE 115-c may transmit the SRS signal using the determined SRS transmission beam, where the SRS transmission beam is based on the SRS transmission beam procedure and the reference signals.
  • base station 105-b may transmit an uplink scheduling grant based on the SRS signal from UE 115-c.
  • Base station 105-b and UE 115-c may communicate according to the uplink scheduling grant.
  • FIG. 4 shows a block diagram 400 of a device 405 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the device 405 may be an example of aspects of a UE 115 as described herein.
  • the device 405 may include a receiver 410, a communications manager 415, and a transmitter 420.
  • the device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to SRS configuration, etc. ) . Information may be passed on to other components of the device 405.
  • the receiver 410 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 410 may utilize a single antenna or a set of antennas.
  • the communications manager 415 may receive an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node, determine an SRS transmission beam for transmitting an SRS signal based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals, and transmit the SRS signal using the SRS transmission beam.
  • the communications manager 415 may be an example of aspects of the communications manager 710 described herein.
  • the communications manager 415 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 415, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 415 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 415, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 415, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 420 may transmit signals generated by other components of the device 405.
  • the transmitter 420 may be collocated with a receiver 410 in a transceiver module.
  • the transmitter 420 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 420 may utilize a single antenna or a set of antennas.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a device 405, or a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 535.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to SRS configuration, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may be an example of aspects of the communications manager 415 as described herein.
  • the communications manager 515 may include an SRS configuration component 520, a transmission beam component 525, and an SRS signal component 530.
  • the communications manager 515 may be an example of aspects of the communications manager 710 described herein.
  • the actions performed by the communications manager 515 as described herein may be implemented to realize one or more potential advantages.
  • One implementation may enable a base station to transmit an SRS configuration message that indicates reference signals from one or more TRPs to a UE.
  • Such indications may enable techniques for determining an SRS transmission beam at the UE, which may result in higher data rates and more efficient communications (e.g., less communication errors) , among other advantages.
  • a processor of a UE or base station may reduce the impact or likelihood of interference in a communications system while ensuring relatively efficient communications.
  • the reporting techniques described herein may leverage a relationship between the reference signals as well as the transmission beam determination procedure, which may realize reduced signaling overhead and power savings, among other benefits.
  • the SRS configuration component 520 may receive an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node.
  • the transmission beam component 525 may determine an SRS transmission beam for transmitting an SRS signal based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the SRS signal component 530 may transmit the SRS signal using the SRS transmission beam.
  • the transmitter 535 may transmit signals generated by other components of the device 505.
  • the transmitter 535 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 535 may be an example of aspects of the transceiver 720 described with reference to FIG. 7.
  • the transmitter 535 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a block diagram 600 of a communications manager 605 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the communications manager 605 may be an example of aspects of a communications manager 415, a communications manager 515, or a communications manager 710 described herein.
  • the communications manager 605 may include an SRS configuration component 610, a transmission beam component 615, an SRS signal component 620, a beam determination procedure component 625, a channel gain component 630, an interference component 635, a transmission power component 640, a reference signal component 645, and a scheduling component 650.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the SRS configuration component 610 may receive an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node.
  • the SRS configuration message indicates an identity of a resource associated with the one or more first reference signals, the one or more second reference signals, or both.
  • the SRS configuration message is received via radio resource control signaling, a medium access control layer control element, a downlink control information message, or a combination thereof.
  • the one or more first reference signals or the one or more second reference signals include channel state information reference signals, synchronization signal block reference signals, demodulation reference signals, or a combination thereof.
  • the first node includes a target node and the second node includes a non-target node with respect to the UE.
  • the transmission beam component 615 may determine an SRS transmission beam for transmitting an SRS signal based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the SRS signal component 620 may transmit the SRS signal using the SRS transmission beam.
  • the beam determination procedure component 625 may receive an indication of the procedure for determining the SRS transmission beam.
  • the beam determination procedure component 625 may determine that the SRS transmission beam maximizes an uplink channel gain on an uplink channel between the UE and the first node and generates zero interference on an uplink channel between the UE and the second node.
  • the beam determination procedure component 625 may determine that the SRS transmission beam maximizes a ratio of an uplink channel gain on an uplink channel between the UE and the first node and an interference on an uplink channel between the UE and the second node.
  • the channel gain component 630 may determine the uplink channel gain on the uplink channel between the UE and the first node based on the one or more first reference signals.
  • the interference component 635 may determine an interference on the uplink channel between the UE and the second node based on the one or more second reference signals.
