WO2021149714A1 - Agent for treating bone tumor, and method for evaluating ion channel agonist for treatment of bone tumor, etc. - Google Patents

Agent for treating bone tumor, and method for evaluating ion channel agonist for treatment of bone tumor, etc. Download PDF

Info

Publication number
WO2021149714A1
WO2021149714A1 PCT/JP2021/001820 JP2021001820W WO2021149714A1 WO 2021149714 A1 WO2021149714 A1 WO 2021149714A1 JP 2021001820 W JP2021001820 W JP 2021001820W WO 2021149714 A1 WO2021149714 A1 WO 2021149714A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion channel
cells
ion
inhibitor
tumor
Prior art date
Application number
PCT/JP2021/001820
Other languages
French (fr)
Japanese (ja)
Inventor
今泉 祐治
進 大矢
寿男 山村
鈴木 良明
英斗 山村
孝恒 清水
秀行 佐谷
Original Assignee
株式会社チャネロサーチテクノロジー
公立大学法人名古屋市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社チャネロサーチテクノロジー, 公立大学法人名古屋市立大学 filed Critical 株式会社チャネロサーチテクノロジー
Publication of WO2021149714A1 publication Critical patent/WO2021149714A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present specification relates to a therapeutic agent for bone tumors such as osteosarcoma and a method for evaluating an ion channel agonist for the treatment of bone tumors and the like.
  • This application is a related application of Japanese Patent Application No. 2020-7116, which is a Japanese patent application filed on January 20, 2020, and claims priority based on this Japanese application, which is described in this Japanese application. All the contents that have been made are used.
  • K Ca 3.1 also known as medium-conductance calcium-activated potassium, IK channel, gene name KCNN4
  • IK channel medium-conductance calcium-activated potassium
  • KCNN4 medium-conductance calcium-activated potassium
  • cancer stem cells may be involved in cancer metastasis and drug resistance.
  • Cancer stem cells have the properties of stem cells among cancer cells, and form cancers with the same phenotype as the original cancers at the time of self-renewal ability, pluripotency, and living body transplantation such as mice.
  • Ability. Cancer stem cells have high drug resistance and oxidative stress resistance. Therefore, targeting cancer stem cells as therapeutic targets is an issue for the realization of fundamental cancer treatment.
  • the K Ca 3.1 channel is associated with bone tumors, which are mesenchymal tumors. Also, to date, no association of ion channels in cancer stem cells has been reported. Furthermore, the current situation is that the molecular mechanisms that maintain the properties of cancer stem cells and the molecular mechanisms such as treatment resistance to anticancer drugs have not been elucidated.
  • the present specification provides a prophylactic or therapeutic agent for bone tumors and an evaluation method for ion channel agonists for the prevention or treatment of bone tumors and the like.
  • a preventive or therapeutic agent for bone tumors K Ca 3.1 A therapeutic agent containing an inhibitor that suppresses the activity of ion channels as an active ingredient.
  • the inhibitor is a blocker that inhibits the activity of the ion channel.
  • the inhibitor is an expression inhibitor that suppresses the expression of the ion channel.
  • the inhibitor is an antibody that binds to the ion channel.
  • [6] An agent for evaluating a preventive or therapeutic agent for a tumor Voltage-gated Na ion channels that prolong the duration of action potentials associated with depolarization, K ion channels that deepen the resting membrane potential in the negative direction, K Ca 3.1 ion channel and An agent comprising cells comprising. [7] The agent according to [6], wherein the tumor is a bone tumor. [8] An evaluation method for ion channel agonists.
  • the ion channel agonist is a drug for preventing or treating mesenchymal tumors such as bone tumors.
  • the target ion channel is the K Ca 3.1 ion channel, Evaluation step of evaluating the inhibitory activity of the target ion channel of the test compound, A method.
  • a method for evaluating an ion channel agonist is a drug for suppressing the differentiation of cancer stem cells into tumor cells, malignant transformation of tumor cells, and cancer metastasis.
  • the target ion channel is the K Ca 3.1 ion channel, A step of evaluating the inhibitory activity of the target ion channel of the test compound, A method.
  • a marker for examining the pathological condition of a bone tumor A marker comprising a K Ca 3.1 ion channel, its mRNA or a compound that binds its pre-mRNA.
  • a method for examining the pathological condition of a bone tumor A step of measuring K Ca 3.1 ion channel activity in cells collected from a target site of a subject, A method.
  • the disclosure of the present specification relates to an agent for preventing or treating a bone tumor, an agent for evaluating a compound for preventing or treating a tumor, the evaluation method, and the like.
  • K Ca 3.1 ion channel for tumorigenesis of cancer stem cells, malignant transformation of tumor cells, and cancer metastasis, ie, as another name, medium conductance calcium.
  • activated potassium, IK channel, and KCNN4 as a gene name (hereinafter, also referred to as this K ion channel) are related. That is, the expression and activity increase of this K ion channel in cancer stem cells are intracellular.
  • Ca 2+ calcium ions
  • the K ion channel can be used as a target molecule for drugs that suppress tumorigenesis of cancer stem cells, malignant transformation of tumor cells, and cancer metastasis. Therefore, according to the specification, a prophylactic or therapeutic agent for tumors. .
  • Agents used for evaluation of agents for the prevention or treatment of tumors, methods for evaluating ion channel agonists for the prevention or treatment of tumors, and the like are provided.
  • the prophylactic or therapeutic agent for tumor disclosed in the present specification (hereinafter, also simply referred to as this agent) is effective as an inhibitor that suppresses the activity of K Ca 3.1 ion channel. It can be an ingredient. As described above, it is known that this K ion channel is associated with tumorigenesis of cancer stem cells, malignant transformation of tumor cells, and metastasis of tumor cells.
  • this K ion channel is a K ion channel activated by Ca 2+. It is a potassium channel that is activated depending on the intracellular calcium ion concentration. This ion channel is an ion channel that promotes the phenomenon of increasing intracellular calcium ions in osteosarcoma.
  • the nucleotide sequence of the cDNA of this K ion channel gene (KCNN4 gene) and the amino acid sequence of the ion channel protein in humans are represented by SEQ ID NOs: 1 and 2, respectively.
  • the accession numbers for NCBI (https://www.ncbi.nlm.nih.gov/) (GenBank and GenPept) of SEQ ID NOs: 1 and 2 are NM_002250 and NP_002241, respectively.
  • both the nucleotide sequence encoding the K ion channel protein in other animals and the amino acid sequence of the protein are searched in a known database such as NCBI.
  • the accession numbers of the cDNA base sequence of this mouse K ion channel protein and the amino acid sequence of the ion channel protein are NM_008433 and NP_032459 (SEQ ID NOs: 3 and 4, respectively).
  • the K ion channel can include the following various aspects in addition to the protein encoded by the above gene.
  • Examples of the homolog of this K ion channel include KCNN1, KCNN2, and KCNN3.
  • KCNM1, KCNM4, and KCNM5 are also included as the same Ca 2+ activated K + channel.
  • the following is an example of a part of the accession number of the base sequence of the DNA encoding these proteins and the amino acid sequence of the protein.
  • Human KCNN1 (Nucleotide Sequence, Amino Acid Sequence): NM_002248, NP_002239 (Nucleotide Sequence, SEQ ID NO: 5 and 6)
  • Human KCNN2 (Nucleotide Sequence, Amino Acid Sequence): NM_021614, NP_067627 (Nucleotide Sequence No.
  • Human KCNN3 (Nucleotide Sequence, Amino Acid Sequence): NM_002249, NP_002240 (SEQ ID NO: 9, 10) Human KCNMA1 (nucleic acid sequence, amino acid sequence): NM_002247, NP_002238 (SEQ ID NO: 11, 12) Mouse KCNN1 (nucleic acid sequence, amino acid sequence): NM_032397, NP_115773 (SEQ ID NO: 13, 14) Mouse KCNN2 (nucleic acid sequence, amino acid sequence): NM_080465, NP_536713 (SEQ ID NO: 15, 16) Mouse KCNN3 (nucleic acid sequence, amino acid sequence): NM_080466, NP_536714 (SEQ ID NO: 17, 18) Mouse KCNMA1 (nucleic acid sequence, amino acid sequence): NM_010610, NP_034740 (SEQ ID NOs: 19, 20)
  • the base sequence or amino acid sequence disclosed in the present specification when the base sequence or amino acid sequence is specified by the SEQ ID NO: or accession number, the sequence having a certain degree of identity with the sequence is equivalent to the sequence. As long as it has a function or activity, it can be used in place of the sequence.
  • the identity above a certain level includes, for example, 80% or more, for example, 85% or more, and for example, 90% or more, and for example, 95% or more, or, for example, 96, with the specified base sequence or amino acid sequence. % Or more, for example 97% or more, for example 98% or more, for example 99% or more, and for example 99.5% or more.
  • identity or similarity of a base sequence or an amino acid sequence is determined by comparing sequences as known in the art, and is determined by comparing two or more proteins or two or more polys.
  • identity means between protein or polynucleotide sequences, as determined by the alignment between protein or polynucleotide sequences, or, in some cases, by the alignment between a series of such sequences. Means the degree of sequence invariance of. Similarity is also the correlation between protein or polynucleotide sequences, as determined by the alignment between protein or polynucleotide sequences, or, in some cases, by the alignment between a series of partial sequences. Means the degree of.
  • the similarity is referred to as Similarity in the sequence homology search result of BLAST described later.
  • the method of determining identity and similarity is preferably the method designed to have the longest alignment between contrasting sequences. Methods for determining identity and similarity are provided as publicly available programs. For example, the BLAST (Basic Local Alignment Search Tool) program by Altschul et al. (For example, Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol., 215: p403-410 (1990), Altschul.
  • the inhibitor that suppresses the activity of the K ion channel is not particularly limited, and any mode thereof may be used as long as it suppresses the activity of the K ion channel.
  • One embodiment includes a blocker for the K ion channel.
  • a blocker is a low molecular weight organic compound having a molecular weight of 500 or less, and generally does not have a peptide bond or a polynucleotide skeleton.
  • blocker examples include polycyclic compounds including tricyclic compounds such as TRAM-34 and ICA-17043 shown below, which are known inhibitors for the K ion channel. More specifically, the following compounds can be mentioned. All of these are commercially available or organically synthetic.
  • screening can be performed based on a known method for evaluating a blocker for an ion channel (screening method).
  • an inhibitor that suppresses the expression of the gene encoding this K ion channel can be mentioned.
  • examples of such an inhibitor include nucleic acid drugs that suppress the expression of the K ion channel gene.
  • Nucleic acid drugs can take various forms depending on whether DNA and / or RNA is used as the target, or the drug itself can be provided with natural nucleotides such as DNA and RNA or chemically modified nucleotides as a basic skeleton. can.
  • the skeleton itself that can be obtained by a nucleic acid drug is known to those skilled in the art, and those skilled in the art can use the known skeleton as it is or by appropriately modifying it as an expression inhibitor disclosed in the present specification. can.
  • nucleic acid drugs include antisense oligonucleotides.
  • the antisense oligonucleotide include mRNA, pre-mRNA, and the like as target molecules.
  • Antisense oligonucleotides generally have DNA or a modification thereof as the basic skeleton. In relation to hybridization ability, the sugar chain portion may be RNA or a modified product thereof.
  • the mechanism of action by antisense oligonucleotides is diverse: RNaseH-dependent mRNA degradation, exon skip that binds to splicing regulatory sites to induce alternative splicing, and translational inhibition that binds tightly to mRNA and inhibits translation. And so on.
  • RNA interfering agents can be mentioned.
  • RNA interference is a method of suppressing gene expression by degrading a target RNA such as mRNA in a sequence-specific manner by using double-stranded RNA.
  • target molecules for RNA interference include mRNA, pre-mRNA, and the like.
  • the RNA interfering agent is typically siRNA.
  • the design of siRNA is known to those skilled in the art, and those skilled in the art can design siRNA having an appropriate structure and sequence by appropriately considering target selection, terminal structure, and the like.
  • siRNA and other double-stranded RNA that is a single-stranded RNA and becomes siRNA by cleavage, and each strand of siRNA or RNA single strand that is a siRNA precursor can be transcribed from DNA. It can also take the form of a formable DNA construct.
  • nucleic acid drugs can be screened based on the evaluation method described later.
  • an antibody that specifically binds to the present K ion channel can be mentioned.
  • the antibody may be a polyclonal antibody or a monoclonal antibody as long as it specifically binds to the present K ion channel.
  • the antibody also includes an intact antibody that recognizes at least a part of the K ion channel as an antigen and has a binding ability, or a portion containing an antigen-binding portion having the binding ability.
  • the "antigen-binding portion" of an antibody means one or more fragments of an intact antibody that retains the ability to specifically bind to any antigen.
  • "antigen-binding portion” is not particularly limited, Fab fragments, V L, V H, a monovalent fragment consisting of C L and CH1 domains; F (ab) 2 fragments, disulfide bridge at the hinge region A bivalent fragment containing two Fab fragments linked by (generally one from a heavy chain and a light chain); an Fd fragment consisting of VH and CH1 domains; a single arm VL and VH domain of an antibody.
  • Fv fragments consisting of; single domain antibody (dAb) fragments consisting of VH domains; and fragments of various forms such as isolated complementarity determining regions (CDRs) or combinations thereof can be included.
  • the antigen-binding moiety can be linked by an artificial peptide linker that can be prepared as a single protein chain in which the VL and VE regions are paired to form a monovalent molecule using a recombination method. can.
  • the antigen-binding moiety may be incorporated into a single domain antibody, maxibody, minibody, intrabody, diabody, triabody, tetrabody, v-NAR and bis-scFv.
  • the species from which the antibody is derived is not particularly limited, but can be human antibody, mouse antibody, goat antibody, etc., although it depends on the organism to which it is applied and the purpose.
  • human antibody means that both the framework of the antibody and the CDR regions include an antibody having a variable region derived from a sequence of human origin.
  • the constant region is also meant to be derived from such a human sequence, eg, a human germline sequence or a mutant human germline sequence.
  • an antibody based on a fragment derived from two or more species can be called a chimeric antibody.
  • human monoclonal antibodies are obtained from transgenic non-human animals fused to immortalized cells (eg, transgenic mice having a genome containing a human heavy chain transgene and a light chain transgene). It is produced by a hybridoma containing B cells.
  • the antibody may be a recombinant antibody such as a recombinant human antibody.
  • Recombinant human corps is, for example, an antibody isolated from an animal (eg, mouse) into which a human immunoglobulin gene has been gene-transfected or chromosome-introduced or a hybridoma produced from it; transformed to express a human antibody.
  • Antibodies isolated from host cells such as transfectomas; antibodies isolated from recombinant combinatorial human antibody libraries; and splicing of all or part of the human immunoglobulin gene sequence to other DNA sequences. Includes antibodies produced, expressed, prepared or isolated by other means, including.
  • Such recombinant human antibodies have variable regions in which the framework and CDR regions are derived from human germline immunoglobulin sequences.
  • the antibody may be a mutant thereof as long as the antibody obtained by a known method has a binding ability to the present K ion channel.
  • modifying at least a portion of the antibody as a starting material eg, by introducing a mutation into a full-length heavy chain and / or light chain sequence, a VN and / or VL sequence or a constant region bound thereto. It is also possible to obtain a new antibody. It is also possible to introduce a so-called peg chain into the obtained antibody.
  • the method of modifying such an antibody itself is well known to those skilled in the art.
  • the production of the antibody is well known to those skilled in the art, and the K ion channel protein, an epitope obtained from the protein, or a conjugate with a hapten compatible with these is used to appropriately immunize an animal from its spleen.
  • a suitable polyclonal antibody can be obtained by obtaining a polyclonal antibody and purifying the obtained polyclonal antibody.
  • a monoclonal antibody can also be obtained by a well-known method. Further, various antibodies can be screened based on the evaluation method or the like described later.
  • a polynucleotide such as DNA encoding the amino acid sequences of the heavy chain variable region and the light chain variable region of the monoclonal antibody thus obtained is also one aspect of the present disclosure.
  • a host cell carrying such an expression vector is also an aspect of the present disclosure.
  • a control region such as a promoter or a terminator can be appropriately selected.
  • the polynucleotide is, for example, DNA and, for example, cDNA.
  • the inhibitor that suppresses the activity of the K ion channel is an aptamer.
  • the aptamer is a nucleic acid aptamer or peptiaptamer that can specifically bind to a specific molecule.
  • Nucleic acid aptamers are composed of DNA and / or RNA, and peptide aptamers are composed of peptides.
  • Nucleic acid aptamers can be screened, for example, by the SELEX method, peptide aptamers can be screened by the yeast Two-Hybrid method, or by using the evaluation method described below.
  • miRNA and the like that are considered to suppress the activity of the K ion channel can be mentioned.
  • miRNA that reduce the expression of this K ion channel mRNAi include miR-497 and miR407 (References 5, 6 and 2).
  • the inhibitor which has a binding property to the present K ion channel protein or the DNA encoding the same or mRNA which is a translation product, can be provided with a labeling element, if necessary.
  • the labeling element is not particularly limited, but conventionally known labeling substances can be appropriately selected and used.
  • the labeling substance is not particularly limited, and typically, a labeling substance using fluorescence, radioactivity, an enzyme (for example, peroxidase, alkaline phosphatase, etc.), phosphorescence, chemiluminescence, coloring, or the like can be mentioned.
  • a substance that can be combined with the labeling element may be provided. It may be provided with a molecule or substance capable of binding these so that it can be finally identified by the labeling substance.
  • protein-protein interaction low molecular weight compound-protein interaction and the like can be used.
  • antibodies in an antigen-antibody reaction biotin in an avidin (streptavidin) -biotin system, digoxigenin in an anti-digoxigenin (DIG) -digoxigenin (DIG) system, or haptens represented by FITC in an anti-FITC-FITC system, etc. Can be mentioned.
  • the labeling substance ultimately used for detection is the other molecule or substance (eg, antigen, i.e., streptavidin, anti-FITC, etc.) that interacts with the substance that binds to such labeling substance.
  • Labeling Substances are modified to provide as a site for binding to a binding substance.
  • labeling elements of these various aspects are commercially available, and methods of modifying the antibody with the labeling elements are well known to those skilled in the art. Therefore, those skilled in the art can obtain various labeling elements and appropriately use functional groups such as amino groups and carboxyl groups for proteins such as antibodies and nucleic acids such as DNA and RNA.
  • This drug itself has the original differentiation potential and tumorigenicity of cancer stem cells, which are latent cancer cells with low tumorigenicity, that is, the differentiation potential has decreased and the tumorigenicity has increased.
  • the active ingredient is an inhibitor of this K ion channel whose expression or expression increases upon conversion to progenitor cell-like cells. Therefore, it is effective for the prevention or treatment of all tumors associated with cancer stem cells. It is also effective in improving or treating tumors caused by tumor cells that have reached or already have high tumorigenicity.
  • Bone tumors include benign bone tumors and malignant bone tumors.
  • Benign bone tumors include osteochondroma, endochondroma, chondromyxoid tumor, chondromyxoid tumor, osteoid osteoma, and giant cell tumor.
  • malignant bone tumors include multiple myeloma, osteosarcoma, fibrosarcoma, chondrosarcoma, Ewing's sarcoma, lymphoma, malignant giant cell tumor, and chondrosarcoma. This drug is useful, for example, for the prevention or treatment of osteosarcoma.
  • the agent for evaluation of tumor prevention or therapeutic agent disclosed in the present specification (hereinafter, also simply referred to as the present evaluation agent) is depolarized.
  • the present evaluation agent is provided with the above Na ion channel, K ion channel, and this K ion channel to induce depolarization that originally induces cell death, the presence of the test compound causes the present evaluation agent.
  • this K ion channel suppresses the deepening of the resting membrane potential in the negative direction, the cell death tendency is enhanced (the cell survival rate is lowered).
  • the test compound can be said to be an inhibitor of the K ion channel.
  • the cells used in this evaluation agent are not particularly limited as long as they can be used for screening ion channels, and various animal cells can be used.
  • the type of animal cell is not particularly limited, such as mammals and insects. If the cells are human, as well as cells of cattle, pigs, horses, sheep, goats, birds, dogs, cats, rabbits, etc., obtain a drug evaluation agent for the prevention or treatment of diseases in these animals. can.
  • Animal cells typically include human fetal kidney-derived cells (HEK cells), African green monkey kidney-derived cells (COS cells), Chinese hamster ovary cells (CHO cells), baby hamster kidney cells (BHK cells), and African turkeys. Egg mother cells are used. In addition, cultured cells derived from various tissues can also be used.
  • the evaluation agent may functionally have the K ion channel.
  • the present evaluation agent specifically expresses or highly expresses the present K ion channel in the cell membrane or the like.
  • cells highly expressing the present K ion channel can be selected in advance.
  • the DNA encoding the present K ion channel is retained and expressed. This DNA is preferably ligated under the control of a constitutively active promoter (constitutive promoter) so that the K ion channel is constantly expressed.
  • this K ion channel As described above for this K ion channel, a person skilled in the art constructs an expression vector containing DNA based on a well-known genetic engineering technique and a technique for producing a transformant, and introduces the expression vector into a host cell. By transforming, desired constantly expressed or transiently expressed cells can be appropriately obtained. In addition, the expression level of the suppressive target ion channel can be adjusted in the same manner as other ion channels.
  • the present evaluation agent is a cell death-inducing system (cells) under the stimulus that induces depolarization or in the presence of an inhibitor against other K ion channels. It is possible to construct a viable state of cells waiting in an inducible state of death).
  • This cell death-inducing system itself constitutes an evaluation system for agents and inhibitors for this K ion channel. That is, the presence of an inhibitor on other K ion channels inhibits the deepening of the resting membrane potential in the negative direction, but the K ion channel, which is an inhibitory target ion channel, suppresses the induction of depolarization. It is in a state of being. From such a state, the inhibitory action and promoting action of the test compound on the K ion channel can be easily and efficiently evaluated.
  • the Na ion channel provided by this evaluator is a voltage-gated Na ion channel that prolongs the duration of action potential associated with depolarization.
  • a Na ion channel can be said to be a Na ion channel in which inactivation is suppressed.
  • the voltage-gated Na ion channel is a protein on the cell membrane that opens depending on the membrane potential of the cell membrane and mediates the passive diffusion of Na ions.
  • various known voltage-gated Na ion channels can be used without particular limitation, but Nav1.5 channel is preferable.
  • Nav1.5 channels are distributed in cardiomyocytes and are thought to be involved in the generation of action potentials and excitatory conduction.
  • the nucleotide sequence and amino acid sequence of the human Nav1.5 channel (NCBI Accession Number: NM_198056.2, NP_932173.1) are represented by SEQ ID NOs: 21 and 22.
  • the inactivation mechanism works to lose Na ion permeability (inactivation).
  • the voltage-gated Na ion channel in which the inactivation is suppressed suppresses (disappears) such an inactivation mechanism. That is, the voltage-gated Na ion channel in which inactivation is suppressed means a Na ion channel in which such inactivation does not occur after the gate opens depending on the membrane potential and exhibits ion permeability.
  • the ion channel In the potential-dependent Na ion channel whose inactivation is suppressed, when depolarization is induced in the cell membrane and the ion channel itself is activated, the ion channel can be opened to mediate the passive diffusion of Na ions. However, since the inactivation of the ion channel itself is suppressed, the open state of the ion channel is maintained. As a result, in the voltage-gated Na ion channel in which the inactivation is suppressed, once the action potential is generated by the stimulation, the inactivation of the ion channel is delayed, so that the action potential is the original voltage-gated Na ion channel. It lasts longer than the ion channel.
  • the Na ion channel in which the inactivity is suppressed is easily activated even at a stationary or relatively deep resting membrane potential (so-called window current is large). Therefore, in cells expressing such Na ion channels, excessive Na ion influx can be prevented only when the resting membrane potential is held at a sufficiently deep negative potential.
  • depolarization easily increases Na ion channel activity for 1 minute or longer, preferably 2 minutes or longer, more preferably 3 minutes or longer, and even more preferably 5 minutes. The action potential or depolarization is maintained for about a minute or more. This causes an excessive influx of Na into the cell, resulting in death of the cell.
  • the suppression of such inactivation can be appropriately realized by introducing an amino acid mutation into the amino acid sequence of the voltage-gated Na ion channel.
  • Several specific methods have been disclosed for suppressing the inactivation of the Nav1.5 channel. For example, modifying the IFM motif (Grant et al., Biophys. J., 79: 3019-3035, 2000), mutating the 406th asparagine to glutamic acid, arginine, or lysine (McNulty et al., Mol. Pharmacol., 70: 1514-1523, 2006), deletion of the linker site including the IFM portion connecting domains III-IV (Patton et al., Proc. Natl. Acad. Sci.
  • this evaluator retains and expresses DNA encoding such a Na ion channel (natural protein or mutant protein) (hereinafter, also referred to as first DNA).
  • the present evaluation agent may be one that constantly or transiently expresses the mutant, that is, a voltage-gated Na ion channel in which inactivation is suppressed. That is, the DNA may be integrated on the chromosome and transmitted to the daughter cell, or may be integrated into a plasmid that autonomously amplifies extrachromosomally but is not necessarily transmitted to the daughter cell.
  • the DNA is preferably linked under the control of a constitutively active promoter (constitutive promoter).
  • a person skilled in the art constructs an expression vector containing DNA or the like based on a well-known genetic engineering technique and a technique for producing a transformant, and introduces this into the host of the present assessor. By transforming, constantly expressed or transiently expressed cells can be appropriately obtained.
  • the expression level of Na ion channels controls the type of control region such as a promoter that controls the first DNA, the number of expression cassettes containing the first DNA to be introduced, and the cell culture conditions after gene transfer. It can be adjusted by.
  • the potential-dependent Na ion channel consists of two or more subunits and the subunit containing a mutation effective for inactivation is a part of the whole, only the part of the subunit is concerned.
  • the DNA encoding each of these can be expressed in the present evaluation agent as one or more DNAs, and these subunits are encoded so that other subunits constituting the Na ion channel are also co-expressed at the same time.
  • the DNA may be retained as DNA in an expressible manner.
  • enzymes, other proteins, compounds, etc. necessary for the voltage-gated Na ion channel in which the expressed inactivation is suppressed to function more effectively these substances are appropriately expressed or supplied. You may try to do so.
  • the other K ion channel provided by this evaluator is an ion channel having a function (activity) such that the resting membrane potential becomes deeper in the negative direction, in other words, the negative potential becomes larger. That is, according to such other K ion channels, a deep resting membrane potential can be formed by enhancing K ion permeability due to its expression and activity.
  • the Na ion concentration difference between the inside and outside of the cell causes the Na ion to flow excessively into the cell, and finally the intracellular Na ion concentration increases and the cell dies.
  • the cells In order to use cells as this evaluator, the cells must be alive until such a cell death-inducing system is induced. Therefore, in order to deepen (lower) the resting membrane potential, another K ion channel that deepens the resting membrane potential in the negative direction is used.
  • the resting membrane potential is preferably deeper in the negative direction as long as it does not affect cell survival.
  • the membrane potential is preferably about -50 mV, more preferably about -60 mV, still more preferably about -70 mV, and even more preferably about -80 mV.
  • K ion channels examples include a state in which an inwardly rectifying K ion channel (Kir channel), a four-transmembrane type and a two-pore type K ion channel (K2P channel) are activated.
  • Kir channel an inwardly rectifying K ion channel
  • K2P channel a two-pore type K ion channel
  • K2P channels 4-transmembrane type and 2-pore type K ion channels having different properties, and they are classified into TWIK, TREK, TASK, TALK, THIK, TRESK and the like.
  • These ion channels function as leak channels because they have little potential and time dependence. Due to the nature of the leaking channel, these other K ion channels
  • the inward rectifying K ion channel is not particularly limited, and examples thereof include various Kir2x channels such as Kir2.1, 2.2, 2.3, and 2.4.
  • Kir2.1 is an inwardly rectifying K ion channel (Kir channel) having a transmembrane structure. It does not have voltage dependence and has the property of bringing the membrane potential close to the equilibrium potential of K ions, which is around -80 mV. It is expressed in nerves, heart, skeletal muscle, etc., and forms, stabilizes, and maintains resting membrane potential.
  • Kir2.2 is an inwardly rectifying K ion channel (Kir channel) similar to Kir2.1, but has stronger inwardly rectifying property than Kir2.1.
  • Kir2.1 in the heart, brain, skeletal muscle, etc., and plays a major role in inwardly rectifying K ion channel (Kir channel) activity in human vascular endothelial cells.
  • Kir2.2 is suitable for this evaluation agent in that it is specifically inhibited by, for example, Ba ions, as will be described later.
  • the x ion channel is described in Circ. Res. 94: 1332-1339 (2004), Am. J. Physiol. Cell Physiol. 289: C1134-C1144 (2005), and the like.
  • the nucleotide sequences of genes encoding Kir2.x channels derived from humans are Kir2.1 (GenBank accession No. U12507, NM_000891 (Human KCNJ2)), Kir2.2 (GenBank accession No. AB074970, NM_021012 (Human KCNJ12)). ), Kir2.3 (GenBank accession No. U07364, U24056, NM_152868 (Human KCNJ4)), Kir2.4 (GenBank accession No. AF081466, NM_013348 (Human KCNJ14)) and the like.
  • GIRK channel a G protein-controlled inward rectifying K ion channel
  • Kir a G protein-controlled inward rectifying K ion channel
  • the GIRK channel (Kir3) is an inwardly rectifying K ion channel (Kir channel), but unlike Kir2, it is a K ion channel activated by a G protein.
  • These subunits are tissue-specific and form a heterologous tetramer composed of Kir3.1 / Kir3.4 in the heart and Kir3.1 / Kir3.2 in the central nervous system. Normally, it is not activated, but is activated by agonist stimulation.
  • the nucleotide sequences encoding the human-derived Kir3.3x channels are Kir3.1 (GenBank accession No. NM_002239 (Human KCNJ3)), Kir3.2 (GenBank accession No. NM_002240 (Human KCNJ6)), and Kir3.3 (GenBank accession No. NM_002239 (Human KCNJ3)).
  • GenBank accession No. NM_004983 (Human KCNJ9)) and Kir3.4 GenBank accession No. NM_000890 (Human KCNJ5)
  • K ATP channel ATP-sensitive inward rectifying K ion channel
  • the K ATP channel is an inwardly rectifying K ion channel (Kir channel) that is suppressed by ATP and activated by ADP.
  • K ATP channels control cell excitability according to the metabolic state of the cell.
  • the K ATP channel is a heterologous octamer composed of four K ATP channels and four sulfonylurea receptors (SURs). K ATP channel alone is no function has been reported that will have the function only with K ATP channel thereby lacking a C-terminal of a K ATP channel (Tucker et. Al., EMBO J.
  • the membrane potential becomes deep when expressed in THIK channel (HEK293 cells; Campanucci et al., Neuroscience, 135: 1087- 1094, 2005), TASK-2 channel (Expression in African Tumegael egg matrix cells deepens the resting membrane potential; Kindler et al., J. Pharmacol. Exp. Ther., 306: 84-92, 2003.) , Potential-dependent K-channel (potential-dependent K-channel deepens resting membrane potential in smooth muscle tissue; McDaniel et al., J. Appl. Physiol. (1985) 91: 2322-2333, 2001), etc. Has been done.
  • the 4-transmembrane type and 2-pore type K ion channels are classified into each subfamily of TWIK, TREK, TASK, TALK, THIK and TRESK.
  • the TWIK subfamily includes TWIK-1, TWIK-2 channels (Lotshaw, Cell Biochem. Biophys. 47: 209-256, 2007).
  • TWIK channels are present in many tissues in humans.
  • human-derived TWIK ion channels include TWIK-1 (GenBank accession No. NM_002245 (KCNK1)) and TWIK-2 (GenBank accession No. NM_004823 (KCNK6)).
  • the TREK subfamily includes TREK-1, TREK-2 and TRAAK channels.
  • human-derived TREK ion channels include TREK-1 (GenBank accession No. NM_014217 (KCNK2)), TREK-2 (GenBank accession No. NM_138317 (KCNK10)) and TRAAK (GenBank accession No. NM_033310 (KCNK4)).
  • TREK-1 GenBank accession No. NM_014217 (KCNK2)
  • TREK-2 GenBank accession No. NM_138317 (KCNK10)
  • TRAAK GeneBank accession No. NM_033310
  • the TASK subfamily includes TASK-1, TASK-3 and TASK-5 channels.
  • human-derived TASK ion channels include TASK-1 (GenBank accession No. NM_002246 (KCNK3)), TASK-3 (GenBank accession No. NM_016601 (KCNK9)) and TASK-5 (GenBank accession No. NM_022358 (KCNK15)). ).
  • the TALK subfamily includes TALK-1, TALK-2 and TASK-2 channels.
  • human-derived TALK ion channels include TALK-1 (GenBank accession No. NM_001135106 (KCNK16)), TALK-2 (GenBank accession No. NM_001135111 (KCNK17)) and TASK-2 (GenBank accession No. NM_003740 (KCNK5)).
  • the THIK subfamily includes THIK-1 and THIK-2 channels.
  • examples of human-derived THIK ion channels include THIK-1 (GenBank accession No. NM_022054 (KCNK13)) and THIK-2 (GenBank accession No. NM_022055 (KCNK12)).
  • the TRESK subfamily includes TRESK (GenBank accession No. NM_181840 (KCNK18)).
  • K ion channels in addition to these various natural K ion channels, other K ion channel variants modified from these can also be used.
  • This evaluator is preferably used in the presence of an inhibitor of other K ion channels. It is preferred that the inhibitor be capable of inhibiting other K ion channels with as high selectivity as possible and with as high sensitivity as possible (at low concentrations). Therefore, in order to impart more suitable selectivity and sensitivity to the inhibitor to other K ion channels, other K ion channels can be appropriately modified.
  • a technique for modifying a known protein in order to impart, delete, enhance, or attenuate the intended function is known to those skilled in the art. Since the target protein, especially the ion channel, has been well studied in the transmembrane region and the pore region, it is appropriate to identify an appropriate modifiable site to some extent by using the amino acid sequence alignment of the protein. It is a daily work in a trader. Then, it is a daily task of those skilled in the art to examine the substitution of possible amino acid residues based on the alignment information about the modifiable site, obtain a mutant, and evaluate the function of the mutant.
  • K ion channels 1 or 2 or more can be appropriately combined and used for the purpose of deepening the resting membrane potential by such other K ion channels.
  • this evaluator retains and expresses DNA encoding these other K ion channels (natural protein or mutant protein) (hereinafter, also referred to as second DNA).
  • the present evaluation agent may be one that constantly or transiently expresses the K ion channel, which is a natural product or a mutant thereof. That is, the DNA may be integrated on the chromosome and transmitted to the daughter cell, or may be integrated into a plasmid that autonomously amplifies extrachromosomally but is not necessarily transmitted to the daughter cell.
  • the second DNA is preferably linked under the control of a constitutively active promoter (constitutive promoter).
  • constitutively active promoter constitutitutive promoter
  • the present evaluation agent has a mutant potential-dependent Na ion channel in which inactivation is suppressed by providing the Na ion channel and the other K ion channel on the cell membrane or the like, respectively.
  • the cells are in which cell death due to intracellular influx of Na ions is avoided. That is, although it has a cell death-inducing system, it is in a state of waiting for a cell death-inducing system that operates after waiting for the induction of depolarization.
  • this evaluation agent a preventive or therapeutic agent for tumors, and can also be used for research purposes on this K ion channel.
  • this evaluator For tumors to which this evaluator can be applied, the embodiments already described for this drug are provided.
  • the ion channel agent is a mesophyll of a bone tumor or the like. It is a drug for preventing or treating a system tumor, and the target ion channel is a K Ca 3.1 ion channel, and a step of evaluating an inhibitor that suppresses the activity of the target ion channel can be provided.
  • the present K ion channel inhibitor can suppress the change of mesenchymal tumor from cancer stem cells to tumor cells, it is possible to provide a drug that contributes to the prevention of mesenchymal tumors.
  • this K ion channel inhibitor can suppress malignant transformation and metastasis of tumor cells, it is possible to provide a drug that contributes to the treatment and improvement of mesenchymal tumors and the improvement of prognosis.
  • the present evaluation method is not particularly limited as long as it is a method in which the target ion channel is the present K ion channel and the inhibitory activity of the inhibitor thereof can be evaluated, but the present evaluation agent is used and disclosed in WO2012 / 00246 and WO2018 / 084221. It is preferable to evaluate using the method described above.
  • the method described in WO2018 / 084221 uses an inhibitory target ion channel as the target ion channel.
  • This K ion channel corresponds to an inhibitory target ion channel.
  • This evaluation method is an inhibitor provided by this evaluation agent that can induce cell death by inducing depolarization in the cell death-inducing system by acting inhibitoryly on other K ion channels that are not target ion channels (hereinafter referred to as , Also referred to as a K ion channel inhibitor) can suppress the induction of depolarization and the induction of cell death.
  • this K ion channel acts in the direction of deepening the resting membrane potential, it is possible to suppress the action of the inhibitor, that is, the induction of depolarization and the induction of cell death due to it, independently of the inhibitor. ..
  • an efficient evaluation system for the ion channel can be constructed.
  • the K ion channel inhibitor inhibits the action of other K ion channels and suppresses the deepening of the resting membrane potential in the negative direction. Such inhibitors also vary, for example, depending on the type of other K ion channel. From known information, a K ion channel inhibitor can be obtained, and a cell having a cell death-inducing system containing various other K ion channels is prepared to inhibit other K ion channels that may be possible against this cell. It can be obtained by supplying a drug and evaluating whether or not depolarization is induced or cell death is induced.
  • Kir2. Ba ion is known as an inhibitor against x. It is preferable that the sensitivity of other elements of this evaluation system to Ba ions, for example, Nav1.5 which is a Na ion channel, the mutant thereof, or K2P channel as a target ion channel described later is low. More specifically, the 50% inhibitory concentration of other ion channels other than the K ion channel of the cell death-inducing system is preferably 5 times or more, more than the 50% inhibitory concentration of the K ion channel of the cell death-inducing system. It is preferably 7 times or more, more preferably 10 times or more, still more preferably 15 times or more, still more preferably 20 times or more.
  • the action of the test compound on the inhibitory target ion channel can be detected and evaluated with high sensitivity.
  • such an inhibition concentration and the like can also be measured using a cell provided with the cell death induction system disclosed in the present specification.
  • the screening method disclosed in WO2018 / 084221 is a step of supplying an inhibitor of a K ion channel to the evaluator so as to inhibit the action of the K ion channel, and a suppressive target for the evaluator.
  • a step of supplying a test compound having a possibility of inhibiting an ion channel and a step of evaluating the effect of the supply of the test compound on cell death of the present evaluation agent can be provided.
  • the action of the test compound on the inhibitory target ion channel can be easily evaluated by supplying an inhibitor of the K ion channel to inhibit the K ion channel. For example, depolarization of this evaluator can be induced without using electrical stimulation. As a result, efficient screening is possible.
  • the cell death-inducing system is also controlled by the inhibitory target ion channel that suppresses the cell death-inducing action of the K ion channel inhibitor while suppressing the action of the K ion channel by the K ion channel inhibitor.
  • a suitable screening environment can be constructed depending on the intended properties of the test compound, that is, whether it is an inhibitor or an agent for the inhibitory target ion channel. For example, by supplying the K ion channel inhibitor so that the cell death rate is lower than 50%, a screening environment suitable for the inhibitor against the inhibitory target ion channel can be constructed. Further, for example, by supplying the K ion channel inhibitor so that the cell death rate exceeds 50%, a screening environment suitable for the agent for the inhibitory target ion channel can be constructed.
  • test compound for the inhibitory target ion channel is an inhibitor or an agent. And it can be evaluated quantitatively.
  • the cell death rate is lower than in the vicinity of 50% in the presence of the K2P channel opener, that is, surviving cells.
  • the ratio of is increased from around 50%.
  • the rate of cell death increases above 50%, that is, the rate of surviving cells decreases below around 50%.
  • test compounds can be supplied to this evaluator.
  • a single test compound may be used to detect the action of the compound, or two or more test compounds may be used to detect the combined action, additive action, or synergistic action of these compounds.
  • the cell death (rate) of this evaluator when the test compound is not supplied can be used as a control group.
  • a compound whose action on the inhibitory target ion channel is known may be used as a control group. By comparison with such a control group, the presence or absence of the action of the test compound on the inhibitory target ion channel and the degree of the action can be detected.
  • test compound is not particularly limited.
  • proteins such as antibodies, peptides, oligonucleotides, nucleic acids (DNA, RNA) such as polynucleotides, oligosaccharides, polysaccharides, lipids and the like may be used. ..
  • the evaluation agent may be given various stimuli in addition to the test compound. This is because the action may be promoted or suppressed in combination with these stimuli. It is also possible to evaluate the effect on target ion channels that are activated or inactivated in the presence of stimuli. Examples of such stimuli include temperature change (high temperature, low temperature), pH change, O 2 / CO 2 concentration change, osmotic pressure change, volume change and the like.
  • the action of the test compound can be evaluated using the life or death of the present evaluator as an index.
  • the K ion channel constantly operates to suppress depolarization or action potential. Therefore, the action potential does not occur or prolong even in the presence of the K ion channel inhibitor. As a result, this evaluator survives.
  • the test compound and the K ion channel inhibitor are added to this evaluator, cell death of this evaluator is promoted.
  • the test compound can be determined as an inhibitor having an inhibitory effect on the present K ion channel.
  • an inhibitor for a target ion channel can be easily screened using the life or death of this evaluator as an index.
  • This evaluation method can also be carried out as an ion channel agonist as a drug evaluation method in order to suppress the differentiation of cancer stem cells into tumor cells and the malignant transformation of tumor cells. This is because, as described above, this K ion channel contributes to the transformation of cancer stem cells into tumor cells, malignant transformation of tumor cells, and cancer metastasis.
  • the marker disclosed in the present specification is a marker for examination of pathological condition of bone tumor, and K Ca 3. It can include one ion channel, its mRNA or a compound that specifically binds to its pre-mRNA.
  • This marker can be used for pathological examination of various tumors including bone tumors such as tumorigenesis of cancer stem cells, malignant transformation of tumor cells and cancer metastasis.
  • any marker that specifically binds to the mRNA or protein of the present K ion channel can be used. That is, in addition to those that function as inhibitors for antibodies, aptamers, siRNAs, etc.
  • oligonucleotide probes that are specific for the mRNA of the present K ion channel may be used. Further, as described above for the present inhibitor, a marker having a known labeling element may be preferable as the present marker.
  • This marker can be applied to, for example, biological fluids such as blood and bone marrow fluid collected from a subject, as well as cell samples in tissues and the like by a known method depending on the type of marker.
  • biological fluids such as blood and bone marrow fluid collected from a subject
  • cell samples in tissues and the like by a known method depending on the type of marker.
  • nucleic acid hybridization, antigen-antibody reaction, protein-nucleic acid interaction, and the like in various embodiments can be used to bind to the K ion channel protein, its mRNA, and pre-mRNA.
  • the detection form can also be appropriately set according to the type of marker, the type of marker, and the like.
  • the method for examining the pathology of bone tumor disclosed in the present specification is a cell collected from a target site of a subject of a bone tumor patient.
  • the step of measuring the K Ca 3.1 ion channel activity in the above can be provided. According to this test method, by measuring the activity of this K ion channel in cells, the degree of change of cancer stem cells into tumor cells, the possibility and degree of malignant transformation and metastasis of tumor cells, the prognosis of patients, etc. You can get information about.
  • the target site for collecting cells is not particularly limited, and examples thereof include a primary site of a bone tumor and a metastatic site.
  • the method for measuring activation is not particularly limited, but for example, the mRNA and protein of this K ion channel are specifically detected to measure the expression level, the amount of this K ion channel protein, and the like, using this marker. Can be detected.
  • AO cells and AX cells were obtained from Professor Saya of Keio University and Dr. Shimizu (currently an associate professor of Hoshi Pharmaceutical University). All of these cells were established from bone marrow stromal cells of Ink4a / Arf KO mice.
  • AO cells are cells that have the ability to differentiate into adipocytes, osteoocytes and chondrocytes, have a lower tumorigenicity than AX cells, but exhibit high drug tolerance.
  • RNA extraction and real-time PCR were performed on these cells to confirm the expression of K Ca ion channels (mouse KCNN4).
  • AO / AX cells were petri dish cultured, and after reaching a confluent, total RNA was extracted from the cells by the AGPC (Acid Guanidium Thiocyanate-Phenol Chloroform) method using RNAisoPlus (Takara), and the total RNA concentration was calculated from the OD260 value.
  • CDNA was synthesized by Revertra Ace (TaKaRa) and Ramdom Primers (Invitrogen) using 0.5 ⁇ g total RNA, and real-time PCR was performed.
  • Real-time PCR was performed using the PCR detection and quantification system LightCycler® 96 System (Nihon genetics). Using SYBR Premix Ex Taq (TaKaRa), the fluorescence of each cycle was measured by the cyber green assay method, and the GAPDH mRNA expression level was used as an endogenous reference substance based on the calibration curve prepared in advance based on the fluorescence intensity. The expression level of the target ion channel mRNA was calculated as a ratio to GAPDH, and the value was shown. The results are shown in FIG. 1A.
  • PCR The specific operation of PCR was performed as follows. 1) Preheat denaturation reaction (94 ° C, 10 minutes), 2) Heat denaturation reaction (94 ° C, 30 seconds), 3) Annealing reaction (58 ° C, 30 seconds), 4) Extension reaction (72 ° C, 1 minute) .. 2) to 4) were cycle reactions, which were carried out in 35 cycles.
  • the primers used are as follows.
  • a recording electrode is produced from a cored glass tube with an outer diameter of 1.04-1.08 mm using a two-stage electrode manufacturing machine (PB-7; Narishige, Tokyo, Japan), and the tip is smoothed by thermal processing under a microscope. It was prepared and used in the experiment. In the experiment, a recording electrode having a tip diameter of about 1 ⁇ m and an electrical resistance of 2-5 M ⁇ when filled with intracellular fluid was used.
  • PB-7 two-stage electrode manufacturing machine
  • a piece of glass with cells colonized was fixed in a chamber fixed on the stage of an inverted microscope (TMD; Nikon, Tokyo, Japan) and perfused with Normal HEPES solution.
  • the recording electrode was pressed against the cells using a hydraulic fine movement manipulator (MHW-3; Narishige), and the membrane current was measured by the voltage fixation method.
  • the measured current was amplified using a microcurrent amplifier CEZ-2400; Nihonkoden, Tokyo) and recorded using an AD generator (Digidata 1440A; Axon Instruments) and Clampex 10.2 (Axon Instruments). Data analysis was performed using Clampfit 10.2 (Axon Instruments). The results are shown in FIG. 1B.
  • the oxonol-based voltage-sensitive dye Oxonol V is a dye whose fluorescence intensity increases when the cell membrane is depolarized and decreases when the membrane is hyperpolarized.
  • a piece of glass in which cells were sown was fixed in a chamber, and 1 ⁇ M Oxonol V (Sigma) was loaded at room temperature for about 30 minutes, and then the cells were loaded for about 30 minutes while being perfused.
  • a confocal laser scanning microscope (A1R / Ti-E, Nikon) was used as an image measurement / analysis device.
  • Oxonol V was excited at a wavelength of 640 nm and the change in fluorescence intensity when a K Ca ion channel inhibitor (TRAM-34, ICA-17043, see Chemical formula 1) was added was analyzed. The results are shown in FIG. 1C.
  • the change in intracellular Ca ion concentration was measured for about 10 cells existing on the glass piece by one measurement.
  • the measurement conditions are that the intracellular dye is excited by light with excitation wavelengths of 340 nm and 380 nm with a xenon lamp, and the emitted fluorescence of 520 nm or more is acquired by a high-sensitivity camera (F 340 and F 380, respectively), and the fluorescence intensity thereof is obtained.
  • the ratio (F 340 / F 380 ) was acquired as a single image. The results are shown in FIGS. 1D and E.
  • FIG. 1A it was found that the expression of K Ca ion channels was remarkably increased in AX cells as compared with AO cells.
  • FIG. 1B the TRAM-34 sensitive currents inhibited by TRAM-34, which is a selective inhibitor of K Ca ion channels, were compared. As a result, it was clarified that the TRAM-34 sensitivity current was remarkably increased in the AX cells as compared with the AO cells.
  • FIG. 1C shows the analysis results of the contribution of K Ca ion channels to the membrane potential of AO / AX cells.
  • Membrane potential change by DCEBIO which is a K Ca ion channel activator, and membrane potential by inhibitor TRAM-34.
  • FIG. 1D shows the analysis result of the intracellular calcium ion concentration at rest. As shown in FIG. 1D, the intracellular calcium ion concentration at rest in AX cells is higher than that at rest as compared with AO cells. It turned out to be increasing. Further, FIG.
  • FIG. 1E shows the analysis results of the contribution of K Ca ion channels to the intracellular calcium ion concentration.
  • FIG. 1E shows the analysis results of the contribution of K Ca ion channels to the intracellular calcium ion concentration.
  • FIG. 1E in AO cells, in the presence and absence of the K Ca ion channel inhibitor, No change occurred when the K Ca ion channel activator was supplied, whereas in AX cells, when the K Ca ion channel activator was supplied in the absence of the K Ca ion channel inhibitor, the cells were intracellular. From the increase in calcium ion concentration, it was found that the presence and activation of K Ca ion channels contributed to the intracellular calcium ion concentration in AX cells.
  • Example 1 (Contribution of K Ca ion channel to cell proliferation of AO / AX cells) A high content cell analyzer system (Operetta, PerkinElmer) was used to measure cell proliferation.
  • the AO / AX cells used in Example 1 were sown on 96-well plates to 1.5 ⁇ 10 3 cells / well and incubated at 37 ° C, 5% CO 2. After cell adhesion (about 2 hours later), the drug was replaced with a drug solution suspended in a medium. The time was set to 0 hours, and measurement was performed after culturing for 24 and 48 hours.
  • a cell migration experiment was performed on the AO / AX cells used in Example 1.
  • a Transwell assay using an 8.0 ⁇ m pore size Cell Culture Insert (Corning, hereinafter referred to as chamber) was performed.
  • IMDM medium containing 1% FBS (Nichirei) and drugs (DMSO, TRAM-34, ICA-17043) was prepared on a 24-well plate.
  • the Chamber was placed on a 24-well plate, Serum free IMDM medium was added to the upper and lower parts of the Chamber, and the chamber was shaken several times to bleed air. Then, the upper and lower media were removed.
  • each drug (DMSO, TRAM-34, ICA -17043) suspended by so the AO / AX cells 1.0 ⁇ 10 5 cells / ml in IMDM medium of added Serum the Free and remove the culture medium 0.5 ml each was added to the upper part of the serum, and immediately placed on a 24-well plate in which IMDM medium containing 1% FBS was immersed.
  • AX cells were incubated at 37 ° C., 5% CO 2 for 4 hours, and AO cells were incubated for 8 hours because the number of migrating cells was low at 4 hours regardless of the presence or absence of the drug.
  • the non-migratory cells on the upper part of Chamber were removed with a cotton swab.
  • Diff-Quickkit Sysmex
  • the migrating cells that passed through Transwell and moved from the top to the bottom were fixed and stained (IMDM medium was removed, the fixative was soaked for 15 minutes, and the stain 1.2 was soaked for 10 minutes. did).
  • the Transwell part of the chamber was hollowed out with a cutter, adhered to a slide glass, and a transmitted image was obtained with a microscope. The number of migrating cells per image was measured, three images were randomly obtained with one chamber, and the average number of cells was taken as the number of migrating cells per chamber.
  • DMSO, TRAM-34, and ICA-17043 were performed in 3 chambers each, and the number of cells for 3 chambers was further averaged, which was taken as an example.
  • the number of migrating cells in the TRAM-34 and ICA-17043 groups was standardized by the number of migrating cells in the DMSO group, and the change in migration rate due to the drug was calculated. The results are shown in FIG.
  • AX cells [1], AO cells [2] and osteosarcoma tumor cells [3] tumor cells formed by transplanting AX cells into mice once The cells were collected from the cells and cultured. The tumorigenicity was higher than that of AX cells.
  • osteosarcoma tumor cells [3] were subcutaneously transplanted into mice, and tumor fragments were formed from the primary tumor (subcutaneous tumor) and lung metastasis formed 26 days later, respectively.
  • the tumor pieces were mixed with a tissue lysate of Nucleospin RNA, a solution containing RNA was recovered using Biomasher (Nippi), and then RNA was extracted according to the protocol of Nucleospin RNA.
  • RNA was reverse transcribed using Prime Script (Takara) to prepare cDNA.
  • Real-time PCR was performed using a commonly used protocol.
  • the solution was prepared according to the attachment using 0.4 ⁇ g of cDNA, each primer of Kcnn4 and ⁇ -Actin, and Thunderbird Premix (TOYOBO) as an enzyme.
  • the solution was prepared in a 48-well real-time PCR dish and PCR was performed using StepOne plus (Thermo Fischer Scientific) (device default setting) to quantify expression.
  • StepOne plus Thermo Fischer Scientific
  • the expression of Kcnn4 was divided by the expression of ⁇ -Actin to calculate the ratio.
  • the sequences of the primers used for each amplification are as follows. The results are shown in FIG.
  • Kcnn4 (Forward side: CAAGCACACTCGAAGGAAGG (SEQ ID NO: 27), Reverse side: CTTCCGGTGTTTCAGCCGTA) (SEQ ID NO: 28)
  • ⁇ -Actin (Forward side: CAACCGTGAAAGATGACCC (SEQ ID NO: 29), Reverse side: TAGACCAGAGGCATACAG) (SEQ ID NO: 30)
  • the expression level of K Ca ion channels in AX cells [1], osteosarcoma tumor cells [3], primary lesions [7] and metastatic lesions [8] is AO cells [1].
  • the expression level was high in the metastatic lesion [8].
  • Osteosarcoma tumor cells [3] in FIG. 4A were transplanted into the bone marrow of the femur of a mouse, and the primary lesion (subcutaneous tumor). , Liver metastases and lung metastases were formed.
  • the mice were euthanized by intraperitoneal injection of a lethal dose of pentobarbital, the primary lesion (subcutaneous tumor) and metastatic lesion (lung, liver) were removed and fixed in 4% -paraformaldehyde for 2 days. The fixed sample was embedded in paraffin, sliced, and attached to a slide glass.
  • the procedure for immunohistochemical staining was performed using a general method. It is briefly described below.
  • the sample of the slide glass is deparaffinized and dexylene by immersing it in xylene, 100%, 90%, 80%, and 70% ethanol in that order, and heat-treated in a citric acid buffer to activate the antigen. was done.
  • K Ca ion channels are not expressed in AO cells, which are potential cancer stem cells, but when changing from AO cells to AX cells, which are progenitor cell-like cells, and proliferation as tumor cells, tumor cells It was found that K Ca ion channels were highly expressed during malignant transformation and metastasis.
  • KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo. Cell Death Dis 4: e773, 2013. 4. Faouzi M, Hague F, Geerts D, Ay AS, Potier-Cartereau M, Ahidouch A, and Ouadid-Ahidouch H. Functional cooperation between KCa3.1 and TRPC1 channels in human breast cancer: Role in cell proliferation and patient prognosis. Oncotarget 7: 36419-36435, 2016. 5.
  • MicroRNAs in soft tissue sarcomas overview of the accumulating evidence and importance as novel biomarkers. Biomed Res Int 2014: 592868, 2014. 7. Kito H, Yamazaki D, Ohya S, Yamamura H, Asai K, and Imaizumi Y. Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells. Biochem Biophys Res Commun 411: 293-298, 2011. 8. Liu D, Tseng M, Epstein LF, Green L, Chan B, Soriano B, Lim D, Pan O, Murawsky CM, King CT, and Moyer BD.

