WO2021149420A1 - Electric motor with two degrees of freedom - Google Patents

Electric motor with two degrees of freedom Download PDF

Info

Publication number
WO2021149420A1
WO2021149420A1 PCT/JP2020/047259 JP2020047259W WO2021149420A1 WO 2021149420 A1 WO2021149420 A1 WO 2021149420A1 JP 2020047259 W JP2020047259 W JP 2020047259W WO 2021149420 A1 WO2021149420 A1 WO 2021149420A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
drive shaft
magnetic poles
pole
stator
Prior art date
Application number
PCT/JP2020/047259
Other languages
French (fr)
Japanese (ja)
Inventor
禎之 八田
康孝 藤本
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to JP2021573010A priority Critical patent/JPWO2021149420A1/ja
Publication of WO2021149420A1 publication Critical patent/WO2021149420A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to a two-degree-of-freedom motor.
  • Patent Document 1 discloses a two-degree-of-freedom motor (motor).
  • An object of the present invention is to provide a two-degree-of-freedom motor capable of achieving low loss and high output.
  • An annular first stator forming a rotating magnetic field
  • an annular second stator forming a rotating magnetic field
  • a plurality of first magnetic poles magnetized to the first polarity
  • a second magnetic pole different from the first polarity. It includes a plurality of magnetically magnetized second magnetic poles and is provided with an annular gap with respect to the inner peripheral surface of the first stator, and is rotated by a rotating magnetic field formed by the first stator.
  • the plurality of first magnetic poles of the first rotor have at least a drive shaft that is supported so as to be linearly movable and rotatably movable, and the plurality of first magnetic poles of the first rotor are inclined in the axial direction toward the circumferential direction.
  • the plurality of second magnetic poles of the first rotor are arranged side by side with a distance from each other, and the plurality of second magnetic poles of the first rotor are spaced apart from each other along the direction in which the plurality of first magnetic poles of the first rotor are arranged.
  • a two-degree-of-freedom electric motor arranged along a second direction, and the plurality of second magnetic poles of the drive shaft are arranged along the first direction and the second direction.
  • the two-degree-of-freedom motor in which the first direction is the inclination direction and the second direction is the axial direction.
  • the plurality of first magnetic poles of the drive shaft are arranged side by side at intervals along the inclination direction, and the plurality of second magnetic poles of the drive shaft are arranged side by side.
  • the plurality of first magnetic poles of the drive shaft are arranged at intervals along the direction in which the plurality of first magnetic poles are arranged, and are arranged so as not to overlap the plurality of first magnetic poles of the drive shaft in the circumferential direction. Electric motor.
  • a two-degree-of-freedom motor further comprising an annular second rotor that is rotationally moved by a rotating magnetic field formed by the second stator.
  • the first direction is the first inclination direction which is inclined in the first axial direction toward the first circumferential direction
  • the second direction is the opposite direction of the first circumferential direction. It is a second tilting direction that tilts in the first axial direction toward a certain second circumferential direction
  • the plurality of first magnetic poles of the first rotor are arranged at intervals along the first tilting direction.
  • the plurality of second magnetic poles of the first rotor are arranged at intervals along the first inclination direction, and do not overlap with the plurality of first magnetic poles of the first rotor in the circumferential direction.
  • the plurality of first magnetic poles of the second rotor are arranged at intervals along the second tilt direction, and the plurality of second magnetic poles of the second rotor are arranged in the second rotor direction.
  • a two-degree-of-freedom electric motor arranged so as to be spaced apart from each other along the second inclination direction and not to overlap with the plurality of first magnetic poles of the two rotors in the circumferential direction.
  • each of the plurality of first magnetic poles and the plurality of second magnetic poles of the drive shaft has an end portion along the first tilt direction and an end portion along the second tilt direction.
  • a two-degree-of-freedom motor that has a shape.
  • the plurality of first magnetic poles of the drive shaft are arranged at intervals in the axial direction, and the plurality of second magnetic poles of the drive shaft are shafts.
  • Two-degree-of-freedom motors that are spaced apart from each other in the direction.
  • each of the plurality of first magnetic poles and the plurality of second magnetic poles of the drive shaft has a shape having an end portion along the circumferential direction and an end portion along the axial direction.
  • a two-degree-of-freedom motor in which the ends are alternately arranged so as to be adjacent to each other in the circumferential direction and the axial direction.