  • the transmission power component 640 may identify a transmission power of the one or more first reference signals and a transmission power of the one or more second reference signals. In some examples, the transmission power component 640 may identify a relationship between the transmission power of the one or more first reference signals and the transmission power of the one or more second reference signals. In some examples, the transmission power component 640 may identify an absolute value of the transmission power of the one or more first reference signals and an absolute value of the one or more second reference signals.
  • the transmission power component 640 may receive an indication of the transmission power of the one or more first reference signals and the transmission power of the one or more second reference signals.
  • the reference signal component 645 may receive the one or more first reference signals from the first node. In some examples, the reference signal component 645 may receive the one or more second reference signals from the second node. In some examples, the reference signal component 645 may sweep a set of candidate reception beams to receive the one or more first reference signals and the one or more second reference signals.
  • the reference signal component 645 may determine a first uplink channel response matrix for the first node based on the one or more reference signals and a second uplink channel response matrix for the second node based on the one or more second reference signals. In some examples, the reference signal component 645 may determine an orthogonal projection matrix of the second uplink channel response matrix. In some examples, the reference signal component 645 may determine a projected matrix based on a projection of the first uplink channel response matrix onto the orthogonal projection matrix. In some examples, the reference signal component 645 may calculate a major eigen vector of the projected matrix as a beamforming weight vector of the SRS transmission beam. The scheduling component 650 may receive an uplink scheduling grant that is based on the transmitted SRS signal.
  • FIG. 7 shows a diagram of a system 700 including a device 705 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the device 705 may be an example of or include the components of device 405, device 505, or a UE 115 as described herein.
  • the device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, an I/O controller 715, a transceiver 720, an antenna 725, memory 730, and a processor 740. These components may be in electronic communication via one or more buses (e.g., bus 745) .
  • buses e.g., bus 745
  • the communications manager 710 may receive an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node, determine an SRS transmission beam for transmitting an SRS signal based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals, and transmit the SRS signal using the SRS transmission beam.
  • the I/O controller 715 may manage input and output signals for the device 705.
  • the I/O controller 715 may also manage peripherals not integrated into the device 705.
  • the I/O controller 715 may represent a physical connection or port to an external peripheral.
  • the I/O controller 715 may utilize an operating system such as or another known operating system.
  • the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 715 may be implemented as part of a processor.
  • a user may interact with the device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
  • the transceiver 720 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein.
  • the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 725. However, in some cases the device may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 730 may include RAM and ROM.
  • the memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 730 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 740 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 740 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 740.
  • the processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting SRS configuration) .
  • the code 735 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 8 shows a block diagram 800 of a device 805 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the device 805 may be an example of aspects of a base station 105 as described herein.
  • the device 805 may include a receiver 810, a communications manager 815, and a transmitter 820.
  • the device 805 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 810 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to SRS configuration, etc. ) . Information may be passed on to other components of the device 805.
  • the receiver 810 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 810 may utilize a single antenna or a set of antennas.
  • the communications manager 815 may transmit an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node and receive, from a UE, an SRS signal using an SRS transmission beam that is based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the communications manager 815 may be an example of aspects of the communications manager 1110 described herein.
  • the communications manager 815 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 815, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 815 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 815, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 815, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 820 may transmit signals generated by other components of the device 805.
  • the transmitter 820 may be collocated with a receiver 810 in a transceiver module.
  • the transmitter 820 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 820 may utilize a single antenna or a set of antennas.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a device 805, or a base station 105 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 930.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to SRS configuration, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may be an example of aspects of the communications manager 815 as described herein.
  • the communications manager 915 may include an SRS configuration module 920 and an SRS signal receiver 925.
  • the communications manager 915 may be an example of aspects of the communications manager 1110 described herein.
  • the SRS configuration module 920 may transmit an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node.
  • the SRS signal receiver 925 may receive, from a UE, an SRS signal using an SRS transmission beam that is based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the transmitter 930 may transmit signals generated by other components of the device 905.
  • the transmitter 930 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 930 may be an example of aspects of the transceiver 1120 described with reference to FIG. 11.
  • the transmitter 930 may utilize a single antenna or a set of antennas.