Abstract

Provided are: an agent for preventing or treating a bone tumor; and a method for evaluating an ion channel agonist for prevention or treatment of a bone tumor, etc. The agent for preventing or treating a bone tumor comprises, as an active ingredient, an inhibitor that inhibits the activity of a KCa3.1 ion channel.

Description

骨腫瘍の治療剤及び骨腫瘍等の治療のためのイオンチャネル作用薬の評価方法Evaluation method of therapeutic agents for bone tumors and ion channel agonists for the treatment of bone tumors, etc.
 本明細書は、骨肉腫などの骨腫瘍の治療剤及び骨腫瘍等の治療のためのイオンチャネル作用剤の評価方法等に関する。
(関連出願の相互参照)
 本出願は、2020年1月20日に出願された日本国特許出願である特願2020-7116の関連出願であり、この日本出願に基づく優先権を主張するものであり、この日本出願に記載された全ての内容を援用するものである。
The present specification relates to a therapeutic agent for bone tumors such as osteosarcoma and a method for evaluating an ion channel agonist for the treatment of bone tumors and the like.
(Cross-reference of related applications)
This application is a related application of Japanese Patent Application No. 2020-7116, which is a Japanese patent application filed on January 20, 2020, and claims priority based on this Japanese application, which is described in this Japanese application. All the contents that have been made are used.
 骨腫瘍のなかでも、骨肉腫は、転移や薬物耐性の発現などのため、根治が困難な難治性希少疾患の一つとなっている。各種のがん治療のための有望な標的分子について、種々の研究がなされている。例えば、Ca2+シグナルを制御するイオンチャネルであるKCa3.1(別名として、中コンダクタンスカルシウム活性化カリウム、IKチャネル、遺伝子名としてKCNN4)チャネルは、各種の上皮系がんの治療の標的分子であることが報告されている(非特許文献1~3)。 Among bone tumors, osteosarcoma is one of the intractable rare diseases that are difficult to cure due to metastasis and development of drug resistance. Various studies have been conducted on promising target molecules for various cancer treatments. For example, the K Ca 3.1 (also known as medium-conductance calcium-activated potassium, IK channel, gene name KCNN4) channel, which is an ion channel that controls Ca 2+ signals, is a target molecule for the treatment of various epithelial cancers. It has been reported that (Non-Patent Documents 1 to 3).
 また、がんの転移や薬剤耐性化には、がん幹細胞が関連している可能性があるとされている。がん幹細胞は、がん細胞のうち、幹細胞としての性質を備えており、自己複製能、多分化能及びマウスなどの生体移植時においてもとのがんと同じ表現型のがんを形成する能力である。がん幹細胞は、高度な薬剤耐性能や酸化ストレス耐性能を有する。このためがん幹細胞を治療標的とすることは、根本的ながん治療の実現に向けた課題である。 In addition, it is said that cancer stem cells may be involved in cancer metastasis and drug resistance. Cancer stem cells have the properties of stem cells among cancer cells, and form cancers with the same phenotype as the original cancers at the time of self-renewal ability, pluripotency, and living body transplantation such as mice. Ability. Cancer stem cells have high drug resistance and oxidative stress resistance. Therefore, targeting cancer stem cells as therapeutic targets is an issue for the realization of fundamental cancer treatment.
 しかしながら、間葉系の腫瘍である骨腫瘍については、KCa3.1チャネルが関連するという報告はなされていない。また、現在までのところ、がん幹細胞におけるイオンチャネルの関連性については報告されていない。さらに、がん幹細胞の性質を維持する分子機構、抗がん剤等に対する治療抵抗性などの分子機構の解明は進んでいないのが現状である。 However, it has not been reported that the K Ca 3.1 channel is associated with bone tumors, which are mesenchymal tumors. Also, to date, no association of ion channels in cancer stem cells has been reported. Furthermore, the current situation is that the molecular mechanisms that maintain the properties of cancer stem cells and the molecular mechanisms such as treatment resistance to anticancer drugs have not been elucidated.
 本明細書は、骨腫瘍の予防又は治療剤及び骨腫瘍等の予防又は治療のためのイオンチャネル作用薬の評価方法等を提供する。 The present specification provides a prophylactic or therapeutic agent for bone tumors and an evaluation method for ion channel agonists for the prevention or treatment of bone tumors and the like.
 本発明者らは、骨腫瘍の一つである骨肉腫のがん幹細胞モデルにおいて、がん幹細胞の通常のがん細胞への分化に、イオンチャネルの関連を想定した。がん幹細胞と腫瘍化した細胞とについて、イオンチャネルの発現スクリーニングにより、特定のイオンチャネル、KCa3.1(KCNN4)チャネルの発現量が、がん幹細胞においては少ないのに対して腫瘍化した細胞では増大しているという知見を得た。さらに、このイオンチャネルの発現増強が、腫瘍化した細胞の悪性化及びがん転移にも関連するという知見を得た。本明細書は、かかる知見に基づき以下の手段を提供する。 In the cancer stem cell model of osteosarcoma, which is one of the bone tumors, the present inventors assumed that ion channels are associated with the differentiation of cancer stem cells into normal cancer cells. Ion channel expression screening revealed that the expression level of a specific ion channel, K Ca 3.1 (KCNN4) channel, was low in cancer stem cells but became tumorous in cancer stem cells and tumorigenic cells. We obtained the finding that it is increasing in cells. Furthermore, it was found that the enhanced expression of this ion channel is also associated with malignant transformation of tumorigenic cells and cancer metastasis. The present specification provides the following means based on such findings.
[1]骨腫瘍の予防又は治療剤であって、
 KCa3.1イオンチャネルの活性を抑制する抑制剤を有効成分とする、治療剤。
[2]前記抑制剤は、前記イオンチャネルの活性を阻害するブロッカーである、[1]に記載の予防又は治療剤。
[3]前記抑制剤は、前記イオンチャネルの発現を抑制する発現抑制剤である、[1]に記載の予防又は治療剤。
[4]前記抑制剤は、前記イオンチャネルに結合する抗体である、[1]に記載の予防又は治療剤。
[5]前記骨腫瘍は、骨肉腫である、[1]~[4]のいずれかに記載の予防又は治療剤。
[6]腫瘍の予防又は治療剤の評価のための剤であって、
 脱分極に伴う活動電位の持続時間を延長する電位依存性Naイオンチャネルと、
 静止膜電位を負方向に深くするKイオンチャネルと、
 KCa3.1イオンチャネルと、
を備える細胞を含む、剤。
[7]前記腫瘍は、骨腫瘍である、[6]に記載の剤。
[8]イオンチャネル作用薬の評価方法であって、
 前記イオンチャネル作用薬は、骨腫瘍等の間葉系腫瘍を予防又は治療するための薬剤であり、
 標的イオンチャネルがKCa3.1イオンチャネルであり、
 被験化合物の前記標的イオンチャネルの抑制活性を評価工程、
を備える、方法。
[9]前記評価工程は、[6]又は[7]に記載の剤を用いて前記抑制活性を評価する工程である、[8]に記載の方法。
[10]イオンチャネル作用薬の評価方法であって、
 前記イオンチャネル作用薬は、がん幹細胞の腫瘍細胞への分化、腫瘍細胞の悪性化、及びがん転移を抑制するための薬剤であり、
 標的イオンチャネルがKCa3.1イオンチャネルであり、
 被験化合物の前記標的イオンチャネルの抑制活性を評価する工程、
を備える、方法。
[11]骨腫瘍についての病態の検査のためのマーカーであって、
 KCa3.1イオンチャネル、そのmRNA又はそのpre-mRNAに結合する化合物を含む、マーカー。
[12]骨腫瘍についての病態の検査方法であって、
 被験者の対象部位から採取された細胞における、KCa3.1イオンチャネル活性を測定する工程、
を備える、方法。
[1] A preventive or therapeutic agent for bone tumors
K Ca 3.1 A therapeutic agent containing an inhibitor that suppresses the activity of ion channels as an active ingredient.
[2] The prophylactic or therapeutic agent according to [1], wherein the inhibitor is a blocker that inhibits the activity of the ion channel.
[3] The prophylactic or therapeutic agent according to [1], wherein the inhibitor is an expression inhibitor that suppresses the expression of the ion channel.
[4] The prophylactic or therapeutic agent according to [1], wherein the inhibitor is an antibody that binds to the ion channel.
[5] The prophylactic or therapeutic agent according to any one of [1] to [4], wherein the bone tumor is osteosarcoma.
[6] An agent for evaluating a preventive or therapeutic agent for a tumor.
Voltage-gated Na ion channels that prolong the duration of action potentials associated with depolarization,
K ion channels that deepen the resting membrane potential in the negative direction,
K Ca 3.1 ion channel and
An agent comprising cells comprising.
[7] The agent according to [6], wherein the tumor is a bone tumor.
[8] An evaluation method for ion channel agonists.
The ion channel agonist is a drug for preventing or treating mesenchymal tumors such as bone tumors.
The target ion channel is the K Ca 3.1 ion channel,
Evaluation step of evaluating the inhibitory activity of the target ion channel of the test compound,
A method.
[9] The method according to [8], wherein the evaluation step is a step of evaluating the inhibitory activity using the agent according to [6] or [7].
[10] A method for evaluating an ion channel agonist.
The ion channel agonist is a drug for suppressing the differentiation of cancer stem cells into tumor cells, malignant transformation of tumor cells, and cancer metastasis.
The target ion channel is the K Ca 3.1 ion channel,
A step of evaluating the inhibitory activity of the target ion channel of the test compound,
A method.
[11] A marker for examining the pathological condition of a bone tumor.
A marker comprising a K Ca 3.1 ion channel, its mRNA or a compound that binds its pre-mRNA.
[12] A method for examining the pathological condition of a bone tumor.
A step of measuring K Ca 3.1 ion channel activity in cells collected from a target site of a subject,
A method.
骨肉腫がん幹細胞(AO細胞)と前駆細胞様細胞(AX細胞)についての、KCa3.1イオンチャネルのmRNA発現解析結果を示す図である。It is a figure which shows the mRNA expression analysis result of the K Ca 3.1 ion channel about the osteosarcoma cancer stem cell (AO cell) and the progenitor cell-like cell (AX cell). 骨肉腫がん幹細胞(AO細胞)と前駆細胞様細胞(AX細胞)についての、KCa3.1イオンチャネルの阻害剤(TRAM-34)に対して感受性を示す電流の比較結果を示す図である。In the figure which shows the comparison result of the current which shows sensitivity to the inhibitor (TRAM-34) of K Ca 3.1 ion channel for osteosarcoma cancer stem cell (AO cell) and progenitor cell-like cell (AX cell). be. 骨肉腫がん幹細胞(AO細胞)と前駆細胞様細胞(AX細胞)におけるKCa3.1イオンチャネルの活性化剤(DCEBIO)と阻害剤(TRAM-34)による膜電位変化の検討結果を示す図である。 The results of examination of changes in membrane potential of K Ca 3.1 ion channel activators (DCEBIO) and inhibitors (TRAM-34) in osteosarcoma cancer stem cells (AO cells) and progenitor cell-like cells (AX cells) are shown. It is a figure. 骨肉腫がん幹細胞(AO細胞)と前駆細胞様細胞(AX細胞)についての、静止時の細胞内Caイオン濃度[Ca2+]iの比較結果を示す図である。It is a figure which shows the comparison result of the intracellular Ca ion concentration [Ca 2+ ] i at rest with respect to osteosarcoma cancer stem cell (AO cell) and progenitor cell-like cell (AX cell). 骨肉腫がん幹細胞(AO細胞)と前駆細胞様細胞(AX細胞)について、KCa3.1イオンチャネルの活性化剤と阻害剤を用いて静止時の細胞内Caイオン濃度[Ca2+]iに対するKCa3.1イオンチャネルの寄与の評価結果を示す図である。Osteosarcoma For cancer stem cells (AO cells) and progenitor cell-like cells (AX cells), intracellular Ca ion concentration at rest using K Ca 3.1 ion channel activators and inhibitors [Ca 2+ ] It is a figure which shows the evaluation result of the contribution of K Ca 3.1 ion channel to i. 骨肉腫がん幹細胞(AO細胞)と前駆細胞様細胞(AX細胞)の細胞増殖に対するKCa3.1イオンチャネルの寄与の比較結果を示す図である。It is a figure which shows the comparative result of the contribution of K Ca 3.1 ion channel to cell proliferation of osteosarcoma cancer stem cell (AO cell) and progenitor cell-like cell (AX cell). 前駆細胞様細胞(AX細胞)の遊走能に対するKCa3.1イオンチャネルの寄与の評価結果を示す図である。It is a figure which shows the evaluation result of the contribution of K Ca 3.1 ion channel to the migration ability of a progenitor cell-like cell (AX cell). 骨肉腫がん幹細胞(AO細胞)と前駆細胞様細胞(AX細胞)をマウス大腿骨に移植した際の、KCa3.1イオンチャネルmRNAの発現解析結果を示す図である。It is a figure which shows the expression analysis result of K Ca 3.1 ion channel mRNA when osteosarcoma cancer stem cell (AO cell) and progenitor cell-like cell (AX cell) were transplanted into mouse femur.
 本明細書の開示は、骨腫瘍の予防又は治療剤、腫瘍の予防又は治療のための化合物の評価のための剤、当該評価方法等に関する。 The disclosure of the present specification relates to an agent for preventing or treating a bone tumor, an agent for evaluating a compound for preventing or treating a tumor, the evaluation method, and the like.
 本発明者らは、骨肉腫のがん幹細胞モデルを用いて、がん幹細胞の腫瘍化、腫瘍細胞の悪性化及びがん転移にKCa3.1イオンチャネル、すなわち、別名として、中コンダクタンスカルシウム活性化カリウム、IKチャネル、遺伝子名としてKCNN4(以下、本Kイオンチャネルともいう、が関連していることを初めて見出した。すなわち、がん幹細胞における本Kイオンチャネル発現及び活性増大は、細胞内カルシウムイオン(Ca2+)の増大を介して、がん幹細胞から非がん幹細胞への分化能の低下、細胞増殖、転移などの悪性化機構に関与することを初めて見出した。これにより、がん幹細胞の腫瘍化、腫瘍細胞の悪性化及びがん転移を抑制する薬剤の標的分子として、本Kイオンチャネルを利用できることが初めてわかった。したがって、明細書によれば、腫瘍の予防又は治療剤、腫瘍の予防又は治療のための剤の評価のために用いる剤、腫瘍の予防又は治療のためのイオンチャネル作用薬の評価方法等が提供される。 Using a cancer stem cell model of osteosarcoma, we use the K Ca 3.1 ion channel for tumorigenesis of cancer stem cells, malignant transformation of tumor cells, and cancer metastasis, ie, as another name, medium conductance calcium. For the first time, we found that activated potassium, IK channel, and KCNN4 as a gene name (hereinafter, also referred to as this K ion channel) are related. That is, the expression and activity increase of this K ion channel in cancer stem cells are intracellular. For the first time, we found that through an increase in calcium ions (Ca 2+ ), it is involved in malignant mechanisms such as decreased ability to differentiate cancer stem cells to non-cancer stem cells, cell proliferation, and metastasis. For the first time, it has been found that the K ion channel can be used as a target molecule for drugs that suppress tumorigenesis of cancer stem cells, malignant transformation of tumor cells, and cancer metastasis. Therefore, according to the specification, a prophylactic or therapeutic agent for tumors. , Agents used for evaluation of agents for the prevention or treatment of tumors, methods for evaluating ion channel agonists for the prevention or treatment of tumors, and the like are provided.
 以下、本開示の代表的かつ非限定的な具体例について、適宜図面を参照して詳細に説明する。この詳細な説明は、本開示の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本開示の範囲を限定することを意図したものではない。また、以下に開示される追加的な特徴ならびに開示は、さらに改善された骨腫瘍の治療剤及び骨腫瘍等の治療のためのイオンチャネル作用薬の評価方法を提供するために、他の特徴や開示とは別に、又は共に用いることができる。 Hereinafter, typical and non-limiting specific examples of the present disclosure will be described in detail with reference to the drawings as appropriate. This detailed description is intended to provide those skilled in the art with details for implementing the preferred examples of the present disclosure and is not intended to limit the scope of the present disclosure. In addition, the additional features and disclosures disclosed below are used to provide further improved therapeutic agents for bone tumors and methods for evaluating ion channel agonists for the treatment of bone tumors and the like. It can be used separately or together with the disclosure.
 また、以下の詳細な説明で開示される特徴や工程の組み合わせは、最も広い意味において本開示を実施する際に必須のものではなく、特に本開示の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記及び下記の代表的な具体例の様々な特徴、ならびに、独立及び従属クレームに記載されるものの様々な特徴は、本開示の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。 In addition, the combination of features and processes disclosed in the following detailed description is not essential in carrying out the present disclosure in the broadest sense, and is particularly for explaining typical specific examples of the present disclosure. It is to be described. In addition, the various features of the above and below representative examples, as well as the various features of those described in the independent and dependent claims, are described herein in providing additional and useful embodiments of the present disclosure. It does not have to be combined according to the specific examples given or in the order listed.
 本明細書及び/又はクレームに記載された全ての特徴は、実施例及び/又はクレームに記載された特徴の構成とは別に、出願当初の開示ならびにクレームされた特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびにクレームされた特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。 All features described herein and / or claims are, separately, as a limitation to the disclosure at the time of filing and the specific matters claimed, apart from the composition of the features described in the examples and / or claims. And it is intended to be disclosed independently of each other. In addition, all numerical ranges and statements relating to groups or groups are made with the intention of disclosing their intermediate composition as a limitation to the disclosure at the time of filing and the specific matters claimed.
 以下、新たに見出された知見に基づく種々の実施形態について、腫瘍の予防又は治療剤、その評価のための剤、評価方法等について説明する。 Hereinafter, various embodiments based on the newly discovered findings will be described with respect to tumor preventive or therapeutic agents, agents for their evaluation, evaluation methods, and the like.
(腫瘍の予防又は治療剤) 本明細書に開示される腫瘍の予防又は治療剤(以下、単に、本剤ともいう。)は、KCa3.1イオンチャネルの活性を抑制する抑制剤を有効成分とすることができる。既述のとおり、がん幹細胞の腫瘍化、腫瘍細胞の悪性化及び腫瘍細胞の転移には、本Kイオンチャネルが関連していることがわかっている。 (Preventive or therapeutic agent for tumor) The prophylactic or therapeutic agent for tumor disclosed in the present specification (hereinafter, also simply referred to as this agent) is effective as an inhibitor that suppresses the activity of K Ca 3.1 ion channel. It can be an ingredient. As described above, it is known that this K ion channel is associated with tumorigenesis of cancer stem cells, malignant transformation of tumor cells, and metastasis of tumor cells.
 ここで、本Kイオンチャネルは、Ca2+により活性化されるKイオンチャネルであり、
細胞内のカルシウムイオン濃度に依存して活性化するカリウムチャネルである。このイオンチャネルは、骨肉腫の細胞内カルシウムイオンを増加させる現象に対して促進的に作用するイオンチャネルである。
Here, this K ion channel is a K ion channel activated by Ca 2+.
It is a potassium channel that is activated depending on the intracellular calcium ion concentration. This ion channel is an ion channel that promotes the phenomenon of increasing intracellular calcium ions in osteosarcoma.
 例えば、ヒトにおける本Kイオンチャネル遺伝子(KCNN4遺伝子)のcDNAの塩基配列及びイオンチャネルタンパク質のアミノ酸配列は、それぞれ、配列番号1及び2で表される。配列番号1及び2のNCBI(https://www.ncbi.nlm.nih.gov/)(GenBank及びGenPept)のアクセッション番号は、それぞれ、NM_002250及びNP_002241である。また、他の動物における本Kイオンチャネルタンパク質をコードする塩基配列及びタンパク質のアミノ酸配列は、いずれも、例えば、NCBI等の公知のデータベースにおいて検索される。例えば、マウスの本Kイオンチャネルタンパク質のcDNAの塩基配列及びイオンチャネルタンパク質のアミノ酸配列のアクセッション番号は、それぞれ、NM_008433及びNP_032459(配列番号3,4)である。 For example, the nucleotide sequence of the cDNA of this K ion channel gene (KCNN4 gene) and the amino acid sequence of the ion channel protein in humans are represented by SEQ ID NOs: 1 and 2, respectively. The accession numbers for NCBI (https://www.ncbi.nlm.nih.gov/) (GenBank and GenPept) of SEQ ID NOs: 1 and 2 are NM_002250 and NP_002241, respectively. In addition, both the nucleotide sequence encoding the K ion channel protein in other animals and the amino acid sequence of the protein are searched in a known database such as NCBI. For example, the accession numbers of the cDNA base sequence of this mouse K ion channel protein and the amino acid sequence of the ion channel protein are NM_008433 and NP_032459 (SEQ ID NOs: 3 and 4, respectively).
 本Kイオンチャネルとしては、上記した遺伝子によってコードされるタンパク質以外に、以下の各種態様を含むことができる。本Kイオンチャネルのホモログとしては、KCNN1、KCNN2、KCNN3等が挙げられる。また、同じCa2+活性化K+チャネルとして、KCNM1、KCNM4、KCNM5も含まれる。以下に、これらのタンパク質をコードするDNAの塩基配列及び当該タンパク質のアミノ酸配列のアクセッション番号の一部を例示する。 The K ion channel can include the following various aspects in addition to the protein encoded by the above gene. Examples of the homolog of this K ion channel include KCNN1, KCNN2, and KCNN3. In addition, KCNM1, KCNM4, and KCNM5 are also included as the same Ca 2+ activated K + channel. The following is an example of a part of the accession number of the base sequence of the DNA encoding these proteins and the amino acid sequence of the protein.
ヒトKCNN1(塩基配列、アミノ酸配列):NM_002248、NP_002239(配列番号5、6)ヒトKCNN2(塩基配列、アミノ酸配列):NM_021614、NP_067627(配列番号7,8)ヒトKCNN3(塩基配列、アミノ酸配列):NM_002249、NP_002240(配列番号9,10)ヒトKCNMA1(塩基配列、アミノ酸配列):NM_002247、NP_002238(配列番号11,12)マウスKCNN1(塩基配列、アミノ酸配列):NM_032397、NP_115773(配列番号13,14)マウスKCNN2(塩基配列、アミノ酸配列):NM_080465、NP_536713(配列番号15,16)マウスKCNN3(塩基配列、アミノ酸配列):NM_080466、NP_536714(配列番号17,18)マウスKCNMA1(塩基配列、アミノ酸配列):NM_010610、NP_034740(配列番号19,20) Human KCNN1 (Nucleotide Sequence, Amino Acid Sequence): NM_002248, NP_002239 (Nucleotide Sequence, SEQ ID NO: 5 and 6) Human KCNN2 (Nucleotide Sequence, Amino Acid Sequence): NM_021614, NP_067627 (Nucleotide Sequence No. 7, 8) Human KCNN3 (Nucleotide Sequence, Amino Acid Sequence): NM_002249, NP_002240 (SEQ ID NO: 9, 10) Human KCNMA1 (nucleic acid sequence, amino acid sequence): NM_002247, NP_002238 (SEQ ID NO: 11, 12) Mouse KCNN1 (nucleic acid sequence, amino acid sequence): NM_032397, NP_115773 (SEQ ID NO: 13, 14) Mouse KCNN2 (nucleic acid sequence, amino acid sequence): NM_080465, NP_536713 (SEQ ID NO: 15, 16) Mouse KCNN3 (nucleic acid sequence, amino acid sequence): NM_080466, NP_536714 (SEQ ID NO: 17, 18) Mouse KCNMA1 (nucleic acid sequence, amino acid sequence): NM_010610, NP_034740 (SEQ ID NOs: 19, 20)
 本明細書において開示する塩基配列及びアミノ酸配列については、その塩基配列又はアミノ酸配列が配列番号又はアクセッション番号により特定されたときには、当該配列と一定以上の同一性を有する配列を当該配列と同等の機能又は活性を有する以上、当該配列に替えて用いることができる。前記一定以上の同一性としては、特定される塩基配列又はアミノ酸配列と、例えば、80%以上、また例えば、85%以上、また例えば、90%以上、また例えば、95%以上、また例えば、96%以上、また例えば、97%以上、また例えば、98%以上、また例えば、99%以上、また例えば、99.5%以上である。 Regarding the base sequence and amino acid sequence disclosed in the present specification, when the base sequence or amino acid sequence is specified by the SEQ ID NO: or accession number, the sequence having a certain degree of identity with the sequence is equivalent to the sequence. As long as it has a function or activity, it can be used in place of the sequence. The identity above a certain level includes, for example, 80% or more, for example, 85% or more, and for example, 90% or more, and for example, 95% or more, or, for example, 96, with the specified base sequence or amino acid sequence. % Or more, for example 97% or more, for example 98% or more, for example 99% or more, and for example 99.5% or more.
 また、本明細書において、塩基配列又はアミノ酸配列の同一性又は類似性とは、当該技術分野で知られているとおり、配列を比較することにより決定される、2以上のタンパク質あるいは2以上のポリヌクレオチドの間の関係である。当該技術で“同一性”とは、タンパク質またはポリヌクレオチド配列の間のアラインメントによって、あるいは場合によっては、一続きのそのような配列間のアラインメントによって決定されるような、タンパク質またはポリヌクレオチド配列の間の配列不変性の程度を意味する。また、類似性とは、タンパク質またはポリヌクレオチド配列の間のアラインメントによって、あるいは場合によっては、一続きの部分的な配列間のアラインメントによって決定されるような、タンパク質またはポリヌクレオチド配列の間の相関性の程度を意味する。より具体的には、配列の同一性と保存性(配列中の特定アミノ酸又は配列における物理化学特性を維持する置換)によって決定される。なお、類似性は、後述する BLAST の配列相同性検索結果において Similarity と称される。同一性及び類似性を決定する方法は、対比する配列間で最も長くアラインメントするように設計される方法であることが好ましい。同一性及び類似性を決定するための方法は、公衆に利用可能なプログラムとして提供されている。
例えば、Altschul らによるBLAST (Basic Local Alignment Search Tool) プログラム(たとえば、Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol., 215: p403-410 (1990), Altschul SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DJ., Nucleic Acids Res. 25: p3389-3402 (1997)) を利用し決定することができる。BLAST のようなソフトウェアを用いる場合の条件は、特に限定するものではないが、デフォルト値を用いるのが好ましい。
Further, in the present specification, the identity or similarity of a base sequence or an amino acid sequence is determined by comparing sequences as known in the art, and is determined by comparing two or more proteins or two or more polys. The relationship between nucleotides. In the art, "identity" means between protein or polynucleotide sequences, as determined by the alignment between protein or polynucleotide sequences, or, in some cases, by the alignment between a series of such sequences. Means the degree of sequence invariance of. Similarity is also the correlation between protein or polynucleotide sequences, as determined by the alignment between protein or polynucleotide sequences, or, in some cases, by the alignment between a series of partial sequences. Means the degree of. More specifically, it is determined by sequence identity and conservativeness (substitutions that maintain physicochemical properties at a particular amino acid or sequence in the sequence). In addition, the similarity is referred to as Similarity in the sequence homology search result of BLAST described later. The method of determining identity and similarity is preferably the method designed to have the longest alignment between contrasting sequences. Methods for determining identity and similarity are provided as publicly available programs.
For example, the BLAST (Basic Local Alignment Search Tool) program by Altschul et al. (For example, Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol., 215: p403-410 (1990), Altschul. It can be determined using SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DJ., Nucleic Acids Res. 25: p3389-3402 (1997)). The conditions for using software such as BLAST are not particularly limited, but it is preferable to use default values.
 本Kイオンチャネルの活性を抑制する抑制剤としては、特に限定することなく、本Kイオンチャネルの活性を抑制するものであればその態様を問わない。一つの態様として、本Kイオンチャネルに対するブロッカーが挙げられる。本明細書において、ブロッカーとは、概ね、分子量500以下の低分子有機化合物であり、概して、ペプチド結合やポリヌクレオチド骨格を有しない化合物である。 The inhibitor that suppresses the activity of the K ion channel is not particularly limited, and any mode thereof may be used as long as it suppresses the activity of the K ion channel. One embodiment includes a blocker for the K ion channel. As used herein, a blocker is a low molecular weight organic compound having a molecular weight of 500 or less, and generally does not have a peptide bond or a polynucleotide skeleton.
 ブロッカーとしては、公知の本Kイオンチャネルに対する阻害剤である以下に示すTRAM-34、ICA-17043などの三環性化合物を含む多環性化合物が挙げられる。より具体的には、以下の化合物が挙げられる。これらはいずれも商業的に入手可能か又は有機合成可能である。 Examples of the blocker include polycyclic compounds including tricyclic compounds such as TRAM-34 and ICA-17043 shown below, which are known inhibitors for the K ion channel. More specifically, the following compounds can be mentioned. All of these are commercially available or organically synthetic.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 他のブロッカーとしては、後段で説明する評価方法ほか、公知の、イオンチャネルに対するブロッカーの評価方法(スクリーニング方法)に基づいてスクリーニングすることができる。 As another blocker, in addition to the evaluation method described later, screening can be performed based on a known method for evaluating a blocker for an ion channel (screening method).