  • FIG. 3 is a cross-sectional view taken along the line III-III cut surface of FIG. It is a perspective view which shows the 1st rotor of 1st Embodiment. It is a figure which shows the magnet arrangement of the drive shaft of 1st Embodiment, and is the development plan view of the outer peripheral surface of the drive shaft. It is a figure which shows the magnet arrangement of the drive shaft of 1st Embodiment, and is the development plan view of the outer peripheral surface of the drive shaft.
  • FIG. 1 is a perspective view showing a two-degree-of-freedom motor according to the first embodiment.
  • FIG. 2 is a front view showing a two-degree-of-freedom motor according to the first embodiment.
  • FIG. 3 is a cross-sectional view taken along the line III-III cut surface of FIG.
  • FIG. 4 is a perspective view showing the first rotor of the first embodiment.
  • the two-degree-of-freedom motor 100 is a so-called radial gap type motor, and has a first stator 10, a second stator 20, a drive shaft 30, and a first rotor 40, as shown in FIGS. 1 to 3.
  • the two-degree-of-freedom motor 100 is a motor capable of independently generating a thrust in the Z-axis direction and a rotational force in the ⁇ direction.
  • the Z-axis direction is the direction in which the drive shaft 30 extends.
  • the direction from the first stator 10 side to the second stator 20 side is the + Z direction
  • the opposite direction is the ⁇ Z direction.
  • the circumferential direction of the drive shaft 30 is set to the ⁇ direction.
  • the clockwise direction is the + ⁇ direction
  • the opposite direction is the ⁇ direction.
  • the first stator 10 is annular and forms a rotating magnetic field. Specifically, in the first stator 10, a plurality of armatures (not shown) composed of a coil and an iron core around which the coil is wound are arranged at intervals in the ⁇ direction, and the phases are sequentially arranged on the plurality of armatures. It is a structure that forms a rotating magnetic field by supplying a staggered current. The rotating magnetic field allows the first stator 10 to rotationally move the first rotor 40.
  • the second stator 20 is annular and forms a rotating magnetic field.
  • a plurality of armatures (not shown) composed of a coil and an iron core around which the coil is wound are arranged at intervals in the ⁇ direction, and the phases are sequentially arranged on the plurality of armatures. It is a structure that forms a rotating magnetic field by supplying a staggered current.
  • the second stator 20 can drive the drive shaft 30 by the rotating magnetic field.
  • the first stator 10 and the second stator 20 are provided at different positions in the Z-axis direction. Further, the first stator 10 and the second stator 20 can be controlled independently.
  • the first rotor 40 is an annular rotating body. Further, the first rotor 40 has an annular gap with respect to the outer peripheral surface of the drive shaft 30 and the inner peripheral surface of the first stator 10, and is rotatably supported. The first rotor 40 may be rotatably supported by a bearing (not shown) incorporated in the first stator 10.
  • the north pole region including a plurality of north pole magnets 41 (first magnetic poles) magnetized on the north pole (first polarity) and the south pole (second polarity) are magnetized. It includes an S pole region including a plurality of S pole magnets 42 (second magnetic poles).
  • the portion corresponding to the north pole region of the outer peripheral surface is the south pole region
  • the portion corresponding to the south pole region of the outer peripheral surface is the north pole region. That is, the inner peripheral surface of the N-pole magnet 41 is the S pole, and the inner peripheral surface of the S-pole magnet 42 is the N pole.
  • the N-pole magnet 41 and the S-pole magnet 42 are preferably permanent magnets.
  • the N-pole magnet 31 and the S-pole magnet 32, which will be described later, may also be permanent magnets.
  • each of the plurality of N-pole magnets 41 and S-pole magnets 42 included in the first rotor 40 has an arc shape. Further, as shown in FIG. 4, the width of one N-pole magnet 41 and one S-pole magnet 42 in the ⁇ direction is 45 °, and eight of these magnets are arranged to form one circumference of the first rotor 40. It was decided to. Note that FIG. 4 shows a configuration in which an N-pole magnet 41 and an S-pole magnet 42 that are adjacent to each other in the circumferential direction are connected to each other, but the present invention is not limited to this, and they may be separated from each other. In this case, the N-pole magnet 41 and the S-pole magnet 42 may be supported by a non-magnetized tubular housing or the like.
