WO2021149752A1 - Method for determining prognosis of glioma - Google Patents

Method for determining prognosis of glioma Download PDF

Info

Publication number
WO2021149752A1
WO2021149752A1 PCT/JP2021/001970 JP2021001970W WO2021149752A1 WO 2021149752 A1 WO2021149752 A1 WO 2021149752A1 JP 2021001970 W JP2021001970 W JP 2021001970W WO 2021149752 A1 WO2021149752 A1 WO 2021149752A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
dna
nucleotide sequence
glioma
seq
Prior art date
Application number
PCT/JP2021/001970
Other languages
French (fr)
Japanese (ja)
Inventor
邦夫 三宅
岳史 犬飼
渡邊 敦
博之 木内
智之 川瀧
光人 埴原
有理子 根本
Original Assignee
国立大学法人山梨大学
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山梨大学, 積水メディカル株式会社 filed Critical 国立大学法人山梨大学
Priority to JP2021572781A priority Critical patent/JPWO2021149752A1/ja
Publication of WO2021149752A1 publication Critical patent/WO2021149752A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer

Definitions

  • the present invention relates to a method for determining the prognosis of glioma.
  • Glioma is a brain tumor that develops from glial cells. Gliomas are broadly divided into astrocytomas and oligodendrocytes, and about 85% of gliomas are astrocytomas. Brain tumors are classified into grades 1 to 4 according to their malignancy. Grade 1 is a benign tumor such as pilocytic astrocytoma that occurs frequently in children. Grade 2 is diffuse astrocytoma and oligodendroglioma, and when they become more malignant, they become grade 3 anaplastic astrocytoma or anaplastic oligodendroglioma. Grade 4 is glioblastoma, the most malignant. Grades 3 and 4 are sometimes collectively referred to as malignant glioma. Glioblastoma accounts for about 10% of intracranial tumors, most of which occur in adults and have a very poor prognosis.
  • temozolomide postoperative drug therapy
  • Non-Patent Document 1 reports that methylation of the MGMT gene promoter region is associated with tumor shrinkage and prolongation of survival after chemotherapy.
  • Non-Patent Document 2 states that in patients with methylation of the MGMT gene promoter region, temozolomide combination therapy statistically significantly prolonged survival compared to radiation monotherapy, but methylation of the MGMT gene promoter region was observed.
  • Non-Patent Document 3 a relationship between methylation of the MGMT gene promoter region and prognosis was observed even in the case of radiation monotherapy.
  • a method for analyzing methylated DNA As a method for analyzing methylated DNA, a method using the bisulfite method has already been established and is widely used.
  • Examples of the methylated DNA analysis method based on the bisulfite method include a methylation-Special PCR (MSP) method, a Combined Bisulfite Restoration Analysis (COBRA) method, a BAC array-based methylated CpG island amplification method (BAMCA method), and the following. Sequencing by a generation sequencer (MethylCap-seq), a method of detecting a single-base extension reaction with a methylated / unmethylated DNA-specific probe (for example, Infinium® assay), methylation-sensitivity restoration enzyme measurement (MRE). -Seq) method is used.
  • Patent Document 1 discloses a method for detecting DNA methylation levels based on the difference in retention time by ion exchange chromatography.
  • the present invention provides a method for evaluating the prognosis of a tumor based on the methylation level of DNA in glioma.
  • MGMT O6-methyl-guanine-DNA-methyltransphase
  • the present invention provides the following.
  • [1] A method for determining cells or tissues derived from glioma with a good or poor prognosis. 1) To measure the DNA methylation level of the target DNA region contained in the promoter region of the gene encoding O6-methyl-guanine-DNA-methyltransferase in DNA derived from glioma cells or tissues containing the same.
  • the target DNA region is at least one region selected from the group consisting of the following regions 1 and 2: Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof, Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof, 2)
  • Region 1 A value selected from the range of 10-40%
  • Criteria for region 2 Value selected from the range of 5-30%, Including methods.
  • [2] A method for determining the prognosis of glioma. 1) To measure the DNA methylation level of the target DNA region contained in the promoter region of the gene encoding O6-methyl-guanine-DNA-methyltransphase in DNA derived from the subject's glioma cells or tissues containing the same.
  • the target DNA region is at least one region selected from the group consisting of the following regions 1 and 2: Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof, Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof, 2)
  • Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof
  • Region 2 A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof, 2
  • the measured DNA methylation level is equal to or higher than the following criteria
  • the subject's glioma is judged to have a good prognosis, or when the measured DNA methylation level is less than the following criteria, the subject is judged to have a good prognosis.
  • Judging glioma as poor prognosis Criteria for region 1 A value selected from the range of 10-40%, Criteria for region 2 Value selected from the range of 5-30%, Including methods. [3] A method for acquiring data to be used for determining cells or tissues derived from glioma having a good or poor prognosis, or for determining the prognosis of glioma. 1) To measure the DNA methylation level of the target DNA region contained in the promoter region of the gene encoding O6-methyl-guanine-DNA-methyltransphase in DNA derived from the subject's glioma cells or tissues containing the same.
  • the target DNA region is at least one region selected from the group consisting of the following regions 1 and 2: Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof, Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof, 2) Obtaining data on whether or not the measured DNA methylation level is above the following criteria: Criteria for region 1 A value selected from the range of 10-40%, Criteria for region 2 Value selected from the range of 5-30%, Including methods.
  • [4] The method according to any one of [1] to [3], wherein the promoter region consists of the nucleotide sequence of SEQ ID NO: 3 or a nucleotide sequence having at least 90% identity thereof.
  • [5] The item according to any one of [1] to [4], wherein the region 1 is a region consisting of the nucleotide sequence of SEQ ID NO: 1 and the region 2 is a region consisting of the nucleotide sequence of SEQ ID NO: 2. the method of.
  • the measurement of the DNA methylation level comprises measuring the DNA methylation level of at least one region selected from the group consisting of the bisulfite-treated regions 1 and 2.
  • [1] to [ 5] The method according to any one of paragraphs 1.
  • the bisulfite-treated region 1 is a region sandwiched between a primer consisting of the nucleotide sequence of SEQ ID NO: 4 and a primer consisting of the nucleotide sequence of SEQ ID NO: 5 (however, the primer binding sequence is not included).
  • the bisulfite-treated region 2 is a region sandwiched between a primer consisting of the nucleotide sequence of SEQ ID NO: 6 and a primer consisting of the nucleotide sequence of SEQ ID NO: 7 (however, the primer binding sequence is not included).
  • the target DNA region is at least one region selected from the group consisting of regions 1 and 2 below: Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof, Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof, And, A guide for determining whether or not the DNA methylation level of the target DNA region is equal to or higher than the following criteria is included. Criteria for region 1 A value selected from the range of 10-40%, Criteria for region 2 Value selected from the range of 5-30%, kit.
  • the PCR primer set is a primer set consisting of a primer consisting of the nucleotide sequence of SEQ ID NO: 4 and a primer consisting of the nucleotide sequence of SEQ ID NO: 5, or a primer consisting of the nucleotide sequence of SEQ ID NO: 6 and the nucleotide of SEQ ID NO: 7.
  • the kit according to [10] which is a primer set with a primer consisting of a sequence.
  • the system according to [12] comprising an ion exchange chromatography apparatus.
  • the present invention provides a criterion for determining the prognosis of glioma, and a method for determining the prognosis of glioma using the criterion. According to the present invention, more reliable prognosis of glioma can be determined.
  • PFS and OS in the hypermethylated group (dotted line) and the hypomethylated group (solid line) of P1 (A) and P2 (B). Changes in survival rate (Probability) depending on the number of postoperative days (left: PFS, right: OS). The reference values for methylation are P1: 30% and P2: 7.5%.
  • PFS and OS in the hypermethylated group (dotted line) and the hypomethylated group (solid line) of P1 (A) and P2 (B). Changes in survival rate (Probability) depending on the number of postoperative days (left: PFS, right: OS).
  • the reference values for methylation are P1: 34.15% and P2: 8.84%. Changes in PFS (Probability) in the hypermethylated and hypomethylated groups of P1 depending on the number of postoperative days. Data based on the methylation level of DNA derived from FFPE specimens.
  • the identity of amino acid sequences and nucleotide sequences can be determined using the algorithm BLAST (Pro. Natl. Acad. Sci. USA, 1993, 90: 5873-5877) by Carlin and Arthur. Based on this BLAST algorithm, programs called BLASTN, BLASTX, BLASTP, BLASTN and TBLASTX have been developed (J. Mol. Biol., 1990, 215: 403-410). When using these programs, the default parameters of each program can be used. Specific methods for these analysis methods are known (see [www.ncbi.nlm.nih.gov]).
  • amino acid sequences and nucleotide sequences means 90% or more identity, preferably 95% or more identity, more preferably 97% or more identity, even more preferably. Means 98% or more identity, more preferably 99% or more identity.
  • the "corresponding position" on the amino acid sequence and the nucleotide sequence refers to the target sequence and the reference sequence (for example, the nucleotide sequence of SEQ ID NO: 1) as a conserved amino acid residue existing in each amino acid sequence or nucleotide sequence. It can be determined by aligning the groups or nucleotides to give them maximum homology. Alignment can be performed using known algorithms and the procedure is known to those of skill in the art. For example, alignment can be performed by using the Clustal W multiple alignment program (Thompson, J. D. et al, 1994, Nucleic Acids Res., 22: 4673-4680) with default settings.
  • Clustal W is, for example, the European Bioinformatics Institute (EBI [www.ebi.ac.uk/index.html]) and the DNA Data Bank of Japan (DDBJ [www. It can be used on the website of ddbj.nig.ac.jp/index.html]).
  • EBI European Bioinformatics Institute
  • DDBJ DNA Data Bank of Japan
  • glioma refers to a brain tumor that develops from glial cells (glioma cells). Glioblastomas are classified according to the World Health Organization (WHO) classification, including pilocytic astrocytoma (grade 1), diffuse astrocytoma, and oligodendroglioma (grade 2), and anaplastic astrocytoma. , And anaplastic oligodendroglioma (grade 3), and glioblastoma (grade 4).
  • WHO World Health Organization
  • the glioma to be determined for prognosis in the present invention is preferably a grade 2 to 4 glioma, more preferably a grade 3 to 4 malignant glioma, and even more preferably a grade 4 glioblastoma. It is a tumor.
  • the "prognosis" of a tumor refers to the future condition of the tumor.
  • a “poor prognosis” of a tumor means a low survival rate (after treatment) of a patient having the tumor
  • a "good prognosis” of a tumor means a prognosis of a patient having the tumor (after treatment).
  • the survival rate (after treatment) is not low. For example, in a glioma patient, if the progression-free survival (PFS) is 50% or less 500 days after surgery, or if the overall survival (OS) is 1000 days after surgery, the overall survival rate (OS) is If less than 20%, the glioma or patient has a "poor prognosis”.
  • CpG means a site in DNA where a phosphodiester bond (p) is formed between cytosine (C) and guanine (G).
  • C cytosine
  • G guanine
  • CpG island The region where CpG frequently appears is called a CpG island and is often present in the promoter region of a gene.
  • CpG of a gene (is) means CpG present in the promoter region of the gene, unless otherwise defined.
  • DNA methylation means a state in which cytosine (5-carbon in cytosine) of DNA is methylated.
  • DNA methylation level (or simply referred to as “methylation level") of a DNA region means the ratio of cytosine contained in the DNA region being methylated.
  • the methylation level of a DNA region can be expressed as the ratio of the number of methylated cytosines to the total number of cytosines (methylated cytosine and unmethylated cytosine) contained in the DNA region.
  • One aspect of the present invention relates to a method for determining the prognosis of glioma.
  • One embodiment of this embodiment is a method for determining the prognosis of glioma, wherein the method is: O6-methyl-guanine-DNA-methyltransferase (MGMT) in DNA derived from a subject's glioma cells or a tissue containing the same. ) Is measured in the DNA methylation level of the target DNA region contained in the promoter region of the gene encoding; and the glioma is based on whether or not the measured DNA methylation level is equal to or higher than a predetermined standard. Includes determining whether a tumor has a poor prognosis.
  • MGMT O6-methyl-guanine-DNA-methyltransferase
  • Another embodiment of this embodiment is a method for determining cells or tissues derived from glioma having a good or poor prognosis, which method: encodes MGMT in DNA derived from glioma cells or tissues containing the same.
  • the cell or tissue has a poor prognosis based on measuring the DNA methylation level of the target DNA region contained in the promoter region of the gene to be used; and whether the measured DNA methylation level is above a predetermined standard.
  • Another embodiment of this embodiment is a method of obtaining data for use in determining cells or tissues derived from glioma with good or poor prognosis, or in determining the prognosis of glioma, wherein the method is: test.
  • the method for acquiring data according to the present invention is a method that does not include prognostic diagnosis of glioma by a doctor or the like.
  • the method is a method for acquiring data necessary for prognosis diagnosis by a doctor or the like, which is carried out in a research institute or a clinical laboratory.
  • the method for determining the prognosis of glioma according to the present invention the method for determining cells or tissues derived from glioma having a good or poor prognosis, and the method for acquiring data are collectively referred to as the method of the present invention. It is called.
  • examples of the subject include those who need to determine the prognosis of glioma, for example, patients suffering from glioma, preferably patients who have been treated for glioma by surgery. Can be mentioned. Preferably, these patients are receiving radiation therapy, or a combination of radiation therapy and chemotherapy (eg, administration of an alkylating agent such as temozolomid), or radiation therapy or a combination of the same. Patients who are being considered for receiving.
  • Examples of the DNA derived from the glioma cell or the tissue containing the glioma cell used in the method of the present invention include genomic DNA prepared from the glioma cell of the subject or the tissue containing the glioma cell.
  • Examples of the glioma cells or tissues containing them include fresh glioma cells collected in surgery or tissues containing them; glioma cells frozen after collection or frozen tissues containing them; formalin after collection. Examples include fixed and paraffin-embedded glioma cells or tissues containing them. Of these, frozen glioma cells or frozen tissues containing them are preferable from the viewpoint of suppressing the decomposition of DNA in cells or tissues and detecting the DNA methylation level more efficiently.
  • the method for preparing sample DNA from tissues or cells is not particularly limited, and a known method can be appropriately selected and used.
  • Known methods for preparing DNA include the phenol chloroform method, a commercially available DNA extraction kit, for example, DNeasy Blood & Tissue Kit (manufactured by Qiagen), QIAamp DNA Mini kit (manufactured by Qiagen), Clean Colors (manufactured by NexTech), and the like.
  • Examples thereof include a DNA extraction method using AquaPure (manufactured by Bio-Rad), ZR Plant / Seed DNA Kit (manufactured by Zymo Research), prepGEM (manufactured by ZyGEM), BuccalQuick (manufactured by TrimGen), and the like.
  • the prepared sample DNA is bisulfite-treated.
  • the method for bisulfite treatment of DNA is not particularly limited, and a known method can be appropriately selected and used.
  • Known methods for bisulfite treatment include, for example, EZ DNA methylation-Gold kit, EZ DNA methylation-Lightning Kit (all manufactured by Zymo Research), EpiTect Bisulfite Kit (48) (manufactured by Qagen), and Qagen.
  • Human Genetic Signatures Pty Human Genetic Signatures Pty
  • Cells-to-CpG Bisulfite Conversion Kit (Applied Biosystems)
  • CpGenome Turbo Bisulfite Models CpGenome Turbo Bisulfite Mods, etc.
  • the amplification method is not particularly limited, but PCR is preferably used.
  • PCR is preferably used.
  • known methods and conditions can be appropriately selected and used according to the sequence, length, amount and the like of the DNA to be amplified.
  • the promoter region of the gene encoding O6-methyl-guanine-DNA-methyltransphase (MGMT) in the sample DNA derived from the glioma-derived DNA prepared as described above (hereinafter, also referred to as MGMT promoter region). ), The DNA methylation level of the target DNA region is measured.
  • the MGMT promoter region can be identified as a region on genomic DNA consisting of the nucleotide sequence of SEQ ID NO: 3 or a nucleotide sequence having at least 90% identity thereof.
  • the MGMT promoter region on genomic DNA can be identified with reference to the NCBI database ([www.ncbi.nlm.nih.gov/]).
  • the target DNA region in which the DNA methylation level is measured is at least one region selected from the group consisting of the following regions 1 and 2 in the MGMT promoter region: Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof, wherein the nucleotide sequence of SEQ ID NO: 1 is the nucleotide sequence Nos. 2319 to 2470 of SEQ ID NO: 3. Equivalent to; Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof, wherein the nucleotide sequence of SEQ ID NO: 2 is the nucleotide sequence of SEQ ID NO: 3 from No. 2534 to No. 2777. Equivalent to.
  • the regions 1 and 2 are represented as regions within the MGMT promoter region as defined below: Region 1) After bisulfite treatment, a region sandwiched between a primer consisting of the nucleotide sequence of SEQ ID NO: 4 and a primer consisting of the nucleotide sequence of SEQ ID NO: 5 (not including the primer binding sequence); Region 2) A region (not including the primer binding sequence) sandwiched between a primer consisting of the nucleotide sequence of SEQ ID NO: 6 and a primer consisting of the nucleotide sequence of SEQ ID NO: 7 after bisulfite treatment.
  • the present inventor has found that the DNA methylation levels in the regions 1 and 2 in the MGMT promoter region are effective as markers for determining the prognosis of glioma. More specifically, the present inventor has found that the prognosis of glioma can be determined based on whether or not the DNA methylation level in any of the above regions 1 and 2 meets a predetermined criterion. In the method of the present invention, the prognosis of glioma is determined based on whether or not the DNA methylation level of at least one region selected from the group consisting of the regions 1 and 2 meets a predetermined criterion.
  • Non-Patent Documents 1 to 3 Non-Patent Documents 1 to 3
  • the prognosis of glioma based on DNA methylation of the MGMT promoter region. No clear criteria have been provided so far to determine.
  • the criterion for the region 1 is a value selected from the range of 10 to 40%, for example, but not limited to, 10%, 20%, 23%, 25%, 28%, 30%, 33%. It may be set to 35%, 38%, or 40%.
  • the criteria for region 1 is a value selected from the range of 25-35%, or 25-36%, eg, but not limited to 25%, 28%, 30%, 33%, 35. It may be set to% or 36%.
  • the criteria for region 1 is a value selected from the range 29-36% or 29-31%, eg, but not limited to 29%, 30%, 31%, 32%, 33. It may be set to%, 34%, 34.2%, 34.5%, 35%, or 36%. More preferably, the standard for region 1 may be set in the range of 30% or 30 to 36%, more preferably in the range of 30 to 34.2%. Criteria for region 2 are values selected from the range of 5-30%, such as, but not limited to, 5%, 7.5%, 9%, 11%, 13%, 15%, 20%, 25. It may be set to% or 30%.
  • the criterion for region 2 may be set to a value selected from the range of 5-11%, for example, but not limited to, 5%, 7.5%, 9%, or 11%. More preferably, the criterion for region 2 is a value selected from the range of 6.5 to 8.5%, or 6.5 to 9.5%, eg, but not limited to 6.5%. , 7.5%, 8.5%, 8.8%, 8.9%, 9.0%, or 9.5%. More preferably, the standard for region 2 may be set in the range of 7.5%, 7.5 to 9.5%, and more preferably 7.5 to 8.9%.
  • DNA methylation levels above the criteria indicate a good (or not poor) prognosis for glioma
  • DNA methylation levels below the criteria are neurological. Indicates a poor prognosis for glioma.
  • the prognosis of the subject's glioma may be determined to be good (or not bad).
  • the prognosis of the subject's glioma can be determined to be poor.
  • the cell or tissue from which the sample DNA is derived has a good (or not bad) prognosis.
  • the cell or tissue is of origin, while the cell or tissue from which the sample DNA is derived is derived from glioma with a poor prognosis when the DNA methylation level of the region 1 is below the above criteria. Can be determined to be.
  • the prognosis of the subject's glioma may be determined to be good (or not bad).
  • the prognosis of the subject's glioma can be determined to be poor.
  • the cell or tissue from which the sample DNA is derived has a good (or not bad) prognosis.
  • the cell or tissue is of origin, while the cell or tissue from which the sample DNA is derived is derived from glioma with a poor prognosis when the DNA methylation level of the region 2 is below the above criteria. Can be determined to be.
  • the DNA methylation levels of regions 1 and 2 can be combined to determine the prognosis of glioma. For example, when the DNA methylation levels of both regions 1 and 2 are both below the criteria, the prognosis of the subject's glioma is poor, or the cell or tissue from which the sample DNA is derived has a prognosis. It can be determined to be of poor glioma origin. Alternatively, when the DNA methylation levels in both regions 1 and 2 are both above the criteria, the prognosis for glioma in the subject is good (or not bad), or the sample DNA is derived. Cells or tissues that produce can be determined to be derived from glioma with a good (or not poor) prognosis.
  • any one or more of the regions 1 and 2 may be amplified, or the regions 1 and 2 may be amplified. Both may be amplified.
  • the method for measuring the DNA methylation level of the regions 1 and 2 is not particularly limited, and a known DNA methylation level quantification method can be appropriately used. Examples of such known methods include the first to eighth methods shown below.
  • the first method is DNA methylation in the target DNA region using a 1-base extension reaction using a probe constructed to have a base complementary to methylated or unmethylated cytosine at the 3'end.
  • a probe that hybridizes to bisulfite-treated genomic DNA has a base complementary to methylated or unmethylated cytosine of CpG in the target DNA region at the 3'end.
  • Bisulfite treatment converts unmethylated cytosine to uracil, but not methylated cytosine.
  • the base at the 3'end of the probe for methylated cytosine is guanine
  • the base at the 3'end of the probe for unmethylated cytosine is adenine.
  • the two types of probes are hybridized with the single-stranded fragmented bisulfite-treated DNA, and a single-base extension reaction is carried out in the presence of a fluorescently labeled base.
  • a one-base extension reaction occurs with either probe to incorporate the fluorescently labeled base.
  • the DNA methylation level can be calculated from the intensity of fluorescence emitted by the probe for methylated cytosine and / or the probe for unmethylated cytosine.
  • a probe that hybridizes to bisulfite-treated genomic DNA and has a base complementary to CpG guanine in the target DNA region at its 3'end is used. You may. Then, the probe is hybridized with the single-stranded fragmented DNA, and a one-base extension reaction is carried out in the presence of guanine labeled with a fluorescent substance and / or adenine labeled with a fluorescent dye different from the fluorescent substance. I do. Fluorescently labeled guanine or adenine is incorporated into the probe depending on the methylation or unmethylation of the target cytosine. The DNA methylation level can be calculated from the fluorescence emitted by each fluorescent substance incorporated into the probe.
  • a preferred example of such a first method is, for example, the bead array method (eg, Infinium® assay).
  • the second method is a method of quantifying methylated DNA by mass spectrometry.
  • Preferred examples of the second method include, for example, MassARRAY® (Jurinke C et al., Mutat Res, 2005, 573, pp. 83-95).
  • MassARRAY® the target DNA region after bisulfite treatment is amplified, transcribed into RNA, and then specifically cleaved at the uracil site by RNAase. As a result, RNA fragments having different lengths are generated depending on the presence or absence of DNA methylation (conversion of cytosine to uracil).
  • RNA fragments derived from methylated DNA and RNA fragments derived from unmethylated DNA were separated according to the difference in molecular weight, and from the mass ratio of these fragments detected. , The DNA methylation level of the target DNA region is calculated.
  • MALDI-TOF MAS for example, MassARRAY Analyzer 4 manufactured by SEQUENOM
  • SEQUENOM SEQUENOM
  • a third method includes a pyrosequencing method (registered trademark, Pyrosequencing) (see Anal. Biochem. (2000) 10: 103-110).
  • the target DNA region treated with bisulfite is amplified, and the amplified DNA is dissociated into a single strand.
  • An extension reaction (sequencing) is performed one base at a time using one strand of the obtained single-stranded DNA.
  • unmethylated cytosine (converted to uracil) is shown as thymine.
  • the pyrophosphate produced during the reaction is enzymatically emitted to emit light, and the intensity of the emission is measured.
  • the luminescence intensity derived from methylated cytosine is compared with the luminescence intensity derived from unmethylated cytosine (thymine), and for example, the DNA methylation level (%) of the target DNA region is calculated by the following formula.
  • DNA methylation level (%) cytosine luminescence intensity x 100 / (cytosine luminescence intensity + thymine luminescence intensity).
  • methylation-sensitive high resolution melting MS-HRM, Wojidacz TK et al., Nat Protocol., 2008, Vol. 3, pp. 1903-8
  • MS-HRM methylation-sensitive high resolution melting
  • the melting curve of the amplification product of the bisulfite-treated target DNA region is measured in a reaction system containing an intercalator that fluoresces when inserted between DNA double strands.
  • the DNA methylation level of the target DNA region is calculated by comparing the melting curve with methylated / unmethylated controls.
  • methylation-specific polymerase chain reaction (MS-PCR) using real-time quantative PCR such as the Methylation method using a TaqMan probe (registered trademark) is mentioned. Be done.
  • a bisulfite-treated target DNA region is amplified by using a primer set that specifically amplifies methylated DNA and a primer set that specifically amplifies unmethylated DNA. DNA methylation levels are calculated by comparing the amounts of each amplification product.
  • Examples of the sixth method include bisulfite direct sequencing and bisulfite cloning sequencing (Kristensen LS et al., Clin Chem, Vol. 14, 2009, Vol. 55). See page 83).
  • COBRA analysis using a combination of bisulfite and a restriction enzyme
  • the eighth method is a method using ion exchange chromatography.
  • the eighth method first, the bisulfite-treated genomic DNA is fragmented, and the target DNA region is amplified by PCR using the obtained DNA fragment as a template. The amplified DNA fragment is then subjected to ion exchange chromatography to calculate the DNA methylation level of the target DNA region based on the peak retention time.
  • unmethylated cytosine in the target DNA region is converted to uracil by bisulfite treatment and then further converted to thymine by PCR.
  • methylated cytosine remains cytosine after bisulfite treatment and PCR. Due to this base difference, the methylated cytosine-containing fragment (methylated fragment) and the unmethylated fragment are detected as separate peaks with different retention times in ion exchange chromatography.
  • the peak retention time of the methylated fragment is shorter than that of the unmethylated fragment, and the higher the methylation level, the earlier the retention time peak is detected. Therefore, the DNA methylation level of the target DNA region can be calculated based on the retention time of the peak in ion exchange chromatography.
  • the DNA methylation level of the target DNA region can be calculated based on a calibration curve prepared in advance using DNA derived from the same DNA region whose methylation level is known.
  • the retention time of the reference peak may be measured together with the sample DNA, or may be determined in advance. Sample DNA detected at the same or earlier retention time as Reference is determined to have a methylation level above the reference, while sample DNA detected at a retention time below the reference has a methylation level of said. It is judged to be below the standard.
  • the ion exchange chromatography performed by the eighth method is preferably anion exchange chromatography.
  • the column packing material is not particularly limited as long as it is a base particle having a strong cationic group on the surface, but is shown in International Publication No. 2012/108516, which has a strong cationic group and a weak cationic property on the packing surface.
  • Substrate particles having both groups are preferred. More preferably, the substrate particles are coated polymer particles in which a layer of a hydrophilic polymer having a strongly cationic group (preferably a quaternary ammonium salt) is copolymerized on the surface of the hydrophobic crosslinked polymer particles.
  • the column temperature during the chromatographic analysis is preferably 30 ° C. or higher and lower than 90 ° C.
  • the method that can be suitably used as the "method for measuring the DNA methylation level" in the present invention has been exemplified, but the method is not limited to this.
  • genomic DNA prepared from glioma cells or tissues containing the glioma cells is further subjected to bisulfite treatment. Therefore, the DNA used to measure DNA methylation levels in the methods of the invention is preferably bisulfite-treated genomic DNA from glioma cells or tissues containing them.
  • the present invention can contribute to improving the quality of life and prognosis of an individual patient by providing the individual patient with information for selecting an appropriate treatment.
  • the present invention also provides a method for treating glioma, which comprises treating a subject who is determined to have a good or poor prognosis for glioma by the method for determining prognosis of the present invention.
  • a means of treatment it is preferable to use radiation therapy in combination with chemotherapy (for example, administration of an alkylating agent such as temozolomid) for subjects with a good prognosis, and only radiation therapy for subjects with a poor prognosis.
  • chemotherapy for example, administration of an alkylating agent such as temozolomid
  • the present invention provides primers or probes for use in the methods of the present invention.
  • the primer or probe is used for determining the prognosis of glioma, for determining cells or tissues derived from glioma with good or poor prognosis, or for determining cells or tissues derived from glioma by any of the first to eighth methods. It is used to acquire the data used for those determinations.
  • the primer or probe is a primer or probe for measuring the DNA methylation level of said region 1 or 2 in the MGMT promoter region. More preferably, the primer or probe is a primer or probe that hybridizes to the bisulfite-treated MGMT promoter region.
  • the chain length of the primer or probe of the present invention may be at least 12 bases, but is preferably at least 15 bases, and more preferably 15 to 200 bases.
  • the preferred chain length is 100-200 bases, more preferably 100-150 bases.
  • the preferred chain length is 12-60 bases, more preferably 15-40 bases.
  • the primer or probe of the present invention may be labeled (for example, fluorescently labeled).
  • the primer or probe of the present invention is preferably a primer or probe that can be used in any of the first to eighth methods.
  • a primer set for PCR amplification of the region 1 or 2 in the bisulfite-treated MGMT promoter region (for example, a primer set that can be used in the above-mentioned eighth method).
  • An example of such a primer set is a primer set consisting of a primer consisting of the nucleotide sequence of SEQ ID NO: 4 and a primer consisting of the nucleotide sequence of SEQ ID NO: 5, which PCR-amplifies the bisulfite-treated region 1, or a primer set complementary thereto.
  • Primer set consisting of primers having a specific sequence; and a primer set consisting of a primer consisting of the nucleotide sequence of SEQ ID NO: 6 and a primer consisting of the nucleotide sequence of SEQ ID NO: 7, which PCR-amplifies the bisulfite-treated region 2.
  • a primer set consisting of primers having a sequence complementary to the above can be mentioned.
  • Examples thereof include a primer set consisting of a primer having a similar sequence and a primer having a sequence consisting of at least 90% identical to the nucleotide sequence of SEQ ID NO: 7, or a primer set consisting of a primer having a sequence complementary thereto.
  • primer or probe of the present invention hybridizes to either of the bisulfite-treated regions 1 and 2 and is complementary to methylated or unmethylated cytosine at its 3'end.
  • Primers or probes constructed to have a specific base for example, primers or probes that can be used in the first method described above can be mentioned.
  • a primer capable of hybridizing to any of the bisulfite-treated regions 1 and 2 and carrying out an extension reaction one base at a time for example, the above-mentioned third primer.
  • Primer for pyrosequencing that can be used in the above method.
  • primer or probe of the present invention is a primer set capable of specifically amplifying bisulfite-treated DNA derived from the methylated region 1 or 2, and the unmethylated region.
  • primer set capable of specifically amplifying bisulfite-treated DNA derived from 1 or 2 for example, a primer set that can be used in the above-mentioned fifth method.
  • the present invention provides a kit for performing the method of the present invention, which comprises the primer or probe of the present invention.
  • the kit of the present invention is used for determining the prognosis of glioma, for determining cells or tissues derived from glioma having a good or poor prognosis, or for determining cells or tissues derived from glioma by any of the first to eighth methods. It is used to acquire the data used for those determinations.
  • the kit of the present invention can contain components other than the primer or probe of the present invention.
  • components include reagents required for bisulfite treatment (eg, sodium hydrogen sulfite solution, etc.), reagents required for PCR reactions (eg, deoxyribonucleotides, heat-resistant DNA polymerase, etc.), and infinium (registered trademark).
  • Reagents required for the assay eg, fluorescently labeled nucleotides
  • Reagents required for MassARRAY® eg, RNase for performing base-specific cleavage reactions
  • required for pyrosequencing Reagents eg, ATP sulfylase for detection of pyrophosphate, adenosine-5'-phosphosulfate, luciferase, luciferin, streptavidin for separating single-stranded DNA, etc.
  • reagents required for detection of labels eg, substrate
  • enzymes buffers used for diluting and washing samples (tissue-derived DNA, etc.), and the like, but are not limited thereto.
  • the kit may include its instruction manual.
  • the kit of the present invention comprises a guide for determining whether or not the measured DNA methylation level is above the above-mentioned criteria for determining the prognosis of glioma.
  • the guide is an indication indicating the criteria for determining the prognosis of the aforementioned glioma.
  • the guide is the DNA of either region 1 or 2 whose methylation level is at the reference value, and the user of the kit is one of regions 1 and 2 of the sample DNA. By comparing the DNA methylation level with the reference, it can be determined whether or not the methylation level of any of regions 1 and 2 of the sample DNA is equal to or higher than the reference.
  • the kit of the present invention utilizes the eighth method and the DNA methylation level of any one or more of the regions 1 and 2 is equal to or higher than the above-mentioned criteria for determining the prognosis of glioma. It is used to obtain data about the presence or absence.
  • the kit includes a primer set that can be used in the eighth technique and utilizes the eighth technique to measure the DNA methylation level of any one or more of the regions 1 and 2.
  • the kit can further include reagents other than the primer set required for the eighth procedure, such as bisulfite treatment reagents, PCR reagents, chromatographic reagents, and the like.
  • the kit comprises a display indicating a criterion for determining the prognosis of the glioma, or DNA (reference) of any one or more of regions 1 and 2 whose methylation level is at the reference value.
  • a display indicating a criterion for determining the prognosis of the glioma, or DNA (reference) of any one or more of regions 1 and 2 whose methylation level is at the reference value.
  • the present invention provides a DNA methylation level measurement system for carrying out the method of the present invention.
  • the system utilizes the eighth technique to determine if the DNA methylation level of any one or more of the regions 1 and 2 is above the criteria for determining the prognosis of the glioma described above. It is a system that makes it possible to acquire data on whether or not.
  • the system comprises an ion exchange chromatography (preferably anion exchange chromatography) apparatus used in the eighth technique described above.
  • the system may be equipped with a sample DNA preparation device (including, for example, a device for bisulfite processing of DNA and a PCR device).
  • the bisulfite-treated and PCR-treated sample DNA is sent to a chromatographic device and separated according to the methylation level.
  • the DNA methylation level of any of the regions 1 and 2 can be measured based on the retention time of the chromatographic peak. Further, the system determines whether or not the DNA methylation level of any one or more of the regions 1 and 2 calculated from the chromatography result is equal to or higher than the above-mentioned criteria for determining the prognosis of glioma.
  • It is equipped with a methylation level detection device for detection.
  • the detection device is a computer.
  • the detection device detects whether or not the measured DNA methylation level of any one or more of the regions 1 and 2 is equal to or higher than the reference level, and outputs the result. If necessary, the detector measures DNA methylation levels from the retention time of the chromatographic peak.
  • GBM glioblastoma
  • DNA preparation DNA was extracted from the prepared frozen tumor sample using the DNeasy Blood & Tissue Kit (Qiagen, Cat. No. 69504) according to the attached protocol.
  • the extracted DNA was bisulfite-treated according to the attached protocol using EZ DNA Methylation-Lightning Kits (ZymoResearch).
  • the obtained polymerization composition was washed with water and acetone to obtain coated polymer particles having a layer of a hydrophilic polymer having a quaternary ammonium group on the surface.
  • the obtained coated polymer particles were measured using a particle size distribution measuring device (AccuSizer780 / Particle Sigmaning Systems), and the average particle size was 10 ⁇ m. 10 g of the obtained coated polymer particles were dispersed in 100 mL of ion-exchanged water to prepare a pre-reaction slurry.
  • N, N-dimethylaminopropylamine manufactured by Wako Pure Chemical Industries, Ltd.
  • Wako Pure Chemical Industries, Ltd. which is a reagent having a weak cationic group
  • the supernatant was removed using a centrifuge (“Himac CR20G” manufactured by Hitachi, Ltd.) and washed with ion-exchanged water. After washing, the supernatant was removed using a centrifuge.
  • This washing with ion-exchanged water was repeated four more times to obtain a filler for ion-exchange chromatography having a quaternary ammonium group and a tertiary amino group on the surface of the substrate particles.
  • the obtained filler for ion exchange chromatography was packed in a stainless steel column (column size: inner diameter 4.6 mm ⁇ length 20 mm) of a liquid chromatography system.
  • Figure 1 shows the progression-free survival (Days of) of glioma patients from which the sample DNA is derived, relative to the DNA methylation level of the sample DNA (P1 and P2).
  • PFS days progression free survival
  • OS days days of overall survival
  • FIG. 2 shows changes in PFS or OS (Probability) with respect to postoperative days for 21 GBM patients who received preoperative radiochemotherapy.
  • FIG. 2A shows the data of P1 divided into two groups having a methylation level of 30% or more (dotted line) and less than that (solid line).
  • the methylation level is 7.5% or more (dotted line) and less than that (solid line).
  • the PFS was statistically significantly different between the hypermethylated group and the hypomethylated group (Log rank test, P ⁇ 0.05), and the OS tended to be different.
  • P2 PFS and OS were statistically significantly different between the hypermethylated group and the hypomethylated group (Log rank test, P ⁇ 0.01). Therefore, it was shown that about 30% for P1 and about 7.5% for P2 can be used as the reference value of the DNA methylation level that distinguishes between good prognosis and poor prognosis.
  • FIG. 3 shows changes in PFS or OS (Probability) with respect to postoperative days for 21 GBM patients (20 patients common to FIG. 2 and another GBM patient) who received preoperative radiochemotherapy.
  • the methylation level is 34.15% or more (dotted line) and less than that (solid line).
  • the methylation level is 8.84% or more (dotted line). ) And less than that (solid line).
  • the PFS was statistically significantly different between the hypermethylated group and the hypomethylated group (Log rank test, P ⁇ 0.05), and the OS tended to be different.
  • P2 PFS and OS were statistically significantly different between the hypermethylated group and the hypomethylated group (Log rank test, P ⁇ 0.01). Therefore, it was shown that about 34.2% for P1 and about 8.8 to 8.9% for P2 can be used as the reference value of the DNA methylation level that distinguishes between good prognosis and poor prognosis.
  • P1 is in the range of 29 to 31%, or 29 to 36%, or 25 to 36%, or 25 to 25.
  • a sample having a DNA methylation level equal to or higher than the reference value can be determined to have a good prognosis, and a sample having a DNA methylation level lower than the reference value can be determined to have a poor prognosis.
  • the FFPE specimen was prepared from a tissue containing glioma surgically removed from 30 patients (17-83 years old; average age 55.2 years old, 17 males, 13 females). These specimens included specimens from the same patient taken from different times. All of the patients were GBM patients, and 28 of the 30 patients received radiation chemotherapy (radiation + temozolomide) after surgery (mean treatment period 389 days). As a result, DNA methylation levels were measured from 29 samples for P1 and 8 samples for P2.
  • FIG. 4 shows changes in PFS (Probability) with respect to postoperative days for GBM patients (26 cases above) from which FFPE samples were derived, divided into a hypermethylated group and a hypomethylated group in the same manner as in FIG.
  • the reference value of the DNA methylation level was set to 30%, which is the same as in FIG. Even when the FFPE sample was used, it was possible to determine a patient with a good prognosis and a patient with a poor prognosis based on the same standard value of DNA methylation level as that of the frozen sample.
  • Example 3 Twenty-six GMS patients used in the analysis of FIG. 4 were subjected to multivariate analysis between PFS or OS and other information. As variables, performance status before surgery, presence / absence of IDH mutation, gender, age at surgery, presence / absence of irradiation (total 66 Gy), average methylation rate of P1 region, average methylation rate of P1 region is 30% or more. Or, whether or not the average methylation rate of the P2 region and the average methylation rate of the P2 region is 7.5% or more was used.
  • Example 4 Twenty-six GMS patients used in the analysis of FIG. 4 were subjected to multivariate analysis between PFS or OS and other information. As variables, performance status before surgery, presence / absence of IDH mutation, gender, age at surgery, presence / absence of irradiation (total 66 Gy), average methylation rate of P1 region, average methylation rate of P1 region is 34.15% or more. Whether or not the average methylation rate of the P2 region and whether or not the average methylation rate of the P2 region was 8.84% or more were used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a method for determining the prognosis of a glioma. In the present invention, the level of DNA methylation of a target DNA region included in the promoter region of the MGMT gene in the genome DNA derived from glioma cells or a tissue including the cells is measured. When the level of DNA methylation is a predetermined reference level or more, the prognosis of the glioma is determined as good. When the level is less than the reference level, the prognosis of the glioma is determined as poor.