  • FIG. 10 shows a block diagram 1000 of a communications manager 1005 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the communications manager 1005 may be an example of aspects of a communications manager 815, a communications manager 915, or a communications manager 1110 described herein.
  • the communications manager 1005 may include an SRS configuration module 1010, an SRS signal receiver 1015, a beam determination procedure module 1020, a transmission power indicator 1025, and a scheduling module 1030. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the SRS configuration module 1010 may transmit an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node.
  • the SRS configuration message indicates an identity of an index associated with the one or more first reference signals, the one or more second reference signals, or both.
  • the SRS configuration message is transmitted via radio resource control signaling, a medium access control layer control element, a downlink control information message, or a combination thereof.
  • the one or more first reference signals or the one or more second reference signals include channel state information reference signals, synchronization signal block reference signals, or both.
  • the SRS signal receiver 1015 may receive, from a UE, an SRS signal using an SRS transmission beam that is based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the beam determination procedure module 1020 may transmit an indication of the procedure for determining the SRS transmission beam.
  • the beam determination procedure module 1020 may determine that the SRS transmission beam maximizes an uplink channel gain on an uplink channel between the UE and the first node and generates zero interference on an uplink channel between the UE and the second node.
  • the beam determination procedure module 1020 may determine that the SRS transmission beam maximizes a ratio of an uplink channel gain on an uplink channel between the UE and the first node and an interference on an uplink channel between the UE and the second node.
  • the transmission power indicator 1025 may transmit an indication of a transmission power of the one or more first reference signals and a transmission power of the one or more second reference signals.
  • the scheduling module 1030 may transmit an uplink scheduling grant that is based on the SRS signal.
  • FIG. 11 shows a diagram of a system 1100 including a device 1105 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the device 1105 may be an example of or include the components of device 805, device 905, or a base station 105 as described herein.
  • the device 1105 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1110, a network communications manager 1115, a transceiver 1120, an antenna 1125, memory 1130, a processor 1140, and an inter-station communications manager 1145. These components may be in electronic communication via one or more buses (e.g., bus 1150) .
  • buses e.g., bus 1150
  • the communications manager 1110 may transmit an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node and receive, from a UE, an SRS signal using an SRS transmission beam that is based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the network communications manager 1115 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1115 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1120 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described herein.
  • the transceiver 1120 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1120 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1125. However, in some cases the device may have more than one antenna 1125, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1130 may include RAM, ROM, or a combination thereof.
  • the memory 1130 may store computer-readable code 1135 including instructions that, when executed by a processor (e.g., the processor 1140) cause the device to perform various functions described herein.
  • the memory 1130 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1140 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1140 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1140.
  • the processor 1140 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1130) to cause the device 1105 to perform various functions (e.g., functions or tasks supporting SRS configuration) .
  • the inter-station communications manager 1145 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1145 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1145 may provide an X2 interface within an LTE/LTE-Awireless communication network technology to provide communication between base stations 105.
  • the code 1135 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1135 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1135 may not be directly executable by the processor 1140 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1200 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may receive an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node.
  • the operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by an SRS configuration component as described with reference to FIGs. 4 through 7.
  • the UE may determine an SRS transmission beam for transmitting an SRS signal based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a transmission beam component as described with reference to FIGs. 4 through 7.
  • the UE may transmit the SRS signal using the SRS transmission beam.
  • the operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by an SRS signal component as described with reference to FIGs. 4 through 7.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may receive an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by an SRS configuration component as described with reference to FIGs. 4 through 7.
  • the UE may receive an indication of the procedure for determining the SRS transmission beam.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a beam determination procedure component as described with reference to FIGs. 4 through 7.
  • the UE may determine an SRS transmission beam for transmitting an SRS signal based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a transmission beam component as described with reference to FIGs. 4 through 7.
  • the UE may transmit the SRS signal using the SRS transmission beam.
  • the operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by an SRS signal component as described with reference to FIGs. 4 through 7.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may receive an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by an SRS configuration component as described with reference to FIGs. 4 through 7.
  • the UE may determine that the SRS transmission beam maximizes an uplink channel gain on an uplink channel between the UE and the first node and generates zero interference on an uplink channel between the UE and the second node.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a beam determination procedure component as described with reference to FIGs. 4 through 7.
  • the UE may determine an SRS transmission beam for transmitting an SRS signal based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a transmission beam component as described with reference to FIGs. 4 through 7.