  • the north pole region and the south pole region of the first rotor 40 are provided so as to face the outer peripheral surface of the drive shaft 30 and the inner peripheral surface of the first stator 10, respectively. That is, the north pole region and the south pole region of the outer peripheral surface of the first rotor 40 are magnetically affected by the first stator 10, and the north pole region and the south pole region of the inner peripheral surface of the first rotor 40 are driven. It is provided so as to magnetically affect the shaft 30. The details of the magnet arrangement in the first rotor 40 will be described later.
  • the first rotor 40 rotates relative to the first stator 10 by the same drive system as the so-called SPM (Surface Permanent Magnet Motor) motor. That is, the position of the magnetic flux formed by the phase change of the three-phase current supplied to the armature of the first stator 10 of the first rotor 40 changes, and the first rotor 40 rotates and moves with the change of the position of the magnetic flux.
  • SPM Surface Permanent Magnet Motor
  • the drive shaft 30 is arranged with an annular gap with respect to the inner peripheral surfaces of the first stator 10 and the second stator 20. Further, on the outer peripheral surface of the drive shaft 30, an N-pole region including a plurality of N-pole magnets 31 magnetized on the N-pole and an S-pole region including an S-pole magnet 32 magnetized on the S pole are provided. ing. Further, as shown in FIG. 1, the width of one N-pole magnet 31 and one S-pole magnet 32 in the ⁇ direction is 90 °, and four of these magnets are arranged to form one circumference of the drive shaft 30. I decided. The details of the magnet arrangement on the drive shaft 30 will be described later.
  • the N-pole region on the outer peripheral surface of the drive shaft 30 receives a repulsive force from the N-pole region on the inner peripheral surface of the first rotor 40 and a force attracted to the S-pole region on the inner peripheral surface of the first rotor 40. Further, the S pole region on the outer peripheral surface of the drive shaft 30 receives a force attracted to the N pole region on the inner peripheral surface of the first rotor 40, and also receives a repulsive force from the S pole region on the inner peripheral surface of the first rotor 40. receive.
  • FIGS. 5 and 6 are views showing the magnet arrangement of the drive shaft of the first embodiment, and are developed plan views of the outer peripheral surface of the drive shaft.
  • the N-pole magnet 31 is shown by narrow diagonal lines
  • the S-pole magnet 32 is shown by hatching consisting of a plurality of wide diagonal lines
  • the unmagnetized portion (hereinafter, non-magnetized portion) is shown.
  • the magnetized part) is shown in white.
  • the drive shaft 30 has an N-pole region extending along the right inclination direction (first direction) and an S-pole region extending along the N-pole region on the outer peripheral surface thereof.
  • the north pole region and the south pole region are arranged alternately.
  • the rightward tilting direction is defined as a direction that tilts in the + Z direction toward the + ⁇ direction (first circumferential direction).
  • the left tilt direction described later is defined as a direction that tilts in the + Z direction toward the ⁇ direction (second circumferential direction).
  • the inclination angle in the right inclination direction with respect to the ⁇ direction is ⁇ .
  • the N-pole region is a band-shaped region including the N-pole magnet 31 and the non-magnetized portion 33.
  • the S pole region is a band-shaped region including the S pole magnet 32 and the non-magnetized portion 34.
  • the N-pole magnets 31 are arranged side by side at intervals along the right-inclining direction. Further, in the N-pole region, the non-magnetized portions 33 are arranged side by side at intervals from each other along the right-inclining direction. As described above, in the N-pole region, the N-pole magnet 31 and the non-magnetized portion 33 are alternately arranged side by side.
  • S pole magnets 32 are arranged side by side at intervals along the right inclination direction. Further, in the S pole region, the non-magnetized portions 34 are arranged side by side at intervals from each other along the right inclination direction. In this way, in the S pole region, the S pole magnet 32 and the non-magnetized portion 34 are arranged alternately side by side.
  • the N-pole magnet 31 included in the N-pole region of the drive shaft 30 and the non-magnetized portion 34 included in the S-pole region of the drive shaft 30 are arranged alternately in the Z-axis direction.
  • the S-pole magnet 32 included in the S-pole region of the drive shaft 30 and the non-magnetized portion 33 included in the N-pole region of the drive shaft 30 are arranged alternately in the Z-axis direction.
  • the drive shaft 30 has an N-pole region extending along the Z-axis direction (a second direction intersecting the first direction) and an S-pole region extending along the Z-axis direction. It can also be regarded as a configuration that includes.