Description

神経膠腫の予後判定方法Prognosis determination method for glioma
 本発明は、神経膠腫の予後判定方法に関する。 The present invention relates to a method for determining the prognosis of glioma.
 神経膠腫は神経膠細胞(グリア細胞)から発生する脳腫瘍である。神経膠腫は大きく星細胞腫と乏突起膠腫に分けられ、神経膠腫の約85%は星細胞腫である。脳腫瘍は悪性度によりグレード1~4に分類される。グレード1は、子供に多く発生する毛様細胞性星細胞腫などの良性腫瘍である。グレード2はびまん性星細胞腫や乏突起膠腫であり、これらがさらに悪性化すると、グレード3の退形成性星細胞腫又は退形成性乏突起膠腫になる。グレード4は膠芽腫で、最も悪性である。グレード3と4をあわせて悪性神経膠腫と呼ぶこともある。膠芽腫は頭蓋内腫瘍の約10%を占め、多くは成人に発生し、予後が極めて不良である。 Glioma is a brain tumor that develops from glial cells. Gliomas are broadly divided into astrocytomas and oligodendrocytes, and about 85% of gliomas are astrocytomas. Brain tumors are classified into grades 1 to 4 according to their malignancy. Grade 1 is a benign tumor such as pilocytic astrocytoma that occurs frequently in children. Grade 2 is diffuse astrocytoma and oligodendroglioma, and when they become more malignant, they become grade 3 anaplastic astrocytoma or anaplastic oligodendroglioma. Grade 4 is glioblastoma, the most malignant. Grades 3 and 4 are sometimes collectively referred to as malignant glioma. Glioblastoma accounts for about 10% of intracranial tumors, most of which occur in adults and have a very poor prognosis.
 膠芽腫の治療には、以前は、術後放射線単独療法が用いられていたが、近年、術後の薬物療法(テモゾロミド)の放射線療法との併用に効果が認められ、これが現在のわが国における標準治療として用いられている。一方、テモゾロミドの効果は、腫瘍細胞におけるDNA修復酵素O6-methyl-guanine-DNA-methyltransferase(MGMT)の発現に依存することが報告されている。腫瘍細胞におけるMGMTの発現はエピジェネティックに制御されており、MGMT遺伝子プロモーター領域のメチル化はMGMTの発現を低下させ、テモゾロミドへの感受性を高める。一方、MGMT遺伝子プロモーター領域のメチル化がない患者では、MGMTの発現によりDNAメチル化が速やかに修復されるため、テモゾロミドなどのアルキル化剤に耐性を持つ。MGMT遺伝子プロモーター領域のメチル化は、神経膠腫の予後因子であることが示唆されている。非特許文献1には、MGMT遺伝子プロモーター領域のメチル化が、化学療法後の腫瘍の縮小と生存期間の延長に関係することが報告されている。非特許文献2には、MGMT遺伝子プロモーター領域のメチル化がある患者では、放射線単独療法と比べてテモゾロミド併用療法で生存期間が統計学的に有意に延長したが、MGMT遺伝子プロモーター領域のメチル化がない患者では、放射線単独療法とテモゾロミド併用療法で生存期間に有意差はなかったことが報告されている。一方で、放射線単独療法の場合でもMGMT遺伝子プロモーター領域のメチル化と予後の関係がみられたことも報告されている(非特許文献3)。 Previously, postoperative radiotherapy was used to treat glioblastoma, but in recent years, it has been found to be effective in combination with postoperative drug therapy (temozolomide) radiotherapy, which is now in Japan. It is used as standard treatment. On the other hand, it has been reported that the effect of temozolomide depends on the expression of the DNA repair enzyme O6-methyl-guanine-DNA-methyltransphase (MGMT) in tumor cells. Expression of MGMT in tumor cells is epigenetically regulated, and methylation of the MGMT gene promoter region reduces MGMT expression and increases susceptibility to temozolomide. On the other hand, patients without methylation of the MGMT gene promoter region are resistant to alkylating agents such as temozolomide because DNA methylation is rapidly repaired by MGMT expression. Methylation of the MGMT gene promoter region has been suggested to be a prognostic factor for glioma. Non-Patent Document 1 reports that methylation of the MGMT gene promoter region is associated with tumor shrinkage and prolongation of survival after chemotherapy. Non-Patent Document 2 states that in patients with methylation of the MGMT gene promoter region, temozolomide combination therapy statistically significantly prolonged survival compared to radiation monotherapy, but methylation of the MGMT gene promoter region was observed. It has been reported that there was no significant difference in survival between radiation monotherapy and temozolomide combination therapy in patients who did not. On the other hand, it has also been reported that a relationship between methylation of the MGMT gene promoter region and prognosis was observed even in the case of radiation monotherapy (Non-Patent Document 3).
 メチル化DNAの解析方法として、バイサルファイト(bisulfite)法を利用する方法が既に確立され、汎用されている。バイサルファイト法を基本原理とするメチル化DNA解析方法としては、Methylation-Specific PCR(MSP)法、Combined Bisulfite Restriction Analysis(COBRA)法、BACアレイに基づくメチル化CpGアイランド増幅法(BAMCA法)、次世代シーケンサーによるシーケンシング(MethylCap-seq)、メチル化/非メチル化DNA特異的プローブで一塩基の伸長反応を検出する方法(例えばInfinium(登録商標)アッセイ)、methylation-sensitive restriction enzyme digestion sequencing(MRE-seq)法などが利用されている。特許文献1には、DNAメチル化レベルをイオン交換クロマトグラフィーによる保持時間の違いに基づいて検出する方法が開示されている。 As a method for analyzing methylated DNA, a method using the bisulfite method has already been established and is widely used. Examples of the methylated DNA analysis method based on the bisulfite method include a methylation-Special PCR (MSP) method, a Combined Bisulfite Restoration Analysis (COBRA) method, a BAC array-based methylated CpG island amplification method (BAMCA method), and the following. Sequencing by a generation sequencer (MethylCap-seq), a method of detecting a single-base extension reaction with a methylated / unmethylated DNA-specific probe (for example, Infinium® assay), methylation-sensitivity restoration enzyme measurement (MRE). -Seq) method is used. Patent Document 1 discloses a method for detecting DNA methylation levels based on the difference in retention time by ion exchange chromatography.
国際公開公報第2014/136930号International Publication No. 2014/136930
 本発明は、神経膠腫におけるDNAのメチル化レベルを基準に、該腫瘍の予後を評価する方法を提供する。 The present invention provides a method for evaluating the prognosis of a tumor based on the methylation level of DNA in glioma.
 本発明者らは、神経膠腫のO6-methyl-guanine-DNA-methyltransferase(MGMT)をコードする遺伝子(MGMT遺伝子)のプロモーター領域中の特定領域のDNAメチル化レベルを測定することで、神経膠腫の予後を評価できることを見出した。 By measuring the DNA methylation level of a specific region in the promoter region of the gene encoding O6-methyl-guanine-DNA-methyltransphase (MGMT) of glioma (MGMT gene), the present inventors have glioma. We found that the prognosis of tumors could be evaluated.
 したがって、本発明は、以下を提供する。
〔1〕予後良好又は不良な神経膠腫由来の細胞又は組織の判定方法であって、
1)神経膠腫細胞又はそれを含む組織由来のDNAにおいて、O6-methyl-guanine-DNA-methyltransferaseをコードする遺伝子のプロモーター領域に含まれる標的DNA領域のDNAメチル化レベルを測定すること、
 ここで、該標的DNA領域は、下記領域1及び2からなる群より選択される少なくとも1つの領域である:
  領域1)配列番号1のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
  領域2)配列番号2のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
2)測定したDNAメチル化レベルが下記基準以上であるとき、該細胞又はそれを含む組織を、予後良好な神経膠腫由来の細胞又は組織と判定するか、又は、測定したDNAメチル化レベルが下記基準未満であるとき、該細胞又はそれを含む組織を、予後不良な神経膠腫由来の細胞又は組織と判定すること:
  領域1についての基準 10~40%の範囲から選択される値、
  領域2についての基準 5~30%の範囲から選択される値、
を含む、方法。
〔2〕神経膠腫の予後判定方法であって、
1)被験体の神経膠腫細胞又はそれを含む組織由来のDNAにおいて、O6-methyl-guanine-DNA-methyltransferaseをコードする遺伝子のプロモーター領域に含まれる標的DNA領域のDNAメチル化レベルを測定すること、
 ここで、該標的DNA領域は、下記領域1及び2からなる群より選択される少なくとも1つの領域である:
  領域1)配列番号1のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
  領域2)配列番号2のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
2)測定したDNAメチル化レベルが下記基準以上であるとき、該被験体の神経膠腫を予後良好と判定するか、又は、測定したDNAメチル化レベルが下記基準未満であるとき、該被験体の神経膠腫を予後不良と判定すること:
  領域1についての基準 10~40%の範囲から選択される値、
  領域2についての基準 5~30%の範囲から選択される値、
を含む、方法。
〔3〕予後良好又は不良な神経膠腫由来の細胞又は組織の判定、又は、神経膠腫の予後判定に用いるためのデータの取得方法であって、
1)被験体の神経膠腫細胞又はそれを含む組織由来のDNAにおいて、O6-methyl-guanine-DNA-methyltransferaseをコードする遺伝子のプロモーター領域に含まれる標的DNA領域のDNAメチル化レベルを測定すること、
 ここで、該標的DNA領域は、下記領域1及び2からなる群より選択される少なくとも1つの領域である:
  領域1)配列番号1のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
  領域2)配列番号2のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
2)測定したDNAメチル化レベルが下記基準以上であるか否かについてのデータを取得すること:
  領域1についての基準 10~40%の範囲から選択される値、
  領域2についての基準 5~30%の範囲から選択される値、
を含む、方法。
〔4〕前記プロモーター領域が配列番号3のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる、〔1〕~〔3〕のいずれか1項記載の方法。
〔5〕前記領域1が、配列番号1のヌクレオチド配列からなる領域であり、前記領域2が、配列番号2のヌクレオチド配列からなる領域である、〔1〕~〔4〕のいずれか1項記載の方法。
〔6〕前記DNAメチル化レベルの測定が、バイサルファイト処理された前記領域1及び2からなる群より選択される少なくとも1つの領域のDNAメチル化レベルを測定することを含む、〔1〕~〔5〕のいずれか1項記載の方法。
〔7〕前記バイサルファイト処理された領域1が、配列番号4のヌクレオチド配列からなるプライマーと配列番号5のヌクレオチド配列からなるプライマーに挟まれる領域(但し、プライマー結合配列を含まない)であり、
 前記バイサルファイト処理された領域2が、配列番号6のヌクレオチド配列からなるプライマーと配列番号7のヌクレオチド配列からなるプライマーに挟まれる領域(但し、プライマー結合配列を含まない)である、
〔6〕記載の方法。
〔8〕前記DNAメチル化レベルの測定がイオン交換クロマトグラフィーを用いて行われる、〔6〕又は〔7〕記載の方法。
〔9〕前記神経膠腫が膠芽腫である、〔1〕~〔8〕のいずれか1項記載の方法。
〔10〕〔1〕~〔9〕のいずれか1項記載の方法を実施するためのキットであって、
 バイサルファイト処理された、O6-methyl-guanine-DNA-methyltransferaseをコードする遺伝子のプロモーター領域に含まれる標的DNA領域のPCR増幅のためのPCRプライマーセットを含み、ここで、該バイサルファイト処理前の該標的DNA領域は、下記領域1及び2からなる群より選択される少なくとも1つの領域であり:
  領域1)配列番号1のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
  領域2)配列番号2のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
かつ、
 該標的DNA領域のDNAメチル化レベルが下記基準以上であるか否かを判定するためのガイドを含む、
  領域1についての基準 10~40%の範囲から選択される値、
  領域2についての基準 5~30%の範囲から選択される値、
キット。
〔11〕前記PCRプライマーセットが、配列番号4のヌクレオチド配列からなるプライマーと配列番号5のヌクレオチド配列からなるプライマーとのプライマーセット、又は、配列番号6のヌクレオチド配列からなるプライマーと配列番号7のヌクレオチド配列からなるプライマーとのプライマーセットである、〔10〕記載のキット。
〔12〕〔1〕~〔9〕のいずれか1項記載の方法を実施するためのシステム。
〔13〕イオン交換クロマトグラフィー装置を備える、〔12〕記載のシステム。
Therefore, the present invention provides the following.
[1] A method for determining cells or tissues derived from glioma with a good or poor prognosis.
1) To measure the DNA methylation level of the target DNA region contained in the promoter region of the gene encoding O6-methyl-guanine-DNA-methyltransferase in DNA derived from glioma cells or tissues containing the same.
Here, the target DNA region is at least one region selected from the group consisting of the following regions 1 and 2:
Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof,
Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof,
2) When the measured DNA methylation level is equal to or higher than the following criteria, the cell or tissue containing it is judged to be a glioma-derived cell or tissue with a good prognosis, or the measured DNA methylation level is When it is less than the following criteria, the cells or tissues containing them are judged to be glioma-derived cells or tissues having a poor prognosis:
Criteria for region 1 A value selected from the range of 10-40%,
Criteria for region 2 Value selected from the range of 5-30%,
Including methods.
[2] A method for determining the prognosis of glioma.
1) To measure the DNA methylation level of the target DNA region contained in the promoter region of the gene encoding O6-methyl-guanine-DNA-methyltransphase in DNA derived from the subject's glioma cells or tissues containing the same. ,
Here, the target DNA region is at least one region selected from the group consisting of the following regions 1 and 2:
Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof,
Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof,
2) When the measured DNA methylation level is equal to or higher than the following criteria, the subject's glioma is judged to have a good prognosis, or when the measured DNA methylation level is less than the following criteria, the subject is judged to have a good prognosis. Judging glioma as poor prognosis:
Criteria for region 1 A value selected from the range of 10-40%,
Criteria for region 2 Value selected from the range of 5-30%,
Including methods.
[3] A method for acquiring data to be used for determining cells or tissues derived from glioma having a good or poor prognosis, or for determining the prognosis of glioma.
1) To measure the DNA methylation level of the target DNA region contained in the promoter region of the gene encoding O6-methyl-guanine-DNA-methyltransphase in DNA derived from the subject's glioma cells or tissues containing the same. ,
Here, the target DNA region is at least one region selected from the group consisting of the following regions 1 and 2:
Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof,
Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof,
2) Obtaining data on whether or not the measured DNA methylation level is above the following criteria:
Criteria for region 1 A value selected from the range of 10-40%,
Criteria for region 2 Value selected from the range of 5-30%,
Including methods.
[4] The method according to any one of [1] to [3], wherein the promoter region consists of the nucleotide sequence of SEQ ID NO: 3 or a nucleotide sequence having at least 90% identity thereof.
[5] The item according to any one of [1] to [4], wherein the region 1 is a region consisting of the nucleotide sequence of SEQ ID NO: 1 and the region 2 is a region consisting of the nucleotide sequence of SEQ ID NO: 2. the method of.
[6] The measurement of the DNA methylation level comprises measuring the DNA methylation level of at least one region selected from the group consisting of the bisulfite-treated regions 1 and 2. [1] to [ 5] The method according to any one of paragraphs 1.
[7] The bisulfite-treated region 1 is a region sandwiched between a primer consisting of the nucleotide sequence of SEQ ID NO: 4 and a primer consisting of the nucleotide sequence of SEQ ID NO: 5 (however, the primer binding sequence is not included).
The bisulfite-treated region 2 is a region sandwiched between a primer consisting of the nucleotide sequence of SEQ ID NO: 6 and a primer consisting of the nucleotide sequence of SEQ ID NO: 7 (however, the primer binding sequence is not included).
[6] The method according to the above.
[8] The method according to [6] or [7], wherein the measurement of the DNA methylation level is performed using ion exchange chromatography.
[9] The method according to any one of [1] to [8], wherein the glioma is glioblastoma.
[10] A kit for carrying out the method according to any one of [1] to [9].
It comprises a set of PCR primers for PCR amplification of a target DNA region contained in the promoter region of a bisulfite-treated gene encoding O6-methyl-guanine-DNA-methyltransphase, wherein the bisulfite-treated prior to the bisulfite treatment. The target DNA region is at least one region selected from the group consisting of regions 1 and 2 below:
Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof,
Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof,
And,
A guide for determining whether or not the DNA methylation level of the target DNA region is equal to or higher than the following criteria is included.
Criteria for region 1 A value selected from the range of 10-40%,
Criteria for region 2 Value selected from the range of 5-30%,
kit.
[11] The PCR primer set is a primer set consisting of a primer consisting of the nucleotide sequence of SEQ ID NO: 4 and a primer consisting of the nucleotide sequence of SEQ ID NO: 5, or a primer consisting of the nucleotide sequence of SEQ ID NO: 6 and the nucleotide of SEQ ID NO: 7. The kit according to [10], which is a primer set with a primer consisting of a sequence.
[12] A system for carrying out the method according to any one of [1] to [9].
[13] The system according to [12], comprising an ion exchange chromatography apparatus.
 本発明は、神経膠腫の予後判定の基準、及び該基準を用いた神経膠腫の予後判定方法を提供する。本発明によれば、より信頼性の高い神経膠腫の予後判定が可能になる。 The present invention provides a criterion for determining the prognosis of glioma, and a method for determining the prognosis of glioma using the criterion. According to the present invention, more reliable prognosis of glioma can be determined.
DNAメチル化レベルに対する神経膠腫患者の無憎悪生存率(PFS)、及び全生存率(OS)の相関性。Correlation of glioma patients' hateless survival (PFS) and overall survival (OS) to DNA methylation levels. P1(A)及びP2(B)の高メチル化群(点線)と低メチル化群(実線)におけるPFS及びOS。生存率(Probability)の術後日数(左:PFS、右:OS)による変化。メチル化の基準値は、P1:30%、P2:7.5%。PFS and OS in the hypermethylated group (dotted line) and the hypomethylated group (solid line) of P1 (A) and P2 (B). Changes in survival rate (Probability) depending on the number of postoperative days (left: PFS, right: OS). The reference values for methylation are P1: 30% and P2: 7.5%. P1(A)及びP2(B)の高メチル化群(点線)と低メチル化群(実線)におけるPFS及びOS。生存率(Probability)の術後日数(左:PFS、右:OS)による変化。メチル化の基準値は、P1:34.15%、P2:8.84%。PFS and OS in the hypermethylated group (dotted line) and the hypomethylated group (solid line) of P1 (A) and P2 (B). Changes in survival rate (Probability) depending on the number of postoperative days (left: PFS, right: OS). The reference values for methylation are P1: 34.15% and P2: 8.84%. P1の高メチル化群と低メチル化群におけるPFS(Probability)の術後日数による変化。FFPE検体由来DNAのメチル化レベルに基づくデータ。Changes in PFS (Probability) in the hypermethylated and hypomethylated groups of P1 depending on the number of postoperative days. Data based on the methylation level of DNA derived from FFPE specimens.
 本明細書において、アミノ酸配列やヌクレオチド配列の同一性は、カーリンとアルチュールによるアルゴリズムBLAST(Pro.Natl.Acad.Sci.USA,1993,90:5873-5877)を用いて決定することができる。このBLASTアルゴリズムに基づいて、BLASTN、BLASTX、BLASTP、TBLASTN及びTBLASTXとよばれるプログラムが開発されている(J.Mol.Biol.,1990,215:403-410)。これらのプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いることができる。これらの解析方法の具体的な手法は公知である([www.ncbi.nlm.nih.gov]参照)。 In the present specification, the identity of amino acid sequences and nucleotide sequences can be determined using the algorithm BLAST (Pro. Natl. Acad. Sci. USA, 1993, 90: 5873-5877) by Carlin and Arthur. Based on this BLAST algorithm, programs called BLASTN, BLASTX, BLASTP, BLASTN and TBLASTX have been developed (J. Mol. Biol., 1990, 215: 403-410). When using these programs, the default parameters of each program can be used. Specific methods for these analysis methods are known (see [www.ncbi.nlm.nih.gov]).
 本明細書において、アミノ酸配列及びヌクレオチド配列に関する「少なくとも90%の同一性」とは、90%以上の同一性、好ましくは95%以上の同一性、より好ましくは97%以上の同一性、さらに好ましくは98%以上の同一性、なお好ましくは99%以上の同一性をいう。 As used herein, "at least 90% identity" with respect to amino acid sequences and nucleotide sequences means 90% or more identity, preferably 95% or more identity, more preferably 97% or more identity, even more preferably. Means 98% or more identity, more preferably 99% or more identity.
