WO2021149587A1 - Method for producing glucuronic acid - Google Patents

Method for producing glucuronic acid Download PDF

Info

Publication number
WO2021149587A1
WO2021149587A1 PCT/JP2021/001086 JP2021001086W WO2021149587A1 WO 2021149587 A1 WO2021149587 A1 WO 2021149587A1 JP 2021001086 W JP2021001086 W JP 2021001086W WO 2021149587 A1 WO2021149587 A1 WO 2021149587A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucose
glucuronic acid
amino acid
flavin
seq
Prior art date
Application number
PCT/JP2021/001086
Other languages
French (fr)
Japanese (ja)
Inventor
昂洸 藤井
高史 宅見
俊雄 荒木
本田 通済
Original Assignee
池田食研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 池田食研株式会社 filed Critical 池田食研株式会社
Priority to CN202180009959.XA priority Critical patent/CN114981438A/en
Priority to JP2021573110A priority patent/JPWO2021149587A1/ja
Publication of WO2021149587A1 publication Critical patent/WO2021149587A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides

Definitions

  • the present invention relates to a method for producing glucuronic acid using a flavin-bound glucose dehydrogenase, a method for producing a glucuronic acid derivative, and a catalyst for producing glucuronic acid or a glucuronic acid derivative.
  • Glucuronic acid (chemical formula: C 6 H 10 O 7 ) is a typical uronic acid derived from glucose. Glucuronic acid has a detoxifying effect that binds harmful substances in the body and excretes them in urine. Currently, in Japan, glucuronic acid and its intramolecular ester, glucuronolactone, are used in pharmaceutical products or quasi-drug beverage products.
  • an enzyme that oxidizes the hydroxymethyl group at the 6-position of glucose for example, glucose oxidase modified from galactose oxidase (Patent Document 1), aldehyde dehydrogenase (Patent Document 2), alcohol A method using a dehydrogenase (Patent Document 3) has been reported.
  • these enzymes have problems that the specific activity of the enzyme is low, the oxidation specificity of glucose to the hydroxymethyl group is low, and glucose oxides such as gluconic acid are produced in addition to glucuronic acid.
  • ⁇ -1,4-polyglucuronic acid produced by oxidizing starch is mixed with Paenivacillus bacteria or a glycoside-binding hydrolyzing enzyme derived from the same bacteria.
  • a method for producing glucuronic acid by acting (Patent Document 4), a method for producing glucuronic acid using an enzyme that hydrolyzes trehalose oxide as a substrate (Patent Document 5), and myo-inositol oxygenase using myo-inositol as a substrate.
  • Patent Document 6 A method for producing glucuronic acid using glucuronic acid (Patent Document 6) has been reported. However, the problems of these production methods are that the preparation of the substrate is complicated and the price of the substrate is high.
  • Non-Patent Document 7 a production method using Pseudogluconovator saccharoketogenes Rh47-3 strain has been reported (Patent Document 7), but the fermentation method is an enzyme method. In comparison, the increase in contaminants in the culture solution reduces the purity of the target product, glucuronic acid, and has the problem of requiring a high degree of purification. Further, as a method for producing glucuronic acid without using an enzyme, a method for producing glucuronic acid by converting starch into oxidized starch with nitric acid and then hydrolyzing with sulfuric acid is known (Non-Patent Document 1). However, this method has a problem that a large amount of reagents having a large environmental load such as nitric acid and sulfuric acid must be used.
  • a chemical synthesis method for example, methyl 2,3,4-tri-o-acetyl- ⁇ -D-glucuronate as a glucuronic acid donor and trimethylsilyl triflate as a Lewis acid catalyst are used for a target having a hydroxyl group to be glucuronidated.
  • a method of imparting glucuronic acid to glucuronidation by reacting (Non-Patent Document 3) has been reported.
  • the problems of both methods are that the reagent used for the reaction is expensive, the yield of the target glucuronide is low, and purification for the purpose of removing by-products after the reaction is required. ..
  • flavin-linked glucose dehydrogenase catalyzes the reaction of dehydrogenating (oxidizing) the hydroxy group at the 1-position of glucose using flavin as a coenzyme. It is an enzyme. Flavin-bound GDH from the genus Aspergillus is not affected by dissolved oxygen, has low activity on maltose and galactose, and has high substrate specificity on glucose, and is therefore used for measuring blood glucose concentration.
  • An object of the present invention is to provide a method for producing a glucuronic acid or a glucuronic acid derivative, which is simpler, lower cost, and less environmentally friendly than the existing method.
  • the present inventor diligently studied a method for directly producing glucuronic acid from glucose, which is an inexpensive raw material, and found that 6 of glucose was added to flavin-bound GDH, which is an enzyme that oxidizes glucose to glucono-1,5-lactone. Some have specificity for oxidation to the hydroxymethyl group at the position, and when the enzyme having glucose-6-dehydrogenase activity is allowed to act on glucose, the hydroxymethyl group at the 6-position of glucose is oxidized to specifically produce glucuronic acid. Found to generate. It was also found that when the enzyme is allowed to act on a glucose derivative such as glucoside, the hydroxymethyl group at the 6-position of the glucose skeleton is oxidized to specifically produce a glucuronic acid derivative.
  • the present invention relates to the following [1] to [11].
  • [1] A method for producing glucuronic acid, which comprises a step of reacting glucose with a flavin-binding glucose dehydrogenase having glucose-6-dehydrogenase activity in the presence of a mediator to produce glucuronic acid.
  • [2] A method for producing a glucuronic acid derivative, which comprises a step of allowing a flavin-binding glucose dehydrogenase having a glucose-6-dehydrogenase activity to act on the glucose derivative in the presence of a mediator to produce a glucuronic acid derivative.
  • Flavin-bound glucose dehydrogenases are derived from microorganisms belonging to the genera Collettricum, Glomerella, Diaporte, Cuskia, Acremonium, Laciospaeris, Fusarium or Fiamoniosis [1]-[5] ] The method for producing glucuronic acid or the method for producing a glucuronic acid derivative according to any one of.
  • [7] The method for producing glucuronic acid according to any one of [1] to [6], which uses a recombinant microorganism into which a gene encoding a flavin-binding glucose dehydrogenase is introduced as a flavin-binding glucose dehydrogenase.
  • a method for producing a glucuronic acid derivative [8] The method for producing glucuronic acid or the production of a glucuronic acid derivative according to [7], wherein the gene encoding the flavin-binding glucose dehydrogenase is a gene consisting of any of the following DNAs (a) to (e).
  • Method (A) DNA having the base sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. (B) 1 to 1 in the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. DNA encoding a protein having a base sequence in which several bases have been deleted, substituted or added, and having glucose-6-dehydrogenase activity. (C) For the base sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37.
  • DNA encoding a protein having a nucleotide sequence having 80% or more sequence identity and having glucose-6-dehydrogenase activity (D) Complementary to the nucleotide sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. DNA that hybridizes with DNA consisting of a unique base sequence under stringent conditions and encodes a protein having glucose-6-dehydrogenase activity.
  • E DNA encoding the following protein (i), (ii) or (iii)
  • a flavin-linked glucose dehydrogenase having glucose-6-dehydrogenase activity which is one of the following proteins (i) to (iii): (I) A protein having the amino acid sequence shown by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. (Ii) 1 to 1 in the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38.
  • Protein with a few amino acid residues deleted, substituted or inserted and having glucose-6-dehydrogenase activity (iii) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16 , 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38, has an amino acid sequence having 80% or more sequence identity with the amino acid sequence shown, and has glucose-6-dehydrogenase activity. Protein to have. [11] A catalyst for producing a glucuronic acid or a glucuronic acid derivative containing a flavin-binding glucose dehydrogenase protein having glucose-6-dehydrogenase activity.
  • glucuronic acid can be specifically produced directly from glucose, which is an inexpensive raw material, it is simpler than the existing method and the production cost is significantly reduced.
  • the reaction proceeds at room temperature and normal pressure without using a strong acid such as nitric acid or sulfuric acid, it is possible to avoid danger during manufacturing and reduce the environmental load.
  • the glucuronic acid derivative can be specifically produced directly from the glucose derivative, it is simpler than the existing glucuronidation method, and the production cost is reduced.
  • the effect of increasing the water solubility of the glucose derivative can be expected by oxidizing the hydroxymethyl group.
  • the thermal stability of CpGDH, FGDH and CsGDH is shown.
  • the pH stability of CpGDH, FGDH and CsGDH is shown.
  • the TLC analysis result of glucose oxide is shown.
  • the results of HPLC analysis of glucose oxide are shown.
  • the TLC analysis result of the substrate oxide is shown.
  • the TLC analysis result of glucose oxide is shown.
  • the thermal stability of CglGDH, CoGDH, CtoGDH, CgoGDH, GsGDH and DhGDH is shown.
  • the pH stability of CglGDH, CoGDH, CtoGDH, CgoGDH, GsGDH and DhGDH is shown.
  • the TLC analysis result of glucose oxide is shown.
  • the thermal stability of Ko37GDH, AsGDH, Ko38GDH, LhGDH, DsGDH and CtaGDH is shown.
  • FlaGDH, PcGDH, Fla_A. oGDH and Pc_A Shows the thermal stability of oGDH.
  • the pH stability of Ko37GDH, AsGDH, Ko38GDH, LhGDH, DsGDH and CtaGDH is shown.
  • FlaGDH, PcGDH, Fla_A. oGDH and Pc_A. Shows the pH stability of oGDH.
  • the results of 1 H-NMR analysis and 13 C-NMR analysis of Piceid are shown.
  • the results of 1 H-NMR analysis and 13 C-NMR analysis of piceid oxide are shown.
  • the flavin-linked glucose dehydrogenase having a glucose-6-dehydrogenase activity (hereinafter, may be referred to as "flavin-linked GDH") is a hydroxy at the 6-position of glucose using flavin as a coenzyme.
  • the flavin-bound GDH of the present invention selectively acts on the 6-position of glucose and specifically oxidizes the hydroxymethyl group at the 6-position of glucose to the carboxy group. Therefore, when the enzyme is allowed to act on glucose, it specifically acts. Produces glucuronic acid.
  • the enzyme when allowed to act on a glucose derivative such as glucoside, the hydroxymethyl group at the 6-position of the glucose skeleton is specifically oxidized, so that a glucuronic acid derivative is specifically produced from the glucose derivative.
  • Glucose-6-dehydrogenase activity causes glucose-6-dehydrogenase to act on glucose, and the reaction product is analyzed by thin layer chromatography or HPLC. It can be confirmed by comparing with.
  • the flavin-bound GDH of the present invention has substantially no glucose-1-dehydrogenase activity and substantially does not produce gluconic acid from the substrate glucose.
  • substantially means that the production of gluconic acid cannot be confirmed as a result of thin layer chromatography or HPLC analysis of the reaction product.
  • the flavin-bound GDH of the present invention is not particularly limited as long as it is an enzyme having glucose-6-dehydrogenase activity, but is preferably any of the following proteins (i) to (iii).
  • Protein with a few amino acid residues deleted, substituted or inserted and having glucose-6-dehydrogenase activity (iii) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16 , 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38, has an amino acid sequence having 80% or more sequence identity with the amino acid sequence shown, and has glucose-6-dehydrogenase activity.
  • amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38 One to several in the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38.
  • the number of amino acid residue deletions, substitutions or insertions in an amino acid sequence in which an amino acid residue is deleted, substituted or inserted is determined by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, It is not limited as long as it exhibits the same enzymatic activity as the protein having the amino acid sequence shown by 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38, but 1 to 20 is preferable. From 10 to 10 is even more preferred, and 1 to 8 is even more preferred.
  • sequence identity is 80% or more, preferably 85% or more, more preferably 90% or more, further preferably 95% or more, still more preferably 99% or more.
  • identity percentage of such sequences can be calculated using publicly available or commercially available software with an algorithm that compares the reference sequence as a query sequence. As an example, BLAST, FASTA, GENETYX (Genetics) and the like can be used.
  • the amino acid sequences set forth in SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34 are in order Colletotrichum. plurivorum) MAFF305790, fan gas ⁇ F5126 (Fungus_F5126), Colletotrichum sp. (Colletotrichum_sp.), Colletotrichum Gros Eos polio Lee Death (Colletotrichum gloeosporioides), Colletotrichum-Obikyurare (Colletotrichum orbiculare), Colletotrichum-Tofi Erudi meet (Colletotrichum tofieldiae), Colletotrichum Godetiae MAFF240289, Glomerella sp.
  • RD057037 Diaporte Helianthi, Diaporte herianthi, Kuskia oryzae Khuskia oryzae), Rashiosupaerisu-Hasutou (Lasiosphaeris hirsute), Deer Porta CEA et sp. (Diaporthaceae sp.), Colletotrichum-Tanaketi (Colletotrichum tanaceti), Fusarium Lang Setia et (Fusarium langsethiae), Fiamonioshisu-Karubata (Phialemoniopsis curvata ) Is based on the genomic information.
  • SEQ ID NOs: 36 and 38 are sequences in which the sequence presumed to be the secretory signal of SEQ ID NOs: 32 and 34 is replaced with the signal sequence of GDH derived from Aspergillus oryzae.
  • the amino acid sequence represented by SEQ ID NO: 4 or 6 is the same as SEQ ID NO: 2 of the known amino acid sequence Patent No. 6455714 and SEQ ID NO: 1 of Patent No. 5435180, SEQ ID NOs: 8, 10, 12, 18, 20. , 22, 24, 26, 28, 30, 32, and 34 are amino acid sequences registered in a known database, and the protein having the amino acid sequence has glucose-6-dehydrogenase activity. There are no reports of this.
  • the flavin-bound GDH of the present invention preferably has the following properties (1) to (8).
  • flavin include flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), preferably FAD.
  • FAD flavin adenine dinucleotide
  • FMN flavin mononucleotide
  • Solubility Water-soluble
  • pH stability At least pH 5.5 ⁇ Stable between 8.6 This enzyme has a residual enzyme activity of 80% or more after treatment at 30 ° C. for 1 hour at least between pH 5.5 and 8.6.
  • the pH stability is preferably pH 4.3 to 9.3, pH 5.5 to 8.7, pH 3.2 to 9.3, pH 5.5 to 9.3, pH 4.4 to 9.3, pH 4.0.
  • This enzyme is 100 mM potassium phosphate buffer (pH 6.0, 7.0 or 8.0) and 100 mM Tris-HCl buffer (pH 8) at at least 35 ° C. .0) After 60 minutes of treatment, it has 80% or more residual enzyme activity. It is preferably stable up to 40 ° C, 45 ° C, or 50 ° C. (5) Substrate specificity: When the action on glucose is 100%, the action on maltose, xylose and galactose is 2.0% or less. This enzyme has low action on maltose, xylose and galactose and has low action on glucose. High substrate specificity.
  • the action on D-glucose of 50 mM is 100%
  • the action on maltose, D-xylose and D-galactose of 50 mM is 2.0% or less, preferably 0.3% or less, 0. 0.9% or less or 0.2% or less.
  • Km value (against glucose) 30 mM or more
  • the Km value for D-glucose is preferably 150 to 300 mM, 50 to 120 mM, or 30 to 80 mM.
  • Molecular weight 64-66 kDa (calculation from amino acid sequence after signal removal)
  • the secretory signal sequence of the enzyme is predicted at the signal sequence prediction site (SignalP-5.0, http://www.cbs.dtu.dk/services/SignalP/), and the predicted signal part is removed.
  • the molecular weight is calculated from the amino acid sequence in this form.
  • Glucose oxidase activity undetectable
  • the flavin-bound GDH of the present invention acts specifically on the 6-position of glucose, and therefore has low activity on xylose. Therefore, this enzyme can be used for measuring glucose and is useful as an enzyme for a biosensor for measuring glucose.
  • the derived microorganism flavin-binding GDH of the present invention Colletotrichum (Colletotrichum) genus (e.g., Colletotrichum plurivorum, Colletotrichum sp. (RD056779), Colletotrichum gloeosporioides, Colletotrichum orbiculare, Colletotrichum tofieldiae, Colletotrichum godetiae, Colletotrichum tanaceti), Guromerera genus ( For example, Glomerella sp.
  • the flavin-bound GDH of the present invention is an enzyme derived from the above-mentioned microorganism (wild strain or mutant strain), a recombinant enzyme obtained by a genetic engineering method using a gene encoding the flavin-bound GDH of the present invention, and chemical synthesis. It may be any of the synthetic enzymes obtained by. It is preferably a recombinant enzyme.
  • the gene encoding the flavin-bound GDH of the present invention is preferably a gene consisting of any of the following DNAs (a) to (e).
  • C For the base sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37.
  • DNA encoding a protein having a nucleotide sequence having 80% or more sequence identity and having glucose-6-dehydrogenase activity (D) Complementary to the nucleotide sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. DNA that hybridizes with DNA consisting of a unique base sequence under stringent conditions and encodes a protein having glucose-6-dehydrogenase activity.
  • E DNA encoding the following protein (i), (ii) or (iii)
  • 1 to several bases are preferably 1 to 10, more preferably 1 to 5, further preferably 1 to 3, and 1 or 2. Is even more preferable.
  • deletion of a base means loss or disappearance of a base
  • substitution of a base means that a base has been replaced with another base
  • addition of a base means that a base has been added. means. "Addition” includes the addition of a base to one or both ends of a sequence and the insertion of another base between the bases in the sequence.
  • sequence identity of the base sequence is preferably 85% or more, more preferably 90% or more, further preferably 95% or more, still more preferably 99% or more.
  • sequence identity of the base sequence can be determined using the algorithm BLAST (Pro. Natl. Acad. Sci. USA, 1993, 90: 5873-5877) by Karlin and Altschul. Based on this algorithm BLAST, programs called BLASTN and BLASTX have been developed (J. Mol. Biol., 1990, 215, p.403-410). In addition, a homology analysis (Search homology) program of the genetic information processing software Genetyx may be used. Specific methods for these analysis methods are known (see www.ncbi.nlm.nih.gov).
  • the stringent condition means a condition in which base sequences having high identity hybridize with each other and base sequences having lower identity do not hybridize with each other.
  • the "stringent condition" can be appropriately changed depending on the level of identity to be sought. The higher the stringent conditions, the more identical sequences will hybridize.
  • stringent conditions the conditions described in Molecular Cloning: A Laboratory Manual (Second Edition, J. Sambrook et.al, 1989) can be mentioned. That is, in a solution containing 6 ⁇ SSC (composition of 1 ⁇ SSC: 0.15 M sodium chloride, 0.015 M sodium citrate, pH 7.0), 0.5% SDS, 5 ⁇ denhart and 100 mg / mL herring sperm DNA. Conditions include conditions for constant temperature at 65 ° C. for 8 to 16 hours together with the probe for hybridization.
  • an expression vector containing the gene encoding the flavin-bound GDH of the present invention is introduced into a host cell such as a microorganism.
  • the flavin-bound GDH of the present invention can be produced by culturing the transformed transformant.
  • the transformant may carry the gene encoding the flavin-bound GDH of the present invention in the state of a vector, or the gene may be held in the genome.
  • the gene encoding the flavin-bound GDH of the present invention shall be prepared in an isolated state by using an arbitrary method used in the art such as the PCR method with reference to the gene sequence information disclosed in the present specification. Can be done.
  • the type of vector is not particularly limited, and examples thereof include vectors usually used for protein production, such as plasmids, cosmids, phages, viruses, YAC, and BAC. Among them, a plasmid vector is preferable, and a commercially available plasmid vector for protein expression, for example, pET or pBIC can be preferably used. Procedures for introducing genes into plasmid vectors are well known in the art.
  • Examples of the host microorganism to be transformed for expressing the flavin-bound GDH of the present invention include the genus Escherichia, the genus Rhodococcus, the genus Streptomyces, and the genus Bacillus. , Brevibacillus, Staphylococcus, Enterococcus, Listeria, Saccharomyces, Saccharomyces, Pichia Examples include bacteria, yeasts and filamentous fungi belonging to the genera Kluyveromyces, Aspergillus, Penicillium and Trichoderma.
  • the medium and culture conditions used for culturing the transformant can be appropriately selected by those skilled in the art according to the type of the transformant. For example, using a medium containing a carbon source, an inorganic nitrogen source or an organic nitrogen source, an inorganic salt, and other necessary organic micronutrient sources that can be assimilated by microorganisms, under aerobic conditions such as aeration, stirring, and shaking. Can be done.
  • the medium may be a synthetic medium, a natural medium, a semi-synthetic medium, or a commercially available medium.
  • the medium is preferably a liquid medium.
  • the pH of the medium is preferably in the range of, for example, pH 5 to pH 9, and the pH may be adjusted during culturing in consideration of productivity.
  • the culture temperature is preferably 10 ° C. to 40 ° C.
  • the culture period is preferably in the range of 2 to 14 days.
  • the culture After culturing, the culture can be used, but it is preferably used after obtaining a culture supernatant by performing a separation operation such as centrifugation. Alternatively, it is used after obtaining microbial cells, crushing the microbial cells by an arbitrary method, and obtaining a supernatant from the crushed solution.
  • the culture may be a culture solution, microbial cells or a processed product thereof (lyophilized cells, acetone-dried cells, etc.). Further, it may be an immobilized enzyme or an immobilized bacterial cell immobilized by any method.
  • a known purification method can be used for the purification of the flavin-bound GDH of the present invention produced by the transformant.
  • a purified enzyme can be obtained by combining purification operations such as ultrafiltration, salting out, solvent precipitation, heat treatment, dialysis, ion exchange chromatography, hydrophobic chromatography, gel filtration, and affinity chromatography.
  • the method for producing glucuronic acid of the present invention comprises a step of allowing glucose of the present invention to act on the flavin-bound GDH of the present invention in the presence of a mediator to produce glucuronic acid.
  • the form of flavin-bound GDH is not particularly limited, and may be a crude enzyme, a purified enzyme, or a microorganism containing flavin-bound GDH.
  • the microorganism containing the flavin-bound GDH is preferably a recombinant microorganism into which a gene encoding the flavin-bound GDH has been introduced.
  • the microorganism containing the flavin-bound GDH is not limited to life or death, and also includes a treated product of the above-mentioned microbial cells.
  • the production of glucuronic acid is usually carried out in an aqueous medium. Examples of the aqueous medium include water, a buffer solution, a monohydric alcohol, and a dihydric alcohol.
  • Glucose as a substrate is usually D-glucose.
  • the substrate concentration is preferably about 10 mM to 2 M.
  • a chemical substance having an excellent electron transfer ability can be used.
  • Mediators are also referred to as electron carriers, electron acceptors, and redox mediators.
  • Mediators include osmium compounds (eg, osmium (ll) -2,2'-bipyridine complex), quinone compounds (eg, benzoquinone, 1,4-naphthoquinone, vitamin K3 (menadione)), phenolic compounds (tert).
  • phenazine compounds eg, phenazinemethsulfate, 1-methoxy-5-methylphena
  • examples thereof include diummethylsulfate (methylene blue), ferricyanide (for example, potassium ferricyanide), flavonoid (quercetin dihydrate, hesperidin) and the like.
  • ferricyanide for example, potassium ferricyanide
  • flavonoid quercetin dihydrate, hesperidin
  • the amount of the mediator used can be appropriately set depending on the type thereof, but is usually preferably about 0.5 mM to 50 mM.
  • the conditions under which the flavin-bound GDH of the present invention is allowed to act on glucose are not particularly limited as long as the flavin-bound GDH is not inactivated.
  • the reaction proceeds at room temperature and normal pressure. Moreover, since the reaction proceeds under neutral to alkaline conditions, it is not necessary to use a strong acid in the reaction process.
  • the reaction temperature is usually 10 ° C. to 60 ° C., preferably 20 ° C. to 40 ° C., and the reaction time is usually 30 minutes to 72 hours, preferably 1 hour to 48 hours, more preferably 3 hours to 24 hours. be.
  • the reaction pH is preferably pH 5.0 to pH 9.0.
  • the amount of the flavin-bound GDH of the present invention used is preferably about 1 U / mL to 50 U / mL as the final concentration.
  • an oxidase from the viewpoint of reoxidizing the mediator.
  • the oxidase include phenol oxidases such as laccase (EC 1.10.3.2) and peroxidase (EC 1.11.1.7).
  • phenol oxidases such as laccase (EC 1.10.3.2) and peroxidase (EC 1.11.1.7).
  • catalase EC 1.11.1.6
  • the amount of these enzymes used is preferably about 0.25 U / mL to 500 U / mL as the final concentration.
  • glucuronic acid is specifically produced from the substrate glucose.
  • gluconic acid is substantially not produced.
  • Substantial means that when the reaction product is analyzed, the production of gluconic acid cannot be confirmed even by a method such as a gluconic acid measurement kit, thin layer chromatography, or HPLC. Therefore, according to this step, the purification load of glucuronic acid can be reduced.
  • a known isolation / purification method can be used.
  • the produced glucuronic acid can be used as glucuronic acid or in the form of glucuronolactone, which is an intramolecular ester thereof, in pharmaceuticals, quasi-drugs, foods and the like.
  • the method for producing a glucuronic acid derivative of the present invention comprises a step of allowing a glucose derivative to act on a flavin-bound GDH of the present invention in the presence of a mediator to produce a glucuronic acid derivative.
  • the flavin-bound GDH is similar to that described above.
  • the production of the glucuronic acid derivative is also usually carried out in an aqueous medium such as water, a buffer solution, a monohydric alcohol or a dihydric alcohol.
  • the glucose derivative is selected from glucose analogs in which the hydroxyl groups constituting glucose such as amino sugars and their N-acetylated products, glucosides, and polyols are replaced with hydrogen.
  • the glucose is preferably D-glucose.
  • the amino sugar and its N-acetylated product include glucosamine and N-acetylglucosamine.
  • Glucoside is a general term for glycosides in which a hemiacetal hydroxy group of glucose is ether-bonded to another compound, or glycosides in which saturated hydrocarbons such as glucose and octane are thioether-bonded with a sulfur atom sandwiched between them.
  • Examples of other compounds include aglycones, monosaccharides, disaccharides, polysaccharides of trisaccharides or higher, and the like.
  • Aglycone is a non-sugar portion, and examples thereof include saturated hydrocarbons such as alcohol, phenol, phenylpropanoid, and octane.
  • glucoside cellobiose, arbutin, piceid, methylglucoside, and octylthioglucoside are preferable.
  • Glucose analogs include 1,5-anhydro-D-glucitol, 2-deoxy-D-glucose and the like.
  • the substrate concentration is preferably about 10 mM to 1000 mM.
  • the mediator used in this step is the same as that described above.
  • the amount of the mediator used is preferably about 0.5 mM to 50 mM.
  • the conditions under which the flavin-bound GDH of the present invention is allowed to act on the glucose derivative are not particularly limited as long as the flavin-bound GDH is not inactivated.
  • the reaction proceeds under normal temperature and pressure, and the reaction proceeds under neutral to alkaline conditions.
  • the reaction temperature is usually 10 ° C. to 60 ° C., preferably 20 ° C. to 40 ° C.
  • the reaction time is usually 30 minutes to 72 hours, preferably 1 hour to 48 hours, more preferably 3 hours to 24 hours. be.
  • the reaction pH is preferably pH 5.0 to pH 9.0.
  • the amount of the flavin-bound GDH of the present invention used is preferably 1 U / mL to 50 U / mL as the final concentration.
  • oxidase examples include phenol oxidases such as laccase (EC 1.10.3.2.) And peroxidase (EC 1.11.1.1.7).
  • phenol oxidases such as laccase (EC 1.10.3.2.)
  • peroxidase EC 1.11.1.1.7
  • catalase EC 1.11.1.6
  • the final concentration of these enzymes is preferably about 0.25 U / mL to 500 U / mL.
  • glucuronic acid derivative can be used as a standard substance for a glucuronic acid conjugate produced in vivo, a raw material for pharmaceuticals, foods or cosmetics, a surfactant and the like.
  • the catalyst for producing glucuronic acid or glucuronic acid derivative of the present invention contains a flavin-bound glucose dehydrogenase having glucose-6-dehydrogenase activity, and is an enzyme catalyst for producing glucuronic acid or glucuronic acid derivative from glucose or glucose derivative.
  • the catalyst for producing glucuronic acid or glucuronic acid derivative may contain, for example, an excipient, a suspending agent, a buffer, a stabilizer, a preservative, a physiological saline solution, etc., in addition to the flavin-bound GDH of the present invention. good.
  • Glucose dehydrogenase (GDH) activity measurement method 100 mM potassium phosphate buffer (pH 6.0) 1.00 mL, 1MD-glucose solution 1.00 mL, 3 mM 2,6-dichlorophenol indophenol (hereinafter referred to as “DCIP”) 0.14 mL and 3 mM 1-methoxy-5 -Methylphenadium Methylsulfate (hereinafter referred to as "1-m-PMS”) 0.20 mL and ultrapure water 0.61 mL are mixed, kept warm at 37 ° C for 10 minutes, and then 0.05 mL of enzyme solution is added for reaction. Started.
  • DCIP 2,6-dichlorophenol indophenol
  • 1-m-PMS 1-methoxy-5 -Methylphenadium Methylsulfate
  • the amount of decrease in absorbance ( ⁇ A600) at 600 nm with the progress of the enzyme reaction was measured, and the enzyme activity was calculated from the linear portion according to the following formula. At this time, the enzyme activity was defined as 1 U for the amount of enzyme that reduces 1 ⁇ mol of DCIP per minute at 37 ° C. and pH 6.0.
  • 3.0 is the liquid volume (mL) of the reaction reagent + enzyme solution
  • 10.8 is the molar extinction coefficient of DCIP at pH 6.0
  • 1.0 is the optical path length (cm) of the cell, 0.05.
  • ⁇ A600blank is the amount of decrease in the absorbance at 600 nm per minute when the diluted solution of the enzyme is added instead of the enzyme solution and the reaction is started.
  • Example 1 (Acquisition of flavin-bound glucose dehydrogenase CpGDH) As a result of searching for GDH-producing bacteria, GDH activity was confirmed in the culture supernatant of Colletotrichum plurivorum MAFF305790.
  • a cDNA library was prepared by a reverse transcription reaction using a reverse transcriptase and an oligo dT primer with an adapter sequence.
  • a reverse transcriptase and an oligo dT primer with an adapter sequence.
  • the reaction reagent SMARTer RACE cDNA Amplification kit (Takara Bio Inc.) was used, and the reaction conditions were carried out according to the protocol described in the manual.
  • GDH gene PCR was performed using the cDNA library obtained in (3) as a template and a primer pair for obtaining the GDH gene. As a result, a PCR product that seems to be the internal sequence of the GDH gene was confirmed.
  • the primer pair is a primer designed for acquisition of various GDH genes based on a plurality of GDH sequences already elucidated by the present inventors. The PCR product was purified and the nucleotide sequence was determined.
  • CpGDH the total length of the GDH gene derived from the Colletotrichum plerivorum MAFF305790 GDH strain was elucidated by the 5'RACE method and the 3'RACE method.
  • the elucidated CpGDH gene sequence optimized for the codon frequency of Aspergillus oryzae is shown in SEQ ID NO: 1. Furthermore, the amino acid sequence predicted from the gene sequence is shown in SEQ ID NO: 2.
  • the CpGDH gene prepared downstream of the promoter was ligated to prepare a plasmid vector capable of expressing the gene.
  • the prepared expression plasmid vector was introduced into Escherichia coli JM109 strain and transformed.
  • the obtained transformant was cultured, and a plasmid vector was extracted from the collected bacterial cells using illustra plasmidPrep MidiFlow Kit (GE Healthcare).
  • GE Healthcare illustra plasmidPrep MidiFlow Kit
  • the collected culture supernatant was purified by removing contaminating proteins using a TOYOPEARL DEAE-650S (Tosoh Corporation) column.
  • the purified sample was concentrated with an ultrafiltration membrane having a molecular weight cut off of 10,000 and then replaced with water to obtain purified CpGDH.
  • the purified CpGDH was subjected to SDS-polyacrylamide gel electrophoresis, it was confirmed that it showed a single band.
  • Example 2 (Examination of enzymatic chemistry of each GDH) The properties of CpGDH, FGDH and CsGDH obtained in Example 1 were investigated.
  • the change in absorbance at 500 nm with the progress of the enzyme reaction was measured with the plate reader to examine the GOD activity.
  • the control started the reaction by adding water or GOD derived from Aspergillus niger (Nacalai Tesque) instead of GDH.
  • GOD derived from Aspergillus niger Nacalai Tesque
  • a change in absorbance at 500 nm was confirmed in the control to which GOD derived from Aspergillus niger was added, but no change in absorbance was observed in the GDH of the present invention as in the control to which water was added. Therefore, it was confirmed that all GDHs are dehydrogenases that do not utilize oxygen as an electron acceptor.
  • the activity against D-glucose is 100%
  • the activity against maltose, D-xylose or D-galactose is 0.3%, 0.4% or 0.2% or less in any of the GDHs. Was less than 2.0%.
  • CpGDH was 196 mM
  • CsGDH was 50 mM
  • FGDH was 52 mM. Since the Km value is likely to fluctuate depending on the measurement method and the calculated plot, it is considered that the Km of CpGDH is 150 mM to 300 mM, the Km of FGDH is 30 mM to 80 mM, and the Km of CsGDH is 30 mM to 80 mM.
  • each GDH was adjusted to 6 U / mL, and the final concentration is 100 mM sodium citrate buffer (pH 2.2-7.0), 100 mM potassium acetate buffer (pH 3.0-6.0), 100 mM potassium phosphate. Buffer solution (pH 6.0-8.0), 100 mM Tris-HCl buffer solution (pH 7.0-9.0), 100 mM glycine-NaOH buffer solution (pH 9.0-10.0). After addition and treatment at 30 ° C. for 1 hour at each pH, the residual activity of each GDH was measured.
  • the pH range in which the residual enzyme activity value of each GDH is 80% or more when the enzyme activity value before treatment is 100% is pH 4.3 to 9.3 for CpGDH and pH 5.5 to 8. for FGDH. 7.
  • the pH of CsGDH was 3.2 to 9.3 (see FIG. 2). From the above, it was found that the GDH of the present invention is stable in the range of at least pH 5.5 to 8.7. Even if the pH is the same, the residual activity may differ depending on the type of buffer solution.
  • Example 3 Analysis of glucose oxide obtained in the presence of 1-m-PMS
  • a reaction system using purified CpGDH and 1-m-PMS as mediators was constructed to obtain glucose oxide. The preparation method and various analysis methods are described below.
  • TLC thin-layer chromatography
  • the buffer solution to be used is 1M sodium phosphate buffer (pH 7.0 or 8.0) or 1M potassium phosphate buffer (pH 8). Reaction containing glucose oxide under the condition changed to 0.0), the condition where the amount of D-glucose added was changed to double the amount, or the condition where the amount of 1-m-PMS added was changed to 0.0025 mL or 0.005 mL.
  • spots were confirmed at the same positions as the glucuronic acid preparations in the CpGDH, FGDH, and CsGDH reaction products under all conditions, and the D-glucose preparation and the gluconic acid were found. No spot was found at the same position as the standard.
  • HPLC analysis was performed using the sugar analysis column Honenpack C18 (J-Chemical, Inc.). -No glucose peak was observed, and a peak was confirmed at the same position as the glucuronic acid preparation (see FIG. 4). Fluorescent labeling and HPLC analysis are performed according to the protocol described in the kit manual.
  • Example 4 Analysis of glucose oxide obtained in the presence of tert-butylhydroquinone
  • TBHQ tert-butylhydroquinone
  • Example 5 Analysis of glucose oxide obtained in the presence of butylhydroxyanisole
  • a reaction system using purified CpGDH and butylhydroxyanisole as mediators was constructed to obtain glucose oxide. The preparation method and analysis method are described below.
  • Example 7 (Acquisition of CglGDH, CoGDH, CtoGDH, CgoGDH, GsGDH and DhGDH) Instead of Colletotrichum plurivorum MAFF305790, Colletotrichum gloeosporioides, Colletotrichum orbiculare, Colletotrichum tofieldiae, using Colletotrichum godetiae MAFF240289, Glomerella sp. RD057037 or Diaporthe Helianthi, were each expressed in Aspergillus oryzae NS4 strain in the same manner as in Example 1, purified did.
  • the respective gene sequences are set forth in SEQ ID NOs: 7, 9, 11, 13, 15 and 17, and the amino acid sequences are set forth in SEQ ID NOs: 8, 10, 12, 14, 16 and 18.
  • the Km of CglGDH is 400 mM to 900 mM
  • the Km of CoGDH is 250 mM to 650 mM
  • the Km of CtoGDH is 400 mM to 900 mM
  • the Km of CgoGDH is 200 mM to 450 mM.
  • the Km of GsGDH is considered to be 250 mM to 650 mM
  • the Km of DhGDH is considered to be 60 mM to 140 mM.
  • Each GDH was prepared at 6 U / mL by the same method as in Example 2, and treated in 100 mM potassium phosphate buffer (pH 8.0) at each temperature for 60 minutes. As a result, before the treatment.
  • the temperature range in which the residual enzyme activity is 80% or more when the enzyme activity is 100% is CglGDH, CtoGDH, CgoGDH and GsGDH up to 40 ° C, CoGDH up to 45 ° C, and DhGDH up to 50 ° C (FIG. 7). reference).
  • the residual enzyme activity value of each GDH is 80% or more when the enzyme activity value before treatment is 100%.
  • the pH range is pH 5.5 to 9.3 for CglGDH, pH 4.4 to 9.3 for CoGDH, pH 4.0 to 9.6 for CtoGDH, pH 4.4 to 9.3 for CgoGDH, and pH 5.
  • the pH was 0 to 9.3 and pH 3.3 to 9.6 at DhGDH (see FIG. 8). From the above, it was found that the GDH of the present invention is stable in the range of at least pH 5.5 to 9.3.
  • Example 8 (Acquisition of Ko37GDH, AsGDH, Ko38GDH, LhGDH, DsGDH, CtaGDH, FlaGDH, PcGDH, Fla_A.oGDH and Pc_A.oGDH) Instead of Colletotrichum plurivorum MAFF305790, Khuskia oryzae, Acremonium strictum, Lasiosphaeris hirsute, Diaporthaceae sp., Colletotrichum tanaceti, Fusarium langsethiae, acquires high sequence information from the genome data of CpGDH amino acid sequence identity that is published in Phialemoniopsis curvata, After optimizing the codon frequency of Aspergillus oryzae, each was expressed and purified in Aspergillus oryzae NS4 strain by the same method as in Example 1.
  • Purified enzymes derived from Khuskia oryzae are Ko37 GDH and Ko38 GDH
  • purified enzymes derived from Acremonium strikeum are AsGDH
  • purified enzymes derived from Lasiospheres hilsute are derived from LhGDH
  • diaporthease The purified enzyme derived from FlaGDH, the purified enzyme derived from Hiersutism curvata was replaced with PcGDH, and the deduced signal sequence portion of the enzyme derived from Fusarium langesethia was replaced with the signal sequence of GDH derived from Aspergillus oryzae. pc_A.
  • the gene sequence optimized for the codon frequency of Aspergillus oryzae in oGDH is set forth in SEQ ID NOs: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, and the amino acid sequence is shown in SEQ ID NOs: 20, 22, 24. , 26, 28, 30, 32, 34, 36, 38, respectively.
  • the Km of Ko37GDH is 25 mM to 60 mM
  • the Km of AsGDH is 25 mM to 60 mM
  • the Km of Ko38GDH is 700 mM to 1,500 mM
  • the Km of DsGDH is 150 mM to.
  • Km of CtaGDH is 110 mM to 240 mM
  • Km of FlaGDH is 900 mM to 1,600 mM
  • Fla_A The Km of oGDH is considered to be 600 mM to 1,200 mM.
  • Each GDH was prepared at 6 U / mL by the same method as in Example 2, and treated in each 100 mM buffer solution shown in Table 7 at each temperature for 60 minutes. As a result, the enzyme activity before the treatment was achieved. In the temperature range where the residual enzyme activity is 80% or more when 100%, Ko37GDH is up to 35 ° C., DsGDH is up to 40 ° C., Ko38GDH, LhGDH, FlaGDH and Fla_A. oGDH up to 45 ° C., AsGDH, CtaGDH, PcGDH and Pc_A. The oGDH was up to 50 ° C. (see FIG. 10).
  • the residual enzyme activity value of each GDH is 80% or more when the enzyme activity value before treatment is 100%.
  • the pH range of Ko37GDH is 5.5 to 8.6, AsGDH is pH 4.3 to 9.6, Ko38GDH is pH 5.0 to 9.6, LhGDH is pH 4.0 to 8.6, and DsGDH is pH 4. 9 to 8.7, pH 3.3 to 9.9 for CtaGDH, pH 4.4 to 9.8 for FlaGDH, pH 4.0 to 8.8 for PcGDH, Fla_A. pH 4.4-9.8 at oGDH, Pc_A.
  • the pH was 4.0 to 9.6 in oGDH (see FIG. 11).
  • Example 9 Analysis of Piceid Oxide Using Nuclear Magnetic Resonance Device (NMR)
  • NMR Nuclear Magnetic Resonance Device
  • substrate oxide A final concentration of 20 mM potassium phosphate buffer (pH 7.0), a piseide powder equivalent to 50 mM as a substrate, 10 mM TBHQ as a mediator, and 200 U / mL catalase (Fuji film) as a remover for active oxygen.
  • CpGDH was added to a reaction solution consisting of Wako Junyakusha, derived from bovine liver) and 2 U / mL lacquerase (derived from Sigma-Aldrich, Aspergillus genus) so that the final concentration was 14 U / mL, and the pH in the reaction system was 6 While adding 1N of NaOH so as to have a pH of .5 to 7.0, the mixture was stirred while being aerated at room temperature to obtain a piseide oxide.
  • Example 10 Large-scale preparation of glucuronic acid A final concentration of 20 mM sodium phosphate buffer (pH 7.0), 2 M glucose as a substrate, 10 mM guaiacol as a mediator, 2.1 U / mL causticase (Sigma-Aldrich, derived from the genus Aspergillus) ), CpGDH was added to the reaction solution consisting of) so that the final concentration was 60 U / mL, and 1N NaOH was added so that the pH in the reaction system became 6.5 to 7.0, and the mixture was aerated at room temperature. While stirring, glucuronic acid was obtained.
  • Piseido oxide was obtained by stirring overnight while aerating at room temperature while adding 1N NaOH so that the pH became 6.5 to 7.0. Further, the piceid oxide could be obtained in the same manner under the condition that the final concentration of ethanol was changed to 20% or 30%.
  • albutine oxide A final concentration of 20 mM sodium phosphate buffer (pH 7.0), 50 mM albutine as a substrate, 10 mM TBHQ as a mediator, and 500 U / mL catalase as a remover for active oxygen (Fuji Film Wako Jun).
  • CtaGDH was added to a reaction solution consisting of 30 mU / mL lacquerase (derived from Sigma-Aldrich, Aspergillus) to a final concentration of 20 U / mL, and the pH in the reaction system was 6.5. While adding 1N NaOH so as to be ⁇ 7.0, the mixture was aerated at room temperature and stirred for 48 to 72 hours to obtain an arbutine oxide.