  • the N-pole region extending along the Z-axis direction is a region including the N-pole magnet 31 and the non-magnetized portion 34.
  • the S pole region extending along the Z-axis direction is a region including the S pole magnet 32 and the non-magnetized portion 33.
  • the planar shapes of the N-pole magnet 31, the S-pole magnet 32, and the non-magnetized portions 33, 34 in the developed plan view are respectively extended in the Z-axis direction and tilted to the right. It was a parallelogram including a side (end) extending in the direction.
  • FIG. 7 is a view showing the magnet arrangement of the first rotor of the first embodiment, and is a developed plan view of the outer peripheral surface of the first rotor.
  • the first rotor 40 has a magnetic pole arrangement similar to that shown in FIG. 7 even when viewed from the inner peripheral surface side.
  • the N-pole magnet 41 is shown by a plurality of narrow diagonal lines
  • the S-pole magnet 42 is shown by a plurality of wide diagonal lines
  • the non-magnetized portion 43 is white. Shown without.
  • the magnet arrangement of the first rotor 40 is substantially the same as the magnet arrangement of the drive shaft 30. That is, in the first rotor 40, the plurality of N-pole magnets 41 are arranged so as to be arranged at intervals along the right-inclining direction and at intervals along the Z-axis direction. Further, the plurality of S pole magnets 42 are also arranged so as to be arranged at intervals along the right-inclining direction and at intervals along the Z-axis direction. Further, the N-pole magnet 41 is arranged so as not to overlap with the S-pole magnet 42 in the ⁇ direction.
  • the shapes of the N-pole magnet 41 and the S-pole magnet 42 of the first rotor 40 are almost the same as those of the N-pole magnet 31 and the S-pole magnet 32 of the drive shaft 30.
  • the drive shaft 30 rotates relative to the second stator 20 in the same drive system as the so-called SPM (Surface Permanent Magnet Motor) motor. That is, when a rotating magnetic field is formed by passing an electric current through the second stator 20, a force in the ⁇ direction acts on the drive shaft 30. As a result, the drive shaft 30 rotates and moves in the ⁇ direction. By changing the direction of the current flowing through the second stator 20, the drive shaft 30 can be rotationally moved in either the + ⁇ direction or the ⁇ direction.
  • SPM Surface Permanent Magnet Motor
  • the drive shaft 30 can be rotationally moved by driving the second stator 20 without driving the first stator 10. That is, the rotational force in the ⁇ direction can be generated independently.
  • FIG. 8 is a diagram showing the magnetic force acting on the drive shaft 30 as the first rotor 40 rotates and moves.
  • a rotational force in the ⁇ direction acts on the first rotor 40.
  • the rotational movement of the first rotor 40 in the ⁇ direction causes a phase difference in the ⁇ direction between the magnet arrangement of the first rotor 40 and the magnet arrangement of the drive shaft 30.
  • a magnetic force is generated on the drive shaft 30.
  • a magnetic force F is generated on the drive shaft 30 in a direction orthogonal to the right tilting direction, as shown in FIG.
  • the magnetic force F is the resultant force of the thrust F ⁇ cos ⁇ acting in the + Z direction and the rotational force F ⁇ sin ⁇ acting in the ⁇ direction.
  • the magnetic force F is generated according to the phase difference ⁇ mr1 shown in the equation (1).
  • ⁇ r1 and ⁇ m indicate the rotation angles of the first rotor 40 and the drive shaft 30 in the ⁇ direction
  • z m indicates the position of the drive shaft 30 in the Z axis direction.
  • ⁇ rp and ⁇ mp indicate the period of magnet arrangement (width of one magnet in the ⁇ direction) of each of the first rotor 40 and the drive shaft 30 in the ⁇ direction.
  • the drive shaft 30 has a rotational force in the ⁇ direction due to the rotating magnetic field formed by the second stator 20 and a Z-axis direction generated by the rotational movement of the first rotor 40. Thrust and rotational force in the ⁇ direction act.
  • the rotational force in the ⁇ direction due to the rotating magnetic field formed by the second stator 20 and the rotational force F ⁇ Sin ⁇ in the ⁇ direction generated by the rotational movement of the first rotor 40 are required. It is preferable to control the first stator 10 and the second stator 20 so as to cancel each other out. When the rotational forces cancel each other out, the drive shaft 30 only moves linearly relative to the first stator 10 and the second stator 20. As a result, thrust in the Z-axis direction can be generated independently.