  • the UE may transmit the SRS signal using the SRS transmission beam.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by an SRS signal component as described with reference to FIGs. 4 through 7.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 4 through 7.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described herein.
  • a UE may perform aspects of the functions described herein using special-purpose hardware.
  • the UE may receive an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by an SRS configuration component as described with reference to FIGs. 4 through 7.
  • the UE may determine that the SRS transmission beam maximizes a ratio of an uplink channel gain on an uplink channel between the UE and the first node and an interference on an uplink channel between the UE and the second node.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a beam determination procedure component as described with reference to FIGs. 4 through 7.
  • the UE may determine an SRS transmission beam for transmitting an SRS signal based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a transmission beam component as described with reference to FIGs. 4 through 7.
  • the UE may transmit the SRS signal using the SRS transmission beam.
  • the operations of 1520 may be performed according to the methods described herein. In some examples, aspects of the operations of 1520 may be performed by an SRS signal component as described with reference to FIGs. 4 through 7.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein. Additionally or alternatively, a base station may perform aspects of the functions described herein using special-purpose hardware.
  • the base station may transmit an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by an SRS configuration module as described with reference to FIGs. 8 through 11.
  • the base station may receive, from a UE, an SRS signal using an SRS transmission beam that is based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by an SRS signal receiver as described with reference to FIGs. 8 through 11.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein.
  • a base station may perform aspects of the functions described herein using special-purpose hardware.
  • the base station may transmit an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by an SRS configuration module as described with reference to FIGs. 8 through 11.
  • the base station may transmit an indication of the procedure for determining the SRS transmission beam.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a beam determination procedure module as described with reference to FIGs. 8 through 11.
  • the base station may receive, from a UE, an SRS signal using an SRS transmission beam that is based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by an SRS signal receiver as described with reference to FIGs. 8 through 11.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein. Additionally or alternatively, a base station may perform aspects of the functions described herein using special-purpose hardware.
  • the base station may transmit an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by an SRS configuration module as described with reference to FIGs. 8 through 11.
  • the base station may determine that the SRS transmission beam maximizes an uplink channel gain on an uplink channel between the UE and the first node and generates zero interference on an uplink channel between the UE and the second node.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a beam determination procedure module as described with reference to FIGs. 8 through 11.
  • the base station may receive, from a UE, an SRS signal using an SRS transmission beam that is based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by an SRS signal receiver as described with reference to FIGs. 8 through 11.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports SRS configuration in accordance with aspects of the present disclosure.
  • the operations of method 1900 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 8 through 11.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described herein. Additionally or alternatively, a base station may perform aspects of the functions described herein using special-purpose hardware.
  • the base station may transmit an SRS configuration message that indicates one or more first reference signals from a first node and one or more second reference signals from a second node.
  • the operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by an SRS configuration module as described with reference to FIGs. 8 through 11.
  • the base station may determine that the SRS transmission beam maximizes a ratio of an uplink channel gain on an uplink channel between the UE and the first node and an interference on an uplink channel between the UE and the second node.
  • the operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a beam determination procedure module as described with reference to FIGs. 8 through 11.
  • the base station may receive, from a UE, an SRS signal using an SRS transmission beam that is based on a procedure for determining the SRS transmission beam, the one or more first reference signals, and the one or more second reference signals.
  • the operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by an SRS signal receiver as described with reference to FIGs. 8 through 11.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention concerne des procédés, des systèmes et des dispositifs de communication sans fil. Les procédés, les systèmes et les dispositifs peuvent permettre à un équipement utilisateur (UE) de recevoir un message de configuration de signal de référence de sondage (SRS) qui indique un ou plusieurs premiers signaux de référence provenant d'un premier nœud et un ou plusieurs seconds signaux de référence provenant d'un second nœud. L'UE peut déterminer un faisceau de transmission de SRS pour transmettre un signal SRS sur la base d'une procédure pour déterminer des faisceaux de transmission de SRS et le ou les signaux de référence provenant des premier et second nœuds. Cet UE peut transmettre un signal de liaison montante à l'aide du faisceau de transmission de liaison montante sélectionné.
PCT/CN2020/074072 2020-01-25 2020-01-30 Configuration de signal de référence de sondage WO2021151230A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/074072 WO2021151230A1 (fr) 2020-01-30 2020-01-30 Configuration de signal de référence de sondage
US17/758,295 US20230030275A1 (en) 2020-01-25 2021-01-07 Sounding reference signal configuration
PCT/CN2021/070606 WO2021147682A1 (fr) 2020-01-25 2021-01-07 Configuration de signal de référence de sondage
EP21743688.0A EP4094398A4 (fr) 2020-01-25 2021-01-07 Configuration de signal de référence de sondage
CN202180009651.5A CN114982188B (zh) 2020-01-25 2021-01-07 探测参考信号配置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074072 WO2021151230A1 (fr) 2020-01-30 2020-01-30 Configuration de signal de référence de sondage