Abstract

Provided is a method for producing glucuronic acid or a glucuronic acid derivative more easily, at lower cost, and with reduced environmental impact in comparison to existing methods. The method for producing glucuronic acid includes a step for causing a flavin-bound glucose dehydrogenase having glucose-6-dehydrogenase activity to act on glucose in the presence of a mediator to generate glucuronic acid.

Description

グルクロン酸の製造方法Method for producing glucuronic acid
 本発明は、フラビン結合型グルコース脱水素酵素を用いたグルクロン酸の製造方法、グルクロン酸誘導体の製造方法、並びにグルクロン酸又はグルクロン酸誘導体製造用触媒に関する。 The present invention relates to a method for producing glucuronic acid using a flavin-bound glucose dehydrogenase, a method for producing a glucuronic acid derivative, and a catalyst for producing glucuronic acid or a glucuronic acid derivative.
 グルクロン酸(化学式:C10)は、グルコースから導かれる代表的なウロン酸である。グルクロン酸は、体内において有害物質を抱合して尿中に排出する解毒作用等を有する。現在日本国内では、グルクロン酸とその分子内エステルであるグルクロノラクトンは、医薬品或いは医薬部外品の飲料製品に使用されている。 Glucuronic acid (chemical formula: C 6 H 10 O 7 ) is a typical uronic acid derived from glucose. Glucuronic acid has a detoxifying effect that binds harmful substances in the body and excretes them in urine. Currently, in Japan, glucuronic acid and its intramolecular ester, glucuronolactone, are used in pharmaceutical products or quasi-drug beverage products.
 既存のグルクロン酸の製造方法として、グルコースの6位のヒドロキシメチル基を酸化する酵素、例えば、ガラクトース酸化酵素を改変したグルコース酸化酵素(特許文献1)、アルデヒド脱水素酵素(特許文献2)、アルコール脱水素酵素(特許文献3)を用いる方法が報告されている。しかしながら、これらの酵素は、酵素の比活性が低い、グルコースのヒドロキシメチル基に対する酸化特異性が低くグルクロン酸以外にもグルコン酸等のグルコース酸化物を生成するといった問題を有している。 As an existing method for producing glucuronic acid, an enzyme that oxidizes the hydroxymethyl group at the 6-position of glucose, for example, glucose oxidase modified from galactose oxidase (Patent Document 1), aldehyde dehydrogenase (Patent Document 2), alcohol A method using a dehydrogenase (Patent Document 3) has been reported. However, these enzymes have problems that the specific activity of the enzyme is low, the oxidation specificity of glucose to the hydroxymethyl group is low, and glucose oxides such as gluconic acid are produced in addition to glucuronic acid.
 また、グルコース以外の糖類を基質とした酵素によるグルクロン酸の製造方法として、デンプンを酸化して作製したα-1,4-ポリグルクロン酸にパエニバチルス属細菌または同細菌由来のグリコシド結合加水分解酵素を作用させてグルクロン酸を製造する方法(特許文献4)、酸化トレハロースを基質として、それを加水分解する酵素を用いたグルクロン酸の製造方法(特許文献5)、ミオイノシトールを基質としたミオイノシトールオキシゲナーゼを用いたグルクロン酸の製造方法(特許文献6)が報告されている。しかしながら、これら製造法の問題点として、基質の調製が煩雑であることや基質の価格が高いこと等がある。 In addition, as a method for producing glucuronic acid using an enzyme using a saccharide other than glucose as a substrate, α-1,4-polyglucuronic acid produced by oxidizing starch is mixed with Paenivacillus bacteria or a glycoside-binding hydrolyzing enzyme derived from the same bacteria. A method for producing glucuronic acid by acting (Patent Document 4), a method for producing glucuronic acid using an enzyme that hydrolyzes trehalose oxide as a substrate (Patent Document 5), and myo-inositol oxygenase using myo-inositol as a substrate. A method for producing glucuronic acid using glucuronic acid (Patent Document 6) has been reported. However, the problems of these production methods are that the preparation of the substrate is complicated and the price of the substrate is high.
 その他、発酵法でグルコースからグルクロン酸を製造する方法として、シュードグルコノバクター・サッカロケトゲネスRh47-3株を用いた製造方法(特許文献7)が報告されているが、発酵法は酵素法と比較して培養液中に夾雑物質が増加することにより、目的生産物であるグルクロン酸の純度が低くなり、高度な精製が必要となる問題を有している。
 また、酵素を用いないグルクロン酸の製造方法として、デンプンを硝酸で酸化型デンプンに変換し、その後硫酸を用いて加水分解し、グルクロン酸を製造する方法(非特許文献1)が知られているが、本法では硝酸や硫酸等の環境負荷の大きい試薬を大量に使用せざるを得ないという問題がある。
In addition, as a method for producing glucuronic acid from glucose by a fermentation method, a production method using Pseudogluconovator saccharoketogenes Rh47-3 strain has been reported (Patent Document 7), but the fermentation method is an enzyme method. In comparison, the increase in contaminants in the culture solution reduces the purity of the target product, glucuronic acid, and has the problem of requiring a high degree of purification.
Further, as a method for producing glucuronic acid without using an enzyme, a method for producing glucuronic acid by converting starch into oxidized starch with nitric acid and then hydrolyzing with sulfuric acid is known (Non-Patent Document 1). However, this method has a problem that a large amount of reagents having a large environmental load such as nitric acid and sulfuric acid must be used.
 グルクロン酸が他の化合物にグリコシド結合を介して結合する、すなわちグルクロニド化すると、生成したグルクロニドはその他の化合物に比べて水溶性が高まることや生理作用が増強することが知られている。その性質を利用するため、これまでに化合物をグルクロニド化する手法が検討され、酵素法として、例えば、生体内に存在するUDP-グルクロン酸転移酵素を用いて、任意の基質にグルクロン酸を転移させグルクロニド化する方法が報告されている(非特許文献2)。また、化学合成法として、例えば、グルクロニド化したい水酸基を有する対象にグルクロン酸供与体として2,3,4-トリ-o-アセチル-α-D-グルクロン酸メチルを、ルイス酸触媒としてトリメチルシリルトリフラートを反応させることでグルクロン酸を付与しグルクロニド化する方法(非特許文献3)が報告されている。しかしながら、両法の問題点として、反応に使用する試薬が高価であることや目的とするグルクロニドの収率が低いこと、反応後の副産物等の除去を目的とした精製が必要なこと等がある。 It is known that when glucuronic acid binds to another compound via a glycosidic bond, that is, when it is glucuronidated, the produced glucuronide becomes more water-soluble and has a stronger physiological action than other compounds. In order to utilize this property, methods for glucuronidating compounds have been studied so far, and as an enzymatic method, for example, UDP-glucuronidation transferase present in the living body is used to transfer glucuronic acid to an arbitrary substrate. A method for glucuronidation has been reported (Non-Patent Document 2). Further, as a chemical synthesis method, for example, methyl 2,3,4-tri-o-acetyl-α-D-glucuronate as a glucuronic acid donor and trimethylsilyl triflate as a Lewis acid catalyst are used for a target having a hydroxyl group to be glucuronidated. A method of imparting glucuronic acid to glucuronidation by reacting (Non-Patent Document 3) has been reported. However, the problems of both methods are that the reagent used for the reaction is expensive, the yield of the target glucuronide is low, and purification for the purpose of removing by-products after the reaction is required. ..
 一方、フラビン結合型グルコース脱水素酵素(フラビン結合型GDH、EC 1.1.5.9)は、フラビンを補酵素とし、グルコースの1位のヒドロキシ基を脱水素(酸化)する反応を触媒する酵素である。アスペルギルス属(Aspergillus)由来のフラビン結合型GDHは、溶存酸素の影響を受けず、マルトース及びガラクトースに対する作用性が低くグルコースに対する基質特異性が高いため、血中グルコース濃度の測定に使用されている。 On the other hand, flavin-linked glucose dehydrogenase (flavin-linked GDH, EC 1.1.5.9) catalyzes the reaction of dehydrogenating (oxidizing) the hydroxy group at the 1-position of glucose using flavin as a coenzyme. It is an enzyme. Flavin-bound GDH from the genus Aspergillus is not affected by dissolved oxygen, has low activity on maltose and galactose, and has high substrate specificity on glucose, and is therefore used for measuring blood glucose concentration.
国際公開第2003/072742号International Publication No. 2003/072742 国際公開第2013/183610号International Publication No. 2013/183610 特開平5-68541号公報Japanese Unexamined Patent Publication No. 5-68541 特開2009-165415号公報JP-A-2009-165415 特開2002-153294号公報JP-A-2002-153294 米国特許第7923231号明細書U.S. Pat. No. 7,923,231 国際公開第2008/139844号International Publication No. 2008/139844 国際公開第2006/101239号International Publication No. 2006/101239
 本発明の課題は、既存法と比較して簡便、低コスト、且つ環境負荷が抑えられたグルクロン酸又はグルクロン酸誘導体の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a glucuronic acid or a glucuronic acid derivative, which is simpler, lower cost, and less environmentally friendly than the existing method.
 本発明者は、安価な原料であるグルコースからグルクロン酸を直接生成する方法について鋭意検討したところ、グルコースをグルコノ-1,5-ラクトンへと酸化する酵素であるフラビン結合型GDHに、グルコースの6位のヒドロキシメチル基に対する酸化に特異性を有するものがあり、当該グルコース-6-デヒドロゲナーゼ活性を有する酵素をグルコースに作用させるとグルコースの6位のヒドロキシメチル基を酸化し、特異的にグルクロン酸を生成することを見出した。また、当該酵素をグルコシド等のグルコース誘導体に作用させるとグルコース骨格の6位のヒドロキシメチル基を酸化し、特異的にグルクロン酸誘導体を生成することを見出した。 The present inventor diligently studied a method for directly producing glucuronic acid from glucose, which is an inexpensive raw material, and found that 6 of glucose was added to flavin-bound GDH, which is an enzyme that oxidizes glucose to glucono-1,5-lactone. Some have specificity for oxidation to the hydroxymethyl group at the position, and when the enzyme having glucose-6-dehydrogenase activity is allowed to act on glucose, the hydroxymethyl group at the 6-position of glucose is oxidized to specifically produce glucuronic acid. Found to generate. It was also found that when the enzyme is allowed to act on a glucose derivative such as glucoside, the hydroxymethyl group at the 6-position of the glucose skeleton is oxidized to specifically produce a glucuronic acid derivative.
 すなわち、本発明は、以下の[1]~[11]に係るものである。
[1]グルコースに、メディエーターの存在下、グルコース-6-デヒドロゲナーゼ活性を有するフラビン結合型グルコース脱水素酵素を作用させてグルクロン酸を生成させる工程を含む、グルクロン酸の製造方法。
[2]グルコース誘導体に、メディエーターの存在下、グルコース-6-デヒドロゲナーゼ活性を有するフラビン結合型グルコース脱水素酵素を作用させて、グルクロン酸誘導体を生成させる工程を含む、グルクロン酸誘導体の製造方法。
[3]グルコース誘導体がアミノ糖もしくはそのN-アセチル化物、グルコシド、又はグルコースアナログである[2]記載のグルクロン酸誘導体の製造方法。
[4]フラビン結合型グルコース脱水素酵素が以下の(i)~(iii)のいずれかのタンパク質である、[1]~[3]のいずれかに記載のグルクロン酸の製造方法又はグルクロン酸誘導体の製造方法:
(i)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列を有するタンパク質
(ii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質
(iii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質。
[5]フラビン結合型グルコース脱水素酵素が以下の性質(1)~(8)を有する、[1]~[4]のいずれかに記載のグルクロン酸の製造方法又はグルクロン酸誘導体の製造方法:
(1)作用:フラビンを補酵素として、グルコースの6位のヒドロキシメチル基を脱水素(酸化)する反応を触媒する
(2)溶解性:水溶性
(3)pH安定性:少なくともpH5.5~8.7の間で安定
(4)熱安定性:少なくとも35℃で安定
(5)基質特異性:グルコースに対する作用性を100%とした場合にマルトース、キシロース、ガラクトースへの作用性が2.0%以下
(6)Km値(対グルコース):30mM以上
(7)分子量:64~66kDa(シグナル除去後のアミノ酸配列からの計算)
(8)グルコースオキシダーゼ活性:検出できず。
[6]フラビン結合型グルコース脱水素酵素がコレトトリカム属、グロメレラ属、ディアポルテ属、クスキア属、アクレモニウム属、ラシオスパエリス属、フザリウム属又はフィアモニオシス属に属する微生物に由来する[1]~[5]のいずれかに記載のグルクロン酸の製造方法又はグルクロン酸誘導体の製造方法。
[7]フラビン結合型グルコース脱水素酵素としてフラビン結合型グルコース脱水素酵素をコードする遺伝子が導入された組換え微生物を用いる[1]~[6]のいずれかに記載のグルクロン酸の製造方法又はグルクロン酸誘導体の製造方法。
[8]フラビン結合型グルコース脱水素酵素をコードする遺伝子が以下の(a)~(e)のいずれかのDNAからなる遺伝子である[7]記載のグルクロン酸の製造方法又はグルクロン酸誘導体の製造方法:
(a)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35又は37で示される塩基配列を有するDNA
(b)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35又は37で示される塩基配列において1~数個の塩基が欠失、置換又は付加された塩基配列を有し、かつグルコース-6-デヒドロゲナーゼ活性を有するタンパク質をコードするDNA
(c)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35又は37で示される塩基配列に対して80%以上の配列同一性を有する塩基配列を有し、かつグルコース-6-デヒドロゲナーゼ活性を有するタンパク質をコードするDNA
(d)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35又は37で示される塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつグルコース-6-デヒドロゲナーゼ活性を有するタンパク質をコードするDNA
(e)以下の(i)、(ii)又は(iii)のタンパク質をコードするDNA
(i)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列を有するタンパク質
(ii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質
(iii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質。
[9]更に、酸化酵素を作用させる、[1]~[8]のいずれかに記載のグルクロン酸の製造方法又はグルクロン酸誘導体の製造方法。
[10]以下の(i)~(iii)のいずれかのタンパク質である、グルコース-6-デヒドロゲナーゼ活性を有するフラビン結合型グルコース脱水素酵素:
(i)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列を有するタンパク質
(ii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質
(iii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質。
[11]グルコース-6-デヒドロゲナーゼ活性を有するフラビン結合型グルコース脱水素酵素タンパク質を含むグルクロン酸又はグルクロン酸誘導体製造用触媒。
That is, the present invention relates to the following [1] to [11].
[1] A method for producing glucuronic acid, which comprises a step of reacting glucose with a flavin-binding glucose dehydrogenase having glucose-6-dehydrogenase activity in the presence of a mediator to produce glucuronic acid.
[2] A method for producing a glucuronic acid derivative, which comprises a step of allowing a flavin-binding glucose dehydrogenase having a glucose-6-dehydrogenase activity to act on the glucose derivative in the presence of a mediator to produce a glucuronic acid derivative.
[3] The method for producing a glucuronic acid derivative according to [2], wherein the glucose derivative is an amino sugar or an N-acetylated product thereof, a glucoside, or a glucose analog.
[4] The method for producing glucuronic acid or a glucuronic acid derivative according to any one of [1] to [3], wherein the flavin-binding glucose dehydrogenase is a protein according to any one of (i) to (iii) below. Manufacturing method:
(I) Protein having the amino acid sequence shown by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. (Ii) 1 to 1 in the amino acid sequence shown by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. Proteins with deleted, substituted or inserted amino acid sequences and glucose-6-dehydrogenase activity (iii) SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16 , 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38, has an amino acid sequence having 80% or more sequence identity with the amino acid sequence, and has glucose-6-dehydrogenase activity. Protein to have.
[5] The method for producing glucuronic acid or a method for producing a glucuronic acid derivative according to any one of [1] to [4], wherein the flavin-bound glucose dehydrogenase has the following properties (1) to (8).
(1) Action: Catalyzing the reaction of dehydrogenating (oxidizing) the hydroxymethyl group at position 6 of glucose using flavin as a coenzyme (2) Solubility: Water-soluble (3) pH stability: At least pH 5.5 ~ Stable between 8.7 (4) Thermal stability: Stable at least at 35 ° C. (5) Substrate specificity: When the action on glucose is 100%, the action on maltose, xylose and galactose is 2.0. % Or less (6) Km value (against glucose): 30 mM or more (7) Molecular weight: 64-66 kDa (calculation from amino acid sequence after signal removal)
(8) Glucose oxidase activity: could not be detected.
[6] Flavin-bound glucose dehydrogenases are derived from microorganisms belonging to the genera Collettricum, Glomerella, Diaporte, Cuskia, Acremonium, Laciospaeris, Fusarium or Fiamoniosis [1]-[5] ] The method for producing glucuronic acid or the method for producing a glucuronic acid derivative according to any one of.
[7] The method for producing glucuronic acid according to any one of [1] to [6], which uses a recombinant microorganism into which a gene encoding a flavin-binding glucose dehydrogenase is introduced as a flavin-binding glucose dehydrogenase. A method for producing a glucuronic acid derivative.
[8] The method for producing glucuronic acid or the production of a glucuronic acid derivative according to [7], wherein the gene encoding the flavin-binding glucose dehydrogenase is a gene consisting of any of the following DNAs (a) to (e). Method:
(A) DNA having the base sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37.
(B) 1 to 1 in the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. DNA encoding a protein having a base sequence in which several bases have been deleted, substituted or added, and having glucose-6-dehydrogenase activity.
(C) For the base sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. DNA encoding a protein having a nucleotide sequence having 80% or more sequence identity and having glucose-6-dehydrogenase activity
(D) Complementary to the nucleotide sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. DNA that hybridizes with DNA consisting of a unique base sequence under stringent conditions and encodes a protein having glucose-6-dehydrogenase activity.
(E) DNA encoding the following protein (i), (ii) or (iii)
(I) A protein having the amino acid sequence shown by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. (Ii) 1 to 1 in the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. Protein with a few amino acid residues deleted, substituted or inserted and having glucose-6-dehydrogenase activity (iii) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16 , 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38, has an amino acid sequence having 80% or more sequence identity with the amino acid sequence shown, and has glucose-6-dehydrogenase activity. Protein to have.
[9] The method for producing glucuronic acid or a method for producing a glucuronic acid derivative according to any one of [1] to [8], which further causes an oxidase to act.
[10] A flavin-linked glucose dehydrogenase having glucose-6-dehydrogenase activity, which is one of the following proteins (i) to (iii):
(I) A protein having the amino acid sequence shown by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. (Ii) 1 to 1 in the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. Protein with a few amino acid residues deleted, substituted or inserted and having glucose-6-dehydrogenase activity (iii) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16 , 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38, has an amino acid sequence having 80% or more sequence identity with the amino acid sequence shown, and has glucose-6-dehydrogenase activity. Protein to have.
[11] A catalyst for producing a glucuronic acid or a glucuronic acid derivative containing a flavin-binding glucose dehydrogenase protein having glucose-6-dehydrogenase activity.
 本発明によれば、安価な原料であるグルコースからグルクロン酸を特異的に直接生成可能なため、既存法と比較して簡便で、製造コストは大幅に低減される。また、硝酸や硫酸等の強酸を使用することなく、常温、常圧下で反応が進行するため、製造時の危険性を回避でき、環境負荷も抑えられる。
 さらに、グルコース誘導体からグルクロン酸誘導体を特異的に直接生成可能なため、既存のグルクロニド化する方法と比較して簡便で、製造コストは低減される。また、ヒドロキシメチル基の酸化により、グルコース誘導体の水溶性を高める効果等が期待できる。
According to the present invention, since glucuronic acid can be specifically produced directly from glucose, which is an inexpensive raw material, it is simpler than the existing method and the production cost is significantly reduced. In addition, since the reaction proceeds at room temperature and normal pressure without using a strong acid such as nitric acid or sulfuric acid, it is possible to avoid danger during manufacturing and reduce the environmental load.
Furthermore, since the glucuronic acid derivative can be specifically produced directly from the glucose derivative, it is simpler than the existing glucuronidation method, and the production cost is reduced. In addition, the effect of increasing the water solubility of the glucose derivative can be expected by oxidizing the hydroxymethyl group.
CpGDH、FGDH及びCsGDHの熱安定性を示す。The thermal stability of CpGDH, FGDH and CsGDH is shown. CpGDH、FGDH及びCsGDHのpH安定性を示す。The pH stability of CpGDH, FGDH and CsGDH is shown. グルコース酸化物のTLC分析結果を示す。The TLC analysis result of glucose oxide is shown. グルコース酸化物のHPLC分析結果を示す。The results of HPLC analysis of glucose oxide are shown. 基質酸化物のTLC分析結果を示す。The TLC analysis result of the substrate oxide is shown. グルコース酸化物のTLC分析結果を示す。The TLC analysis result of glucose oxide is shown. CglGDH、CoGDH、CtoGDH、CgoGDH、GsGDH及びDhGDHの熱安定性を示す。The thermal stability of CglGDH, CoGDH, CtoGDH, CgoGDH, GsGDH and DhGDH is shown. CglGDH、CoGDH、CtoGDH、CgoGDH、GsGDH及びDhGDHのpH安定性を示す。The pH stability of CglGDH, CoGDH, CtoGDH, CgoGDH, GsGDH and DhGDH is shown. グルコース酸化物のTLC分析結果を示す。The TLC analysis result of glucose oxide is shown. Ko37GDH、AsGDH、Ko38GDH、LhGDH、DsGDH及びCtaGDHの熱安定性を示す。The thermal stability of Ko37GDH, AsGDH, Ko38GDH, LhGDH, DsGDH and CtaGDH is shown. FlaGDH、PcGDH、Fla_A.oGDH及びPc_A.oGDHの熱安定性を示す。FlaGDH, PcGDH, Fla_A. oGDH and Pc_A. Shows the thermal stability of oGDH. Ko37GDH、AsGDH、Ko38GDH、LhGDH、DsGDH及びCtaGDHのpH安定性を示す。The pH stability of Ko37GDH, AsGDH, Ko38GDH, LhGDH, DsGDH and CtaGDH is shown. FlaGDH、PcGDH、Fla_A.oGDH及びPc_A.oGDHのpH安定性を示す。FlaGDH, PcGDH, Fla_A. oGDH and Pc_A. Shows the pH stability of oGDH. ピセイドのH-NMR解析及び13C-NMR解析結果を示す。The results of 1 H-NMR analysis and 13 C-NMR analysis of Piceid are shown. ピセイド酸化物のH-NMR解析及び13C-NMR解析結果を示す。The results of 1 H-NMR analysis and 13 C-NMR analysis of piceid oxide are shown.
 本明細書において、グルコース-6-デヒドロゲナーゼ活性を有するフラビン結合型グルコース脱水素酵素(以下、「フラビン結合型GDH」と称することがある)とは、フラビンを補酵素として、グルコースの6位のヒドロキシメチル基を脱水素(酸化)する反応を触媒する酵素をいう。本発明のフラビン結合型GDHは、グルコースの6位に選択的に作用し、グルコースの6位のヒドロキシメチル基をカルボキシ基に特異的に酸化するため、当該酵素をグルコースに作用させると特異的にグルクロン酸を生成する。また、当該酵素をグルコシド等のグルコース誘導体に作用させるとグルコース骨格の6位のヒドロキシメチル基を特異的に酸化するため、グルコース誘導体から特異的にグルクロン酸誘導体を生成する。
 グルコース-6-デヒドロゲナーゼ活性は、グルコースに対してグルコース-6-デヒドロゲナーゼを作用させ、その反応産物を薄層クロマトグラフィー、又はHPLCにて分析し、グルコースの6位が酸化されているグルクロン酸標品と比較することで確認できる。
 本発明のフラビン結合型GDHは、実質的にグルコース-1-デヒドロゲナーゼ活性を有さず、基質であるグルコースからグルコン酸を実質的に生成しない。ここで、実質的とは、反応産物の薄層クロマトグラフィー、又はHPLC分析の結果、グルコン酸の生成が確認できないことを指す。
In the present specification, the flavin-linked glucose dehydrogenase having a glucose-6-dehydrogenase activity (hereinafter, may be referred to as "flavin-linked GDH") is a hydroxy at the 6-position of glucose using flavin as a coenzyme. An enzyme that catalyzes the reaction of dehydrogenating (oxidizing) a methyl group. The flavin-bound GDH of the present invention selectively acts on the 6-position of glucose and specifically oxidizes the hydroxymethyl group at the 6-position of glucose to the carboxy group. Therefore, when the enzyme is allowed to act on glucose, it specifically acts. Produces glucuronic acid. Further, when the enzyme is allowed to act on a glucose derivative such as glucoside, the hydroxymethyl group at the 6-position of the glucose skeleton is specifically oxidized, so that a glucuronic acid derivative is specifically produced from the glucose derivative.
Glucose-6-dehydrogenase activity causes glucose-6-dehydrogenase to act on glucose, and the reaction product is analyzed by thin layer chromatography or HPLC. It can be confirmed by comparing with.
The flavin-bound GDH of the present invention has substantially no glucose-1-dehydrogenase activity and substantially does not produce gluconic acid from the substrate glucose. Here, "substantial" means that the production of gluconic acid cannot be confirmed as a result of thin layer chromatography or HPLC analysis of the reaction product.
 本発明のフラビン結合型GDHは、グルコース-6-デヒドロゲナーゼ活性を有する酵素であれば特に制限はないが、以下の(i)~(iii)のいずれかのタンパク質であることが好ましい。
(i)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列を有するタンパク質
(ii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質
(iii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質
The flavin-bound GDH of the present invention is not particularly limited as long as it is an enzyme having glucose-6-dehydrogenase activity, but is preferably any of the following proteins (i) to (iii).
(I) A protein having the amino acid sequence shown by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. (Ii) 1 to 1 in the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. Protein with a few amino acid residues deleted, substituted or inserted and having glucose-6-dehydrogenase activity (iii) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16 , 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38, has an amino acid sequence having 80% or more sequence identity with the amino acid sequence shown, and has glucose-6-dehydrogenase activity. Protein