  • the first stator 10, the second stator 20, the first rotor 40, and the drive shaft 30 are physically non-contact with each other, loss due to friction can be prevented. As a result, high output can be realized. Further, by adopting a configuration in which two stators, which are output units, are provided, it is possible to output a higher output. Further, since the magnets included in the first rotor 40 and the drive shaft 30 are rectangular, the configuration is simpler and easier to manufacture as compared with the configuration in which the spiral magnet is adopted. Further, since the north pole region and the south pole region of the first rotor 40 and the drive shaft 30 include a non-magnetized portion, the amount of magnets used can be reduced. As a result, the cost can be reduced.
  • FIG. 9 is a perspective view showing a two-degree-of-freedom motor according to the second embodiment.
  • FIG. 10 is a front view showing a two-degree-of-freedom motor according to the second embodiment.
  • FIG. 11 is a cross-sectional view of the XI-XI cut plane of FIG.
  • FIG. 12 is a view showing the magnet arrangement of the drive shaft of the second embodiment, and is a developed plan view of the outer peripheral surface of the drive shaft.
  • FIG. 13 is a view showing the magnet arrangement of the drive shaft of the second embodiment, and is a developed plan view of the outer peripheral surface of the drive shaft.
  • FIG. 14 is a view showing the magnet arrangement of the first rotor of the second embodiment, and is a developed plan view of the outer peripheral surface of the first rotor.
  • FIG. 15 is a view showing the magnet arrangement of the second rotor of the second embodiment, and is a developed plan view of the outer peripheral surface of the second rotor.
  • the two-degree-of-freedom motor 200 is an electric motor capable of independently generating a thrust in the Z-axis direction and a rotational force in the ⁇ direction, similar to the two-degree-of-freedom motor 100.
  • the two-degree-of-freedom motor 200 has a first stator 210, a second stator 220, a drive shaft 230, a first rotor 240, and a second rotor 250.
  • the first stator 210 has a different number of slots from the first stator 10 shown in FIG. 1 and the like, but has the same other basic structures, is annular, and forms a rotating magnetic field.
  • the first stator 210 can drive the first rotor 240 by forming a rotating magnetic field.
  • the second stator 220 has a different number of slots from the second stator 220 shown in FIG. 1 and the like, but has the same other basic structures, is annular, and forms a rotating magnetic field. ..
  • the second stator 220 can drive the second rotor 250 by forming a rotating magnetic field.
  • the first stator 210 and the second stator 220 are provided at different positions in the Z-axis direction. Further, the first stator 210 and the second stator 220 can be controlled independently.
  • the first rotor 240 is an annular rotating body. Further, the first rotor 240 has an annular gap with respect to the outer peripheral surface of the drive shaft 230 and the inner peripheral surface of the first stator 210, and is rotatably supported.
  • the second rotor 250 is also an annular rotating body.
  • the second rotor 250 has an annular gap with respect to the outer peripheral surface of the drive shaft 230 and the inner peripheral surface of the second stator 220, and is rotatably supported.
  • the first rotor 240 has a band-shaped N-pole region including a plurality of N-pole magnets 41 magnetized on the N-pole and a band-shaped S including a plurality of S-pole magnets 42 magnetized on the S-pole on the outer peripheral surface. Includes polar region.
  • the portion corresponding to the north pole region of the outer peripheral surface is the south pole region
  • the portion corresponding to the south pole region of the outer peripheral surface is the north pole region. That is, the inner peripheral surface of the N-pole magnet 41 is the S pole, and the inner peripheral surface of the S-pole magnet 42 is the N pole.
  • the north pole region and the south pole region of the first rotor 240 are provided so as to face the outer peripheral surface of the drive shaft 230 and the inner peripheral surface of the first stator 210, respectively. That is, the north pole region and the south pole region of the outer peripheral surface of the first rotor 240 are magnetically affected by the first stator 210, and the north pole region and the south pole region of the inner peripheral surface of the first rotor 240 are driven. It is provided so as to magnetically affect the shaft 230. The details of the magnet arrangement in the first rotor 240 will be described later.
  • the second rotor 250 has a band-shaped N-pole region containing a plurality of N-pole magnets 41 magnetized on the N-pole and a band-shaped S-pole containing a plurality of S-pole magnets 42 magnetized on the S pole. Includes area.
