WO2021149571A1 - Commutator, electric motor, and method for manufacturing commutator - Google Patents

Commutator, electric motor, and method for manufacturing commutator Download PDF

Info

Publication number
WO2021149571A1
WO2021149571A1 PCT/JP2021/000956 JP2021000956W WO2021149571A1 WO 2021149571 A1 WO2021149571 A1 WO 2021149571A1 JP 2021000956 W JP2021000956 W JP 2021000956W WO 2021149571 A1 WO2021149571 A1 WO 2021149571A1
Authority
WO
WIPO (PCT)
Prior art keywords
commutator
molded body
resin molded
pieces
piece
Prior art date
Application number
PCT/JP2021/000956
Other languages
French (fr)
Japanese (ja)
Inventor
知子 従野
圭策 中野
和雄 遠矢
勇輝 吉岡
藤田 克敏
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2021149571A1 publication Critical patent/WO2021149571A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/04Commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present disclosure relates to a commutator, a motor equipped with a commutator, and a method for manufacturing the commutator.
  • Motors are widely used in the field of electrical equipment such as automobiles, as well as in the field of household electrical appliances such as vacuum cleaners.
  • an electric motor is used to rotate a rotating fan.
  • the commutator motor includes a stator, a rotor, a commutator attached to the rotating shaft of the commutator, and a brush that is in sliding contact with the commutator.
  • the commutator used in the commutator motor includes, for example, a tubular commutator body having a through hole into which a rotating shaft is inserted, and a plurality of commutator pieces fixed at equal intervals on the outer peripheral surface of the commutator body.
  • a commutator having such a configuration a molded commutator in which a plurality of commutator pieces are molded with a resin is known.
  • the commutator body is a resin molded body made of resin.
  • the rotor rotates at high speed, so the commutator attached to the rotating shaft of the rotor also rotates at high speed.
  • the commutator piece fixed to the resin molded body may float from the resin molded body due to centrifugal force during high-speed rotation.
  • Patent Document 1 Patent Document 1, See 2
  • Patent Document 1 See 2
  • the adhesion to the resin molded body can be improved, so that the commutator piece can be suppressed from floating during high-speed rotation.
  • An object of the present disclosure is to provide a commutator, a method for manufacturing a commutator, and the like, which can suppress the floating of a commutator piece when the commutator rotates while suppressing the occurrence of another defect. ..
  • one aspect of the commutator according to the present disclosure includes a resin molded body and a plurality of commutator pieces fixed to the resin molded body, and each of the plurality of commutator pieces is provided.
  • the surface of the contact surface which has a contact surface in contact with the outer peripheral surface of the resin molded body and a facing surface exposed from the resin molded body and facing an adjacent commutator piece among the plurality of commutator pieces.
  • the maximum depth of the micro-recess of the surface is deeper than the maximum depth of the micro-recess on the surface of the facing surface.
  • one aspect of the electric motor according to the present disclosure includes the commutator, a rotor having a rotating shaft to which the commutator is attached, and a stator that generates a magnetic force acting on the commutator.
  • a resin molded body having a through hole into which a rotating shaft of an electric motor is inserted and a plurality of commutator pieces arranged in an annular shape around the rotating shaft are formed.
  • a step of forming the resin molded body in which the plurality of commutator pieces are fixed by injecting a liquid resin into the inner peripheral portion of the basket in which the plurality of commutator pieces are arranged and curing the liquid resin. including.
  • Another aspect of the commutator manufacturing method is a resin molded body having a through hole inserted into the rotating shaft of an electric motor and a plurality of commutator pieces arranged in an annular shape around the rotating shaft.
  • the step of forming the resin molded body to which the commutator base material is fixed by injecting a liquid resin into the inner peripheral portion and curing the commutator base material, and separating the commutator base material into the plurality of commutator pieces. Including steps.
  • FIG. 1 is an external perspective view of the electric blower 1 according to the embodiment.
  • FIG. 2 is a half cross-sectional view of the electric blower 1.
  • FIG. 2 shows a cross section when cut in a plane passing through the axis C of the rotating shaft 13. The arrow shown in FIG. 2 indicates the flow of air sucked into the electric blower 1.
  • the electric blower 1 is discharged from the electric motor 2 having the rotor 11 and the stator 12, the rotary fan 3 attached to the rotary shaft 13 of the motor 2, and the rotary fan 3.
  • An air guide 4 through which air flows, a fan case 5 covering the rotary fan 3 and the air guide 4, a frame 6 for accommodating the rotor 11 and the stator 12, and a bracket 7 arranged so as to straddle the opening of the frame 6.
  • the electric motor 2 is a fan motor that rotates the rotating fan 3.
  • the electric motor 2 is a commutator electric motor with a brush.
  • the electric motor 2 includes a rotor 11, a stator 12, a rotating shaft 13, a commutator 14, a brush 15, a first bearing 16, and a second bearing 17.
  • the electric motor 2 is a direct current electric motor (DC motor) driven by direct current.
  • the rotor 11 (rotor) generates a magnetic force acting on the stator 12.
  • the direction of the main magnetic flux generated by the rotor 11 is a direction orthogonal to the direction of the axis C of the rotating shaft 13 (rotating axis direction).
  • the rotor 11 has a rotating shaft 13.
  • the rotor 11 rotates about the rotation shaft 13 by the magnetic force generated by the stator 12. That is, the rotor 11 rotates about the axis C of the rotating shaft 13 as the center of rotation.
  • the rotor 11 rotates at high speed, for example, at 40,000 rpm (revolutions per minutes).
  • the rotor 11 is arranged via the stator 12 and the air gap. Specifically, there is a minute air gap between the surface of the rotor 11 and the surface of the stator 12.
  • the rotor 11 in the present embodiment is an inner rotor and is arranged inside the stator 12.
  • the rotor 11 is an armature.
  • the rotor 11 has a rotor core (rotor core) 11a and a winding coil 11b (rotor coil) wound around the rotor core 11a.
  • the rotor core 11a is an armature core around which a winding coil 11b is wound.
  • the rotor core 11a is a laminated body in which a plurality of electromagnetic steel sheets are laminated in the direction of the axis C of the rotating shaft 13.
  • the rotor core 11a is not limited to a laminated body of electromagnetic steel sheets, and may be a bulk body made of a magnetic material.
  • the rotor core 11a has a plurality of teeth.
  • the plurality of teeth extend radially in a direction (radial direction) orthogonal to the axis C of the rotation axis 13.
  • the plurality of teeth exist at equal intervals along the rotation direction of the rotation shaft 13.
  • the winding coil 11b is wound around the rotor core 11a.
  • the winding coil 11b has a coil wound around each of the plurality of teeth.
  • the coil is wound around the teeth multiple times. Specifically, the coil is a distributed winding coil that is wound around a tooth via an insulator.
  • the winding coil 11b is electrically connected to the commutator 14. Specifically, the winding coil 11b is electrically connected to the commutator piece of the commutator 14. When a current flows through the winding coil 11b via the commutator 14, the rotor 11 generates a magnetic force acting on the stator 12.
  • the stator 12 (stator) is located facing the rotor 11 and generates a magnetic force acting on the rotor 11.
  • the stator 12 constitutes a magnetic circuit together with the rotor 11 which is an armature.
  • the stator 12 is arranged so as to surround the rotor core 11a of the rotor 11.
  • the stator 12 is configured such that the north pole and the south pole of the magnetic pole appear alternately in the circumferential direction on the air gap surface.
  • the stator 12 may be configured such that a plurality of permanent magnets are arranged along the circumferential direction, or is composed of a stator core having a plurality of teeth and a winding coil wound around the stator core. It may have been done.
  • the stator 12 is a field assembly in which a winding coil is wound around a tooth of a stator core in which a plurality of electromagnetic steel sheets are laminated.
  • the stator 12 is fixed to the frame 6, for example.
  • the rotating shaft 13 is a long shaft that serves as a center when the rotor 11 rotates.
  • the rotating shaft 13 is, for example, a metal rod.
  • the rotating shaft 13 is fixed to the center of the rotor 11. Specifically, the rotating shaft 13 is fixed to the rotor core 11a in a state of penetrating the center of the rotor core 11a of the rotor 11 so as to extend to both sides of the rotor 11.
  • the rotating shaft 13 is fixed to the rotor core 11a by press-fitting or shrink-fitting into the central hole formed in the rotor core 11a.
  • the first portion 13a of the rotating shaft 13 protruding from the rotor 11 to one side (rotating fan 3 side) is supported by the first bearing 16.
  • the first portion 13a of the rotating shaft 13 is a portion (output shaft) on the output side of the rotating shaft 13.
  • the first portion 13a of the rotating shaft 13 projects from the first bearing 16.
  • a rotary fan 3 is attached to the tip of the first portion 13a of the rotary shaft 13 protruding from the first bearing 16 as a load driven by the motor 2.
  • the second portion 13b of the rotating shaft 13 protruding from the rotor 11 to the other side is supported by the second bearing 17.
  • the second portion 13b of the rotating shaft 13 is a portion (anti-output shaft) on the counter-output side of the rotating shaft 13.
  • the commutator 14 is attached to the rotating shaft 13. Therefore, the commutator 14 rotates together with the rotating shaft 13.
  • the commutator 14 is attached to the second portion 13b of the rotating shaft 13. Specifically, the commutator 14 is attached to a portion of the rotating shaft 13 between the rotor core 11a and the second bearing 17. The detailed configuration of the commutator 14 will be described later.
  • the brush 15 is in contact with the commutator 14. Specifically, the brush 15 is in contact with any of the plurality of commutator pieces of the commutator 14.
  • the brush 15 is a power supply brush for supplying electric power to the winding coil 11b of the rotor 11. When the brush 15 comes into contact with the commutator piece, the armature current supplied to the brush 15 via the power supply terminal flows to the winding coil 11b via the commutator piece.
  • the brush 15 is a conductive carbon brush made of carbon.
  • the brush 15 is a carbon brush containing a metal such as copper.
  • the brush 15 is a long rod-shaped member.
  • the brush 15 is a long, substantially rectangular parallelepiped.
  • the brush 15 can be produced, for example, by crushing a kneaded product obtained by kneading graphite powder, copper powder, a binder resin, and a curing agent, compression molding into a substantially rectangular parallelepiped, and firing.
  • a pair of brushes 15 are provided so as to be slidable with the commutator 14.
  • the pair of brushes 15 are arranged so as to sandwich the commutator 14 so as to sandwich the commutator 14.
  • the inner tips of the pair of brushes 15 are in contact with the commutator 14.
  • each brush 15 is pressed toward the commutator 14 by a brush spring such as a torsion spring, and is in contact with the commutator 14.
  • the end surface of the brush 15 on the inner side (rotating shaft 13 side) in the longitudinal direction is the contact surface with the commutator 14.
  • the brush 15 is housed in a brush box.
  • the first bearing 16 and the second bearing 17 rotatably support the rotating shaft 13.
  • the rotating shaft 13 is supported by the first bearing 16 and the second bearing 17 in a rotatable state.
  • the first bearing 16 and the second bearing 17 are, for example, bearings.
  • the first bearing 16 and the second bearing 17 are ball bearings, but the present invention is not limited thereto.
  • the first bearing 16 and the second bearing 17 may be other bearings such as a sliding bearing.
  • the first bearing 16 is fixed to the bracket 7.
  • the second bearing 17 is fixed to the bottom of the frame 6.
  • the current supplied to the brush 15 flows through the commutator 14 to the winding coil 11b wound around the rotor core 11a as an armature current (drive current).
  • armature current drive current
  • magnetic flux is generated in the rotor 11.
  • the direction in which the current flows is switched depending on the positional relationship when the commutator piece of the commutator 14 and the brush 15 are in contact with each other. By switching the direction in which the current flows in this way, a rotational force in a fixed direction is generated by the repulsive force and the attractive force of the magnetic force generated between the rotor 11 and the stator 12, and the rotor 11 rotates. do.
  • the rotating shaft 13 to which the rotor 11 is attached rotates around the axis C.
  • the rotating fan 3 attached to the rotating shaft 13 of the electric motor 2 rotates.
  • the rotating fan 3 sucks air into the outer housing (housing) composed of the fan case 5 and the frame 6.
  • the rotary fan 3 is a centrifugal fan that can obtain a high suction pressure. Wind pressure is generated by the rotation of the rotary fan 3, air is sucked from the intake port 5a formed in the fan case 5, and air is discharged from the rotary fan 3. The air discharged from the rotary fan 3 flows into the air guide 4.
  • the air guide 4 has a plurality of diffuser blades arranged on the outer circumference of the rotary fan 3 as a guide plate for rectifying the flow of gas.
  • the air guide 4 rectifies the flow of air sucked from the intake port 5a formed in the fan case 5 by the rotation of the rotating fan 3 to generate a swirling flow, and the sucked gas is smoothly transferred to the frame 6. Pour in.
  • the fan case 5 is a cover that covers the rotating fan 3.
  • the fan case 5 is fixed to the frame 6.
  • the fan case 5 has an intake port 5a for sucking outside air. As the rotating fan 3 rotates, air flows into the fan case 5 from the intake port 5a formed in the fan case 5.
  • the frame 6 is a housing (case) for accommodating the motor 2.
  • the frame 6 is a bottomed tubular body having an opening.
  • the frame 6 is made of a metal material such as aluminum.
  • the frame 6 may be made of a resin material.
  • a plurality of exhaust ports 6a are provided on the side wall of the bottom of the frame 6 in order to discharge the air sucked by the rotation of the rotary fan 3 to the outside.
  • the bracket 7 is a plate member that covers the opening of the frame 6 together with the air guide 4.
  • the bracket 7 partially covers the opening of the frame 6 without completely closing the opening of the frame 6.
  • the bracket 7 is arranged so as to straddle the opening of the frame 6. As a result, when the bracket 7 is attached to the frame 6, the frame 6 has an opening as a ventilation path for air rectified by the air guide 4. The air rectified by the air guide 4 passes through this opening and flows into the frame 6.
  • the bracket 7 is also formed with an opening hole through which the air rectified by the air guide 4 passes.
  • the rotating fan 3 rotates, and air is sucked into the fan case 5 from the intake port 5a of the fan case 5.
  • air flows into the rotary fan 3.
  • the air sucked by the rotary fan 3 is compressed to a high pressure by the fan blades of the rotary fan 3 and discharged in the radial direction from the outer peripheral side portion of the rotary fan 3.
  • the air discharged from the outer peripheral side of the rotary fan 3 is guided to the outer peripheral portion of the fan case 5 by the diffuser blades of the air guide 4 surrounding the rotary fan 3.
  • the air guided to the outer peripheral portion of the fan case 5 becomes a swirling flow in the space between the air guide 4 and the fan case 5, and flows into the frame 6.
  • the air that has flowed into the frame 6 is discharged to the outside of the electric blower 1 from the exhaust port 6a of the frame 6.
  • the electric motor 2 of the present embodiment includes a commutator 14, a rotor 11 having a rotating shaft 13 to which the commutator 14 is attached, and a stator 12 that generates a magnetic force acting on the commutator 11. To be equipped.
  • FIG. 3 is a perspective view of the commutator 14 according to the embodiment.
  • FIG. 4A is a side view of the commutator 14.
  • FIG. 4B is a cross-sectional view of the commutator 14 on the IVb-IVb line of FIG. 4A.
  • FIG. 4C is a cross-sectional view of the commutator 14 on the IVc-IVc line of FIGS. 4A and 4B.
  • the commutator 14 has a resin molded body 20 and a plurality of commutator pieces 30.
  • the commutator 14 is a molded commutator, and a plurality of commutator pieces 30 are molded with resin.
  • the resin molded body 20 is a resin portion of the commutator 14 which is a mold commutator.
  • the resin molded body 20 is the main body (commutator main body) of the commutator 14.
  • the resin molded body 20 has a through hole 21 into which the rotating shaft 13 of the electric motor 2 is inserted.
  • the resin molded body 20 is a substantially tubular body having a central axis of the through hole 21 as a tubular axis.
  • the direction of the cylinder axis of the resin molded body 20 coincides with the direction of the axis C of the rotating shaft 13. That is, the axis of the resin molded body 20 coincides with the axis C of the rotating shaft 13.
  • the circumferential direction of the resin molded body 20 coincides with the rotation direction of the rotating shaft 13.
  • the resin molded body 20 is made of a resin material such as a thermosetting resin.
  • a thermosetting resin for example, a phenol resin can be used.
  • the resin molded body 20 can be formed into a predetermined shape by transfer molding using a mold for transfer molding.
  • the resin molded body 20 may be made of a resin material in which reinforcing fibers such as glass fibers are dispersed. Thereby, the durability of the resin molded body 20 can be improved.
  • the plurality of commutator pieces 30 are arranged in a ring shape so as to surround the rotation shaft 13.
  • the plurality of commutator pieces 30 are arranged in an annular shape along the circumferential direction of the rotation shaft 13. That is, the plurality of commutator pieces 30 are arranged in an annular shape along the circumferential direction of the resin molded body 20.
  • Each of the plurality of commutator pieces 30 has a long shape extending along the axial direction of the rotating shaft 13.
  • the commutator pieces 30 are arranged in a posture in which the longitudinal direction thereof is parallel to the direction of the axis C of the rotating shaft 13.
  • the plurality of commutator pieces 30 surround the resin molded body 20, and the longitudinal direction of each commutator piece 30 is in the tubular axis direction of the resin molded body 20 in the circumferential direction of the resin molded body 20. They are evenly spaced along.
  • the plurality of commutator pieces 30 are conductive terminals made of a conductive material made of a metal material such as copper. Each commutator piece 30 is made of a copper alloy. The plurality of commutator pieces 30 are arranged in a state of being isolated from each other along the circumferential direction of the rotating shaft 13. That is, the two commutator pieces 30 adjacent to each other are isolated from each other in the rotation direction of the rotation shaft 13.
  • each commutator piece 30 is fixed to the resin molded body 20. Specifically, each commutator piece 30 is fixed to the resin molded body 20 by being partially embedded in the resin molded body 20 so that a part of the surface is exposed. That is, each commutator piece 30 is in contact with the outer peripheral surface of the resin molded body 20.
  • Each of the plurality of commutator pieces 30 has an exposed portion 31 in which at least a part of the surface is exposed from the resin molded body 20, an embedded portion 32 embedded in the resin molded body 20, and windings of the rotor 11 of the electric motor 2. It has a hook portion 33 to which the coil 11b is connected.
  • the exposed portion 31 functions as a sliding contact portion with which the brush 15 of the electric motor 2 is in sliding contact.
  • the exposed portion 31 has a front surface 31a and a side surface 31b as exposed surfaces exposed from the resin molded body 20.
  • the front surface 31a is a first exposed surface, which is a contact surface with which the brush 15 of the electric motor 2 comes into contact.
  • the side surface 31b is a second exposed surface, which is a facing surface facing the adjacent commutator piece 30 among the plurality of commutator pieces 30. That is, the two commutator pieces 30 adjacent to each other are arranged with a gap, and in the two commutator pieces 30 adjacent to each other, the facing surface of one commutator piece 30 and the facing surface of the other commutator piece 30. Is facing through the gap.
  • the length W1 along the circumferential direction on the outer peripheral side in the interval between two adjacent commutator pieces 30 among the plurality of commutator pieces 30 is the inner peripheral side in the interval. It is longer than the length W2 along the circumferential direction (W1> W2).
  • the exposed portion 31 further has a back surface 31c as a contact surface in contact with the outer peripheral surface of the resin molded body 20.
  • the back surface 31c is a surface facing the front surface 31a and is not exposed from the resin molded body 20.
  • the buried portion 32 is provided on the back surface 31c of the exposed portion 31. Specifically, the embedded portion 32 is provided so as to project from the back surface 31c toward the resin molded body 20 side.
  • Each commutator piece 30 is provided with two embedded portions 32. The two embedded portions 32 are arranged along the longitudinal direction of the commutator piece 30 with a gap.
  • the embedded portion 32 has an embedded surface 32c as a contact surface in contact with the outer peripheral surface of the resin molded body 20. Since the entire embedded portion 32 is embedded in the resin molded body 20, the entire surface of the embedded portion 32 is in contact with the outer peripheral surface of the resin molded body 20. That is, the entire surface of the buried portion 32 is the buried surface 32c.
  • a constricted portion is formed in which a part of the buried portion 32 is constricted.
  • the cross-sectional shape of the buried portion 32 is an inverted trapezoidal shape.
  • the hook portion 33 is provided at the end of the commutator piece 30. Specifically, the hook portion 33 is provided at one end of the exposed portion 31. The hook portion 33 is provided at the end portion of the exposed portion 31 on the rotor 11 side. The hook portion 33 is formed by bending a part of the commutator piece 30.
  • each commutator piece 30 has a back surface 31c of the exposed portion 31 and an embedded surface 32c of the embedded portion 32 as contact surfaces in contact with the outer peripheral surface of the resin molded body 20.
  • the back surface 31c and the embedded surface 32c are surfaces on the back side of the commutator piece 30, and are in surface contact with the outer peripheral surface of the resin molded body 20.
  • the maximum depth of the surface minute recesses on the back surface 31c and the embedded surface 32c, which are the contact surfaces with the resin molded body 20, is the surface on the side surface 31b, which is the facing surface facing the adjacent commutator piece 30. It is deeper than the maximum depth of the minute recesses in.
  • the maximum depth of the surface micro-recesses on the back surface 31c and the buried surface 32c is coarser than the maximum depth of the surface micro-recesses on the front surface 31a.
  • the centerline average roughness of the back surface 31c and the buried surface 32c, which are contact surfaces in contact with the outer peripheral surface of the resin molded body 20 is the centerline average roughness of the side surface 31b and the front surface 31a, which are exposed surfaces exposed from the resin molded body 20. It is coarser than that.
  • the back surface 31c and the buried surface 32c which are contact surfaces of the commutator piece 30 in contact with the outer peripheral surface of the resin molded body 20, are roughened.
  • the back surface 31c and the buried surface 32c are rough surfaces. That is, the entire surface of the buried portion 32 is roughened.
  • the arithmetic mean roughness (Ra) of the roughened back surface 31c and the buried surface 32c is, for example, 1 ⁇ m or more.
  • the upper limit of the arithmetic mean roughness (Ra) of the back surface 31c and the buried surface 32c is not particularly limited.
  • the arithmetic mean roughness (Ra) of the back surface 31c and the buried surface 32c is, for example, 50 ⁇ m or less, preferably 10 ⁇ m or less.
  • a chemical treatment for etching the surface of the commutator piece 30 with an etching solution may be used, or a machining treatment for unevenly processing the surface of the commutator piece 30 by knurling or the like may be used. ..
  • the side surface 31b of the commutator piece 30 facing the adjacent commutator piece 30 is not roughened.
  • the front surface 31a which is the contact surface of the commutator piece 30 in contact with the brush 15, is also not roughened. Therefore, the side surface 31b and the front surface 31a remain solid metal surfaces.
  • the surface of the exposed portion 31 is partially roughened, and among the front surface 31a, the side surface 31b and the back surface 31c of the exposed portion 31, the back surface 31c is roughened, but the front surface 31a and the front surface 31a and The side surface 31b is not roughened.
  • both the back surface 31c and the buried surface 32c are deeper than the side surface 31b and the maximum depth of the minute recesses on the surface. However, it is sufficient that at least one of the back surface 31c and the buried surface 32c has a deeper maximum depth of the micro-recess on the surface than the side surface 31b.
  • the front surface 31a and the side surface 31b are not roughened. However, if one or both of the back surface 31c and the buried surface 32c have a deeper maximum depth of the micro-recesses on the surface than the side surface 31b, even if one or both of the front surface 31a and the side surface 31b are roughened. good. That is, one or both of the front surface 31a and the side surface 31b may be roughened surfaces.
  • one or both of the side surface 31b and the front surface 31a may be mechanically or chemically smoothed. That is, one or both of the front surface 31a and the side surface 31b may be smooth surfaces. Further, the surface of the hook portion 33 may or may not be roughened.
  • FIG. 5 is a flowchart of a method for manufacturing the commutator 14 according to the embodiment.
  • 6 to 12 are diagrams for explaining each step in the method for manufacturing the commutator 14.
  • the commutator 14 in this embodiment is manufactured by the basket construction method. Specifically, the commutator 14 is manufactured by arranging a plurality of commutator pieces in a basket that serves as a mold for resin molding and molding the resin molded body with resin.
  • the method for manufacturing the commutator 14 according to the present embodiment will be described in detail.
  • the commutator piece 30M is prepared in advance (step S11), and the basket 100 is prepared in advance (step S12). ..
  • FIG. 6 is a perspective view of a commutator piece (state before hook bending) used in the commutator manufacturing method according to the embodiment.
  • the commutator piece 30M (tater bar) is a metal piece on which the exposed portion 31 and the buried portion 32 are formed.
  • the commutator piece 30M is made of a copper alloy.
  • the commutator piece 30M can be manufactured by performing a press punching process on a copper plate.
  • the commutator piece 30M has the same shape as the commutator piece 30 except that the hook portion 33 and the rough surface are not formed.
  • a basket 100 having the shape shown in FIG. 7 is manufactured (step S12).