 配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列における、アミノ酸残基の欠失、置換又は挿入の数は、配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列を有するタンパク質と同等の酵素活性を示すものであれば限定されないが、1~20個が好ましく、1~10個がさらに好ましく、1~8個がさらに好ましい。 One to several in the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. The number of amino acid residue deletions, substitutions or insertions in an amino acid sequence in which an amino acid residue is deleted, substituted or inserted is determined by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, It is not limited as long as it exhibits the same enzymatic activity as the protein having the amino acid sequence shown by 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38, but 1 to 20 is preferable. From 10 to 10 is even more preferred, and 1 to 8 is even more preferred.
 本明細書において、配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列との配列同一性は80%以上であるが、85%以上が好ましく、90%以上がより好ましく、95%以上がさらに好ましく、99%以上がさらに好ましい。このような配列の同一性パーセンテージは、基準配列を照会配列として比較するアルゴリズムをもった公開又は市販されているソフトウエアを用いて計算することができる。例として、BLAST、FASTA又はGENETYX(ゼネティックス社)等を用いることができる。 As used herein, with the amino acid sequences set forth in SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. The sequence identity of is 80% or more, preferably 85% or more, more preferably 90% or more, further preferably 95% or more, still more preferably 99% or more. The identity percentage of such sequences can be calculated using publicly available or commercially available software with an algorithm that compares the reference sequence as a query sequence. As an example, BLAST, FASTA, GENETYX (Genetics) and the like can be used.
 配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34で示されるアミノ酸配列は、それぞれ順に、コレトトリカム・プルリボラム(Colletotrichum plurivorum)MAFF305790、ファンガス・F5126(Fungus_F5126)、コレトトリカム・エスピー.(Colletotrichum_sp.)、コレトトリカム・グロエオスポリオイデス(Colletotrichum gloeosporioides)、コレトトリカム・オービキュラーレ(Colletotrichum orbiculare)、コレトトリカム・トフィエルディアエ(Colletotrichum tofieldiae)、コレトトリカム・ゴデティアエ(Colletotrichum godetiae) MAFF240289、グロメレラ・エスピー(Glomerella sp.) RD057037、ディアポルテ・ヘリアンティ(Diaporthe helianthi)、クスキア・オリザエ(Khuskia oryzae)、アクレモニウム・ストリクツム(Acremonium strictum)、クスキア・オリザエ(Khuskia oryzae)、ラシオスパエリス・ハースートウ(Lasiosphaeris hirsute)、ディアポルタセアエ・エスピー(Diaporthaceae sp.)、コレトトリカム・タナケティ(Colletotrichum tanaceti)、フザリウム・ラングセティアエ(Fusarium langsethiae)、フィアモニオシス・カルバタ(Phialemoniopsis curvata)のゲノム情報に基づくものである。また、配列番号36、38は配列番号32、34の分泌シグナルと推定される配列をアスペルギルス・オリゼ(Aspergillus oryzae)由来GDHのシグナル配列に置換した配列である。
 配列番号4又は6で示されるアミノ酸配列は、既知のアミノ酸配列特許第6455714号記載の配列番号2、及び特許第5435180号記載の配列番号1と同一、配列番号8、10、12、18、20、22、24、26、28、30、32、及び34で示されるアミノ酸配列は、公知のデータベースに登録されたアミノ酸配列であるが、当該アミノ酸配列を有するタンパク質がグルコース-6-デヒドロゲナーゼ活性を有することの報告例は無い。
The amino acid sequences set forth in SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34 are in order Colletotrichum. plurivorum) MAFF305790, fan gas · F5126 (Fungus_F5126), Colletotrichum sp. (Colletotrichum_sp.), Colletotrichum Gros Eos polio Lee Death (Colletotrichum gloeosporioides), Colletotrichum-Obikyurare (Colletotrichum orbiculare), Colletotrichum-Tofi Erudi meet (Colletotrichum tofieldiae), Colletotrichum Godetiae MAFF240289, Glomerella sp. RD057037, Diaporte Helianthi, Diaporte herianthi, Kuskia oryzae Khuskia oryzae), Rashiosupaerisu-Hasutou (Lasiosphaeris hirsute), Deer Porta CEA et sp. (Diaporthaceae sp.), Colletotrichum-Tanaketi (Colletotrichum tanaceti), Fusarium Lang Setia et (Fusarium langsethiae), Fiamonioshisu-Karubata (Phialemoniopsis curvata ) Is based on the genomic information. In addition, SEQ ID NOs: 36 and 38 are sequences in which the sequence presumed to be the secretory signal of SEQ ID NOs: 32 and 34 is replaced with the signal sequence of GDH derived from Aspergillus oryzae.
The amino acid sequence represented by SEQ ID NO: 4 or 6 is the same as SEQ ID NO: 2 of the known amino acid sequence Patent No. 6455714 and SEQ ID NO: 1 of Patent No. 5435180, SEQ ID NOs: 8, 10, 12, 18, 20. , 22, 24, 26, 28, 30, 32, and 34 are amino acid sequences registered in a known database, and the protein having the amino acid sequence has glucose-6-dehydrogenase activity. There are no reports of this.
 本発明のフラビン結合型GDHは、以下の性質(1)~(8)を有することが好ましい。フラビンとしては、フラビンアデニンジヌクレオチド(F A D)、フラビンモノヌクレオチド(F M N)が挙げられ、好ましくはF A Dである。
(1)作用:フラビンを補酵素として、グルコースの6位のヒドロキシメチル基を脱水素(酸化)する反応を触媒する
(2)溶解性:水溶性
(3)pH安定性:少なくともpH5.5~8.6の間で安定
 本酵素は、少なくともpH5.5~8.6の間であれば、30℃、1時間の処理後、80%以上の残存酵素活性を有する。pH安定性は、好ましくはpH4.3~9.3、pH5.5~8.7、pH3.2~9.3、pH5.5~9.3、pH4.4~9.3、pH4.0~9.6、pH4.4~9.3、pH5.0~9.3、pH3.3~9.6、pH5.5~8.6、pH4.3~9.6、pH5.0~9.6、pH4.0~8.6、pH4.9~8.7、pH3.3~9.9、pH4.4~9.8、pH4.0~8.8、pH4.4~9.8、pH4.0~9.6である。
 なお、同じpHであっても緩衝液の種類によって残存活性は異なることがある。
(4)熱安定性:少なくとも35℃で安定
 本酵素は、少なくとも35℃であれば、100mMリン酸カリウム緩衝液(pH6.0、7.0又は8.0)、100mMTris-HCl緩衝液(pH8.0)中、60分の処理後、80%以上の残存酵素活性を有する。好ましくは40℃まで、45℃まで、又は50℃まで安定である。
(5)基質特異性:グルコースに対する作用性を100%とした場合にマルトース、キシロース、ガラクトースへの作用性が2.0%以下
 本酵素は、マルトース、キシロース及びガラクトースに対する作用性が低く、グルコースに対する基質特異性が高い。50mMのD-グルコースに対する作用性を100%とした場合に、50mMのマルトース、D-キシロース、D-ガラクトースへの作用性は、2.0%以下であり、好ましくは0.3%以下、0.9%以下又は0.2%以下である。
(6)Km値(対グルコース):30mM以上
 D-グルコースに対するKm値は、好ましくは150~300mM、50~120mM、又は30~80mMである。
(7)分子量:64~66kDa(シグナル除去後のアミノ酸配列からの計算)
 本酵素の分子量は、酵素の分泌シグナル配列をシグナル配列予測サイト(SignalP-5.0、http://www.cbs.dtu.dk/services/SignalP/)で予測し、その予測シグナル部分を除去した形で分子量をアミノ酸配列から算出している。
(8)グルコースオキシダーゼ活性:検出できず
The flavin-bound GDH of the present invention preferably has the following properties (1) to (8). Examples of flavin include flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), preferably FAD.
(1) Action: Catalyze the reaction of dehydrogenating (oxidizing) the hydroxymethyl group at the 6-position of glucose using flavin as a coenzyme (2) Solubility: Water-soluble (3) pH stability: At least pH 5.5 ~ Stable between 8.6 This enzyme has a residual enzyme activity of 80% or more after treatment at 30 ° C. for 1 hour at least between pH 5.5 and 8.6. The pH stability is preferably pH 4.3 to 9.3, pH 5.5 to 8.7, pH 3.2 to 9.3, pH 5.5 to 9.3, pH 4.4 to 9.3, pH 4.0. ~ 9.6, pH 4.4 ~ 9.3, pH 5.0 ~ 9.3, pH 3.3 ~ 9.6, pH 5.5 ~ 8.6, pH 4.3 ~ 9.6, pH 5.0 ~ 9 6.6, pH 4.0-8.6, pH 4.9-8.7, pH 3.3-9.9, pH 4.4-9.8, pH 4.0-8.8, pH 4.4-9.8 , PH 4.0-9.6.
Even if the pH is the same, the residual activity may differ depending on the type of buffer solution.
(4) Thermal stability: Stable at at least 35 ° C. This enzyme is 100 mM potassium phosphate buffer (pH 6.0, 7.0 or 8.0) and 100 mM Tris-HCl buffer (pH 8) at at least 35 ° C. .0) After 60 minutes of treatment, it has 80% or more residual enzyme activity. It is preferably stable up to 40 ° C, 45 ° C, or 50 ° C.
(5) Substrate specificity: When the action on glucose is 100%, the action on maltose, xylose and galactose is 2.0% or less. This enzyme has low action on maltose, xylose and galactose and has low action on glucose. High substrate specificity. When the action on D-glucose of 50 mM is 100%, the action on maltose, D-xylose and D-galactose of 50 mM is 2.0% or less, preferably 0.3% or less, 0. 0.9% or less or 0.2% or less.
(6) Km value (against glucose): 30 mM or more The Km value for D-glucose is preferably 150 to 300 mM, 50 to 120 mM, or 30 to 80 mM.
(7) Molecular weight: 64-66 kDa (calculation from amino acid sequence after signal removal)
For the molecular weight of this enzyme, the secretory signal sequence of the enzyme is predicted at the signal sequence prediction site (SignalP-5.0, http://www.cbs.dtu.dk/services/SignalP/), and the predicted signal part is removed. The molecular weight is calculated from the amino acid sequence in this form.
(8) Glucose oxidase activity: undetectable
 本発明のフラビン結合型GDHは、上記のとおり、グルコースの6位に特異的に作用するため、キシロースに対する作用性が低い。よって、本酵素はグルコースの測定に使用することができ、グルコース測定用のバイオセンサ用の酵素として有用である。 As described above, the flavin-bound GDH of the present invention acts specifically on the 6-position of glucose, and therefore has low activity on xylose. Therefore, this enzyme can be used for measuring glucose and is useful as an enzyme for a biosensor for measuring glucose.
 本発明のフラビン結合型GDHの由来微生物としては、コレトトリカム(Colletotrichum)属(例えば、Colletotrichum plurivorum、Colletotrichum sp.(RD056779)、Colletotrichum gloeosporioides、Colletotrichum orbiculare、Colletotrichum tofieldiae、Colletotrichum godetiae、Colletotrichum tanaceti)、グロメレラ属(例えば、Glomerella sp. RD057037)、ディアポルテ属(例えば、Diaporthe helianthi)、クスキア属(例えば、Khuskia oryzae)、アクレモニウム属(例えば、Acremonium strictum)、ラシオスパエリス属(例えば、Lasiosphaeris hirsute)、フザリウム属(例えば、Fusarium langsethiae)、フィアモニオシス属(例えば、Phialemoniopsis curvata)に属する微生物等が挙げられる。
 本発明のフラビン結合型GDHは、上記微生物(野生株や変異株)由来の酵素、本発明のフラビン結合型GDHをコードする遺伝子を利用して遺伝子工学的手法により得られる組換え酵素、化学合成によって得られる合成酵素のいずれでもよい。好ましくは組換え酵素である。
The derived microorganism flavin-binding GDH of the present invention, Colletotrichum (Colletotrichum) genus (e.g., Colletotrichum plurivorum, Colletotrichum sp. (RD056779), Colletotrichum gloeosporioides, Colletotrichum orbiculare, Colletotrichum tofieldiae, Colletotrichum godetiae, Colletotrichum tanaceti), Guromerera genus ( For example, Glomerella sp. RD057037), Diaporte (eg, Diaporte helianthi), Kuskia (eg, Khuskia oryzae), Acremonium (eg, Acremonium strictum), Laciosperishisaria (eg, Lasia). (For example, Flavin langsetiae), microorganisms belonging to the genus Colletotrichum (for example, Colletotrichum curvata) and the like can be mentioned.
The flavin-bound GDH of the present invention is an enzyme derived from the above-mentioned microorganism (wild strain or mutant strain), a recombinant enzyme obtained by a genetic engineering method using a gene encoding the flavin-bound GDH of the present invention, and chemical synthesis. It may be any of the synthetic enzymes obtained by. It is preferably a recombinant enzyme.
 本発明のフラビン結合型GDHをコードする遺伝子は、以下の(a)~(e)のいずれかのDNAからなる遺伝子であることが好ましい。
(a)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35又は37で示される塩基配列を有するDNA
(b)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35又は37で示される塩基配列において1~数個の塩基が欠失、置換又は付加された塩基配列を有し、かつグルコース-6-デヒドロゲナーゼ活性を有するタンパク質をコードするDNA
(c)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35又は37で示される塩基配列に対して80%以上の配列同一性を有する塩基配列を有し、かつグルコース-6-デヒドロゲナーゼ活性を有するタンパク質をコードするDNA
(d)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35又は37で示される塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつグルコース-6-デヒドロゲナーゼ活性を有するタンパク質をコードするDNA
(e)以下の(i)、(ii)又は(iii)のタンパク質をコードするDNA
(i)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列を有するタンパク質
(ii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質
(iii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質
The gene encoding the flavin-bound GDH of the present invention is preferably a gene consisting of any of the following DNAs (a) to (e).
(A) DNA having the base sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37.
(B) 1 to 1 in the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. DNA encoding a protein having a base sequence in which several bases have been deleted, substituted or added, and having glucose-6-dehydrogenase activity.
(C) For the base sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. DNA encoding a protein having a nucleotide sequence having 80% or more sequence identity and having glucose-6-dehydrogenase activity
(D) Complementary to the nucleotide sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. DNA that hybridizes with DNA consisting of a unique base sequence under stringent conditions and encodes a protein having glucose-6-dehydrogenase activity.
(E) DNA encoding the following protein (i), (ii) or (iii)
(I) A protein having the amino acid sequence shown by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. (Ii) 1 to 1 in the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. Protein with a few amino acid residues deleted, substituted or inserted and having glucose-6-dehydrogenase activity (iii) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16 , 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38, has an amino acid sequence having 80% or more sequence identity with the amino acid sequence shown, and has glucose-6-dehydrogenase activity. Protein
 配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35又は37で示される塩基配列において1~数個の塩基が欠失、置換又は付加された塩基配列における、1~数個の塩基とは、1~10個が好ましく、1~5個がより好ましく、1~3個がさらに好ましく、1又は2個がさらに好ましい。また、塩基の欠失とは塩基の欠落又は消失を意味し、塩基の置換とは塩基が別の塩基に置き換えられていることを意味し、塩基の付加とは塩基が付け加えられていることを意味する。「付加」には、配列の一端又は両端への塩基の付加、及び配列中の塩基の間に別の塩基が挿入されることが含まれる。 One to several in the base sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. In the base sequence in which bases are deleted, substituted or added, 1 to several bases are preferably 1 to 10, more preferably 1 to 5, further preferably 1 to 3, and 1 or 2. Is even more preferable. In addition, deletion of a base means loss or disappearance of a base, substitution of a base means that a base has been replaced with another base, and addition of a base means that a base has been added. means. "Addition" includes the addition of a base to one or both ends of a sequence and the insertion of another base between the bases in the sequence.
 本明細書において、塩基配列の配列同一性は、85%以上が好ましく、90%以上がより好ましく、95%以上がさらに好ましく、99%以上がさらに好ましい。
 塩基配列の配列同一性は、Karlin and AltschulによるアルゴリズムBLAST(Pro.Natl.Acad.Sci.USA,1993,90:5873-5877)を用いて決定することができる。このアルゴリズムBLASTに基づいて、BLASTNやBLASTXとよばれるプログラムが開発されている(J.Mol.Biol.,1990,215,p.403-410)。また、遺伝情報処理ソフトウェアGenetyxのホモロジー解析(Search homology)プログラムを用いてもよい。これらの解析方法の具体的な手法は公知である(www.ncbi.nlm.nih.gov参照)。
In the present specification, the sequence identity of the base sequence is preferably 85% or more, more preferably 90% or more, further preferably 95% or more, still more preferably 99% or more.
The sequence identity of the base sequence can be determined using the algorithm BLAST (Pro. Natl. Acad. Sci. USA, 1993, 90: 5873-5877) by Karlin and Altschul. Based on this algorithm BLAST, programs called BLASTN and BLASTX have been developed (J. Mol. Biol., 1990, 215, p.403-410). In addition, a homology analysis (Search homology) program of the genetic information processing software Genetyx may be used. Specific methods for these analysis methods are known (see www.ncbi.nlm.nih.gov).
 本明細書において、ストリンジエントな条件とは、同一性が高い塩基配列同士がハイブリダイズし、それより同一性が低い塩基配列同士がハイブリダイズしない条件をいう。「ストリンジエントな条件」とは、求める同一性の高低によって、適宜条件を変えることができる。より高ストリンジェントな条件であるほど、より同一性の高い配列のみがハイブリダイズすることになる。例えば、ストリンジエントな条件として、Molecular Cloning:A Laboratory Manual (Second Edition,J.Sambrook et.al,1989)に記載の条件等が挙げられる。すなわち、6×SSC(1×SSCの組成:0.15M塩化ナトリウム、0.015Mクエン酸ナトリウム、pH7.0)、0.5%SDS、5×デンハート及び100mg/mLニシン精子DNAを含む溶液にプローブとともに65℃で8~16時間恒温し、ハイブリダイズさせる条件等が挙げられる。 In the present specification, the stringent condition means a condition in which base sequences having high identity hybridize with each other and base sequences having lower identity do not hybridize with each other. The "stringent condition" can be appropriately changed depending on the level of identity to be sought. The higher the stringent conditions, the more identical sequences will hybridize. For example, as stringent conditions, the conditions described in Molecular Cloning: A Laboratory Manual (Second Edition, J. Sambrook et.al, 1989) can be mentioned. That is, in a solution containing 6 × SSC (composition of 1 × SSC: 0.15 M sodium chloride, 0.015 M sodium citrate, pH 7.0), 0.5% SDS, 5 × denhart and 100 mg / mL herring sperm DNA. Conditions include conditions for constant temperature at 65 ° C. for 8 to 16 hours together with the probe for hybridization.
 本発明のフラビン結合型GDHをコードする遺伝子を利用したフラビン結合型GDHの調製は、例えば、本発明のフラビン結合型GDHをコードする遺伝子を含む発現ベクターを微生物等の宿主細胞に導入し、得られた形質転換体を培養することで本発明のフラビン結合型GDHを産生させることができる。形質転換体には、本発明のフラビン結合型GDHをコードする遺伝子をベクターの状態で保持させても良いし、当該遺伝子をゲノム内に保持させても良い。
 本発明のフラビン結合型GDHをコードする遺伝子は、本明細書が開示する遺伝子配列情報を参考に、PCR法等の当該分野で用いられる任意の方法を用いて単離された状態に調製することができる。
To prepare a flavin-bound GDH using the gene encoding the flavin-bound GDH of the present invention, for example, an expression vector containing the gene encoding the flavin-bound GDH of the present invention is introduced into a host cell such as a microorganism. The flavin-bound GDH of the present invention can be produced by culturing the transformed transformant. The transformant may carry the gene encoding the flavin-bound GDH of the present invention in the state of a vector, or the gene may be held in the genome.
The gene encoding the flavin-bound GDH of the present invention shall be prepared in an isolated state by using an arbitrary method used in the art such as the PCR method with reference to the gene sequence information disclosed in the present specification. Can be done.
 ベクターの種類は、特に限定されず、タンパク質生産に通常用いられるベクター、例えば、プラスミド、コスミド、ファージ、ウイルス、YAC、BAC等が挙げられる。なかでも、プラスミドベクターが好ましく、市販のタンパク質発現用プラスミドベクター、例えば、pETやpBIC等を好適に用いることができる。プラスミドベクターへの遺伝子の導入手順は、当該分野で周知である。 The type of vector is not particularly limited, and examples thereof include vectors usually used for protein production, such as plasmids, cosmids, phages, viruses, YAC, and BAC. Among them, a plasmid vector is preferable, and a commercially available plasmid vector for protein expression, for example, pET or pBIC can be preferably used. Procedures for introducing genes into plasmid vectors are well known in the art.
 本発明のフラビン結合型GDHを発現させるための形質転換の対象となる宿主微生物としては、例えば、エシェリキア(Escherichia)属、ロドコッカス(Rhodococcus)属、ストレプトマイセス(Streptomyces)属、バチルス(Bacillus)属、ブレビバチルス(Brevibacillus)属、スタフィロコッカス(Staphylococcus)属、エンテロコッカス(Enterococcus)属、リステリア(Listeria)属、サッカロマイセス(Saccharomyces)属、ピキア(Pichia)属、シゾサッカロマイセス(Shizosaccharomyces)属、クリベロマイセス(Kluyveromyces)属、アスペルギルス(Aspergillus)属、ペニシリウム(Penicillium)属、トリコデルマ(Trichoderma)属に属する細菌、酵母、糸状菌が挙げられる。 Examples of the host microorganism to be transformed for expressing the flavin-bound GDH of the present invention include the genus Escherichia, the genus Rhodococcus, the genus Streptomyces, and the genus Bacillus. , Brevibacillus, Staphylococcus, Enterococcus, Listeria, Saccharomyces, Saccharomyces, Pichia Examples include bacteria, yeasts and filamentous fungi belonging to the genera Kluyveromyces, Aspergillus, Penicillium and Trichoderma.
 形質転換体の培養に使用する培地、培養条件は、形質転換体の種類にあわせて当業者が適宜選択することができる。
 例えば、微生物が資化し得る炭素源、無機窒素源又は有機窒素源、無機塩、その他必要な有機微量栄養源を含有する培地を用いて、通気攪拌、振とう等の好気条件下で行うことができる。培地は、合成培地、天然培地、半合成培地のいずれであってもよく、又は市販の培地であってもよい。培地は、好ましくは液体培地である。
 培地のpHは、例えばpH5からpH9の範囲が好ましく、生産性を考慮して培養中にpH調整をしても良い。例えば、培養温度は10℃~40℃、培養期間は2日~14日の範囲が好ましい。
The medium and culture conditions used for culturing the transformant can be appropriately selected by those skilled in the art according to the type of the transformant.
For example, using a medium containing a carbon source, an inorganic nitrogen source or an organic nitrogen source, an inorganic salt, and other necessary organic micronutrient sources that can be assimilated by microorganisms, under aerobic conditions such as aeration, stirring, and shaking. Can be done. The medium may be a synthetic medium, a natural medium, a semi-synthetic medium, or a commercially available medium. The medium is preferably a liquid medium.
The pH of the medium is preferably in the range of, for example, pH 5 to pH 9, and the pH may be adjusted during culturing in consideration of productivity. For example, the culture temperature is preferably 10 ° C. to 40 ° C., and the culture period is preferably in the range of 2 to 14 days.
 培養後、培養物を利用することができるが、好ましくは遠心分離等の分離操作を行って培養上清液を得た後に利用される。或いは、微生物菌体を得、任意の方法で微生物菌体を破砕し、破砕液から上清液を得た後に利用される。ここで、培養物は、培養液、微生物菌体又はその処理物(凍結乾燥菌体、アセトン乾燥菌体等)であってもよい。また、任意の方法で固定化された固定化酵素又は固定化菌体であってもよい。
 形質転換体が産生した本発明のフラビン結合型GDHの精製は、公知の精製方法が利用できる。例えば、限外ろ過、塩析、溶媒沈殿、熱処理、透析、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲルろ過、アフィニティークロマトグラフィー等の精製操作を組み合わせることによって精製酵素を得ることができる。
After culturing, the culture can be used, but it is preferably used after obtaining a culture supernatant by performing a separation operation such as centrifugation. Alternatively, it is used after obtaining microbial cells, crushing the microbial cells by an arbitrary method, and obtaining a supernatant from the crushed solution. Here, the culture may be a culture solution, microbial cells or a processed product thereof (lyophilized cells, acetone-dried cells, etc.). Further, it may be an immobilized enzyme or an immobilized bacterial cell immobilized by any method.
A known purification method can be used for the purification of the flavin-bound GDH of the present invention produced by the transformant. For example, a purified enzyme can be obtained by combining purification operations such as ultrafiltration, salting out, solvent precipitation, heat treatment, dialysis, ion exchange chromatography, hydrophobic chromatography, gel filtration, and affinity chromatography.
 本発明のグルクロン酸の製造方法は、グルコースに、メディエーターの存在下、本発明のフラビン結合型GDHを作用させて、グルクロン酸を生成させる工程を有する。本工程において、フラビン結合型GDHの形態は特に限定されず、粗酵素、精製酵素であってよく、フラビン結合型GDHを含む微生物であってもよい。フラビン結合型GDHを含む微生物は、フラビン結合型GDHをコードする遺伝子が導入された組換え微生物が好ましい。フラビン結合型GDHを含む微生物は、その生死は問わず、また上述したような微生物菌体の処理物も含まれる。
 グルクロン酸の生成は、通常、水性媒体中で行われる。水性媒体は、水、緩衝液、一価アルコール、二価アルコール等が挙げられる。
The method for producing glucuronic acid of the present invention comprises a step of allowing glucose of the present invention to act on the flavin-bound GDH of the present invention in the presence of a mediator to produce glucuronic acid. In this step, the form of flavin-bound GDH is not particularly limited, and may be a crude enzyme, a purified enzyme, or a microorganism containing flavin-bound GDH. The microorganism containing the flavin-bound GDH is preferably a recombinant microorganism into which a gene encoding the flavin-bound GDH has been introduced. The microorganism containing the flavin-bound GDH is not limited to life or death, and also includes a treated product of the above-mentioned microbial cells.
The production of glucuronic acid is usually carried out in an aqueous medium. Examples of the aqueous medium include water, a buffer solution, a monohydric alcohol, and a dihydric alcohol.
 基質であるグルコースは、通常、D-グルコースである。本工程において、基質濃度は、10mM~2M程度であることが好ましい。 Glucose as a substrate is usually D-glucose. In this step, the substrate concentration is preferably about 10 mM to 2 M.
 本工程に用いられるメディエーターは、電子の授受能に優れる化学物質を用いることができる。メディエーターは、電子伝達体、電子受容体、酸化還元媒介剤とも称される。
 メディエーターとしては、オスミウム系化合物(例えば、オスミウム(ll)-2,2’-ビピリジン錯体)、キノン系化合物(例えば、ベンゾキノン、1,4-ナフトキノン、ビタミンK3(メナジオン))、フェノール系化合物(tert-ブチルヒドロキノン、ハイドロキノン、4-アミノフェノール、ブチルヒドロキシアニソール、オイゲノール、カテコール、グアイアコール、ピロガロール、バニリン、没食子酸n-プロピル)、フェナジン系化合物(例えば、フェナジンメトサルフェート、1-メトキシ-5-メチルフェナジウムメチルサルフェイト、メチレンブルー)、フェリシアン化物(例えば、フェリシアン化カリウム)、フラボノイド(ケルセチン2水和物、ヘスペリジン)等が挙げられる。なかでも、tert-ブチルヒドロキノン、1-メトキシ-5-メチルフェナジウムメチルサルフェイトが好ましい。
 メディエーターの使用量は、その種類によって適宜設定することができるが、通常、0.5mM~50mM程度が好ましい。
As the mediator used in this step, a chemical substance having an excellent electron transfer ability can be used. Mediators are also referred to as electron carriers, electron acceptors, and redox mediators.