 他の1つの態様として、本Kイオンチャネルをコードする遺伝子の発現を抑制する抑制剤が挙げられる。かかる抑制剤としては、本Kイオンチャネル遺伝子の発現を抑制する核酸医薬が挙げられる。核酸医薬は、その標的としてDNA及び/又はRNAとするかの他、医薬自体がDNA、RNAなどの天然型ヌクレオチドや化学修飾ヌクレオチドを基本骨格として備えることができるなどによって種々の形態を採ることができる。核酸医薬が採りうる骨格自体は、当業者において公知であり、当業者であれば、必要に応じて公知の骨格をそのままあるいは適宜修飾して本明細書に開示される発現抑制剤として用いることができる。 As another aspect, an inhibitor that suppresses the expression of the gene encoding this K ion channel can be mentioned. Examples of such an inhibitor include nucleic acid drugs that suppress the expression of the K ion channel gene. Nucleic acid drugs can take various forms depending on whether DNA and / or RNA is used as the target, or the drug itself can be provided with natural nucleotides such as DNA and RNA or chemically modified nucleotides as a basic skeleton. can. The skeleton itself that can be obtained by a nucleic acid drug is known to those skilled in the art, and those skilled in the art can use the known skeleton as it is or by appropriately modifying it as an expression inhibitor disclosed in the present specification. can.
 核酸医薬としては、例えば、アンチセンスオリゴヌクレオチドが挙げられる。アンチセンスオリゴヌクレオチドは、標的分子として、mRNA、pre-mRNA等が挙げられる。アンチセンスオリゴヌクレオチドは、概して、DNA又はその修飾体を基本骨格とする。ハイブリダイゼーション能との関係から、糖鎖部分がRNA又はその修飾体である場合もある。アンチセンスオリゴヌクレオチドによる作用機序は様々であり、RNaseH依存性のmRNAの分解、スプライシング調節部位に結合して選択的スプライシングを誘導するエクソンスキップ、mRNAに強固に結合して翻訳を阻害する翻訳阻害等が挙げられる。 Examples of nucleic acid drugs include antisense oligonucleotides. Examples of the antisense oligonucleotide include mRNA, pre-mRNA, and the like as target molecules. Antisense oligonucleotides generally have DNA or a modification thereof as the basic skeleton. In relation to hybridization ability, the sugar chain portion may be RNA or a modified product thereof. The mechanism of action by antisense oligonucleotides is diverse: RNaseH-dependent mRNA degradation, exon skip that binds to splicing regulatory sites to induce alternative splicing, and translational inhibition that binds tightly to mRNA and inhibits translation. And so on.
 また例えば、RNA干渉剤が挙げられる。RNA干渉は、二本鎖RNAによって、配列特異的にmRNA等の標的RNAを分解して、遺伝子の発現を抑制する方法である。RNA干渉(RNAi)の標的分子としては、mRNA、pre-mRNA等が挙げられる。
RNA干渉剤は、典型的にはsiRNAである。siRNAの設計については、当業者において公知であり、当業者であれば、ターゲットの選定、末端構造等を適宜考慮して、適切な構造及び配列のsiRNAを設計することができる。
Also, for example, RNA interfering agents can be mentioned. RNA interference is a method of suppressing gene expression by degrading a target RNA such as mRNA in a sequence-specific manner by using double-stranded RNA. Examples of target molecules for RNA interference (RNAi) include mRNA, pre-mRNA, and the like.
The RNA interfering agent is typically siRNA. The design of siRNA is known to those skilled in the art, and those skilled in the art can design siRNA having an appropriate structure and sequence by appropriately considering target selection, terminal structure, and the like.
 なお、RNA干渉剤としては、siRNA他、一本鎖RNAであって切断により、siRNAとなる二本鎖RNAほか、siRNAの各鎖又はsiRNA前駆体であるRNA一本鎖をDNAからの転写によって生成可能なDNAコンストラクトの形態を採ることもできる。 As RNA interfering agents, siRNA and other double-stranded RNA that is a single-stranded RNA and becomes siRNA by cleavage, and each strand of siRNA or RNA single strand that is a siRNA precursor can be transcribed from DNA. It can also take the form of a formable DNA construct.
 各種の核酸医薬については、後段で説明する評価方法等に基づいてスクリーニングすることができる。 Various nucleic acid drugs can be screened based on the evaluation method described later.
 また例えば、他の1つの態様として、本Kイオンチャネルに特異的に結合する抗体が挙げられる。抗体としては、本Kイオンチャネルに特異的に結合する限り、ポリクローナル抗体であってもモノクローナル抗体であってもよい。 Further, for example, as another aspect, an antibody that specifically binds to the present K ion channel can be mentioned. The antibody may be a polyclonal antibody or a monoclonal antibody as long as it specifically binds to the present K ion channel.
 本明細書において抗体とは、また、本Kイオンチャネルの少なくとも一部を抗原として認識して結合能を有するインタクトな抗体又は当該結合能を有する抗原結合部分を含む部分を包含する。 In the present specification, the antibody also includes an intact antibody that recognizes at least a part of the K ion channel as an antigen and has a binding ability, or a portion containing an antigen-binding portion having the binding ability.
 なお、抗体の「抗原結合部分」とは、特異的に任意の抗原に結合する能力を保持するインタクトな抗体の1つ以上のフラグメントを意味する。したがって、例えば、「抗原結合部分」は、特に限定するものではなく、Fabフラグメント、V、V、CおよびCH1ドメインからなる一価フラグメント;F(ab)フラグメント、ヒンジ領域でジスルフィド橋により連結された2つのFabフラグメント(一般的に重鎖および軽鎖から1つ)を含む二価フラグメント;VおよびCH1ドメインからなるFdフラグメント;抗体の単一のアームのVおよびVドメインからなるFvフラグメント;Vドメインからなる単一ドメイン抗体(dAb)フラグメント;および単離された相補性決定領域(CDR)など各種形態のフラグメント又はその組合せを含むことができる。また、抗原結合部分は、組換え方法を使用して、VおよびV領域が対になって一価分子を形成する一本のタンパク質鎖として作製可能とする人工ペプチドリンカーにより連結することができる。 The "antigen-binding portion" of an antibody means one or more fragments of an intact antibody that retains the ability to specifically bind to any antigen. Thus, for example, "antigen-binding portion" is not particularly limited, Fab fragments, V L, V H, a monovalent fragment consisting of C L and CH1 domains; F (ab) 2 fragments, disulfide bridge at the hinge region A bivalent fragment containing two Fab fragments linked by (generally one from a heavy chain and a light chain); an Fd fragment consisting of VH and CH1 domains; a single arm VL and VH domain of an antibody. Fv fragments consisting of; single domain antibody (dAb) fragments consisting of VH domains; and fragments of various forms such as isolated complementarity determining regions (CDRs) or combinations thereof can be included. In addition, the antigen-binding moiety can be linked by an artificial peptide linker that can be prepared as a single protein chain in which the VL and VE regions are paired to form a monovalent molecule using a recombination method. can.
 このほか、抗原結合部分は、単一ドメイン抗体、マキシボディ、ミニボディ、イントラボディ、ダイアボディ、トリアボディ、テトラボディ、v-NARおよびビス-scFvに組み込まれていてもよい。 In addition, the antigen-binding moiety may be incorporated into a single domain antibody, maxibody, minibody, intrabody, diabody, triabody, tetrabody, v-NAR and bis-scFv.
 抗体の由来生物種は特に限定するものではないが、適用する生物体や目的によっても異なるが、ヒト抗体、マウス抗体、ヤギ抗体等とすることができる。なお、ヒト抗体というときには、抗体のフレームワークおよびCDR領域の両方がヒト起源の配列に由来している可変領域を有する抗体を含むことを意味している。さらに、抗体が定常領域を含むとき、定常領域は、また、このようなヒト配列、例えば、ヒト生殖細胞系列配列または突然変異型のヒト生殖細胞系列配列に由来することを意味している。また、2以上の生物種に由来するフラグメントに基づく抗体をキメラ抗体ということができる。 The species from which the antibody is derived is not particularly limited, but can be human antibody, mouse antibody, goat antibody, etc., although it depends on the organism to which it is applied and the purpose. The term human antibody means that both the framework of the antibody and the CDR regions include an antibody having a variable region derived from a sequence of human origin. Furthermore, when an antibody comprises a constant region, the constant region is also meant to be derived from such a human sequence, eg, a human germline sequence or a mutant human germline sequence. Further, an antibody based on a fragment derived from two or more species can be called a chimeric antibody.
 抗体がモノクローナル抗体であれば、抗原に対して安定した結合性能を発揮することができる。モノクローナル抗体の取得は、当業者において周知である。後述する方法のほか、例えば、ヒトモノクローナル抗体は、不死化細胞に融合させた遺伝子導入非ヒト動物(例えば、ヒト重鎖導入遺伝子および軽鎖導入遺伝子を含むゲノムを有する遺伝子導入マウス)から得られたB細胞を含むハイブリドーマにより製造される。 If the antibody is a monoclonal antibody, it can exhibit stable binding performance to the antigen. Acquisition of monoclonal antibodies is well known to those of skill in the art. In addition to the methods described below, for example, human monoclonal antibodies are obtained from transgenic non-human animals fused to immortalized cells (eg, transgenic mice having a genome containing a human heavy chain transgene and a light chain transgene). It is produced by a hybridoma containing B cells.
 また、抗体は、例えば、組換えヒト抗体などの組換え抗体であってもよい。組換えヒト抗隊は、例えば、ヒト免疫グロブリン遺伝子を遺伝子導入または染色体導入された動物(例えば、マウス)またはそれから製造されたハイブリドーマから単離された抗体;ヒト抗体を発現するように形質転換された宿主細胞、例えば、トランスフェクトーマから単離された抗体;組換えコンビナトリアルヒト抗体ライブラリーから単離された抗体;およびヒト免疫グロブリン遺伝子配列の全部または一部の他のDNA配列へのスプライシングを含む他の手段により製造、発現、作製または単離された抗体を含む。このような組換えヒト抗体はフレームワークおよびCDR領域がヒト生殖細胞系列免疫グロブリン配列に由来している可変領域を有する。 Further, the antibody may be a recombinant antibody such as a recombinant human antibody. Recombinant human corps is, for example, an antibody isolated from an animal (eg, mouse) into which a human immunoglobulin gene has been gene-transfected or chromosome-introduced or a hybridoma produced from it; transformed to express a human antibody. Antibodies isolated from host cells such as transfectomas; antibodies isolated from recombinant combinatorial human antibody libraries; and splicing of all or part of the human immunoglobulin gene sequence to other DNA sequences. Includes antibodies produced, expressed, prepared or isolated by other means, including. Such recombinant human antibodies have variable regions in which the framework and CDR regions are derived from human germline immunoglobulin sequences.
 抗体は、公知の方法で取得された抗体が本Kイオンチャネルに対する結合能を有している限り、その変異体であってもよい。例えば、出発物質としての抗体の少なくとも一部、例えば、全長重鎖および/または軽鎖配列、Vおよび/またはV配列またはそれに結合した定常領域に変異を導入するなどの修飾することにより、新たな抗体を取得することもできる。また、取得した抗体に対していわゆるペグ鎖を導入するなどもできる。こうした抗体の改変の手法自体は、当業者において周知である。 The antibody may be a mutant thereof as long as the antibody obtained by a known method has a binding ability to the present K ion channel. For example, by modifying at least a portion of the antibody as a starting material, eg, by introducing a mutation into a full-length heavy chain and / or light chain sequence, a VN and / or VL sequence or a constant region bound thereto. It is also possible to obtain a new antibody. It is also possible to introduce a so-called peg chain into the obtained antibody. The method of modifying such an antibody itself is well known to those skilled in the art.
 抗体の製造は、当業者において周知であり、本Kイオンチャネルタンパク質、当該タンパク質から取得可能なエピトープ又はこれらと適合なハプテンとのコンジュゲートを用いて、適宜動物を免疫することにより、その脾臓からポリクローナル抗体を取得し、取得したポリクローナル抗体を精製するなどして好適なポリクローナル抗体を得ることができる。また、モノクローナル抗体も周知の方法にて取得することができる。さらに、各種の抗体については、後段で説明する評価方法等に基づいてスクリーニングすることができる。 The production of the antibody is well known to those skilled in the art, and the K ion channel protein, an epitope obtained from the protein, or a conjugate with a hapten compatible with these is used to appropriately immunize an animal from its spleen. A suitable polyclonal antibody can be obtained by obtaining a polyclonal antibody and purifying the obtained polyclonal antibody. In addition, a monoclonal antibody can also be obtained by a well-known method. Further, various antibodies can be screened based on the evaluation method or the like described later.
 こうして得られるモノクローナル抗体の重鎖可変領域及び軽鎖可変領域のアミノ酸配列をコードするDNAなどのポリヌクレオチドも、本開示の一態様である。また、こうした発現ベクターを保持する宿主細胞も、本開示の一態様である。なお、発現ベクターは、宿主の種類に応じて当業者に周知の適切な形態のほか、プロモーター、ターミネーター等の制御領域も適宜選択することができる。ポリヌクレオチドは、例えば、DNAであり、また例えば、cDNAである。 A polynucleotide such as DNA encoding the amino acid sequences of the heavy chain variable region and the light chain variable region of the monoclonal antibody thus obtained is also one aspect of the present disclosure. A host cell carrying such an expression vector is also an aspect of the present disclosure. As the expression vector, in addition to an appropriate form well known to those skilled in the art according to the type of host, a control region such as a promoter or a terminator can be appropriately selected. The polynucleotide is, for example, DNA and, for example, cDNA.
 本Kイオンチャネルの活性を抑制する抑制剤のさらに他の1つの態様としては、アプタマーが挙げられる。アプタマーは、特定分子と特異的に結合しうる核酸アプタマー又はペプチアプタマーである。核酸アプタマーは、DNA及び/又はRNAで構成され、ペプチドアプタマーは、ペプチドで構成される。核酸アプタマーは、例えば、SELEX法により、また、ペプチドアプタマーは、酵母のTwo-Hybrid法により行われうるほか、後段で説明する評価方法を利用してスクリーニングすることができる。 Yet another embodiment of the inhibitor that suppresses the activity of the K ion channel is an aptamer. The aptamer is a nucleic acid aptamer or peptiaptamer that can specifically bind to a specific molecule. Nucleic acid aptamers are composed of DNA and / or RNA, and peptide aptamers are composed of peptides. Nucleic acid aptamers can be screened, for example, by the SELEX method, peptide aptamers can be screened by the yeast Two-Hybrid method, or by using the evaluation method described below.
 本Kイオンチャネルの活性を抑制する抑制剤のさらに他の1つの態様としては、本Kイオンチャネルの活性を抑制すると考えられるmiRNA等が挙げられる。例えば、本KイオンチャネルmRNAi発現を減少させるmiRNAとして、miR-497、miR407が挙げられる(文献5,6、2)。 As yet another embodiment of the inhibitor that suppresses the activity of the K ion channel, miRNA and the like that are considered to suppress the activity of the K ion channel can be mentioned. For example, examples of miRNA that reduce the expression of this K ion channel mRNAi include miR-497 and miR407 (References 5, 6 and 2).
 抑制剤であって、本Kイオンチャネルタンパク質又はそれをコードするDNAや翻訳産物であるmRNAに結合性を有する抑制剤は、必要に応じて標識要素を備えることができる。標識要素は、特に限定するものではないが、従来公知の標識物質を適宜選択して用いることができる。標識物質は、特に限定しないが、典型的には、蛍光、放射能、酵素(例えば、ペルオキシダーゼ、アルカリフォスファターゼ等)、燐光、化学発光、着色などを利用した標識物質が挙げられる。 The inhibitor, which has a binding property to the present K ion channel protein or the DNA encoding the same or mRNA which is a translation product, can be provided with a labeling element, if necessary. The labeling element is not particularly limited, but conventionally known labeling substances can be appropriately selected and used. The labeling substance is not particularly limited, and typically, a labeling substance using fluorescence, radioactivity, an enzyme (for example, peroxidase, alkaline phosphatase, etc.), phosphorescence, chemiluminescence, coloring, or the like can be mentioned.
 標識要素として、標識要素と結合可能な物質を備えていてもよい。最終的に標識物質による識別が可能にこれらを結合可能な分子ないし物質を備えていてもよい。こうした物質等としては、タンパク質-タンパク質相互作用、低分子化合物-タンパク質相互作用等を利用できる。例えば、抗原抗体反応における抗体や、アビジン(ストレプトアビジン)-ビオチンシステムにおけるビオチン、抗ジゴキシゲニン(DIG)-ジゴキシゲニン(DIG)システムにおけるジゴキシゲニン、又は抗FITC-FITCシステムにおけるFITC等に代表されるハプテン類などが挙げられる。この場合、最終的に検出のために用いられる標識物質は、こうした標識物質に結合性を有する物質と相互作用する他方の分子又は物質(例えば、抗原、すなわち、ストレプトアビジン、抗FITCなど)を、標識物質結合物質との結合のための部位として備えるように修飾される。 As the labeling element, a substance that can be combined with the labeling element may be provided. It may be provided with a molecule or substance capable of binding these so that it can be finally identified by the labeling substance. As such substances, protein-protein interaction, low molecular weight compound-protein interaction and the like can be used. For example, antibodies in an antigen-antibody reaction, biotin in an avidin (streptavidin) -biotin system, digoxigenin in an anti-digoxigenin (DIG) -digoxigenin (DIG) system, or haptens represented by FITC in an anti-FITC-FITC system, etc. Can be mentioned. In this case, the labeling substance ultimately used for detection is the other molecule or substance (eg, antigen, i.e., streptavidin, anti-FITC, etc.) that interacts with the substance that binds to such labeling substance. Labeling Substances are modified to provide as a site for binding to a binding substance.
 こうした各種態様の標識要素は、商業的に入手できるほか、標識要素で抗体を修飾する方法も当業者において周知である。したがって、当業者であれば、種々の標識要素を取得して、抗体などのタンパク質、DNAやRNAなどの核酸に対してアミノ基やカルボキシル基等の官能基を介して適宜可能である。 The labeling elements of these various aspects are commercially available, and methods of modifying the antibody with the labeling elements are well known to those skilled in the art. Therefore, those skilled in the art can obtain various labeling elements and appropriately use functional groups such as amino groups and carboxyl groups for proteins such as antibodies and nucleic acids such as DNA and RNA.
 本剤は、それ自体、本来の分化能を有しており腫瘍形成能が低い潜在的がん細胞であるがん幹細胞の腫瘍化、すなわち、分化能が低下して腫瘍形成能が高くなった前駆細胞様細胞への変化に際して発現又は発現が増大する本Kイオンチャネルの抑制剤を有効成分とする。このため、がん幹細胞が関連する腫瘍全般の予防又は治療に有効である。また、高い腫瘍形成能を持つに至った又は既に持っている腫瘍細胞による腫瘍の改善や治療にも有効である。 This drug itself has the original differentiation potential and tumorigenicity of cancer stem cells, which are latent cancer cells with low tumorigenicity, that is, the differentiation potential has decreased and the tumorigenicity has increased. The active ingredient is an inhibitor of this K ion channel whose expression or expression increases upon conversion to progenitor cell-like cells. Therefore, it is effective for the prevention or treatment of all tumors associated with cancer stem cells. It is also effective in improving or treating tumors caused by tumor cells that have reached or already have high tumorigenicity.
 特に限定するものではないが、本剤は、骨腫瘍などの間葉系細胞の腫瘍の予防又は治療に有用である。骨腫瘍には、良性骨腫瘍と悪性骨腫瘍とがある。良性骨腫瘍には、骨軟骨腫、内軟骨腫、軟骨芽細胞腫、軟骨粘液線維腫、類骨骨腫、巨細胞腫などがある。また、悪性骨腫瘍には、多発性骨髄腫、骨肉腫、線維肉腫、軟骨肉腫、ユーイング肉腫、リンパ腫、悪性巨細胞腫、脊索腫等が挙げられる。本剤は、例えば、骨肉腫の予防又は治療に有用である。 Although not particularly limited, this drug is useful for the prevention or treatment of mesenchymal cell tumors such as bone tumors. Bone tumors include benign bone tumors and malignant bone tumors. Benign bone tumors include osteochondroma, endochondroma, chondromyxoid tumor, chondromyxoid tumor, osteoid osteoma, and giant cell tumor. Examples of malignant bone tumors include multiple myeloma, osteosarcoma, fibrosarcoma, chondrosarcoma, Ewing's sarcoma, lymphoma, malignant giant cell tumor, and chondrosarcoma. This drug is useful, for example, for the prevention or treatment of osteosarcoma.
(腫瘍の予防又は治療剤の評価のための剤) 本明細書に開示される、腫瘍の予防又は治療剤の評価のための剤(以下、単に、本評価剤ともいう。)は、脱分極に伴う活動電位の持続時間を延長する電位依存性Naイオンチャネルと、静止膜電位を負方向に深くするKイオンチャネル(以下、他のKイオンチャネルという。)と、KCa3.1イオンチャネル(本Kイオンチャネル)と、を備える細胞を含むことができる。本評価剤は、上記NaイオンチャネルとKイオンチャネルと本Kイオンチャネルとを備えることで、本来的には細胞死が誘導されるような脱分極が惹起されるとき、被験化合物の存在によって、本Kイオンチャネルが静止膜電位を負方向に深くすることが抑制されるときには、細胞死傾向が増強される(細胞の生存率が低くなる)。このとき、被験化合物は、本Kイオンチャネルの抑制剤といえる。 (Agent for Evaluation of Tumor Prevention or Therapeutic Agent) The agent for evaluation of tumor prevention or therapeutic agent disclosed in the present specification (hereinafter, also simply referred to as the present evaluation agent) is depolarized. A potential-dependent Na ion channel that prolongs the duration of the active potential associated with the tumor, a K ion channel that deepens the resting membrane potential in the negative direction (hereinafter referred to as another K ion channel), and a K Ca 3.1 ion channel. Can include cells comprising (the present K ion channel). When the present evaluation agent is provided with the above Na ion channel, K ion channel, and this K ion channel to induce depolarization that originally induces cell death, the presence of the test compound causes the present evaluation agent. When this K ion channel suppresses the deepening of the resting membrane potential in the negative direction, the cell death tendency is enhanced (the cell survival rate is lowered). At this time, the test compound can be said to be an inhibitor of the K ion channel.
 こうした細胞については、本発明者らは、既に、WO2012/002460及びWO2018/084221において開示している。これらは、引用によりその全てが本明細書に組み込まれるものとする。 The present inventors have already disclosed such cells in WO2012 / 00260 and WO2018 / 084221. All of these are incorporated herein by reference.
 本評価剤に用いる細胞は、イオンチャネルのスクリーニング用として用いることができるものであれば特に限定しないで、各種の動物細胞を用いることができる。動物細胞としては、哺乳動物や昆虫など特にその種類は限定されない。細胞が、ヒトのほか、ウシ、ブタ、ウマ、ヒツジ、ヤギ、トリ、イヌ、ネコ、ウサギ等の細胞の場合には、これらの動物における疾患の予防又は治療のための薬剤の評価剤を取得できる。動物細胞としては、典型的には、ヒト胎児腎由来細胞(HEK細胞)、アフリカミドリザル腎由来細胞(COS細胞)、チャイニーズハムスター卵巣細胞(CHO細胞)、ベビーハムスター腎細胞(BHK細胞)及びアフリカツメガエル卵母細胞が用いられる。また、各種組織由来培養細胞を用いることもできる。 The cells used in this evaluation agent are not particularly limited as long as they can be used for screening ion channels, and various animal cells can be used. The type of animal cell is not particularly limited, such as mammals and insects. If the cells are human, as well as cells of cattle, pigs, horses, sheep, goats, birds, dogs, cats, rabbits, etc., obtain a drug evaluation agent for the prevention or treatment of diseases in these animals. can. Animal cells typically include human fetal kidney-derived cells (HEK cells), African green monkey kidney-derived cells (COS cells), Chinese hamster ovary cells (CHO cells), baby hamster kidney cells (BHK cells), and African turkeys. Egg mother cells are used. In addition, cultured cells derived from various tissues can also be used.
 本評価剤は、本Kイオンチャネルを機能的に備えていればよい。好ましくは、本評価剤は、本Kイオンチャネルを細胞膜などに特異的発現あるいは高発現している。なお、本評価剤の親株として、予め本Kイオンチャネルを高発現している細胞を選択することもできる。また、本評価剤において標的イオンチャネルを発現させるには、本KイオンチャネルをコードするDNAを保持し、発現していることが好ましい。このDNAは、好ましくは、恒常的に作動するプロモーター(構成的プロモーター)の制御下に連結され、定常的に本Kイオンチャネルが発現されるようになっている。本Kイオンチャネルについても既述のとおり、当業者であれば、周知の遺伝子工学技術及び形質転換体の作製技術に基づいて、DNAを含む発現ベクター等を構築し、これをホスト細胞に導入し形質転換することで、所望の定常発現もしくは一過性発現細胞を適宜取得することができる。また、抑制的標的イオンチャネルの発現量も、他のイオンチャネルと同様に調整することができる。 The evaluation agent may functionally have the K ion channel. Preferably, the present evaluation agent specifically expresses or highly expresses the present K ion channel in the cell membrane or the like. As the parent strain of the present evaluation agent, cells highly expressing the present K ion channel can be selected in advance. Further, in order to express the target ion channel in the present evaluation agent, it is preferable that the DNA encoding the present K ion channel is retained and expressed. This DNA is preferably ligated under the control of a constitutively active promoter (constitutive promoter) so that the K ion channel is constantly expressed. As described above for this K ion channel, a person skilled in the art constructs an expression vector containing DNA based on a well-known genetic engineering technique and a technique for producing a transformant, and introduces the expression vector into a host cell. By transforming, desired constantly expressed or transiently expressed cells can be appropriately obtained. In addition, the expression level of the suppressive target ion channel can be adjusted in the same manner as other ion channels.
 本評価剤は、上記Naイオンチャネル、上記Kイオンチャネル及び本Kイオンチャネルを備えることで、脱分極を惹起する刺激下又は他のKイオンチャネルに対する阻害剤存在下での細胞死誘導系(細胞死の誘導可能な状態で待機する細胞の生存状態)を構築することができる。この細胞死誘導系は、それ自体、本Kイオンチャネルに対する作用剤及び阻害剤の評価系を構成する。すなわち、他のKイオンチャネルに対する阻害剤の存在によって、静止膜電位を負方向に深くすることが阻害されるが、抑制的標的イオンチャネルである本Kイオンチャネルによって、脱分極の惹起が抑制された状態となっている。こうした状態から、本Kイオンチャネルに対する被験化合物の阻害作用や促進作用を簡易に効率的に評価することができる。 By providing the Na ion channel, the K ion channel, and the K ion channel, the present evaluation agent is a cell death-inducing system (cells) under the stimulus that induces depolarization or in the presence of an inhibitor against other K ion channels. It is possible to construct a viable state of cells waiting in an inducible state of death). This cell death-inducing system itself constitutes an evaluation system for agents and inhibitors for this K ion channel. That is, the presence of an inhibitor on other K ion channels inhibits the deepening of the resting membrane potential in the negative direction, but the K ion channel, which is an inhibitory target ion channel, suppresses the induction of depolarization. It is in a state of being. From such a state, the inhibitory action and promoting action of the test compound on the K ion channel can be easily and efficiently evaluated.
 本評価剤が備えるNaイオンチャネルは、脱分極に伴う活動電位の持続時間を延長する電位依存性Naイオンチャネルである。かかるNaイオンチャネルは、換言すれば、不活性化を抑制されたNaイオンチャネルということもできる。 The Na ion channel provided by this evaluator is a voltage-gated Na ion channel that prolongs the duration of action potential associated with depolarization. In other words, such a Na ion channel can be said to be a Na ion channel in which inactivation is suppressed.
 ここで電位依存性Naイオンチャネルとは、細胞膜の膜電位に依存して開口してNaイオンの受動拡散を媒介する細胞膜上のタンパク質である。本明細書において用いる電位依存性Naイオンチャネルは、特に限定しないで公知の各種電位依存性Naイオンチャネルを用いることができるが、好ましくは、Nav1.5チャネルである。Nav1.5チャネルは、心筋細胞などに分布しており、活動電位の発生と興奮伝導に関与していると考えられている。
例えば、ヒトNav1.5チャネルの塩基配列及びアミノ酸配列(NCBI Accession Number: NM_198056.2、NP_932173.1)は、配列番号21、22で表される。
Here, the voltage-gated Na ion channel is a protein on the cell membrane that opens depending on the membrane potential of the cell membrane and mediates the passive diffusion of Na ions. As the voltage-gated Na ion channel used in the present specification, various known voltage-gated Na ion channels can be used without particular limitation, but Nav1.5 channel is preferable. Nav1.5 channels are distributed in cardiomyocytes and are thought to be involved in the generation of action potentials and excitatory conduction.
For example, the nucleotide sequence and amino acid sequence of the human Nav1.5 channel (NCBI Accession Number: NM_198056.2, NP_932173.1) are represented by SEQ ID NOs: 21 and 22.