  • FIG. 7 is a perspective view of the basket used in the commutator manufacturing method according to the embodiment.
  • the basket 100 is a holder that holds the commutator piece 30M when the commutator piece 30M is resin-molded, and is a container that stores the commutator piece 30M.
  • the basket 100 is a substantially cylindrical member, and has a plurality of recesses 110 as storage portions for storing the plurality of commutator pieces 30M.
  • Each recess 110 is formed in a groove shape so as to extend in the tubular axis direction of the basket 100, and has a shape in which the commutator piece 30M is fitted.
  • the plurality of recesses 110 are arranged in an annular shape along the inner peripheral surface of the basket 100 in a top view.
  • the basket 100 has a protrusion 120 located between two adjacent recesses 110.
  • the convex portion 120 is formed in a ridge so as to extend in the tubular axis direction of the basket 100.
  • the basket 100 can be formed by injection molding using, for example, a resin material. By using the resin basket 100, the basket 100 easily adapts to the shape of the commutator piece 30M due to heat and pressure.
  • the basket 100 is not limited to resin, but may be made of metal. Since the metal basket 100 has higher rigidity and is more resistant to heat and pressure than the resin basket 100, it can be used repeatedly and many times.
  • the commutator piece 30M is manufactured and the basket 100 is manufactured before the commutator piece 30M is resin-molded.
  • the manufacturing step of the commutator piece 30M and the manufacturing step of the basket 100 may be performed at the same time.
  • the commutator piece 30M shown in FIG. 6 is placed in the tubular basket 100 shown in FIG. 7 (step S13).
  • a plurality of commutator pieces 30M are assembled into the tubular basket 100 so as to form an annular arrangement.
  • FIG. 8A is a diagram for explaining a step of arranging the commutator piece 30M in the basket in the commutator manufacturing method according to the embodiment. That is, the commutator piece 30M is inserted into the recess 110 of the basket 100 so that the front surface 31a of the commutator piece 30M faces the outside (inner surface side of the basket 100) and the back surface 31c of the commutator piece 30M faces inward.
  • FIG. 8B is a diagram for explaining a step of arranging the commutator piece 30M in the basket in the commutator manufacturing method according to the embodiment.
  • the commutator piece 30M is not fixed to the recess 110 of the basket 100, but is arranged in a loosely fitted state with respect to the recess 110.
  • the front surface 31a and the side surface 31b of the exposed portion 31 are covered with the basket 100.
  • the front surface 31a and the side surface 31b are in close contact with the recess 110 of the basket 100.
  • the back surface 31c of the exposed portion 31 and the buried surface 32c of the buried portion 32 in the commutator piece 30M are in a state of facing the inside of the basket 100 without being covered by the basket 100. That is, the back surface 31c and the buried surface 32c are exposed.
  • step S14 at least a part of the surface of each of the plurality of commutator pieces 30M is roughened.
  • the surface of the commutator piece 30M can be roughened by subjecting the commutator piece 30M to a roughening treatment.
  • a chemical treatment is used in which the surface of the commutator piece 30M is etched with an etching solution.
  • FIG. 9 is a diagram for explaining a step of roughening the commutator piece 30M in the commutator manufacturing method according to the embodiment. As shown in FIG.
  • a basket 100 in which a plurality of commutator pieces 30M are arranged is placed in an etching tank containing an etching solution 200, and the plurality of commutator pieces 30M are immersed in the etching solution 200 together with the basket 100. Then, a part of the surface of the commutator piece 30M is roughened.
  • the back surface 31c of the exposed portion 31 and the buried surface 32c of the buried portion 32 which are the back surfaces of the commutator piece 30M, are exposed in the commutator piece 30M, the back surface 31c and the buried surface 32c of the commutator piece 30M are exposed.
  • the surface is roughened by etching with the etching solution 200.
  • minute irregularities are formed on the surfaces of the back surface 31c and the buried surface 32c of the commutator piece 30M.
  • the etching solution 200 used is one capable of roughening the copper alloy.
  • the front surface 31a and the side surface 31b of the commutator piece 30M are in close contact with the basket 100, they are not exposed to the etching solution 200. That is, since the front surface 31a and the side surface 31b of the commutator piece 30M are masked by the basket 100, the etching solution 200 is not applied and the surface is not roughened.
  • the commutator piece 30M is roughened.
  • a part of the surface of the commutator piece 30M is selectively roughened.
  • the contact surface with the resin molded body 20 and the facing surface facing the adjacent commutator piece 30M only the contact surface with the resin molded body 20 is selectively roughened. It is surfaced. More specifically, of the back surface 31c and the buried surface 32c and the front surface 31a and the side surface 31b of the commutator piece 30M, only the back surface 31c and the buried surface 32c are selectively roughened.
  • the roughening treatment is not performed on the side surface 31b which is the facing surface facing the adjacent commutator piece 30M and the front surface 31a which is the contact surface in contact with the brush 15. ..
  • the maximum depth of the surface micro-recesses on the back surface 31c and the buried surface 32c, which are the contact surfaces with the resin molded body 20, is the surface micro-recesses on the side surface 31b, which is the facing surface facing the adjacent commutator piece 30M. It is deeper than the maximum depth of the surface, and is deeper than the maximum depth of the minute recesses on the surface of the front surface 31a, which is the contact surface with the brush 15.
  • the commutator 14 of the present embodiment includes the resin molded body 20 and the plurality of commutator pieces 30M fixed to the resin molded body 20, and each of the plurality of commutator pieces 30M is made of resin. It has a contact surface 31c in contact with the outer peripheral surface of the molded body 20 and a facing surface 31b exposed from the resin molded body 20 and facing the adjacent commutator piece 30M among the plurality of commutator pieces 30M.
  • the maximum depth of the micro-recess on the surface is deeper than the maximum depth of the micro-recess on the surface on the facing surface 31b.
  • the resin molded body 20 has a through hole 21 into which the rotating shaft 13 of the electric motor 2 is inserted, and the commutator piece 30M has a front surface 31a in contact with the brush 15 of the electric motor 2 and is a surface of the contact surface 31c.
  • the maximum depth of the micro-recess is preferably deeper than the maximum depth of the micro-recess on the surface of the front surface 31a.
  • the length of the plurality of commutator pieces 30M along the circumferential direction on the outer peripheral side in the interval between two adjacent commutator pieces 30M is longer than the length along the circumferential direction on the inner peripheral side in the interval. Is preferable.
  • the resin molded body 20 is formed by resin molding as shown in FIGS. 5 and 10 (step S15). Specifically, as shown in FIG. 10, the plurality of commutator pieces 30M are fixed by injecting a liquid resin into the inner peripheral portion of the basket 100 in which the plurality of commutator pieces 30M are arranged and curing the liquid resin. The resin molded body 20 is formed.
  • FIG. 10 is a diagram for explaining a step of resin molding a resin molded body in the commutator manufacturing method according to the embodiment.
  • the liquid resin is injected inside the plurality of commutator pieces 30M. That is, the liquid resin is injected into the region surrounded by the plurality of commutator pieces 30M. At this time, when the liquid resin is cured, the liquid resin shrinks in the direction (that is, inward) opposite to the commutator piece 30M side. However, since the commutator piece 30M arranged in the basket 100 is not fixed to the basket 100, it can follow the shrinkage of the resin. That is, the commutator piece 30M moves inward in the radial direction as the resin shrinks during resin molding of the resin molded body 20.
  • the resin molded body 20 and the commutator piece 30M are not separated from each other, so that it is possible to prevent the interface between the resin molded body 20 and the commutator piece 30M from being separated from each other as the resin shrinks. Therefore, the resin molded body 20 and the commutator piece 30M can be firmly joined.
  • thermosetting resin made of a phenol resin is used as the resin constituting the liquid resin.
  • a through hole 21 is also formed in the resin molded body 20.
  • the basket 100 is removed (step S16).
  • the basket 100 can be removed from the resin molded body 20 to which the plurality of commutator pieces 30M are fixed.
  • the resin molded body 20 to which the plurality of commutator pieces 30M are fixed and the basket 100 are separated, and as shown in FIG. 11, the resin molded body 20 to which the plurality of commutator pieces 30M are fixed to the outer peripheral surface is separated.
  • FIG. 11 is a diagram for explaining a step of removing the basket in the commutator manufacturing method according to the embodiment.
  • annealing treatment is performed (step S17).
  • the resin molded body 20 to which a plurality of commutator pieces 30M are fixed is annealed under the conditions that the temperature is 200 ° C. or higher and 300 ° C. or lower and the annealing time is 16 hours or more and 24 hours or less.
  • the resin of the resin molded body 20 can be completely solidified.
  • the plurality of commutator pieces 30M fixed to the resin molded body 20 are surface-treated and hook-bent (step S18). For example, after performing surface treatment such as scraping the surface of the commutator piece 30M by performing machining such as cutting to adjust the inner and outer diameters, hook bending is performed by forming to make each commutator piece 30M. The hook portion 33 is formed.
  • the commutator 14 is completed (step S19). Specifically, as shown in FIG. 12, the commutator 14 having the commutator piece 30 on which the hook portion 33 is formed is completed.
  • FIG. 12 is a diagram for explaining a step of bending the hook of the commutator piece in the commutator manufacturing method according to the embodiment.
  • the step of roughening at least a part of the surface of each of the plurality of commutator pieces 30M was performed.
  • a step of arranging the plurality of commutator pieces 30M in the basket 100 may be performed.
  • a plurality of commutator pieces 30M are arranged in the basket 100 so that the roughened surface faces inward. That is, after roughening the back surface 31c and the buried surface 32c of the commutator piece 30M by roughening by etching or the like, a plurality of commutator pieces 30M are basketd so that the back surface 31c and the buried surface 32c face inward. Place at 100.
  • the commutator piece 30M When the commutator piece 30M is roughened first, only the back surface 31c and the buried surface 32c of the commutator piece 30M are roughened without roughening the front surface 31a and the side surface 31b of the commutator piece 30M. It is good to change. For example, when roughening by etching, the front surface 31a and the side surface 31b of the commutator piece 30M are masked and an etching solution is applied to selectively roughen only the back surface 31c and the buried surface 32c of the commutator piece 30M. It can be surfaced.
  • the method for manufacturing the commutator 14 of the present embodiment includes a plurality of resin molded bodies 20 having a through hole 21 into which the commutator 13 of the electric motor 2 is inserted and a plurality of commutators 14 arranged in an annular shape around the commutator 13.
  • the plurality of commutator pieces 30M were fixed by the step of roughening at least a part of the surface and by injecting a liquid resin into the inner peripheral portion of the basket 100 in which the plurality of commutator pieces 30M were arranged and curing the liquid resin.
  • the step of forming the resin molded body 20 is included.
  • a step of roughening at least a part of the surface of each of the plurality of commutator pieces 30M may be included.
  • each of the plurality of commutator pieces 30M is exposed from the contact surface 31c in contact with the outer peripheral surface of the resin molded body 20 and the resin molded body 20, and faces the adjacent commutator pieces 30M among the plurality of commutator pieces 30M.
  • the step of roughening the commutator piece 30M having the facing surface 31b only the contact surface 31c of the contact surface 31c and the facing surface 31b may be roughened by performing the roughening treatment.
  • the basket 100 may be made of resin.
  • the commutator 14 is manufactured by the basket construction method using the basket 100. However, it is not limited to this.
  • the commutator 14 may be manufactured by an undercut method that does not use the basket 100.
  • the commutator 14 can be manufactured by the flow shown in FIG.
  • FIG. 13 is a flowchart of another commutator manufacturing method (undercut method) according to the embodiment.
  • a tubular commutator base material serving as a base material for the plurality of commutator pieces 30 is produced (step S21). Specifically, a cylindrical commutator base material made of a metal material such as copper is produced.
  • step S22 At least a part of the surface of the commutator base material is roughened. Specifically, the surface of the surface of the commutator base material corresponding to the back surface 31c and the buried surface 32c of the commutator piece 30 is roughened by etching or the like.
  • a resin molded body is formed by resin molding (step S23). Specifically, a resin molded body to which the commutator base material is fixed is formed by injecting a liquid resin into the inner peripheral portion of a cylindrical commutator base material whose surface is partially roughened and hardening the liquid resin. Form.
  • the commutator base material is separated into a plurality of commutator pieces 30 (step S24). Specifically, by forming a slit in the commutator base material with a metal saw, the commutator base material to which the resin molded body is fixed is separated into a plurality of commutator pieces 30.
  • the commutator 14 can be completed by sequentially performing the annealing treatment (step S17), the surface processing, and the hook bending (step S18) in the same manner as in the above embodiment (step S19).
  • the resin molded body 20 having the through hole 21 inserted into the rotating shaft 13 of the electric motor 2 and the rotating shaft 13 are arranged in an annular shape.
  • the process of forming the resin molded body 20 to which the commutator base material is fixed by injecting a liquid resin into the inner peripheral portion of the commutator base material and curing it, and the process of forming the commutator base material into a plurality of commutators. Includes a step of separating into pieces.
  • the side surface of the commutator piece (the surface facing the adjacent commutator) is also roughened.
  • the depth of the minute irregularities on the surface of the commutator piece becomes too large due to the roughening, when the commutator is manufactured by the basket method, when the commutator piece is placed in the basket and resin molding is performed, There was a problem that liquid resin leaked from the gap between the side surface of the commutator piece and the basket.
  • the maximum depth of the surface minute recesses on the back surface 31c and the buried surface 32c, which are the contact surfaces with the resin molded body 20, is the adjacent commutator pieces 30. It is deeper than the maximum depth of the minute recesses on the surface of the side surface 31b, which is the facing surface facing the surface.
  • the depth of the minute recess is reduced on the side surface 31b of the commutator piece 30. Therefore, as described above, when the commutator 14 is manufactured by the basket construction method, when the commutator piece 30M is arranged in the basket 100 and resin is molded, the side surface 31b of the commutator piece 30M and the convex portion 120 of the basket 100 It is possible to prevent the liquid resin from leaking from the gap between the two. That is, the back surface 31c and the buried surface 32c, which are the contact surfaces with the resin molded body 20, are rectified while increasing the depth of the minute recesses to increase the joint strength between the resin molded body 20 and the rectifying element 30.
  • the depth of the minute recesses can be reduced to suppress resin leakage during resin molding of the resin molded body 20.
  • resin leakage occurs, (1) it becomes difficult to separate the basket 100 from the commutator piece 30, (2) the posture of the commutator piece 30 deteriorates, and (3) resin leakage occurs when the motor is driven. It causes problems such as damage to the brush due to the resin that has been derived and cured.
  • the maximum depth of the surface minute recesses on the back surface 31c and the buried surface 32c, which are the contact surfaces with the resin molded body 20, is the contact surface with the brush 15. It is deeper than the maximum depth of the minute recesses on the surface of a certain front surface 31a.
  • the length (W1) of the plurality of commutator pieces 30 along the circumferential direction on the outer peripheral side at the distance between two adjacent commutator pieces 30. ) Is longer than the length (W2) along the circumferential direction on the inner peripheral side at the interval. Specifically, between two adjacent commutator pieces 30, the length on the outer peripheral side is longer than the length on the inner peripheral side.
  • the mold commutator is manufactured by resin molding.
  • a plurality of commutator pieces are arranged in a ring shape on a mold for transfer molding, and a liquid thermosetting resin is injected into the mold with the plurality of commutator pieces fixed to the mold to form a plurality of commutators.
  • a liquid thermosetting resin is injected into the mold with the plurality of commutator pieces fixed to the mold to form a plurality of commutators.
  • a liquid thermosetting resin By curing the liquid thermosetting resin inside the piece, it is possible to manufacture a molded commutator having a structure in which a part of each of the plurality of commutator pieces is embedded in the resin molded body.
  • a mold commutator can be manufactured by injection molding.
  • the liquid thermosetting resin injected into the mold is cured and molded as a resin molded body.
  • the liquid thermosetting resin injected into the inside of the plurality of commutator pieces shrinks in the direction opposite to the commutator one side (that is, inward in the radial direction).
  • the commutator piece located outside the resin molded body and the resin molded body are separated from each other, and a gap occurs at the interface between the commutator piece and the resin molded body. Therefore, even if the surface of the commutator piece is roughened, it may not be possible to sufficiently suppress the commutator piece from floating when the rotor rotates.
  • the length on the outer peripheral side is longer than the length on the inner peripheral side between the two adjacent commutator pieces 30.
  • the commutator 14 when the liquid resin is injected into the inside of the plurality of commutator pieces 30M arranged in the basket 100 and the resin molded body 20 is resin-molded, the above-mentioned As described above, the commutator piece 30M arranged in the recess 110 of the basket 100 is not fixed to the recess 110 of the basket 100, but is held in the recess 110 in a movable state. Therefore, the commutator piece 30M arranged in the recess 110 of the basket 100 can move inward in the radial direction as the resin shrinks.
  • the resin molded body 20 and the commutator piece 30M are not separated from each other, so that the resin molded body 20 and the commutator piece 30M can be firmly joined. Therefore, it is possible to further suppress the commutator piece 30 from floating when the commutator 14 is rotated.
  • a constricted portion is formed in which a part of the buried portion 32 is constricted.
  • the resin constituting the resin molded body 20 enters the recess of the constricted portion.
  • the bonding strength between the embedded portion 32 and the resin molded body 20 can be improved by the anchor effect of the constricted portion. Therefore, it is possible to further prevent the commutator piece 30 from floating from the resin constituting the resin molded body 20 when the rotor 11 rotates.
  • the commutator 14 As described above, according to the commutator 14 according to the present embodiment, it is possible to suppress the commutator piece 30 from floating when the commutator 14 is rotated, while suppressing the occurrence of the above-mentioned other trouble.
  • the electric motor 2 according to the present embodiment includes the commutator 14, it is possible to provide an electric motor having high reliability.
  • FIG. 14 shows a cross-sectional SEM (Scanning Electron Microscope) image (5000 times) at the contact interface between the resin molded body 20 and the commutator piece 30 with respect to the commutator 14 actually manufactured by the manufacturing method using the above basket method. It is a figure which shows. Specifically, a cross-sectional SEM image at the contact interface between the back surface 31c of the exposed portion 31 of the commutator piece 30 and the outer peripheral surface of the resin molded body 20 is shown.
  • SEM Sccanning Electron Microscope
  • the back surface 31c of the exposed portion 31 of the commutator piece 30 is roughened by etching in the roughening process.
  • the back surface 31c of the commutator piece 30 is formed with an uneven portion having a minute recess having a maximum depth of about several ⁇ m.
  • FIG. 14 shows the surface state of the exposed portion 31 of the commutator piece 30 on the back surface 31c
  • the buried surface 32c of the buried portion 32 of the commutator piece 30 is also etched and roughened in the same manner as the back surface 31c. Since it was surfaced, the buried surface 32c also had a surface condition as shown in FIG.
  • FIG. 15 is a diagram for explaining the strength of the commutator of the embodiment.
  • Example 1 is a commutator 14 manufactured by an undercut method.
  • Examples 2, 3 and 4 are commutators 14 produced by the basket construction method.
  • the depth of unevenness of the minute recesses on the back surface 31c and the buried surface 32c was changed by adjusting the time of immersion in the etching solution 200 when performing the roughening treatment by etching.
  • the unevenness depth can be increased by lengthening the time of immersion in the etching solution 200.
  • a comparative example is a commutator manufactured by the basket method without performing roughening treatment (etching treatment).
  • the unevenness depth of the commutator pieces was measured.
  • the unevenness depth of each commutator was calculated as follows. Specifically, as a sample cross section of the contact surface of the commutator piece with the resin molded body, cross-sectional SEM images of 10 areas are discretely acquired, and each of the 10 areas is obtained based on the cross-sectional SEM image. The maximum depth of the minute recesses (see FIG. 14) was measured, the average value of the maximum depths of the 10 areas was calculated, and the average value was taken as the unevenness depth of each commutator. As a result, as shown in FIG. 15, the uneven depths of the commutators of Examples 1, 2, 3 and 4 were 20 ⁇ m, 5 ⁇ m, 10 ⁇ m and 20 ⁇ m, respectively.
  • the strength of each of these commutators was measured and evaluated relatively. Specifically, the load required to extrude the resin molded body 20 and separate the resin molded body and the commutator piece was measured, and the load was evaluated as the strength of each commutator.
  • the intensity of the commutator of Example 4 is set to 1, and the intensities of the commutators of Comparative Examples and Examples 1 to 3 are standardized and shown relatively.
  • the commutators of Examples 1 to 4 can obtain higher strength than the commutators of Comparative Examples, and the commutator pieces are less likely to be separated from the resin molded body. I found out. That is, by selectively roughening only the back surface 31c and the buried surface 32c of the back surface 31c and the buried surface 32c and the front surface 31a and the side surface 31b of the commutator piece 30, the commutator piece 30 can be removed from the resin molded body 20. A commutator 14 that is difficult to separate can be obtained.
  • the commutator of the second embodiment has the same strength as the commutator of the first embodiment even though the unevenness depth is smaller than that of the commutator of the first embodiment.
  • the commutator of Example 4 has more than twice the strength of the commutator of Example 1. This is because the commutator is manufactured by the basket method, so that the commutator piece moves inward in the radial direction as the resin shrinks during resin molding of the resin molded body, and the resin molded body and the commutator piece do not separate from each other. It is considered that this is because they are firmly joined. That is, by manufacturing the commutator by the basket method instead of the undercut method, it is possible to obtain a commutator that can effectively suppress the floating of the commutator piece.
  • a commutator having high strength can be obtained by setting the unevenness depth of the commutator piece to 10 ⁇ m or more.
  • the commutator of the third embodiment can obtain about twice the strength by doubling the unevenness depth as compared with the commutator of the second embodiment.
  • the commutator of No. 4 has twice the unevenness depth as that of the commutator of Example 3, only the same strength as that of the commutator of Example 3 is obtained. That is, when the unevenness depth is 10 ⁇ m or more, the strength of the commutator is not proportional to the unevenness depth of the commutator piece and is saturated. Therefore, when the commutator is manufactured by the basket method, it is better that the uneven depth of the commutator piece is 10 ⁇ m or more.
  • a commutator piece 30M in which the connecting portion between the wide portion and the narrow portion in the exposed portion 31 is at a right angle is used, but the present invention is not limited to this.
  • a commutator piece 30MA in which the connecting portion 34 between the wide portion and the narrow portion in the exposed portion 31 is curved and marked with R may be used.
  • FIG. 16A is a perspective view of another commutator piece (state before hook bending) used in the commutator manufacturing method according to the embodiment.
  • FIG. 16B is a side view of the commutator piece shown in FIG. 16A. This makes it easier to insert the commutator piece 30MA into the recess 110 of the basket 100.
  • the commutator 14 is attached to the second portion 13b of the rotating shaft 13, but the present invention is not limited to this.
  • the commutator 14 may be attached to the first portion 13a of the rotating shaft 13.
  • the commutator 14 is attached to, for example, a portion of the rotating shaft 13 between the rotor core 11a and the first bearing 16.
  • the electric blower 1 in the above embodiment can be used for, for example, a vacuum cleaner, an air towel, or the like. Further, the electric blower 1 is not limited to a vacuum cleaner or an air towel, and may be applied to automobile equipment, or may be applied to other household equipment or industrial equipment.
  • the present invention is not limited to this.
  • the electric motor 2 may be used for an electric device other than the electric blower.
  • the motor 2 can be used for various products such as household equipment or industrial equipment.
  • the technology of the present disclosure can be used as a commutator for a commutator motor.
  • the technique of the present disclosure can be widely used not only for commutators but also for various electric devices such as electric motors equipped with commutators, electric blowers equipped with electric motors, and vacuum cleaners equipped with electric blowers.