 本明細書において、アミノ酸配列及びヌクレオチド配列上の「相当する位置」は、目的配列と参照配列(例えば、配列番号1のヌクレオチド配列)とを、各アミノ酸配列又はヌクレオチド配列中に存在する保存アミノ酸残基又はヌクレオチドに最大の相同性を与えるように整列(アラインメント)させることにより決定することができる。アラインメントは、公知のアルゴリズムを用いて実行することができ、その手順は当業者に公知である。例えば、アラインメントは、Clustal Wマルチプルアラインメントプログラム(Thompson, J. D. et al, 1994, Nucleic Acids Res., 22:4673-4680)をデフォルト設定で用いることにより行うことができる。Clustal Wは、例えば、欧州バイオインフォマティクス研究所(European Bioinformatics Institute: EBI [www.ebi.ac.uk/index.html])や、国立遺伝学研究所が運営する日本DNAデータバンク(DDBJ [www.ddbj.nig.ac.jp/index.html])のウェブサイト上で利用することができる。 In the present specification, the "corresponding position" on the amino acid sequence and the nucleotide sequence refers to the target sequence and the reference sequence (for example, the nucleotide sequence of SEQ ID NO: 1) as a conserved amino acid residue existing in each amino acid sequence or nucleotide sequence. It can be determined by aligning the groups or nucleotides to give them maximum homology. Alignment can be performed using known algorithms and the procedure is known to those of skill in the art. For example, alignment can be performed by using the Clustal W multiple alignment program (Thompson, J. D. et al, 1994, Nucleic Acids Res., 22: 4673-4680) with default settings. Clustal W is, for example, the European Bioinformatics Institute (EBI [www.ebi.ac.uk/index.html]) and the DNA Data Bank of Japan (DDBJ [www. It can be used on the website of ddbj.nig.ac.jp/index.html]).
 本明細書において、「神経膠腫」とは、神経膠細胞(グリア細胞)から発生する脳腫瘍をいう。神経膠腫は、世界保健機関(WHO)分類に従うグレードにより、毛様細胞性星細胞腫(グレード1)、びまん性星細胞腫、及び乏突起膠腫(グレード2)、退形成性星細胞腫、及び退形成性乏突起膠腫(グレード3)、ならびに膠芽腫(グレード4)に分類される。本発明で予後判定の対象とする神経膠腫は、好ましくはグレード2~4の神経膠腫であり、より好ましくはグレード3~4の悪性神経膠腫であり、さらに好ましくはグレード4の膠芽腫である。 In the present specification, "glioma" refers to a brain tumor that develops from glial cells (glioma cells). Glioblastomas are classified according to the World Health Organization (WHO) classification, including pilocytic astrocytoma (grade 1), diffuse astrocytoma, and oligodendroglioma (grade 2), and anaplastic astrocytoma. , And anaplastic oligodendroglioma (grade 3), and glioblastoma (grade 4). The glioma to be determined for prognosis in the present invention is preferably a grade 2 to 4 glioma, more preferably a grade 3 to 4 malignant glioma, and even more preferably a grade 4 glioblastoma. It is a tumor.
 本明細書において、腫瘍の「予後」とは、該腫瘍の将来の状態をいう。例えば、腫瘍の「予後不良」とは、該腫瘍を有する患者の予後(治療後)の生存率が低いことを表し、一方、腫瘍の「予後良好」とは、該腫瘍を有する患者の予後(治療後)の生存率が低くないことを表す。例えば、神経膠腫患者において、術後500日での無憎悪生存率(progression free survival;PFS)が50%以下である場合、又は術後1000日での全生存率(overall survival;OS)が20%以下である場合に、該神経膠腫又は患者は「予後不良」である。 As used herein, the "prognosis" of a tumor refers to the future condition of the tumor. For example, a "poor prognosis" of a tumor means a low survival rate (after treatment) of a patient having the tumor, while a "good prognosis" of a tumor means a prognosis of a patient having the tumor (after treatment). Indicates that the survival rate (after treatment) is not low. For example, in a glioma patient, if the progression-free survival (PFS) is 50% or less 500 days after surgery, or if the overall survival (OS) is 1000 days after surgery, the overall survival rate (OS) is If less than 20%, the glioma or patient has a "poor prognosis".
 本明細書において、「CpG」とは、DNA中でシトシン(C)とグアニン(G)との間がホスホジエステル結合(p)している部位のことを意味する。CpGが高頻度で出現する領域は、CpGアイランドと呼ばれ、遺伝子のプロモーター領域に存在することが多い。本明細書において、「(ある)遺伝子のCpG」とは、別途定義されない場合、該遺伝子のプロモーター領域に存在するCpGを意味する。 In the present specification, "CpG" means a site in DNA where a phosphodiester bond (p) is formed between cytosine (C) and guanine (G). The region where CpG frequently appears is called a CpG island and is often present in the promoter region of a gene. As used herein, the term "CpG of a gene (is)" means CpG present in the promoter region of the gene, unless otherwise defined.
 本明細書において、「DNAメチル化」とは、DNAのシトシン(シトシン中の5位炭素)がメチル化されている状態のことを意味する。また本明細書において、DNA領域の「DNAメチル化レベル」(又は、単に「メチル化レベル」ということがある)とは、該DNA領域に含まれるシトシンがメチル化されている割合を意味する。例えば、DNA領域のメチル化レベルは、該DNA領域に含まれる全シトシン数(メチル化シトシン及び非メチル化シトシン)に対するメチル化シトシン数の比率にて表すことができる。 In the present specification, "DNA methylation" means a state in which cytosine (5-carbon in cytosine) of DNA is methylated. Further, in the present specification, the "DNA methylation level" (or simply referred to as "methylation level") of a DNA region means the ratio of cytosine contained in the DNA region being methylated. For example, the methylation level of a DNA region can be expressed as the ratio of the number of methylated cytosines to the total number of cytosines (methylated cytosine and unmethylated cytosine) contained in the DNA region.
 本発明の一態様は、神経膠腫の予後判定方法に関する。本態様の一実施形態は、神経膠腫の予後判定方法であり、該方法は:被験体の神経膠腫細胞又はそれを含む組織由来のDNAにおいて、O6-methyl-guanine-DNA-methyltransferase(MGMT)をコードする遺伝子のプロモーター領域に含まれる標的DNA領域のDNAメチル化レベルを測定することと;及び、測定したDNAメチル化レベルが所定の基準以上であるか否かに基づいて、該神経膠腫が予後不良か否かを判定すること、を含む。 One aspect of the present invention relates to a method for determining the prognosis of glioma. One embodiment of this embodiment is a method for determining the prognosis of glioma, wherein the method is: O6-methyl-guanine-DNA-methyltransferase (MGMT) in DNA derived from a subject's glioma cells or a tissue containing the same. ) Is measured in the DNA methylation level of the target DNA region contained in the promoter region of the gene encoding; and the glioma is based on whether or not the measured DNA methylation level is equal to or higher than a predetermined standard. Includes determining whether a tumor has a poor prognosis.
 本態様の別の一実施形態は、予後良好又は不良な神経膠腫由来の細胞又は組織の判定方法であり、該方法は:神経膠腫細胞又はそれを含む組織由来のDNAにおいて、MGMTをコードする遺伝子のプロモーター領域に含まれる標的DNA領域のDNAメチル化レベルを測定すること;及び、測定したDNAメチル化レベルが所定の基準以上であるか否かに基づいて、該細胞又は組織が予後不良な神経膠腫由来の細胞又は組織か否か判定すること、を含む。 Another embodiment of this embodiment is a method for determining cells or tissues derived from glioma having a good or poor prognosis, which method: encodes MGMT in DNA derived from glioma cells or tissues containing the same. The cell or tissue has a poor prognosis based on measuring the DNA methylation level of the target DNA region contained in the promoter region of the gene to be used; and whether the measured DNA methylation level is above a predetermined standard. Includes determining whether a cell or tissue is derived from a promoter.
 本態様の別の一実施形態は、予後良好又は不良な神経膠腫由来の細胞又は組織の判定、又は神経膠腫の予後判定に用いるためのデータを取得する方法であり、該方法は:被験体の神経膠腫細胞又はそれを含む組織由来のDNAにおいて、MGMTをコードする遺伝子のプロモーター領域に含まれる標的DNA領域のDNAメチル化レベルを測定すること;及び、測定したDNAメチル化レベルが所定の基準以上であるか否かについてのデータを取得すること、を含む。当該本発明によるデータの取得方法は、医師等による神経膠腫の予後診断を含まない方法である。例えば、該方法は、研究所や臨床検査機関などにおいて実施される、医師等による予後診断に必要なデータを取得するための方法である。 Another embodiment of this embodiment is a method of obtaining data for use in determining cells or tissues derived from glioma with good or poor prognosis, or in determining the prognosis of glioma, wherein the method is: test. To measure the DNA methylation level of the target DNA region contained in the promoter region of the gene encoding MGMT in DNA derived from glioma cells of the body or tissues containing the same; and the measured DNA methylation level is predetermined. Includes obtaining data on whether or not it is above the criteria of. The method for acquiring data according to the present invention is a method that does not include prognostic diagnosis of glioma by a doctor or the like. For example, the method is a method for acquiring data necessary for prognosis diagnosis by a doctor or the like, which is carried out in a research institute or a clinical laboratory.
 以下の本明細書において、前述した本発明にかかる神経膠腫の予後判定方法、予後良好又は不良な神経膠腫由来の細胞又は組織の判定方法、及びデータ取得方法を、まとめて本発明の方法と称する。 In the following specification, the method for determining the prognosis of glioma according to the present invention, the method for determining cells or tissues derived from glioma having a good or poor prognosis, and the method for acquiring data are collectively referred to as the method of the present invention. It is called.
 本発明において、前記被験体の例としては、神経膠腫の予後判定を必要とする者、例えば、神経膠腫に罹患した患者、好ましくは外科手術による神経膠腫の治療が施された患者が挙げられる。好ましくは、これらの患者は、放射線療法、もしくは放射線療法と化学療法(例えばテモゾロミド等のアルキル化剤の投与)との併用療法を受けている患者であるか、又は、放射線療法もしくは該併用療法を受けることが検討されている患者である。 In the present invention, examples of the subject include those who need to determine the prognosis of glioma, for example, patients suffering from glioma, preferably patients who have been treated for glioma by surgery. Can be mentioned. Preferably, these patients are receiving radiation therapy, or a combination of radiation therapy and chemotherapy (eg, administration of an alkylating agent such as temozolomid), or radiation therapy or a combination of the same. Patients who are being considered for receiving.
 本発明の方法において用いられる神経膠腫細胞又はそれを含む組織由来のDNAとしては、被験体の神経膠腫細胞又はそれを含む組織から調製されたゲノムDNAが挙げられる。該神経膠腫細胞又はそれを含む組織としては、例えば、外科手術において採取した新鮮な神経膠腫細胞又はそれを含む組織;採取後凍結した神経膠腫細胞又はそれを含む凍結組織;採取後ホルマリン固定及びパラフィン包埋を施した神経膠腫細胞又はそれを含む組織、などが挙げられる。このうち、細胞又は組織中のDNAの分解等を抑制し、より効率よくDNAメチル化レベルの検出を行えるという観点からは、凍結神経膠腫細胞又はそれを含む凍結組織が好ましい。 Examples of the DNA derived from the glioma cell or the tissue containing the glioma cell used in the method of the present invention include genomic DNA prepared from the glioma cell of the subject or the tissue containing the glioma cell. Examples of the glioma cells or tissues containing them include fresh glioma cells collected in surgery or tissues containing them; glioma cells frozen after collection or frozen tissues containing them; formalin after collection. Examples include fixed and paraffin-embedded glioma cells or tissues containing them. Of these, frozen glioma cells or frozen tissues containing them are preferable from the viewpoint of suppressing the decomposition of DNA in cells or tissues and detecting the DNA methylation level more efficiently.
 組織又は細胞からサンプルDNAを調製する手法としては、特に制限はなく、公知の手法を適宜選択して用いることができる。DNAを調製する公知の方法としては、フェノールクロロホルム法、又は市販のDNA抽出キット、例えばDNeasy Blood&Tissue Kit(Qiagen社製)や、QIAamp DNA Mini kit(Qiagen社製)、Clean Columns(NexTec社製)、AquaPure(Bio-Rad社製)、ZR Plant/Seed DNA Kit(Zymo Research社製)、prepGEM(ZyGEM社製)、BuccalQuick(TrimGen社製)、などを用いるDNA抽出方法等が挙げられる。 The method for preparing sample DNA from tissues or cells is not particularly limited, and a known method can be appropriately selected and used. Known methods for preparing DNA include the phenol chloroform method, a commercially available DNA extraction kit, for example, DNeasy Blood & Tissue Kit (manufactured by Qiagen), QIAamp DNA Mini kit (manufactured by Qiagen), Clean Colors (manufactured by NexTech), and the like. Examples thereof include a DNA extraction method using AquaPure (manufactured by Bio-Rad), ZR Plant / Seed DNA Kit (manufactured by Zymo Research), prepGEM (manufactured by ZyGEM), BuccalQuick (manufactured by TrimGen), and the like.
 好ましくは、調製されたサンプルDNAは、バイサルファイト処理される。DNAのバイサルファイト処理の方法としては、特に制限はなく、公知の手法を適宜選択して用いることができる。バイサルファイト処理のための公知の方法としては、例えば、EZ DNA Methylation-Goldキット、EZ DNA Methylation-Lightning Kit(いずれもZymo Research社製)、EpiTect Bisulfite Kit(48)(Qiagen社製)、MethylEasy(Human Genetic Signatures Pty社製)、Cells-to-CpG Bisulfite Conversion Kit(Applied Biosystems社製)、CpGenome Turbo Bisulfite Modification Kit(MERCK MILLIPORE社製)などの市販のキットを用いる方法が挙げられる。 Preferably, the prepared sample DNA is bisulfite-treated. The method for bisulfite treatment of DNA is not particularly limited, and a known method can be appropriately selected and used. Known methods for bisulfite treatment include, for example, EZ DNA methylation-Gold kit, EZ DNA methylation-Lightning Kit (all manufactured by Zymo Research), EpiTect Bisulfite Kit (48) (manufactured by Qagen), and Qagen. Human Genetic Signatures Pty), Cells-to-CpG Bisulfite Conversion Kit (Applied Biosystems), CpGenome Turbo Bisulfite Models, CpGenome Turbo Bisulfite Mods, etc.
 さらに、前記バイサルファイト処理されたサンプルDNAを増幅することが好ましい。増幅の手法には特に制限はないが、好ましくはPCRが利用される。増幅の手法及び条件は、増幅対象のDNAの配列、長さ、量などに応じて、公知の手法及び条件を適宜選択して用いることができる。 Further, it is preferable to amplify the bisulfite-treated sample DNA. The amplification method is not particularly limited, but PCR is preferably used. As the amplification method and conditions, known methods and conditions can be appropriately selected and used according to the sequence, length, amount and the like of the DNA to be amplified.
 本発明の方法では、前記のとおり調製した神経膠腫由来のDNA由来のサンプルDNAにおける、O6-methyl-guanine-DNA-methyltransferase(MGMT)をコードする遺伝子のプロモーター領域(以下、MGMTプロモーター領域ともいう)に含まれる標的DNA領域のDNAメチル化レベルが測定される。MGMTプロモーター領域は、ゲノムDNA上における、配列番号3のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域として特定することができる。あるいは、ゲノムDNA上のMGMTプロモーター領域は、NCBIデータベース([www.ncbi.nlm.nih.gov/])を参照して特定することができる。 In the method of the present invention, the promoter region of the gene encoding O6-methyl-guanine-DNA-methyltransphase (MGMT) in the sample DNA derived from the glioma-derived DNA prepared as described above (hereinafter, also referred to as MGMT promoter region). ), The DNA methylation level of the target DNA region is measured. The MGMT promoter region can be identified as a region on genomic DNA consisting of the nucleotide sequence of SEQ ID NO: 3 or a nucleotide sequence having at least 90% identity thereof. Alternatively, the MGMT promoter region on genomic DNA can be identified with reference to the NCBI database ([www.ncbi.nlm.nih.gov/]).
 DNAメチル化レベルが測定される該標的DNA領域は、MGMTプロモーター領域中の下記領域1及び2からなる群より選択される少なくとも1つの領域である:
 領域1)配列番号1のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、ここで配列番号1のヌクレオチド配列は、配列番号3の第2319番~第2470番ヌクレオチド配列に相当する;
 領域2)配列番号2のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、ここで配列番号2のヌクレオチド配列は、配列番号3の第2534番~第2777番ヌクレオチド配列に相当する。
The target DNA region in which the DNA methylation level is measured is at least one region selected from the group consisting of the following regions 1 and 2 in the MGMT promoter region:
Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof, wherein the nucleotide sequence of SEQ ID NO: 1 is the nucleotide sequence Nos. 2319 to 2470 of SEQ ID NO: 3. Equivalent to;
Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof, wherein the nucleotide sequence of SEQ ID NO: 2 is the nucleotide sequence of SEQ ID NO: 3 from No. 2534 to No. 2777. Equivalent to.
 あるいは、前記領域1及び2は、MGMTプロモーター領域中の下記のとおり規定される領域として表される:
 領域1)バイサルファイト処理された後に、配列番号4のヌクレオチド配列からなるプライマーと配列番号5のヌクレオチド配列からなるプライマーに挟まれる領域(プライマー結合配列を含まない);
 領域2)バイサルファイト処理された後に、配列番号6のヌクレオチド配列からなるプライマーと配列番号7のヌクレオチド配列からなるプライマーに挟まれる領域(プライマー結合配列を含まない)。
Alternatively, the regions 1 and 2 are represented as regions within the MGMT promoter region as defined below:
Region 1) After bisulfite treatment, a region sandwiched between a primer consisting of the nucleotide sequence of SEQ ID NO: 4 and a primer consisting of the nucleotide sequence of SEQ ID NO: 5 (not including the primer binding sequence);
Region 2) A region (not including the primer binding sequence) sandwiched between a primer consisting of the nucleotide sequence of SEQ ID NO: 6 and a primer consisting of the nucleotide sequence of SEQ ID NO: 7 after bisulfite treatment.
 本発明者は、MGMTプロモーター領域中の前記領域1及び2におけるDNAメチル化レベルが、神経膠腫の予後の判定のためのマーカーとして有効であることを見出した。より具体的には、本発明者は、前記領域1及び2のいずれかにおけるDNAメチル化レベルが所定の基準を満たすか否かに基づいて、神経膠腫の予後を判定できることを見出した。本発明の方法では、前記領域1及び2からなる群より選択される少なくとも1つの領域のDNAメチル化レベルが所定の基準を満たすか否かに基づいて、神経膠腫の予後が判定される。従来、MGMTプロモーター領域のDNAメチル化が神経膠腫の予後に影響し得ることが示唆されていたが(非特許文献1~3)、MGMTプロモーター領域のDNAメチル化に基づいて神経膠腫の予後を判定するための明確な判定基準はこれまで提供されていなかった。 The present inventor has found that the DNA methylation levels in the regions 1 and 2 in the MGMT promoter region are effective as markers for determining the prognosis of glioma. More specifically, the present inventor has found that the prognosis of glioma can be determined based on whether or not the DNA methylation level in any of the above regions 1 and 2 meets a predetermined criterion. In the method of the present invention, the prognosis of glioma is determined based on whether or not the DNA methylation level of at least one region selected from the group consisting of the regions 1 and 2 meets a predetermined criterion. Conventionally, it has been suggested that DNA methylation of the MGMT promoter region may affect the prognosis of glioma (Non-Patent Documents 1 to 3), but the prognosis of glioma based on DNA methylation of the MGMT promoter region. No clear criteria have been provided so far to determine.
 本発明の方法の一実施形態においては、前記サンプルDNAにおける前記領域1及び2のいずれか1つ以上でのDNAメチル化レベルが所定の基準以上であるか否かについてのデータを取得する。このとき、領域1についての基準は、10~40%の範囲から選択される値、例えば、限定ではないが、10%、20%、23%、25%、28%、30%、33%、35%、38%、又は40%に設定すればよい。好ましくは、領域1についての基準は、25~35%の範囲、又は25~36%の範囲から選択される値、例えば、限定ではないが、25%、28%、30%、33%、35%、又は36%に設定すればよい。さらに好ましくは、領域1についての基準は、29~36%の範囲又は29~31%の範囲から選択される値、例えば、限定ではないが、29%、30%、31%、32%、33%、34%、34.2%、34.5%、35%、又は36%に設定すればよい。なお好ましくは、領域1についての基準は、30%、又は30~36%の範囲、より好ましくは30~34.2%の範囲に設定すればよい。領域2についての基準は、5~30%の範囲から選択される値、例えば、限定ではないが、5%、7.5%、9%、11%、13%、15%、20%、25%、又は30%に設定すればよい。好ましくは、領域2についての基準は、5~11%の範囲から選択される値、例えば、限定ではないが、5%、7.5%、9%、又は11%に設定すればよい。さらに好ましくは、領域2についての基準は、6.5~8.5%の範囲、又は6.5~9.5%の範囲から選択される値、例えば、限定ではないが、6.5%、7.5%、8.5%、8.8%、8.9%、9.0%、又は9.5%に設定すればよい。なお好ましくは、領域2についての基準は、7.5%、又は7.5~9.5%、より好ましくは7.5~8.9%の範囲に設定すればよい。領域1及び2の各々について、上記基準以上のDNAメチル化レベルは、神経膠腫の予後が良好である(又は不良ではない)ことを表し、一方、上記基準未満のDNAメチル化レベルは、神経膠腫の予後が不良であることを表す。 In one embodiment of the method of the present invention, data on whether or not the DNA methylation level in any one or more of the regions 1 and 2 in the sample DNA is equal to or higher than a predetermined reference is acquired. At this time, the criterion for the region 1 is a value selected from the range of 10 to 40%, for example, but not limited to, 10%, 20%, 23%, 25%, 28%, 30%, 33%. It may be set to 35%, 38%, or 40%. Preferably, the criteria for region 1 is a value selected from the range of 25-35%, or 25-36%, eg, but not limited to 25%, 28%, 30%, 33%, 35. It may be set to% or 36%. More preferably, the criteria for region 1 is a value selected from the range 29-36% or 29-31%, eg, but not limited to 29%, 30%, 31%, 32%, 33. It may be set to%, 34%, 34.2%, 34.5%, 35%, or 36%. More preferably, the standard for region 1 may be set in the range of 30% or 30 to 36%, more preferably in the range of 30 to 34.2%. Criteria for region 2 are values selected from the range of 5-30%, such as, but not limited to, 5%, 7.5%, 9%, 11%, 13%, 15%, 20%, 25. It may be set to% or 30%. Preferably, the criterion for region 2 may be set to a value selected from the range of 5-11%, for example, but not limited to, 5%, 7.5%, 9%, or 11%. More preferably, the criterion for region 2 is a value selected from the range of 6.5 to 8.5%, or 6.5 to 9.5%, eg, but not limited to 6.5%. , 7.5%, 8.5%, 8.8%, 8.9%, 9.0%, or 9.5%. More preferably, the standard for region 2 may be set in the range of 7.5%, 7.5 to 9.5%, and more preferably 7.5 to 8.9%. For each of Regions 1 and 2, DNA methylation levels above the criteria indicate a good (or not poor) prognosis for glioma, while DNA methylation levels below the criteria are neurological. Indicates a poor prognosis for glioma.