Mediators include osmium compounds (eg, osmium (ll) -2,2'-bipyridine complex), quinone compounds (eg, benzoquinone, 1,4-naphthoquinone, vitamin K3 (menadione)), phenolic compounds (tert). -Butylhydroquinone, hydroquinone, 4-aminophenol, butylhydroxyanisole, eugenol, catechol, guaiacol, pyrogallol, vanillin, n-propyl gallate), phenazine compounds (eg, phenazinemethsulfate, 1-methoxy-5-methylphena) Examples thereof include diummethylsulfate (methylene blue), ferricyanide (for example, potassium ferricyanide), flavonoid (quercetin dihydrate, hesperidin) and the like. Of these, tert-butylhydroquinone and 1-methoxy-5-methylphenadium methylsulfate are preferable.
The amount of the mediator used can be appropriately set depending on the type thereof, but is usually preferably about 0.5 mM to 50 mM.
 グルコースに本発明のフラビン結合型GDHを作用させる条件は、フラビン結合型GDHが失活しない条件であれば特に限定されない。本工程は、常温、常圧下で反応が進行する。また、中性~アルカリ条件下で反応が進行するため、反応過程で強酸を使用する必要がない。
 反応温度は、通常、10℃~60℃、好ましくは20℃~40℃で、反応時間は、通常、30分間~72時間、好ましくは1時間~48時間、より好ましくは3時間~24時間である。
 また、反応pHは、pH5.0~pH9.0が好ましい。
The conditions under which the flavin-bound GDH of the present invention is allowed to act on glucose are not particularly limited as long as the flavin-bound GDH is not inactivated. In this step, the reaction proceeds at room temperature and normal pressure. Moreover, since the reaction proceeds under neutral to alkaline conditions, it is not necessary to use a strong acid in the reaction process.
The reaction temperature is usually 10 ° C. to 60 ° C., preferably 20 ° C. to 40 ° C., and the reaction time is usually 30 minutes to 72 hours, preferably 1 hour to 48 hours, more preferably 3 hours to 24 hours. be.
The reaction pH is preferably pH 5.0 to pH 9.0.
 本発明のフラビン結合型GDHの使用量は、終濃度として1U/mL~50U/mL程度が好ましい。 The amount of the flavin-bound GDH of the present invention used is preferably about 1 U / mL to 50 U / mL as the final concentration.
 本工程において、メディエーターの再酸化を行う観点から、更に酸化酵素を作用させることが好ましい。酸化酵素としては、ラッカーゼ(EC 1.10.3.2)等のフェノールオキシダーゼ、ペルオキシダーゼ(EC 1.11.1.7)が挙げられる。
 また、反応系の活性酸素を除去する観点から、カタラーゼ(EC 1.11.1.6)を使用することが好ましい。
 これらの酵素の使用量は、終濃度として0.25U/mL~500U/mL程度が好ましい。
In this step, it is preferable to further act on an oxidase from the viewpoint of reoxidizing the mediator. Examples of the oxidase include phenol oxidases such as laccase (EC 1.10.3.2) and peroxidase (EC 1.11.1.7).
Further, from the viewpoint of removing active oxygen in the reaction system, it is preferable to use catalase (EC 1.11.1.6).
The amount of these enzymes used is preferably about 0.25 U / mL to 500 U / mL as the final concentration.
 このようにして、基質であるグルコースからグルクロン酸が特異的に生成される。他方、グルコン酸は実質的に生成されない。実質的とは反応産物を分析した際、グルコン酸測定キットや、薄層クロマトグラフィー、HPLC等の手法においてもグルコン酸の生成が確認できないことを指す。よって、本工程によれば、グルクロン酸の精製負荷を軽減することができる。グルクロン酸を単離・精製する場合は、公知の単離・精製方法が利用できる。
 生成したグルクロン酸は、グルクロン酸として或いはその分子内エステルであるグルクロノラクトンの状態で医薬品、医薬部外品、食品等に利用することができる。
In this way, glucuronic acid is specifically produced from the substrate glucose. On the other hand, gluconic acid is substantially not produced. Substantial means that when the reaction product is analyzed, the production of gluconic acid cannot be confirmed even by a method such as a gluconic acid measurement kit, thin layer chromatography, or HPLC. Therefore, according to this step, the purification load of glucuronic acid can be reduced. When glucuronic acid is isolated / purified, a known isolation / purification method can be used.
The produced glucuronic acid can be used as glucuronic acid or in the form of glucuronolactone, which is an intramolecular ester thereof, in pharmaceuticals, quasi-drugs, foods and the like.
 本発明のグルクロン酸誘導体の製造方法は、グルコース誘導体に、メディエーターの存在下、本発明のフラビン結合型GDHを作用させて、グルクロン酸誘導体を生成させる工程を有する。フラビン結合型GDHは、上述したものと同様である。
 グルクロン酸誘導体の生成も、通常、水、緩衝液、一価アルコール、二価アルコール等の水性媒体中で行われる。
The method for producing a glucuronic acid derivative of the present invention comprises a step of allowing a glucose derivative to act on a flavin-bound GDH of the present invention in the presence of a mediator to produce a glucuronic acid derivative. The flavin-bound GDH is similar to that described above.
The production of the glucuronic acid derivative is also usually carried out in an aqueous medium such as water, a buffer solution, a monohydric alcohol or a dihydric alcohol.
 本明細書において、グルコース誘導体は、アミノ糖及びそのN-アセチル化物、グルコシド、ポリオールといったグルコースを構成する水酸基が水素に置換されたグルコースアナログから選ばれる。グルコースは、D-グルコースが好ましい。
 アミノ糖及びそのN-アセチル化物は、グルコサミン、N-アセチルグルコサミン等が挙げられる。
 グルコシドは、グルコースのヘミアセタール性ヒドロキシ基が他の化合物とエーテル結合した配糖体、またはグルコースとオクタン等の飽和炭化水素が硫黄原子を挟んでチオエーテル結合した配糖体の総称である。
 他の化合物としては、アグリコン、単糖類、二糖類、三糖類以上の多糖類等が挙げられる。アグリコンは非糖部であり、例えば、アルコール、フェノール、フェニルプロパノイド、オクタン等の飽和炭化水素等が挙げられる。
 グルコシドは、セロビオース、アルブチン、ピセイド、メチルグルコシド、オクチルチオグルコシドが好ましい。
 グルコースアナログは、1,5-アンヒドロ-D-グルシトール、2-デオキシ-D-グルコース等が挙げられる。
In the present specification, the glucose derivative is selected from glucose analogs in which the hydroxyl groups constituting glucose such as amino sugars and their N-acetylated products, glucosides, and polyols are replaced with hydrogen. The glucose is preferably D-glucose.
Examples of the amino sugar and its N-acetylated product include glucosamine and N-acetylglucosamine.
Glucoside is a general term for glycosides in which a hemiacetal hydroxy group of glucose is ether-bonded to another compound, or glycosides in which saturated hydrocarbons such as glucose and octane are thioether-bonded with a sulfur atom sandwiched between them.
Examples of other compounds include aglycones, monosaccharides, disaccharides, polysaccharides of trisaccharides or higher, and the like. Aglycone is a non-sugar portion, and examples thereof include saturated hydrocarbons such as alcohol, phenol, phenylpropanoid, and octane.
As the glucoside, cellobiose, arbutin, piceid, methylglucoside, and octylthioglucoside are preferable.
Glucose analogs include 1,5-anhydro-D-glucitol, 2-deoxy-D-glucose and the like.
 本工程において、基質濃度は、10mM~1000mM程度が好ましい。 In this step, the substrate concentration is preferably about 10 mM to 1000 mM.
 本工程に用いられるメディエーターは、上述したものと同様である。
 メディエーターの使用量は、0.5mM~50mM程度が好ましい。
The mediator used in this step is the same as that described above.
The amount of the mediator used is preferably about 0.5 mM to 50 mM.
 グルコース誘導体に本発明のフラビン結合型GDHを作用させる条件は、フラビン結合型GDHが失活しない条件であれば特に限定されない。本工程も、常温、常圧下で反応が進行し、また、中性~アルカリ条件下で反応が進行する。
 反応温度は、通常、10℃~60℃、好ましくは20℃~40℃で、反応時間は、通常、30分間~72時間、好ましくは1時間~48時間、より好ましくは3時間~24時間である。
 また、反応pHは、pH5.0~pH9.0が好ましい。
The conditions under which the flavin-bound GDH of the present invention is allowed to act on the glucose derivative are not particularly limited as long as the flavin-bound GDH is not inactivated. In this step as well, the reaction proceeds under normal temperature and pressure, and the reaction proceeds under neutral to alkaline conditions.
The reaction temperature is usually 10 ° C. to 60 ° C., preferably 20 ° C. to 40 ° C., and the reaction time is usually 30 minutes to 72 hours, preferably 1 hour to 48 hours, more preferably 3 hours to 24 hours. be.
The reaction pH is preferably pH 5.0 to pH 9.0.
 本発明のフラビン結合型GDHの使用量は、終濃度として1U/mL~50U/mLが好ましい。 The amount of the flavin-bound GDH of the present invention used is preferably 1 U / mL to 50 U / mL as the final concentration.
 本工程においても、メディエーターの再酸化を行う観点から、更に酸化酵素を作用させることが好ましい。酸化酵素としては、ラッカーゼ(EC 1.10.3.2)等のフェノールオキシダーゼ、ペルオキシダーゼ(EC 1.11.1.7)が挙げられる。
 また、活性酸素の除去を行う観点からカタラーゼ(EC 1.11.1.6)を使用することが好ましい。
 これらの酵素の使用量は終濃度として0.25U/mL~500U/mL程度が好ましい。
Also in this step, it is preferable to further act on an oxidase from the viewpoint of reoxidizing the mediator. Examples of the oxidase include phenol oxidases such as laccase (EC 1.10.3.2.) And peroxidase (EC 1.11.1.1.7).
Moreover, it is preferable to use catalase (EC 1.11.1.6) from the viewpoint of removing active oxygen.
The final concentration of these enzymes is preferably about 0.25 U / mL to 500 U / mL.
 このようにして、基質であるグルコース誘導体のグルコース骨格の6位のヒドロキシメチル基がカルボキシ基に酸化され、グルクロン酸誘導体が特異的に生成される。グルクロニドの生成率は薄層クロマトグラフィーでの分析結果よりほぼ100%である。
 生成したグルクロン酸誘導体は、生体内で生成されるグルクロン酸抱合体に対する標準物質、医薬品、食品又は化粧品の原料、界面活性剤等に利用することができる。
In this way, the hydroxymethyl group at the 6-position of the glucose skeleton of the glucose derivative as a substrate is oxidized to a carboxy group, and a glucuronic acid derivative is specifically produced. The production rate of glucuronide is almost 100% based on the analysis result by thin layer chromatography.
The produced glucuronic acid derivative can be used as a standard substance for a glucuronic acid conjugate produced in vivo, a raw material for pharmaceuticals, foods or cosmetics, a surfactant and the like.
 本発明のグルクロン酸又はグルクロン酸誘導体製造用触媒は、グルコース-6-デヒドロゲナーゼ活性を有するフラビン結合型グルコース脱水素酵素を含み、グルコース又はグルコース誘導体からグルクロン酸又はグルクロン酸誘導体を製造するための酵素触媒である。
 グルクロン酸又はグルクロン酸誘導体製造用触媒は、本発明のフラビン結合型GDHの他、例えば、賦形剤、懸濁剤、緩衝剤、安定化剤、保存剤、生理食塩水等を含有してもよい。
The catalyst for producing glucuronic acid or glucuronic acid derivative of the present invention contains a flavin-bound glucose dehydrogenase having glucose-6-dehydrogenase activity, and is an enzyme catalyst for producing glucuronic acid or glucuronic acid derivative from glucose or glucose derivative. Is.
The catalyst for producing glucuronic acid or glucuronic acid derivative may contain, for example, an excipient, a suspending agent, a buffer, a stabilizer, a preservative, a physiological saline solution, etc., in addition to the flavin-bound GDH of the present invention. good.
 次に実施例を挙げて本発明をより詳細に説明するが、本発明は何らこれに限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
(グルコース脱水素酵素(GDH)活性測定法)
 100mM リン酸カリウム緩衝液(pH6.0)1.00mL、1M D-グルコース溶液1.00mL、3mM 2,6-ジクロロフェノールインドフェノール(以下「DCIP」という)0.14mL及び3mM 1-メトキシ-5-メチルフェナジウムメチルサルフェイト(以下「1-m-PMS」という)0.20mL及び超純水0.61mLを混合し、37℃で10分間保温後、酵素溶液0.05mLを添加し、反応を開始した。
 反応開始時から5分間、酵素反応の進行に伴う600nmにおける吸光度の1分間あたりの減少量(ΔA600)を測定し、直線部分から次式に従い酵素活性を算出した。この際、酵素活性は、37℃、pH6.0で1分間に1μmolのDCIPを還元する酵素量を1Uと定義した。
(Glucose dehydrogenase (GDH) activity measurement method)
100 mM potassium phosphate buffer (pH 6.0) 1.00 mL, 1MD-glucose solution 1.00 mL, 3 mM 2,6-dichlorophenol indophenol (hereinafter referred to as “DCIP”) 0.14 mL and 3 mM 1-methoxy-5 -Methylphenadium Methylsulfate (hereinafter referred to as "1-m-PMS") 0.20 mL and ultrapure water 0.61 mL are mixed, kept warm at 37 ° C for 10 minutes, and then 0.05 mL of enzyme solution is added for reaction. Started.
For 5 minutes from the start of the reaction, the amount of decrease in absorbance (ΔA600) at 600 nm with the progress of the enzyme reaction was measured, and the enzyme activity was calculated from the linear portion according to the following formula. At this time, the enzyme activity was defined as 1 U for the amount of enzyme that reduces 1 μmol of DCIP per minute at 37 ° C. and pH 6.0.
 グルコース脱水素酵素(GDH)活性(U/mL)=(-(ΔA600-ΔA600blank)×3.0×酵素の希釈倍率)/(10.8×1.0×0.05)
 尚、式中の3.0は反応試薬+酵素溶液の液量(mL)、10.8はpH6.0におけるDCIPのモル吸光係数、1.0はセルの光路長(cm)、0.05は酵素溶液の液量(mL)、ΔA600blankは酵素の希釈溶液を酵素溶液の代わりに添加して反応開始した場合の600nmにおける吸光度の1分間あたりの減少量を表す。
Glucose dehydrogenase (GDH) activity (U / mL) = (-(ΔA600-ΔA600 blank) × 3.0 × enzyme dilution ratio) / (10.8 × 1.0 × 0.05)
In the formula, 3.0 is the liquid volume (mL) of the reaction reagent + enzyme solution, 10.8 is the molar extinction coefficient of DCIP at pH 6.0, and 1.0 is the optical path length (cm) of the cell, 0.05. Is the amount of the enzyme solution (mL), and ΔA600blank is the amount of decrease in the absorbance at 600 nm per minute when the diluted solution of the enzyme is added instead of the enzyme solution and the reaction is started.
[実施例1]
(フラビン結合型グルコース脱水素酵素 CpGDHの取得)
 GDH生産菌の探索を行った結果、Colletotrichum plurivorum MAFF305790の培養上清にGDH活性が確認できた。
[Example 1]
(Acquisition of flavin-bound glucose dehydrogenase CpGDH)
As a result of searching for GDH-producing bacteria, GDH activity was confirmed in the culture supernatant of Colletotrichum plurivorum MAFF305790.
(1)菌体培養
 デキストリン(富士フィルム和光純薬社)2%(w/v)、ポリペプトン(富士フィルム和光純薬社)1%(w/v)、リン酸二水素カリウム(ナカライテスク社)0.5%(w/v)、硫酸マグネシウム七水和物(ナカライテスク社)0.05%(w/v)及び水からなる液体培地を調製し、10mLを太試験管に入れ、121℃、20分間オートクレーブした。冷却した液体培地に、前記GDH生産菌を接種し、25℃で72時間振とう培養した後、さらしを用いて、湿菌体を回収した。
(1) Cell culture Dextrin (Fuji Film Wako Junyakusha) 2% (w / v), Polypeptone (Fuji Film Wako Junyakusha) 1% (w / v), Potassium dihydrogen phosphate (Nacalai Tesque) A liquid medium consisting of 0.5% (w / v), magnesium sulfate heptahydrate (Nacalai Tesque) 0.05% (w / v) and water was prepared, and 10 mL was placed in a thick test tube at 121 ° C. , Autoclaved for 20 minutes. The GDH-producing bacteria were inoculated into a cooled liquid medium, cultured with shaking at 25 ° C. for 72 hours, and then wet cells were collected using bleaching.
(2)全RNAの単離
 (1)で取得した湿菌体200mgを-80℃で凍結した後、ISOGENII(ニッポンジーン社)を用いて100μgの全RNAを抽出した。
(2) Isolation of total RNA After freezing 200 mg of wet cells obtained in (1) at −80 ° C., 100 μg of total RNA was extracted using ISOGENII (Nippon Gene).
(3)cDNAライブラリーの調製
 (2)で取得したRNAから、逆転写酵素及びアダプター配列付きオリゴdTプライマーを用いた逆転写反応によりcDNAライブラリーを調製した。反応試薬は、SMARTer RACE cDNA Amplification kit(タカラバイオ社)を使用し、反応条件は説明書記載のプロトコールに準じて行った。
(3) Preparation of cDNA library From the RNA obtained in (2), a cDNA library was prepared by a reverse transcription reaction using a reverse transcriptase and an oligo dT primer with an adapter sequence. As the reaction reagent, SMARTer RACE cDNA Amplification kit (Takara Bio Inc.) was used, and the reaction conditions were carried out according to the protocol described in the manual.
(4)GDH遺伝子のクローニング
 (3)で取得したcDNAライブラリーを鋳型とし、GDH遺伝子取得用プライマー対を用いてPCRを行った。その結果、GDH遺伝子の内部配列と思われるPCR産物が確認された。尚、前記プライマー対は、本発明者らによって既に解明されていた複数のGDH配列を基に、種々のGDH遺伝子取得用に設計したプライマーである。前記PCR産物を精製し、塩基配列を決定した。
(4) Cloning of GDH gene PCR was performed using the cDNA library obtained in (3) as a template and a primer pair for obtaining the GDH gene. As a result, a PCR product that seems to be the internal sequence of the GDH gene was confirmed. The primer pair is a primer designed for acquisition of various GDH genes based on a plurality of GDH sequences already elucidated by the present inventors. The PCR product was purified and the nucleotide sequence was determined.
 決定した塩基配列を基に、GDH遺伝子の上流及び下流配列を解明するためのプライマーを設計した。これらのプライマーを用いて5’RACE法及び3’RACE法によって、Colletotrichum plurivorum MAFF305790GDH株由来GDH(以下「CpGDH」)遺伝子全長を解明した。 Based on the determined nucleotide sequence, we designed primers to elucidate the upstream and downstream sequences of the GDH gene. Using these primers, the total length of the GDH (hereinafter referred to as "CpGDH") gene derived from the Colletotrichum plerivorum MAFF305790 GDH strain was elucidated by the 5'RACE method and the 3'RACE method.
 解明したCpGDH遺伝子配列をアスペルギルス・オリゼのコドン頻度に最適化した配列を配列番号1に示した。更に、当該遺伝子配列より予測したアミノ酸配列を配列番号2に示した。 The elucidated CpGDH gene sequence optimized for the codon frequency of Aspergillus oryzae is shown in SEQ ID NO: 1. Furthermore, the amino acid sequence predicted from the gene sequence is shown in SEQ ID NO: 2.
(5)CpGDH遺伝子を含む発現用プラスミドベクターの調製
 公知文献1(Aspergillus属の異種遺伝子発現系、峰時俊貴、化学と生物、38、12、831-838、2000)に記載してあるアスペルギルス・オリゼ由来のアミラーゼ系の改良プロモーターを使用してプラスミドベクターを調製した。最初に、(3)で取得したcDNAライブラリーを鋳型とし、CpGDH遺伝子を含むPCR産物を取得した。次に、前記PCR産物を鋳型とし、ベクター挿入用のCpGDH遺伝子を調製した。
(5) Preparation of an expression plasmid vector containing the CpGDH gene Aspergillus described in Known Document 1 (Heterogeneous gene expression system of the genus Aspergillus, Toshiki Minetoki, Chemistry and Biology, 38, 12, 831-838, 2000). A plasmid vector was prepared using an improved amylase-based promoter derived from Orize. First, a PCR product containing the CpGDH gene was obtained using the cDNA library obtained in (3) as a template. Next, using the PCR product as a template, a CpGDH gene for vector insertion was prepared.
 最終的に、前記プロモーターの下流に調製したCpGDH遺伝子を結合させて、該遺伝子が発現可能なプラスミドベクターを作製した。作製した発現用プラスミドベクターを大腸菌JM109株に導入して形質転換した。得られた形質転換体を培養して、集菌した菌体から、illustra plasmidPrep Midi Flow Kit(GEヘルスケア社)を用いてプラスミドベクターを抽出した。該プラスミドベクター中のインサートの配列解析を行ったところ、CpGDH遺伝子を含む塩基配列が確認できた。 Finally, the CpGDH gene prepared downstream of the promoter was ligated to prepare a plasmid vector capable of expressing the gene. The prepared expression plasmid vector was introduced into Escherichia coli JM109 strain and transformed. The obtained transformant was cultured, and a plasmid vector was extracted from the collected bacterial cells using illustra plasmidPrep MidiFlow Kit (GE Healthcare). When the sequence of the insert in the plasmid vector was analyzed, the nucleotide sequence containing the CpGDH gene was confirmed.
(6)形質転換体の取得
 (5)で抽出したプラスミドベクターを用いて、公知文献2(Biosci. Biotech. Biochem.,61(8),1367-1369,1997)及び公知文献3(清酒用麹菌の遺伝子操作技術、五味勝也、醸協、494-502、2000)に記載の方法に準じて、CpGDHを生産する組換えカビ(アスペルギルス・オリゼ)を作製した。得られた組換え株をCzapek-Dox固体培地で純化した。
 使用する宿主としては、アスペルギルス・オリゼNS4株を使用した。本菌株は、公知文献2にあるように、1997年(平成9年)に醸造試験所で育種され、現在は、独立行政法人酒類総合研究所で分譲されているものが入手可能である。
(6) Acquisition of Transformant Using the plasmid vector extracted in (5), Known Document 2 (Bioscii. Biotech. Biochem., 61 (8), 1367-1369, 1997) and Known Document 3 (Sake Aspergillus) A recombinant mold (Aspergillus oryzae) that produces CpGDH was prepared according to the method described in (Katsuya Gomi, Jyokyo, 494-502, 2000). The resulting recombinant strain was purified in Czapek-Dox solid medium.
Aspergillus oryzae NS4 strain was used as the host to be used. As described in Known Document 2, this strain was bred at a brewing laboratory in 1997, and is currently available for sale at the Liquor Research Institute.
(7)組換えカビ由来CpGDHの確認
 デキストリン(富士フィルム和光純薬社)2%(w/v)、ポリペプトン(富士フィルム和光純薬社)1%(w/v)、リン酸二水素カリウム(ナカライテスク社)0.5%(w/v)、硫酸マグネシウム七水和物(ナカライテスク社)0.05%(w/v)及び水からなる液体培地を調製し、10mLを太試験管(22mm×200mm)に入れ、121℃、20分間オートクレーブした。冷却した液体培地に、(6)で取得した形質転換体を植菌し、30℃で120時間振とう培養した。培養終了後、遠心して上清を回収し、前述のGDH活性測定法でGDH活性を測定したところ、本発明のCpGDH活性が確認できた。
(7) Confirmation of CpGDH derived from recombinant mold Dextrin (Fuji Film Wako Pure Pharmaceutical Co., Ltd.) 2% (w / v), Polypeptone (Fuji Film Wako Pure Pharmaceutical Co., Ltd.) 1% (w / v), Potassium dihydrogen phosphate (w / v) Prepare a liquid medium consisting of 0.5% (w / v) of Nacalai Tesque, 0.05% (w / v) of magnesium sulfate heptahydrate (Nacalai Tesque), and water, and add 10 mL to a thick test tube (Nakarai Tesque). It was placed in (22 mm × 200 mm) and autoclaved at 121 ° C. for 20 minutes. The transformant obtained in (6) was inoculated into a cooled liquid medium and cultured with shaking at 30 ° C. for 120 hours. After completion of the culture, the supernatant was collected by centrifugation, and the GDH activity was measured by the above-mentioned GDH activity measuring method. As a result, the CpGDH activity of the present invention was confirmed.
(8)CpGDHの精製
 (7)に記載の液体培地150mLを500mL容の坂口フラスコに入れ、121℃、20分間オートクレーブした。冷却した液体培地に、(6)で取得した形質転換体を植菌し、30℃で72時間振とう培養した。培養終了後、培養液をろ布でろ過し、回収したろ液を遠心して上清を回収し、更にメンブレンフィルター(10μm、アドバンテック社)でろ過して培養上清を回収した。
(8) Purification of CpGDH 150 mL of the liquid medium described in (7) was placed in a 500 mL Sakaguchi flask and autoclaved at 121 ° C. for 20 minutes. The transformant obtained in (6) was inoculated into a cooled liquid medium and cultured with shaking at 30 ° C. for 72 hours. After completion of the culture, the culture solution was filtered through a filter cloth, the collected filtrate was centrifuged to collect the supernatant, and further filtered through a membrane filter (10 μm, Advantech) to collect the culture supernatant.
 回収した培養上清について、TOYOPEARL DEAE-650S(東ソー社)カラムを用いて夾雑蛋白を除去して精製した。精製サンプルを分画分子量10,000の限外ろ過膜で濃縮後、水置換し、精製CpGDHとした。該精製CpGDHをSDS-ポリアクリルアミド電気泳動に供したところ、単一バンドを示すことを確認した。 The collected culture supernatant was purified by removing contaminating proteins using a TOYOPEARL DEAE-650S (Tosoh Corporation) column. The purified sample was concentrated with an ultrafiltration membrane having a molecular weight cut off of 10,000 and then replaced with water to obtain purified CpGDH. When the purified CpGDH was subjected to SDS-polyacrylamide gel electrophoresis, it was confirmed that it showed a single band.
(FGDH及びCsGDHの取得)
 特許第6455714号の配列番号1記載の遺伝子配列1872bp及び特許第5435180号の配列番号2記載の遺伝子配列1908bpを合成し、実施例1と同様の方法でアスペルギルス・オリゼNS4株にて各々発現させ、精製した。特許第6455714号の配列番号1由来の精製酵素をFGDHとし、特許第5435180号の配列番号2由来の精製酵素をCsGDHとした。FGDHの遺伝子配列及びアミノ酸配列を配列番号3及び4に記載し、CsGDHの遺伝子配列及びアミノ酸配列を配列番号5及び6に記載した。
(Acquisition of FGDH and CsGDH)
The gene sequence 1872 bp described in SEQ ID NO: 1 of Japanese Patent No. 6455714 and the gene sequence 1908 bp described in SEQ ID NO: 2 of Japanese Patent No. 5435180 were synthesized and expressed in Aspergillus oryzae NS4 strain by the same method as in Example 1, respectively. Purified. The purified enzyme derived from SEQ ID NO: 1 of Patent No. 6455714 was designated as FGDH, and the purified enzyme derived from SEQ ID NO: 2 of Patent No. 5435180 was designated as CsGDH. The FGDH gene sequence and amino acid sequence are set forth in SEQ ID NOs: 3 and 4, and the CsGDH gene sequence and amino acid sequence are set forth in SEQ ID NOs: 5 and 6.
[実施例2]
(各GDHの酵素化学的性質の検討)
 実施例1で得られたCpGDH、FGDH及びCsGDHの諸性質を調べた。
(1)吸収スペクトルの測定
 実施例1で得られた各GDHについて、D-グルコース添加前後の300-600nmにおける吸収スペクトルをプレートリーダー(SpectraMax Plus384、モレキュラーデバイス社)を用いて測定した。その結果、波長360-380nm付近及び波長450-460nm付近に認められた吸収極大が、D-グルコース添加により消失したことから、何れのGDHもフラビン結合型タンパク質であることが明らかになった。
[Example 2]
(Examination of enzymatic chemistry of each GDH)
The properties of CpGDH, FGDH and CsGDH obtained in Example 1 were investigated.
(1) Measurement of Absorption Spectrum For each GDH obtained in Example 1, the absorption spectrum at 300-600 nm before and after the addition of D-glucose was measured using a plate reader (SpectraMax Plus384, Molecular Device Co., Ltd.). As a result, the absorption maximums observed near the wavelength of 360-380 nm and the wavelength of 450-460 nm disappeared by the addition of D-glucose, and it was clarified that all GDHs were flavin-bound proteins.
(2)グルコース酸化酵素(GOD)活性の測定
 1M リン酸カリウム緩衝液(pH7.0)0.2mL、1M D-グルコース2.0mL、25mM 4-アミノアンチピリン0.2mL、420mM フェノール0.2mL、1mg/mL ペルオキシダーゼ(富士フィルム和光純薬社、西洋ワサビ由来)0.2mL及び超純水0.2mLを混合し、混合液0.1mLを96穴プレートに入れ、25℃で5分間保温した。実施例1で得られた各GDH0.1mLを添加し、反応を開始した。反応開始時から5分間、酵素反応の進行に伴う500nmにおける吸光度変化を前記プレートリーダーで測定し、GOD活性を調べた。尚、コントロールは、GDHの代わりに水、又はAspergillus niger由来GOD(ナカライテスク社)を添加して反応を開始した。その結果、Aspergillus niger由来GODを添加したコントロールでは500nmでの吸光度変化が確認されたが、本発明のGDHは水を添加したコントロールと同様に吸光度変化は見られなかった。よって何れのGDHも酸素を電子受容体として利用しない脱水素酵素であることが確認された。
(2) Measurement of glucose oxidase (GOD) activity 1M potassium phosphate buffer (pH 7.0) 0.2 mL, 1M D-glucose 2.0 mL, 25 mM 4-aminoantipyrine 0.2 mL, 420 mM phenol 0.2 mL, 0.2 mL of 1 mg / mL peroxidase (derived from Fuji Film Wako Pure Chemical Industries, Ltd., Western Wasabi) and 0.2 mL of ultrapure water were mixed, 0.1 mL of the mixed solution was placed in a 96-well plate, and the mixture was kept warm at 25 ° C. for 5 minutes. 0.1 mL of each GDH obtained in Example 1 was added, and the reaction was started. For 5 minutes from the start of the reaction, the change in absorbance at 500 nm with the progress of the enzyme reaction was measured with the plate reader to examine the GOD activity. The control started the reaction by adding water or GOD derived from Aspergillus niger (Nacalai Tesque) instead of GDH. As a result, a change in absorbance at 500 nm was confirmed in the control to which GOD derived from Aspergillus niger was added, but no change in absorbance was observed in the GDH of the present invention as in the control to which water was added. Therefore, it was confirmed that all GDHs are dehydrogenases that do not utilize oxygen as an electron acceptor.