Publications (1)

Publication Number Publication Date
WO2021151230A1 true WO2021151230A1 (fr) 2021-08-05

Family

ID=77078004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074072 WO2021151230A1 (fr) 2020-01-25 2020-01-30 Configuration de signal de référence de sondage

Country Status (1)

Country Link
WO (1) WO2021151230A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197186A1 (fr) * 2022-04-12 2023-10-19 北京小米移动软件有限公司 Procédé et appareil d'envoi de signal de référence, et procédé et appareil de réception de signal de référence

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474313A (zh) * 2017-09-08 2019-03-15 华硕电脑股份有限公司 非许可频谱中考虑波束成形传送的信道使用的方法和设备
WO2019195528A1 (fr) * 2018-04-04 2019-10-10 Idac Holdings, Inc. Indication de faisceau pour nouvelle radio 5g
CN110475360A (zh) * 2018-05-10 2019-11-19 华硕电脑股份有限公司 无线通信系统中上行链路传送的波束指示的方法和设备
CN110536423A (zh) * 2018-08-08 2019-12-03 中兴通讯股份有限公司 信息传输方法、监听方法、装置、基站、终端及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474313A (zh) * 2017-09-08 2019-03-15 华硕电脑股份有限公司 非许可频谱中考虑波束成形传送的信道使用的方法和设备
WO2019195528A1 (fr) * 2018-04-04 2019-10-10 Idac Holdings, Inc. Indication de faisceau pour nouvelle radio 5g
CN110475360A (zh) * 2018-05-10 2019-11-19 华硕电脑股份有限公司 无线通信系统中上行链路传送的波束指示的方法和设备
CN110536423A (zh) * 2018-08-08 2019-12-03 中兴通讯股份有限公司 信息传输方法、监听方法、装置、基站、终端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CMCC: "Enhancements on multi-beam operation", 3GPP TSG RAN WG1 #96BIS R1-1904736, 12 April 2019 (2019-04-12), XP051691724 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197186A1 (fr) * 2022-04-12 2023-10-19 北京小米移动软件有限公司 Procédé et appareil d'envoi de signal de référence, et procédé et appareil de réception de signal de référence

Similar Documents

Publication Publication Date Title
US11937277B2 (en) Concurrent sidelink and uplink transmission
WO2022032567A1 (fr) Procédés de mesure et de rapport d'un décalage doppler
US11817978B2 (en) Techniques for configuring multi-transmission reception point communication schemes
EP4052382B1 (fr) Rétroaction de corrélation d'antenne pour réciprocité partielle
EP4066405A1 (fr) Configurations permettant la gestion de faisceaux de liaison latérale
WO2021046666A1 (fr) Motif de synchronisation de transmission en liaison montante
US11627581B2 (en) Rank indicator and layer indicator signaling in non-coherent joint transmission channel state information
WO2021147682A1 (fr) Configuration de signal de référence de sondage
US11671940B2 (en) Sidelink communication during a downlink slot
WO2021151230A1 (fr) Configuration de signal de référence de sondage
WO2022016321A1 (fr) Techniques pour rapporter des informations d'état de canal pour des faisceaux larges
WO2021258378A1 (fr) Règle de multiplexage d'informations de commande de liaison montante pour transmission de canal de commande de liaison montante et de canal partagé de liaison montante simultanée
WO2021253258A1 (fr) Alignement de signal de référence de suivi de phase pour canal partagé physique
WO2021258385A1 (fr) Multiplexage dynamique de commande de liaison montante entre des canaux physiques de liaison montante
US11937213B2 (en) Optimizations for sidelink user equipment for integrated access and backhaul network
WO2022109849A1 (fr) Périodicité de rétroaction spécifique à une couche
WO2023150934A1 (fr) Indication de groupe d'avance temporelle basée sur une indication de configuration de transmission unifiée
WO2022205052A1 (fr) Charge utile d'informations de commande de liaison montante et ordonnancement pour informations d'état de canal de point de réception de transmission conjointe non cohérente et de transmission unique
WO2023130421A1 (fr) Commutation de liaison montante pour transmissions simultanées
WO2021226789A1 (fr) Rapport d'informations d'état de canal pour des bandes partielles
US20210352674A1 (en) Group common control for coverage enhancement for uplink control channel
WO2021217507A1 (fr) Techniques de configuration de densité spectrale de puissance pour des systèmes sans fil
WO2022222137A1 (fr) Configuration pour coopération d'équipement utilisateur
WO2021226753A1 (fr) Signal de référence pour mesures de brouillage inter-liaisons
EP4331247A1 (fr) Rapport de capacité basé sur la coopération de dispositifs sans fil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916410

Country of ref document: EP

Kind code of ref document: A1