Abstract

A commutator comprising a resin molded body, and a plurality of commutator pieces fixed to the resin molded body. Each of the plurality of commutator pieces has a contact surface in contact with the outer peripheral surface of the resin molded body, and a facing surface that is exposed from the resin molded body and faces the adjacent commutator piece of the plurality of commutator pieces. The maximum depth of surface micro-recesses in the contact surface is greater than the maximum depth of surface micro-recesses in the facing surface.

Description

整流子、電動機及び整流子の製造方法Commutator, motor and commutator manufacturing method
 本開示は、整流子、整流子を備える電動機及び整流子の製造方法に関する。 The present disclosure relates to a commutator, a motor equipped with a commutator, and a method for manufacturing the commutator.
 電動機は、電気掃除機等の家庭用電気機器分野をはじめとして、自動車等の電装分野にも広く用いられている。例えば、電気掃除機に搭載される電動送風機には、回転ファンを回転させるために電動機が用いられている。 Motors are widely used in the field of electrical equipment such as automobiles, as well as in the field of household electrical appliances such as vacuum cleaners. For example, in an electric blower mounted on a vacuum cleaner, an electric motor is used to rotate a rotating fan.
 電動機としては、ブラシを用いる整流子電動機、及び、ブラシを用いないブラシレス電動機が知られている。整流子電動機は、固定子と、回転子と、回転子の回転軸に取り付けられた整流子と、整流子に摺接するブラシとを備える。 As electric motors, commutator motors that use brushes and brushless motors that do not use brushes are known. The commutator motor includes a stator, a rotor, a commutator attached to the rotating shaft of the commutator, and a brush that is in sliding contact with the commutator.
 整流子電動機に用いられる整流子は、例えば、回転軸が挿入される貫通孔を有する筒状の整流子本体と、整流子本体の外周面に等間隔に固定された複数の整流子片とを有する。このような構成の整流子としては、複数の整流子片が樹脂によってモールドされたモールド整流子が知られている。モールド整流子において、整流子本体は、樹脂によって構成された樹脂成形体である。 The commutator used in the commutator motor includes, for example, a tubular commutator body having a through hole into which a rotating shaft is inserted, and a plurality of commutator pieces fixed at equal intervals on the outer peripheral surface of the commutator body. Have. As a commutator having such a configuration, a molded commutator in which a plurality of commutator pieces are molded with a resin is known. In the molded commutator, the commutator body is a resin molded body made of resin.
 自動車又は電気掃除機に用いられる整流子電動機では、回転子が高速回転するため、回転子の回転軸に取り付けられた整流子も高速回転することになる。このとき、整流子としてモールド整流子を用いると、樹脂成形体に固定された整流子片が高速回転時の遠心力によって樹脂成形体から浮くおそれがある。 In a commutator motor used for automobiles or electric vacuum cleaners, the rotor rotates at high speed, so the commutator attached to the rotating shaft of the rotor also rotates at high speed. At this time, if a commutator is used as the commutator, the commutator piece fixed to the resin molded body may float from the resin molded body due to centrifugal force during high-speed rotation.
 そこで、従来、整流子の回転時に整流子片が浮くことを抑制するために、整流子片における樹脂成形体との接触面を粗面化する技術が提案されている(例えば、特許文献1、2を参照)。整流子片の表面を粗面化することで樹脂成形体との密着性を高めることができるので、高速回転時の整流子片の浮きを抑制することができる。 Therefore, conventionally, in order to suppress the commutator piece from floating when the commutator is rotated, a technique for roughening the contact surface of the commutator piece with the resin molded body has been proposed (for example, Patent Document 1, Patent Document 1, See 2). By roughening the surface of the commutator piece, the adhesion to the resin molded body can be improved, so that the commutator piece can be suppressed from floating during high-speed rotation.
 しかしながら、整流子片の表面の全面を粗面化すると、整流子片の側面(隣接する整流子との対向面)まで粗面化されてしまう別の不具合が発生することが分かった。そこで、別の不具合が発生しないようにすると、整流子の回転時に整流子片が浮くことを抑制することができなくなる。 However, it was found that if the entire surface of the commutator piece is roughened, another problem occurs in which the side surface of the commutator piece (the surface facing the adjacent commutator) is also roughened. Therefore, if another problem does not occur, it becomes impossible to prevent the commutator piece from floating when the commutator rotates.
特開2002-51506号公報Japanese Unexamined Patent Publication No. 2002-51506 特開2017-158416号公報JP-A-2017-158416
 本開示は、別の不具合が発生することを抑制しつつ、整流子の回転時に整流子片が浮くことを抑制することができる整流子及び整流子の製造方法等を提供することを目的とする。 An object of the present disclosure is to provide a commutator, a method for manufacturing a commutator, and the like, which can suppress the floating of a commutator piece when the commutator rotates while suppressing the occurrence of another defect. ..
 上記目的を達成するために、本開示に係る整流子の一態様は、樹脂成形体と、前記樹脂成形体に固定された複数の整流子片とを備え、前記複数の整流子片の各々は、前記樹脂成形体の外周面に接する接触面と、前記樹脂成形体から露出し、前記複数の整流子片のうち隣接する整流子片に対向する対向面とを有し、前記接触面における表面の微小凹部の最大深さは、前記対向面における表面の微小凹部の最大深さよりも深い。 In order to achieve the above object, one aspect of the commutator according to the present disclosure includes a resin molded body and a plurality of commutator pieces fixed to the resin molded body, and each of the plurality of commutator pieces is provided. The surface of the contact surface, which has a contact surface in contact with the outer peripheral surface of the resin molded body and a facing surface exposed from the resin molded body and facing an adjacent commutator piece among the plurality of commutator pieces. The maximum depth of the micro-recess of the surface is deeper than the maximum depth of the micro-recess on the surface of the facing surface.
 また、本開示に係る電動機の一態様は、上記の整流子と、前記整流子が取り付けられた回転軸を有する回転子と、前記回転子に作用する磁力を発生させる固定子とを備える。 Further, one aspect of the electric motor according to the present disclosure includes the commutator, a rotor having a rotating shaft to which the commutator is attached, and a stator that generates a magnetic force acting on the commutator.
 また、本開示に係る整流子の製造方法の一態様は、電動機の回転軸が挿入される貫通孔を有する樹脂成形体と前記回転軸を中心として環状に配置された複数の整流子片とを備える整流子の製造方法であって、前記複数の整流子片を筒状のバスケットに円環状に配置する工程と、前記複数の整流子片の各々の表面の少なくとも一部を粗面化する工程と、前記複数の整流子片が配置された前記バスケットの内周部に液状の樹脂を注入して硬化することで、前記複数の整流子片が固定された前記樹脂成形体を形成する工程とを含む。 Further, in one aspect of the commutator manufacturing method according to the present disclosure, a resin molded body having a through hole into which a rotating shaft of an electric motor is inserted and a plurality of commutator pieces arranged in an annular shape around the rotating shaft are formed. A method of manufacturing a commutator to be provided, wherein the plurality of commutator pieces are arranged in a cylindrical basket in an annular shape, and at least a part of the surface of each of the plurality of commutator pieces is roughened. A step of forming the resin molded body in which the plurality of commutator pieces are fixed by injecting a liquid resin into the inner peripheral portion of the basket in which the plurality of commutator pieces are arranged and curing the liquid resin. including.
 また、本開示に係る整流子の製造方法の他の一態様は、電動機の回転軸に挿入される貫通孔を有する樹脂成形体と前記回転軸を中心として環状に配置された複数の整流子片とを備える整流子の製造方法であって、前記複数の整流子片の母材となる筒状の整流子母材の表面の少なくとも一部を粗面化する工程と、前記整流子母材の内周部に液状の樹脂を注入して硬化することで、前記整流子母材が固定された前記樹脂成形体を形成する工程と、前記整流子母材を前記複数の整流子片に分離する工程とを含む。 Another aspect of the commutator manufacturing method according to the present disclosure is a resin molded body having a through hole inserted into the rotating shaft of an electric motor and a plurality of commutator pieces arranged in an annular shape around the rotating shaft. A method of manufacturing a commutator including the above, wherein at least a part of the surface of a tubular commutator base material serving as a base material of the plurality of commutator pieces is roughened, and the commutator base material The step of forming the resin molded body to which the commutator base material is fixed by injecting a liquid resin into the inner peripheral portion and curing the commutator base material, and separating the commutator base material into the plurality of commutator pieces. Including steps.
 別の不具合が発生することを抑制しつつ、整流子の回転時に整流子片が浮くことを抑制することができる。 While suppressing the occurrence of another problem, it is possible to prevent the commutator piece from floating when the commutator rotates.
実施の形態に係る電動送風機の外観斜視図である。It is external perspective view of the electric blower which concerns on embodiment. 実施の形態に係る電動送風機の半断面図である。It is a half cross-sectional view of the electric blower which concerns on embodiment. 実施の形態に係る整流子の斜視図である。It is a perspective view of the commutator which concerns on embodiment. 実施の形態に係る整流子の側面図である。It is a side view of the commutator which concerns on embodiment. 図4AのIVb-IVb線における同整流子の断面図である。It is sectional drawing of the commutator in line IVb-IVb of FIG. 4A. 図4A及び図4BのIVc-IVc線における同整流子の断面図である。It is sectional drawing of the commutator in IVc-IVc line of FIG. 4A and FIG. 4B. 実施の形態に係る整流子の製造方法(バスケット工法)のフローチャートである。It is a flowchart of the commutator manufacturing method (basket construction method) which concerns on embodiment. 実施の形態に係る整流子の製造方法で用いられる整流子片(フック曲げを行う前の状態)の斜視図である。It is a perspective view of the commutator piece (state before hook bending) used in the commutator manufacturing method which concerns on embodiment. 実施の形態に係る整流子の製造方法で用いられるバスケットの斜視図である。It is a perspective view of the basket used in the manufacturing method of the commutator which concerns on embodiment. 実施の形態に係る整流子の製造方法において、バスケットに整流子片を配置する工程を説明するための図である。It is a figure for demonstrating the process of arranging a commutator piece in a basket in the method of manufacturing a commutator which concerns on embodiment. 実施の形態に係る整流子の製造方法において、バスケットに整流子片を配置する工程を説明するための図である。It is a figure for demonstrating the process of arranging a commutator piece in a basket in the method of manufacturing a commutator which concerns on embodiment. 実施の形態に係る整流子の製造方法において、整流子片を粗面化する工程を説明するための図である。It is a figure for demonstrating the process of roughening a commutator piece in the commutator manufacturing method which concerns on embodiment. 実施の形態に係る整流子の製造方法において、樹脂成形体を樹脂成形する工程を説明するための図である。It is a figure for demonstrating the process of resin molding a resin molded body in the manufacturing method of the commutator which concerns on embodiment. 実施の形態に係る整流子の製造方法において、バスケットを除去する工程を説明するための図である。It is a figure for demonstrating the process of removing a basket in the method of manufacturing a commutator which concerns on embodiment. 実施の形態に係る整流子の製造方法において、整流子片のフック曲げを行う工程を説明するための図である。It is a figure for demonstrating the process of hook bending of a commutator piece in the method of manufacturing a commutator which concerns on embodiment. 実施の形態に係る整流子の他の製造方法(アンダーカット工法)のフローチャートである。It is a flowchart of another commutator manufacturing method (undercut method) which concerns on embodiment. バスケット工法を用いた製造方法により実際に作製した整流子について、樹脂成形体と整流子片との接触界面における断面SEM像を示す図である。It is a figure which shows the cross-sectional SEM image at the contact interface between a resin molded body and a commutator piece about the commutator actually manufactured by the manufacturing method using the basket construction method. 実施例の整流子の強度を説明するための図である。It is a figure for demonstrating the strength of the commutator of an Example. 実施の形態に係る整流子の製造方法で用いられる他の整流子片(フック曲げを行う前の状態)の斜視図である。It is a perspective view of another commutator piece (state before hook bending) used in the commutator manufacturing method which concerns on embodiment. 実施の形態に係る整流子の製造方法で用いられる他の整流子片(フック曲げを行う前の状態)の側面図である。It is a side view of another commutator piece (state before hook bending) used in the commutator manufacturing method which concerns on embodiment.
 以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be noted that all of the embodiments described below show a specific example of the present disclosure. Therefore, the numerical values, shapes, materials, components, arrangement positions of the components, connection forms, and the like shown in the following embodiments are examples and are not intended to limit the present disclosure. Therefore, among the components in the following embodiments, the components not described in the independent claims indicating the highest level concept of the present disclosure will be described as arbitrary components.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。 Note that each figure is a schematic view and is not necessarily exactly illustrated. In each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
 (実施の形態)
 まず、本開示に係る整流子が用いられる電気機器の一例として電動送風機1について説明する。図1は、実施の形態に係る電動送風機1の外観斜視図である。図2は、同電動送風機1の半断面図である。図2は、回転軸13の軸心Cを通る平面で切断したときの断面を示している。なお、図2に示される矢印は、電動送風機1内に吸引した空気の流れを示している。
(Embodiment)
First, the electric blower 1 will be described as an example of the electric device in which the commutator according to the present disclosure is used. FIG. 1 is an external perspective view of the electric blower 1 according to the embodiment. FIG. 2 is a half cross-sectional view of the electric blower 1. FIG. 2 shows a cross section when cut in a plane passing through the axis C of the rotating shaft 13. The arrow shown in FIG. 2 indicates the flow of air sucked into the electric blower 1.
 図1及び図2に示すように、電動送風機1は、回転子11及び固定子12を有する電動機2と、電動機2の回転軸13に取り付けられた回転ファン3と、回転ファン3から排出された空気が流れ込むエアガイド4と、回転ファン3及びエアガイド4を覆うファンケース5と、回転子11及び固定子12を収納するフレーム6と、フレーム6の開口部を跨るように配置されたブラケット7とを備える。 As shown in FIGS. 1 and 2, the electric blower 1 is discharged from the electric motor 2 having the rotor 11 and the stator 12, the rotary fan 3 attached to the rotary shaft 13 of the motor 2, and the rotary fan 3. An air guide 4 through which air flows, a fan case 5 covering the rotary fan 3 and the air guide 4, a frame 6 for accommodating the rotor 11 and the stator 12, and a bracket 7 arranged so as to straddle the opening of the frame 6. And.
 電動機2は、回転ファン3を回転させるファンモータである。電動機2は、ブラシ付きの整流子電動機である。電動機2は、回転子11と、固定子12と、回転軸13と、整流子14と、ブラシ15と、第1軸受け16と、第2軸受け17とを備える。電動機2は、直流により駆動する直流電動機(DCモータ)である。 The electric motor 2 is a fan motor that rotates the rotating fan 3. The electric motor 2 is a commutator electric motor with a brush. The electric motor 2 includes a rotor 11, a stator 12, a rotating shaft 13, a commutator 14, a brush 15, a first bearing 16, and a second bearing 17. The electric motor 2 is a direct current electric motor (DC motor) driven by direct current.
 回転子11(ロータ)は、固定子12に作用する磁力を発生する。回転子11が発生する主磁束の向きは、回転軸13の軸心Cの方向(回転軸方向)と直交する方向である。 The rotor 11 (rotor) generates a magnetic force acting on the stator 12. The direction of the main magnetic flux generated by the rotor 11 is a direction orthogonal to the direction of the axis C of the rotating shaft 13 (rotating axis direction).
 回転子11は、回転軸13を有している。回転子11は、固定子12が発生する磁力によって、回転軸13を回転中心として回転する。つまり、回転子11は、回転軸13の軸心Cを回転中心として回転する。回転子11は、例えば、40,000rpm(revolutions per minute)で高速回転する。 The rotor 11 has a rotating shaft 13. The rotor 11 rotates about the rotation shaft 13 by the magnetic force generated by the stator 12. That is, the rotor 11 rotates about the axis C of the rotating shaft 13 as the center of rotation. The rotor 11 rotates at high speed, for example, at 40,000 rpm (revolutions per minutes).
 回転子11は、固定子12とエアギャップを介して配置されている。具体的には、回転子11の表面と固定子12の表面との間には微小なエアギャップが存在する。本実施の形態における回転子11は、インナーロータであり、固定子12の内側に配置されている。 The rotor 11 is arranged via the stator 12 and the air gap. Specifically, there is a minute air gap between the surface of the rotor 11 and the surface of the stator 12. The rotor 11 in the present embodiment is an inner rotor and is arranged inside the stator 12.
 回転子11は、電機子である。回転子11は、回転子鉄心(ロータコア)11aと、回転子鉄心11aに巻回された巻線コイル11b(ロータコイル)とを有する。 The rotor 11 is an armature. The rotor 11 has a rotor core (rotor core) 11a and a winding coil 11b (rotor coil) wound around the rotor core 11a.
 回転子鉄心11aは、巻線コイル11bが巻回された電機子コアである。回転子鉄心11aは、複数の電磁鋼板が回転軸13の軸心Cの方向に積層された積層体である。なお、回転子鉄心11aは、電磁鋼板の積層体に限るものではなく、磁性材料によって構成されたバルク体であってもよい。 The rotor core 11a is an armature core around which a winding coil 11b is wound. The rotor core 11a is a laminated body in which a plurality of electromagnetic steel sheets are laminated in the direction of the axis C of the rotating shaft 13. The rotor core 11a is not limited to a laminated body of electromagnetic steel sheets, and may be a bulk body made of a magnetic material.
 回転子鉄心11aは、複数のティースを有する。複数のティースは、回転軸13の軸心Cと直交する方向(ラジアル方向)に放射状に延在している。複数のティースは、回転軸13の回転方向に亘って等間隔に存在している。 The rotor core 11a has a plurality of teeth. The plurality of teeth extend radially in a direction (radial direction) orthogonal to the axis C of the rotation axis 13. The plurality of teeth exist at equal intervals along the rotation direction of the rotation shaft 13.
 巻線コイル11bは、回転子鉄心11aに巻き回されている。巻線コイル11bは、複数のティースの各々に巻回されたコイルを有する。コイルは、ティースに複数回巻回されている。具体的には、コイルは、インシュレータを介してティースに分布巻きで巻き回された分布巻コイルである。 The winding coil 11b is wound around the rotor core 11a. The winding coil 11b has a coil wound around each of the plurality of teeth. The coil is wound around the teeth multiple times. Specifically, the coil is a distributed winding coil that is wound around a tooth via an insulator.
 巻線コイル11bは、整流子14と電気的に接続されている。具体的には、巻線コイル11bは、整流子14の整流子片と電気的に接続されている。整流子14を介して巻線コイル11bに電流が流れることで、回転子11は、固定子12に作用させる磁力を発生させる。 The winding coil 11b is electrically connected to the commutator 14. Specifically, the winding coil 11b is electrically connected to the commutator piece of the commutator 14. When a current flows through the winding coil 11b via the commutator 14, the rotor 11 generates a magnetic force acting on the stator 12.
 固定子12(ステータ)は、回転子11と向かい合って位置しており、回転子11に作用する磁力を発生させる。固定子12は、電機子である回転子11とともに磁気回路を構成している。 The stator 12 (stator) is located facing the rotor 11 and generates a magnetic force acting on the rotor 11. The stator 12 constitutes a magnetic circuit together with the rotor 11 which is an armature.
 具体的には、固定子12は、回転子11の回転子鉄心11aを囲むように配置されている。固定子12は、エアギャップ面に磁極のN極とS極とが周方向に交互に表れるように構成されている。この場合、固定子12は、周方向に沿って複数の永久磁石が配置されるように構成されていてもよいし、複数のティースを有するステータコアとステータコアに巻回された巻線コイルとによって構成されていてもよい。固定子12は、複数の電磁鋼板が積層されたステータコアのティースに巻線コイルが巻回された界磁組立体である。固定子12は、例えば、フレーム6に固定されている。 Specifically, the stator 12 is arranged so as to surround the rotor core 11a of the rotor 11. The stator 12 is configured such that the north pole and the south pole of the magnetic pole appear alternately in the circumferential direction on the air gap surface. In this case, the stator 12 may be configured such that a plurality of permanent magnets are arranged along the circumferential direction, or is composed of a stator core having a plurality of teeth and a winding coil wound around the stator core. It may have been done. The stator 12 is a field assembly in which a winding coil is wound around a tooth of a stator core in which a plurality of electromagnetic steel sheets are laminated. The stator 12 is fixed to the frame 6, for example.
 回転軸13は、回転子11が回転する際の中心となる長尺状のシャフトである。回転軸13は、例えば金属棒である。回転軸13は、回転子11の中心に固定されている。具体的には、回転軸13は、回転子11の両側に延在するように、回転子11の回転子鉄心11aの中心を貫いた状態で回転子鉄心11aに固定されている。回転軸13は、回転子鉄心11aに形成された中心孔に圧入したり、焼き嵌めしたりすることで回転子鉄心11aに固定されている。 The rotating shaft 13 is a long shaft that serves as a center when the rotor 11 rotates. The rotating shaft 13 is, for example, a metal rod. The rotating shaft 13 is fixed to the center of the rotor 11. Specifically, the rotating shaft 13 is fixed to the rotor core 11a in a state of penetrating the center of the rotor core 11a of the rotor 11 so as to extend to both sides of the rotor 11. The rotating shaft 13 is fixed to the rotor core 11a by press-fitting or shrink-fitting into the central hole formed in the rotor core 11a.
 回転子11から一方側(回転ファン3側)に突出する回転軸13の第1部位13aは、第1軸受け16に支持されている。本実施の形態において、回転軸13の第1部位13aは、回転軸13の出力側の部位(出力軸)である。具体的には、回転軸13の第1部位13aは、第1軸受け16から突出している。第1軸受け16から突出した回転軸13の第1部位13aの先端部には、電動機2によって駆動される負荷として回転ファン3が取り付けられている。 The first portion 13a of the rotating shaft 13 protruding from the rotor 11 to one side (rotating fan 3 side) is supported by the first bearing 16. In the present embodiment, the first portion 13a of the rotating shaft 13 is a portion (output shaft) on the output side of the rotating shaft 13. Specifically, the first portion 13a of the rotating shaft 13 projects from the first bearing 16. A rotary fan 3 is attached to the tip of the first portion 13a of the rotary shaft 13 protruding from the first bearing 16 as a load driven by the motor 2.
 一方、回転子11から他方側に突出する回転軸13の第2部位13bは、第2軸受け17に支持されている。本実施の形態において、回転軸13の第2部位13bは、回転軸13の反出力側の部位(反出力軸)である。 On the other hand, the second portion 13b of the rotating shaft 13 protruding from the rotor 11 to the other side is supported by the second bearing 17. In the present embodiment, the second portion 13b of the rotating shaft 13 is a portion (anti-output shaft) on the counter-output side of the rotating shaft 13.
 整流子14は、回転軸13に取り付けられている。したがって、整流子14は、回転軸13とともに回転する。整流子14は、回転軸13の第2部位13bに取り付けられている。具体的には、整流子14は、回転軸13における回転子鉄心11aと第2軸受け17との間の部位に取り付けられている。整流子14の詳細な構成については後述する。 The commutator 14 is attached to the rotating shaft 13. Therefore, the commutator 14 rotates together with the rotating shaft 13. The commutator 14 is attached to the second portion 13b of the rotating shaft 13. Specifically, the commutator 14 is attached to a portion of the rotating shaft 13 between the rotor core 11a and the second bearing 17. The detailed configuration of the commutator 14 will be described later.
 整流子14には、ブラシ15が接触している。具体的には、ブラシ15は、整流子14の複数の整流子片のいずれかと接触している。ブラシ15は、回転子11の巻線コイル11bに電力を供給するための給電ブラシである。ブラシ15が整流子片に接触することで、電源端子を介してブラシ15に供給される電機子電流が、整流子片を介して巻線コイル11bに流れる。 The brush 15 is in contact with the commutator 14. Specifically, the brush 15 is in contact with any of the plurality of commutator pieces of the commutator 14. The brush 15 is a power supply brush for supplying electric power to the winding coil 11b of the rotor 11. When the brush 15 comes into contact with the commutator piece, the armature current supplied to the brush 15 via the power supply terminal flows to the winding coil 11b via the commutator piece.
 一例として、ブラシ15は、カーボンによって構成された導電性のカーボンブラシである。具体的には、ブラシ15は、銅等の金属を含むカーボンブラシである。ブラシ15は、長尺状の棒状部材である。ブラシ15は、長尺状の実質的な直方体である。ブラシ15は、例えば、黒鉛粉と銅紛とバインダー樹脂と硬化剤とを混錬した混錬物を粉砕して略直方体に圧縮成形して焼成することで作製することができる。 As an example, the brush 15 is a conductive carbon brush made of carbon. Specifically, the brush 15 is a carbon brush containing a metal such as copper. The brush 15 is a long rod-shaped member. The brush 15 is a long, substantially rectangular parallelepiped. The brush 15 can be produced, for example, by crushing a kneaded product obtained by kneading graphite powder, copper powder, a binder resin, and a curing agent, compression molding into a substantially rectangular parallelepiped, and firing.
 ブラシ15は、整流子14に摺接可能に一対設けられている。一対のブラシ15は、整流子14を挟持するように、整流子14を挟んで対向して配置される。具体的には、一対のブラシ15の内側の先端部は、整流子14に当接している。より具体的には、各ブラシ15は、トーションバネ等のブラシバネによって整流子14に向けて押圧が付与されており、整流子14に弾接している。ブラシ15の長手方向の内側(回転軸13側)の端面が整流子14との接触面となっている。ブラシ15は、ブラシ箱に収納されている。 A pair of brushes 15 are provided so as to be slidable with the commutator 14. The pair of brushes 15 are arranged so as to sandwich the commutator 14 so as to sandwich the commutator 14. Specifically, the inner tips of the pair of brushes 15 are in contact with the commutator 14. More specifically, each brush 15 is pressed toward the commutator 14 by a brush spring such as a torsion spring, and is in contact with the commutator 14. The end surface of the brush 15 on the inner side (rotating shaft 13 side) in the longitudinal direction is the contact surface with the commutator 14. The brush 15 is housed in a brush box.
 第1軸受け16及び第2軸受け17は、回転軸13を回転自在に支持する。回転軸13は、回転自在な状態で第1軸受け16と第2軸受け17とに支持されている。第1軸受け16及び第2軸受け17は、例えば、ベアリングである。具体的には、第1軸受け16及び第2軸受け17は、玉軸受けであるが、これに限るものではない。第1軸受け16及び第2軸受け17は、すべり軸受け等の他の軸受けであってもよい。第1軸受け16は、ブラケット7に固定されている。第2軸受け17は、フレーム6の底部に固定されている。 The first bearing 16 and the second bearing 17 rotatably support the rotating shaft 13. The rotating shaft 13 is supported by the first bearing 16 and the second bearing 17 in a rotatable state. The first bearing 16 and the second bearing 17 are, for example, bearings. Specifically, the first bearing 16 and the second bearing 17 are ball bearings, but the present invention is not limited thereto. The first bearing 16 and the second bearing 17 may be other bearings such as a sliding bearing. The first bearing 16 is fixed to the bracket 7. The second bearing 17 is fixed to the bottom of the frame 6.