 別の一実施形態においては、前記サンプルDNAにおける該領域1のDNAメチル化レベルが上記基準以上であるとき、被験体の神経膠腫の予後は良好である(又は不良ではない)と判定され得、一方、該領域1のDNAメチル化レベルが上記基準未満であるとき、被験体の神経膠腫の予後は不良であると判定され得る。
 別の一実施形態においては、前記サンプルDNAにおける該領域1のDNAメチル化レベルが上記基準以上であるとき、該サンプルDNAが由来する細胞又は組織は予後良好な(又は不良ではない)神経膠腫由来の細胞又は組織であると判定され得、一方、該領域1のDNAメチル化レベルが上記基準未満であるとき、該サンプルDNAが由来する細胞又は組織は予後不良な神経膠腫由来のものであると判定され得る。
In another embodiment, when the DNA methylation level of the region 1 in the sample DNA is equal to or higher than the above criteria, the prognosis of the subject's glioma may be determined to be good (or not bad). On the other hand, when the DNA methylation level of the region 1 is less than the above criteria, the prognosis of the subject's glioma can be determined to be poor.
In another embodiment, when the DNA methylation level of the region 1 in the sample DNA is equal to or higher than the above criteria, the cell or tissue from which the sample DNA is derived has a good (or not bad) prognosis. It can be determined that the cell or tissue is of origin, while the cell or tissue from which the sample DNA is derived is derived from glioma with a poor prognosis when the DNA methylation level of the region 1 is below the above criteria. Can be determined to be.
 別の一実施形態においては、前記サンプルDNAにおける該領域2のDNAメチル化レベルが上記基準以上であるとき、被験体の神経膠腫の予後は良好である(又は不良ではない)と判定され得、一方、該領域2のDNAメチル化レベルが上記基準未満であるとき、被験体の神経膠腫の予後は不良であると判定され得る。
 別の一実施形態においては、前記サンプルDNAにおける該領域2のDNAメチル化レベルが上記基準以上であるとき、該サンプルDNAが由来する細胞又は組織は予後良好な(又は不良ではない)神経膠腫由来の細胞又は組織であると判定され得、一方、該領域2のDNAメチル化レベルが上記基準未満であるとき、該サンプルDNAが由来する細胞又は組織は予後不良な神経膠腫由来のものであると判定され得る。
In another embodiment, when the DNA methylation level of the region 2 in the sample DNA is equal to or higher than the above criteria, the prognosis of the subject's glioma may be determined to be good (or not bad). On the other hand, when the DNA methylation level of the region 2 is less than the above criteria, the prognosis of the subject's glioma can be determined to be poor.
In another embodiment, when the DNA methylation level of the region 2 in the sample DNA is equal to or higher than the above criteria, the cell or tissue from which the sample DNA is derived has a good (or not bad) prognosis. It can be determined that the cell or tissue is of origin, while the cell or tissue from which the sample DNA is derived is derived from glioma with a poor prognosis when the DNA methylation level of the region 2 is below the above criteria. Can be determined to be.
 さらに別の一実施形態においては、前記領域1及び2のDNAメチル化レベルを組み合わせて神経膠腫の予後を判定することができる。例えば、該領域1及び2の両方のDNAメチル化レベルがいずれも上記基準未満であるときに、被験体の神経膠腫の予後は不良である、又は該サンプルDNAが由来する細胞又は組織は予後不良な神経膠腫由来のものであると判定され得る。あるいは、該領域1及び2の両方のDNAメチル化レベルがいずれも上記基準以上であるときに、被験体の神経膠腫の予後は良好である(又は不良ではない)、又は該サンプルDNAが由来する細胞又は組織は予後良好な(又は不良ではない)神経膠腫由来のものであると判定され得る。 In yet another embodiment, the DNA methylation levels of regions 1 and 2 can be combined to determine the prognosis of glioma. For example, when the DNA methylation levels of both regions 1 and 2 are both below the criteria, the prognosis of the subject's glioma is poor, or the cell or tissue from which the sample DNA is derived has a prognosis. It can be determined to be of poor glioma origin. Alternatively, when the DNA methylation levels in both regions 1 and 2 are both above the criteria, the prognosis for glioma in the subject is good (or not bad), or the sample DNA is derived. Cells or tissues that produce can be determined to be derived from glioma with a good (or not poor) prognosis.
 したがって、本発明の方法において前述したようにバイサルファイト処理されたゲノムDNAをPCR等で増幅する場合、前記領域1及び2のいずれか1つ以上が増幅されればよく、又は該領域1及び2の両方が増幅されてもよい。 Therefore, when the bisulfite-treated genomic DNA is amplified by PCR or the like in the method of the present invention, any one or more of the regions 1 and 2 may be amplified, or the regions 1 and 2 may be amplified. Both may be amplified.
 本発明の方法において、前記領域1及び2のDNAメチル化レベルを測定する手法は、特に限定されず、公知のDNAメチル化レベル定量法を適宜用いることができる。かかる公知の手法としては、例えば以下に示す第1~第8の手法が挙げられる。 In the method of the present invention, the method for measuring the DNA methylation level of the regions 1 and 2 is not particularly limited, and a known DNA methylation level quantification method can be appropriately used. Examples of such known methods include the first to eighth methods shown below.
 第1の手法は、3’末端にメチル化シトシン又は非メチル化シトシンに相補的な塩基を有するように構築されたプローブを用いた1塩基伸長反応を利用して、標的DNA領域におけるDNAメチル化を定量する方法である。例えば、第1の手法では、バイサルファイト処理されたゲノムDNAにハイブリダイズするプローブであって、その3’末端に標的DNA領域中のCpGのメチル化又は非メチル化シトシンに相補的な塩基を有するプローブを用いる。バイサルファイト処理によって、非メチル化シトシンはウラシルに変換されるが、メチル化シトシンは変換されない。すなわち、メチル化シトシン用のプローブの3’末端の塩基はグアニンであり、非メチル化シトシン用のプローブの3’末端の塩基はアデニンである。該2種類のプローブと、一本鎖断片化した前記バイサルファイト処理DNAとをハイブリダイズさせ、蛍光標識した塩基存在下1塩基伸長反応を行う。標的シトシンのメチル化又は非メチル化に依存して、いずれかのプローブで1塩基伸長反応が起こり、蛍光標識した塩基が取り込まれる。メチル化シトシン用プローブ及び/又は非メチル化シトシン用プローブが発する蛍光の強度からDNAメチル化レベルを算出することができる。 The first method is DNA methylation in the target DNA region using a 1-base extension reaction using a probe constructed to have a base complementary to methylated or unmethylated cytosine at the 3'end. Is a method of quantifying. For example, in the first method, a probe that hybridizes to bisulfite-treated genomic DNA has a base complementary to methylated or unmethylated cytosine of CpG in the target DNA region at the 3'end. Use a probe. Bisulfite treatment converts unmethylated cytosine to uracil, but not methylated cytosine. That is, the base at the 3'end of the probe for methylated cytosine is guanine, and the base at the 3'end of the probe for unmethylated cytosine is adenine. The two types of probes are hybridized with the single-stranded fragmented bisulfite-treated DNA, and a single-base extension reaction is carried out in the presence of a fluorescently labeled base. Depending on the methylation or unmethylation of the target cytosine, a one-base extension reaction occurs with either probe to incorporate the fluorescently labeled base. The DNA methylation level can be calculated from the intensity of fluorescence emitted by the probe for methylated cytosine and / or the probe for unmethylated cytosine.
 あるいは、第1の手法の別の態様では、バイサルファイト処理されたゲノムDNAにハイブリダイズするプローブであって、その3’末端に標的DNA領域中CpGのグアニンに相補的な塩基を有するプローブを用いてもよい。そして、かかるプローブと、前記一本鎖断片化DNAとをハイブリダイズさせ、蛍光物質にて標識したグアニン及び/又は該蛍光物質とは異なる蛍光色素にて標識したアデニンの存在下、1塩基伸長反応を行う。標的シトシンのメチル化又は非メチル化に依存して、該プローブに蛍光標識したグアニン又はアデニンが取り込まれる。該プローブに取り込まれた各蛍光物質が発する蛍光からDNAメチル化レベルを算出することができる。 Alternatively, in another aspect of the first method, a probe that hybridizes to bisulfite-treated genomic DNA and has a base complementary to CpG guanine in the target DNA region at its 3'end is used. You may. Then, the probe is hybridized with the single-stranded fragmented DNA, and a one-base extension reaction is carried out in the presence of guanine labeled with a fluorescent substance and / or adenine labeled with a fluorescent dye different from the fluorescent substance. I do. Fluorescently labeled guanine or adenine is incorporated into the probe depending on the methylation or unmethylation of the target cytosine. The DNA methylation level can be calculated from the fluorescence emitted by each fluorescent substance incorporated into the probe.
 かかる第1の手法の好ましい例としては、例えば、ビーズアレイ法(例えば、インフィニウム(登録商標)アッセイ)が挙げられる。 A preferred example of such a first method is, for example, the bead array method (eg, Infinium® assay).
 第2の手法は、質量分析によりメチル化DNAを定量する方法である。第2の手法の好ましい例としては、例えばMassARRAY(登録商標)(Jurinke Cら、Mutat Res、2005年、573巻、83~95頁)が挙げられる。MassARRAY(登録商標)では、バイサルファイト処理後の標的DNA領域を増幅し、RNAに転写した後、RNAaseによりウラシルの部位で特異的に切断する。これにより、DNAメチル化(シトシンからウラシルへの変換)の有無に応じて長さの異なるRNA断片が生成される。得られたRNA断片を質量分析にかけることで、メチル化DNAに由来するRNA断片と非メチル化DNAに由来するRNA断片とが分子量の差に従って分離され、検出されたこれらの断片の質量比から、標的DNA領域のDNAメチル化レベルが算出される。RNA断片の質量分析には、一塩基の質量の差異を検出できるMALDI-TOF MAS(例えば、SEQUENOM社製、MassARRAY Analyzer 4)を用いることができる。 The second method is a method of quantifying methylated DNA by mass spectrometry. Preferred examples of the second method include, for example, MassARRAY® (Jurinke C et al., Mutat Res, 2005, 573, pp. 83-95). In MassARRAY®, the target DNA region after bisulfite treatment is amplified, transcribed into RNA, and then specifically cleaved at the uracil site by RNAase. As a result, RNA fragments having different lengths are generated depending on the presence or absence of DNA methylation (conversion of cytosine to uracil). By subjecting the obtained RNA fragment to mass analysis, RNA fragments derived from methylated DNA and RNA fragments derived from unmethylated DNA were separated according to the difference in molecular weight, and from the mass ratio of these fragments detected. , The DNA methylation level of the target DNA region is calculated. For mass spectrometry of RNA fragments, MALDI-TOF MAS (for example, MassARRAY Analyzer 4 manufactured by SEQUENOM), which can detect a difference in mass of one base, can be used.
 第3の手法としては、パイロシークエンシング法(登録商標、Pyrosequencing)(Anal.Biochem.(2000)10:103-110参照)が挙げられる。まずバイサルファイト処理した標的DNA領域を増幅し、増幅したDNAを一本鎖に解離させる。得られた一本鎖DNAの片鎖を用いて1塩基ずつ伸長反応(シークエンシング)を行う。該伸長反応において、非メチル化シトシン(ウラシルに変換されている)はチミンとして示される。該反応の際に生成されるピロリン酸を酵素的に発光させ、発光の強度を測定する。メチル化シトシン由来(シトシン)の発光強度と、非メチル化シトシン由来(チミン)の発光強度とを比較し、例えば、下記式によって標的DNA領域のDNAメチル化レベル(%)を算出する。
  DNAメチル化レベル(%)=シトシンの発光強度×100/(シトシンの発光強度+チミンの発光強度)。
A third method includes a pyrosequencing method (registered trademark, Pyrosequencing) (see Anal. Biochem. (2000) 10: 103-110). First, the target DNA region treated with bisulfite is amplified, and the amplified DNA is dissociated into a single strand. An extension reaction (sequencing) is performed one base at a time using one strand of the obtained single-stranded DNA. In the extension reaction, unmethylated cytosine (converted to uracil) is shown as thymine. The pyrophosphate produced during the reaction is enzymatically emitted to emit light, and the intensity of the emission is measured. The luminescence intensity derived from methylated cytosine (cytosine) is compared with the luminescence intensity derived from unmethylated cytosine (thymine), and for example, the DNA methylation level (%) of the target DNA region is calculated by the following formula.
DNA methylation level (%) = cytosine luminescence intensity x 100 / (cytosine luminescence intensity + thymine luminescence intensity).
 第4の手法としては、メチル化感受性高解像能融解曲線分析(methylation-sensitive high resolution melting:MS-HRM、Wojdacz TKら、Nat Protoc.,2008年、3巻、1903~8ページ参照)が挙げられる。第4の手法では、DNA二重鎖間に挿入されると蛍光を発するインターカレーターを含む反応系において、バイサルファイト処理した標的DNA領域の増幅産物の融解曲線を測定する。該融解曲線をメチル化/非メチル化対照と比較することで、標的DNA領域のDNAメチル化レベルを算出する。 As a fourth method, methylation-sensitive high resolution melting (MS-HRM, Wojidacz TK et al., Nat Protocol., 2008, Vol. 3, pp. 1903-8) is used. Can be mentioned. In the fourth method, the melting curve of the amplification product of the bisulfite-treated target DNA region is measured in a reaction system containing an intercalator that fluoresces when inserted between DNA double strands. The DNA methylation level of the target DNA region is calculated by comparing the melting curve with methylated / unmethylated controls.
 第5の手法としては、例えば、TaqManプローブ(登録商標)を用いたMethyLight法等のメチル化特異的定量PCR法(methylation-specific polymerase chain reaction(MS-PCR) using real-time quantitative PCR)が挙げられる。第5の手法では、メチル化DNAを特異的に増幅するプライマーセット、及び非メチル化DNAを特異的に増幅するプライマーセットをそれぞれ用いて、バイサルファイト処理した標的DNA領域を増幅する。それぞれの増幅産物の量を比較することにより、DNAメチル化レベルを算出する。 As a fifth method, for example, methylation-specific polymerase chain reaction (MS-PCR) using real-time quantative PCR such as the Methylation method using a TaqMan probe (registered trademark) is mentioned. Be done. In the fifth method, a bisulfite-treated target DNA region is amplified by using a primer set that specifically amplifies methylated DNA and a primer set that specifically amplifies unmethylated DNA. DNA methylation levels are calculated by comparing the amounts of each amplification product.
 第6の手法としては、例えば、バイサルファイト直接シークエンシング(bisulfite direct sequencing)、及びバイサルファイトクローニングシークエンシング(bisulfite cloning sequencing)が挙げられる(Kristensen LSら、Clin Chem、2009年、55巻、1471~83ページ参照)。第7の手法としては、例えば、COBRA(バイサルファイトと制限酵素との併用による解析)が挙げられる。 Examples of the sixth method include bisulfite direct sequencing and bisulfite cloning sequencing (Kristensen LS et al., Clin Chem, Vol. 14, 2009, Vol. 55). See page 83). As a seventh method, for example, COBRA (analysis using a combination of bisulfite and a restriction enzyme) can be mentioned.
 第8の手法は、イオン交換クロマトグラフィーを用いる方法である。例えば、第8の手法では、まず、バイサルファイト処理したゲノムDNAを断片化し、得られたDNA断片を鋳型として、標的DNA領域をPCRにて増幅する。次いで、増幅したDNA断片を、イオン交換クロマトグラフィーにかけ、ピークの保持時間に基づいて標的DNA領域のDNAメチル化レベルを算出する。 The eighth method is a method using ion exchange chromatography. For example, in the eighth method, first, the bisulfite-treated genomic DNA is fragmented, and the target DNA region is amplified by PCR using the obtained DNA fragment as a template. The amplified DNA fragment is then subjected to ion exchange chromatography to calculate the DNA methylation level of the target DNA region based on the peak retention time.
 第8の手法では、標的DNA領域の非メチル化シトシンは、バイサルファイト処理によってウラシルに変換された後、PCRによりさらにチミンへと変換される。一方、メチル化シトシンは、バイサルファイト処理及びPCRの後にもシトシンのままである。この塩基の違いにより、メチル化シトシンを含む断片(メチル化断片)と非メチル化断片は、イオン交換クロマトグラフィーにおいて、保持時間が異なる別個のピークとして検出される。好ましくは、メチル化断片のピークの保持時間は非メチル化断片と比べて短く、またメチル化レベルが高い断片ほど、より早い保持時間のピークとして検出される。したがって、イオン交換クロマトグラフィーでのピークの保持時間に基づいて、標的DNA領域のDNAメチル化レベルを算出することができる。 In the eighth method, unmethylated cytosine in the target DNA region is converted to uracil by bisulfite treatment and then further converted to thymine by PCR. On the other hand, methylated cytosine remains cytosine after bisulfite treatment and PCR. Due to this base difference, the methylated cytosine-containing fragment (methylated fragment) and the unmethylated fragment are detected as separate peaks with different retention times in ion exchange chromatography. Preferably, the peak retention time of the methylated fragment is shorter than that of the unmethylated fragment, and the higher the methylation level, the earlier the retention time peak is detected. Therefore, the DNA methylation level of the target DNA region can be calculated based on the retention time of the peak in ion exchange chromatography.
 第8の手法では、標的DNA領域のDNAメチル化レベルは、メチル化レベルが既知である同じDNA領域由来のDNAを用いて予め作成した検量線に基づいて算出することができる。あるいは、メチル化レベルが前記基準値である同じDNA領域由来のDNA(Reference)とピークの保持時間を比較することによって、標的DNA領域のDNAメチル化レベルが基準以上であるか否かを調べることができる。Referenceのピークの保持時間は、サンプルDNAと一緒に測定してもよいが、予め決定しておいてもよい。Referenceと同じ又はより早い保持時間で検出されたサンプルDNAは、メチル化レベルが該基準以上であると判断され、一方、上記基準未満の保持時間で検出されたサンプルDNAは、メチル化レベルが該基準未満であると判断される。 In the eighth method, the DNA methylation level of the target DNA region can be calculated based on a calibration curve prepared in advance using DNA derived from the same DNA region whose methylation level is known. Alternatively, it is investigated whether or not the DNA methylation level of the target DNA region is equal to or higher than the reference value by comparing the retention time of the peak with the DNA (Reference) derived from the same DNA region whose methylation level is the reference value. Can be done. The retention time of the reference peak may be measured together with the sample DNA, or may be determined in advance. Sample DNA detected at the same or earlier retention time as Reference is determined to have a methylation level above the reference, while sample DNA detected at a retention time below the reference has a methylation level of said. It is judged to be below the standard.
 第8の手法で行われるイオン交換クロマトグラフィーは、好ましくはアニオン交換クロマトグラフィーである。カラムの充填剤としては、表面に強カチオン性基を有する基材粒子であれば特に限定されないが、国際公開公報第2012/108516号に示される、充填剤表面に強カチオン性基と弱カチオン性基の両方を有する基材粒子が好ましい。より好ましくは、該基材粒子は、強カチオン性基(好ましくは4級アンモニウム塩)を有する親水性重合体の層が疎水性架橋重合体粒子の表面に共重合されている被覆重合体粒子と、該被覆重合体粒子表面に導入された弱カチオン性基(好ましくは3級アミノ基)とを含む基材粒子である。クロマトグラフィー分析の際のカラム温度は、好ましくは30℃以上90℃未満である。 The ion exchange chromatography performed by the eighth method is preferably anion exchange chromatography. The column packing material is not particularly limited as long as it is a base particle having a strong cationic group on the surface, but is shown in International Publication No. 2012/108516, which has a strong cationic group and a weak cationic property on the packing surface. Substrate particles having both groups are preferred. More preferably, the substrate particles are coated polymer particles in which a layer of a hydrophilic polymer having a strongly cationic group (preferably a quaternary ammonium salt) is copolymerized on the surface of the hydrophobic crosslinked polymer particles. , A base material particle containing a weak cationic group (preferably a tertiary amino group) introduced into the surface of the coated polymer particles. The column temperature during the chromatographic analysis is preferably 30 ° C. or higher and lower than 90 ° C.