(3)基質特異性
 前記GDH活性測定法に準じ、基質に終濃度50mMのD-グルコース、マルトース、D-キシロース又はD-ガラクトースをそれぞれ用いて、各基質に対する各GDHの活性を測定した。結果を表1に示す。
(3) Substrate Specificity According to the above-mentioned GDH activity measurement method, the activity of each GDH with respect to each substrate was measured using D-glucose, maltose, D-xylose or D-galactose having a final concentration of 50 mM as the substrate. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 何れのGDHも、D-グルコースに対する活性を100%とした場合に、マルトース、D-キシロース又はD-ガラクトースに対する活性は、0.3%、0.4%又は0.2%以下であり、何れも2.0%以下だった。 When the activity against D-glucose is 100%, the activity against maltose, D-xylose or D-galactose is 0.3%, 0.4% or 0.2% or less in any of the GDHs. Was less than 2.0%.
(4)D-グルコースに対するKm値
 各GDHについて、前記活性測定法に準じて、基質であるD-グルコース濃度を変化させて活性測定を行い、Hanes-Woolfプロットから、ミカエリス定数(Km)を求めた。尚、活性測定は25℃で実施した。結果を表2に示す。
(4) Km value for D-glucose For each GDH, the activity was measured by changing the concentration of D-glucose as a substrate according to the above-mentioned activity measurement method, and the Michaelis constant (Km) was obtained from the Hanes-Woolf plot. rice field. The activity was measured at 25 ° C. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 その結果、CpGDHは196mM、CsGDHは50mM、FGDHは52mMだった。なお、Km値は、測定方法や算出するプロットによって値が変動し易いため、CpGDHのKmは150mM~300mM、FGDHのKmは30mM~80mM、CsGDHのKmは30mM~80mMと考えられる。 As a result, CpGDH was 196 mM, CsGDH was 50 mM, and FGDH was 52 mM. Since the Km value is likely to fluctuate depending on the measurement method and the calculated plot, it is considered that the Km of CpGDH is 150 mM to 300 mM, the Km of FGDH is 30 mM to 80 mM, and the Km of CsGDH is 30 mM to 80 mM.
(5)熱安定性
 各GDHを6U/mLに調製し、100mMリン酸カリウム緩衝液(pH8.0)中で、各温度で60分間処理した結果、処理前の酵素活性を100%とした際の残存酵素活性が80%以上となる温度域はCpGDHでは40℃まで、FGDHは40℃まで、CsGDHは45℃までとなった(図1参照)。
(5) Thermal stability When each GDH was prepared at 6 U / mL and treated in 100 mM potassium phosphate buffer (pH 8.0) at each temperature for 60 minutes, the enzyme activity before treatment was set to 100%. The temperature range in which the residual enzyme activity of CpGDH is 80% or more is up to 40 ° C. for CpGDH, up to 40 ° C. for FGDH, and up to 45 ° C. for CsGDH (see FIG. 1).
(6)安定なpHの範囲
 各GDHの安定pHを調べた。各GDHを6U/mLに調製し、終濃度が100mMクエン酸リン酸ナトリウム緩衝液(pH2.2-7.0)、100mM酢酸カリウム緩衝液(pH3.0-6.0)、100mMリン酸カリウム緩衝液(pH6.0-8.0)、100mM Tris-HCl緩衝液(pH7.0-9.0)、100mMグリシン-NaOH緩衝液(pH9.0-10.0)になるように緩衝液を添加し、それぞれのpHにおいて30℃で1時間処理した後、各GDHの残存活性をそれぞれ測定した。その結果、処理前の酵素活性値を100%とした際の各GDHの残存酵素活性値が80%以上となるpH域はCpGDHでpH4.3~9.3、FGDHでpH5.5~8.7、CsGDHでpH3.2~9.3であった(図2参照)。以上から、本発明のGDHは少なくともpH5.5~8.7の範囲で安定であることがわかった。なお、同じpHであっても緩衝液の種類によって残存活性は異なることがある。
(6) Stable pH range The stable pH of each GDH was examined. Each GDH is adjusted to 6 U / mL, and the final concentration is 100 mM sodium citrate buffer (pH 2.2-7.0), 100 mM potassium acetate buffer (pH 3.0-6.0), 100 mM potassium phosphate. Buffer solution (pH 6.0-8.0), 100 mM Tris-HCl buffer solution (pH 7.0-9.0), 100 mM glycine-NaOH buffer solution (pH 9.0-10.0). After addition and treatment at 30 ° C. for 1 hour at each pH, the residual activity of each GDH was measured. As a result, the pH range in which the residual enzyme activity value of each GDH is 80% or more when the enzyme activity value before treatment is 100% is pH 4.3 to 9.3 for CpGDH and pH 5.5 to 8. for FGDH. 7. The pH of CsGDH was 3.2 to 9.3 (see FIG. 2). From the above, it was found that the GDH of the present invention is stable in the range of at least pH 5.5 to 8.7. Even if the pH is the same, the residual activity may differ depending on the type of buffer solution.
[実施例3]
(1-m-PMS共存下で得られたグルコース酸化物の分析)
 精製CpGDHと1-m-PMSをメディエーターとした反応系を構築し、グルコース酸化物を取得した。その調製方法と各種分析方法を以下に記載する。
[Example 3]
(Analysis of glucose oxide obtained in the presence of 1-m-PMS)
A reaction system using purified CpGDH and 1-m-PMS as mediators was constructed to obtain glucose oxide. The preparation method and various analysis methods are described below.
(1)グルコース酸化物の調製
 1M リン酸カリウム緩衝液(pH7.0)0.04mL、2M D-グルコース溶液0.01mL、0.2M 1-m-PMS溶液0.02mL、10,000U/mL カタラーゼ(富士フィルム和光純薬社、ウシ肝臓由来)0.02mL、90U/mL CpGDH、FGDH又はCsGDH0.08mL、超純水0.23mLを混合し、室温で一晩転倒混和した後、反応容器内の空気を入れ替えて更に数時間転倒混和し、グルコース酸化物を含む反応産物を取得した。
(1) Preparation of glucose oxide 1M potassium phosphate buffer (pH 7.0) 0.04 mL, 2MD-glucose solution 0.01 mL, 0.2M 1-m-PMS solution 0.02 mL, 10,000 U / mL Catalase (Fuji Film Wako Pure Chemical Industries, Ltd., derived from bovine liver) 0.02 mL, 90 U / mL CpGDH, FGDH or CsGDH 0.08 mL, ultrapure water 0.23 mL are mixed, inverted and mixed overnight at room temperature, and then in the reaction vessel. The air was replaced and the mixture was inverted and mixed for several hours to obtain a reaction product containing a glucose oxide.
(2)グルコース酸化物の薄層クロマトグラフィー分析
 (1)で取得した反応産物を試料として、薄層クロマトグラフィー(以下TLCという)分析を行った。試料0.001mLをシリカゲルプレート(Merck Millipore、Silica gel60 F254)上に滴下・乾燥させ、アセトニトリル/超純水(70:30)で10分間展開させた。そのシリカゲルプレートを乾燥させ、濃硫酸/エタノール(5:95)を噴霧後に加熱した結果、CpGDH、FGDH、CsGDH反応産物では、何れもグルクロン酸標品と同じ位置にスポットが確認され、D-グルコース標品、及びグルコン酸標品と同じ位置にはスポットが確認されなかった。一方、比較例として一般的によく知られているGDHであるAspergillus terreus由来GDH(特許文献8)を精製し、同様の試験を行った結果、グルクロン酸標品、及びグルコース標品と同じ位置にスポットは検出されず、グルコン酸標品と同じ位置にスポットが検出された。このことから、一般的なGDHはグルコースの1位を酸化してグルコン酸を生成するのに対し、CpGDH、FGDH、CsGDHはグルコースの6位を酸化し、グルクロン酸を生成していることが確認された。
(2) Thin-layer chromatography analysis of glucose oxide Using the reaction product obtained in (1) as a sample, thin-layer chromatography (hereinafter referred to as TLC) analysis was performed. 0.001 mL of the sample was added dropwise onto a silica gel plate (Merck Millipore, Silicon gel60 F254), dried, and developed with acetonitrile / ultrapure water (70:30) for 10 minutes. As a result of drying the silica gel plate, spraying concentrated sulfuric acid / ethanol (5:95) and then heating, spots were confirmed at the same positions as the glucuronic acid preparation in the CpGDH, FGDH and CsGDH reaction products, and D-glucose was observed. No spots were found at the same positions as the standard and gluconic acid standard. On the other hand, as a comparative example, GDH derived from Aspergillus terreus (Patent Document 8), which is a well-known GDH, was purified, and the same test was performed. No spots were detected, and spots were detected at the same positions as the gluconic acid preparation. From this, it was confirmed that general GDH oxidizes the 1-position of glucose to produce gluconic acid, whereas CpGDH, FGDH, and CsGDH oxidize the 6-position of glucose to produce glucuronic acid. Was done.
(3)種々の条件でのグルコース酸化検討
 (1)に記載の条件のうち、使用する緩衝液を1M リン酸ナトリウム緩衝液(pH7.0または8.0)若しくは1M リン酸カリウム緩衝液(pH8.0)に変更した条件、添加するD-グルコース量を2倍量に変更した条件、又は1-m-PMS添加量を0.0025mL若しくは0.005mLに変更した条件でグルコース酸化物を含む反応産物を調製し、TLC分析を行った結果、何れの条件でも、CpGDH、FGDH、CsGDH反応産物では、何れもグルクロン酸標品と同じ位置にスポットが確認され、D-グルコース標品、及びグルコン酸標品と同じ位置にはスポットが確認されなかった。
(3) Examination of Glucose Oxidation under Various Conditions Among the conditions described in (1), the buffer solution to be used is 1M sodium phosphate buffer (pH 7.0 or 8.0) or 1M potassium phosphate buffer (pH 8). Reaction containing glucose oxide under the condition changed to 0.0), the condition where the amount of D-glucose added was changed to double the amount, or the condition where the amount of 1-m-PMS added was changed to 0.0025 mL or 0.005 mL. As a result of preparing the products and performing TLC analysis, spots were confirmed at the same positions as the glucuronic acid preparations in the CpGDH, FGDH, and CsGDH reaction products under all conditions, and the D-glucose preparation and the gluconic acid were found. No spot was found at the same position as the standard.
(4)グルコース酸化物の高速液体クロマトグラフィー分析
 (1)で得たCpGDH反応産物から1-m-PMSを除去するために、破砕後に超純水で洗浄した粉末状の活性炭(フタムラ化学株式会社、太閤活性炭SG)を2~20mg加え、室温で5分間静置した。本処理によって1-m-PMSが活性炭に吸着したため、4℃、8,000×g、1分間の遠心によって上澄み液を回収することで1-m-PMSが除去されたCpGDH反応産物を取得した。GlyScope ABEE 標識化キット(株式会社J-ケミカル)によってその上澄み液を蛍光標識した後、糖分析用カラム ホーネンパックC18(株式会社J-ケミカル)を用いてHPLC分析を実施した結果、基質であるD-グルコースのピークは認められず、グルクロン酸標品と同様の位置にピークが確認された(図4参照)。なお、蛍光標識とHPLC分析は当該キット説明書に記載されているプロトコールに準じて行い、HPLC分析装置としてはSIL-10Aシリーズ(島津製作所)、検出器には蛍光検出器RF-10AXL(励起波長/蛍光波長=305/360nm、島津製作所)を使用した。
(4) High Performance Liquid Chromatography Analysis of Glucose Oxide In order to remove 1-m-PMS from the CpGDH reaction product obtained in (1), powdered activated carbon washed with ultrapure water after crushing (Futamura Chemical Co., Ltd.) , Taiko activated carbon (SG) was added in an amount of 2 to 20 mg, and the mixture was allowed to stand at room temperature for 5 minutes. Since 1-m-PMS was adsorbed on the activated carbon by this treatment, the supernatant was recovered by centrifugation at 4 ° C., 8,000 × g for 1 minute to obtain a CpGDH reaction product from which 1-m-PMS had been removed. .. After fluorescently labeling the supernatant with the GlyScop ABEE labeling kit (J-Chemical, Inc.), HPLC analysis was performed using the sugar analysis column Honenpack C18 (J-Chemical, Inc.). -No glucose peak was observed, and a peak was confirmed at the same position as the glucuronic acid preparation (see FIG. 4). Fluorescent labeling and HPLC analysis are performed according to the protocol described in the kit manual. The HPLC analyzer is the SIL-10A series (Shimadzu Corporation), and the detector is the fluorescence detector RF-10AXL (excitation wavelength). / Fluorescent wavelength = 305/360 nm, Shimadzu Corporation) was used.
(5)核磁気共鳴(NMR)装置を用いたグルコース酸化物の分析
 (4)で1-m-PMSを除去したCpGDH反応産物を-40℃で予備凍結させ、凍結乾燥機(EYELA、FREEZE DRYER FD-1)を使って凍結乾燥させた。得られた凍結乾燥サンプルを核磁気共鳴装置で分析した結果、グルコースの6位のヒドロキシメチル基がカルボキシ基に変換されていることを示すピークが得られたことから、グルコースからグルクロン酸が選択的に生産されていることが確認された。
(5) Analysis of glucose oxide using a nuclear magnetic resonance (NMR) device The CpGDH reaction product from which 1-m-PMS was removed in (4) was pre-frozen at -40 ° C and freeze-dried (EYELA, FREEZE DRYER). It was freeze-dried using FD-1). As a result of analyzing the obtained freeze-dried sample with a nuclear magnetic resonance apparatus, a peak indicating that the hydroxymethyl group at the 6-position of glucose was converted to a carboxy group was obtained, so that glucuronic acid was selectively selected from glucose. It was confirmed that it was produced in Japan.
(6)グルコン酸測定キットを用いた分析
 (4)で得られた1-m-PMSを除去したCpGDH反応産物中にグルコン酸が含まれているか確認するために、F-キット D-グルコン酸/グルコノラクトン(株式会社J.K.インターナショナル)を用いて活性測定を行った。説明書記載のプロトコールに準じて評価した結果、コントロールとして使用したグルコン酸標品では正確なグルコン酸濃度を測定することができたが、CpGDH反応産物中にはグルコン酸は検出されなかった。
(6) Analysis using gluconic acid measurement kit F-kit D-gluconic acid to confirm whether gluconic acid is contained in the CpGDH reaction product from which 1-m-PMS obtained in (4) has been removed. / The activity was measured using gluconolactone (JK International Co., Ltd.). As a result of evaluation according to the protocol described in the instruction manual, accurate gluconic acid concentration could be measured in the gluconic acid preparation used as a control, but gluconic acid was not detected in the CpGDH reaction product.
(7)グルクロン酸測定キットを用いた分析
 (4)で得られた1-m-PMSを除去したCpGDH反応産物中に含まれるグルクロン酸濃度を測定するため、グルクロン酸測定キット(Megazyme、K―URONIC)を用いて分析を行った。説明書記載のプロトコールに準じて評価した結果、グルクロン酸が生成していることが確認された。
(7) Analysis using a glucuronic acid measurement kit In order to measure the glucuronic acid concentration contained in the CpGDH reaction product from which 1-m-PMS obtained in (4) has been removed, a glucuronic acid measurement kit (Megazyme, K-) The analysis was performed using URONIC). As a result of evaluation according to the protocol described in the instruction manual, it was confirmed that glucuronic acid was produced.
[実施例4]
(tert-ブチルヒドロキノン共存下で得られたグルコース酸化物の分析)
 精製したCpGDHとtert-ブチルヒドロキノン(以下TBHQ)をメディエーターとした反応系を構築し、グルコース酸化物を取得した。その調製方法と分析方法を以下に記載する。
[Example 4]
(Analysis of glucose oxide obtained in the presence of tert-butylhydroquinone)
A reaction system using purified CpGDH and tert-butylhydroquinone (hereinafter referred to as TBHQ) as mediators was constructed to obtain glucose oxide. The preparation method and analysis method are described below.
(1)TBHQを用いたグルコース酸化物の調製
 1M リン酸ナトリウム緩衝液(pH8.0)0.02mL、1M D-グルコース溶液0.01mL、1M TBHQ(東京化成工業社)0.002mL、10U/mL ラッカーゼ(Sigma-Aldrich社、アスペルギルス属由来)0.005mL、90U/mL CpGDH0.04mL、超純水0.123mLを混合し、室温・遮光状態で一晩転倒混和し、グルコース酸化物を含む反応産物を取得した。また、上記の組成のうち、ラッカーゼ濃度を5分の1に変更した条件でも同様にグルコース酸化物を含む反応産物を取得した。
(1) Preparation of glucose oxide using TBHQ 1M sodium phosphate buffer (pH 8.0) 0.02 mL, 1MD-glucose solution 0.01 mL, 1M TBHQ (Tokyo Kasei Kogyo Co., Ltd.) 0.002 mL, 10 U / mL Lacquerze (Sigma-Aldrich, derived from Aspergillus genus) 0.005 mL, 90 U / mL CpGDH 0.04 mL, ultrapure water 0.123 mL are mixed and mixed overnight at room temperature in a light-shielded state, and a reaction containing glucose oxide is mixed. Obtained the product. Further, among the above compositions, a reaction product containing glucose oxide was also obtained under the condition that the laccase concentration was changed to 1/5.
(2)グルコース酸化物のTLC分析
 実施例3の(2)と同様にTLC分析を行った結果、メディエーターとしてTBHQを用いたCpGDH反応産物においてもグルクロン酸標品と同じ位置にスポットが確認され、グルコース標品、及びグルコン酸標品と同じ位置には何も検出されなかった。
(2) TLC analysis of glucose oxide As a result of performing TLC analysis in the same manner as in (2) of Example 3, a spot was confirmed at the same position as the glucuronic acid standard in the CpGDH reaction product using TBHQ as a mediator. Nothing was detected at the same position as the glucose and gluconic acid preparations.
(3)ペルオキシダーゼとカタラーゼを添加した場合のグルコース酸化検討
 1M リン酸ナトリウム緩衝液(pH8.0)0.02mL、1M D-グルコース溶液0.01mL、1M TBHQ(東京化成工業社)0.002mL、10,000U/mL カタラーゼ(富士フィルム和光純薬社、ウシ肝臓由来)0.01mL、100U/mL 西洋わさびペルオキシダーゼ(富士フィルム和光純薬社、西洋ワサビ由来)0.005mL、90U/mL CpGDH0.04mL、超純水0.113mLを混合した反応液を調製・反応させ、その反応産物のTLC分析を行った結果、(1)と同様にグルクロン酸標品と同じ位置にスポットが確認され、グルコース標品、及びグルコン酸標品と同じ位置には何も検出されなかった。
(3) Examination of glucose oxidation when peroxidase and catalase are added 1M sodium phosphate buffer (pH 8.0) 0.02mL, 1MD-glucose solution 0.01mL, 1M TBHQ (Tokyo Kasei Kogyo Co., Ltd.) 0.002mL, 10,000 U / mL catalase (Fuji Film Wako Pure Pharmaceutical Co., Ltd., derived from bovine liver) 0.01 mL, 100 U / mL Western wasabi peroxidase (Fuji Film Wako Pure Pharmaceutical Co., Ltd., derived from Western Wasabi) 0.005 mL, 90 U / mL CpGDH 0.04 mL , A reaction solution mixed with 0.113 mL of ultrapure water was prepared and reacted, and as a result of TLC analysis of the reaction product, a spot was confirmed at the same position as the glucuronic acid standard as in (1), and a glucose standard was confirmed. Nothing was detected at the same position as the product and the gluconic acid standard.
(4)グルコン酸測定キットを用いた分析
 実施例3の(6)と同様にD-グルコン酸/グルコノラクトン測定キット(F-キット)を用いて分析した結果、TBHQをメディエーターとした反応系でもCpGDHはグルコン酸を生成していないことが示された。
(4) Analysis using a gluconic acid measurement kit As a result of analysis using a D-gluconic acid / gluconolactone measurement kit (F-kit) in the same manner as in (6) of Example 3, a reaction system using TBHQ as a mediator. However, it was shown that CpGDH did not produce gluconic acid.
(5)グルクロン酸測定キットを用いた分析
 実施例3の(7)と同様にグルクロン酸測定キット(K-URONIC)を用いて分析した結果、TBHQをメディエーターとした反応系では反応に使用したグルコースと同量のグルクロン酸が生成されていることが確認された。
(5) Analysis using a glucuronic acid measurement kit As a result of analysis using a glucuronic acid measurement kit (K-URONIC) in the same manner as in (7) of Example 3, glucose used in the reaction in the reaction system using TBHQ as a mediator It was confirmed that the same amount of glucuronic acid as was produced.
[実施例5]
(ブチルヒドロキシアニソール共存下で得られたグルコース酸化物の分析)
 精製したCpGDHとブチルヒドロキシアニソールをメディエーターとした反応系を構築し、グルコース酸化物を取得した。その調製方法と分析方法を以下に記載する。
[Example 5]
(Analysis of glucose oxide obtained in the presence of butylhydroxyanisole)
A reaction system using purified CpGDH and butylhydroxyanisole as mediators was constructed to obtain glucose oxide. The preparation method and analysis method are described below.
(1)ブチルヒドロキシアニソールを用いたグルコース酸化物の調製
 1M リン酸ナトリウム緩衝液(pH8.0)0.02mL、1M D-グルコース溶液0.01mL、0.1M ブチルヒドロキシアニソール(富士フィルム和光純薬社)0.02mL、10,000U/mL カタラーゼ(富士フィルム和光純薬社、ウシ肝臓由来)0.01mL、10U/mL ラッカーゼ(Sigma-Aldrich社、アスペルギルス属由来)0.005mL、90U/mL CpGDH0.04mL、超純水0.095mLを混合し、室温・遮光状態で一晩転倒混和し、グルコース酸化物を含む反応産物を取得した。
(1) Preparation of glucose oxide using butyl hydroxyanisole 1M sodium phosphate buffer (pH 8.0) 0.02 mL, 1M D-glucose solution 0.01 mL, 0.1M butyl hydroxyanisole (Fuji Film Wako Pure Chemical Industries, Ltd.) 0.02 mL, 10,000 U / mL catalase (Fuji Film Wako Junyaku Co., Ltd., derived from bovine liver) 0.01 mL, 10 U / mL lacquerase (Sigma-Aldrich, derived from Aspergillus genus) 0.005 mL, 90 U / mL CpGDH0 .04 mL and 0.095 mL of ultrapure water were mixed and mixed by inversion overnight at room temperature and in a light-shielded state to obtain a reaction product containing glucose oxide.
(2)グルコース酸化物のTLC分析
 実施例3の(2)と同様にTLC分析を行った結果、メディエーターとしてブチルヒドロキシアニソールを用いて調製したCpGDH反応産物においてグルクロン酸標品と同じ位置にスポットが確認され、グルコース標品、及びグルコン酸標品と同じ位置には何も検出されなかった。
(2) TLC analysis of glucose oxide As a result of performing TLC analysis in the same manner as in (2) of Example 3, a spot was found at the same position as the glucuronic acid preparation in the CpGDH reaction product prepared using butylhydroxyanisole as a mediator. It was confirmed that nothing was detected at the same position as the glucose and gluconic acid preparations.
[実施例6]
(各種基質酸化物の分析)
 精製したCpGDHを用いて配糖体等の酸化物を取得した。その調製方法と各種分析方法を以下に記載する。
[Example 6]
(Analysis of various substrate oxides)
Oxides such as glycosides were obtained using purified CpGDH. The preparation method and various analysis methods are described below.
(1)基質酸化物の調製
 終濃度が100mM リン酸カリウム緩衝液(pH 8.0)、基質として13~100mMのD-(+)-セロビオース、α-アルブチン、β-アルブチン、ピセイド、N-アセチル-d-グルコサミン、メディエーターとして10mM 1-m-PMS、活性酸素の除去剤として500U/mL カタラーゼ(富士フィルム和光純薬社、ウシ肝臓由来)からなる反応液に終濃度が14U/mLとなるようCpGDHを添加し、室温で一晩転倒混和した。その後、反応容器内の空気を入れ替え、更に室温で数時間転倒混和することで配糖体酸化物等を含む基質酸化物を取得した。
(1) Preparation of substrate oxide D- (+)-cellobiose, α-albutin, β-albutin, piseide, N- with a final concentration of 100 mM potassium phosphate buffer (pH 8.0) and 13 to 100 mM as a substrate. The final concentration is 14 U / mL in a reaction solution consisting of acetyl-d-glucosamine, 10 mM 1-m-PMS as a mediator, and 500 U / mL catalase (from Fuji Film Wako Pure Chemical Industries, bovine liver) as a remover for active oxygen. CpGDH was added and mixed by inversion overnight at room temperature. Then, the air in the reaction vessel was replaced, and the mixture was further mixed by inversion at room temperature for several hours to obtain a substrate oxide containing a glycoside oxide or the like.
(2)基質酸化物のTLC分析
 実施例3の(2)と同様にTLC分析を行った結果、反応前とは異なる位置に新たなスポットが検出された(図5参照)。このことによりCpGDHは配糖体中のグルコース残基を酸化していることが示された。
(2) TLC analysis of substrate oxide As a result of performing TLC analysis in the same manner as in (2) of Example 3, a new spot was detected at a position different from that before the reaction (see FIG. 5). This indicates that CpGDH oxidizes glucose residues in glycosides.
[実施例7]
(CglGDH、CoGDH、CtoGDH、CgoGDH、GsGDH及びDhGDHの取得)
 Colletotrichum plurivorum MAFF305790に代えて、Colletotrichum gloeosporioides、Colletotrichum orbiculare、Colletotrichum tofieldiae、Colletotrichum godetiae MAFF240289、Glomerella sp. RD057037又はDiaporthe helianthiを用い、実施例1と同様の方法でアスペルギルス・オリゼNS4株にて各々発現させ、精製した。Colletotrichum gloeosporioides由来の精製酵素をCglGDH、Colletotrichum orbiculare由来の精製酵素をCoGDH、Colletotrichum tofieldiae由来の精製酵素をCtoGDH、Colletotrichum godetiae MAFF240289由来の精製酵素をCgoGDH、Glomerella sp. RD057037由来の精製酵素をGsGDH、Diaporthe helianthi由来の精製酵素をDhGDHとした。それぞれの遺伝子配列を配列番号7、9、11、13、15、17に記載し、アミノ酸配列を配列番号8、10、12、14、16、18に記載した。
[Example 7]
(Acquisition of CglGDH, CoGDH, CtoGDH, CgoGDH, GsGDH and DhGDH)
Instead of Colletotrichum plurivorum MAFF305790, Colletotrichum gloeosporioides, Colletotrichum orbiculare, Colletotrichum tofieldiae, using Colletotrichum godetiae MAFF240289, Glomerella sp. RD057037 or Diaporthe Helianthi, were each expressed in Aspergillus oryzae NS4 strain in the same manner as in Example 1, purified did. Colletotrichum gloeosporioides origin of the purified enzyme CglGDH, Colletotrichum orbiculare origin of the purified enzyme CoGDH, Colletotrichum tofieldiae origin of the purified enzyme CtoGDH, Colletotrichum godetiae MAFF240289 origin of the purified enzyme CgoGDH, Glomerella sp. RD057037 GsGDH the purified enzyme derived from, Diaporthe helianthi The derived purified enzyme was designated as DhGDH. The respective gene sequences are set forth in SEQ ID NOs: 7, 9, 11, 13, 15 and 17, and the amino acid sequences are set forth in SEQ ID NOs: 8, 10, 12, 14, 16 and 18.
(酵素化学的性質の検討)
(1)グルコース-6-デヒドロゲナーゼ活性の測定
 実施例4に記載の条件でCglGDH、CoGDH、CtoGDH、CgoGDH、GsGDH及びDhGDHを用いてグルコース酸化物を調製し、TLC分析を行った結果、これらのグルコース酸化物はグルクロン酸標品と同じ位置にスポットが確認され、グルコース標品及びグルコン酸標品と同じ位置には何も検出されなかった(図6参照)。
(Examination of enzymatic chemical properties)
(1) Measurement of Glucose-6-Dehydrogenase Activity Glucose oxides were prepared using CglGDH, CoGDH, CtoGDH, CgoGDH, GsGDH and DhGDH under the conditions described in Example 4, and as a result of TLC analysis, these glucoses were obtained. A spot was found on the oxide at the same position as the glucuronic acid standard, and nothing was detected at the same position as the glucose standard and the gluconic acid standard (see FIG. 6).
(2)基質特異性
 実施例2と同様の方法で各基質に対する各GDHの活性を測定した。結果を表3に示す。
(2) Substrate specificity The activity of each GDH on each substrate was measured by the same method as in Example 2. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 何れのGDHも、D-グルコースに対する活性を100%とした場合に、マルトース又はD-キシロースに対する活性は、0.2%又は0.9%以下であり、何れも2.0%以下だった。 When the activity against D-glucose was 100%, the activity against maltose or D-xylose was 0.2% or 0.9% or less, and both were 2.0% or less.
(3)D-グルコースに対するKm値
 実施例2と同様の方法でミカエリス定数(Km)を求めた。結果を表4に示す。
(3) Km value for D-glucose The Michaelis constant (Km) was determined by the same method as in Example 2. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 Km値は、測定方法や算出するプロットによって値が変動し易いため、CglGDHのKmは400mM~900mM、CoGDHのKmは250mM~650mM、CtoGDHのKmは400mM~900mM、CgoGDHのKmは200mM~450mM、GsGDHのKmは250mM~650mM、DhGDHのKmは60mM~140mMと考えられる。 Since the Km value tends to fluctuate depending on the measurement method and the calculated plot, the Km of CglGDH is 400 mM to 900 mM, the Km of CoGDH is 250 mM to 650 mM, the Km of CtoGDH is 400 mM to 900 mM, and the Km of CgoGDH is 200 mM to 450 mM. The Km of GsGDH is considered to be 250 mM to 650 mM, and the Km of DhGDH is considered to be 60 mM to 140 mM.