 電位依存性Naイオンチャネルは、膜電位に依存してゲートが開きNaイオン透過性を発揮した後、不活性化機構が働いてNaイオン透過性を失う(不活性化)。これに対して、不活性化を抑制された電位依存性Naイオンチャネルは、こうした不活性化機構を抑制(消失)させたものである。すなわち、不活性化を抑制された電位依存性Naイオンチャネルは、膜電位に依存してゲートが開きイオン透過性を発揮した後、こうした不活性化が生じないNaイオンチャネルを意味している。不活性化を抑制された電位依存性Naイオンチャネルでは、細胞膜において脱分極が惹起されて当該イオンチャネル自身が活性化されるとイオンチャネルを開口してNaイオンの受動拡散を媒介しうる状態をとるが、イオンチャネル自身の不活性化が抑制されているため、イオンチャネルの開口した状態が維持される。この結果、不活性化が抑制された電位依存性Naイオンチャネルでは、刺激を受けて活動電位が一旦発生すると、イオンチャネルの不活性化が遅延されるため、活動電位が本来の電位依存性Naイオンチャネルより長く継続する。 In voltage-gated Na ion channels, after the gate opens depending on the membrane potential and Na ion permeability is exhibited, the inactivation mechanism works to lose Na ion permeability (inactivation). On the other hand, the voltage-gated Na ion channel in which the inactivation is suppressed suppresses (disappears) such an inactivation mechanism. That is, the voltage-gated Na ion channel in which inactivation is suppressed means a Na ion channel in which such inactivation does not occur after the gate opens depending on the membrane potential and exhibits ion permeability. In the potential-dependent Na ion channel whose inactivation is suppressed, when depolarization is induced in the cell membrane and the ion channel itself is activated, the ion channel can be opened to mediate the passive diffusion of Na ions. However, since the inactivation of the ion channel itself is suppressed, the open state of the ion channel is maintained. As a result, in the voltage-gated Na ion channel in which the inactivation is suppressed, once the action potential is generated by the stimulation, the inactivation of the ion channel is delayed, so that the action potential is the original voltage-gated Na ion channel. It lasts longer than the ion channel.
 また、不活性が抑制されたNaイオンチャネルは、定常的若しくは比較的に深い静止膜電位でも活性化されやすくなっている(いわゆるウィンドウ電流が大きくなっている)。従ってかかるNaイオンチャネルを発現した細胞では、充分に深い負電位に静止膜電位を保持した場合にのみ、過剰なNaイオンの流入を防ぐことができる。かかる電位依存性Naイオンチャネルを充分に発現した細胞においては、脱分極により容易にNaイオンチャネル活性が増大し、1分以上、好ましくは2分以上、より好ましくは3分以上、さらに好ましくは5分以上程度、活動電位あるいは脱分極が維持される。このため細胞内への過剰なNa流入が生じて細胞を死に至らしめる。 In addition, the Na ion channel in which the inactivity is suppressed is easily activated even at a stationary or relatively deep resting membrane potential (so-called window current is large). Therefore, in cells expressing such Na ion channels, excessive Na ion influx can be prevented only when the resting membrane potential is held at a sufficiently deep negative potential. In cells that fully express such voltage-gated Na ion channels, depolarization easily increases Na ion channel activity for 1 minute or longer, preferably 2 minutes or longer, more preferably 3 minutes or longer, and even more preferably 5 minutes. The action potential or depolarization is maintained for about a minute or more. This causes an excessive influx of Na into the cell, resulting in death of the cell.
 かかる不活性化の抑制は、電位依存性Naイオンチャネルのアミノ酸配列に対してアミノ酸変異を導入することによって適宜実現することができる。Nav1.5チャネルの不活性化を抑制するには、いくつかの具体的な手法が開示されている。たとえば、IFMモチーフを改変すること(Grant et al., Biophys. J., 79: 3019-3035, 2000)、406番目のアスパラギンをグルタミン酸やアルギニン、リシンに変異させること(McNulty et al., Mol. Pharmacol., 70: 1514-1523, 2006)、ドメインIII-IVをつなぐIFM部分を含むリンカー部位を欠損させること(Patton et al., Proc. Natl. Acad. Sci. U S A , 89: 10905-10909, 1992、West et al., Proc. Natl. Acad. Sci. USA, 89,: 10910 - 10914, 1992)が挙げられる。すなわち、hNav1.5アミノ酸配列(変異対象となるIFMを含む領域のみ表示)中、1470-IDNFNQQKKKLGGQDIFMTEEQKKYYNAMKK-1500のIFMをQQQに変異することが挙げられる。 The suppression of such inactivation can be appropriately realized by introducing an amino acid mutation into the amino acid sequence of the voltage-gated Na ion channel. Several specific methods have been disclosed for suppressing the inactivation of the Nav1.5 channel. For example, modifying the IFM motif (Grant et al., Biophys. J., 79: 3019-3035, 2000), mutating the 406th asparagine to glutamic acid, arginine, or lysine (McNulty et al., Mol. Pharmacol., 70: 1514-1523, 2006), deletion of the linker site including the IFM portion connecting domains III-IV (Patton et al., Proc. Natl. Acad. Sci. U S A, 89: 10905- 10909, 1992, West et al., Proc. Natl. Acad. Sci. USA, 89 ,: 10910-10914, 1992). That is, in the hNav1.5 amino acid sequence (only the region containing the IFM to be mutated is displayed), the IFM of 1470-IDNFNQQKKKLGGQDIFMTEEQKKYYNAMKK-1500 can be mutated to QQQ.
 また、ドメインIVのセグメント4のアミノ酸を変異させること(Chen et al., J. Gen. Physiol., 108: 549-556, 1996)などが報告されている。アミノ酸配列に対する変異導入は、当業者であればこれらの文献や周知技術に基づいて適宜実施することができる。 In addition, it has been reported that the amino acid of segment 4 of domain IV is mutated (Chen et al., J. Gen. Physiol., 108: 549-556, 1996). Those skilled in the art can appropriately introduce mutations into amino acid sequences based on these documents and well-known techniques.
 本評価剤は、こうしたNaイオンチャネル(天然タンパク質又は変異体タンパク質)をコードするDNA(以下、第1のDNAともいう。)を保持して発現していることが好ましい。本評価剤は、当該変異体、すなわち、不活性化が抑制された電位依存性Naイオンチャネルを定常的にあるいは一過性的に発現するものであってもよい。すなわち当該DNAは染色体上に組み込まれて娘細胞に伝達されるようになっていてもよいし、染色体外で自律的に増幅するが娘細胞には必ずしも伝達されないプラスミドに組み込まれていてもよい。DNAは、好ましくは、恒常的に作動するプロモーター(構成的プロモーター)の制御下に連結されている。このような本評価剤は、当業者であれば、周知の遺伝子工学技術及び形質転換体の作製技術に基づいて、DNAを含む発現ベクター等を構築し、これを本評価剤の宿主に導入し形質転換することで、定常発現もしくは一過性発現細胞を適宜取得することができる。 It is preferable that this evaluator retains and expresses DNA encoding such a Na ion channel (natural protein or mutant protein) (hereinafter, also referred to as first DNA). The present evaluation agent may be one that constantly or transiently expresses the mutant, that is, a voltage-gated Na ion channel in which inactivation is suppressed. That is, the DNA may be integrated on the chromosome and transmitted to the daughter cell, or may be integrated into a plasmid that autonomously amplifies extrachromosomally but is not necessarily transmitted to the daughter cell. The DNA is preferably linked under the control of a constitutively active promoter (constitutive promoter). For such an evaluation agent, a person skilled in the art constructs an expression vector containing DNA or the like based on a well-known genetic engineering technique and a technique for producing a transformant, and introduces this into the host of the present assessor. By transforming, constantly expressed or transiently expressed cells can be appropriately obtained.
 また、Naイオンチャネルの発現量は、第1のDNAを制御するプロモーターなどの制御領域の種類や、導入する第1のDNAを含む発現カセット数や、遺伝子導入後の細胞培養条件などを制御することで調整することができる。 The expression level of Na ion channels controls the type of control region such as a promoter that controls the first DNA, the number of expression cassettes containing the first DNA to be introduced, and the cell culture conditions after gene transfer. It can be adjusted by.
 なお、電位依存性Naイオンチャネルが2以上のサブユニットからなる場合であって、不活性化のために有効な変異を含むサブユニットが全体の一部であるとき、当該一部のサブユニットのみをそれぞれコードするDNAを1又は2以上のDNAとして本評価剤に発現させることもできるし、当該Naイオンチャネルを構成する他のサブユニットも同時に共発現させるように、これらのサブユニットをコードするDNAをDNAとしてそれぞれ発現可能に保持させるようにしてもよい。さらに、発現される不活性化が抑制された電位依存性Naイオンチャネルを、より効果的に機能させるために必要な酵素や他のタンパク質、化合物などがあれば、これらの物質を適宜発現または供給するようにしてもよい。 When the potential-dependent Na ion channel consists of two or more subunits and the subunit containing a mutation effective for inactivation is a part of the whole, only the part of the subunit is concerned. The DNA encoding each of these can be expressed in the present evaluation agent as one or more DNAs, and these subunits are encoded so that other subunits constituting the Na ion channel are also co-expressed at the same time. The DNA may be retained as DNA in an expressible manner. Furthermore, if there are enzymes, other proteins, compounds, etc. necessary for the voltage-gated Na ion channel in which the expressed inactivation is suppressed to function more effectively, these substances are appropriately expressed or supplied. You may try to do so.
 本評価剤が備える他のKイオンチャネルは、静止膜電位が負の方向に深くなるように、換言すれば、より負の電位が大きくなるような機能(活性)を有するイオンチャネルである。すなわち、かかる他のKイオンチャネルによれば、その発現や活性によるKイオン透過性の亢進により深い静止膜電位を形成することができる。上記したNaイオンチャネルを備えると、細胞内外におけるNaイオンの濃度差により、Naイオンが細胞内に過剰に流入する状態となり、最終的には細胞内のNaイオン濃度が高まり細胞は死んでしまう。細胞を本評価剤として用いるには、かかる細胞死誘導系が誘導されるまでは細胞が生存している必要がある。そこで、静止膜電位を深く(低く)するために、静止膜電位が負の方向に深くする他のKイオンチャネルを用いる。 The other K ion channel provided by this evaluator is an ion channel having a function (activity) such that the resting membrane potential becomes deeper in the negative direction, in other words, the negative potential becomes larger. That is, according to such other K ion channels, a deep resting membrane potential can be formed by enhancing K ion permeability due to its expression and activity. When the above-mentioned Na ion channel is provided, the Na ion concentration difference between the inside and outside of the cell causes the Na ion to flow excessively into the cell, and finally the intracellular Na ion concentration increases and the cell dies. In order to use cells as this evaluator, the cells must be alive until such a cell death-inducing system is induced. Therefore, in order to deepen (lower) the resting membrane potential, another K ion channel that deepens the resting membrane potential in the negative direction is used.
 細胞の生存に影響しない範囲で静止膜電位は、負の方向に深いほど好ましい。膜電位は、好ましくは、-50mV、より好ましくは-60mV、さらに好ましくは-70mV程度、一層好ましくは-80mV程度とすることが適している。 The resting membrane potential is preferably deeper in the negative direction as long as it does not affect cell survival. The membrane potential is preferably about -50 mV, more preferably about -60 mV, still more preferably about -70 mV, and even more preferably about -80 mV.
 こうした他のKイオンチャネルとしては、たとえば、内向き整流性Kイオンチャネル(Kirチャネル)、4回膜貫通型及び2ポア型Kイオンチャネル(K2Pチャネル)などが活性化している状態が挙げられる。4回膜貫通型及び2ポア型のKイオンチャネル(K2Pチャネル)は性質が異なる様々な種類が存在し、TWIK、TREK、TASK、TALK、THIK、TRESKなどに分類される。これらのイオンチャネルは電位及び時間依存性が殆どないことからリークチャネルとして機能している。漏洩チャネルの性質上、これらの他のKイオンチャネルは、細胞の静止膜電位の維持(固定)に働いている。 Examples of such other K ion channels include a state in which an inwardly rectifying K ion channel (Kir channel), a four-transmembrane type and a two-pore type K ion channel (K2P channel) are activated. There are various types of 4-transmembrane type and 2-pore type K ion channels (K2P channels) having different properties, and they are classified into TWIK, TREK, TASK, TALK, THIK, TRESK and the like. These ion channels function as leak channels because they have little potential and time dependence. Due to the nature of the leaking channel, these other K ion channels act to maintain (fix) the resting membrane potential of the cell.
 内向き整流性Kイオンチャネルは、特に限定しないが、例えば、Kir2.1、2.2、2.3及び2.4などの各種Kir2xチャネルが挙げられる。Kir2.1は、2回膜貫通型構造を持つ内向き整流性Kイオンチャネル(Kirチャネル)である。電位依存性を持たず、膜電位をKイオンの平衡電位である-80mV付近に近づける性質を持つ。神経や心臓、骨格筋などに発現しており、静止膜電位の形成やその安定化及び維持を行なっている。Kir2.2は、Kir2.1と同様の内向き整流性Kイオンチャネル(Kirチャネル)であるがKir2.1よりも内向き整流性が強い。心臓や脳、骨格筋などにKir2.1とともに発現しており、ヒトの血管内皮細胞においては内向き整流性Kイオンチャネル(Kirチャネル)活性の中で主要な働きをしている。また、Kir2.2は、後述するように、例えば、Baイオンなどによって特異的に阻害される点において本評価剤に好適である。 The inward rectifying K ion channel is not particularly limited, and examples thereof include various Kir2x channels such as Kir2.1, 2.2, 2.3, and 2.4. Kir2.1 is an inwardly rectifying K ion channel (Kir channel) having a transmembrane structure. It does not have voltage dependence and has the property of bringing the membrane potential close to the equilibrium potential of K ions, which is around -80 mV. It is expressed in nerves, heart, skeletal muscle, etc., and forms, stabilizes, and maintains resting membrane potential. Kir2.2 is an inwardly rectifying K ion channel (Kir channel) similar to Kir2.1, but has stronger inwardly rectifying property than Kir2.1. It is expressed together with Kir2.1 in the heart, brain, skeletal muscle, etc., and plays a major role in inwardly rectifying K ion channel (Kir channel) activity in human vascular endothelial cells. Further, Kir2.2 is suitable for this evaluation agent in that it is specifically inhibited by, for example, Ba ions, as will be described later.
 Kir.2.xイオンチャネルについては、Circ. Res. 94:1332-1339 (2004)及びAm. J. Physiol. Cell Physiol. 289:C1134-C1144 (2005)等に記載されている。例えば、ヒト由来のKir2.xチャネルをコードする遺伝子の塩基配列は、Kir2.1(GenBank accession No. U12507, NM_000891(Human KCNJ2))、Kir2.2(GenBank accession No. AB074970, NM_021012(Human KCNJ12))、Kir2.3(GenBank accession No. U07364, U24056, NM_152868(Human KCNJ4))、Kir2.4(GenBank accession No. AF081466, NM_013348(Human KCNJ14))等が挙げられる。 Kir. 2. The x ion channel is described in Circ. Res. 94: 1332-1339 (2004), Am. J. Physiol. Cell Physiol. 289: C1134-C1144 (2005), and the like. For example, the nucleotide sequences of genes encoding Kir2.x channels derived from humans are Kir2.1 (GenBank accession No. U12507, NM_000891 (Human KCNJ2)), Kir2.2 (GenBank accession No. AB074970, NM_021012 (Human KCNJ12)). ), Kir2.3 (GenBank accession No. U07364, U24056, NM_152868 (Human KCNJ4)), Kir2.4 (GenBank accession No. AF081466, NM_013348 (Human KCNJ14)) and the like.
 同様に、G蛋白制御内向き整流性Kイオンチャネル(GIRKチャネル,Kir)が挙げられる。GIRKチャネル(Kir3)は、内向き整流性Kイオンチャネル(Kirチャネル)であるが、Kir2と異なりGタンパク質によって活性化されるKイオンチャネルである。これらのサブユニットには組織特異性があり心臓ではKir3.1/Kir3.4、中枢神経ではKir3.1/Kir3.2で構成する異種四量体を形成している。通常時には活性化せず、アゴニスト刺激により活性化する。しかし、イオンチャネルポアを形成する膜貫通ヘリックスのアミノ酸を変異させることで、常時イオンチャネルが開いたままになることがアフリカツメガエル卵母細胞の実験で報告されている(Claydon et. al., J. Biol. Chem. 278: 50654-50663, 2003)。このことからこの変異体を利用することでKir2.1と同様に深い静止膜電位を形成できると考えられる。例えば、ヒト由来のKir3.xチャネルをコードする塩基配列は、Kir3.1 (GenBank accession No. NM_002239(Human KCNJ3))、Kir3.2 (GenBank accession No.NM_002240(Human KCNJ6))、Kir3.3(GenBank accession No. NM_004983(Human KCNJ9))、Kir3.4(GenBank accession No.NM_000890(Human KCNJ5))が挙げられる。 Similarly, a G protein-controlled inward rectifying K ion channel (GIRK channel, Kir) can be mentioned. The GIRK channel (Kir3) is an inwardly rectifying K ion channel (Kir channel), but unlike Kir2, it is a K ion channel activated by a G protein. These subunits are tissue-specific and form a heterologous tetramer composed of Kir3.1 / Kir3.4 in the heart and Kir3.1 / Kir3.2 in the central nervous system. Normally, it is not activated, but is activated by agonist stimulation. However, it has been reported in experiments on Xenopus oocytes that the ion channels remain open at all times by mutating the amino acids in the transmembrane helix that forms the ion channel pores (Claydon et. Al., J). . Biol. Chem. 278: 50654-50663, 2003). From this, it is considered that a deep resting membrane potential can be formed by using this mutant as in Kir2.1. For example, the nucleotide sequences encoding the human-derived Kir3.3x channels are Kir3.1 (GenBank accession No. NM_002239 (Human KCNJ3)), Kir3.2 (GenBank accession No. NM_002240 (Human KCNJ6)), and Kir3.3 (GenBank accession No. NM_002239 (Human KCNJ3)). GenBank accession No. NM_004983 (Human KCNJ9)) and Kir3.4 (GenBank accession No. NM_000890 (Human KCNJ5)) can be mentioned.
 さらに、ATP感受性内向き整流性Kイオンチャネル(KATPチャネル、Kir6)が挙げられる。KATPチャネルはATPで抑制され、ADPで活性化される内向き整流性Kイオンチャネル(Kirチャネル)である。KATPチャネルは細胞の代謝状態に応じて細胞の興奮性を制御している。KATPチャネルは4個のKATPチャネルと4個のスルフォニルウレア受容体(SUR)から構成される異種8量体である。KATPチャネルのみでは機能をもたないがKATPチャネルのC末端を欠損させることでKATPチャネルのみで機能をもつようになることが報告されている(Tucker et. al., EMBO J. EMBO J 17: 3290-3296, 1998)。また、この欠損体にさらに変異をかけることでATP感受性を下げ、常時活性化させることができる。この変異体を用いることでも深い静止膜電位を形成できる。ヒト由来のKir6.xチャネルをコードする塩基配列は、Kir6.1(GenBank accession No. NM_004982(Human KCNJ8))、Kir6.2(GenBank accession No. NM001166290(Human KCNJ11))が挙げられる。 Further, ATP-sensitive inward rectifying K ion channel (K ATP channel, Kir6) can be mentioned. The K ATP channel is an inwardly rectifying K ion channel (Kir channel) that is suppressed by ATP and activated by ADP. K ATP channels control cell excitability according to the metabolic state of the cell. The K ATP channel is a heterologous octamer composed of four K ATP channels and four sulfonylurea receptors (SURs). K ATP channel alone is no function has been reported that will have the function only with K ATP channel thereby lacking a C-terminal of a K ATP channel (Tucker et. Al., EMBO J. EMBO J 17: 3290-3296, 1998). In addition, by further mutating this defect, ATP sensitivity can be lowered and always activated. A deep resting membrane potential can also be formed by using this mutant. Human-derived Kir 6. Examples of the base sequence encoding the x-channel include Kir6.1 (GenBank accession No. NM_004982 (Human KCNJ8)) and Kir6.2 (GenBank accession No. NM001166290 (Human KCNJ11)).
 また、4回膜貫通型及び2ポア型Kイオンチャネル(K2Pチャネル)としては、例えば、THIKチャネル(HEK293細胞に発現させると膜電位が深くなること;Campanucci et al., Neuroscience, 135: 1087-1094, 2005)、TASK-2チャネル(アフリカツメガエル卵母細胞に発現させると静止膜電位が深くなること;Kindler et al., J. Pharmacol. Exp. Ther., 306: 84-92, 2003.)、電位依存性Kチャネル(平滑筋組織で電位依存性Kチャネルが静止膜電位を深くすること;McDaniel et al., J. Appl. Physiol. (1985) 91: 2322-2333, 2001)などが知られている。 As the 4-transmembrane type and 2-pore type K ion channel (K2P channel), for example, the membrane potential becomes deep when expressed in THIK channel (HEK293 cells; Campanucci et al., Neuroscience, 135: 1087- 1094, 2005), TASK-2 channel (Expression in African Tumegael egg matrix cells deepens the resting membrane potential; Kindler et al., J. Pharmacol. Exp. Ther., 306: 84-92, 2003.) , Potential-dependent K-channel (potential-dependent K-channel deepens resting membrane potential in smooth muscle tissue; McDaniel et al., J. Appl. Physiol. (1985) 91: 2322-2333, 2001), etc. Has been done.
 4回膜貫通型及び2ポア型Kイオンチャネル(K2Pチャネル)は、TWIK、TREK、TASK、TALK、THIK及びTRESKの各サブファミリーに分類される。TWIKサブファミリーは、TWIK-1、TWIK-2チャネルを含んでいる(Lotshaw, Cell Biochem. Biophys. 47: 209-256, 2007)。TWIKチャネルは、ヒトでは多くの組織に存在している。例えば、ヒト由来のTWIKイオンチャネルは、TWIK-1(GenBank accession No.NM_002245(KCNK1))及びTWIK-2(GenBank accession No.NM_004823(KCNK6))が挙げられる。 The 4-transmembrane type and 2-pore type K ion channels (K2P channels) are classified into each subfamily of TWIK, TREK, TASK, TALK, THIK and TRESK. The TWIK subfamily includes TWIK-1, TWIK-2 channels (Lotshaw, Cell Biochem. Biophys. 47: 209-256, 2007). TWIK channels are present in many tissues in humans. For example, human-derived TWIK ion channels include TWIK-1 (GenBank accession No. NM_002245 (KCNK1)) and TWIK-2 (GenBank accession No. NM_004823 (KCNK6)).
 TREKサブファミリーは、TREK-1、TREK-2及びTRAAKチャネルを含んでいる。例えば、ヒト由来のTREKイオンチャネルは、TREK-1(GenBank accession No. NM_014217(KCNK2))、TREK-2(GenBank accession No. NM_138317(KCNK10))及びTRAAK(GenBank accession No. NM_033310(KCNK4))が挙げられる。 The TREK subfamily includes TREK-1, TREK-2 and TRAAK channels. For example, human-derived TREK ion channels include TREK-1 (GenBank accession No. NM_014217 (KCNK2)), TREK-2 (GenBank accession No. NM_138317 (KCNK10)) and TRAAK (GenBank accession No. NM_033310 (KCNK4)). Can be mentioned.
 TASKサブファミリーは、TASK-1、TASK-3及びTASK-5チャネルを含んでいる。例えば、ヒト由来のTASKイオンチャネルは、TASK-1(GenBank accession No. NM_002246(KCNK3))、TASK-3(GenBank accession No. NM_016601(KCNK9))及びTASK-5(GenBank accession No. NM_022358(KCNK15))が挙げられる。 The TASK subfamily includes TASK-1, TASK-3 and TASK-5 channels. For example, human-derived TASK ion channels include TASK-1 (GenBank accession No. NM_002246 (KCNK3)), TASK-3 (GenBank accession No. NM_016601 (KCNK9)) and TASK-5 (GenBank accession No. NM_022358 (KCNK15)). ).
 TALKサブファミリーは、TALK-1、TALK-2及びTASK-2チャネルを含んでいる。例えば、ヒト由来のTALKイオンチャネルは、TALK-1(GenBank accession No. NM_001135106(KCNK16))、TALK-2(GenBank accession No. NM_001135111(KCNK17))及びTASK-2(GenBank accession No. NM_003740(KCNK5))が挙げられる。 The TALK subfamily includes TALK-1, TALK-2 and TASK-2 channels. For example, human-derived TALK ion channels include TALK-1 (GenBank accession No. NM_001135106 (KCNK16)), TALK-2 (GenBank accession No. NM_001135111 (KCNK17)) and TASK-2 (GenBank accession No. NM_003740 (KCNK5)). ).
 THIKサブファミリーは、THIK-1、THIK-2チャネルを含んでいる。例えば、ヒト由来のTHIKイオンチャネルは、THIK-1(GenBank accession No. NM_022054(KCNK13))、THIK-2(GenBank accession No. NM_022055(KCNK12))が挙げられる。 The THIK subfamily includes THIK-1 and THIK-2 channels. For example, examples of human-derived THIK ion channels include THIK-1 (GenBank accession No. NM_022054 (KCNK13)) and THIK-2 (GenBank accession No. NM_022055 (KCNK12)).
 TRESKサブファミリーは、TRESK(GenBank accession No. NM_181840(KCNK18))が挙げられる。 The TRESK subfamily includes TRESK (GenBank accession No. NM_181840 (KCNK18)).
 他のKイオンチャネルは、こうした各種の天然のKイオンチャネルのほか、これらを改変した他のKイオンチャネル変異体を用いることもできる。本評価剤は、他のKイオンチャネルに対する阻害剤の存在下で使用することが好適である。当該阻害剤は、他のKイオンチャネルをできるだけ高い選択性で、できるだけ高い感度で(低濃度で)阻害できることが好ましい。したがって、阻害剤に対するより好適な選択性や感受性を他のKイオンチャネルに付与するため、他のKイオンチャネルに適宜改変を加えることもできる。 For other K ion channels, in addition to these various natural K ion channels, other K ion channel variants modified from these can also be used. This evaluator is preferably used in the presence of an inhibitor of other K ion channels. It is preferred that the inhibitor be capable of inhibiting other K ion channels with as high selectivity as possible and with as high sensitivity as possible (at low concentrations). Therefore, in order to impart more suitable selectivity and sensitivity to the inhibitor to other K ion channels, other K ion channels can be appropriately modified.
 なお、公知のタンパク質について、意図した機能を付与又は削除、増強又は減弱等するために改変する技術は当業者において公知である。目的のタンパク質について、特に、イオンチャネルなどに関しては膜貫通領域やポア領域などよく研究されていることから、タンパク質のアミノ酸配列のアラインメントを利用して、適切な改変可能部位をある程度特定することは当業者における日常的な作業である。そして、改変可能部位についてのアライメント情報に基づいて可能性あるアミノ酸残基の置換を検討して変異体を取得し、当該変異体の機能を評価することも当業者の日常的な作業である。 A technique for modifying a known protein in order to impart, delete, enhance, or attenuate the intended function is known to those skilled in the art. Since the target protein, especially the ion channel, has been well studied in the transmembrane region and the pore region, it is appropriate to identify an appropriate modifiable site to some extent by using the amino acid sequence alignment of the protein. It is a daily work in a trader. Then, it is a daily task of those skilled in the art to examine the substitution of possible amino acid residues based on the alignment information about the modifiable site, obtain a mutant, and evaluate the function of the mutant.
 本評価剤においては、こうした他のKイオンチャネルによって静止膜電位を深くする目的で、Kイオンチャネル1又は2以上適宜組み合わせて用いることができる。 In this evaluation agent, K ion channels 1 or 2 or more can be appropriately combined and used for the purpose of deepening the resting membrane potential by such other K ion channels.
 本評価剤は、Naイオンチャネルと同様に、こうした他のKイオンチャネル(天然タンパク質又は変異体タンパク質)をコードするDNA(以下、第2のDNAともいう。)を保持して発現していることが好ましい。本評価剤は、天然体又は当該変異体であるKイオンチャネルを定常的にあるいは一過性的に発現するものであってもよい。すなわち当該DNAは染色体上に組み込まれて娘細胞に伝達されるようになっていてもよいし、染色体外で自律的に増幅するが娘細胞には必ずしも伝達されないプラスミドに組み込まれていてもよい。また、第1のDNAと同様、第2のDNAは、好ましくは、恒常的に作動するプロモーター(構成的プロモーター)の制御下に連結されている。さらに、他のKイオンチャネルが2以上の異なるサブユニットからなる場合には、Naイオンチャネルにおけるのと同様の態様が適用される。また、他のKイオンチャネルの発現量も、第1のDNAの場合と同様に調整することができる。 Like the Na ion channel, this evaluator retains and expresses DNA encoding these other K ion channels (natural protein or mutant protein) (hereinafter, also referred to as second DNA). Is preferable. The present evaluation agent may be one that constantly or transiently expresses the K ion channel, which is a natural product or a mutant thereof. That is, the DNA may be integrated on the chromosome and transmitted to the daughter cell, or may be integrated into a plasmid that autonomously amplifies extrachromosomally but is not necessarily transmitted to the daughter cell. Also, like the first DNA, the second DNA is preferably linked under the control of a constitutively active promoter (constitutive promoter). Furthermore, when the other K ion channel consists of two or more different subunits, the same aspects as in the Na ion channel apply. Moreover, the expression level of other K ion channels can be adjusted in the same manner as in the case of the first DNA.
 本評価剤は、上記Naイオンチャネルを及び上記他のKイオンチャネルを、それぞれ、細胞膜上等に備えることで、不活性化の抑制された変異型電位依存性Naイオンチャネルを有していても、脱分極が惹起されるまでは、Naイオンの細胞内流入による細胞死が回避された細胞となっている。すなわち、細胞死誘導系を備えているが、脱分極の惹起を待って作動する細胞死誘導系が待機した状態となっている。 Even if the present evaluation agent has a mutant potential-dependent Na ion channel in which inactivation is suppressed by providing the Na ion channel and the other K ion channel on the cell membrane or the like, respectively. Until depolarization is induced, the cells are in which cell death due to intracellular influx of Na ions is avoided. That is, although it has a cell death-inducing system, it is in a state of waiting for a cell death-inducing system that operates after waiting for the induction of depolarization.
 本評価剤、腫瘍の予防又は治療剤として用いることができるほか、本Kイオンチャネルについての研究用途としても使用することができる。本評価剤を適用することができる腫瘍については、本剤について既に説明した態様が提供される。 It can be used as this evaluation agent, a preventive or therapeutic agent for tumors, and can also be used for research purposes on this K ion channel. For tumors to which this evaluator can be applied, the embodiments already described for this drug are provided.