 以上、本発明において「DNAメチル化レベルを測定する手法」として好適に用いることのできる手法を例示したが、手法はこれに限定されるものではない。前記第1~第8の手法では、前述のとおり、神経膠腫細胞又はそれを含む組織から調製されたゲノムDNAは、さらにバイサルファイト処理に供される。したがって、本発明の方法においてDNAメチル化レベルの測定に用いられるDNAは、好ましくは、神経膠腫細胞又はそれを含む組織由来の、バイサルファイト処理されたゲノムDNAである。 As described above, the method that can be suitably used as the "method for measuring the DNA methylation level" in the present invention has been exemplified, but the method is not limited to this. In the first to eighth methods, as described above, genomic DNA prepared from glioma cells or tissues containing the glioma cells is further subjected to bisulfite treatment. Therefore, the DNA used to measure DNA methylation levels in the methods of the invention is preferably bisulfite-treated genomic DNA from glioma cells or tissues containing them.
 本発明の方法により神経膠腫の予後良好と判定された患者に対しては、放射線療法とあわせて積極的に化学療法(例えばテモゾロミド等アルキル化剤の投与)を行うことが、患者の生存期間の延長に効果的である。他方、本発明の方法により神経膠腫の予後不良と判定された患者に対しては、アルキル化剤の用量を増やしたり、アルキル化剤による化学療法以外の療法を適用したり、より慎重に病状の監視を行うなど、患者に適した処置を施すことができる。本発明は、個々の患者に適切な処置を選択するための情報を提供することで、該患者のQOL及び生命予後の改善に貢献することができる。 For patients who are determined to have a good prognosis for glioma by the method of the present invention, it is possible to actively administer chemotherapy (for example, administration of an alkylating agent such as temozolomide) in combination with radiotherapy for the survival period of the patient. It is effective for extension of. On the other hand, for patients who are determined to have a poor prognosis of glioma by the method of the present invention, the dose of the alkylating agent may be increased, or a therapy other than chemotherapy with the alkylating agent may be applied, or the condition may be more cautious. It is possible to take appropriate measures for the patient, such as monitoring the patient. The present invention can contribute to improving the quality of life and prognosis of an individual patient by providing the individual patient with information for selecting an appropriate treatment.
 したがって、本発明はまた、前記本発明の予後判定方法により神経膠腫の予後良好又は不良と判定された被験体を治療することを含む、神経膠腫の治療方法を提供する。治療の手段としては、予後良好の被験体に対しては、放射線療法と化学療法(例えばテモゾロミド等アルキル化剤の投与)との併用が好ましく、予後不良の被験体に対しては、放射線療法のみ、放射線療法と通常より高用量のアルキル化剤投与との併用、又は放射線療法とアルキル化剤投与以外の他の療法との併用が好ましいが、特に限定されない。 Therefore, the present invention also provides a method for treating glioma, which comprises treating a subject who is determined to have a good or poor prognosis for glioma by the method for determining prognosis of the present invention. As a means of treatment, it is preferable to use radiation therapy in combination with chemotherapy (for example, administration of an alkylating agent such as temozolomid) for subjects with a good prognosis, and only radiation therapy for subjects with a poor prognosis. , The combination of radiation therapy and administration of a higher dose of alkylating agent than usual, or the combination of radiation therapy and administration of an alkylating agent other than the administration of an alkylating agent is preferable, but is not particularly limited.
 さらに本発明は、本発明の方法に用いるためのプライマー又はプローブを提供する。好ましくは、該プライマー又はプローブは、前記第1~第8の手法のいずれかによる、神経膠腫の予後判定のため、予後良好又は不良な神経膠腫由来の細胞又は組織の判定のため、あるいはそれらの判定に用いるデータを取得するために使用される。好ましくは、該プライマー又はプローブは、MGMTプロモーター領域中における前記領域1又は2のDNAメチル化レベルを測定するためのプライマー又はプローブである。より好ましくは、該プライマー又はプローブは、バイサルファイト処理されたMGMTプロモーター領域にハイブリダイズするプライマー又はプローブである。 Furthermore, the present invention provides primers or probes for use in the methods of the present invention. Preferably, the primer or probe is used for determining the prognosis of glioma, for determining cells or tissues derived from glioma with good or poor prognosis, or for determining cells or tissues derived from glioma by any of the first to eighth methods. It is used to acquire the data used for those determinations. Preferably, the primer or probe is a primer or probe for measuring the DNA methylation level of said region 1 or 2 in the MGMT promoter region. More preferably, the primer or probe is a primer or probe that hybridizes to the bisulfite-treated MGMT promoter region.
 本発明のプライマー又はプローブの鎖長は、少なくとも12塩基であればよいが、好ましくは少なくとも15塩基、さらに好ましくは15~200塩基である。プローブの場合、好ましい鎖長は100~200塩基、より好ましくは100~150塩基である。PCRプライマーの場合、好ましい鎖長は12~60塩基、より好ましくは15~40塩基である。また、本発明のプライマー又はプローブは、標識(例えば蛍光標識)されていてもよい。また本発明のプライマー又はプローブは、好ましくは、前記第1~第8の手法のいずれかに用いることができるプライマー又はプローブである。 The chain length of the primer or probe of the present invention may be at least 12 bases, but is preferably at least 15 bases, and more preferably 15 to 200 bases. In the case of a probe, the preferred chain length is 100-200 bases, more preferably 100-150 bases. In the case of PCR primers, the preferred chain length is 12-60 bases, more preferably 15-40 bases. Further, the primer or probe of the present invention may be labeled (for example, fluorescently labeled). Further, the primer or probe of the present invention is preferably a primer or probe that can be used in any of the first to eighth methods.
 前記プライマー又はプローブの一実施形態としては、バイサルファイト処理されたMGMTプロモーター領域中における前記領域1又は2をPCR増幅するためのプライマーセット(例えば前述した第8の手法に用いることができるプライマーセット)が挙げられる。そのようなプライマーセットの例としては、バイサルファイト処理された領域1をPCR増幅する、配列番号4のヌクレオチド配列からなるプライマーと配列番号5のヌクレオチド配列からなるプライマーとのプライマーセット、又はこれらと相補的な配列のプライマーからなるプライマーセット;及び、バイサルファイト処理された領域2をPCR増幅する、配列番号6のヌクレオチド配列からなるプライマーと配列番号7のヌクレオチド配列からなるプライマーとのプライマーセット、又はこれらと相補的な配列のプライマーからなるプライマーセット、が挙げられる。 As one embodiment of the primer or probe, a primer set for PCR amplification of the region 1 or 2 in the bisulfite-treated MGMT promoter region (for example, a primer set that can be used in the above-mentioned eighth method). Can be mentioned. An example of such a primer set is a primer set consisting of a primer consisting of the nucleotide sequence of SEQ ID NO: 4 and a primer consisting of the nucleotide sequence of SEQ ID NO: 5, which PCR-amplifies the bisulfite-treated region 1, or a primer set complementary thereto. Primer set consisting of primers having a specific sequence; and a primer set consisting of a primer consisting of the nucleotide sequence of SEQ ID NO: 6 and a primer consisting of the nucleotide sequence of SEQ ID NO: 7, which PCR-amplifies the bisulfite-treated region 2. A primer set consisting of primers having a sequence complementary to the above can be mentioned.
 前記プライマーセットの別の例としては、バイサルファイト処理された領域1をPCR増幅する、配列番号4のヌクレオチド配列と少なくとも90%同一な配列からなるプライマーと、配列番号5のヌクレオチド配列と少なくとも90%同一な配列からなるプライマーとのプライマーセット、又はこれらと相補的な配列のプライマーからなるプライマーセット;及び、バイサルファイト処理された領域2をPCR増幅する、配列番号6のヌクレオチド配列と少なくとも90%同一な配列からなるプライマーと配列番号7のヌクレオチド配列と少なくとも90%同一な配列からなるプライマーとのプライマーセット、又はこれらと相補的な配列のプライマーからなるプライマーセット、が挙げられる。 As another example of the primer set, a primer having a sequence that is at least 90% identical to the nucleotide sequence of SEQ ID NO: 4 and at least 90% of the nucleotide sequence of SEQ ID NO: 5 that PCR-amplifies the bisulfite-treated region 1. A primer set with primers consisting of the same sequence, or a primer set consisting of primers having a sequence complementary thereto; and at least 90% identical to the nucleotide sequence of SEQ ID NO: 6 that PCR-amplifies the bisulfite-treated region 2. Examples thereof include a primer set consisting of a primer having a similar sequence and a primer having a sequence consisting of at least 90% identical to the nucleotide sequence of SEQ ID NO: 7, or a primer set consisting of a primer having a sequence complementary thereto.
 本発明のプライマー又はプローブの別の一実施形態としては、バイサルファイト処理された前記領域1及び2のいずれかにハイブリダイズし、かつその3’末端にメチル化シトシン又は非メチル化シトシンに相補的な塩基を有するように構築されたプライマー又はプローブ(例えば前述した第1の手法に用いることができるプライマー又はプローブ)が挙げられる。 In another embodiment of the primer or probe of the present invention, it hybridizes to either of the bisulfite-treated regions 1 and 2 and is complementary to methylated or unmethylated cytosine at its 3'end. Primers or probes constructed to have a specific base (for example, primers or probes that can be used in the first method described above) can be mentioned.
 本発明のプライマー又はプローブの別の一実施形態としては、バイサルファイト処理された前記領域1及び2のいずれかにハイブリダイズし、1塩基ずつ伸長反応を行うことができるプライマー(例えば前述した第3の手法に用いることができるパイロシークエンシング用プライマー)が挙げられる。 As another embodiment of the primer or probe of the present invention, a primer capable of hybridizing to any of the bisulfite-treated regions 1 and 2 and carrying out an extension reaction one base at a time (for example, the above-mentioned third primer). Primer for pyrosequencing) that can be used in the above method.
 本発明のプライマー又はプローブの別の一実施形態としては、メチル化された前記領域1又は2由来のバイサルファイト処理されたDNAを特異的に増幅可能なプライマーセット、及びメチル化されていない前記領域1又は2由来のバイサルファイト処理されたDNAを特異的に増幅可能なプライマーセット(例えば前述した第5の手法に用いることができるプライマーセット)が挙げられる。 Another embodiment of the primer or probe of the present invention is a primer set capable of specifically amplifying bisulfite-treated DNA derived from the methylated region 1 or 2, and the unmethylated region. Examples thereof include a primer set capable of specifically amplifying bisulfite-treated DNA derived from 1 or 2 (for example, a primer set that can be used in the above-mentioned fifth method).
 さらに、本発明は、前記本発明のプライマー又はプローブを含む、本発明の方法を行うためのキットを提供する。好ましくは、本発明のキットは、前記第1~第8の手法のいずれかによる、神経膠腫の予後判定のため、予後良好又は不良な神経膠腫由来の細胞又は組織の判定のため、あるいはそれらの判定に用いるデータを取得するために使用される。 Furthermore, the present invention provides a kit for performing the method of the present invention, which comprises the primer or probe of the present invention. Preferably, the kit of the present invention is used for determining the prognosis of glioma, for determining cells or tissues derived from glioma having a good or poor prognosis, or for determining cells or tissues derived from glioma by any of the first to eighth methods. It is used to acquire the data used for those determinations.
 本発明のキットは、前記本発明のプライマー又はプローブ以外の成分を含むことができる。このような成分の例としては、バイサルファイト処理に必要な試薬(例えば、亜硫酸水素ナトリウム溶液等)、PCR反応に必要な試薬(例えば、デオキシリボヌクレオチドや耐熱性DNAポリメラーゼ等)、インフィニウム(登録商標)アッセイに必要な試薬(例えば、蛍光物質にて標識されたヌクレオチド)、MassARRAY(登録商標)に必要な試薬(例えば、塩基特異的な切断反応を行うためのRNase)、パイロシークエンシングに必要な試薬(例えば、ピロリン酸の検出のためのATPスルフリラーゼ、アデノシン-5’-ホスホ硫酸、ルシフェラーゼ、ルシフェリン、一本鎖DNAを分離するためのストレプトアビジン等)、標識の検出に必要な試薬(例えば基質や酵素)、試料(組織由来DNA等)の希釈や洗浄に用いる緩衝液、などが挙げられるが、これらに限定されない。また、該キットには、その使用説明書を含めることができる。 The kit of the present invention can contain components other than the primer or probe of the present invention. Examples of such components include reagents required for bisulfite treatment (eg, sodium hydrogen sulfite solution, etc.), reagents required for PCR reactions (eg, deoxyribonucleotides, heat-resistant DNA polymerase, etc.), and infinium (registered trademark). ) Reagents required for the assay (eg, fluorescently labeled nucleotides), Reagents required for MassARRAY® (eg, RNase for performing base-specific cleavage reactions), required for pyrosequencing Reagents (eg, ATP sulfylase for detection of pyrophosphate, adenosine-5'-phosphosulfate, luciferase, luciferin, streptavidin for separating single-stranded DNA, etc.), reagents required for detection of labels (eg, substrate) And enzymes), buffers used for diluting and washing samples (tissue-derived DNA, etc.), and the like, but are not limited thereto. In addition, the kit may include its instruction manual.
 好ましくは、本発明のキットは、測定したDNAメチル化レベルが前述した神経膠腫の予後判定のための基準以上であるか否かを判定するためのガイドを備える。一実施形態において、該ガイドは、前述した神経膠腫の予後判定のための基準を示す表示である。一実施形態において、該ガイドは、メチル化レベルが該基準値にある領域1及び2のいずれかのDNA(reference)であり、キットの使用者は、サンプルDNAの領域1及び2のいずれかのDNAメチル化レベルを該referenceと比較することで、該サンプルDNAの領域1及び2のいずれかのメチル化レベルが基準以上であるか否かを判定することができる。 Preferably, the kit of the present invention comprises a guide for determining whether or not the measured DNA methylation level is above the above-mentioned criteria for determining the prognosis of glioma. In one embodiment, the guide is an indication indicating the criteria for determining the prognosis of the aforementioned glioma. In one embodiment, the guide is the DNA of either region 1 or 2 whose methylation level is at the reference value, and the user of the kit is one of regions 1 and 2 of the sample DNA. By comparing the DNA methylation level with the reference, it can be determined whether or not the methylation level of any of regions 1 and 2 of the sample DNA is equal to or higher than the reference.
 好ましくは、本発明のキットは、前記第8の手法を利用して、前記領域1及び2のいずれか1つ以上のDNAメチル化レベルが前述した神経膠腫の予後判定のための基準以上であるか否かについてのデータを取得するために用いられる。該キットは、前記第8の手法に用いることができるプライマーセットを含み、該第8の手法を利用して該領域1及び2のいずれか1つ以上のDNAメチル化レベルを測定する。該キットはさらに、該プライマーセット以外の該第8の手法に必要な試薬、例えばバイサルファイト処理用試薬、PCR試薬、クロマトグラフィー用試薬などを含むことができる。好ましくは、該キットは、該神経膠腫の予後判定のための基準を示す表示、又はメチル化レベルが該基準値にある領域1及び2のいずれか1つ以上のDNA(reference)を備える。サンプルDNAの領域1及び2のいずれかのDNAメチル化レベルを、表示された基準又は該referenceのメチル化レベルと比較することで、該サンプルDNAの領域1及び2のいずれかのDNAメチル化レベルが基準以上であるか否かを判定することができる。 Preferably, the kit of the present invention utilizes the eighth method and the DNA methylation level of any one or more of the regions 1 and 2 is equal to or higher than the above-mentioned criteria for determining the prognosis of glioma. It is used to obtain data about the presence or absence. The kit includes a primer set that can be used in the eighth technique and utilizes the eighth technique to measure the DNA methylation level of any one or more of the regions 1 and 2. The kit can further include reagents other than the primer set required for the eighth procedure, such as bisulfite treatment reagents, PCR reagents, chromatographic reagents, and the like. Preferably, the kit comprises a display indicating a criterion for determining the prognosis of the glioma, or DNA (reference) of any one or more of regions 1 and 2 whose methylation level is at the reference value. By comparing the DNA methylation level of either region 1 or 2 of the sample DNA with the methylation level of the indicated reference or the reference, the DNA methylation level of either region 1 or 2 of the sample DNA Can be determined whether or not is greater than or equal to the standard.
 さらに本発明は、本発明の方法を実施するためのDNAメチル化レベル測定システムを提供する。好ましくは、該システムは、前記第8の手法を利用して、前記領域1及び2のいずれか1つ以上のDNAメチル化レベルが前述した神経膠腫の予後判定のための基準以上であるか否かについてのデータを取得することを可能にするシステムである。例えば、該システムは、前述した該第8の手法に用いられるイオン交換クロマトグラフィー(好ましくはアニオン交換クロマトグラフィー)装置を備える。必要に応じて、該システムは、サンプルDNA調製装置(例えばDNAのバイサルファイト処理のための装置や、PCR装置を含む)を備えていてもよい。バイサルファイト処理され、PCR処理されたサンプルDNAは、クロマトグラフィー装置に送られ、メチル化レベルに応じて分離される。クロマトグラフィーのピークの保持時間に基づいて、前記領域1及び2のいずれかのDNAメチル化レベルを測定することができる。さらに該システムは、前記クロマトグラフィー結果から算出された該領域1及び2のいずれか1つ以上のDNAメチル化レベルが、前述した神経膠腫の予後判定のための基準以上であるか否かを検出するためのメチル化レベル検出装置を備える。例えば、該検出装置は計算機である。該検出装置は、測定された該領域1及び2のいずれか1つ以上のDNAメチル化レベルが該基準以上であるか否かを検出し、結果を出力する。必要に応じて、該検出装置は、クロマトグラフィーのピークの保持時間からDNAメチル化レベルを測定する。 Furthermore, the present invention provides a DNA methylation level measurement system for carrying out the method of the present invention. Preferably, the system utilizes the eighth technique to determine if the DNA methylation level of any one or more of the regions 1 and 2 is above the criteria for determining the prognosis of the glioma described above. It is a system that makes it possible to acquire data on whether or not. For example, the system comprises an ion exchange chromatography (preferably anion exchange chromatography) apparatus used in the eighth technique described above. If desired, the system may be equipped with a sample DNA preparation device (including, for example, a device for bisulfite processing of DNA and a PCR device). The bisulfite-treated and PCR-treated sample DNA is sent to a chromatographic device and separated according to the methylation level. The DNA methylation level of any of the regions 1 and 2 can be measured based on the retention time of the chromatographic peak. Further, the system determines whether or not the DNA methylation level of any one or more of the regions 1 and 2 calculated from the chromatography result is equal to or higher than the above-mentioned criteria for determining the prognosis of glioma. It is equipped with a methylation level detection device for detection. For example, the detection device is a computer. The detection device detects whether or not the measured DNA methylation level of any one or more of the regions 1 and 2 is equal to or higher than the reference level, and outputs the result. If necessary, the detector measures DNA methylation levels from the retention time of the chromatographic peak.
 以下、実施例により本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.
実施例1
1)患者及び組織検体
 凍結神経膠腫検体(n=107)を準備した。これらの検体は、2名の毛様細胞性星細胞腫(グレード1)患者、9名のびまん性星細胞腫と4名の乏突起膠腫(グレード2)患者、8名の退形成性星細胞腫と8名の退形成性乏突起膠腫(グレード3)患者、及び23名の膠芽腫(グレード4)患者を含む、54名の患者(9歳~83歳;平均年齢47歳、男28名、女26名)から外科手術により摘出した神経膠腫を含む組織を速やかに-80℃で凍結保存することで調製された。またこれらの検体は、異なる時期又は腫瘍組織の異なる部位から採取した同じ患者からの検体を含んでいた。膠芽腫(Glioblastoma、GBM)患者23名のうち21名は、外科手術後に放射線化学療法(放射線+テモゾロミド)を受けていた(平均治療期間453日)。
Example 1
1) Patient and tissue specimens Frozen glioma specimens (n = 107) were prepared. These specimens included 2 patients with pilocytic astrocytoma (grade 1), 9 patients with diffuse astrocytoma and 4 patients with oligodendroglioma (grade 2), and 8 anaplastic stars. 54 patients (9-83 years; average age 47 years, including astrocytoma and 8 anaplastic oligodendroglioma (grade 3) patients, and 23 glioblastoma (grade 4) patients, It was prepared by rapidly cryopreserving the tissue containing glioma, which was surgically removed from 28 males and 26 females) at -80 ° C. These specimens also included specimens from the same patient taken from different sites of tumor tissue at different times. Twenty-one of the 23 patients with glioblastoma (GBM) received radiation chemotherapy (radiation + temozolomide) after surgery (mean treatment period 453 days).