(4)熱安定性
 実施例2と同様の方法で各GDHを6U/mLに調製し、100mMリン酸カリウム緩衝液(pH8.0)中で、各温度で60分間処理した結果、処理前の酵素活性を100%とした際の残存酵素活性が80%以上となる温度域はCglGDH、CtoGDH、CgoGDH及びGsGDHは40℃まで、CoGDHは45℃まで、DhGDHは50℃までとなった(図7参照)。
(4) Thermal stability Each GDH was prepared at 6 U / mL by the same method as in Example 2, and treated in 100 mM potassium phosphate buffer (pH 8.0) at each temperature for 60 minutes. As a result, before the treatment. The temperature range in which the residual enzyme activity is 80% or more when the enzyme activity is 100% is CglGDH, CtoGDH, CgoGDH and GsGDH up to 40 ° C, CoGDH up to 45 ° C, and DhGDH up to 50 ° C (FIG. 7). reference).
(5)安定なpHの範囲
 実施例2と同様な方法で各GDHの安定pHを調べた結果、処理前の酵素活性値を100%とした際の各GDHの残存酵素活性値が80%以上となるpH域は、CglGDHでpH5.5~9.3、CoGDHでpH4.4~9.3、CtoGDHでpH4.0~9.6、CgoGDHでpH4.4~9.3、GsGDHでpH5.0~9.3、DhGDHでpH3.3~9.6であった(図8参照)。以上から、本発明のGDHは少なくともpH5.5~9.3の範囲で安定であることがわかった。
(5) Stable pH range As a result of examining the stable pH of each GDH by the same method as in Example 2, the residual enzyme activity value of each GDH is 80% or more when the enzyme activity value before treatment is 100%. The pH range is pH 5.5 to 9.3 for CglGDH, pH 4.4 to 9.3 for CoGDH, pH 4.0 to 9.6 for CtoGDH, pH 4.4 to 9.3 for CgoGDH, and pH 5. The pH was 0 to 9.3 and pH 3.3 to 9.6 at DhGDH (see FIG. 8). From the above, it was found that the GDH of the present invention is stable in the range of at least pH 5.5 to 9.3.
[実施例8]
(Ko37GDH、AsGDH、Ko38GDH、LhGDH、DsGDH、CtaGDH、FlaGDH、PcGDH、Fla_A.oGDH及びPc_A.oGDHの取得)
 Colletotrichum plurivorum MAFF305790に代えて、Khuskia oryzae、Acremonium strictum、Lasiosphaeris hirsute、Diaporthaceae sp.、Colletotrichum tanaceti、Fusarium langsethiae、Phialemoniopsis curvataの公開されているゲノムデータからCpGDHとアミノ酸配列同一性の高い配列情報を取得し、アスペルギルス・オリゼのコドン頻度に最適化した上で実施例1と同様の方法でアスペルギルス・オリゼNS4株にて各々発現させ、精製した。また、Fusarium langsethiae、Phialemoniopsis curvata由来GDHのシグナル配列部分を、アスペルギルス・オリゼ由来GDHのシグナル配列に置換した配列を実施例1と同様の方法でアスペルギルス・オリゼNS4株にて各々発現させ、精製した。
 Khuskia oryzae由来の精製酵素をKo37GDHとKo38GDH、Acremonium strictum由来の精製酵素をAsGDH、Lasiosphaeris hirsute由来の精製酵素をLhGDH、Diaporthaceae sp.由来の精製酵素をDsGDH、Colletotrichum tanaceti由来の精製酵素をCtaGDH、Fusarium langsethiae由来の精製酵素をFlaGDH、Phialemoniopsis curvata由来の精製酵素をPcGDH、Fusarium langsethiae由来酵素の推定シグナル配列部分をアスペルギルス・オリゼ由来GDHのシグナル配列に置換した精製酵素をFla_A.oGDH、Phialemoniopsis curvata由来酵素の推定シグナル配列部分をアスペルギルス・オリゼ由来GDHのシグナル配列に置換した精製酵素をPc_A.oGDHとした。
 Ko37GDH、AsGDH、Ko38GDH、LhGDH、DsGDH、CtaGDH、FlaGDH、PcGDH、Fla_A.oGDH、Pc_A.oGDHのアスペルギルス・オリゼのコドン頻度に最適化した遺伝子配列を配列番号19、21、23、25、27、29、31、33、35、37に記載し、アミノ酸配列を配列番号20、22、24、26、28、30、32、34、36、38にそれぞれ記載した。
[Example 8]
(Acquisition of Ko37GDH, AsGDH, Ko38GDH, LhGDH, DsGDH, CtaGDH, FlaGDH, PcGDH, Fla_A.oGDH and Pc_A.oGDH)
Instead of Colletotrichum plurivorum MAFF305790, Khuskia oryzae, Acremonium strictum, Lasiosphaeris hirsute, Diaporthaceae sp., Colletotrichum tanaceti, Fusarium langsethiae, acquires high sequence information from the genome data of CpGDH amino acid sequence identity that is published in Phialemoniopsis curvata, After optimizing the codon frequency of Aspergillus oryzae, each was expressed and purified in Aspergillus oryzae NS4 strain by the same method as in Example 1. In addition, a sequence in which the signal sequence portion of GDH derived from Fusarium langsetsiae and Phialemoniopsis curvata was replaced with the signal sequence of GDH derived from Aspergillus oryzae was expressed and purified in the Aspergillus oryzae NS4 strain by the same method as in Example 1.
Purified enzymes derived from Khuskia oryzae are Ko37 GDH and Ko38 GDH, purified enzymes derived from Acremonium strikeum are AsGDH, purified enzymes derived from Lasiospheres hilsute are derived from LhGDH, diaporthease The purified enzyme derived from FlaGDH, the purified enzyme derived from Hiersutism curvata was replaced with PcGDH, and the deduced signal sequence portion of the enzyme derived from Fusarium langesethia was replaced with the signal sequence of GDH derived from Aspergillus oryzae. pc_A. A purified enzyme in which the estimated signal sequence portion of the enzyme derived from oGDH and Phialemoniopsis curvata was replaced with the signal sequence of GDH derived from Aspergillus oryzae. It was set to oGDH.
Ko37GDH, AsGDH, Ko38GDH, LhGDH, DsGDH, CtaGDH, FlaGDH, PcGDH, Fla_A. oGDH, Pc_A. The gene sequence optimized for the codon frequency of Aspergillus oryzae in oGDH is set forth in SEQ ID NOs: 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, and the amino acid sequence is shown in SEQ ID NOs: 20, 22, 24. , 26, 28, 30, 32, 34, 36, 38, respectively.
(酵素化学的性質の検討)
(1)グルコース-6-デヒドロゲナーゼ活性の測定
 実施例4に記載の条件でKo37GDH、AsGDH、Ko38GDH、LhGDH、DsGDH、CtaGDH、FlaGDH、PcGDH、Fla_A.oGDH及びPc_A.oGDHを用いてグルコース酸化物を調製し、TLC分析を行った結果、これらのグルコース酸化物はグルクロン酸標品と同じ位置にスポットが確認され、グルコース標品及びグルコン酸標品と同じ位置には何も検出されなかった(図9参照)。
(Examination of enzymatic chemical properties)
(1) Measurement of Glucose-6-Dehydrogenase Activity Under the conditions described in Example 4, Ko37GDH, AsGDH, Ko38GDH, LhGDH, DsGDH, CtaGDH, FlaGDH, PcGDH, Fla_A. oGDH and Pc_A. As a result of preparing glucose oxides using oGDH and performing TLC analysis, spots of these glucose oxides were confirmed at the same positions as the glucuronic acid preparations, and at the same positions as the glucose preparations and the gluconic acid preparations. Nothing was detected (see Figure 9).
(2)基質特異性
 実施例2と同様の方法で各基質に対する各GDHの活性を測定した。結果を表5に示す。
(2) Substrate specificity The activity of each GDH on each substrate was measured by the same method as in Example 2. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 何れのGDHも、D-グルコースに対する活性を100%とした場合に、マルトース又はD-キシロースに対する活性は、0.5%又は0.2%以下であり、何れも2.0%以下だった。 When the activity against D-glucose was 100%, the activity against maltose or D-xylose was 0.5% or 0.2% or less, and both were 2.0% or less.
(3)D-グルコースに対するKm値
 実施例2と同様の方法でミカエリス定数(Km)を求めた。結果を表6に示す。
(3) Km value for D-glucose The Michaelis constant (Km) was determined by the same method as in Example 2. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 Km値は、測定方法や算出するプロットによって値が変動し易いため、Ko37GDHのKmは25mM~60mM、AsGDHのKmは25mM~60mM、Ko38GDHのKmは700mM~1,500mM、DsGDHのKmは150mM~300mM、CtaGDHのKmは110mM~240mM、FlaGDHのKmは900mM~1,600mM、Fla_A.oGDHのKmは600mM~1,200mMと考えられる。 Since the Km value tends to fluctuate depending on the measurement method and the calculated plot, the Km of Ko37GDH is 25 mM to 60 mM, the Km of AsGDH is 25 mM to 60 mM, the Km of Ko38GDH is 700 mM to 1,500 mM, and the Km of DsGDH is 150 mM to. 300 mM, Km of CtaGDH is 110 mM to 240 mM, Km of FlaGDH is 900 mM to 1,600 mM, Fla_A. The Km of oGDH is considered to be 600 mM to 1,200 mM.
(4)熱安定性
 実施例2と同様の方法で各GDHを6U/mLに調製し、表7に示す各100mMの緩衝液中で、各温度で60分間処理した結果、処理前の酵素活性を100%とした際の残存酵素活性が80%以上となる温度域は、Ko37GDHは35℃まで、DsGDHは40℃まで、Ko38GDH、LhGDH、FlaGDH及びFla_A.oGDHは45℃まで、AsGDH、CtaGDH、PcGDH及びPc_A.oGDHは50℃までとなった(図10参照)。
(4) Thermal stability Each GDH was prepared at 6 U / mL by the same method as in Example 2, and treated in each 100 mM buffer solution shown in Table 7 at each temperature for 60 minutes. As a result, the enzyme activity before the treatment was achieved. In the temperature range where the residual enzyme activity is 80% or more when 100%, Ko37GDH is up to 35 ° C., DsGDH is up to 40 ° C., Ko38GDH, LhGDH, FlaGDH and Fla_A. oGDH up to 45 ° C., AsGDH, CtaGDH, PcGDH and Pc_A. The oGDH was up to 50 ° C. (see FIG. 10).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(5)安定なpHの範囲
 実施例2と同様な方法で各GDHの安定pHを調べた結果、処理前の酵素活性値を100%とした際の各GDHの残存酵素活性値が80%以上となるpH域は、Ko37GDHでpH5.5~8.6、AsGDHでpH4.3~9.6、Ko38GDHでpH5.0~9.6、LhGDHでpH4.0~8.6、DsGDHでpH4.9~8.7、CtaGDHでpH3.3~9.9、FlaGDHでpH4.4~9.8、PcGDHでpH4.0~8.8、Fla_A.oGDHでpH4.4~9.8、Pc_A.oGDHでpH4.0~9.6であった(図11参照)。
(5) Stable pH range As a result of examining the stable pH of each GDH by the same method as in Example 2, the residual enzyme activity value of each GDH is 80% or more when the enzyme activity value before treatment is 100%. The pH range of Ko37GDH is 5.5 to 8.6, AsGDH is pH 4.3 to 9.6, Ko38GDH is pH 5.0 to 9.6, LhGDH is pH 4.0 to 8.6, and DsGDH is pH 4. 9 to 8.7, pH 3.3 to 9.9 for CtaGDH, pH 4.4 to 9.8 for FlaGDH, pH 4.0 to 8.8 for PcGDH, Fla_A. pH 4.4-9.8 at oGDH, Pc_A. The pH was 4.0 to 9.6 in oGDH (see FIG. 11).
[実施例9]
(核磁気共鳴装置(NMR)を用いたピセイド酸化物の分析)
 精製したCpGDHを用いてピセイドの酸化物を取得した。その調製方法とH-NMR解析及び13C-NMR解析結果を以下に記載する。
[Example 9]
(Analysis of Piceid Oxide Using Nuclear Magnetic Resonance Device (NMR))
The purified CpGDH was used to obtain the oxide of piceid. The preparation method, 1 1 H-NMR analysis and 13 C-NMR analysis results are described below.
(1)基質酸化物の調製
 終濃度が20mM リン酸カリウム緩衝液(pH 7.0)、基質として50mM相当のピセイド粉末、メディエーターとして10mM TBHQ、活性酸素の除去剤として200U/mL カタラーゼ(富士フィルム和光純薬社、ウシ肝臓由来)、2U/mL ラッカーゼ(Sigma-Aldrich社、アスペルギルス属由来)からなる反応液に終濃度が14U/mLとなるようCpGDHを添加し、反応系中のpHが6.5~7.0になるように1NのNaOHを添加しながら、室温で通気を行いながら撹拌し、ピセイド酸化物を取得した。
(1) Preparation of substrate oxide A final concentration of 20 mM potassium phosphate buffer (pH 7.0), a piseide powder equivalent to 50 mM as a substrate, 10 mM TBHQ as a mediator, and 200 U / mL catalase (Fuji film) as a remover for active oxygen. CpGDH was added to a reaction solution consisting of Wako Junyakusha, derived from bovine liver) and 2 U / mL lacquerase (derived from Sigma-Aldrich, Aspergillus genus) so that the final concentration was 14 U / mL, and the pH in the reaction system was 6 While adding 1N of NaOH so as to have a pH of .5 to 7.0, the mixture was stirred while being aerated at room temperature to obtain a piseide oxide.
(2)ピセイド酸化物のH-NMR解析及び13C-NMR解析
 (1)で取得したピセイド酸化物について、C18カラムを用いた精製を行い、夾雑物を除いた後、実施例3と同様の方法で核磁気共鳴解析によりその構造を同定した。一方、比較例としてピセイドについて同様の解析を行った。
 H-NMR、13C-NMRの結果から、ピセイドのグルコース残基のC6位のヒドロキシメチル基がカルボキシ基となっていることが確認され、それ以外は共通した構造であることが確認された(図12及び図13参照)。このことよりCpGDHはピセイド中のグルコース残基を特異的に酸化していることが示された。
(2) 1 H-NMR analysis and 13 C-NMR analysis of piceid oxide The piceid oxide obtained in (1) was purified using a C18 column to remove impurities, and then the same as in Example 3. The structure was identified by nuclear magnetic resonance analysis according to the above method. On the other hand, as a comparative example, the same analysis was performed on piceid.
From the results of 1 H-NMR and 13 C-NMR, it was confirmed that the hydroxymethyl group at the C6 position of the glucose residue of piceid was a carboxy group, and that the other structures were common. (See FIGS. 12 and 13). This indicates that CpGDH specifically oxidizes glucose residues in piceid.
[実施例10]
(1)グルクロン酸の大量調製
 終濃度が20mM リン酸ナトリウム緩衝液(pH 7.0)、基質として2Mのグルコース、メディエーターとして10mM グアイアコール、2.1U/mL ラッカーゼ(Sigma-Aldrich社、アスペルギルス属由来)からなる反応液に終濃度が60U/mLとなるようCpGDHを添加し、反応系中のpHが6.5~7.0になるように1NのNaOHを添加しながら、室温で通気を行いながら撹拌し、グルクロン酸を取得した。
[Example 10]
(1) Large-scale preparation of glucuronic acid A final concentration of 20 mM sodium phosphate buffer (pH 7.0), 2 M glucose as a substrate, 10 mM guaiacol as a mediator, 2.1 U / mL causticase (Sigma-Aldrich, derived from the genus Aspergillus) ), CpGDH was added to the reaction solution consisting of) so that the final concentration was 60 U / mL, and 1N NaOH was added so that the pH in the reaction system became 6.5 to 7.0, and the mixture was aerated at room temperature. While stirring, glucuronic acid was obtained.
(2)グルクロン酸のTLC分析
実施例3の(2)と同様にTLC分析を行った結果、標品グルクロン酸と同じ位置に濃いスポットが確認でき、グルコースのスポットは確認できなかった。このことより(1)の条件では基質としたグルコースが全量グルクロン酸に変換できていることが示された。
[実施例11]
(ピセイド酸化物の大量調製)
 精製したCpGDHを用いてピセイドの酸化物を大量に取得した。その調製方法を以下に記載する。
(2) TLC analysis of glucuronic acid As a result of performing TLC analysis in the same manner as in (2) of Example 3, a dark spot was confirmed at the same position as the standard glucuronic acid, and a glucose spot could not be confirmed. From this, it was shown that under the condition (1), the entire amount of glucose used as a substrate could be converted into glucuronic acid.
[Example 11]
(Large amount of piceid oxide preparation)
A large amount of piceid oxide was obtained using purified CpGDH. The preparation method is described below.
(1)ピセイド酸化物の調製(ポリエチレングリコール、エタノール添加)
 終濃度が20mM リン酸ナトリウム緩衝液(pH 7.0)、基質として200mM相当のピセイド粉末、メディエーターとして10mM TBHQ、活性酸素の除去剤として500U/mL カタラーゼ(富士フィルム和光純薬社、ウシ肝臓由来)、10%(v/v) ポリエチレングリコール(分子量:200、ナカライテスク社)、10%(v/v) エタノール、50mU/mL ラッカーゼ(Sigma-Aldrich社、アスペルギルス属由来)からなる反応液に終濃度が20U/mLとなるようCpGDHを添加し、反応系中のpHが6.5~7.0になるように1NのNaOHを添加しながら、室温で通気を行いながら165時間撹拌したところ、基質であるピセイドのほぼ全量が酸化されていることが確認できた。
(1) Preparation of piceid oxide (polyethylene glycol, ethanol addition)
Final concentration 20 mM sodium phosphate buffer (pH 7.0), 200 mM equivalent piseide powder as substrate, 10 mM TBHQ as mediator, 500 U / mL catalase as active oxygen remover (Fuji Film Wako Junyakusha, derived from bovine liver) ), 10% (v / v) polyethylene glycol (molecular weight: 200, Nacalai Tesque), 10% (v / v) ethanol, 50 mU / mL lacquerase (Sigma-Aldrich, derived from Aspergillus). CpGDH was added so that the concentration became 20 U / mL, and 1N NaOH was added so that the pH in the reaction system became 6.5 to 7.0, and the mixture was stirred for 165 hours while aerating at room temperature. It was confirmed that almost all of the substrate, Piseide, was oxidized.
(2)ピセイド酸化物の分析
 (1)の条件で調製したピセイド酸化物についてTLC分析を行った結果、実施例9でNMR分析を行ったピセイド酸化物と同じ位置にスポットが確認された。また、実施例9で分析したピセイド標品と同じ位置のスポットには何も検出されなかった。このことから、(1)の条件において、基質であるピセイドは全量ピセイド酸化物となっていることが確認できた。
(2) Analysis of Piceid Oxide As a result of TLC analysis of the piceid oxide prepared under the condition of (1), a spot was confirmed at the same position as the piceid oxide obtained by NMR analysis in Example 9. In addition, nothing was detected in the spot at the same position as the piceid standard analyzed in Example 9. From this, it was confirmed that, under the condition (1), the total amount of piceid, which is a substrate, is a piceid oxide.
(3)ピセイド酸化物の調製(エタノール添加)
 終濃度が20mM リン酸ナトリウム緩衝液(pH 7.0)、基質として50mM相当のピセイド粉末、メディエーターとして10mM TBHQ、活性酸素の除去剤として500U/mL カタラーゼ(富士フィルム和光純薬社、ウシ肝臓由来)、10%(v/v) エタノール、0.13mU/mL ラッカーゼ(Sigma-Aldrich社、アスペルギルス属由来)からなる反応液に終濃度が20U/mLとなるようCpGDHを添加し、反応系中のpHが6.5~7.0になるように1NのNaOHを添加しながら、室温で通気を行いながら一晩撹拌し、ピセイド酸化物を取得した。また、エタノールの終濃度が20%または30%に変更した条件下でも同様にピセイド酸化物を得ることができた。
(3) Preparation of piceid oxide (addition of ethanol)
Final concentration 20 mM sodium phosphate buffer (pH 7.0), 50 mM equivalent piseide powder as substrate, 10 mM TBHQ as mediator, 500 U / mL catalase as active oxygen remover (Fuji Film Wako Junyakusha, derived from bovine liver) ), 10% (v / v) ethanol, 0.13 mU / mL CpGDH was added to a reaction solution consisting of lacquerase (Sigma-Aldrich, derived from the genus Aspergillus) so that the final concentration was 20 U / mL, and the mixture was added to the reaction system. Piseido oxide was obtained by stirring overnight while aerating at room temperature while adding 1N NaOH so that the pH became 6.5 to 7.0. Further, the piceid oxide could be obtained in the same manner under the condition that the final concentration of ethanol was changed to 20% or 30%.
(4)ピセイド酸化物の分析
 (3)の条件で調製したピセイド酸化物についてTLC分析を行った結果、実施例9でNMR分析を行ったピセイド酸化物と同じ位置にスポットが確認された。また、実施例9で分析したピセイド標品と同じ位置のスポットには何も検出されなかった。このことから、(3)の条件において、基質であるピセイドは全量ピセイド酸化物となっていることが確認できた。
(4) Analysis of Piceid Oxide As a result of TLC analysis of the piceid oxide prepared under the condition of (3), a spot was confirmed at the same position as the piceid oxide obtained by NMR analysis in Example 9. In addition, nothing was detected in the spot at the same position as the piceid standard analyzed in Example 9. From this, it was confirmed that, under the condition (3), the total amount of piceid, which is a substrate, is a piceid oxide.
(5)ピセイド酸化物の調製(アルカリ条件)
 終濃度が20mM グリシン-NaOH緩衝液(pH 10.0)、基質として50mM相当のピセイド粉末、メディエーターとして10mM TBHQからなる反応液に終濃度が20U/mLとなるようCtaGDHを含む培養上清を添加し、室温で通気を行いながら1時間撹拌し、ピセイド酸化物を取得した。
(5) Preparation of piceid oxide (alkaline conditions)
A culture supernatant containing CtaGDH was added to a reaction solution consisting of a final concentration of 20 mM glycine-NaOH buffer (pH 10.0), a piseide powder equivalent to 50 mM as a substrate, and 10 mM TBHQ as a mediator so that the final concentration was 20 U / mL. Then, the mixture was stirred for 1 hour while being aerated at room temperature to obtain a piseide oxide.
(6)ピセイド酸化物の分析
 (5)の条件で調製したピセイド酸化物についてTLC分析を行った結果、実施例9でNMR分析を行ったピセイド酸化物と同じ位置にスポットが確認された。また、実施例9で分析したピセイドと同じ位置のスポットには何も検出されなかった。また、(5)に記載の条件のうち、グリシン-NaOH緩衝液(pH 10)をリン酸ナトリウム緩衝液(pH7.0)に変更し、3.2mU/mL ラッカーゼ(Sigma-Aldrich社、アスペルギルス属由来)を加えた条件では、同じ時間反応させても基質であるピセイドが残っていることがTLCでの分析で確認された。このことから、(5)のアルカリ条件下において、基質であるピセイドは中性条件の場合と比較して、速やかに全量ピセイド酸化物となっていることが確認できた。
(6) Analysis of Piceid Oxide As a result of TLC analysis of the piceid oxide prepared under the condition of (5), a spot was confirmed at the same position as the piceid oxide obtained by NMR analysis in Example 9. In addition, nothing was detected in the spot at the same position as the piceid analyzed in Example 9. Further, among the conditions described in (5), the glycine-NaOH buffer solution (pH 10) was changed to a sodium phosphate buffer solution (pH 7.0), and 3.2 mU / mL laccase (Sigma-Aldrich, Aspergillus). Under the condition of adding (origin), it was confirmed by analysis with TLC that the substrate, piseide, remained even after the reaction for the same time. From this, it was confirmed that under the alkaline condition of (5), the total amount of piceid, which is a substrate, was rapidly converted to a piceid oxide as compared with the case of the neutral condition.
(7)ピセイド酸化物の調製(メディエーター自然酸化)
 終濃度が20mM グリシン-NaOH緩衝液(pH 10.0)、基質として50mM相当のピセイド粉末、メディエーターとして10mM TBHQからなる反応液に終濃度が20U/mLとなるようCtaGDHを添加し、室温で通気を行いながら1時間撹拌し、ピセイド酸化物を取得した。
(7) Preparation of piceid oxide (mediator natural oxidation)
Add CtaGDH to a reaction solution consisting of a final concentration of 20 mM glycine-NaOH buffer (pH 10.0), a piceid powder equivalent to 50 mM as a substrate, and 10 mM TBHQ as a mediator so that the final concentration is 20 U / mL, and aerate at room temperature. The mixture was stirred for 1 hour to obtain piceid oxide.
(8)ピセイド酸化物の分析
 (7)の条件で調製したピセイド酸化物についてTLC分析を行った結果、実施例9でNMR分析を行ったピセイド酸化物と同じ位置にスポットが確認された。また、実施例9で分析したピセイドと同じ位置のスポットには何も検出されなかった。このことから、(7)の条件において、基質であるピセイドは速やかに全量ピセイド酸化物となっていることが確認できた。またラッカーゼの添加無しでも基質であるピセイドがピセイド酸化物に全量変換されたことから、アルカリ条件下ではメディエーターが速やかに自動的に再酸化されていることが確認できた。
(8) Analysis of Piceid Oxide As a result of TLC analysis of the piceid oxide prepared under the condition of (7), a spot was confirmed at the same position as the piceid oxide obtained by NMR analysis in Example 9. In addition, nothing was detected in the spot at the same position as the piceid analyzed in Example 9. From this, it was confirmed that, under the condition (7), the total amount of piceid, which is a substrate, was quickly converted into a piceid oxide. In addition, since the entire amount of piceid, which is a substrate, was converted to piceid oxide without the addition of laccase, it was confirmed that the mediator was rapidly and automatically reoxidized under alkaline conditions.
[実施例12]
(アルブチン酸化物の分析)
 精製したCpGDHを用いてアルブチン酸化物を取得し、そのグルクロン酸残基を分析した。
[Example 12]
(Analysis of arbutin oxide)
Arbutin oxide was obtained using purified CpGDH and its glucuronic acid residue was analyzed.
(1)アルブチン酸化物の調製
 終濃度が20mM リン酸ナトリウム緩衝液(pH 7.0)、基質として50mMのアルブチン、メディエーターとして10mM TBHQ、活性酸素の除去剤として500U/mL カタラーゼ(富士フィルム和光純薬社、ウシ肝臓由来)、30mU/mL ラッカーゼ(Sigma-Aldrich社、アスペルギルス属由来)からなる反応液に終濃度が20U/mLとなるようCtaGDHを添加し、反応系中のpHが6.5~7.0になるように1NのNaOHを添加しながら、室温で通気を行い、48~72時間撹拌してアルブチン酸化物を取得した。
(1) Preparation of albutine oxide A final concentration of 20 mM sodium phosphate buffer (pH 7.0), 50 mM albutine as a substrate, 10 mM TBHQ as a mediator, and 500 U / mL catalase as a remover for active oxygen (Fuji Film Wako Jun). CtaGDH was added to a reaction solution consisting of 30 mU / mL lacquerase (derived from Sigma-Aldrich, Aspergillus) to a final concentration of 20 U / mL, and the pH in the reaction system was 6.5. While adding 1N NaOH so as to be ~ 7.0, the mixture was aerated at room temperature and stirred for 48 to 72 hours to obtain an arbutine oxide.
(2)アルブチン酸化物の糖切断
 (1)の条件で調製したアルブチン酸化物について、終濃度が4Mになるようトリフルオロ酢酸を添加して100℃で3時間加温した後、処理液に終濃度が80%(v/v)になるようイソプロパノールを加え、室温で24時間静置して乾固させた。乾固したサンプルを超純水に溶解させ、切断された糖部分の分析に使用した。
(2) Sugar cleavage of arbutin oxide With respect to the arbutin oxide prepared under the condition of (1), trifluoroacetic acid is added so that the final concentration becomes 4M, and the mixture is heated at 100 ° C. for 3 hours, and then the treated solution is finished. Isopropanol was added to a concentration of 80% (v / v), and the mixture was allowed to stand at room temperature for 24 hours to dry. The dried sample was dissolved in ultrapure water and used for analysis of the cleaved sugar moiety.
(3)アルブチン酸化物から切断した糖残基の分析
 (2)の条件で調製したアルブチン酸化物由来の糖残基について、実施例3の(2)と同様にTLC分析を行った結果、グルクロン酸標品と同じ位置にスポットが確認され、グルコース標品、及びグルコン酸標品と同じ位置には何も検出されなかった。このことからアルブチンにおいてもCpGDHを用いることでグルコース残基がグルクロン酸に変換されていることが確認できた。
(3) Analysis of sugar residues cleaved from arbutin oxide As a result of performing TLC analysis on sugar residues derived from arbutin oxide prepared under the conditions of (2) in the same manner as in (2) of Example 3, glucuron A spot was confirmed at the same position as the acid standard, and nothing was detected at the same position as the glucose standard and the gluconic acid standard. From this, it was confirmed that the glucose residue was converted to glucuronic acid in arbutin by using CpGDH.
[実施例13]
(ピセイド酸化物の溶解性)
 ピセイド酸化物の水への溶解性を確認した。
[Example 13]
(Solubility of piceid oxide)
The solubility of piceid oxide in water was confirmed.
(1)ピセイド酸化物の水への溶解性
 終濃度が2mMとなるようにピセイド粉末を水に溶解させた結果、全量溶けきることはなく、粉末が残った。一方で実施例11の(1)で調製したピセイド酸化物をC18カラムにて精製し、得られた精製ピセイド酸化物の水への溶解性を確認した結果、終濃度が約200mMとなる条件下でも添加したピセイド酸化物が全量溶解した。このことから、ピセイドのグルコース残基がグルクロン酸残基に変換されることで、水への溶解性が少なくとも100倍以上改善していることが確認できた。
(1) Solubility of Piceid Oxide in Water As a result of dissolving the piceid powder in water so that the final concentration was 2 mM, the entire amount was not completely dissolved, and the powder remained. On the other hand, the piceid oxide prepared in (1) of Example 11 was purified on a C18 column, and the solubility of the obtained purified piceid oxide in water was confirmed. As a result, the final concentration was about 200 mM. However, the added piceid oxide was completely dissolved. From this, it was confirmed that the solubility in water was improved by at least 100 times or more by converting the glucose residue of piceid to the glucuronic acid residue.