(イオンチャネル作用薬の評価方法) 本明細書に開示されるイオンチャネル作用薬の評価方法(以下、単に、本評価方法ともいう。)は、前記イオンチャネル作用薬は、骨腫瘍等の間葉系腫瘍を予防又は治療するための薬剤であり、標的イオンチャネルがKCa3.1イオンチャネルであり、前記標的イオンチャネルの活性を抑制する抑制剤を評価する工程、を備えることができる。本評価方法によれば、本Kイオンチャネルの抑制剤は、間葉系腫瘍のがん幹細胞から腫瘍細胞への変化を抑制できるため、間葉系腫瘍の予防に貢献する薬剤を提供できる。また、本Kイオンチャネルの抑制剤は、腫瘍細胞の悪性化や転移を抑制できるため、間葉系腫瘍の治療や改善や予後の改善に貢献する薬剤を提供できる。 (Evaluation Method of Ion Channel Agent) In the evaluation method of an ion channel agent disclosed in the present specification (hereinafter, also simply referred to as this evaluation method), the ion channel agent is a mesophyll of a bone tumor or the like. It is a drug for preventing or treating a system tumor, and the target ion channel is a K Ca 3.1 ion channel, and a step of evaluating an inhibitor that suppresses the activity of the target ion channel can be provided. According to this evaluation method, since the present K ion channel inhibitor can suppress the change of mesenchymal tumor from cancer stem cells to tumor cells, it is possible to provide a drug that contributes to the prevention of mesenchymal tumors. In addition, since this K ion channel inhibitor can suppress malignant transformation and metastasis of tumor cells, it is possible to provide a drug that contributes to the treatment and improvement of mesenchymal tumors and the improvement of prognosis.
 本評価方法は、標的イオンチャネルを本Kイオンチャネルとし、その抑制剤の抑制活性を評価できる方法であればよく特に限定されないが、本評価剤を用いて、WO2012/002460及びWO2018/084221に開示される方法を用いて評価することが好ましい。 The present evaluation method is not particularly limited as long as it is a method in which the target ion channel is the present K ion channel and the inhibitory activity of the inhibitor thereof can be evaluated, but the present evaluation agent is used and disclosed in WO2012 / 00246 and WO2018 / 084221. It is preferable to evaluate using the method described above.
 例えば、WO2018/084221に記載の方法は、標的イオンチャネルとして、抑制的標的イオンチャネルを用いる。本Kイオンチャネルは、抑制的標的イオンチャネルに相当する。この評価方法は、本評価剤が備える、標的イオンチャネルでない他のKイオンチャネルに対して阻害的に作用して、細胞死誘導系において脱分極を惹起して細胞死を誘導できる阻害剤(以下、Kイオンチャネル阻害剤ともいう。)による脱分極の惹起や細胞死誘導に抑制的に作用することができる。本Kイオンチャネルは、静止膜電位を深くする方向に作用するため、当該阻害剤とは独立して当該阻害剤による作用、すなわち、脱分極の惹起やそれによる細胞死誘導を抑制することができる。こうしたイオンチャネルを選択することで、当該イオンチャネルに関する効率的な評価系を構築できる。 For example, the method described in WO2018 / 084221 uses an inhibitory target ion channel as the target ion channel. This K ion channel corresponds to an inhibitory target ion channel. This evaluation method is an inhibitor provided by this evaluation agent that can induce cell death by inducing depolarization in the cell death-inducing system by acting inhibitoryly on other K ion channels that are not target ion channels (hereinafter referred to as , Also referred to as a K ion channel inhibitor) can suppress the induction of depolarization and the induction of cell death. Since this K ion channel acts in the direction of deepening the resting membrane potential, it is possible to suppress the action of the inhibitor, that is, the induction of depolarization and the induction of cell death due to it, independently of the inhibitor. .. By selecting such an ion channel, an efficient evaluation system for the ion channel can be constructed.
 Kイオンチャネル阻害剤は、他のKイオンチャネルの作用を阻害して、静止膜電位を負方向に深くすることを抑制する。こうした阻害剤は、例えば、他のKイオンチャネルの種類によっても異なる。公知情報から、Kイオンチャネル阻害剤を取得できるほか、種々の他のKイオンチャネルを含む細胞死誘導系を備える細胞を準備して、この細胞に対して、可能性ある他のKイオンチャネル阻害剤を供給して脱分極の惹起や細胞死が誘導されるか否かを評価することで、取得することができる。 The K ion channel inhibitor inhibits the action of other K ion channels and suppresses the deepening of the resting membrane potential in the negative direction. Such inhibitors also vary, for example, depending on the type of other K ion channel. From known information, a K ion channel inhibitor can be obtained, and a cell having a cell death-inducing system containing various other K ion channels is prepared to inhibit other K ion channels that may be possible against this cell. It can be obtained by supplying a drug and evaluating whether or not depolarization is induced or cell death is induced.
 例えば、Kir2.xに対する阻害薬としては、Baイオンが公知である。Baイオンに対する、本評価系の他の要素、例えば、NaイオンチャネルであるNav1.5や当該変異体、又は後述する標的イオンチャネルとしてのK2Pチャネルの感受性が低いことが好ましい。より具体的には、細胞死誘導系のKイオンチャネル以外の他のイオンチャネルの50%阻害濃度が、細胞死誘導系のKイオンチャネルの50%阻害濃度よりも、好ましくは5倍以上、より好ましくは7倍以上、さらに好ましくは10倍以上、なお好ましくは15倍以上、一層好ましくは20倍以上高いことが好ましい。このような選択阻害性を有することで、高い感度で抑制的標的イオンチャネルに対する被験化合物の作用を検出し評価できる。なお、こうした阻害濃度等も、本明細書に開示される細胞死誘導系を備える細胞を用いて測定することができる。 For example, Kir2. Ba ion is known as an inhibitor against x. It is preferable that the sensitivity of other elements of this evaluation system to Ba ions, for example, Nav1.5 which is a Na ion channel, the mutant thereof, or K2P channel as a target ion channel described later is low. More specifically, the 50% inhibitory concentration of other ion channels other than the K ion channel of the cell death-inducing system is preferably 5 times or more, more than the 50% inhibitory concentration of the K ion channel of the cell death-inducing system. It is preferably 7 times or more, more preferably 10 times or more, still more preferably 15 times or more, still more preferably 20 times or more. By having such selection inhibitory property, the action of the test compound on the inhibitory target ion channel can be detected and evaluated with high sensitivity. In addition, such an inhibition concentration and the like can also be measured using a cell provided with the cell death induction system disclosed in the present specification.
 WO2018/084221に開示されるスクリーニング方法は、本評価剤に対して、Kイオンチャネルの作用を阻害するようにKイオンチャネルの阻害剤を供給する工程と、本評価剤に対して、抑制的標的イオンチャネルを阻害する可能性のある被験化合物を供給する工程と、被験化合物の供給による本評価剤の細胞死への影響を評価する工程と、を備えることができる。本スクリーニング方法によれば、Kイオンチャネルの阻害剤を供給してKイオンチャネルを阻害することで、抑制的標的イオンチャネルに対する被験化合物の作用を簡易に評価することができる。例えば、電気刺激を用いなくても本評価剤の脱分極を惹起することができる。この結果、効率的なスクリーニングが可能となっている。 The screening method disclosed in WO2018 / 084221 is a step of supplying an inhibitor of a K ion channel to the evaluator so as to inhibit the action of the K ion channel, and a suppressive target for the evaluator. A step of supplying a test compound having a possibility of inhibiting an ion channel and a step of evaluating the effect of the supply of the test compound on cell death of the present evaluation agent can be provided. According to this screening method, the action of the test compound on the inhibitory target ion channel can be easily evaluated by supplying an inhibitor of the K ion channel to inhibit the K ion channel. For example, depolarization of this evaluator can be induced without using electrical stimulation. As a result, efficient screening is possible.
 また、Kイオンチャネル阻害剤によってKイオンチャネルによる作用を抑制する一方、Kイオンチャネル阻害剤による細胞死誘導作用を抑制する抑制的標的イオンチャネルによっても細胞死誘導系が制御されているため、Kイオンチャネル阻害剤の濃度を調節することで、意図する被験化合物の性質、すなわち、抑制的標的イオンチャネルに対する阻害剤か作用剤かによって、好適なスクリーニング環境を構築できる。例えば、細胞死率が50%よりも低くなるようにKイオンチャネル阻害剤を供給することで、抑制的標的イオンチャネルに対する阻害剤に好適なスクリーニング環境を構築できる。また、例えば、細胞死率が50%を超えるようにKイオンチャネル阻害剤を供給することで、抑制的標的イオンチャネルに対する作用剤に好適なスクリーニング環境を構築できる。 In addition, the cell death-inducing system is also controlled by the inhibitory target ion channel that suppresses the cell death-inducing action of the K ion channel inhibitor while suppressing the action of the K ion channel by the K ion channel inhibitor. By adjusting the concentration of the ion channel inhibitor, a suitable screening environment can be constructed depending on the intended properties of the test compound, that is, whether it is an inhibitor or an agent for the inhibitory target ion channel. For example, by supplying the K ion channel inhibitor so that the cell death rate is lower than 50%, a screening environment suitable for the inhibitor against the inhibitory target ion channel can be constructed. Further, for example, by supplying the K ion channel inhibitor so that the cell death rate exceeds 50%, a screening environment suitable for the agent for the inhibitory target ion channel can be constructed.
 さらに、例えば、細胞死率が50%近傍となるようにKイオンチャネル阻害剤を供給することで、抑制的標的イオンチャネルに対する被験化合物が阻害剤であっても作用剤であっても定性的にかつ定量的に評価することができる。 Further, for example, by supplying a K ion channel inhibitor so that the cell death rate is close to 50%, qualitatively whether the test compound for the inhibitory target ion channel is an inhibitor or an agent. And it can be evaluated quantitatively.
 例えば、細胞死率が50%近傍となる濃度のBaイオンを本評価剤に供給した場合、K2Pチャネル開口薬が存在すれば、細胞死率の割合が50%近傍よりも減少し、すなわち生き残る細胞の割合は50%近傍よりも増加する。一方、K2Pチャネル閉口薬が存在すれば、細胞死の割合が50%近傍よりも増加する、すなわち生き残る細胞の割合は50%近傍よりも減少する。この手法により、本評価剤の細胞死/細胞の生存、すなわち細胞の死亡率(又は生存率)によって、被験化合物の抑制的標的イオンチャネルに対する作用(作用剤か阻害剤か)を検出し評価できる。 For example, when Ba ions having a concentration of about 50% in cell death are supplied to this evaluator, the cell death rate is lower than in the vicinity of 50% in the presence of the K2P channel opener, that is, surviving cells. The ratio of is increased from around 50%. On the other hand, in the presence of K2P channel closures, the rate of cell death increases above 50%, that is, the rate of surviving cells decreases below around 50%. By this method, the action (active agent or inhibitor) of the test compound on the inhibitory target ion channel can be detected and evaluated based on the cell death / cell survival of this evaluator, that is, the cell mortality rate (or survival rate). ..
 スクリーニングにあたっては、1又は2以上の被験化合物を本評価剤に供給することができる。単一の被験化合物を用いて当該化合物による作用を検出してもよいし、2以上の被験化合物を用いてこれらの化合物の複合作用あるいは相加作用、相乗作用を検出してもよい。抑制的標的イオンチャネルに対する作用を本評価剤の細胞死(率)によって検出するにあたっては、被験化合物を供給しなかった場合の本評価剤の細胞死(率)を対照群とすることができる。また、抑制的標的イオンチャネルに対する作用が既知である化合物を対照群としてもよい。こうした対照群との比較によって、被験化合物の抑制的標的イオンチャネルに対する作用の有無や、さらにその作用の程度を検出することができる。 For screening, one or more test compounds can be supplied to this evaluator. A single test compound may be used to detect the action of the compound, or two or more test compounds may be used to detect the combined action, additive action, or synergistic action of these compounds. In detecting the effect on the inhibitory target ion channel by the cell death (rate) of this evaluator, the cell death (rate) of this evaluator when the test compound is not supplied can be used as a control group. In addition, a compound whose action on the inhibitory target ion channel is known may be used as a control group. By comparison with such a control group, the presence or absence of the action of the test compound on the inhibitory target ion channel and the degree of the action can be detected.
 被験化合物は、特に限定しない。抑制剤として利用できる可能性のある低分子化合物であるほか、抗体などのタンパク質、ペプチド、オリゴヌクレオチド、ポリヌクレオチドなどの核酸(DNA、RNA)、オリゴ糖、多糖類、脂質等であってもよい。 The test compound is not particularly limited. In addition to low molecular weight compounds that may be used as inhibitors, proteins such as antibodies, peptides, oligonucleotides, nucleic acids (DNA, RNA) such as polynucleotides, oligosaccharides, polysaccharides, lipids and the like may be used. ..
 本評価剤には、必要に応じて、被験化合物のほか、各種刺激が付与されてもよい。これらの刺激との組み合わせで作用が促進又は抑制される場合もあるからである。また、刺激の存在下で活性化するあるいは不活性化する標的イオンチャネルへの作用を評価することもできる。こうした刺激としては、例えば、温度変化(高温、低温)、pH変化、O2/CO2濃度変化、浸透圧変化、容積変化などが挙げられる。 If necessary, the evaluation agent may be given various stimuli in addition to the test compound. This is because the action may be promoted or suppressed in combination with these stimuli. It is also possible to evaluate the effect on target ion channels that are activated or inactivated in the presence of stimuli. Examples of such stimuli include temperature change (high temperature, low temperature), pH change, O 2 / CO 2 concentration change, osmotic pressure change, volume change and the like.
 本評価剤をこのスクリーニング方法に適用する場合、以下のような評価工程の態様が挙げられる。すなわち、被験化合物及びKイオンチャネル阻害剤の存在下で、被験化合物の作用を本評価剤の生死を指標として評価することが挙げられる。この場合、被験化合物の非存在下では、本Kイオンチャネルは恒常的に作動して、脱分極を抑制しあるいは活動電位を抑制している。このため、Kイオンチャネル阻害剤の存在下でも、活動電位が発生しない、あるいは延長しない。この結果、本評価剤は生存する。一方、この本評価剤に、被験化合物とKイオンチャネル阻害剤とを付与したとき、本評価剤の細胞死が促進される。かかる態様を示したとき、当該被験化合物は、本Kイオンチャネルに対して阻害性を有する阻害剤として判定できる。 When applying this evaluation agent to this screening method, the following aspects of the evaluation process can be mentioned. That is, in the presence of the test compound and the K ion channel inhibitor, the action of the test compound can be evaluated using the life or death of the present evaluator as an index. In this case, in the absence of the test compound, the K ion channel constantly operates to suppress depolarization or action potential. Therefore, the action potential does not occur or prolong even in the presence of the K ion channel inhibitor. As a result, this evaluator survives. On the other hand, when the test compound and the K ion channel inhibitor are added to this evaluator, cell death of this evaluator is promoted. When such an embodiment is shown, the test compound can be determined as an inhibitor having an inhibitory effect on the present K ion channel.
 以上のように、WO2018/084221に開示されるスクリーニング方法によれば、Kイオンチャネルに対する阻害剤を用いることで本評価剤の生死を指標として簡易に標的イオンチャネルに対する阻害剤をスクリーニングできる。 As described above, according to the screening method disclosed in WO2018 / 084221, by using an inhibitor for K ion channel, an inhibitor for a target ion channel can be easily screened using the life or death of this evaluator as an index.
 本評価方法は、イオンチャネル作用薬として、がん幹細胞の腫瘍細胞への分化及び腫瘍細胞の悪性化を抑制するため薬剤の評価方法としても実施できる。既述のとおり、本Kイオンチャネルは、がん幹細胞の腫瘍細胞への変化、腫瘍細胞の悪性化及びがん転移に貢献しているからである。 This evaluation method can also be carried out as an ion channel agonist as a drug evaluation method in order to suppress the differentiation of cancer stem cells into tumor cells and the malignant transformation of tumor cells. This is because, as described above, this K ion channel contributes to the transformation of cancer stem cells into tumor cells, malignant transformation of tumor cells, and cancer metastasis.
(腫瘍の病態検査のためのマーカー)本明細書に開示されるマーカー(以下、単に、本マーカーともいう。)は、骨腫瘍についての病態の検査のためのマーカーであって、KCa3.1イオンチャネル、そのmRNA又はそのpre-mRNAに特異的に結合する化合物を含むことができる。本マーカーは、がん幹細胞の腫瘍化、腫瘍細胞の悪性化及びがん転移など、骨腫瘍を含む各種腫瘍の病態検査に用いることができる。本マーカーとしては、既に説明した、本抑制剤のほか、本KイオンチャネルのmRNAやタンパク質と特異的に結合するものであれば用いることができる。すなわち、本Kイオンチャネルに特異的に結合する抗体、アプタマー、siRNAなどの抑制剤として機能するもののほか、本KイオンチャネルのmRNAに特異的なオリゴヌクレオチドプローブ等であってもよい。また、本抑制剤について既述したように、公知の標識要素を備えるものが本マーカーとして好ましい場合がある。 (Marker for Examination of Pathological Condition of Tumor) The marker disclosed in the present specification (hereinafter, also simply referred to as this marker) is a marker for examination of pathological condition of bone tumor, and K Ca 3. It can include one ion channel, its mRNA or a compound that specifically binds to its pre-mRNA. This marker can be used for pathological examination of various tumors including bone tumors such as tumorigenesis of cancer stem cells, malignant transformation of tumor cells and cancer metastasis. As the present marker, in addition to the present inhibitor described above, any marker that specifically binds to the mRNA or protein of the present K ion channel can be used. That is, in addition to those that function as inhibitors for antibodies, aptamers, siRNAs, etc. that specifically bind to the present K ion channel, oligonucleotide probes that are specific for the mRNA of the present K ion channel may be used. Further, as described above for the present inhibitor, a marker having a known labeling element may be preferable as the present marker.
 本マーカーは、例えば、被験者から採取された血液、骨髄液などの生体液のほか、組織などにおける細胞検体に対して、マーカーの種類に応じて公知の方法で適用することができる。例えば、種々の態様での核酸ハイブリダイゼーション、抗原抗体反応、タンパク質-核酸相互作用などを利用して、本Kイオンチャネルタンパク質、そのmRNA、preーmRNAと結合させることができる。検出形態も、マーカーの種類や標識の種類等に応じて適宜設定することができる。 This marker can be applied to, for example, biological fluids such as blood and bone marrow fluid collected from a subject, as well as cell samples in tissues and the like by a known method depending on the type of marker. For example, nucleic acid hybridization, antigen-antibody reaction, protein-nucleic acid interaction, and the like in various embodiments can be used to bind to the K ion channel protein, its mRNA, and pre-mRNA. The detection form can also be appropriately set according to the type of marker, the type of marker, and the like.
(骨腫瘍の病態の検査方法) 本明細書に開示される骨腫瘍の病態の検査方法(以下、単に、本検査方法ともいう。)は、骨腫瘍患者の被験者の対象部位から採取された細胞における、KCa3.1イオンチャネル活性を測定する工程、を備えることができる。この検査方法によれば、細胞における本Kイオンチャネルの活性を測定することで、がん幹細胞の腫瘍細胞への変化の度合い、腫瘍細胞の悪性化や転移の可能性や程度、患者の予後などについての情報を取得することができる。 (Method for Examining the Pathology of Bone Tumor) The method for examining the pathology of bone tumor disclosed in the present specification (hereinafter, also simply referred to as the present inspection method) is a cell collected from a target site of a subject of a bone tumor patient. The step of measuring the K Ca 3.1 ion channel activity in the above can be provided. According to this test method, by measuring the activity of this K ion channel in cells, the degree of change of cancer stem cells into tumor cells, the possibility and degree of malignant transformation and metastasis of tumor cells, the prognosis of patients, etc. You can get information about.
 細胞を採取する対象部位は、特に限定されないが、骨腫瘍の原発部位、転移部位等が挙げられる。また、活性化の測定方法は、特に、限定されないが、例えば、本KイオンチャネルのmRNA、タンパク質を特異的に検出して発現レベルの測定、本Kイオンチャネルタンパク質量等を、本マーカーを用いて検出することができる。 The target site for collecting cells is not particularly limited, and examples thereof include a primary site of a bone tumor and a metastatic site. The method for measuring activation is not particularly limited, but for example, the mRNA and protein of this K ion channel are specifically detected to measure the expression level, the amount of this K ion channel protein, and the like, using this marker. Can be detected.
 以下、本明細書の開示に関する具体例について説明するが、本明細書の開示は、以下の具体的に限定されるものではない。 Hereinafter, specific examples relating to the disclosure of the present specification will be described, but the disclosure of the present specification is not specifically limited to the following.
(人工的骨肉腫がん細胞(AO;潜在的がん幹細胞/AX;前駆細胞様細胞)におけるKCaイオンチャネルの発現) 人工的骨肉腫がん細胞(AO細胞及びAX細胞、以下、まとめてAO/AX細胞とも称する。)は、慶應義塾大学佐谷教授と清水博士(現星薬科大学准教授)らより入手した。これらの細胞は、いずれも、Ink4a/Arf KOマウスの骨髄間質細胞から樹立されたものである。ここで、AO細胞は、脂肪細胞、骨細胞及び軟骨細胞への分化能を有し、AX細胞と比較して腫瘍形成能が低いが、高い薬剤耐性能を示す細胞である。そして、AO細胞は、マウスに移植すると脂肪細胞への分化に重要なPPARγの発現が低下してAO細胞から脂肪細胞への分化能が低下して腫瘍化する性質を持ったAX様細胞になることで腫瘍化することが報告されている(文献10,11)。 (Expression of K Ca ion channels in artificial osteosarcoma cancer cells (AO; potential cancer stem cells / AX; progenitor cell-like cells)) Artificial osteosarcoma cancer cells (AO cells and AX cells, hereinafter collectively referred to as) AO / AX cells) were obtained from Professor Saya of Keio University and Dr. Shimizu (currently an associate professor of Hoshi Pharmaceutical University). All of these cells were established from bone marrow stromal cells of Ink4a / Arf KO mice. Here, AO cells are cells that have the ability to differentiate into adipocytes, osteoocytes and chondrocytes, have a lower tumorigenicity than AX cells, but exhibit high drug tolerance. When the AO cells are transplanted into mice, the expression of PPARγ, which is important for the differentiation into adipocytes, is reduced, and the ability to differentiate from AO cells to adipocytes is reduced to become AX-like cells having the property of becoming a tumor. It has been reported that this causes tumorigenesis (References 10 and 11).
 これらのがん細胞は、Antibiotic-Antimycotic Mixed Stock Solution(Nacalai)、GlutaMAXTMSupplement(Gibco)及び20%FBS(Nichirei)添加IMDM培地(Nacalai)で培養した。実験に用いる際には使用する1~2日前にシャーレ又はガラス片に蒔いた。AX細胞をマウスに植えて生じた腫瘍組織から得た骨肉腫腫瘍細胞は、Antibiotic-Antimycotic Mixed Stock Solution(Nacalai)及び10%FBS(Nichirei)添加IMDM培地(Nacalai)で培養し、mRNAと染色標本を得た。 These cancer cells were cultured in Antibiotic-Antimycotic Mixed Stock Solution (Nacalai), GlutaMAX TM Supplement (Gibco) and IMDM medium (Nacalai) supplemented with 20% FBS (Nichirei). When used in the experiment, it was sown on a petri dish or a piece of glass 1 to 2 days before use. Osteosarcoma tumor cells obtained from tumor tissue generated by planting AX cells in mice were cultured in Antibiotic-Antimycotic Mixed Stock Solution (Nacalai) and IMDM medium (Nacalai) supplemented with 10% FBS (Nichirei), and mRNA and stained specimens were obtained. Got
 これらの細胞につき、RNA抽出及びリアルタイムPCR法を行い、KCaイオンチャネル(マウスKCNN4)の発現を確認した。AO/AX細胞をシャーレ培養し、コンフレントに達した後RNAisoPlus(Takara)を用いてAGPC(Acid Guanidium Thiocyanate-Phenol Chloroform)法により総RNAを細胞から抽出し、OD260値からtotal RNA濃度を計算した。0.5μgのtotal RNAを用いてRevertraAce (TaKaRa)とRamdom Primers (Invitrogen)によりcDNAを合成し、リアルタイムPCRを行った。リアルタイムPCRはPCR検出定量システムLightCycler(登録商標)96 System(Nihon genetics)を用いて行った。SYBR Premix Ex Taq(TaKaRa)を用い、サイバーグリーンアッセイ法よりサイクル毎の蛍光を測定し、その蛍光強度から、あらかじめ作成した検量線を元にして、GAPDH mRNA発現量を内在性標準物質として相対的な対象イオンチャネルmRNAの発現量をGAPDHに対する比として算出し、その値を示した。結果を図1Aに示す。 RNA extraction and real-time PCR were performed on these cells to confirm the expression of K Ca ion channels (mouse KCNN4). AO / AX cells were petri dish cultured, and after reaching a confluent, total RNA was extracted from the cells by the AGPC (Acid Guanidium Thiocyanate-Phenol Chloroform) method using RNAisoPlus (Takara), and the total RNA concentration was calculated from the OD260 value. CDNA was synthesized by Revertra Ace (TaKaRa) and Ramdom Primers (Invitrogen) using 0.5 μg total RNA, and real-time PCR was performed. Real-time PCR was performed using the PCR detection and quantification system LightCycler® 96 System (Nihon genetics). Using SYBR Premix Ex Taq (TaKaRa), the fluorescence of each cycle was measured by the cyber green assay method, and the GAPDH mRNA expression level was used as an endogenous reference substance based on the calibration curve prepared in advance based on the fluorescence intensity. The expression level of the target ion channel mRNA was calculated as a ratio to GAPDH, and the value was shown. The results are shown in FIG. 1A.
 PCRの具体的な操作は、以下の通りに行った。1)前熱変性反応(94℃,10分間)、2)熱変性反応(94℃,30秒間)、3)アニーリング反応(58℃,30秒間)、4)伸長反応(72℃,1分間)。2)~4)はサイクル反応であり、35サイクルで行った。使用したプライマーは以下のとおりである。 The specific operation of PCR was performed as follows. 1) Preheat denaturation reaction (94 ° C, 10 minutes), 2) Heat denaturation reaction (94 ° C, 30 seconds), 3) Annealing reaction (58 ° C, 30 seconds), 4) Extension reaction (72 ° C, 1 minute) .. 2) to 4) were cycle reactions, which were carried out in 35 cycles. The primers used are as follows.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(電気生理学的実験) AO/AX細胞の膜電流測定にはHamillらにより確立されたホールセルパッチクランプ法(Hamill et al., 1981)を用いた。外径1.04-1.08mmの芯入ガラス管から2段式電極製作機(PB-7; Narishige, Tokyo, Japan)を用いて記録電極を作製し、顕微鏡下で先端を熱加工により滑らかに整え実験に用いた。実験には先端の直径が約1μm、細胞内液充填時の電気抵抗が2-5MΩの記録電極を使用した。倒立顕微鏡(TMD; Nikon, Tokyo, Japan)のステージ上に固定したチャンバーに細胞を定着させたガラス片を固定し、Normal HEPES溶液で灌流した。細胞に対し、水圧式微動マニュピレーター(MHW-3; Narishige)を用いて記録電極を押し当て、電位固定法により膜電流を測定した。測定した電流は微小電流用増幅器CEZ-2400; Nihonkoden, Tokyo)を用いて増幅し、AD変喚器(Digidata 1440A; Axon Instruments)、Clampex10.2 (Axon Instruments)を用いて記録した。データ解析はClampfit10.2 (Axon Instruments)を用いて行った。結果を図1Bに示す。 (Electrophysiological experiment) The whole cell patch clamp method (Hamill et al., 1981) established by Hamill et al. Was used to measure the membrane current of AO / AX cells. A recording electrode is produced from a cored glass tube with an outer diameter of 1.04-1.08 mm using a two-stage electrode manufacturing machine (PB-7; Narishige, Tokyo, Japan), and the tip is smoothed by thermal processing under a microscope. It was prepared and used in the experiment. In the experiment, a recording electrode having a tip diameter of about 1 μm and an electrical resistance of 2-5 MΩ when filled with intracellular fluid was used. A piece of glass with cells colonized was fixed in a chamber fixed on the stage of an inverted microscope (TMD; Nikon, Tokyo, Japan) and perfused with Normal HEPES solution. The recording electrode was pressed against the cells using a hydraulic fine movement manipulator (MHW-3; Narishige), and the membrane current was measured by the voltage fixation method. The measured current was amplified using a microcurrent amplifier CEZ-2400; Nihonkoden, Tokyo) and recorded using an AD generator (Digidata 1440A; Axon Instruments) and Clampex 10.2 (Axon Instruments). Data analysis was performed using Clampfit 10.2 (Axon Instruments). The results are shown in FIG. 1B.
(膜電位感受性色素Oxonol Vを用いた膜電位測定法) オキソノール系膜電位感受性色素Oxonol Vは細胞膜が脱分極すると蛍光強度が増加し、膜が過分極すると蛍光強度が減少する色素であることが知られている。チャンバーに細胞を蒔いたガラス片を固定し、1μM Oxonol V(Sigma)を約30分間室温で負荷し、その後灌流しながら細胞に約30分間負荷した。画像測定・解析装置として、共焦点レーザー顕微鏡(A1R/Ti-E, Nikon)を用いた。Oxonol Vは640nmの波長で励起させ、KCaイオンチャネル阻害薬(TRAM-34, ICA-17043、化1参照)を添加した際の蛍光強度変化を解析した。結果を図1Cに示す。 (Membrane potential measurement method using the voltage-sensitive dye Oxonol V) The oxonol-based voltage-sensitive dye Oxonol V is a dye whose fluorescence intensity increases when the cell membrane is depolarized and decreases when the membrane is hyperpolarized. Are known. A piece of glass in which cells were sown was fixed in a chamber, and 1 μM Oxonol V (Sigma) was loaded at room temperature for about 30 minutes, and then the cells were loaded for about 30 minutes while being perfused. A confocal laser scanning microscope (A1R / Ti-E, Nikon) was used as an image measurement / analysis device. Oxonol V was excited at a wavelength of 640 nm and the change in fluorescence intensity when a K Ca ion channel inhibitor (TRAM-34, ICA-17043, see Chemical formula 1) was added was analyzed. The results are shown in FIG. 1C.