2)DNA調製
 調製した凍結腫瘍サンプルから、DNeasy Blood&Tissue Kit(Qiagen、Cat.No.69504)を用いて、付属のプロトコルに従ってDNAを抽出した。抽出したDNAをEZ DNA Methylation-Lightning Kits(ZymoResarch)を用いて、付属のプロトコルに従ってバイサルファイト処理した。
2) DNA preparation DNA was extracted from the prepared frozen tumor sample using the DNeasy Blood & Tissue Kit (Qiagen, Cat. No. 69504) according to the attached protocol. The extracted DNA was bisulfite-treated according to the attached protocol using EZ DNA Methylation-Lightning Kits (ZymoResearch).
3)PCR増幅
 2)で得られたバイサルファイト処理DNAを鋳型として、PCRにより、表1に示すMGMTプロモーター領域(配列番号3)中の2領域(P1及びP2;配列番号1及び2)を増幅した。PCRでは、TaKaRa EpiTaqTM HSを用いた50μLの反応液(テンプレート20ng含有)を調製し、付属のプロトコルに従って反応を行った。2領域のPCR増幅に用いたプライマーを表2に示す。
3) PCR amplification Using the bisulfite-treated DNA obtained in 2) as a template, 2 regions (P1 and P2; SEQ ID NOs: 1 and 2) in the MGMT promoter region (SEQ ID NO: 3) shown in Table 1 are amplified by PCR. did. In PCR, 50 μL of reaction solution (containing 20 ng of template) using TaKaRa EpiTaq TM HS was prepared, and the reaction was carried out according to the attached protocol. Table 2 shows the primers used for PCR amplification of the two regions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
4)アニオン交換カラムの調製
 攪拌機付き反応器中の3重量%ポリビニルアルコール(日本合成化学社製)水溶液2000mLに、テトラエチレングリコールジメタアクリレート(新中村化学工業社製)200g、トリエチレングリコールジメタアクリレート(新中村化学工業社製)100g、グリシジルメタクリレート(和光純薬工業社製)100g及び過酸化ベンゾイル(キシダ化学社製)1.0gの混合物を添加した。攪拌しながら加熱し、窒素雰囲気下にて80℃で1時間重合した。次に、強カチオン性基を有する親水性単量体として、メタクリル酸エチルトリメチルアンモニウムクロリド(和光純薬工業社製)100gをイオン交換水に溶解した。これを同じ反応器に添加して、同様にして、攪拌しながら窒素雰囲気下にて80℃で2時間重合した。得られた重合組成物を水及びアセトンで洗浄することにより、4級アンモニウム基を有する親水性重合体の層を表面に有する被覆重合体粒子を得た。得られた被覆重合体粒子について、粒度分布測定装置(AccuSizer780/Particle Sizing Systems社製)を用いて測定したところ、平均粒子径は10μmであった。得られた被覆重合体粒子10gをイオン交換水100mLに分散させ、反応前スラリーを準備した。次いで、このスラリーを撹拌しながら、弱カチオン性基を有する試薬であるN,N-ジメチルアミノプロピルアミン(和光純薬工業社製)を10mL加え、70℃で4時間反応させた。反応終了後、遠心分離機(日立製作所社製、「Himac CR20G」)を用いて上澄みを除去し、イオン交換水で洗浄した。洗浄後、遠心分離機を用いて上澄みを除去した。このイオン交換水による洗浄を更に4回繰り返し、基材粒子の表面に4級アンモニウム基と3級アミノ基とを有するイオン交換クロマトグラフィー用充填剤を得た。得られたイオン交換クロマトグラフィー用充填剤を液体クロマトグラフィーシステムのステンレス製カラム(カラムサイズ:内径4.6mm×長さ20mm)に充填した。
4) Preparation of anion exchange column 200 g of tetraethylene glycol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) and triethylene glycol dimethate in 2000 mL of a 3 wt% polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Co., Ltd.) aqueous solution in a reactor with a stirrer. A mixture of 100 g of acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.), 100 g of glycidyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) and 1.0 g of benzoyl peroxide (manufactured by Kishida Chemical Co., Ltd.) was added. The mixture was heated with stirring and polymerized at 80 ° C. for 1 hour in a nitrogen atmosphere. Next, as a hydrophilic monomer having a strong cationic group, 100 g of ethyltrimethylammonium chloride methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in ion-exchanged water. This was added to the same reactor and polymerized in the same manner at 80 ° C. for 2 hours under a nitrogen atmosphere with stirring. The obtained polymerization composition was washed with water and acetone to obtain coated polymer particles having a layer of a hydrophilic polymer having a quaternary ammonium group on the surface. The obtained coated polymer particles were measured using a particle size distribution measuring device (AccuSizer780 / Particle Sigmaning Systems), and the average particle size was 10 μm. 10 g of the obtained coated polymer particles were dispersed in 100 mL of ion-exchanged water to prepare a pre-reaction slurry. Next, while stirring this slurry, 10 mL of N, N-dimethylaminopropylamine (manufactured by Wako Pure Chemical Industries, Ltd.), which is a reagent having a weak cationic group, was added and reacted at 70 ° C. for 4 hours. After completion of the reaction, the supernatant was removed using a centrifuge (“Himac CR20G” manufactured by Hitachi, Ltd.) and washed with ion-exchanged water. After washing, the supernatant was removed using a centrifuge. This washing with ion-exchanged water was repeated four more times to obtain a filler for ion-exchange chromatography having a quaternary ammonium group and a tertiary amino group on the surface of the substrate particles. The obtained filler for ion exchange chromatography was packed in a stainless steel column (column size: inner diameter 4.6 mm × length 20 mm) of a liquid chromatography system.
5)HPLC分析
 3)で得られたPCR反応産物を精製し、以下の条件にてHPLC分析し、ピークの保持時間を検出した。
 システム:LC-20Aシリーズ(島津製作所社製)
 カラム:アニオン交換カラム(上記4)で調製したもの)
 溶離液:溶離液A 25mM MES-NaOH(pH6.0)
     溶離液B 25mM MES-NaOH(pH6.0)
          +2M グアニジン硫酸塩
 分析時間:15分
 溶出法:以下のグラジエント条件により溶離液Bの混合比率を直線的に増加させた。
     0分(溶離液B 30%)→10分(溶離液B 50%)
 検体:3)で得られたPCR増幅産物
 流速:1.0mL/min
 検出波長:260nm
 試料注入量:5μL
 カラム温度:70℃
5) HPLC analysis The PCR reaction product obtained in 3) was purified and analyzed by HPLC under the following conditions to detect the retention time of the peak.
System: LC-20A series (manufactured by Shimadzu Corporation)
Column: Anion exchange column (prepared in 4 above)
Eluent: Eluent A 25 mM MES-NaOH (pH 6.0)
Eluent B 25 mM MES-NaOH (pH 6.0)
+ 2M guanidine sulfate Analysis time: 15 minutes Elution method: The mixing ratio of eluent B was linearly increased under the following gradient conditions.
0 minutes (eluent B 30%) → 10 minutes (eluent B 50%)
Specimen: PCR amplification product obtained in 3) Flow rate: 1.0 mL / min
Detection wavelength: 260 nm
Sample injection volume: 5 μL
Column temperature: 70 ° C
6)DNAメチル化レベルの算出
 同じ配列からなる0%メチル化DNAと100%メチル化DNAを同様にHPLC分析し、検出したピークの保持時間から検量線を作成した。検量線に従ってサンプルDNAにおけるP1及びP2のDNAメチル化レベルを算出した。P1及びP2のクロマトグラムが単一のピークを示さない(ショルダー又は二峰を有する)場合、フィッティングにより単一ピークに変換してから、該ピークの保持時間に基づきDNAメチル化レベルを算出した。
6) Calculation of DNA methylation level 0% methylated DNA and 100% methylated DNA consisting of the same sequence were analyzed by HPLC in the same manner, and a calibration curve was prepared from the retention time of the detected peak. The DNA methylation levels of P1 and P2 in the sample DNA were calculated according to the calibration curve. If the chromatograms of P1 and P2 did not show a single peak (having shoulders or bipeaks), they were converted to a single peak by fitting and then the DNA methylation level was calculated based on the retention time of the peak.
7)DNAメチル化レベルが神経膠腫予後に与える影響
 図1に、サンプルDNA(P1及びP2)のDNAメチル化レベルに対する、該サンプルDNAが由来する神経膠腫患者の無憎悪生存日数(Days of progression free survival;PFS days)、及び全生存日数(Days of overall survival;OS days)のプロットを示す。P1及びP2のいずれについても、DNAメチル化レベルの増加に従ってPFS日数及びOS日数が延長する傾向が見られ、P1及びP2のDNAメチル化レベルと神経膠腫予後との相関関係が示唆された。
7) Effect of DNA methylation level on glioma prognosis Figure 1 shows the progression-free survival (Days of) of glioma patients from which the sample DNA is derived, relative to the DNA methylation level of the sample DNA (P1 and P2). A plot of progression free survival (PFS days) and days of overall survival (OS days) is shown. For both P1 and P2, the number of PFS days and the number of OS days tended to increase as the DNA methylation level increased, suggesting a correlation between the DNA methylation levels of P1 and P2 and the prognosis of glioma.
 患者をP1及びP2のDNAメチル化レベルにより2群に分け、群間でのPFS又はOSの差を統計学的に検定した。同一患者から複数検体を得ていた場合には腫瘍中心部の検体のメチル化レベルを採用し、かつ、複数の中心部検体がある場合はそれらのメチル化レベルの中央値を採用した。PFS又はOSに有意な影響を与えるDNAメチル化レベルの境界値を求めた。図2に、術前に放射線化学療法を受けていたGBM患者21名についてのPFS又はOS(Probability)の術後日数に対する変化を示す。図2AはP1のデータを、メチル化レベル30%以上(点線)とそれ未満(実線)の2群に分けて示している。図2BはP2のデータを、メチル化レベル7.5%以上(点線)とそれ未満(実線)の2群に分けて示している。P1については、高メチル化群と低メチル化群でPFSが統計学的に有意に異なり(Log rank test、P < 0.05)、OSも異なる傾向にあった。またP2については、高メチル化群と低メチル化群でPFS及びOSが統計学的に有意に異なっていた(Log rank test、P < 0.01)。したがって、予後良好と不良を分けるDNAメチル化レベルの基準値として、P1については30%程度、P2については7.5%程度を使用できることが示された。 Patients were divided into two groups according to the DNA methylation level of P1 and P2, and the difference in PFS or OS between the groups was statistically tested. When multiple samples were obtained from the same patient, the methylation level of the central tumor sample was adopted, and when there were multiple central samples, the median of those methylation levels was adopted. Boundary values of DNA methylation levels that have a significant effect on PFS or OS were determined. FIG. 2 shows changes in PFS or OS (Probability) with respect to postoperative days for 21 GBM patients who received preoperative radiochemotherapy. FIG. 2A shows the data of P1 divided into two groups having a methylation level of 30% or more (dotted line) and less than that (solid line). FIG. 2B shows the data of P2 divided into two groups, that is, the methylation level is 7.5% or more (dotted line) and less than that (solid line). Regarding P1, the PFS was statistically significantly different between the hypermethylated group and the hypomethylated group (Log rank test, P <0.05), and the OS tended to be different. Regarding P2, PFS and OS were statistically significantly different between the hypermethylated group and the hypomethylated group (Log rank test, P <0.01). Therefore, it was shown that about 30% for P1 and about 7.5% for P2 can be used as the reference value of the DNA methylation level that distinguishes between good prognosis and poor prognosis.
 図3には、術前に放射線化学療法を受けていたGBM患者21名(図2と共通の患者20名及び別のGBM患者1名)についてのPFS又はOS(Probability)の術後日数に対する変化を、P1(図3A)についてはメチル化レベル34.15%以上(点線)とそれ未満(実線)の2群に分けて、P2(図3B)についてはメチル化レベル8.84%以上(点線)とそれ未満(実線)の2群に分けて示している。P1については、高メチル化群と低メチル化群でPFSが統計学的に有意に異なり(Log rank test、P < 0.05)、OSも異なる傾向にあった。またP2については、高メチル化群と低メチル化群でPFS及びOSが統計学的に有意に異なっていた(Log rank test、P < 0.01)。したがって、予後良好と不良を分けるDNAメチル化レベルの基準値として、P1については34.2%程度、P2については8.8~8.9%程度を使用できることが示された。 FIG. 3 shows changes in PFS or OS (Probability) with respect to postoperative days for 21 GBM patients (20 patients common to FIG. 2 and another GBM patient) who received preoperative radiochemotherapy. For P1 (Fig. 3A), the methylation level is 34.15% or more (dotted line) and less than that (solid line). For P2 (Fig. 3B), the methylation level is 8.84% or more (dotted line). ) And less than that (solid line). Regarding P1, the PFS was statistically significantly different between the hypermethylated group and the hypomethylated group (Log rank test, P <0.05), and the OS tended to be different. Regarding P2, PFS and OS were statistically significantly different between the hypermethylated group and the hypomethylated group (Log rank test, P <0.01). Therefore, it was shown that about 34.2% for P1 and about 8.8 to 8.9% for P2 can be used as the reference value of the DNA methylation level that distinguishes between good prognosis and poor prognosis.
 以上の結果からは、予後良好と不良を分けるDNAメチル化レベルの基準値として、P1については29~31%の範囲、又は29~36%の範囲、又は25~36%の範囲、又は25~35%の範囲、又は10~40%の範囲から選択される値、好ましくは30~36%の範囲、より好ましくは30~34.2%の範囲を採用でき、またP2については6.5~8.5%の範囲、又は6.5~9.5%の範囲、又は5~11%の範囲、又は5~30%の範囲から選択される値、好ましくは7.5~9.5%の範囲、より好ましくは7.5~8.9%の範囲を採用できることが期待された。該基準値以上のDNAメチル化レベルを有する検体は、予後良好と判定でき、該基準値未満のDNAメチル化レベルを有する検体は、予後不良と判定できる。 From the above results, as a reference value for the DNA methylation level that distinguishes good prognosis from poor prognosis, P1 is in the range of 29 to 31%, or 29 to 36%, or 25 to 36%, or 25 to 25. A value selected from the range of 35% or 10-40%, preferably in the range of 30-36%, more preferably in the range of 30-34.2%, can be adopted, and for P2 6.5- A value selected from the range of 8.5%, or 6.5 to 9.5%, or 5 to 11%, or 5 to 30%, preferably 7.5 to 9.5%. It was expected that the range of 7.5 to 8.9% could be adopted, more preferably the range of 7.5 to 8.9%. A sample having a DNA methylation level equal to or higher than the reference value can be determined to have a good prognosis, and a sample having a DNA methylation level lower than the reference value can be determined to have a poor prognosis.
実施例2
 ホルマリン固定パラフィン包埋(FFPE)GBM検体(n=32)を用いて、実施例1と同様の手順でP1及びP2のDNAメチル化レベルを測定した。該FFPE検体は、30名の患者(17歳~83歳;平均年55.2歳、男17名、女13名)から外科手術により摘出した神経膠腫を含む組織から調製された。これらの検体は、異なる時期から採取した同じ患者からの検体を含んでいた。患者は全例がGBM患者で、30名のうち28名は、外科手術後に放射線化学療法(放射線+テモゾロミド)を受けていた(平均治療期間389日)。結果、P1について29検体、P2について8検体からDNAメチル化レベルが測定された。P2で取得データ数が少なかったのは、P1よりもDNA鎖長が長いためにFFPE処理によるDNA損傷の影響をより大きく受けたからだと考えられた。以下の解析は、放射線化学療法を受けている初発GBM28例のうち、遺伝疾患をもつ症例を除いた26例(17歳~83歳;平均年56.7歳、男15名、女11名、平均治療期間342日)においてP1についてのみ行った。
Example 2
DNA methylation levels of P1 and P2 were measured using a formalin-fixed paraffin-embedded (FFPE) GBM sample (n = 32) in the same procedure as in Example 1. The FFPE specimen was prepared from a tissue containing glioma surgically removed from 30 patients (17-83 years old; average age 55.2 years old, 17 males, 13 females). These specimens included specimens from the same patient taken from different times. All of the patients were GBM patients, and 28 of the 30 patients received radiation chemotherapy (radiation + temozolomide) after surgery (mean treatment period 389 days). As a result, DNA methylation levels were measured from 29 samples for P1 and 8 samples for P2. It was considered that the reason why the number of acquired data was small in P2 was that the DNA strand length was longer than that in P1 and therefore the DNA damage caused by the FFPE treatment was more affected. The following analysis shows 26 of the 28 first-onset GBMs receiving radiochemotherapy, excluding those with a genetic disorder (17-83 years; average 56.7 years, 15 males, 11 females, Only for P1 during the average treatment period (342 days).
 図4に、FFPE検体が由来するGBM患者(上記26例)について、図2と同様に高メチル化群と低メチル化群に分けて、PFS(Probability)の術後日数に対する変化を示した。DNAメチル化レベルの基準値は図2と同じ30%とした。FFPE検体由来を用いた場合でも、凍結検体と同様のDNAメチル化レベルの基準値で、予後良好な患者と不良な患者を判定することができた。 FIG. 4 shows changes in PFS (Probability) with respect to postoperative days for GBM patients (26 cases above) from which FFPE samples were derived, divided into a hypermethylated group and a hypomethylated group in the same manner as in FIG. The reference value of the DNA methylation level was set to 30%, which is the same as in FIG. Even when the FFPE sample was used, it was possible to determine a patient with a good prognosis and a patient with a poor prognosis based on the same standard value of DNA methylation level as that of the frozen sample.
実施例3
 図4の解析に用いた26例のGMS患者について、PFS又はOSと他の情報との間で多変量解析を行った。変数として、手術前のパフォーマンスステータス、IDH変異の有無、性別、手術時年齢、放射線照射(合計66Gy)の有無、P1領域の平均メチル化率、P1領域の平均メチル化率が30%以上か否か、P2領域の平均メチル化率、P2領域の平均メチル化率が7.5%以上か否か、を用いた。その結果、PFSについては、P1領域の平均メチル化率が30%以上か否か、及び手術時年齢が特に高い相関を示し、OSについては、P1領域の平均メチル化率、P1領域の平均メチル化率が30%以上か否か、及び手術時年齢が特に高い相関を示した(表3)。P1領域の平均メチル化率<30%群は、>=30%群に比べて、PFSは17%悪く、OSは14.6%悪かった。また年齢が1上がるごとに、PFSは4%悪化し、OSは3.5%悪化した。
Example 3
Twenty-six GMS patients used in the analysis of FIG. 4 were subjected to multivariate analysis between PFS or OS and other information. As variables, performance status before surgery, presence / absence of IDH mutation, gender, age at surgery, presence / absence of irradiation (total 66 Gy), average methylation rate of P1 region, average methylation rate of P1 region is 30% or more. Or, whether or not the average methylation rate of the P2 region and the average methylation rate of the P2 region is 7.5% or more was used. As a result, for PFS, whether or not the average methylation rate of the P1 region was 30% or more and the age at the time of surgery showed a particularly high correlation, and for OS, the average methylation rate of the P1 region and the average methylation of the P1 region were shown. Whether or not the conversion rate was 30% or more and the age at the time of surgery showed a particularly high correlation (Table 3). The average methylation rate of the P1 region <30% group was 17% worse in PFS and 14.6% worse in OS than in the> = 30% group. Also, with each increase in age, PFS deteriorated by 4% and OS deteriorated by 3.5%.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例4
 図4の解析に用いた26例のGMS患者について、PFS又はOSと他の情報との間で多変量解析を行った。変数として、手術前のパフォーマンスステータス、IDH変異の有無、性別、手術時年齢、放射線照射(合計66Gy)の有無、P1領域の平均メチル化率、P1領域の平均メチル化率が34.15%以上か否か、P2領域の平均メチル化率、P2領域の平均メチル化率が8.84%以上か否か、を用いた。その結果、PFSについては、手術時年齢が特に高い相関を示し、OSについては、P1領域の平均メチル化率、P1領域の平均メチル化率が34.15%以上か否か、及び手術時年齢が特に高い相関を示した(表4)。P1領域の平均メチル化率<34.15%群は、>=34.15%群に比べてOSは2.6%悪かった。また年齢が1上がるごとに、PFSは2.5%悪化し、OSは2.8%悪化した。
Example 4
Twenty-six GMS patients used in the analysis of FIG. 4 were subjected to multivariate analysis between PFS or OS and other information. As variables, performance status before surgery, presence / absence of IDH mutation, gender, age at surgery, presence / absence of irradiation (total 66 Gy), average methylation rate of P1 region, average methylation rate of P1 region is 34.15% or more. Whether or not the average methylation rate of the P2 region and whether or not the average methylation rate of the P2 region was 8.84% or more were used. As a result, for PFS, the age at surgery showed a particularly high correlation, and for OS, the average methylation rate of the P1 region, whether or not the average methylation rate of the P1 region was 34.15% or more, and the age at surgery. Showed a particularly high correlation (Table 4). The mean methylation rate of the P1 region in the <34.15% group was 2.6% worse than that in the> = 34.15% group. Also, with each increase in age, PFS deteriorated by 2.5% and OS deteriorated by 2.8%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (13)