Claims (11)

  1.  グルコースに、メディエーターの存在下、グルコース-6-デヒドロゲナーゼ活性を有するフラビン結合型グルコース脱水素酵素を作用させてグルクロン酸を生成させる工程を含む、グルクロン酸の製造方法。 A method for producing glucuronic acid, which comprises a step of reacting glucose with a flavin-binding glucose dehydrogenase having glucose-6-dehydrogenase activity in the presence of a mediator to produce glucuronic acid.
  2.  グルコース誘導体に、メディエーターの存在下、グルコース-6-デヒドロゲナーゼ活性を有するフラビン結合型グルコース脱水素酵素を作用させて、グルクロン酸誘導体を生成させる工程を含む、グルクロン酸誘導体の製造方法。 A method for producing a glucuronic acid derivative, which comprises a step of allowing a flavin-binding glucose dehydrogenase having glucose-6-dehydrogenase activity to act on a glucose derivative in the presence of a mediator to produce a glucuronic acid derivative.
  3.  グルコース誘導体がアミノ糖もしくはそのN-アセチル化物、グルコシド、又はグルコースアナログである請求項2記載のグルクロン酸誘導体の製造方法。 The method for producing a glucuronic acid derivative according to claim 2, wherein the glucose derivative is an amino sugar or an N-acetylated product thereof, a glucoside, or a glucose analog.
  4.  フラビン結合型グルコース脱水素酵素が以下の(i)~(iii)のいずれかのタンパク質である、請求項1~3のいずれか1項記載のグルクロン酸の製造方法又はグルクロン酸誘導体の製造方法:
    (i)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列を有するタンパク質
    (ii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質
    (iii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質。
    The method for producing glucuronic acid or a method for producing a glucuronic acid derivative according to any one of claims 1 to 3, wherein the flavin-binding glucose dehydrogenase is the protein according to any one of (i) to (iii) below:
    (I) A protein having the amino acid sequence shown by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. (Ii) 1 to 1 in the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. Protein with a few amino acid residues deleted, substituted or inserted and having glucose-6-dehydrogenase activity (iii) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16 , 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38, has an amino acid sequence having 80% or more sequence identity with the amino acid sequence shown, and has glucose-6-dehydrogenase activity. Protein to have.
  5.  フラビン結合型グルコース脱水素酵素が以下の性質(1)~(8)を有する、請求項1~4のいずれか1項記載のグルクロン酸の製造方法又はグルクロン酸誘導体の製造方法:
    (1)作用:フラビンを補酵素として、グルコースの6位のヒドロキシメチル基を脱水素(酸化)する反応を触媒する
    (2)溶解性:水溶性
    (3)pH安定性:少なくともpH5.5~8.7の間で安定
    (4)熱安定性:少なくとも35℃で安定
    (5)基質特異性:グルコースに対する作用性を100%とした場合にマルトース、キシロース、ガラクトースへの作用性が2.0%以下
    (6)Km値(対グルコース):30mM以上
    (7)分子量:64~66kDa(シグナル除去後のアミノ酸配列からの計算)
    (8)グルコースオキシダーゼ活性:検出できず。
    The method for producing glucuronic acid or a method for producing a glucuronic acid derivative according to any one of claims 1 to 4, wherein the flavin-bound glucose dehydrogenase has the following properties (1) to (8).
    (1) Action: Catalyzing the reaction of dehydrogenating (oxidizing) the hydroxymethyl group at position 6 of glucose using flavin as a coenzyme (2) Solubility: Water-soluble (3) pH stability: At least pH 5.5 ~ Stable between 8.7 (4) Thermal stability: Stable at least at 35 ° C. (5) Substrate specificity: When the action on glucose is 100%, the action on maltose, xylose and galactose is 2.0. % Or less (6) Km value (against glucose): 30 mM or more (7) Molecular weight: 64-66 kDa (calculation from amino acid sequence after signal removal)
    (8) Glucose oxidase activity: could not be detected.
  6.  フラビン結合型グルコース脱水素酵素がコレトトリカム属、グロメレラ属、ディアポルテ属、クスキア属、アクレモニウム属、ラシオスパエリス属、フザリウム属又はフィアモニオシス属に属する微生物に由来する請求項1~5のいずれか1項記載のグルクロン酸の製造方法又はグルクロン酸誘導体の製造方法。 Any one of claims 1 to 5 from which the flavin-bound glucose dehydrogenase is derived from a microorganism belonging to the genera Collettricum, Glomerella, Diaporte, Cuskia, Acremonium, Laciospaeris, Fuzarium or Fiamoniosis. The method for producing glucuronic acid or the method for producing a glucuronic acid derivative according to the above item.
  7.  フラビン結合型グルコース脱水素酵素としてフラビン結合型グルコース脱水素酵素をコードする遺伝子が導入された組換え微生物を用いる請求項1~6のいずれか1項記載のグルクロン酸の製造方法又はグルクロン酸誘導体の製造方法。 The method for producing glucuronic acid or a glucuronic acid derivative according to any one of claims 1 to 6, wherein a recombinant microorganism into which a gene encoding a flavin-binding glucose dehydrogenase is introduced is used as the flavin-binding glucose dehydrogenase. Production method.
  8.  フラビン結合型グルコース脱水素酵素をコードする遺伝子が以下の(a)~(e)のいずれかのDNAからなる遺伝子である請求項7記載のグルクロン酸の製造方法又はグルクロン酸誘導体の製造方法:
    (a)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35又は37で示される塩基配列を有するDNA
    (b)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35又は37で示される塩基配列において1~数個の塩基が欠失、置換又は付加された塩基配列を有し、かつグルコース-6-デヒドロゲナーゼ活性を有するタンパク質をコードするDNA
    (c)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35又は37で示される塩基配列に対して80%以上の配列同一性を有する塩基配列を有し、かつグルコース-6-デヒドロゲナーゼ活性を有するタンパク質をコードするDNA
    (d)配列番号1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35又は37で示される塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつグルコース-6-デヒドロゲナーゼ活性を有するタンパク質をコードするDNA
    (e)以下の(i)、(ii)又は(iii)のタンパク質をコードするDNA
    (i)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列を有するタンパク質
    (ii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質
    (iii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質。
    The method for producing glucuronic acid or a method for producing a glucuronic acid derivative according to claim 7, wherein the gene encoding the flavin-binding glucose dehydrogenase is a gene consisting of any of the following DNAs (a) to (e):
    (A) DNA having the base sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37.
    (B) 1 to 1 in the base sequence represented by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. DNA encoding a protein having a base sequence in which several bases have been deleted, substituted or added, and having glucose-6-dehydrogenase activity.
    (C) For the base sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. DNA encoding a protein having a nucleotide sequence having 80% or more sequence identity and having glucose-6-dehydrogenase activity
    (D) Complementary to the nucleotide sequence shown by SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35 or 37. DNA that hybridizes with DNA consisting of a unique base sequence under stringent conditions and encodes a protein having glucose-6-dehydrogenase activity.
    (E) DNA encoding the following protein (i), (ii) or (iii)
    (I) A protein having the amino acid sequence shown by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. (Ii) 1 to 1 in the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. Protein with a few amino acid residues deleted, substituted or inserted and having glucose-6-dehydrogenase activity (iii) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16 , 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38, has an amino acid sequence having 80% or more sequence identity with the amino acid sequence shown, and has glucose-6-dehydrogenase activity. Protein to have.
  9.  更に、酸化酵素を作用させる、請求項1~8のいずれか1項記載のグルクロン酸の製造方法又はグルクロン酸誘導体の製造方法。 Further, the method for producing glucuronic acid or the method for producing a glucuronic acid derivative according to any one of claims 1 to 8, wherein an oxidase is allowed to act.
  10.  以下の(i)~(iii)のいずれかのタンパク質である、グルコース-6-デヒドロゲナーゼ活性を有するフラビン結合型グルコース脱水素酵素:
    (i)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列を有するタンパク質
    (ii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質
    (iii)配列番号2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36又は38で示されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列を有し、グルコース-6-デヒドロゲナーゼ活性を有するタンパク質。
    A flavin-bound glucose dehydrogenase having glucose-6-dehydrogenase activity, which is one of the following proteins (i) to (iii):
    (I) A protein having the amino acid sequence shown by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. (Ii) 1 to 1 in the amino acid sequence represented by SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38. Protein with a few amino acid residues deleted, substituted or inserted and having glucose-6-dehydrogenase activity (iii) SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16 , 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 or 38, has an amino acid sequence having 80% or more sequence identity with the amino acid sequence shown, and has glucose-6-dehydrogenase activity. Protein to have.
  11.  グルコース-6-デヒドロゲナーゼ活性を有するフラビン結合型グルコース脱水素酵素タンパク質を含むグルクロン酸又はグルクロン酸誘導体製造用触媒。 A catalyst for producing glucuronic acid or a glucuronic acid derivative containing a flavin-binding glucose dehydrogenase protein having glucose-6-dehydrogenase activity.
PCT/JP2021/001086 2020-01-23 2021-01-14 Method for producing glucuronic acid WO2021149587A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180009959.XA CN114981438A (en) 2020-01-23 2021-01-14 Process for producing glucuronic acid
JP2021573110A JPWO2021149587A1 (en) 2020-01-23 2021-01-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020009502 2020-01-23
JP2020-009502 2020-01-23