(細胞内Caイオン濃度([Ca2+)測定法) [Ca2+変化の測定には高速CCDカメラ蛍光画像解析システムARGUS/HiSCA(Hamamatsu Photonics)を用い、[Ca2+変化を画像解析した。本実験ではCa2+蛍光指示薬としてfura-2 acetoxymethyl ester (fura-2 AM, Invitrogen)を使用した。測定用チャンバーに細胞を付着させたガラス片を固定し、10μM fura-2 AMを添加し、約30分間室温で放置して細胞に負荷した。その後、HEPES溶液で過剰のfura-2 AMを10分間、洗浄した後、測定を開始した。一度の測定によりガラス片上の存在する約10細胞に対し、細胞内Caイオン濃度変化を計測した。測定条件は細胞内の色素をキセノンランプにより励起波長340nm及び380nmの光で励起させ、放出された520nm以上の各々の蛍光を高感度カメラで取得し(それぞれF340及びF380)、その蛍光強度比(F340/F380)を1枚の画像として取得した。結果を図1D及び同Eに示す。 Using (intracellular Ca ion concentration ([Ca 2+] i) measurement) [Ca 2+] Fast CCD camera for the measurement of i changes fluorescence image analysis system ARGUS / HiSCA (Hamamatsu Photonics), the [Ca 2+] i changes Image analysis was performed. In this experiment, fura-2 acetoxymethyl ester (fura-2 AM, Invitrogen) was used as a Ca 2+ fluorescence indicator. A piece of glass to which the cells were attached was fixed in the measurement chamber, 10 μM fura-2 AM was added, and the cells were allowed to stand at room temperature for about 30 minutes to load the cells. Then, the excess fura-2 AM was washed with the HEPES solution for 10 minutes, and then the measurement was started. The change in intracellular Ca ion concentration was measured for about 10 cells existing on the glass piece by one measurement. The measurement conditions are that the intracellular dye is excited by light with excitation wavelengths of 340 nm and 380 nm with a xenon lamp, and the emitted fluorescence of 520 nm or more is acquired by a high-sensitivity camera (F 340 and F 380, respectively), and the fluorescence intensity thereof is obtained. The ratio (F 340 / F 380 ) was acquired as a single image. The results are shown in FIGS. 1D and E.
 図1Aに示すように、AO細胞に比較してAX細胞において顕著にKCaイオンチャネルの発現が増加していることがわかった。また、図1Bに示すように、KCaイオンチャネルの選択的阻害薬であるTRAM-34によって阻害されたTRAM-34感受性電流を比較した。その結果、AO細胞と比較してAX細胞において顕著にTRAM-34感受性電流が増加することが明らかとなった。 As shown in FIG. 1A, it was found that the expression of K Ca ion channels was remarkably increased in AX cells as compared with AO cells. Also, as shown in FIG. 1B, the TRAM-34 sensitive currents inhibited by TRAM-34, which is a selective inhibitor of K Ca ion channels, were compared. As a result, it was clarified that the TRAM-34 sensitivity current was remarkably increased in the AX cells as compared with the AO cells.
 また、図1Cは、AO/AX細胞の膜電位に対するKCaイオンチャネルの寄与の解析結果であるが、KCaイオンチャネル活性化薬であるDCEBIOによる膜電位変化、阻害薬TRAM-34による膜電位変化を検討したところ、AX細胞におけるKCaイオンチャネルが膜電位を過分極方向にシフトさせていることがわかった。さらに、図1Dは、静止時における細胞内カルシウムイオン濃度の解析結果であるが、図1Dに示すように、静止時において、AO細胞と比較してAX細胞における静止時の細胞内カルシウムイオン濃度が増大していることがわかった。また、図1Eは、細胞内カルシウムイオン濃度に対するKCaイオンチャネルの寄与の解析結果であるが、図1Eに示すように、AO細胞においては、KCaイオンチャネル阻害剤存在下及び不存在下ではKCaイオンチャネル活性剤を供給しても、なんら変化が起きなかったのに対して、AX細胞においては、KCaイオンチャネル阻害剤不存在下でKCaイオンチャネル活性剤を供給すると、細胞内カルシウムイオン濃度が増大したことから、AX細胞における細胞内カルシウムイオン濃度には、KCaイオンチャネルの存在及びその活性化が寄与していることがわかった。 In addition, FIG. 1C shows the analysis results of the contribution of K Ca ion channels to the membrane potential of AO / AX cells. Membrane potential change by DCEBIO, which is a K Ca ion channel activator, and membrane potential by inhibitor TRAM-34. When the changes were examined, it was found that the K Ca ion channels in the AX cells shift the membrane potential in the hyperpolarizing direction. Further, FIG. 1D shows the analysis result of the intracellular calcium ion concentration at rest. As shown in FIG. 1D, the intracellular calcium ion concentration at rest in AX cells is higher than that at rest as compared with AO cells. It turned out to be increasing. Further, FIG. 1E shows the analysis results of the contribution of K Ca ion channels to the intracellular calcium ion concentration. As shown in FIG. 1E, in AO cells, in the presence and absence of the K Ca ion channel inhibitor, No change occurred when the K Ca ion channel activator was supplied, whereas in AX cells, when the K Ca ion channel activator was supplied in the absence of the K Ca ion channel inhibitor, the cells were intracellular. From the increase in calcium ion concentration, it was found that the presence and activation of K Ca ion channels contributed to the intracellular calcium ion concentration in AX cells.
(AO/AX細胞の細胞増殖に対するKCaイオンチャネルの寄与) 細胞増殖の測定にはhigh content cell analyzer system (Operetta, PerkinElmer)を用いた。実施例1で用いたAO/AX細胞を1.5×10cells/wellになるように96wellプレートに蒔き、37°C,5%COでインキュベートした。細胞接着後(約2時間後)に薬物を培地に懸濁した薬物溶液に置換した。その時間を0時間とし、24,48時間培養後に測定を行った。測定は各時間経過したプレートに10μg/ml Hoechst33342 (Molecular Probe)入り2.2mM Ca2+HEPES溶液を添加し、室温で10分間放置させた。その後、Operettaを用いて励起波長:350nm、蛍光波長:461nmにおけるHoechst陽性細胞数を測定した。各測定時間において、同じ条件で実験を行った3wellの細胞数を平均したものを一例とした。結果を図2に示す。 (Contribution of K Ca ion channel to cell proliferation of AO / AX cells) A high content cell analyzer system (Operetta, PerkinElmer) was used to measure cell proliferation. The AO / AX cells used in Example 1 were sown on 96-well plates to 1.5 × 10 3 cells / well and incubated at 37 ° C, 5% CO 2. After cell adhesion (about 2 hours later), the drug was replaced with a drug solution suspended in a medium. The time was set to 0 hours, and measurement was performed after culturing for 24 and 48 hours. For the measurement, a 2.2 mM Ca 2 + HEPES solution containing 10 μg / ml Hoechst33342 (Molecular Probe) was added to the plate after each time, and the plate was allowed to stand at room temperature for 10 minutes. Then, using Operetta, the number of Hoechst-positive cells at an excitation wavelength of 350 nm and a fluorescence wavelength of 461 nm was measured. As an example, the average number of cells of 3 wells in which the experiment was conducted under the same conditions at each measurement time was taken as an example. The results are shown in FIG.
 図2によれば、KCaイオンチャネル阻害剤TRAM-34の添加は、AX細胞の細胞増殖の更新をAO細胞の増殖率と同等程度までに抑制することがわかった。 According to FIG. 2, it was found that the addition of the K Ca ion channel inhibitor TRAM-34 suppressed the cell proliferation renewal of AX cells to the same extent as the proliferation rate of AO cells.
(AX/AO細胞の遊走能に対するKCaイオンチャネルの寄与) 実施例1で用いたAO/AX細胞につき、細胞遊走実験を行った。細胞遊走実験には、8.0μm pore size Cell Culture Insert (Corning, 以下chamberと呼称) を用いたTranswell assayを行った。24wellプレートに、1%FBS(Nichirei) 及び薬物(DMSO、TRAM-34、ICA-17043)入りのIMDM培地を用意した。Chamberを24wellプレートに設置し、Chamberの上部と下部にSerum free IMDM培地を添加し、数回chamberを揺らすことで、空気抜きを行った。その後、上部、下部の培地を抜いた。次に、各薬物(DMSO、TRAM-34、ICA-17043)を添加したSerum FreeのIMDM培地にAO/AX細胞を1.0×10cells/mlになるように懸濁させ、培地を抜いたchamberの上部に0.5mlずつ添加し、すぐに、1%FBS入りのIMDM培地が浸っている24wellプレートに設置した。AX細胞は37°C,5%COで4時間インキュベート、AO細胞は4時間で遊走細胞数が薬物の有無に関わらず少なかったため、8時間インキュベートした。 (Contribution of K Ca ion channel to the migration ability of AX / AO cells) A cell migration experiment was performed on the AO / AX cells used in Example 1. In the cell migration experiment, a Transwell assay using an 8.0 μm pore size Cell Culture Insert (Corning, hereinafter referred to as chamber) was performed. IMDM medium containing 1% FBS (Nichirei) and drugs (DMSO, TRAM-34, ICA-17043) was prepared on a 24-well plate. The Chamber was placed on a 24-well plate, Serum free IMDM medium was added to the upper and lower parts of the Chamber, and the chamber was shaken several times to bleed air. Then, the upper and lower media were removed. Next, each drug (DMSO, TRAM-34, ICA -17043) suspended by so the AO / AX cells 1.0 × 10 5 cells / ml in IMDM medium of added Serum the Free and remove the culture medium 0.5 ml each was added to the upper part of the serum, and immediately placed on a 24-well plate in which IMDM medium containing 1% FBS was immersed. AX cells were incubated at 37 ° C., 5% CO 2 for 4 hours, and AO cells were incubated for 8 hours because the number of migrating cells was low at 4 hours regardless of the presence or absence of the drug.
 その後、綿棒で、Chamber上部にある非遊走性細胞を除去した。Diff-Quick kit (Sysmex)を用い、Transwellを通過し、上部から下部へと移動した遊走細胞を固定・染色した(IMDM培地を抜き、固定液を15分、染色液1.2を10分浸した)。ChamberのTranswell部分をカッターでくりぬき、スライドガラスに接着させ、顕微鏡で透過画像を取得した。1画像当たりに写る遊走細胞数を測定し、1chamberで無作為に3枚の画像を取得し、細胞数を平均化したものを1chamber当たりの遊走細胞数とした。各試行(n)において、DMSO、TRAM-34、ICA-17043を3chamberずつ行い、3chamber分の細胞数を更に平均し、これを一例分とした。TRAM-34、ICA-17043群の遊走細胞数を、DMSO群における遊走細胞数で規格化し、薬物による遊走率の変化を算出した。結果を図3に示す。 After that, the non-migratory cells on the upper part of Chamber were removed with a cotton swab. Using Diff-Quickkit (Sysmex), the migrating cells that passed through Transwell and moved from the top to the bottom were fixed and stained (IMDM medium was removed, the fixative was soaked for 15 minutes, and the stain 1.2 was soaked for 10 minutes. did). The Transwell part of the chamber was hollowed out with a cutter, adhered to a slide glass, and a transmitted image was obtained with a microscope. The number of migrating cells per image was measured, three images were randomly obtained with one chamber, and the average number of cells was taken as the number of migrating cells per chamber. In each trial (n), DMSO, TRAM-34, and ICA-17043 were performed in 3 chambers each, and the number of cells for 3 chambers was further averaged, which was taken as an example. The number of migrating cells in the TRAM-34 and ICA-17043 groups was standardized by the number of migrating cells in the DMSO group, and the change in migration rate due to the drug was calculated. The results are shown in FIG.
 図3に示すように、KCaイオンチャネル阻害剤であるTRAM-34及びICA-17043の添加は、AX細胞の細胞遊走の亢進を顕著に抑制した(図3のA及びB)。また、AO細胞に対して同様の阻害剤を添加しても影響はなかった。 As shown in FIG. 3, the addition of the K Ca ion channel inhibitors TRAM-34 and ICA-17043 markedly suppressed the enhancement of cell migration of AX cells (A and B in FIGS. 3). Moreover, the addition of a similar inhibitor to AO cells had no effect.
(AO/AX細胞及び骨肉腫採取細胞におけるKCaイオンチャネルの発現) AX細胞[1]、AO細胞[2]及び骨肉腫腫瘍細胞[3](AX細胞を一度マウスに移植し、形成した腫瘍から細胞を採取し培養したもの。腫瘍形成能がAX細胞より高い。)をtriplicateで細胞培養皿に播種した。翌日、培養皿に細胞が付着したことを確認して、Nucleospin RNA(Takara)を用いてRNAを抽出・回収した。 (Expression of K Ca ion channels in AO / AX cells and osteosarcoma-collected cells) AX cells [1], AO cells [2] and osteosarcoma tumor cells [3] (tumors formed by transplanting AX cells into mice once The cells were collected from the cells and cultured. The tumorigenicity was higher than that of AX cells.) Was seeded in a cell culture dish by triplicate. The next day, after confirming that the cells had adhered to the culture dish, RNA was extracted and recovered using Nucleospin RNA (Takara).
 また、腫瘍からのサンプル[7]、[8]は、骨肉腫腫瘍細胞[3]をマウスに皮下移植し、それぞれ、26日後に形成した原発巣(皮下腫瘍)、肺転移巣より、腫瘍片を回収したものである(n=3)。腫瘍片はNucleospin RNAの組織溶解液と混ぜ、Biomasher(Nippi)を用いてRNAを含む溶液を回収し、以後はNucleospinRNAのプロトコールに従ってRNAを抽出した。 In the samples [7] and [8] from the tumor, osteosarcoma tumor cells [3] were subcutaneously transplanted into mice, and tumor fragments were formed from the primary tumor (subcutaneous tumor) and lung metastasis formed 26 days later, respectively. Was recovered (n = 3). The tumor pieces were mixed with a tissue lysate of Nucleospin RNA, a solution containing RNA was recovered using Biomasher (Nippi), and then RNA was extracted according to the protocol of Nucleospin RNA.
(リアルタイムPCRによるKCaイオンチャネルの発現解析) 0.5μgのRNAをPrime Script(Takara)を用いて逆転写し、cDNAを作成した。リアルタイムPCRは、一般的に用いられるプロトコールにて行った。cDNA0.4μgとKcnn4、β-Actinの各プライマーを使用し、酵素にはThunderbird Premix(TOYOBO)を用いて添付書通りに溶液を調整した。溶液は、48穴のリアルタイムPCR用ディッシュに準備し、StepOne plus(Thermo Fischer Scientific)を用いてPCRを行い(機器のデフォルト設定)、発現を定量化した。結果はKcnn4の発現をβ-Actinの発現で割り、比を算出した。それぞれの増幅に用いたプライマーの配列は以下の通りである。結果を図4に示す。 (Expression analysis of K Ca ion channel by real-time PCR) 0.5 μg of RNA was reverse transcribed using Prime Script (Takara) to prepare cDNA. Real-time PCR was performed using a commonly used protocol. The solution was prepared according to the attachment using 0.4 μg of cDNA, each primer of Kcnn4 and β-Actin, and Thunderbird Premix (TOYOBO) as an enzyme. The solution was prepared in a 48-well real-time PCR dish and PCR was performed using StepOne plus (Thermo Fischer Scientific) (device default setting) to quantify expression. As a result, the expression of Kcnn4 was divided by the expression of β-Actin to calculate the ratio. The sequences of the primers used for each amplification are as follows. The results are shown in FIG.
Kcnn4(Forward側: CAAGCACACTCGAAGGAAGG(配列番号27)、Reverse側: CTTCCGGTGTTTCAGCCGTA)(配列番号28)β-Actin(Forward側: CAACCGTGAAAAGATGACCC(配列番号29), Reverse側: TACGACCAGAGGCATACAG)(配列番号30) Kcnn4 (Forward side: CAAGCACACTCGAAGGAAGG (SEQ ID NO: 27), Reverse side: CTTCCGGTGTTTCAGCCGTA) (SEQ ID NO: 28) β-Actin (Forward side: CAACCGTGAAAGATGACCC (SEQ ID NO: 29), Reverse side: TAGACCAGAGGCATACAG) (SEQ ID NO: 30)
 図4のAに示すように、AX細胞[1]ほか、骨肉腫腫瘍細胞[3]、原発巣[7]及び転移巣[8]におけるKCaイオンチャネルの発現量が、AO細胞[1]よりも増大していた。なかでも、転移巣[8]において高い発現量を示していた。 As shown in A of FIG. 4, the expression level of K Ca ion channels in AX cells [1], osteosarcoma tumor cells [3], primary lesions [7] and metastatic lesions [8] is AO cells [1]. Was increasing. Among them, the expression level was high in the metastatic lesion [8].
(組織免疫抗体染色法による原発巣及び転移巣におけるKCaイオンチャネルの発現) 図4のAの骨肉腫腫瘍細胞[3]をマウスの大腿骨の骨髄内に移植し、原発巣(皮下腫瘍)、肝臓転移巣及び肺転移巣を形成させた。マウスは致死量のペントバルビタールを腹腔注射することにより安楽死させ、原発巣(皮下腫瘍)、転移巣(肺、肝臓)を取り出し、4%-パラホルムアルデヒドに2日間漬けて固定した。固定した検体はパラフィンに包埋したのち、薄切し、スライドガラスに貼り付けた。免疫抗体染色の手順は一般的な手法を用いて行った。以下に簡単に記す。スライドガラスの検体を、キシレン、100%,90%,80%,70%のエタノールに順次漬けることにより、脱パラフィン、脱キシレンをおこない、クエン酸緩衝液内で熱処理することにより、抗原の賦活化を行った。 (Expression of K Ca ion channel in primary lesion and metastatic lesion by tissue immunoantibody staining method) Osteosarcoma tumor cells [3] in FIG. 4A were transplanted into the bone marrow of the femur of a mouse, and the primary lesion (subcutaneous tumor). , Liver metastases and lung metastases were formed. The mice were euthanized by intraperitoneal injection of a lethal dose of pentobarbital, the primary lesion (subcutaneous tumor) and metastatic lesion (lung, liver) were removed and fixed in 4% -paraformaldehyde for 2 days. The fixed sample was embedded in paraffin, sliced, and attached to a slide glass. The procedure for immunohistochemical staining was performed using a general method. It is briefly described below. The sample of the slide glass is deparaffinized and dexylene by immersing it in xylene, 100%, 90%, 80%, and 70% ethanol in that order, and heat-treated in a citric acid buffer to activate the antigen. Was done.
 次に、3%過酸化水素水入りメタノールにて内因性ペルオキシダーゼの不活化を行い、リン酸緩衝液(PBS)で洗浄後、3%-BSA-PBSでブロッキングを行った。その後、一次抗体(GeneTex社の抗Kcnn4抗体)を4℃で一晩作用させた。PBSで洗浄後、ニチレイ社のヒストファインを2次抗体として作用させ、PBSで洗浄後、DABにて発色させた。流水で洗浄後、ヘマトキシリン液で核を染色し、70%,80%,90%,100%のエタノール、キシレンに順次漬けることにより透徹処理を行った。最後にマリノール液(MUTO)を付けたカバーグラスにて封入した。結果を図4のBに示す。 Next, endogenous peroxidase was inactivated with methanol containing 3% hydrogen peroxide solution, washed with phosphate buffer (PBS), and blocked with 3% -BSA-PBS. Then, the primary antibody (Anti-Kcnn4 antibody manufactured by GeneTex) was allowed to act at 4 ° C. overnight. After washing with PBS, Nichirei's Histfine was allowed to act as a secondary antibody, and after washing with PBS, color was developed with DAB. After washing with running water, the nuclei were stained with a hematoxylin solution, and the nuclei were soaked in 70%, 80%, 90%, and 100% ethanol and xylene in that order to perform a transparent treatment. Finally, it was sealed in a cover glass with a marinol solution (MUTO). The results are shown in B of FIG.
 図4のBに示すように、原発巣(骨髄内)及び転移巣(肝臓及び肺)において、KCaイオンチャネルのタンパク質が発現することを確認した。 As shown in B of FIG. 4, it was confirmed that the protein of the K Ca ion channel was expressed in the primary lesion (intrabone marrow) and the metastatic lesion (liver and lung).
 以上の結果から、潜在的がん幹細胞であるAO細胞においてKCaイオンチャネルは発現していないが、AO細胞から前駆細胞様細胞であるAX細胞への変化に際して及び腫瘍細胞としての増殖、腫瘍細胞の悪性化及び転移などに際し、KCaイオンチャネルが高発現していることがわかった。 From the above results, K Ca ion channels are not expressed in AO cells, which are potential cancer stem cells, but when changing from AO cells to AX cells, which are progenitor cell-like cells, and proliferation as tumor cells, tumor cells It was found that K Ca ion channels were highly expressed during malignant transformation and metastasis.
(関連文献の一覧) 以下に記載の文献は、引用により本明細書に組み込まれるものとする。
1.     Bednenko J, Harriman R, Marien L, Nguyen HM, Agrawal A, Papoyan A, Bisharyan Y, Cardarelli J, Cassidy-Hanley D, Clark T, Pedersen D, Abdiche Y, Harriman W, van der Woning B, de Haard H, Collarini E, Wulff H, and Colussi P. A multiplatform strategy for the discovery of conventional monoclonal antibodies that inhibit the voltage-gated potassium channel Kv1.3. MAbs 10: 636-650, 2018.
2.     Chen Y, Kuang D, Zhao X, Chen D, Wang X, Yang Q, Wan J, Zhu Y, Wang Y, Zhang S, Tang Q, Masuzawa M, Wang G, and Duan Y. miR-497-5p inhibits cell proliferation and invasion by targeting KCa3.1 in angiosarcoma. Oncotarget 7: 58148-58161, 2016.
3.     D'Alessandro G, Catalano M, Sciaccaluga M, Chece G, Cipriani R, Rosito M, Grimaldi A, Lauro C, Cantore G, Santoro A, Fioretti B, Franciolini F, Wulff H, and Limatola C. KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo. Cell Death Dis 4: e773, 2013.
4.     Faouzi M, Hague F, Geerts D, Ay AS, Potier-Cartereau M, Ahidouch A, and Ouadid-Ahidouch H. Functional cooperation between KCa3.1 and TRPC1 channels in human breast cancer: Role in cell proliferation and patient prognosis. Oncotarget 7: 36419-36435, 2016.
5.     Fujiwara T, Katsuda T, Hagiwara K, Kosaka N, Yoshioka Y, Takahashi RU, Takeshita F, Kubota D, Kondo T, Ichikawa H, Yoshida A, Kobayashi E, Kawai A, Ozaki T, and Ochiya T. Clinical relevance and therapeutic significance of microRNA-133a expression profiles and functions in malignant osteosarcoma-initiating cells. Stem Cells 32: 959-973, 2014.
6.     Fujiwara T, Kunisada T, Takeda K, Uotani K, Yoshida A, Ochiya T, and Ozaki T. MicroRNAs in soft tissue sarcomas: overview of the accumulating evidence and importance as novel biomarkers. Biomed Res Int 2014: 592868, 2014.
7.     Kito H, Yamazaki D, Ohya S, Yamamura H, Asai K, and Imaizumi Y. Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells. Biochem Biophys Res Commun 411: 293-298, 2011.
8.     Liu D, Tseng M, Epstein LF, Green L, Chan B, Soriano B, Lim D, Pan O, Murawsky CM, King CT, and Moyer BD. Evaluation of recombinant monoclonal antibody SVmab1 binding to Na V1.7 target sequences and block of human Na V1.7 currents. F1000Res 5: 2764, 2016.
9.     Rauer H, Lanigan MD, Pennington MW, Aiyar J, Ghanshani S, Cahalan MD, Norton RS, and Chandy KG. Structure-guided transformation of charybdotoxin yields an analog that selectively targets Ca(2+)-activated over voltage-gated K(+) channels. J Biol Chem 275: 1201-1208, 2000.
10.    Shimizu T, Ishikawa T, Sugihara E, Kuninaka S, Miyamoto T, Mabuchi Y, Matsuzaki Y, Tsunoda T, Miya F, Morioka H, Nakayama R, Kobayashi E, Toyama Y, Kawai A, Ichikawa H, Hasegawa T, Okada S, Ito T, Ikeda Y, Suda T, and Saya H. c-MYC overexpression with loss of Ink4a/Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis. Oncogene 29: 5687-5699, 2010.
11.    Takahashi N, Nobusue H, Shimizu T, Sugihara E, Yamaguchi-Iwai S, Onishi N, Kunitomi H, Kuroda T, and Saya H. ROCK Inhibition Induces Terminal Adipocyte Differentiation and Suppresses Tumorigenesis in Chemoresistant Osteosarcoma Cells. Cancer research 79: 3088-3099, 2019.
12.    Williams WA, Linley JE, Jones CA, Shibata Y, Snijder A, Button J, Hatcher JP, Huang L, Taddese B, Thornton P, Schofield DJ, Thom G, Popovic B, Dosanjh B, Wilkinson T, Hughes J, Dobson CL, Groves MA, Webster CI, Billinton A, Vaughan TJ, and Chessell I. Antibodies binding the head domain of P2X4 inhibit channel function and reverse neuropathic pain. Pain 2019.
13.    Wulff H, and Castle NA. Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 3: 385-396, 2010.
14.    Yamazaki D, Aoyama M, Ohya S, Muraki K, Asai K, and Imaizumi Y. Novel functions of small conductance Ca2+-activated K+ channel in brain endothelial cells. J Biol Chem 281: 38430-38439, 2006.
(List of Related Documents) The documents described below shall be incorporated herein by reference.
1. Bednenko J, Harriman R, Marien L, Nguyen HM, Agrawal A, Papoyan A, Bisharyan Y, Cardarelli J, Cassidy-Hanley D, Clark T, Pedersen D, Abdiche Y, Harriman W, van der Woning B, de Haard H, Collarini E, Wulff H, and Colussi P. A multiplatform strategy for the discovery of conventional monoclonal antibodies that inhibit the voltage-gated potassium channel Kv1.3. MAbs 10: 636-650, 2018.
2. Chen Y, Kuang D, Zhao X, Chen D, Wang X, Yang Q, Wan J, Zhu Y, Wang Y, Zhang S, Tang Q, Masuzawa M, Wang G, and Duan Y. miR-497-5p inhibits cell proliferation and invasion by targeting KCa3.1 in angiosarcoma. Oncotarget 7: 58148-58161, 2016.
3. D'Alessandro G, Catalano M, Sciaccaluga M, Chece G, Cipriani R, Rosito M, Grimaldi A, Lauro C, Cantore G, Santoro A, Fioretti B, Franciolini F, Wulff H, and Limatola C. KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo. Cell Death Dis 4: e773, 2013.
4. Faouzi M, Hague F, Geerts D, Ay AS, Potier-Cartereau M, Ahidouch A, and Ouadid-Ahidouch H. Functional cooperation between KCa3.1 and TRPC1 channels in human breast cancer: Role in cell proliferation and patient prognosis. Oncotarget 7: 36419-36435, 2016.
5. Fujiwara T, Katsuda T, Hagiwara K, Kosaka N, Yoshioka Y, Takahashi RU, Takeshita F, Kubota D, Kondo T, Ichikawa H, Yoshida A, Kobayashi E, Kawai A, Ozaki T, and Ochiya T. Clinical relevance and therapeutic significance of microRNA-133a expression profiles and functions in malignant osteosarcoma-initiating cells. Stem Cells 32: 959-973, 2014.
6. Fujiwara T, Kunisada T, Takeda K, Uotani K, Yoshida A, Ochiya T, and Ozaki T. MicroRNAs in soft tissue sarcomas: overview of the accumulating evidence and importance as novel biomarkers. Biomed Res Int 2014: 592868, 2014.
7. Kito H, Yamazaki D, Ohya S, Yamamura H, Asai K, and Imaizumi Y. Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells. Biochem Biophys Res Commun 411: 293-298, 2011.
8. Liu D, Tseng M, Epstein LF, Green L, Chan B, Soriano B, Lim D, Pan O, Murawsky CM, King CT, and Moyer BD. Evaluation of recombinant monoclonal antibody SVmab1 binding to Na V1.7 target sequences and block of human Na V1.7 currents. F1000Res 5: 2764, 2016.
9. Rauer H, Lanigan MD, Pennington MW, Aiyar J, Ghanshani S, Cahalan MD, Norton RS, and Chandy KG. Structure-guided transformation of charybdotoxin yields an analog that selectively targets Ca (2+)-activated over voltage-gated K (+) channels. J Biol Chem 275: 1201-1208, 2000.
10. Shimizu T, Ishikawa T, Sugihara E, Kuninaka S, Miyamoto T, Mabuchi Y, Matsuzaki Y, Tsunoda T, Miya F, Morioka H, Nakayama R, Kobayashi E, Toyama Y, Kawai A, Ichikawa H, Hasegawa T, Okada S, Ito T, Ikeda Y, Suda T, and Saya H. c-MYC overexpression with loss of Ink4a / Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis. Oncogene 29: 5687-5699, 2010.
11. Takahashi N, Nobusue H, Shimizu T, Sugihara E, Yamaguchi-Iwai S, Onishi N, Kunitomi H, Kuroda T, and Saya H. ROCK Inhibition Induces Terminal Adipocyte Differentiation and Suppresses Tumorigenesis in Chemoresistant Osteosarcoma Cells. Cancer research 79: 3088-3099, 2019.
12. Williams WA, Linley JE, Jones CA, Shibata Y, Snijder A, Button J, Hatcher JP, Huang L, Taddese B, Thornton P, Schofield DJ, Thom G, Popovic B, Dosanjh B, Wilkinson T, Hughes J, Dobson CL, Groves MA, Webster CI, Billinton A, Vaughan TJ, and Chessell I. Antibodies binding the head domain of P2X4 inhibit channel function and reverse neuropathic pain. Pain 2019.
13. Wulff H, and Castle NA. Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 3: 385-396, 2010.
14. Yamazaki D, Aoyama M, Ohya S, Muraki K, Asai K, and Imaizumi Y. Novel functions of small conductance Ca 2+ -activated K + channel in brain endothelial cells. J Biol Chem 281: 38430-38439, 2006.
配列番号23~30:プライマー SEQ ID NOs: 23-30: Primers