 以上のように構成される電動機2では、ブラシ15に供給される電流が整流子14を介して電機子電流(駆動電流)として回転子鉄心11aに巻き回された巻線コイル11bに流れる。これにより、回転子11に磁束が発生する。回転子11に生じた磁束と固定子12から生じる磁束との相互作用によって生成された磁気力が回転子11を回転させるトルクとなる。このとき、整流子14の整流子片とブラシ15とが接する際の位置関係によって電流が流れる方向が切り替えられる。このように、電流が流れる方向が切り替えられることで、回転子11と固定子12との間に発生する磁力の反発力と吸引力とで一定方向の回転力が生成され、回転子11が回転する。 In the motor 2 configured as described above, the current supplied to the brush 15 flows through the commutator 14 to the winding coil 11b wound around the rotor core 11a as an armature current (drive current). As a result, magnetic flux is generated in the rotor 11. The magnetic force generated by the interaction between the magnetic flux generated in the rotor 11 and the magnetic flux generated in the stator 12 becomes the torque for rotating the rotor 11. At this time, the direction in which the current flows is switched depending on the positional relationship when the commutator piece of the commutator 14 and the brush 15 are in contact with each other. By switching the direction in which the current flows in this way, a rotational force in a fixed direction is generated by the repulsive force and the attractive force of the magnetic force generated between the rotor 11 and the stator 12, and the rotor 11 rotates. do.
 回転子11が回転することによって、回転子11が取り付けられた回転軸13は、軸心Cを中心として回転する。これにより、電動機2の回転軸13に取り付けられた回転ファン3が回転する。 As the rotor 11 rotates, the rotating shaft 13 to which the rotor 11 is attached rotates around the axis C. As a result, the rotating fan 3 attached to the rotating shaft 13 of the electric motor 2 rotates.
 回転ファン3は、ファンケース5とフレーム6とにより構成される外郭筐体(ハウジング)内に空気を吸引する。一例として、回転ファン3は、高い吸引圧力が得られる遠心ファンである。回転ファン3が回転することにより風圧が発生し、ファンケース5に形成された吸気口5aから空気が吸い込まれ、回転ファン3から空気が排出される。回転ファン3から排出された空気はエアガイド4に流れ込む。 The rotating fan 3 sucks air into the outer housing (housing) composed of the fan case 5 and the frame 6. As an example, the rotary fan 3 is a centrifugal fan that can obtain a high suction pressure. Wind pressure is generated by the rotation of the rotary fan 3, air is sucked from the intake port 5a formed in the fan case 5, and air is discharged from the rotary fan 3. The air discharged from the rotary fan 3 flows into the air guide 4.
 エアガイド4は、気体の流れを整流するためのガイド板として回転ファン3の外周に配置された複数のディフューザ翼を有する。例えば、エアガイド4は、回転ファン3の回転によってファンケース5に形成された吸気口5aから吸引された空気の流れを整流して旋回流を生成し、吸引した気体をフレーム6へと滑らかに流し込む。 The air guide 4 has a plurality of diffuser blades arranged on the outer circumference of the rotary fan 3 as a guide plate for rectifying the flow of gas. For example, the air guide 4 rectifies the flow of air sucked from the intake port 5a formed in the fan case 5 by the rotation of the rotating fan 3 to generate a swirling flow, and the sucked gas is smoothly transferred to the frame 6. Pour in.
 ファンケース5は、回転ファン3を覆うカバーである。ファンケース5は、フレーム6に固定されている。ファンケース5は、外気を吸引するための吸気口5aを有している。回転ファン3が回転することで、ファンケース5に形成された吸気口5aからファンケース5内に空気が流れ込む。 The fan case 5 is a cover that covers the rotating fan 3. The fan case 5 is fixed to the frame 6. The fan case 5 has an intake port 5a for sucking outside air. As the rotating fan 3 rotates, air flows into the fan case 5 from the intake port 5a formed in the fan case 5.
 フレーム6は、電動機2を収納する筐体(ケース)である。フレーム6は、開口部を有する有底筒状体である。フレーム6は、例えばアルミニウム等の金属材料によって構成されている。フレーム6は、樹脂材料によって構成されていてもよい。フレーム6の底部の側壁には、回転ファン3の回転によって吸引した空気を外部に排出するために複数の排気口6aが設けられている。 The frame 6 is a housing (case) for accommodating the motor 2. The frame 6 is a bottomed tubular body having an opening. The frame 6 is made of a metal material such as aluminum. The frame 6 may be made of a resin material. A plurality of exhaust ports 6a are provided on the side wall of the bottom of the frame 6 in order to discharge the air sucked by the rotation of the rotary fan 3 to the outside.
 ブラケット7は、エアガイド4とともにフレーム6の開口部を覆う板部材である。ブラケット7は、フレーム6の開口部を完全に塞ぐことなく、フレーム6の開口部を部分的に覆っている。ブラケット7は、フレーム6の開口部を跨るように配置されている。これにより、フレーム6にブラケット7が取り付けられた状態において、フレーム6にはエアガイド4で整流された空気の通風路として開口が存在している。エアガイド4で整流された空気は、この開口を通過してフレーム6内に流入する。なお、ブラケット7にも、エアガイド4で整流された空気が通過する開口孔が形成されている。 The bracket 7 is a plate member that covers the opening of the frame 6 together with the air guide 4. The bracket 7 partially covers the opening of the frame 6 without completely closing the opening of the frame 6. The bracket 7 is arranged so as to straddle the opening of the frame 6. As a result, when the bracket 7 is attached to the frame 6, the frame 6 has an opening as a ventilation path for air rectified by the air guide 4. The air rectified by the air guide 4 passes through this opening and flows into the frame 6. The bracket 7 is also formed with an opening hole through which the air rectified by the air guide 4 passes.
 このように構成される電動送風機1では、電動機2が備える回転子11が回転すると、回転ファン3が回転し、ファンケース5が有する吸気口5aからファンケース5の内部に空気が吸引される。これにより、回転ファン3の内部に空気が流れ込む。回転ファン3に吸引された空気は、回転ファン3のファン翼により高圧に圧縮されて、回転ファン3の外周側部から径方向に排出される。回転ファン3の外周側部から排出された空気は、回転ファン3を囲むエアガイド4のディフューザ翼によってファンケース5の外周部へと導かれる。ファンケース5の外周部へと導かれた空気は、エアガイド4とファンケース5との間の空間部で旋回流となり、フレーム6内に流入する。フレーム6内に流入した空気は、フレーム6の排気口6aから電動送風機1の外に排出される。 In the electric blower 1 configured in this way, when the rotor 11 included in the electric motor 2 rotates, the rotating fan 3 rotates, and air is sucked into the fan case 5 from the intake port 5a of the fan case 5. As a result, air flows into the rotary fan 3. The air sucked by the rotary fan 3 is compressed to a high pressure by the fan blades of the rotary fan 3 and discharged in the radial direction from the outer peripheral side portion of the rotary fan 3. The air discharged from the outer peripheral side of the rotary fan 3 is guided to the outer peripheral portion of the fan case 5 by the diffuser blades of the air guide 4 surrounding the rotary fan 3. The air guided to the outer peripheral portion of the fan case 5 becomes a swirling flow in the space between the air guide 4 and the fan case 5, and flows into the frame 6. The air that has flowed into the frame 6 is discharged to the outside of the electric blower 1 from the exhaust port 6a of the frame 6.
 以上のように、本実施の形態の電動機2は、整流子14と、整流子14が取り付けられた回転軸13を有する回転子11と、回転子11に作用する磁力を発生させる固定子12とを備える。 As described above, the electric motor 2 of the present embodiment includes a commutator 14, a rotor 11 having a rotating shaft 13 to which the commutator 14 is attached, and a stator 12 that generates a magnetic force acting on the commutator 11. To be equipped.
 [整流子の構成]
 次に、本実施の形態に係る電動送風機1の電動機2に用いられる整流子14の詳細な構成について、図3、図4A、図4B、及び図4Cを用いて説明する。図3は、実施の形態に係る整流子14の斜視図である。図4Aは、同整流子14の側面図である。図4Bは、図4AのIVb-IVb線における同整流子14の断面図である。図4Cは、図4A及び図4BのIVc-IVc線における同整流子14の断面図である。
[Commutator configuration]
Next, the detailed configuration of the commutator 14 used in the electric motor 2 of the electric blower 1 according to the present embodiment will be described with reference to FIGS. 3, 4A, 4B, and 4C. FIG. 3 is a perspective view of the commutator 14 according to the embodiment. FIG. 4A is a side view of the commutator 14. FIG. 4B is a cross-sectional view of the commutator 14 on the IVb-IVb line of FIG. 4A. FIG. 4C is a cross-sectional view of the commutator 14 on the IVc-IVc line of FIGS. 4A and 4B.
 図3、図4A、図4B、及び図4Cに示すように、整流子14は、樹脂成形体20と、複数の整流子片30とを有する。整流子14は、モールド整流子であり、複数の整流子片30が樹脂によってモールドされた構成となっている。 As shown in FIGS. 3, 4A, 4B, and 4C, the commutator 14 has a resin molded body 20 and a plurality of commutator pieces 30. The commutator 14 is a molded commutator, and a plurality of commutator pieces 30 are molded with resin.
 樹脂成形体20は、モールド整流子である整流子14の樹脂部分である。樹脂成形体20は、整流子14の本体(整流子本体)である。樹脂成形体20は、電動機2の回転軸13が挿入される貫通孔21を有する。樹脂成形体20は、貫通孔21の中心軸を筒軸とする実質的な筒状体である。樹脂成形体20の筒軸方向は、回転軸13の軸心Cの方向と一致している。つまり、樹脂成形体20の軸心は、回転軸13の軸心Cと一致している。樹脂成形体20の周方向は、回転軸13の回転方向と一致している。 The resin molded body 20 is a resin portion of the commutator 14 which is a mold commutator. The resin molded body 20 is the main body (commutator main body) of the commutator 14. The resin molded body 20 has a through hole 21 into which the rotating shaft 13 of the electric motor 2 is inserted. The resin molded body 20 is a substantially tubular body having a central axis of the through hole 21 as a tubular axis. The direction of the cylinder axis of the resin molded body 20 coincides with the direction of the axis C of the rotating shaft 13. That is, the axis of the resin molded body 20 coincides with the axis C of the rotating shaft 13. The circumferential direction of the resin molded body 20 coincides with the rotation direction of the rotating shaft 13.
 樹脂成形体20は、例えば、熱硬化性樹脂等の樹脂材料によって構成されている。樹脂成形体20を構成する熱硬化性樹脂としては、例えばフェノール樹脂を用いることができる。樹脂成形体20は、トランスファー成形用の金型を用いたトランスファー成形により所定の形状に形成することができる。なお、樹脂成形体20は、ガラス繊維等の補強繊維が分散された樹脂材料によって構成されているとよい。これにより、樹脂成形体20の耐久性を向上させることができる。 The resin molded body 20 is made of a resin material such as a thermosetting resin. As the thermosetting resin constituting the resin molded body 20, for example, a phenol resin can be used. The resin molded body 20 can be formed into a predetermined shape by transfer molding using a mold for transfer molding. The resin molded body 20 may be made of a resin material in which reinforcing fibers such as glass fibers are dispersed. Thereby, the durability of the resin molded body 20 can be improved.
 複数の整流子片30は、回転軸13を囲むように環状に配列されている。複数の整流子片30は、回転軸13の周方向に沿って円環状に並べられている。つまり、複数の整流子片30は、樹脂成形体20の周方向に沿って円環状に並べられている。 The plurality of commutator pieces 30 are arranged in a ring shape so as to surround the rotation shaft 13. The plurality of commutator pieces 30 are arranged in an annular shape along the circumferential direction of the rotation shaft 13. That is, the plurality of commutator pieces 30 are arranged in an annular shape along the circumferential direction of the resin molded body 20.
 複数の整流子片30の各々は、回転軸13の軸心方向に沿って延在する長尺状の形状である。各整流子片30は、その長手方向が回転軸13の軸心Cの方向と平行となる姿勢で配列されている。具体的には、複数の整流子片30は、樹脂成形体20を囲むようにして、各整流子片30の長手方向が樹脂成形体20の筒軸方向となる姿勢で樹脂成形体20の周方向に沿って等間隔に配列されている。 Each of the plurality of commutator pieces 30 has a long shape extending along the axial direction of the rotating shaft 13. The commutator pieces 30 are arranged in a posture in which the longitudinal direction thereof is parallel to the direction of the axis C of the rotating shaft 13. Specifically, the plurality of commutator pieces 30 surround the resin molded body 20, and the longitudinal direction of each commutator piece 30 is in the tubular axis direction of the resin molded body 20 in the circumferential direction of the resin molded body 20. They are evenly spaced along.
 複数の整流子片30は、銅等の金属材料等からなる導電性材料によって構成された導電端子である。各整流子片30は、銅合金によって構成されている。複数の整流子片30は、回転軸13の周方向に沿って互いに絶縁分離された状態で配列されている。つまり、隣り合う2つの整流子片30は、回転軸13の回転方向に互いに絶縁分離されている。 The plurality of commutator pieces 30 are conductive terminals made of a conductive material made of a metal material such as copper. Each commutator piece 30 is made of a copper alloy. The plurality of commutator pieces 30 are arranged in a state of being isolated from each other along the circumferential direction of the rotating shaft 13. That is, the two commutator pieces 30 adjacent to each other are isolated from each other in the rotation direction of the rotation shaft 13.
 複数の整流子片30は、樹脂成形体20に固定されている。具体的には、各整流子片30は、表面の一部が露出するように樹脂成形体20に一部が埋め込まれることで樹脂成形体20に固定されている。つまり、各整流子片30は、樹脂成形体20の外周面に接している。 The plurality of commutator pieces 30 are fixed to the resin molded body 20. Specifically, each commutator piece 30 is fixed to the resin molded body 20 by being partially embedded in the resin molded body 20 so that a part of the surface is exposed. That is, each commutator piece 30 is in contact with the outer peripheral surface of the resin molded body 20.
 複数の整流子片30の各々は、少なくとも表面の一部が樹脂成形体20から露出する露出部31と、樹脂成形体20に埋設された埋設部32と、電動機2の回転子11の巻線コイル11bが接続されるフック部33とを有する。 Each of the plurality of commutator pieces 30 has an exposed portion 31 in which at least a part of the surface is exposed from the resin molded body 20, an embedded portion 32 embedded in the resin molded body 20, and windings of the rotor 11 of the electric motor 2. It has a hook portion 33 to which the coil 11b is connected.
 露出部31は、電動機2のブラシ15が摺接する摺接部として機能する。露出部31は、樹脂成形体20から露出する露出面として、前面31a及び側面31bを有する。前面31aは、第1露出面であり、電動機2のブラシ15が接する接触面である。側面31bは、第2露出面であり、複数の整流子片30のうち隣接する整流子片30に対向する対向面である。つまり、隣り合う2つの整流子片30は、隙間をあけて配置されており、隣り合う2つの整流子片30において、一方の整流子片30の対向面と他方の整流子片30の対向面とはその隙間を介して対面している。 The exposed portion 31 functions as a sliding contact portion with which the brush 15 of the electric motor 2 is in sliding contact. The exposed portion 31 has a front surface 31a and a side surface 31b as exposed surfaces exposed from the resin molded body 20. The front surface 31a is a first exposed surface, which is a contact surface with which the brush 15 of the electric motor 2 comes into contact. The side surface 31b is a second exposed surface, which is a facing surface facing the adjacent commutator piece 30 among the plurality of commutator pieces 30. That is, the two commutator pieces 30 adjacent to each other are arranged with a gap, and in the two commutator pieces 30 adjacent to each other, the facing surface of one commutator piece 30 and the facing surface of the other commutator piece 30. Is facing through the gap.
 また、図4Cに示すように、複数の整流子片30のうち隣り合う2つの整流子片30の間の間隔における外周側の周方向に沿った長さW1は、当該間隔における内周側の周方向に沿った長さW2よりも長くなっている(W1>W2)。 Further, as shown in FIG. 4C, the length W1 along the circumferential direction on the outer peripheral side in the interval between two adjacent commutator pieces 30 among the plurality of commutator pieces 30 is the inner peripheral side in the interval. It is longer than the length W2 along the circumferential direction (W1> W2).
 露出部31は、さらに、樹脂成形体20の外周面に接する接触面として、背面31cを有する。背面31cは、前面31aに背向する面であり、樹脂成形体20から露出していない。 The exposed portion 31 further has a back surface 31c as a contact surface in contact with the outer peripheral surface of the resin molded body 20. The back surface 31c is a surface facing the front surface 31a and is not exposed from the resin molded body 20.
 埋設部32は、露出部31の背面31cに設けられている。具体的には、埋設部32は、背面31cから樹脂成形体20側に突出するように設けられている。各整流子片30には、2つの埋設部32が設けられている。2つの埋設部32は、隙間をあけて整流子片30の長手方向に沿って並んでいる。 The buried portion 32 is provided on the back surface 31c of the exposed portion 31. Specifically, the embedded portion 32 is provided so as to project from the back surface 31c toward the resin molded body 20 side. Each commutator piece 30 is provided with two embedded portions 32. The two embedded portions 32 are arranged along the longitudinal direction of the commutator piece 30 with a gap.
 埋設部32は、樹脂成形体20の外周面に接する接触面として、埋設面32cを有する。埋設部32の全体が樹脂成形体20に埋め込まれているので、埋設部32の表面の全面が樹脂成形体20の外周面に接している。つまり、埋設部32の表面の全面が埋設面32cである。 The embedded portion 32 has an embedded surface 32c as a contact surface in contact with the outer peripheral surface of the resin molded body 20. Since the entire embedded portion 32 is embedded in the resin molded body 20, the entire surface of the embedded portion 32 is in contact with the outer peripheral surface of the resin molded body 20. That is, the entire surface of the buried portion 32 is the buried surface 32c.
 なお、埋設部32の露出部31側の根元部分には、埋設部32の一部がくびれたくびれ部が形成されている。埋設部32の断面形状は、逆台形状になっている。 At the root of the buried portion 32 on the exposed portion 31 side, a constricted portion is formed in which a part of the buried portion 32 is constricted. The cross-sectional shape of the buried portion 32 is an inverted trapezoidal shape.
 フック部33は、整流子片30の端部に設けられている。具体的には、フック部33は、露出部31の一方の端部に設けられている。フック部33は、露出部31の回転子11側の端部に設けられている。フック部33は、整流子片30の一部を折り曲げることで形成される。 The hook portion 33 is provided at the end of the commutator piece 30. Specifically, the hook portion 33 is provided at one end of the exposed portion 31. The hook portion 33 is provided at the end portion of the exposed portion 31 on the rotor 11 side. The hook portion 33 is formed by bending a part of the commutator piece 30.
 このように、各整流子片30は、樹脂成形体20の外周面に接する接触面として、露出部31の背面31cと埋設部32の埋設面32cとを有する。背面31cと埋設面32cは、整流子片30の裏側の面であり、樹脂成形体20の外周面と面接触している。 As described above, each commutator piece 30 has a back surface 31c of the exposed portion 31 and an embedded surface 32c of the embedded portion 32 as contact surfaces in contact with the outer peripheral surface of the resin molded body 20. The back surface 31c and the embedded surface 32c are surfaces on the back side of the commutator piece 30, and are in surface contact with the outer peripheral surface of the resin molded body 20.
 整流子片30では、樹脂成形体20との接触面である背面31c及び埋設面32cにおける表面の微小凹部の最大深さが、隣接する整流子片30に対向する対向面である側面31bにおける表面の微小凹部の最大深さよりも深くなっている。背面31c及び埋設面32cにおける表面の微小凹部の最大深さは、前面31aにおける表面の微小凹部の最大深さよりも粗くなっている。 In the commutator piece 30, the maximum depth of the surface minute recesses on the back surface 31c and the embedded surface 32c, which are the contact surfaces with the resin molded body 20, is the surface on the side surface 31b, which is the facing surface facing the adjacent commutator piece 30. It is deeper than the maximum depth of the minute recesses in. The maximum depth of the surface micro-recesses on the back surface 31c and the buried surface 32c is coarser than the maximum depth of the surface micro-recesses on the front surface 31a.
 つまり、樹脂成形体20の外周面に接する接触面である背面31c及び埋設面32cの中心線平均粗さは、樹脂成形体20から露出する露出面である側面31b及び前面31aの中心線平均粗さよりも粗くなっている。 That is, the centerline average roughness of the back surface 31c and the buried surface 32c, which are contact surfaces in contact with the outer peripheral surface of the resin molded body 20, is the centerline average roughness of the side surface 31b and the front surface 31a, which are exposed surfaces exposed from the resin molded body 20. It is coarser than that.
 具体的には、整流子片30における樹脂成形体20の外周面に接する接触面である背面31c及び埋設面32cには、粗面化処理が施されている。これにより、背面31c及び埋設面32cは、粗面になっている。つまり、埋設部32は、表面の全面が粗面化されている。粗面化された背面31c及び埋設面32cの算術平均粗さ(Ra)は、例えば1μm以上である。 Specifically, the back surface 31c and the buried surface 32c, which are contact surfaces of the commutator piece 30 in contact with the outer peripheral surface of the resin molded body 20, are roughened. As a result, the back surface 31c and the buried surface 32c are rough surfaces. That is, the entire surface of the buried portion 32 is roughened. The arithmetic mean roughness (Ra) of the roughened back surface 31c and the buried surface 32c is, for example, 1 μm or more.
 なお、前面31a及び側面31bを粗面化させることなく背面31c及び埋設面32cを粗面化する場合、背面31c及び埋設面32cの算術平均粗さ(Ra)の上限は、特に限定されない。しかし、背面31c及び埋設面32cの算術平均粗さ(Ra)は、一例として、50μm以下であり、好ましくは10μm以下である。 When the back surface 31c and the buried surface 32c are roughened without roughening the front surface 31a and the side surface 31b, the upper limit of the arithmetic mean roughness (Ra) of the back surface 31c and the buried surface 32c is not particularly limited. However, the arithmetic mean roughness (Ra) of the back surface 31c and the buried surface 32c is, for example, 50 μm or less, preferably 10 μm or less.
 粗面化処理としては、エッチング液によって整流子片30の表面をエッチングする化学処理を用いてもよいし、ローレット加工等によって整流子片30の表面を凹凸加工する機械加工処理を用いてもよい。 As the roughening treatment, a chemical treatment for etching the surface of the commutator piece 30 with an etching solution may be used, or a machining treatment for unevenly processing the surface of the commutator piece 30 by knurling or the like may be used. ..
 一方、整流子片30における隣接する整流子片30に対向する対向面である側面31bには、粗面化処理が施されていない。整流子片30におけるブラシ15に接する接触面である前面31aにも、粗面化処理が施されていない。したがって、側面31b及び前面31aは、無垢の金属面のままになっている。 On the other hand, the side surface 31b of the commutator piece 30 facing the adjacent commutator piece 30 is not roughened. The front surface 31a, which is the contact surface of the commutator piece 30 in contact with the brush 15, is also not roughened. Therefore, the side surface 31b and the front surface 31a remain solid metal surfaces.
 このように、露出部31の表面は、部分的に粗面化されており、露出部31における前面31a、側面31b及び背面31cのうち、背面31cは粗面化されているが、前面31a及び側面31bは粗面化されていない。 As described above, the surface of the exposed portion 31 is partially roughened, and among the front surface 31a, the side surface 31b and the back surface 31c of the exposed portion 31, the back surface 31c is roughened, but the front surface 31a and the front surface 31a and The side surface 31b is not roughened.
 なお、本実施の形態において、背面31c及び埋設面32cの両方が側面31bよりも表面の微小凹部の最大深さよりも深くなっている。しかし、背面31c及び埋設面32cの少なくとも一方が側面31bよりも表面の微小凹部の最大深さが深くなっていればよい。前面31a及び側面31bには、粗面化処理が施されていない。しかし、背面31c及び埋設面32cの一方又は両方が側面31bよりも表面の微小凹部の最大深さが深くなっていれば、前面31a及び側面31bの一方又は両方に粗面化処理を施してもよい。つまり、前面31a及び側面31bの一方又は両方は、粗面化された粗面であってもよい。あるいは、側面31b及び前面31aの一方又は両方に機械的又は化学的な平滑処理を施してもよい。つまり、前面31a及び側面31bの一方又は両方は、平滑面であってもよい。また、フック部33の表面は、粗面化されていてもよいし、粗面化されていなくてもよい。 In the present embodiment, both the back surface 31c and the buried surface 32c are deeper than the side surface 31b and the maximum depth of the minute recesses on the surface. However, it is sufficient that at least one of the back surface 31c and the buried surface 32c has a deeper maximum depth of the micro-recess on the surface than the side surface 31b. The front surface 31a and the side surface 31b are not roughened. However, if one or both of the back surface 31c and the buried surface 32c have a deeper maximum depth of the micro-recesses on the surface than the side surface 31b, even if one or both of the front surface 31a and the side surface 31b are roughened. good. That is, one or both of the front surface 31a and the side surface 31b may be roughened surfaces. Alternatively, one or both of the side surface 31b and the front surface 31a may be mechanically or chemically smoothed. That is, one or both of the front surface 31a and the side surface 31b may be smooth surfaces. Further, the surface of the hook portion 33 may or may not be roughened.
 [整流子の製造方法]
 次に、実施の形態に係る整流子14の製造方法について、図5~図12を用いて説明する。図5は、実施の形態に係る整流子14の製造方法のフローチャートである。図6~図12は、同整流子14の製造方法における各工程を説明するための図である。
[Commutator manufacturing method]
Next, a method of manufacturing the commutator 14 according to the embodiment will be described with reference to FIGS. 5 to 12. FIG. 5 is a flowchart of a method for manufacturing the commutator 14 according to the embodiment. 6 to 12 are diagrams for explaining each step in the method for manufacturing the commutator 14.
 本実施の形態における整流子14は、バスケット工法により製造される。具体的には、樹脂成形時の金型となるバスケットに複数の整流子片を配置して樹脂成形体を樹脂成形することで整流子14を製造する。以下、本実施の形態における整流子14の製造方法について詳細に説明する。 The commutator 14 in this embodiment is manufactured by the basket construction method. Specifically, the commutator 14 is manufactured by arranging a plurality of commutator pieces in a basket that serves as a mold for resin molding and molding the resin molded body with resin. Hereinafter, the method for manufacturing the commutator 14 according to the present embodiment will be described in detail.
 まず、整流子片を樹脂成形する前に、図5~図7に示すように、整流子片30Mを予め作製しておくとともに(ステップS11)、バスケット100を予め作製しておく(ステップS12)。 First, before the commutator piece is resin-molded, as shown in FIGS. 5 to 7, the commutator piece 30M is prepared in advance (step S11), and the basket 100 is prepared in advance (step S12). ..
 具体的には、フック部33を形成する前の状態の整流子片30として、図6に示される形状の整流子片30Mを作製する(ステップS11)。図6は、実施の形態に係る整流子の製造方法で用いられる整流子片(フック曲げを行う前の状態)の斜視図である。図6に示すように、整流子片30M(テーターバー)は、露出部31及び埋設部32が形成された金属片である。整流子片30Mは、銅合金によって構成されている。具体的には、整流子片30Mは、銅板にプレス打ち抜き加工を施すことで作製することができる。なお、整流子片30Mは、フック部33及び粗面が形成されていないこと以外は、整流子片30と同じ形状である。 Specifically, as the commutator piece 30 in the state before forming the hook portion 33, the commutator piece 30M having the shape shown in FIG. 6 is manufactured (step S11). FIG. 6 is a perspective view of a commutator piece (state before hook bending) used in the commutator manufacturing method according to the embodiment. As shown in FIG. 6, the commutator piece 30M (tater bar) is a metal piece on which the exposed portion 31 and the buried portion 32 are formed. The commutator piece 30M is made of a copper alloy. Specifically, the commutator piece 30M can be manufactured by performing a press punching process on a copper plate. The commutator piece 30M has the same shape as the commutator piece 30 except that the hook portion 33 and the rough surface are not formed.
 また、整流子片30Mを樹脂成形する際に用いる治具として、図7に示される形状のバスケット100を作製する(ステップS12)。 Further, as a jig used when molding the commutator piece 30M into resin, a basket 100 having the shape shown in FIG. 7 is manufactured (step S12).
 図7は、実施の形態に係る整流子の製造方法で用いられるバスケットの斜視図である。図7に示すように、バスケット100は、整流子片30Mを樹脂成形する際に整流子片30Mを保持するホルダであるとともに、整流子片30Mを収納する容器である。具体的には、バスケット100は、実質的に円筒状の部材であり、複数の整流子片30Mを収納するための収納部として複数の凹部110を有する。各凹部110は、バスケット100の筒軸方向に延在するように溝状に形成されており、整流子片30Mが嵌まる形状になっている。複数の凹部110は、上面視において、バスケット100の内周面に沿って円環状に配列されている。バスケット100は、隣り合う2つの凹部110の間に位置する凸部120を有する。凸部120は、バスケット100の筒軸方向に延在するように突条に形成されている。 FIG. 7 is a perspective view of the basket used in the commutator manufacturing method according to the embodiment. As shown in FIG. 7, the basket 100 is a holder that holds the commutator piece 30M when the commutator piece 30M is resin-molded, and is a container that stores the commutator piece 30M. Specifically, the basket 100 is a substantially cylindrical member, and has a plurality of recesses 110 as storage portions for storing the plurality of commutator pieces 30M. Each recess 110 is formed in a groove shape so as to extend in the tubular axis direction of the basket 100, and has a shape in which the commutator piece 30M is fitted. The plurality of recesses 110 are arranged in an annular shape along the inner peripheral surface of the basket 100 in a top view. The basket 100 has a protrusion 120 located between two adjacent recesses 110. The convex portion 120 is formed in a ridge so as to extend in the tubular axis direction of the basket 100.