Publications (1)

Publication Number Publication Date
WO2021149587A1 true WO2021149587A1 (en) 2021-07-29

Family

ID=76992238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001086 WO2021149587A1 (en) 2020-01-23 2021-01-14 Method for producing glucuronic acid

Country Status (3)

Country Link
JP (1) JPWO2021149587A1 (en)
CN (1) CN114981438A (en)
WO (1) WO2021149587A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105241A1 (en) * 2010-02-25 2011-09-01 富山県 Method for producing glucuronic acid conjugate using saccharomyces cerevisiae
WO2014002973A1 (en) * 2012-06-29 2014-01-03 東洋紡株式会社 Novel glucose dehydrogenase
JP2016158578A (en) * 2015-03-03 2016-09-05 池田食研株式会社 Flavin-binding glucose dehydrogenase
WO2017002896A1 (en) * 2015-07-02 2017-01-05 池田食研株式会社 Flavin-binding glucose dehydrogenase
WO2019189808A1 (en) * 2018-03-29 2019-10-03 東洋紡株式会社 Nanocarbon electron transfer action

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105241A1 (en) * 2010-02-25 2011-09-01 富山県 Method for producing glucuronic acid conjugate using saccharomyces cerevisiae
WO2014002973A1 (en) * 2012-06-29 2014-01-03 東洋紡株式会社 Novel glucose dehydrogenase
JP2016158578A (en) * 2015-03-03 2016-09-05 池田食研株式会社 Flavin-binding glucose dehydrogenase
WO2017002896A1 (en) * 2015-07-02 2017-01-05 池田食研株式会社 Flavin-binding glucose dehydrogenase
WO2019189808A1 (en) * 2018-03-29 2019-10-03 東洋紡株式会社 Nanocarbon electron transfer action

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
DATABASE UniProtKB [online] 11 December 2019 (2019-12-11), retrieved from UniProt Database accession no. A0A0N0DAM0 *
DATABASE UniProtKB [online] 11 December 2019 (2019-12-11), retrieved from UniProt Database accession no. A0A1166RTP5 *
DATABASE UniProtKB [online] 11 December 2019 (2019-12-11), retrieved from UniProt Database accession no. A0A4V1CL0 *
DATABASE UniProtKB [online] 11 December 2019 (2019-12-11), retrieved from UniProt Database accession no. AOA135U06 *
DATABASE UniProtKB [online] 11 December 2019 (2019-12-11), retrieved from UniProt Database accession no. AOA2P5HFL2 *
DATABASE UniProtKB [online] 11 December 2019 (2019-12-11), retrieved from UniProt Database accession no. AOA4U6X9A5 *
DATABASE UniProtKB [online] 11 December 2019 (2019-12-11), retrieved from UniProt Database accession no. AOA507AF72 *
DATABASE UniProtKB [online] 11 December 2019 (2019-12-11), retrieved from UniProt Database accession no. N4VLP1 *
DATABASE UniProtKB [online] 11 December 2019 (2019-12-11), retrieved from UniProt Database accession no. TOJYD3 *

Also Published As

Publication number Publication date
CN114981438A (en) 2022-08-30
JPWO2021149587A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
JP4648993B2 (en) Flavin-binding glucose dehydrogenase
JP6460152B2 (en) Novel glucose dehydrogenase
JP5889800B2 (en) Escherichia coli transformant, method for producing flavin-binding glucose dehydrogenase using the same, and mutant flavin-binding glucose dehydrogenase
JP6342326B2 (en) D-glucaric acid-producing bacterium and method for producing D-glucaric acid
JP6212852B2 (en) Novel glucose dehydrogenase
JP6465156B2 (en) Novel glucose dehydrogenase
JP6120379B2 (en) Flavin-binding glucose dehydrogenase and polynucleotide encoding the same
JP4743854B2 (en) Oxidizing enzyme and oxidizing reagent containing the same
WO2021149587A1 (en) Method for producing glucuronic acid
Zhang et al. Purification and characterization of the glucoside 3-dehydrogenase produced by a newly isolated Stenotrophomonas maltrophilia CCTCC M 204024
Doukyu et al. Cholesterol oxidase from Rhodococcus erythropolis with high specificity toward β-cholestanol and pytosterols
EP2772537B1 (en) Polyol oxidase
WO2017002896A1 (en) Flavin-binding glucose dehydrogenase
WO2023008218A1 (en) New application for resveratrol glucuronide
Yotsombat et al. Cloning and expression of d-glucoside 3-dehydrogenase from Rhizobium sp. S10 in Escherichia coli and its application for d-gulose production
JP2603677B2 (en) Novel cytochrome P-450 and method for producing the same
Oda et al. Sorbitol oxidase from microorganisms
Stoppok et al. The Production of 3-Keto-Derivatives of Disaccharides
WO2009104698A1 (en) Cholesterol oxidase, chromobacterium sp. microbes, measurement reagent, testing method, gene coding for cholesterol oxidase, recombination vector, transformants, and cholesterol oxidase manufacturing method
Jin et al. Properties of glucoside 3-dehydrogenase and its potential applications
JP2004033077A (en) Aldohexose dehydrogenase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573110

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744234

Country of ref document: EP

Kind code of ref document: A1