  • the north pole region and the south pole region of the second rotor 250 are provided so as to face the outer peripheral surface of the drive shaft 230 and the inner peripheral surface of the second stator 220, respectively. That is, the north pole region and the south pole region of the second rotor 250 are magnetically affected by the second stator 220 and magnetically with respect to the north pole region and the south pole region drive shaft 230 of the second rotor 250. It is provided to influence. The details of the magnet arrangement in the second rotor 250 will be described later.
  • each of the plurality of N-pole magnets 41 and S-pole magnets 42 included in the second rotor 250 has an arc shape. Further, as shown in FIG. 10, the width of one N-pole magnet 41 and one S-pole magnet 42 in the ⁇ direction is 45 °, and eight of these magnets are arranged to form one circumference of the second rotor 250. It was decided to. The same applies to the first rotor 240.
  • the drive shaft 230 is arranged with an annular gap with respect to the inner peripheral surfaces of the first rotor 240 and the second rotor 250. Further, on the outer peripheral surface of the drive shaft 230, a band-shaped N-pole region including a plurality of N-pole magnets 31 magnetized on the N-pole and a band-shaped S-pole including an S-pole magnet 32 magnetized on the S pole The area is provided. Further, in the drive shaft 230, the width of one N-pole magnet 31 and one S-pole magnet 32 in the ⁇ direction is 180 °, and two of these magnets are arranged side by side to form one circumference of the drive shaft 230. And said. The details of the magnet arrangement on the drive shaft 230 will be described later.
  • the N-pole region on the outer peripheral surface of the drive shaft 230 receives a repulsive force from the N-pole region on the inner peripheral surfaces of the first rotor 240 and the second rotor 250, and the inner peripheral surfaces of the first rotor 240 and the second rotor 250. Receives a force that attracts the S pole region of. Further, the S pole region on the outer peripheral surface of the drive shaft 230 receives a force attracting the N pole region on the inner peripheral surfaces of the first rotor 240 and the second rotor 250, and the inner circumference of the first rotor 240 and the second rotor 250. Receives a repulsive force from the S pole region of the surface.
  • the drive shaft 330 repels the first rotor 240. You will receive the power to do and the power to attract. Further, when a phase difference occurs in the ⁇ direction between the magnet arrangement of the second rotor 250 and the magnet arrangement of the drive shaft 230 due to the rotational movement of the second rotor 250, the drive shaft 230 is moved from the second rotor 250. It will receive the above-mentioned repulsive force and attractive force. In this way, the drive shaft 230 is driven by receiving a magnetic force from the first rotor 240 and the second rotor 250.
  • FIGS. 12 and 13 are views showing the magnet arrangement of the drive shaft of the second embodiment, and are developed plan views of the outer peripheral surface of the drive shaft.
  • the N-pole magnet 31 is shown by narrow diagonal lines
  • the S-pole magnet 32 is shown by hatching consisting of a plurality of wide diagonal lines
  • the non-magnetized portion is shown in white. There is.
  • the drive shaft 230 has an N-pole region extending along the right inclination direction and an S-pole region extending along the N-pole region on the outer peripheral surface thereof.
  • the north pole region and the south pole region are arranged alternately.
  • the inclination angle in the right inclination direction with respect to the ⁇ direction is ⁇ .
  • the N-pole region is a region including the N-pole magnet 31 and the non-magnetized portion 33.
  • the S pole region is a region including the S pole magnet 32 and the non-magnetized portion 34.
  • the N-pole magnets 31 are arranged side by side at intervals along the right-inclining direction. Further, in the N-pole region, the non-magnetized portions 33 are arranged side by side at intervals from each other along the right-inclining direction. As described above, in the N-pole region, the N-pole magnet 31 and the non-magnetized portion 33 are alternately arranged side by side.
  • S pole magnets 32 are arranged side by side at intervals along the right inclination direction. Further, in the S pole region, the non-magnetized portions 34 are arranged side by side at intervals from each other along the right inclination direction. In this way, in the S pole region, the S pole magnet 32 and the non-magnetized portion 34 are arranged alternately side by side.
  • the N-pole magnet 31 included in the N-pole region of the drive shaft 230 and the non-magnetized portion 34 included in the S-pole region of the drive shaft 230 are arranged alternately side by side in the left inclination direction.