 バスケット100は、例えば、樹脂材料を用いて射出成形により形成することができる。樹脂製のバスケット100を用いることで、熱及び圧力によりバスケット100が整流子片30Mの形状になじみやすくなる。 The basket 100 can be formed by injection molding using, for example, a resin material. By using the resin basket 100, the basket 100 easily adapts to the shape of the commutator piece 30M due to heat and pressure.
 バスケット100は、樹脂製に限らず、金属製であってもよい。金属製のバスケット100は、樹脂製のバスケット100と比べて、剛性が高く、熱及び圧力に強いので、繰り返して何度も用いることができる。 The basket 100 is not limited to resin, but may be made of metal. Since the metal basket 100 has higher rigidity and is more resistant to heat and pressure than the resin basket 100, it can be used repeatedly and many times.
 このように、整流子片30Mを樹脂成形する前に整流子片30Mを作製するとともにバスケット100を作製しておくが、整流子片30Mの作製工程とバスケット100の作製工程とは、どちらを先に行ってもよい。また、整流子片30Mの作製工程とバスケット100の作製工程とは同時に行ってもよい。 In this way, the commutator piece 30M is manufactured and the basket 100 is manufactured before the commutator piece 30M is resin-molded. However, which of the commutator piece 30M manufacturing process and the basket 100 manufacturing process comes first? You may go to. Further, the manufacturing step of the commutator piece 30M and the manufacturing step of the basket 100 may be performed at the same time.
 次に、図5及び図8A、図8Bに示すように、図6に示される整流子片30Mを、図7に示される筒状のバスケット100に配置する(ステップS13)。この場合、円環状の配列となるように複数の整流子片30Mを筒状のバスケット100に組み付ける。 Next, as shown in FIGS. 5, 8A and 8B, the commutator piece 30M shown in FIG. 6 is placed in the tubular basket 100 shown in FIG. 7 (step S13). In this case, a plurality of commutator pieces 30M are assembled into the tubular basket 100 so as to form an annular arrangement.
 具体的には、図8Aに示すように、整流子片30Mの埋設部32が内側に向くようにして整流子片30Mをバスケット100の凹部110に挿入する。図8Aは、実施の形態に係る整流子の製造方法において、バスケットに整流子片30Mを配置する工程を説明するための図である。つまり、整流子片30Mの前面31aが外側(バスケット100の内面側)に向くとともに整流子片30Mの背面31cが内側を向くようにして、整流子片30Mをバスケット100の凹部110に挿入する。このとき、バスケット100に設けられた複数の凹部110の全てに整流子片30Mを挿入する。これにより、図8Bに示すように、複数の整流子片30Mが円環状に整列されてバスケット100に収納されて保持されることになる。図8Bは、実施の形態に係る整流子の製造方法において、バスケットに整流子片30Mを配置する工程を説明するための図である。この状態において、整流子片30Mは、バスケット100の凹部110に固定されておらず、凹部110に対して遊嵌した状態で配置されている。 Specifically, as shown in FIG. 8A, the commutator piece 30M is inserted into the recess 110 of the basket 100 so that the embedded portion 32 of the commutator piece 30M faces inward. FIG. 8A is a diagram for explaining a step of arranging the commutator piece 30M in the basket in the commutator manufacturing method according to the embodiment. That is, the commutator piece 30M is inserted into the recess 110 of the basket 100 so that the front surface 31a of the commutator piece 30M faces the outside (inner surface side of the basket 100) and the back surface 31c of the commutator piece 30M faces inward. At this time, the commutator piece 30M is inserted into all of the plurality of recesses 110 provided in the basket 100. As a result, as shown in FIG. 8B, the plurality of commutator pieces 30M are arranged in an annular shape and are stored and held in the basket 100. FIG. 8B is a diagram for explaining a step of arranging the commutator piece 30M in the basket in the commutator manufacturing method according to the embodiment. In this state, the commutator piece 30M is not fixed to the recess 110 of the basket 100, but is arranged in a loosely fitted state with respect to the recess 110.
 バスケット100に配置された整流子片30Mは、露出部31の前面31a及び側面31bがバスケット100に覆われる。具体的には、凹部110に挿入された整流子片30Mは、前面31a及び側面31bがバスケット100の凹部110に密着している。一方、整流子片30Mにおける露出部31の背面31c及び埋設部32の埋設面32cは、バスケット100に覆われておらずにバスケット100の内側に向いた状態となる。つまり、背面31c及び埋設面32cは、露出した状態となる。 In the commutator piece 30M arranged in the basket 100, the front surface 31a and the side surface 31b of the exposed portion 31 are covered with the basket 100. Specifically, in the commutator piece 30M inserted into the recess 110, the front surface 31a and the side surface 31b are in close contact with the recess 110 of the basket 100. On the other hand, the back surface 31c of the exposed portion 31 and the buried surface 32c of the buried portion 32 in the commutator piece 30M are in a state of facing the inside of the basket 100 without being covered by the basket 100. That is, the back surface 31c and the buried surface 32c are exposed.
 次に、図5及び図9に示すように、複数の整流子片30Mの各々の表面の少なくとも一部を粗面化する(ステップS14)。具体的には、整流子片30Mに粗面化処理を施すことで整流子片30Mの表面を粗面化することができる。粗面化処理として、エッチング液によって整流子片30Mの表面をエッチングする化学処理を用いている。例えば、図9は、実施の形態に係る整流子の製造方法において、整流子片30Mを粗面化する工程を説明するための図である。図9に示すように、複数の整流子片30Mが配置されたバスケット100をエッチング液200が収容されたエッチング槽に入れて、複数の整流子片30Mをバスケット100とともにエッチング液200に浸漬することで、整流子片30Mの表面の一部を粗面化する。 Next, as shown in FIGS. 5 and 9, at least a part of the surface of each of the plurality of commutator pieces 30M is roughened (step S14). Specifically, the surface of the commutator piece 30M can be roughened by subjecting the commutator piece 30M to a roughening treatment. As the roughening treatment, a chemical treatment is used in which the surface of the commutator piece 30M is etched with an etching solution. For example, FIG. 9 is a diagram for explaining a step of roughening the commutator piece 30M in the commutator manufacturing method according to the embodiment. As shown in FIG. 9, a basket 100 in which a plurality of commutator pieces 30M are arranged is placed in an etching tank containing an etching solution 200, and the plurality of commutator pieces 30M are immersed in the etching solution 200 together with the basket 100. Then, a part of the surface of the commutator piece 30M is roughened.
 このとき、整流子片30Mは、整流子片30Mの裏面である露出部31の背面31c及び埋設部32の埋設面32cが露出しているので、整流子片30Mにおける背面31c及び埋設面32cの表面がエッチング液200によりエッチングされて粗面化される。これにより、整流子片30Mにおける背面31c及び埋設面32cの表面に微小凹凸が形成される。なお、整流子片30Mは、銅合金によって構成されているので、エッチング液200としては、銅合金を粗面化できるものを用いている。 At this time, since the back surface 31c of the exposed portion 31 and the buried surface 32c of the buried portion 32, which are the back surfaces of the commutator piece 30M, are exposed in the commutator piece 30M, the back surface 31c and the buried surface 32c of the commutator piece 30M are exposed. The surface is roughened by etching with the etching solution 200. As a result, minute irregularities are formed on the surfaces of the back surface 31c and the buried surface 32c of the commutator piece 30M. Since the commutator piece 30M is made of a copper alloy, the etching solution 200 used is one capable of roughening the copper alloy.
 一方、整流子片30Mにおける前面31a及び側面31bは、バスケット100に密着しているので、エッチング液200にさらされない。つまり、整流子片30Mにおける前面31a及び側面31bは、バスケット100によってマスキングされた状態になるので、エッチング液200が付与されず粗面化されない。 On the other hand, since the front surface 31a and the side surface 31b of the commutator piece 30M are in close contact with the basket 100, they are not exposed to the etching solution 200. That is, since the front surface 31a and the side surface 31b of the commutator piece 30M are masked by the basket 100, the etching solution 200 is not applied and the surface is not roughened.
 このように、整流子片30Mに粗面化処理を施している。しかし、整流子片30Mの表面の全面を粗面化するのではなく、整流子片30Mの表面の一部を選択的に粗面化している。具体的には、整流子片30Mにおいて、樹脂成形体20との接触面と、隣接する整流子片30Mに対向する対向面とのうち、樹脂成形体20との接触面のみを選択的に粗面化している。より具体的には、整流子片30Mにおける背面31c及び埋設面32cと前面31a及び側面31bとのうち背面31c及び埋設面32cのみを選択的に粗面化している。つまり、整流子片30Mを粗面化する工程では、隣接する整流子片30Mに対向する対向面である側面31bとブラシ15に接する接触面である前面31aとには粗面化処理を施さない。 In this way, the commutator piece 30M is roughened. However, instead of roughening the entire surface of the commutator piece 30M, a part of the surface of the commutator piece 30M is selectively roughened. Specifically, in the commutator piece 30M, of the contact surface with the resin molded body 20 and the facing surface facing the adjacent commutator piece 30M, only the contact surface with the resin molded body 20 is selectively roughened. It is surfaced. More specifically, of the back surface 31c and the buried surface 32c and the front surface 31a and the side surface 31b of the commutator piece 30M, only the back surface 31c and the buried surface 32c are selectively roughened. That is, in the step of roughening the commutator piece 30M, the roughening treatment is not performed on the side surface 31b which is the facing surface facing the adjacent commutator piece 30M and the front surface 31a which is the contact surface in contact with the brush 15. ..
 これにより、樹脂成形体20との接触面である背面31c及び埋設面32cにおける表面の微小凹部の最大深さは、隣接する整流子片30Mに対向する対向面である側面31bにおける表面の微小凹部の最大深さよりも深くなっているとともに、ブラシ15との接触面である前面31aにおける表面の微小凹部の最大深さよりも深くなっている。 As a result, the maximum depth of the surface micro-recesses on the back surface 31c and the buried surface 32c, which are the contact surfaces with the resin molded body 20, is the surface micro-recesses on the side surface 31b, which is the facing surface facing the adjacent commutator piece 30M. It is deeper than the maximum depth of the surface, and is deeper than the maximum depth of the minute recesses on the surface of the front surface 31a, which is the contact surface with the brush 15.
 以上のように、本実施の形態の整流子14は、樹脂成形体20と、樹脂成形体20に固定された複数の整流子片30Mとを備え、複数の整流子片30Mの各々は、樹脂成形体20の外周面に接する接触面31cと、樹脂成形体20から露出し、複数の整流子片30Mのうち隣接する整流子片30Mに対向する対向面31bとを有し、接触面31cにおける表面の微小凹部の最大深さは、対向面31bにおける表面の微小凹部の最大深さよりも深い。 As described above, the commutator 14 of the present embodiment includes the resin molded body 20 and the plurality of commutator pieces 30M fixed to the resin molded body 20, and each of the plurality of commutator pieces 30M is made of resin. It has a contact surface 31c in contact with the outer peripheral surface of the molded body 20 and a facing surface 31b exposed from the resin molded body 20 and facing the adjacent commutator piece 30M among the plurality of commutator pieces 30M. The maximum depth of the micro-recess on the surface is deeper than the maximum depth of the micro-recess on the surface on the facing surface 31b.
 これにより、別の不具合が発生することを抑制しつつ、整流子14の回転時に整流子片30Mが浮くことを抑制することができる。 As a result, it is possible to suppress the commutator piece 30M from floating when the commutator 14 is rotated, while suppressing the occurrence of another problem.
 また、樹脂成形体20は、電動機2の回転軸13が挿入される貫通孔21を有し、整流子片30Mは、電動機2のブラシ15に接する前面31aを有し、接触面31cにおける表面の微小凹部の最大深さは、前面31aにおける表面の微小凹部の最大深さよりも深いことが好ましい。 Further, the resin molded body 20 has a through hole 21 into which the rotating shaft 13 of the electric motor 2 is inserted, and the commutator piece 30M has a front surface 31a in contact with the brush 15 of the electric motor 2 and is a surface of the contact surface 31c. The maximum depth of the micro-recess is preferably deeper than the maximum depth of the micro-recess on the surface of the front surface 31a.
 また、複数の整流子片30Mのうち隣り合う2つの整流子片30Mの間の間隔における外周側の周方向に沿った長さは、間隔における内周側の周方向に沿った長さよりも長いことが好ましい。 Further, the length of the plurality of commutator pieces 30M along the circumferential direction on the outer peripheral side in the interval between two adjacent commutator pieces 30M is longer than the length along the circumferential direction on the inner peripheral side in the interval. Is preferable.
 次に、整流子片30Mの表面の一部に粗面化処理を施した後、図5及び図10に示すように、樹脂成形により樹脂成形体20を形成する(ステップS15)。具体的には、複数の整流子片30Mが配置されたバスケット100の内周部に液状の樹脂を注入して硬化することで、図10に示すように、複数の整流子片30Mが固定された樹脂成形体20を形成する。図10は、実施の形態に係る整流子の製造方法において、樹脂成形体を樹脂成形する工程を説明するための図である。 Next, after roughening a part of the surface of the commutator piece 30M, the resin molded body 20 is formed by resin molding as shown in FIGS. 5 and 10 (step S15). Specifically, as shown in FIG. 10, the plurality of commutator pieces 30M are fixed by injecting a liquid resin into the inner peripheral portion of the basket 100 in which the plurality of commutator pieces 30M are arranged and curing the liquid resin. The resin molded body 20 is formed. FIG. 10 is a diagram for explaining a step of resin molding a resin molded body in the commutator manufacturing method according to the embodiment.
 この場合、液状の樹脂は、複数の整流子片30Mの内側に注入される。つまり、液状の樹脂は、複数の整流子片30Mで囲まれる領域に注入される。このとき、液状の樹脂が硬化する際、液状の樹脂は、整流子片30M側とは反対側の方向(つまり内方)に向かって収縮することになる。しかし、バスケット100に配置された整流子片30Mは、バスケット100に固定されていないので、樹脂の収縮に追従することができる。つまり、樹脂成形体20の樹脂成形時に樹脂の収縮に伴って整流子片30Mが径方向内側に移動する。これにより、樹脂成形体20と整流子片30Mとが離れないので、樹脂の収縮に伴って樹脂成形体20と整流子片30Mとの界面に乖離が発生することを抑制できる。したがって、樹脂成形体20と整流子片30Mとを強固に接合することができる。 In this case, the liquid resin is injected inside the plurality of commutator pieces 30M. That is, the liquid resin is injected into the region surrounded by the plurality of commutator pieces 30M. At this time, when the liquid resin is cured, the liquid resin shrinks in the direction (that is, inward) opposite to the commutator piece 30M side. However, since the commutator piece 30M arranged in the basket 100 is not fixed to the basket 100, it can follow the shrinkage of the resin. That is, the commutator piece 30M moves inward in the radial direction as the resin shrinks during resin molding of the resin molded body 20. As a result, the resin molded body 20 and the commutator piece 30M are not separated from each other, so that it is possible to prevent the interface between the resin molded body 20 and the commutator piece 30M from being separated from each other as the resin shrinks. Therefore, the resin molded body 20 and the commutator piece 30M can be firmly joined.
 なお、樹脂成形体20の樹脂成形としては、トランスファー成形又は射出成形を用いることができる。液状の樹脂を構成する樹脂として、フェノール樹脂からなる熱硬化性樹脂を用いている。樹脂成形体20を樹脂成形する際、樹脂成形体20に貫通孔21も形成している。 As the resin molding of the resin molded body 20, transfer molding or injection molding can be used. A thermosetting resin made of a phenol resin is used as the resin constituting the liquid resin. When the resin molded body 20 is resin-molded, a through hole 21 is also formed in the resin molded body 20.
 次に、図5及び図11に示すように、バスケット100を除去する(ステップS16)。例えば、バスケット100を押し出すことで、複数の整流子片30Mが固定された樹脂成形体20からバスケット100を取り外すことができる。これにより、複数の整流子片30Mが固定された樹脂成形体20とバスケット100とを分離して、図11に示すように、複数の整流子片30Mが外周面に固定された樹脂成形体20を得ることができる。図11は、実施の形態に係る整流子の製造方法において、バスケットを除去する工程を説明するための図である。 Next, as shown in FIGS. 5 and 11, the basket 100 is removed (step S16). For example, by extruding the basket 100, the basket 100 can be removed from the resin molded body 20 to which the plurality of commutator pieces 30M are fixed. As a result, the resin molded body 20 to which the plurality of commutator pieces 30M are fixed and the basket 100 are separated, and as shown in FIG. 11, the resin molded body 20 to which the plurality of commutator pieces 30M are fixed to the outer peripheral surface is separated. Can be obtained. FIG. 11 is a diagram for explaining a step of removing the basket in the commutator manufacturing method according to the embodiment.
 次に、図5及び図12に示すように、アニール処理を施す(ステップS17)。例えば、温度が200度以上300度以下で、アニール時間が16時間以上24時間以下の条件で、複数の整流子片30Mが固定された樹脂成形体20をアニールする。これにより、樹脂成形体20の樹脂を完全に固化することができる。 Next, as shown in FIGS. 5 and 12, annealing treatment is performed (step S17). For example, the resin molded body 20 to which a plurality of commutator pieces 30M are fixed is annealed under the conditions that the temperature is 200 ° C. or higher and 300 ° C. or lower and the annealing time is 16 hours or more and 24 hours or less. As a result, the resin of the resin molded body 20 can be completely solidified.
 次に、図5に示すように、樹脂成形体20に固定された複数の整流子片30Mに対して、表面処理を施すとともにフック曲げを行う(ステップS18)。例えば、内径及び外径を整えるために切削加工等の機械加工を施して整流子片30Mの表面を削る等の表面処理を行った後、フォーミングによりフック曲げを行うことで各整流子片30Mにフック部33を形成する。 Next, as shown in FIG. 5, the plurality of commutator pieces 30M fixed to the resin molded body 20 are surface-treated and hook-bent (step S18). For example, after performing surface treatment such as scraping the surface of the commutator piece 30M by performing machining such as cutting to adjust the inner and outer diameters, hook bending is performed by forming to make each commutator piece 30M. The hook portion 33 is formed.
 これにより、図5に示すように、整流子14が完成する(ステップS19)。具体的には、図12に示されるように、フック部33が形成された整流子片30を有する整流子14が完成する。図12は、実施の形態に係る整流子の製造方法において、整流子片のフック曲げを行う工程を説明するための図である。 As a result, as shown in FIG. 5, the commutator 14 is completed (step S19). Specifically, as shown in FIG. 12, the commutator 14 having the commutator piece 30 on which the hook portion 33 is formed is completed. FIG. 12 is a diagram for explaining a step of bending the hook of the commutator piece in the commutator manufacturing method according to the embodiment.
 なお、上述の製造方法では、複数の整流子片30Mをバスケット100に配置する工程を行った後に、複数の整流子片30Mの各々の表面の少なくとも一部を粗面化する工程を行った。しかし、これに限らない。 In the above-mentioned manufacturing method, after performing the step of arranging the plurality of commutator pieces 30M in the basket 100, the step of roughening at least a part of the surface of each of the plurality of commutator pieces 30M was performed. However, it is not limited to this.
 例えば、複数の整流子片30Mの各々の表面の少なくとも一部を粗面化する工程を行った後に、複数の整流子片30Mをバスケット100に配置する工程を行ってもよい。この場合、粗面化した表面が内側に向くように複数の整流子片30Mをバスケット100に配置する。つまり、エッチング等による粗面化処理を施して整流子片30Mにおける背面31c及び埋設面32cを粗面化した後に、背面31c及び埋設面32cが内側に向くように複数の整流子片30Mをバスケット100に配置する。 For example, after performing a step of roughening at least a part of the surface of each of the plurality of commutator pieces 30M, a step of arranging the plurality of commutator pieces 30M in the basket 100 may be performed. In this case, a plurality of commutator pieces 30M are arranged in the basket 100 so that the roughened surface faces inward. That is, after roughening the back surface 31c and the buried surface 32c of the commutator piece 30M by roughening by etching or the like, a plurality of commutator pieces 30M are basketd so that the back surface 31c and the buried surface 32c face inward. Place at 100.
 整流子片30Mの粗面化処理を先に行う場合は、整流子片30Mの前面31a及び側面31bについては粗面化することなく、整流子片30Mにおける背面31c及び埋設面32cのみを粗面化するとよい。例えば、エッチングにより粗面化する場合、整流子片30Mにおける前面31a及び側面31bにマスキングを行ってエッチング液を付与することで、整流子片30Mにおける背面31c及び埋設面32cのみを選択的に粗面化することができる。 When the commutator piece 30M is roughened first, only the back surface 31c and the buried surface 32c of the commutator piece 30M are roughened without roughening the front surface 31a and the side surface 31b of the commutator piece 30M. It is good to change. For example, when roughening by etching, the front surface 31a and the side surface 31b of the commutator piece 30M are masked and an etching solution is applied to selectively roughen only the back surface 31c and the buried surface 32c of the commutator piece 30M. It can be surfaced.
 以上のように、本実施の形態の整流子14の製造方法は、電動機2の回転軸13が挿入される貫通孔21を有する樹脂成形体20と回転軸13を中心として環状に配置された複数の整流子片30Mとを備える整流子14の製造方法であって、複数の整流子片30Mを筒状のバスケット100に円環状に配置する工程と、複数の整流子片30Mの各々の表面の少なくとも一部を粗面化する工程と、複数の整流子片30Mが配置されたバスケット100の内周部に液状の樹脂を注入して硬化することで、複数の整流子片30Mが固定された樹脂成形体20を形成する工程とを含む。 As described above, the method for manufacturing the commutator 14 of the present embodiment includes a plurality of resin molded bodies 20 having a through hole 21 into which the commutator 13 of the electric motor 2 is inserted and a plurality of commutators 14 arranged in an annular shape around the commutator 13. A method of manufacturing a commutator 14 including the commutator piece 30M of the above, wherein a plurality of commutator pieces 30M are arranged in an annular shape in a tubular basket 100, and a surface of each of the plurality of commutator pieces 30M. The plurality of commutator pieces 30M were fixed by the step of roughening at least a part of the surface and by injecting a liquid resin into the inner peripheral portion of the basket 100 in which the plurality of commutator pieces 30M were arranged and curing the liquid resin. The step of forming the resin molded body 20 is included.
 これにより、別の不具合が発生することを抑制しつつ、整流子の回転時に整流子片が浮くことを抑制することができる。 This makes it possible to prevent the commutator piece from floating when the commutator rotates, while suppressing the occurrence of another problem.
 また、複数の整流子片30Mをバスケット100に配置する工程を行った後に、複数の整流子片30Mの各々の表面の少なくとも一部を粗面化する工程を含んでもよい。 Further, after performing the step of arranging the plurality of commutator pieces 30M in the basket 100, a step of roughening at least a part of the surface of each of the plurality of commutator pieces 30M may be included.
 また、複数の整流子片30Mの各々は、樹脂成形体20の外周面に接する接触面31cと、樹脂成形体20から露出し、複数の整流子片30Mのうち隣接する整流子片30Mに対向する対向面31bとを有し、整流子片30Mを粗面化する工程では、粗面化処理を施すことで接触面31c及び対向面31bのうち接触面31cのみを粗面化してもよい。 Further, each of the plurality of commutator pieces 30M is exposed from the contact surface 31c in contact with the outer peripheral surface of the resin molded body 20 and the resin molded body 20, and faces the adjacent commutator pieces 30M among the plurality of commutator pieces 30M. In the step of roughening the commutator piece 30M having the facing surface 31b, only the contact surface 31c of the contact surface 31c and the facing surface 31b may be roughened by performing the roughening treatment.
 また、バスケット100は、樹脂製であってもよい。 Further, the basket 100 may be made of resin.
 本実施の形態では、バスケット100を用いたバスケット工法によって整流子14を製造した。しかし、これに限らない。 In the present embodiment, the commutator 14 is manufactured by the basket construction method using the basket 100. However, it is not limited to this.
 例えば、バスケット100を用いないアンダーカット工法によって整流子14を製造してもよい。アンダーカット工法で整流子14を製造する場合、図13に示されるフローで整流子14を製造することができる。図13は、実施の形態に係る整流子の他の製造方法(アンダーカット工法)のフローチャートである。 For example, the commutator 14 may be manufactured by an undercut method that does not use the basket 100. When the commutator 14 is manufactured by the undercut method, the commutator 14 can be manufactured by the flow shown in FIG. FIG. 13 is a flowchart of another commutator manufacturing method (undercut method) according to the embodiment.
 この場合、まず、複数の整流子片30の母材となる筒状の整流子母材を作製する(ステップS21)。具体的には、銅等の金属材料によって構成された円筒状の整流子母材を作製する。 In this case, first, a tubular commutator base material serving as a base material for the plurality of commutator pieces 30 is produced (step S21). Specifically, a cylindrical commutator base material made of a metal material such as copper is produced.
 次に、整流子母材の表面の少なくとも一部を粗面化する(ステップS22)。具体的には、エッチング等によって整流子母材の表面のうち整流子片30の背面31c及び埋設面32cに対応する部分の表面を粗面化する。 Next, at least a part of the surface of the commutator base material is roughened (step S22). Specifically, the surface of the surface of the commutator base material corresponding to the back surface 31c and the buried surface 32c of the commutator piece 30 is roughened by etching or the like.
 次に、樹脂成形により樹脂成形体を形成する(ステップS23)。具体的には、表面の一部を粗面化した円筒状の整流子母材の内周部に液状の樹脂を注入して硬化することで、整流子母材が固定された樹脂成形体を形成する。 Next, a resin molded body is formed by resin molding (step S23). Specifically, a resin molded body to which the commutator base material is fixed is formed by injecting a liquid resin into the inner peripheral portion of a cylindrical commutator base material whose surface is partially roughened and hardening the liquid resin. Form.
 次に、整流子母材を複数の整流子片30に分離する(ステップS24)。具体的には、メタルソーによって整流子母材にスリットを形成することで、樹脂成形体が固定された整流子母材を複数の整流子片30に分離する。 Next, the commutator base material is separated into a plurality of commutator pieces 30 (step S24). Specifically, by forming a slit in the commutator base material with a metal saw, the commutator base material to which the resin molded body is fixed is separated into a plurality of commutator pieces 30.
 なお、その後は、上記実施の形態と同様に、アニール処理(ステップS17)と表面加工及びフック曲げ(ステップS18)とを順次行うことで、整流子14を完成させることができる(ステップS19)。 After that, the commutator 14 can be completed by sequentially performing the annealing treatment (step S17), the surface processing, and the hook bending (step S18) in the same manner as in the above embodiment (step S19).
 以上のように、本実施の形態の別の整流子14の製造方法は、電動機2の回転軸13に挿入される貫通孔21を有する樹脂成形体20と回転軸13を中心として環状に配置された複数の整流子片30Mとを備える整流子14の製造方法であって、複数の整流子片30Mの母材となる筒状の整流子母材の表面の少なくとも一部を粗面化する工程と、整流子母材の内周部に液状の樹脂を注入して硬化することで、整流子母材が固定された樹脂成形体20を形成する工程と、整流子母材を複数の整流子片に分離する工程とを含む。 As described above, in another method of manufacturing the commutator 14 of the present embodiment, the resin molded body 20 having the through hole 21 inserted into the rotating shaft 13 of the electric motor 2 and the rotating shaft 13 are arranged in an annular shape. A method for manufacturing a commutator 14 including a plurality of commutator pieces 30M, wherein at least a part of the surface of a tubular commutator base material serving as a base material for the plurality of commutator pieces 30M is roughened. The process of forming the resin molded body 20 to which the commutator base material is fixed by injecting a liquid resin into the inner peripheral portion of the commutator base material and curing it, and the process of forming the commutator base material into a plurality of commutators. Includes a step of separating into pieces.