  1.  予後良好又は不良な神経膠腫由来の細胞又は組織の判定方法であって、
    1)神経膠腫細胞又はそれを含む組織由来のDNAにおいて、O6-methyl-guanine-DNA-methyltransferaseをコードする遺伝子のプロモーター領域に含まれる標的DNA領域のDNAメチル化レベルを測定すること、
     ここで、該標的DNA領域は、下記領域1及び2からなる群より選択される少なくとも1つの領域である:
      領域1)配列番号1のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
      領域2)配列番号2のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
    2)測定したDNAメチル化レベルが下記基準以上であるとき、該細胞又はそれを含む組織を、予後良好な神経膠腫由来の細胞又は組織と判定するか、又は、測定したDNAメチル化レベルが下記基準未満であるとき、該細胞又はそれを含む組織を、予後不良な神経膠腫由来の細胞又は組織と判定すること:
      領域1についての基準 10~40%の範囲から選択される値、
      領域2についての基準 5~30%の範囲から選択される値、
    を含む、方法。
    A method for determining cells or tissues derived from glioma with a good or poor prognosis.
    1) To measure the DNA methylation level of the target DNA region contained in the promoter region of the gene encoding O6-methyl-guanine-DNA-methyltransferase in DNA derived from glioma cells or tissues containing the same.
    Here, the target DNA region is at least one region selected from the group consisting of the following regions 1 and 2:
    Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof,
    Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof,
    2) When the measured DNA methylation level is equal to or higher than the following criteria, the cell or tissue containing it is judged to be a glioma-derived cell or tissue with a good prognosis, or the measured DNA methylation level is When it is less than the following criteria, the cells or tissues containing them are judged to be glioma-derived cells or tissues having a poor prognosis:
    Criteria for region 1 A value selected from the range of 10-40%,
    Criteria for region 2 Value selected from the range of 5-30%,
    Including methods.
  2.  神経膠腫の予後判定方法であって、
    1)被験体の神経膠腫細胞又はそれを含む組織由来のDNAにおいて、O6-methyl-guanine-DNA-methyltransferaseをコードする遺伝子のプロモーター領域に含まれる標的DNA領域のDNAメチル化レベルを測定すること、
     ここで、該標的DNA領域は、下記領域1及び2からなる群より選択される少なくとも1つの領域である:
      領域1)配列番号1のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
      領域2)配列番号2のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
    2)測定したDNAメチル化レベルが下記基準以上であるとき、該被験体の神経膠腫を予後良好と判定するか、又は、測定したDNAメチル化レベルが下記基準未満であるとき、該被験体の神経膠腫を予後不良と判定すること:
      領域1についての基準 10~40%の範囲から選択される値、
      領域2についての基準 5~30%の範囲から選択される値、
    を含む、方法。
    A method for determining the prognosis of glioma,
    1) To measure the DNA methylation level of the target DNA region contained in the promoter region of the gene encoding O6-methyl-guanine-DNA-methyltransphase in DNA derived from the subject's glioma cells or tissues containing the same. ,
    Here, the target DNA region is at least one region selected from the group consisting of the following regions 1 and 2:
    Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof,
    Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof,
    2) When the measured DNA methylation level is equal to or higher than the following criteria, the subject's glioma is judged to have a good prognosis, or when the measured DNA methylation level is less than the following criteria, the subject is judged to have a good prognosis. Judging glioma as poor prognosis:
    Criteria for region 1 A value selected from the range of 10-40%,
    Criteria for region 2 Value selected from the range of 5-30%,
    Including methods.
  3.  予後良好又は不良な神経膠腫由来の細胞又は組織の判定、又は、神経膠腫の予後判定に用いるためのデータの取得方法であって、
    1)被験体の神経膠腫細胞又はそれを含む組織由来のDNAにおいて、O6-methyl-guanine-DNA-methyltransferaseをコードする遺伝子のプロモーター領域に含まれる標的DNA領域のDNAメチル化レベルを測定すること、
     ここで、該標的DNA領域は、下記領域1及び2からなる群より選択される少なくとも1つの領域である:
      領域1)配列番号1のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
      領域2)配列番号2のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
    2)測定したDNAメチル化レベルが下記基準以上であるか否かについてのデータを取得すること:
      領域1についての基準 10~40%の範囲から選択される値、
      領域2についての基準 5~30%の範囲から選択される値、
    を含む、方法。
    A method for acquiring data to be used for determining cells or tissues derived from glioma having a good or poor prognosis, or for determining the prognosis of glioma.
    1) To measure the DNA methylation level of the target DNA region contained in the promoter region of the gene encoding O6-methyl-guanine-DNA-methyltransphase in DNA derived from the subject's glioma cells or tissues containing the same. ,
    Here, the target DNA region is at least one region selected from the group consisting of the following regions 1 and 2:
    Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof,
    Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof,
    2) Obtaining data on whether or not the measured DNA methylation level is above the following criteria:
    Criteria for region 1 A value selected from the range of 10-40%,
    Criteria for region 2 Value selected from the range of 5-30%,
    Including methods.
  4.  前記プロモーター領域が配列番号3のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる、請求項1~3のいずれか1項記載の方法。 The method according to any one of claims 1 to 3, wherein the promoter region comprises the nucleotide sequence of SEQ ID NO: 3 or a nucleotide sequence having at least 90% identity thereof.
  5.  前記領域1が、配列番号1のヌクレオチド配列からなる領域であり、前記領域2が、配列番号2のヌクレオチド配列からなる領域である、請求項1~4のいずれか1項記載の方法。 The method according to any one of claims 1 to 4, wherein the region 1 is a region consisting of the nucleotide sequence of SEQ ID NO: 1 and the region 2 is a region consisting of the nucleotide sequence of SEQ ID NO: 2.
  6.  前記DNAメチル化レベルの測定が、バイサルファイト処理された前記領域1及び2からなる群より選択される少なくとも1つの領域のDNAメチル化レベルを測定することを含む、請求項1~5のいずれか1項記載の方法。 Any of claims 1-5, wherein the measurement of the DNA methylation level comprises measuring the DNA methylation level of at least one region selected from the group consisting of the bisulfite-treated regions 1 and 2. The method described in item 1.
  7.  前記バイサルファイト処理された領域1が、配列番号4のヌクレオチド配列からなるプライマーと配列番号5のヌクレオチド配列からなるプライマーに挟まれる領域(但し、プライマー結合配列を含まない)であり、
     前記バイサルファイト処理された領域2が、配列番号6のヌクレオチド配列からなるプライマーと配列番号7のヌクレオチド配列からなるプライマーに挟まれる領域(但し、プライマー結合配列を含まない)である、
    請求項6記載の方法。
    The bisulfite-treated region 1 is a region sandwiched between a primer consisting of the nucleotide sequence of SEQ ID NO: 4 and a primer consisting of the nucleotide sequence of SEQ ID NO: 5 (however, it does not include the primer binding sequence).
    The bisulfite-treated region 2 is a region sandwiched between a primer consisting of the nucleotide sequence of SEQ ID NO: 6 and a primer consisting of the nucleotide sequence of SEQ ID NO: 7 (however, the primer binding sequence is not included).
    The method according to claim 6.
  8.  前記DNAメチル化レベルの測定がイオン交換クロマトグラフィーを用いて行われる、請求項6又は7記載の方法。 The method according to claim 6 or 7, wherein the measurement of the DNA methylation level is performed using ion exchange chromatography.
  9.  前記神経膠腫が膠芽腫である、請求項1~8のいずれか1項記載の方法。 The method according to any one of claims 1 to 8, wherein the glioma is glioblastoma.
  10.  請求項1~9のいずれか1項記載の方法を実施するためのキットであって、
     バイサルファイト処理された、O6-methyl-guanine-DNA-methyltransferaseをコードする遺伝子のプロモーター領域に含まれる標的DNA領域のPCR増幅のためのPCRプライマーセットを含み、ここで、該バイサルファイト処理前の該標的DNA領域は、下記領域1及び2からなる群より選択される少なくとも1つの領域であり:
      領域1)配列番号1のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
      領域2)配列番号2のヌクレオチド配列又はこれと少なくとも90%の同一性を有するヌクレオチド配列からなる領域、
    かつ、
     該標的DNA領域のDNAメチル化レベルが下記基準以上であるか否かを判定するためのガイドを含む、
      領域1についての基準 10~40%の範囲から選択される値、
      領域2についての基準 5~30%の範囲から選択される値、
    キット。
    A kit for carrying out the method according to any one of claims 1 to 9.
    It comprises a set of PCR primers for PCR amplification of a target DNA region contained in the promoter region of a bisulfite-treated gene encoding O6-methyl-guanine-DNA-methyltransphase, wherein the bisulfite-treated prior to the bisulfite treatment. The target DNA region is at least one region selected from the group consisting of regions 1 and 2 below:
    Region 1) A region consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence having at least 90% identity thereof,
    Region 2) A region consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence having at least 90% identity thereof,
    And,
    A guide for determining whether or not the DNA methylation level of the target DNA region is equal to or higher than the following criteria is included.
    Criteria for region 1 A value selected from the range of 10-40%,
    Criteria for region 2 Value selected from the range of 5-30%,
    kit.
  11.  前記PCRプライマーセットが、配列番号4のヌクレオチド配列からなるプライマーと配列番号5のヌクレオチド配列からなるプライマーとのプライマーセット、又は、配列番号6のヌクレオチド配列からなるプライマーと配列番号7のヌクレオチド配列からなるプライマーとのプライマーセットである、請求項10記載のキット。 The PCR primer set consists of a primer set consisting of a primer consisting of the nucleotide sequence of SEQ ID NO: 4 and a primer consisting of the nucleotide sequence of SEQ ID NO: 5, or a primer consisting of the nucleotide sequence of SEQ ID NO: 6 and the nucleotide sequence of SEQ ID NO: 7. The kit according to claim 10, which is a primer set with a primer.
  12.  請求項1~9のいずれか1項記載の方法を実施するためのシステム。 A system for implementing the method according to any one of claims 1 to 9.
  13.  イオン交換クロマトグラフィー装置を備える、請求項12記載のシステム。  The system according to claim 12, further comprising an ion exchange chromatography apparatus.
PCT/JP2021/001970 2020-01-21 2021-01-21 Method for determining prognosis of glioma WO2021149752A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021572781A JPWO2021149752A1 (en) 2020-01-21 2021-01-21