Claims (12)

  1.  骨腫瘍の予防又は治療剤であって、
     KCa3.1(KCNN4)イオンチャネルの活性を抑制する抑制剤を有効成分とする、治療剤。
    A prophylactic or therapeutic agent for bone tumors
    K Ca 3.1 (KCNN4) A therapeutic agent containing an inhibitor that suppresses the activity of ion channels as an active ingredient.
  2.  前記抑制剤は、前記イオンチャネルの活性を阻害するブロッカーである、請求項1に記載の予防又は治療剤。 The preventive or therapeutic agent according to claim 1, wherein the inhibitor is a blocker that inhibits the activity of the ion channel.
  3.  前記抑制剤は、前記イオンチャネルの発現を抑制する発現抑制剤である、請求項1に記載の予防又は治療剤。 The preventive or therapeutic agent according to claim 1, wherein the inhibitor is an expression inhibitor that suppresses the expression of the ion channel.
  4.  前記抑制剤は、前記イオンチャネルに結合する抗体である、請求項1に記載の予防又は治療剤。 The preventive or therapeutic agent according to claim 1, wherein the inhibitor is an antibody that binds to the ion channel.
  5.  前記骨腫瘍は、骨肉腫である、請求項1~4のいずれかに記載の予防又は治療剤。 The prophylactic or therapeutic agent according to any one of claims 1 to 4, wherein the bone tumor is osteosarcoma.
  6.  腫瘍の予防又は治療剤の評価のための剤であって、
     脱分極に伴う活動電位の持続時間を延長する電位依存性Naイオンチャネルと、
     静止膜電位を負方向に深くするKイオンチャネルと、
     KCa3.1イオンチャネルと、
    を備える細胞を含む、剤。
    An agent for the evaluation of tumor prophylaxis or therapeutic agents,
    Voltage-gated Na ion channels that prolong the duration of action potentials associated with depolarization,
    K ion channels that deepen the resting membrane potential in the negative direction,
    K Ca 3.1 ion channel and
    An agent comprising cells comprising.
  7.  前記腫瘍は、骨腫瘍である、請求項6に記載の剤。 The agent according to claim 6, wherein the tumor is a bone tumor.
  8.  イオンチャネル作用薬の評価方法であって、
     前記イオンチャネル作用薬は、骨腫瘍等の間葉系腫瘍を予防又は治療するための薬剤であり、
     標的イオンチャネルがKCa3.1イオンチャネルであり、
     被験化合物の前記標的イオンチャネルの抑制活性を評価工程、
    を備える、方法。
    An evaluation method for ion channel agonists
    The ion channel agonist is a drug for preventing or treating mesenchymal tumors such as bone tumors.
    The target ion channel is the K Ca 3.1 ion channel,
    Evaluation step of evaluating the inhibitory activity of the target ion channel of the test compound,
    A method.
  9.  前記評価工程は、請求項6又は7に記載の剤を用いて前記抑制活性を評価する工程である、請求項8に記載の方法。 The method according to claim 8, wherein the evaluation step is a step of evaluating the inhibitory activity using the agent according to claim 6 or 7.
  10.  イオンチャネル作用薬の評価方法であり、
     前記イオンチャネル作用薬は、がん幹細胞の腫瘍細胞への分化、腫瘍細胞の悪性化、及びがん転移を抑制するための薬剤であり、
     標的イオンチャネルがKCa3.1イオンチャネルであり、
     被験化合物の前記標的イオンチャネルの抑制活性を評価する工程、
    を備える、方法。
    It is an evaluation method for ion channel agonists,
    The ion channel agonist is a drug for suppressing the differentiation of cancer stem cells into tumor cells, malignant transformation of tumor cells, and cancer metastasis.
    The target ion channel is the K Ca 3.1 ion channel,
    A step of evaluating the inhibitory activity of the target ion channel of the test compound,
    A method.
  11. 骨腫瘍についての病態の検査のためのマーカーであって、
     KCa3.1イオンチャネル、そのmRNA又はそのpre-mRNAに結合する化合物を含む、マーカー。
    A marker for examining the pathology of bone tumors
    A marker comprising a K Ca 3.1 ion channel, its mRNA or a compound that binds its pre-mRNA.
  12.  骨腫瘍についての病態の検査方法であって、
     被験者の対象部位から採取された細胞における、KCa3.1イオンチャネル活性を測定する工程、
    を備える、方法。
     