 [作用効果]
 次に、本実施の形態に係る整流子14の作用効果について、本開示に至った経緯を含めて説明する。
[Action effect]
Next, the action and effect of the commutator 14 according to the present embodiment will be described including the background to the present disclosure.
 上述のように、従来、整流子の回転時に整流子片が浮くことを抑制するために、整流子片における樹脂成形体との接触面を粗面化する技術が提案されている。 As described above, conventionally, in order to prevent the commutator piece from floating when the commutator rotates, a technique for roughening the contact surface of the commutator piece with the resin molded body has been proposed.
 しかしながら、整流子片の表面の全面を粗面化した整流子を実際に作製してみると、別の不具合が発生することが分かった。 However, when I actually made a commutator with the entire surface of the commutator piece roughened, it was found that another problem occurred.
 例えば、整流子片の表面の全面を粗面化すると、整流子片の側面(隣接する整流子との対向面)まで粗面化されてしまう。この場合、粗面化によって整流子片の表面の微小凹凸の深さが大きくなりすぎると、バスケット工法により整流子を製造したときに、バスケットに整流子片を配置して樹脂成形する際に、整流子片の側面とバスケットとの隙間から液状の樹脂が漏れ出すという不具合が発生した。 For example, if the entire surface of the commutator piece is roughened, the side surface of the commutator piece (the surface facing the adjacent commutator) is also roughened. In this case, if the depth of the minute irregularities on the surface of the commutator piece becomes too large due to the roughening, when the commutator is manufactured by the basket method, when the commutator piece is placed in the basket and resin molding is performed, There was a problem that liquid resin leaked from the gap between the side surface of the commutator piece and the basket.
 このような問題に対して本願発明者らは、鋭意検討した結果、整流子片の表面の全面を粗面化するのではなく整流子片の表面を選択的に粗面化するという着想を得た。具体的には、整流子片の表面を部分的に微小凹部を形成して、微小凹部の最大深さを部分的に異ならせるという着想を得た。 As a result of diligent studies on such problems, the inventors of the present application have obtained the idea of selectively roughening the surface of the commutator piece instead of roughening the entire surface of the commutator piece. rice field. Specifically, I got the idea that the surface of the commutator piece is partially formed with minute recesses so that the maximum depth of the minute recesses is partially different.
 本実施の形態における整流子14では、各整流子片30において、樹脂成形体20との接触面である背面31c及び埋設面32cにおける表面の微小凹部の最大深さが、隣接する整流子片30に対向する対向面である側面31bにおける表面の微小凹部の最大深さよりも深くなっている。 In the commutator 14 of the present embodiment, in each commutator piece 30, the maximum depth of the surface minute recesses on the back surface 31c and the buried surface 32c, which are the contact surfaces with the resin molded body 20, is the adjacent commutator pieces 30. It is deeper than the maximum depth of the minute recesses on the surface of the side surface 31b, which is the facing surface facing the surface.
 この構成により、整流子片30の側面31bでは微小凹部の深さが小さくなっている。したがって、上記のように、バスケット工法により整流子14を製造する場合、バスケット100に整流子片30Mを配置して樹脂成形する際に、整流子片30Mの側面31bとバスケット100の凸部120との隙間から液状の樹脂が漏れ出すことを抑制することができる。つまり、樹脂成形体20との接触面である背面31c及び埋設面32cについては、微小凹部の深さを深くして樹脂成形体20と整流子片30との接合強度を大きくしつつも、整流子片30の側面31bについては微小凹部の深さを小さくして樹脂成形体20の樹脂成形時の樹脂漏れを抑制することができる。これにより、樹脂成形時の樹脂漏れという不具合が発生することを抑制しつつ、整流子14の回転時に整流子片30が浮くことを抑制することができる。なお、樹脂漏れが発生すると、(1)バスケット100を整流子片30から剥離することが困難になる、(2)整流子片30の姿勢が悪化する、(3)電動機の駆動時に樹脂漏れに由来して硬化した樹脂によりブラシがダメージを受けてしまう、などの不具合を引き起こす。 With this configuration, the depth of the minute recess is reduced on the side surface 31b of the commutator piece 30. Therefore, as described above, when the commutator 14 is manufactured by the basket construction method, when the commutator piece 30M is arranged in the basket 100 and resin is molded, the side surface 31b of the commutator piece 30M and the convex portion 120 of the basket 100 It is possible to prevent the liquid resin from leaking from the gap between the two. That is, the back surface 31c and the buried surface 32c, which are the contact surfaces with the resin molded body 20, are rectified while increasing the depth of the minute recesses to increase the joint strength between the resin molded body 20 and the rectifying element 30. With respect to the side surface 31b of the child piece 30, the depth of the minute recesses can be reduced to suppress resin leakage during resin molding of the resin molded body 20. As a result, it is possible to prevent the commutator piece 30 from floating when the commutator 14 is rotated, while suppressing the occurrence of a problem of resin leakage during resin molding. When resin leakage occurs, (1) it becomes difficult to separate the basket 100 from the commutator piece 30, (2) the posture of the commutator piece 30 deteriorates, and (3) resin leakage occurs when the motor is driven. It causes problems such as damage to the brush due to the resin that has been derived and cured.
 本実施の形態における整流子14では、整流子片30において、樹脂成形体20との接触面である背面31c及び埋設面32cにおける表面の微小凹部の最大深さが、ブラシ15との接触面である前面31aにおける表面の微小凹部の最大深さよりも深くなっている。 In the commutator 14 of the present embodiment, in the commutator piece 30, the maximum depth of the surface minute recesses on the back surface 31c and the buried surface 32c, which are the contact surfaces with the resin molded body 20, is the contact surface with the brush 15. It is deeper than the maximum depth of the minute recesses on the surface of a certain front surface 31a.
 本実施の形態における整流子14では、図4Cに示すように、複数の整流子片30のうち隣り合う2つの整流子片30の間の間隔における外周側の周方向に沿った長さ(W1)は、当該間隔における内周側の周方向に沿った長さ(W2)よりも長くなっている。具体的には、隣り合う2つの整流子片30の間において、外周側の長さが内周側の長さよりも長くなっている。 In the commutator 14 of the present embodiment, as shown in FIG. 4C, the length (W1) of the plurality of commutator pieces 30 along the circumferential direction on the outer peripheral side at the distance between two adjacent commutator pieces 30. ) Is longer than the length (W2) along the circumferential direction on the inner peripheral side at the interval. Specifically, between two adjacent commutator pieces 30, the length on the outer peripheral side is longer than the length on the inner peripheral side.
 この構成により、整流子14の回転時に整流子片30が浮くことを一層抑制することができる。この点について、以下説明する。 With this configuration, it is possible to further suppress the commutator piece 30 from floating when the commutator 14 rotates. This point will be described below.
 モールド整流子は、樹脂成形により製造する。この場合、トランスファー成形用の金型に複数の整流子片を環状に並べて、複数の整流子片を金型に固定した状態で金型に液状の熱硬化性樹脂を注入して複数の整流子片の内側で液状の熱硬化性樹脂を硬化させることで、複数の整流子片の各々の一部が樹脂成形体に埋め込まれた構成を有するモールド整流子を製造することができる。トランスファー成形の他、射出成形によりモールド整流子を製造することができる。 The mold commutator is manufactured by resin molding. In this case, a plurality of commutator pieces are arranged in a ring shape on a mold for transfer molding, and a liquid thermosetting resin is injected into the mold with the plurality of commutator pieces fixed to the mold to form a plurality of commutators. By curing the liquid thermosetting resin inside the piece, it is possible to manufacture a molded commutator having a structure in which a part of each of the plurality of commutator pieces is embedded in the resin molded body. In addition to transfer molding, a mold commutator can be manufactured by injection molding.
 このとき、整流子片が動かないように整流子片を金型で固定した状態で樹脂成形すると、金型に注入された液状の熱硬化性樹脂が硬化して樹脂成形体として成形する際に、複数の整流子片の内側に注入された液状の熱硬化性樹脂が整流子片側とは反対側の方向(つまり径方向内側)に向かって収縮することになる。これにより、樹脂成形体の外側に位置する整流子片と樹脂成形体とが離れて、整流子片と樹脂成形体との界面に乖離が発生する。このため、整流子片の表面を粗面化したとしても、回転子が回転したときに整流子片が浮くことを十分に抑制することができなくなるおそれがある。 At this time, if the commutator piece is fixed with a mold so that the commutator piece does not move and resin molding is performed, the liquid thermosetting resin injected into the mold is cured and molded as a resin molded body. , The liquid thermosetting resin injected into the inside of the plurality of commutator pieces shrinks in the direction opposite to the commutator one side (that is, inward in the radial direction). As a result, the commutator piece located outside the resin molded body and the resin molded body are separated from each other, and a gap occurs at the interface between the commutator piece and the resin molded body. Therefore, even if the surface of the commutator piece is roughened, it may not be possible to sufficiently suppress the commutator piece from floating when the rotor rotates.
 これに対して、本実施の形態における整流子14では、隣り合う2つの整流子片30の間において、外周側の長さが内周側の長さよりも長くなっている。 On the other hand, in the commutator 14 in the present embodiment, the length on the outer peripheral side is longer than the length on the inner peripheral side between the two adjacent commutator pieces 30.
 この構成により、バスケット工法により整流子14を製造する場合、バスケット100に配置された複数の整流子片30Mの内側に液状の樹脂を注入して樹脂成形体20を樹脂成形するときに、上記のように、バスケット100の凹部110に配置された整流子片30Mは、バスケット100の凹部110に固定されておらず、動くことができる状態で凹部110に保持されている。このため、バスケット100の凹部110に配置された整流子片30Mは、樹脂の収縮に伴って径方向内側に移動することができる。これにより、樹脂成形体20と整流子片30Mとが離れないので、樹脂成形体20と整流子片30Mとを強固に接合することができる。したがって、整流子14の回転時に整流子片30が浮くことを一層抑制することができる。 With this configuration, when the commutator 14 is manufactured by the basket construction method, when the liquid resin is injected into the inside of the plurality of commutator pieces 30M arranged in the basket 100 and the resin molded body 20 is resin-molded, the above-mentioned As described above, the commutator piece 30M arranged in the recess 110 of the basket 100 is not fixed to the recess 110 of the basket 100, but is held in the recess 110 in a movable state. Therefore, the commutator piece 30M arranged in the recess 110 of the basket 100 can move inward in the radial direction as the resin shrinks. As a result, the resin molded body 20 and the commutator piece 30M are not separated from each other, so that the resin molded body 20 and the commutator piece 30M can be firmly joined. Therefore, it is possible to further suppress the commutator piece 30 from floating when the commutator 14 is rotated.
 埋設部32の露出部31側の根元部分には、埋設部32の一部がくびれたくびれ部が形成されている。このように、埋設部32にくびれ部を形成することによって、樹脂成形体20を構成する樹脂がくびれ部の凹部に入り込む。これにより、くびれ部によるアンカー効果によって埋設部32と樹脂成形体20との結合強度を向上させることができる。このため、回転子11が回転したときに整流子片30が樹脂成形体20を構成する樹脂から浮き上がることを一層抑制することができる。 At the base of the buried portion 32 on the exposed portion 31 side, a constricted portion is formed in which a part of the buried portion 32 is constricted. By forming the constricted portion in the embedded portion 32 in this way, the resin constituting the resin molded body 20 enters the recess of the constricted portion. As a result, the bonding strength between the embedded portion 32 and the resin molded body 20 can be improved by the anchor effect of the constricted portion. Therefore, it is possible to further prevent the commutator piece 30 from floating from the resin constituting the resin molded body 20 when the rotor 11 rotates.
 以上、本実施の形態に係る整流子14によれば、上述の別の不具合が発生することを抑制しつつ、整流子14の回転時に整流子片30が浮くことを抑制することができる。 As described above, according to the commutator 14 according to the present embodiment, it is possible to suppress the commutator piece 30 from floating when the commutator 14 is rotated, while suppressing the occurrence of the above-mentioned other trouble.
 また、本実施の形態に係る電動機2は、整流子14を備えているので、高い信頼性を有する電動機を提供することができる。 Further, since the electric motor 2 according to the present embodiment includes the commutator 14, it is possible to provide an electric motor having high reliability.
 [実施例]
 以下、実際に作製した実施例の整流子14について説明する。
[Example]
Hereinafter, the commutator 14 of the actually manufactured example will be described.
 図14は、上記のバスケット工法を用いた製造方法により実際に作製した整流子14について、樹脂成形体20と整流子片30との接触界面における断面SEM(Scanning Electron Microscope)像(5000倍)を示す図である。具体的には、整流子片30の露出部31の背面31cと樹脂成形体20の外周面との接触界面における断面SEM像を示している。 FIG. 14 shows a cross-sectional SEM (Scanning Electron Microscope) image (5000 times) at the contact interface between the resin molded body 20 and the commutator piece 30 with respect to the commutator 14 actually manufactured by the manufacturing method using the above basket method. It is a figure which shows. Specifically, a cross-sectional SEM image at the contact interface between the back surface 31c of the exposed portion 31 of the commutator piece 30 and the outer peripheral surface of the resin molded body 20 is shown.
 図14に示すように、粗面化処理におけるエッチングによって整流子片30の露出部31の背面31cが粗面化されていることが分かる。図14では、整流子片30の背面31cに、最大深さが数μm程度の微小凹部を有する凹凸部が形成されていることが分かる。 As shown in FIG. 14, it can be seen that the back surface 31c of the exposed portion 31 of the commutator piece 30 is roughened by etching in the roughening process. In FIG. 14, it can be seen that the back surface 31c of the commutator piece 30 is formed with an uneven portion having a minute recess having a maximum depth of about several μm.
 なお、図14では、整流子片30の露出部31の背面31cにおける表面状態が示されているが、整流子片30の埋設部32の埋設面32cについても背面31cと同様にエッチングされて粗面化されているので、埋設面32cについても図14に示されるような表面状態になっていた。 Although FIG. 14 shows the surface state of the exposed portion 31 of the commutator piece 30 on the back surface 31c, the buried surface 32c of the buried portion 32 of the commutator piece 30 is also etched and roughened in the same manner as the back surface 31c. Since it was surfaced, the buried surface 32c also had a surface condition as shown in FIG.
 また、実際に作製した整流子の強度を評価したので、その評価結果について図15を用いて説明する。 Further, since the strength of the commutator actually manufactured was evaluated, the evaluation result will be described with reference to FIG.
 図15は、実施例の整流子の強度を説明するための図である。図15において、実施例1は、アンダーカット工法により作製した整流子14である。実施例2、3、4は、バスケット工法により作製した整流子14である。なお、実施例2、3、4では、エッチングによる粗面化処理を施す際にエッチング液200に浸漬する時間を調整して背面31c及び埋設面32cにおける微小凹部の凹凸深さを変えた。この場合、エッチング液200に浸漬する時間を長くすることで、凹凸深さを深くすることができる。一方、比較例は、粗面化処理(エッチング処理)を施すことなくバスケット工法により作製した整流子である。 FIG. 15 is a diagram for explaining the strength of the commutator of the embodiment. In FIG. 15, Example 1 is a commutator 14 manufactured by an undercut method. Examples 2, 3 and 4 are commutators 14 produced by the basket construction method. In Examples 2, 3 and 4, the depth of unevenness of the minute recesses on the back surface 31c and the buried surface 32c was changed by adjusting the time of immersion in the etching solution 200 when performing the roughening treatment by etching. In this case, the unevenness depth can be increased by lengthening the time of immersion in the etching solution 200. On the other hand, a comparative example is a commutator manufactured by the basket method without performing roughening treatment (etching treatment).
 実施例1~4では、粗面化処理(エッチング処理)を行う際、上記のように、整流子片30における背面31c及び埋設面32cと前面31a及び側面31bとのうち、背面31c及び埋設面32cのみを選択的に粗面化した。各整流子の整流子片としては、銅合金によって構成されたものを用いた。 In Examples 1 to 4, when the roughening treatment (etching treatment) is performed, the back surface 31c and the buried surface of the back surface 31c and the buried surface 32c and the front surface 31a and the side surface 31b of the commutator piece 30 are described as described above. Only 32c was selectively roughened. As the commutator piece of each commutator, a commutator piece made of a copper alloy was used.
 粗面化処理が施された実施例1~4の整流子について、整流子片の凹凸深さを測定した。各整流子の凹凸深さは、次のようにして算出した。具体的には、整流子片における樹脂成形体との接触面のサンプル断面として、離散的に10個のエリアの断面SEM画像を取得し、断面SEM画像をもとに10個のエリアの各々における微小凹部の最大深さ(図14を参照)を測定し、10個のエリアの最大深さの平均値を計算し、その平均値を各整流子の凹凸深さとした。その結果、図15に示すように、実施例1、2、3、4の整流子の凹凸深さは、それぞれ、20μm、5μm、10μm、20μmであった。 For the commutators of Examples 1 to 4 that had been roughened, the unevenness depth of the commutator pieces was measured. The unevenness depth of each commutator was calculated as follows. Specifically, as a sample cross section of the contact surface of the commutator piece with the resin molded body, cross-sectional SEM images of 10 areas are discretely acquired, and each of the 10 areas is obtained based on the cross-sectional SEM image. The maximum depth of the minute recesses (see FIG. 14) was measured, the average value of the maximum depths of the 10 areas was calculated, and the average value was taken as the unevenness depth of each commutator. As a result, as shown in FIG. 15, the uneven depths of the commutators of Examples 1, 2, 3 and 4 were 20 μm, 5 μm, 10 μm and 20 μm, respectively.
 また、これらの各整流子の強度を測定し、相対的に評価した。具体的には、樹脂成形体20を押し出して樹脂成形体と整流子片とを分離させるのに必要な荷重を測定し、その荷重を各整流子の強度として評価した。なお、図15では、実施例4の整流子の強度を1とし、比較例及び実施例1~3の整流子の強度を規格化して相対的に表している。 In addition, the strength of each of these commutators was measured and evaluated relatively. Specifically, the load required to extrude the resin molded body 20 and separate the resin molded body and the commutator piece was measured, and the load was evaluated as the strength of each commutator. In FIG. 15, the intensity of the commutator of Example 4 is set to 1, and the intensities of the commutators of Comparative Examples and Examples 1 to 3 are standardized and shown relatively.
 その結果、図15に示すように、実施例1~4の整流子は、比較例の整流子と比べて、高い強度を得ることができ、整流子片が樹脂成形体から分離しにくくなることが分かった。つまり、整流子片30における背面31c及び埋設面32cと前面31a及び側面31bとのうち背面31c及び埋設面32cのみを選択的に粗面化することで、整流子片30が樹脂成形体20から分離しにくい整流子14を得ることができる。 As a result, as shown in FIG. 15, the commutators of Examples 1 to 4 can obtain higher strength than the commutators of Comparative Examples, and the commutator pieces are less likely to be separated from the resin molded body. I found out. That is, by selectively roughening only the back surface 31c and the buried surface 32c of the back surface 31c and the buried surface 32c and the front surface 31a and the side surface 31b of the commutator piece 30, the commutator piece 30 can be removed from the resin molded body 20. A commutator 14 that is difficult to separate can be obtained.
 実施例2の整流子は、実施例1の整流子よりも凹凸深さが小さいにも関わらず、実施例1の整流子と同等の強度を有することが分かる。実施例4の整流子は、実施例1の整流子と比べて、2倍以上の強度を有することが分かる。これは、バスケット工法で整流子を作製することで、樹脂成形体の樹脂成形時に樹脂の収縮に伴って整流子片が径方向内側に移動して樹脂成形体と整流子片とが離れずに強固に接合したからであると考えられる。つまり、アンダーカット工法ではなくバスケット工法によって整流子を作製することで、整流子片の浮きを効果的に抑制できる整流子を得ることができる。 It can be seen that the commutator of the second embodiment has the same strength as the commutator of the first embodiment even though the unevenness depth is smaller than that of the commutator of the first embodiment. It can be seen that the commutator of Example 4 has more than twice the strength of the commutator of Example 1. This is because the commutator is manufactured by the basket method, so that the commutator piece moves inward in the radial direction as the resin shrinks during resin molding of the resin molded body, and the resin molded body and the commutator piece do not separate from each other. It is considered that this is because they are firmly joined. That is, by manufacturing the commutator by the basket method instead of the undercut method, it is possible to obtain a commutator that can effectively suppress the floating of the commutator piece.
 実施例2~4の整流子から分かるように、バスケット工法によって整流子を作製する場合には、整流子片の凹凸深さを10μm以上にすることで、高い強度を有する整流子を得ることができる。具体的には、実施例3の整流子は、実施例2の整流子と比べて、凹凸深さが2倍になることで、2倍程度の強度を得ることができているが、実施例4の整流子は、実施例3の整流子と比べて凹凸深さが2倍になっているにもかかわらす、実施例3の整流子と同等の強度しか得られていない。つまり、凹凸深さが10μm以上になると、整流子の強度は、整流子片の凹凸深さに比例しなくなり飽和する。したがって、バスケット工法で整流子を作製する場合には、整流子片の凹凸深さは10μm以上にするとよりよい。 As can be seen from the commutators of Examples 2 to 4, when the commutator is manufactured by the basket method, a commutator having high strength can be obtained by setting the unevenness depth of the commutator piece to 10 μm or more. can. Specifically, the commutator of the third embodiment can obtain about twice the strength by doubling the unevenness depth as compared with the commutator of the second embodiment. Although the commutator of No. 4 has twice the unevenness depth as that of the commutator of Example 3, only the same strength as that of the commutator of Example 3 is obtained. That is, when the unevenness depth is 10 μm or more, the strength of the commutator is not proportional to the unevenness depth of the commutator piece and is saturated. Therefore, when the commutator is manufactured by the basket method, it is better that the uneven depth of the commutator piece is 10 μm or more.
 (変形例)
 以上、本開示に係る整流子及び整流子を備える電動機等について、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。
(Modification example)
The commutator and the motor or the like including the commutator according to the present disclosure have been described above based on the embodiment, but the present disclosure is not limited to the above embodiment.
 例えば、上記実施の形態において、バスケット100に配置する整流子片30Mとしては、露出部31における幅広部と幅狭部との接続部分が直角であるものを用いたが、これに限らない。例えば、図16A及び図16Bに示される整流子片30MAのように、露出部31における幅広部と幅狭部との接続部分34を湾曲させてRを付けたものを用いてもよい。図16Aは、実施の形態に係る整流子の製造方法で用いられる他の整流子片(フック曲げを行う前の状態)の斜視図である。図16Bは、図16Aに示す整流子片の側面図である。これにより、整流子片30MAをバスケット100の凹部110に挿入しやすくなる。 For example, in the above embodiment, as the commutator piece 30M arranged in the basket 100, a commutator piece 30M in which the connecting portion between the wide portion and the narrow portion in the exposed portion 31 is at a right angle is used, but the present invention is not limited to this. For example, as in the commutator piece 30MA shown in FIGS. 16A and 16B, a commutator piece 30MA in which the connecting portion 34 between the wide portion and the narrow portion in the exposed portion 31 is curved and marked with R may be used. FIG. 16A is a perspective view of another commutator piece (state before hook bending) used in the commutator manufacturing method according to the embodiment. FIG. 16B is a side view of the commutator piece shown in FIG. 16A. This makes it easier to insert the commutator piece 30MA into the recess 110 of the basket 100.
 また、上記実施の形態において、整流子14は、回転軸13の第2部位13bに取り付けられていたが、これに限らない。例えば、整流子14は、回転軸13の第1部位13aに取り付けられていてもよい。この場合、整流子14は、例えば、回転軸13における回転子鉄心11aと第1軸受け16との間の部位に取り付けられる。 Further, in the above embodiment, the commutator 14 is attached to the second portion 13b of the rotating shaft 13, but the present invention is not limited to this. For example, the commutator 14 may be attached to the first portion 13a of the rotating shaft 13. In this case, the commutator 14 is attached to, for example, a portion of the rotating shaft 13 between the rotor core 11a and the first bearing 16.
 また、上記実施の形態における電動送風機1は、例えば、電気掃除機又はエアタオル等に用いることができる。また、電動送風機1は、電気掃除機又はエアタオルに限らず、自動車用機器に適用してもよいし、その他の家庭用機器又は産業用機器に適用してもよい。 Further, the electric blower 1 in the above embodiment can be used for, for example, a vacuum cleaner, an air towel, or the like. Further, the electric blower 1 is not limited to a vacuum cleaner or an air towel, and may be applied to automobile equipment, or may be applied to other household equipment or industrial equipment.
 また、上記実施の形態において、電動機2は、電動送風機1に用いる場合について説明したが、これに限らない。電動機2は、電動送風機以外の電気機器に用いてもよい。この場合、電動機2は、家庭用機器又は産業用機器等の種々の製品に用いることができる。 Further, in the above embodiment, the case where the motor 2 is used for the electric blower 1 has been described, but the present invention is not limited to this. The electric motor 2 may be used for an electric device other than the electric blower. In this case, the motor 2 can be used for various products such as household equipment or industrial equipment.
 その他、上記実施の形態に対して当業者が思い付く各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。 In addition, it is realized by arbitrarily combining the components and functions in each embodiment within the range obtained by applying various modifications to the above-described embodiment and not deviating from the purpose of the present disclosure. Forms are also included in this disclosure.
 本開示の技術は、整流子電動機の整流子として利用することができる。本開示の技術は、整流子だけではなく、整流子を備える電動機、電動機を備える電動送風機及び電動送風機を備える電気掃除機等の種々の電気機器等に広く利用することができる。 The technology of the present disclosure can be used as a commutator for a commutator motor. The technique of the present disclosure can be widely used not only for commutators but also for various electric devices such as electric motors equipped with commutators, electric blowers equipped with electric motors, and vacuum cleaners equipped with electric blowers.
 1 電動送風機
 2 電動機
 3 回転ファン
 4 エアガイド
 5 ファンケース
 5a 吸気口
 6 フレーム
 6a 排気口
 7 ブラケット
 11 回転子
 11a 回転子鉄心
 11b 巻線コイル
 12 固定子
 13 回転軸
 13a 第1部位(出力軸)
 13b 第2部位(反出力軸)
 14 整流子
 15 ブラシ
 16 第1軸受け
 17 第2軸受け
 20 樹脂成形体
 21 貫通孔
 30、30M、30MA 整流子片
 31 露出部
 31a 前面
 31b 側面(対向面)
 31c 背面(接触面)
 32 埋設部
 32c 埋設面
 33 フック部
 100 バスケット
 110 凹部
 120 凸部
 200 エッチング液
1 Electric blower 2 Motor 3 Rotating fan 4 Air guide 5 Fan case 5a Intake port 6 Frame 6a Exhaust port 7 Bracket 11 Rotor 11a Rotor iron core 11b Winding coil 12 Stator 13 Rotating shaft 13a First part (output shaft)
13b 2nd part (anti-output shaft)
14 Commutator 15 Brush 16 1st bearing 17 2nd bearing 20 Resin molded body 21 Through holes 30, 30M, 30MA Commutator piece 31 Exposed part 31a Front surface 31b Side surface (opposing surface)
31c back (contact surface)
32 Buried part 32c Buried surface 33 Hook part 100 Basket 110 Concave part 120 Convex part 200 Etching liquid