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-007686 2020-01-21
JP2020007686 2020-01-21
JP2020-120686 2020-07-14
JP2020120686 2020-07-14

Publications (1)

Publication Number Publication Date
WO2021149752A1 true WO2021149752A1 (en) 2021-07-29

Family

ID=76992503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001970 WO2021149752A1 (en) 2020-01-21 2021-01-21 Method for determining prognosis of glioma

Country Status (2)

Country Link
JP (1) JPWO2021149752A1 (en)
WO (1) WO2021149752A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900825A1 (en) * 2006-09-13 2008-03-19 Rheinische Friedrich-Wilhelms-Universität Bonn Sensitive and reproducible method for the determination of MGMT promoter methylation in clinical samples
WO2008154590A2 (en) * 2007-06-11 2008-12-18 Mayo Foundation For Medical Education And Research Predicting responsiveness to temozolomide
US20140011702A1 (en) * 2011-03-23 2014-01-09 Centre Hospitalier Universitaire Pontchaillou Biomarkers and methods for the prognosis of glioblastoma
US20170191069A1 (en) * 2016-01-03 2017-07-06 Ribomed Biotechnologies, Inc. ABORTIVE PROMOTER CASSETTES AND METHODS FOR FUSION TO TARGETS AND QUANTITATIVE CpG ISLAND METHYLATION DETECTION USING THE SAME
EP3725899A1 (en) * 2019-04-16 2020-10-21 Fundación para la Investigación Biomédica del Hospital Universitario de la Paz (FIBHULP) Method for determining the percentage of methylation of the promoter of the gene o6-methylguanine-dna methyltransferase (mgmt) in circulating exosomes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900825A1 (en) * 2006-09-13 2008-03-19 Rheinische Friedrich-Wilhelms-Universität Bonn Sensitive and reproducible method for the determination of MGMT promoter methylation in clinical samples
WO2008154590A2 (en) * 2007-06-11 2008-12-18 Mayo Foundation For Medical Education And Research Predicting responsiveness to temozolomide
US20140011702A1 (en) * 2011-03-23 2014-01-09 Centre Hospitalier Universitaire Pontchaillou Biomarkers and methods for the prognosis of glioblastoma
US20170191069A1 (en) * 2016-01-03 2017-07-06 Ribomed Biotechnologies, Inc. ABORTIVE PROMOTER CASSETTES AND METHODS FOR FUSION TO TARGETS AND QUANTITATIVE CpG ISLAND METHYLATION DETECTION USING THE SAME
EP3725899A1 (en) * 2019-04-16 2020-10-21 Fundación para la Investigación Biomédica del Hospital Universitario de la Paz (FIBHULP) Method for determining the percentage of methylation of the promoter of the gene o6-methylguanine-dna methyltransferase (mgmt) in circulating exosomes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BINABAJ MARYAM MORADI, BAHRAMI AFSANE, SHAHIDSALES SOODABEH, JOODI MARJAN, JOUDI MASHHAD MONA, HASSANIAN SEYED MAHDI, ANVARI KAZEM: "The prognostic value of MGMT promoter methylation in glioblastoma:A meta-analysis of clinical trials", J.CELL PHYSIOL., vol. 233, no. 1, 2018, pages 378 - 386, XP055843028 *

Also Published As

Publication number Publication date
JPWO2021149752A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
JP6532072B2 (en) Prognostic method of renal cell carcinoma
EP3112475A1 (en) Method for determining prognosis of renal cell carcinoma
US11840738B2 (en) Method for determining risk of urothelial carcinoma
JP6985932B2 (en) Tumor determination method
US20220033911A1 (en) Method for determining prognosis of endometrial cancer
EP2788505B1 (en) Methods of detecting mutations and epigenetic changes
WO2021149752A1 (en) Method for determining prognosis of glioma
WO2017038983A1 (en) Prognosis method for renal cell cancer
WO2016024634A1 (en) Method for assessing chromosomal dysfunction effective in diagnosis of imprinting diseases
EP3596236B1 (en) Mgmt epigenetic deep-sequencing assay
WO2021107081A1 (en) Upper tract urothelial carcinoma identification method
EP4074841A1 (en) Method for assessing risk of developing hepatocellular carcinoma from non-alcoholic steatohepatitis
EP3587595A1 (en) Methods and kits for detecting egfr mutations
WO2023236201A1 (en) Methods, compositions, and kits for detecting malignant lung nodules and lung cancer
JP4682275B2 (en) Method for determining prognosis of mammalian neuroblastoma
KR20230165469A (en) Method for Detection of Lung Cancer
CN111808949A (en) Application of substance for detecting IFFO1 gene methylation in diagnosis of lung cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572781

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744439

Country of ref document: EP

Kind code of ref document: A1