    It is a method of examining the pathological condition of bone tumors.
    A step of measuring K Ca 3.1 ion channel activity in cells collected from a target site of a subject,
    A method.
PCT/JP2021/001820 2020-01-20 2021-01-20 Agent for treating bone tumor, and method for evaluating ion channel agonist for treatment of bone tumor, etc. WO2021149714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020007116A JP2021113176A (en) 2020-01-20 2020-01-20 Agent for treating bone tumor, and method for evaluating ion channel agonist for treatment of bone tumor, etc
JP2020-007116 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021149714A1 true WO2021149714A1 (en) 2021-07-29

Family

ID=76991764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001820 WO2021149714A1 (en) 2020-01-20 2021-01-20 Agent for treating bone tumor, and method for evaluating ion channel agonist for treatment of bone tumor, etc.

Country Status (2)

Country Link
JP (1) JP2021113176A (en)
WO (1) WO2021149714A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084221A1 (en) * 2016-11-01 2018-05-11 公立大学法人名古屋市立大学 Material for screening compounds acting on ion channels and use of said material
JP2019522491A (en) * 2016-06-20 2019-08-15 セルライオンバイオメド インコーポレイテッド Cancer diagnostic composition using potassium channel protein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019522491A (en) * 2016-06-20 2019-08-15 セルライオンバイオメド インコーポレイテッド Cancer diagnostic composition using potassium channel protein
WO2018084221A1 (en) * 2016-11-01 2018-05-11 公立大学法人名古屋市立大学 Material for screening compounds acting on ion channels and use of said material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOHR CORINNA J., STEUDEL FRIEDERIKE A., GROSS DOMINIC, RUTH PETER, LO WING-YEE, HOPPE REINER, SCHROTH WERNER, BRAUCH HILTRUD, HUBE: "Cancer-Associated Intermediate Conductance Ca2+-Activated K+ Channel KCa3.1", CANCERS, vol. 11, no. 1, 2019, pages 1 - 22, XP055843570, DOI: 10.3390/cancers11010109 *

Also Published As

Publication number Publication date
JP2021113176A (en) 2021-08-05

Similar Documents

Publication Publication Date Title
Berrout et al. TRPA1–FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p
Bercier et al. Dynactin1 depletion leads to neuromuscular synapse instability and functional abnormalities
JP2010521670A (en) Use of FANCI and drugs that modulate FANCI in the prognosis, in diagnosis, and in the treatment of cancer
Formisano et al. NCX1 is a new rest target gene: role in cerebral ischemia
KR20090039748A (en) Amigo-2 inhibitors for treating, diagnosing or detecting cancer
WO2009098197A1 (en) Target sequences and methods to identify the same, useful in treatment of neurodegenerative diseases
WO2011015572A1 (en) Molecular targets and compounds, and methods to identify the same, useful in the treatment of neurodegenerative diseases
EP2121966A2 (en) Screening method for anti-diabetic compounds
WO2014093773A1 (en) Methods and assays relating to macrophage differentiation
JP2010531662A (en) TRIM24 (TIF-1A) is a modulator of P53 and a cancer target
Zhang et al. Keratin 1 attenuates hypoxic pulmonary artery hypertension by suppressing pulmonary artery media smooth muscle expansion
JP2016522675A (en) Molecular targets useful in the treatment of diseases associated with epithelial-mesenchymal transition and inhibitors of said targets
JP2016122005A (en) Novel therapeutic and diagnostic products and methods
Matsumura et al. Distinct types of stem cell divisions determine organ regeneration and aging in hair follicles
Vieceli et al. Leukocyte receptor tyrosine kinase interacts with secreted midkine to promote survival of migrating neural crest cells
WO2007136857A2 (en) Hox compositions and methods
JP2012517822A (en) Identification method and compound useful for diagnosis and treatment of diseases including inflammation
Jiwani et al. Suppressor of fused controls cerebellum granule cell proliferation by suppressing Fgf8 and spatially regulating Gli proteins
WO2021149714A1 (en) Agent for treating bone tumor, and method for evaluating ion channel agonist for treatment of bone tumor, etc.
Lin et al. Cross talk between Id1 and its interactive protein Dril1 mediate fibroblast responses to transforming growth factor-β in pulmonary fibrosis
WO2011129427A1 (en) Diagnostic agent and therapeutic agent for cancer
Bossolasco et al. Human TDE1, a TDE1/TMS family member, inhibits apoptosis in vitro and stimulates in vivo tumorigenesis
Rodriguez-Pinto et al. Identification of novel tumor antigens with patient-derived immune-selected antibodies
JP2021176852A (en) Biomarker composition for diagnosing radiation-resistant cancer or for predicting prognosis of radiation therapy containing pmvk as active ingredient
CA2736425A1 (en) Method for identifying compounds useful for increasing the functional activity and cell surface expression of cf-associated mutant cystic fibrosis transmembrane conductance regulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21743757

Country of ref document: EP

Kind code of ref document: A1