Claims (9)

  1. 樹脂成形体と、
    前記樹脂成形体に固定された複数の整流子片とを備え、
    前記複数の整流子片の各々は、
    前記樹脂成形体の外周面に接する接触面と、
    前記樹脂成形体から露出し、前記複数の整流子片のうち隣接する整流子片に対向する対向面とを有し、
    前記接触面における表面の微小凹部の最大深さは、前記対向面における表面の微小凹部の最大深さよりも深い、
    整流子。
    Resin molded body and
    A plurality of commutator pieces fixed to the resin molded body are provided.
    Each of the plurality of commutator pieces
    A contact surface in contact with the outer peripheral surface of the resin molded body and
    It has a facing surface that is exposed from the resin molded body and faces the adjacent commutator piece among the plurality of commutator pieces.
    The maximum depth of the surface micro-recesses on the contact surface is deeper than the maximum depth of the surface micro-recesses on the facing surface.
    Commutator.
  2. 前記樹脂成形体は、電動機の回転軸が挿入される貫通孔を有し、
    前記整流子片は、前記電動機のブラシに接する前面を有し、
    前記接触面における表面の微小凹部の最大深さは、前記前面における表面の微小凹部の最大深さよりも深い、
    請求項1に記載の整流子。
    The resin molded body has a through hole into which the rotating shaft of the motor is inserted.
    The commutator piece has a front surface in contact with the brush of the motor.
    The maximum depth of the surface micro-recesses on the contact surface is deeper than the maximum depth of the surface micro-recesses on the front surface.
    The commutator according to claim 1.
  3. 前記複数の整流子片のうち隣り合う2つの整流子片の間の間隔における外周側の周方向に沿った長さは、前記間隔における内周側の周方向に沿った長さよりも長い、
    請求項1又は2に記載の整流子。
    The length along the circumferential direction on the outer peripheral side in the distance between two adjacent commutator pieces among the plurality of commutator pieces is longer than the length along the circumferential direction on the inner peripheral side in the distance.
    The commutator according to claim 1 or 2.
  4. 請求項1~3のいずれか1項に記載の整流子と、
    前記整流子が取り付けられた回転軸を有する回転子と、
    前記回転子に作用する磁力を発生させる固定子とを備える、
    電動機。
    The commutator according to any one of claims 1 to 3 and
    A rotor having a rotating shaft to which the commutator is attached, and a rotor
    The stator includes a stator that generates a magnetic force acting on the rotor.
    Electric motor.
  5. 電動機の回転軸が挿入される貫通孔を有する樹脂成形体と前記回転軸を中心として環状に配置された複数の整流子片とを備える整流子の製造方法であって、
    前記複数の整流子片を筒状のバスケットに円環状に配置する工程と、
    前記複数の整流子片の各々の表面の少なくとも一部を粗面化する工程と、
    前記複数の整流子片が配置された前記バスケットの内周部に液状の樹脂を注入して硬化することで、前記複数の整流子片が固定された前記樹脂成形体を形成する工程とを含む、
    整流子の製造方法。
    A method for manufacturing a commutator including a resin molded body having a through hole into which a rotating shaft of an electric motor is inserted and a plurality of commutator pieces arranged in an annular shape around the rotating shaft.
    The process of arranging the plurality of commutator pieces in a tubular basket in an annular shape, and
    A step of roughening at least a part of the surface of each of the plurality of commutator pieces, and
    The step includes a step of forming the resin molded body to which the plurality of commutator pieces are fixed by injecting a liquid resin into the inner peripheral portion of the basket in which the plurality of commutator pieces are arranged and curing the liquid resin. ,
    How to manufacture a commutator.
  6. 前記複数の整流子片を前記バスケットに配置する工程を行った後に、前記複数の整流子片の各々の表面の少なくとも一部を粗面化する工程を含む、
    請求項5に記載の整流子の製造方法。
    After performing the step of arranging the plurality of commutator pieces in the basket, the step of roughening at least a part of the surface of each of the plurality of commutator pieces is included.
    The method for manufacturing a commutator according to claim 5.
  7. 前記複数の整流子片の各々は、前記樹脂成形体の外周面に接する接触面と、前記樹脂成形体から露出し、前記複数の整流子片のうち隣接する整流子片に対向する対向面とを有し、
    前記整流子片を粗面化する工程では、粗面化処理を施すことで前記接触面及び前記対向面のうち前記接触面のみを粗面化する、
    請求項6に記載の整流子の製造方法。
    Each of the plurality of commutator pieces has a contact surface in contact with the outer peripheral surface of the resin molded body and a facing surface exposed from the resin molded body and facing an adjacent commutator piece among the plurality of commutator pieces. Have,
    In the step of roughening the commutator piece, only the contact surface among the contact surface and the facing surface is roughened by performing a roughening process.
    The method for manufacturing a commutator according to claim 6.
  8. 前記バスケットは、樹脂製である、
    請求項5~7のいずれか1項に記載の整流子の製造方法。
    The basket is made of resin.
    The method for manufacturing a commutator according to any one of claims 5 to 7.
  9. 電動機の回転軸に挿入される貫通孔を有する樹脂成形体と前記回転軸を中心として環状に配置された複数の整流子片とを備える整流子の製造方法であって、
    前記複数の整流子片の母材となる筒状の整流子母材の表面の少なくとも一部を粗面化する工程と、
    前記整流子母材の内周部に液状の樹脂を注入して硬化することで、前記整流子母材が固定された前記樹脂成形体を形成する工程と、
    前記整流子母材を前記複数の整流子片に分離する工程とを含む、
    整流子の製造方法。
    A method for manufacturing a commutator including a resin molded body having a through hole inserted into a rotating shaft of an electric motor and a plurality of commutator pieces arranged in an annular shape around the rotating shaft.
    A step of roughening at least a part of the surface of the tubular commutator base material which is the base material of the plurality of commutator pieces, and
    A step of forming the resin molded body to which the commutator base material is fixed by injecting a liquid resin into the inner peripheral portion of the commutator base material and curing the resin.
    A step of separating the commutator base material into the plurality of commutator pieces is included.
    How to manufacture a commutator.
PCT/JP2021/000956 2020-01-20 2021-01-14 Commutator, electric motor, and method for manufacturing commutator WO2021149571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020007003A JP2023015425A (en) 2020-01-20 2020-01-20 Commutator, electric motor, and commutator manufacturing method
JP2020-007003 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021149571A1 true WO2021149571A1 (en) 2021-07-29

Family

ID=76992273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000956 WO2021149571A1 (en) 2020-01-20 2021-01-14 Commutator, electric motor, and method for manufacturing commutator

Country Status (2)

Country Link
JP (1) JP2023015425A (en)
WO (1) WO2021149571A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308182A (en) * 1995-05-09 1996-11-22 Sugiyama Seisakusho:Kk Commutator for small-sized motor and its manufacture
JP2002051506A (en) * 2000-08-02 2002-02-15 Hitachi Chem Co Ltd Commutator for motor, method of manufacturing motor and commutator for motor
JP2005033847A (en) * 2003-07-07 2005-02-03 Matsushita Electric Ind Co Ltd Commutator of motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08308182A (en) * 1995-05-09 1996-11-22 Sugiyama Seisakusho:Kk Commutator for small-sized motor and its manufacture
JP2002051506A (en) * 2000-08-02 2002-02-15 Hitachi Chem Co Ltd Commutator for motor, method of manufacturing motor and commutator for motor
JP2005033847A (en) * 2003-07-07 2005-02-03 Matsushita Electric Ind Co Ltd Commutator of motor

Also Published As

Publication number Publication date
JP2023015425A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
JP4955284B2 (en) Small motor with polygonal outline
JP5101930B2 (en) Small motor with polygonal outline
US8220146B2 (en) Method of manufacturing short-circuiting member
EP2157677B1 (en) Small motor of quadrangular external shape
EP2597189A1 (en) Brushless motor for washing machine and drum-type washing machine provided with same
CN110476334A (en) Motor
JP2008160973A (en) Rotor and rotary electric machine
WO2021149571A1 (en) Commutator, electric motor, and method for manufacturing commutator
JP2004222356A (en) Rotating electric equipment
KR100503721B1 (en) Direct current motor
JP6225513B2 (en) Molded motor
JP2017158424A (en) Commutator motor element, commutator motor, electric blower and cleaner
JP4498358B2 (en) Electric motor and electric blower provided with the same
JP2018074701A (en) Commutator electric motor element, commutator electric motor, electric blower, and cleaner
JP3948371B2 (en) Electric tool
KR101918065B1 (en) Electric motor with permanent magnet and compressor having the same
JP2009038887A (en) Slide bearing and electric motor
CN107147250B (en) Commutator motor, electric blower, and dust collector
WO2024084845A1 (en) Electric motor
JP2001251818A (en) Manufacturing method for motor rotor
JP5349984B2 (en) Rotating electric machine brush device and rotating electric machine
JP2021145454A (en) Rotator and electric motor
KR20060007865A (en) Brushless dc motor
JP2019221059A (en) Commutator, electric motor and method of manufacturing commutator
JP4236887B2 (en) Insulation structure of small two-pole DC motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 21744809

Country of ref document: EP

Kind code of ref document: A1