  • the S pole magnet 32 included in the S pole region of the drive shaft 230 and the non-magnetized portion 33 included in the N pole region of the drive shaft 230 are arranged alternately side by side in the left inclination direction.
  • the drive shaft 230 can be regarded as having a configuration including an N pole region extending along the left tilt direction and an S pole region extending along the left tilt direction.
  • the north pole region extending along the left inclination direction is a region including the north pole magnet 31 and the non-magnetized portion 34.
  • the S pole region extending along the left inclination direction is a region including the S pole magnet 32 and the non-magnetized portion 33.
  • the planar shapes of the N-pole magnet 31, the S-pole magnet 32, and the non-magnetized portions 33, 34 in the developed plan view are respectively extended to the right and tilted to the left.
  • a parallelogram (diamond) including a side (end) extending in the direction was used.
  • FIG. 14 is a view showing the magnet arrangement of the first rotor of the second embodiment, and is a developed plan view of the outer peripheral surface of the first rotor.
  • the first rotor 240 has the magnet arrangement shown in FIG. 14 even when viewed from the inner peripheral surface side.
  • the magnet arrangement of the first rotor 240 is the same as that of the first rotor 40 of the first embodiment. That is, in the first rotor 240, the plurality of N-pole magnets 41 are arranged so as to be arranged at intervals along the right inclination direction (first inclination direction) and along the Z-axis direction. Similarly, the plurality of S pole magnets 42 are arranged so as to be arranged at intervals along the right inclination direction and along the Z-axis direction. Further, the N-pole magnet 41 is arranged so as not to overlap with the S-pole magnet 42 in the ⁇ direction.
  • FIG. 15 is a view showing the magnet arrangement of the second rotor of the second embodiment, and is a developed plan view of the outer peripheral surface of the second rotor.
  • the second rotor 250 has the magnet arrangement shown in FIG. 15 even when viewed from the inner peripheral surface side.
  • the plurality of N-pole magnets 41 are arranged at intervals along the left inclination direction (second inclination direction) and are arranged along the Z-axis direction. Have been placed.
  • the plurality of S pole magnets 42 are arranged so as to be arranged at intervals along the left inclination direction and along the Z-axis direction.
  • the N-pole magnet 41 is arranged so as not to overlap with the S-pole magnet 42 in the ⁇ direction.
  • FIG. 16 is a diagram showing the magnetic force acting on the drive shaft as the first rotor rotates and moves.
  • FIG. 17 is a diagram showing a magnetic force acting on the drive shaft as the second rotor rotates and moves.
  • a rotational force in the ⁇ direction acts on the first rotor 240.
  • the rotational movement of the first rotor 240 in the ⁇ direction causes a phase difference in the ⁇ direction between the magnet arrangement of the first rotor 240 and the magnet arrangement of the drive shaft 230.
  • a magnetic force is generated on the drive shaft 230.
  • a magnetic force F is generated on the drive shaft 230 in a direction orthogonal to the right tilting direction, as shown in FIG.
  • the magnetic force F is the resultant force of the thrust F ⁇ cos ⁇ acting in the + Z direction and the rotational force F ⁇ sin ⁇ acting in the ⁇ direction.
  • the magnetic force F shown in FIG. 16 is generated according to the phase difference ⁇ mr1 shown in the above equation (1).
  • ⁇ rp 90 °
  • ⁇ mp 180 °.
  • a rotational force in the ⁇ direction acts on the second rotor 250.
  • the rotational movement of the second rotor 250 in the ⁇ direction causes a phase difference in the ⁇ direction between the magnet arrangement of the second rotor 250 and the magnet arrangement of the drive shaft 230. At that time, a magnetic force is generated on the drive shaft 230.
  • the drive shaft 230 has the drive shaft 230 with respect to the left tilt direction as shown in FIG.
  • a magnetic force F is generated in the direction orthogonal to each other.
  • the magnetic force F is the resultant force of the thrust F ⁇ cos ⁇ acting in the ⁇ Z direction and the rotational force F ⁇ sin ⁇ acting in the ⁇ direction.
  • the magnetic force F shown in FIG. 17 is generated according to the phase difference ⁇ mr2 shown in the equation (2).
  • ⁇ r2 and ⁇ m indicate the rotation angles of the second rotor 250 and the drive shaft 230 in the ⁇ direction
  • z m indicates the position of the drive shaft 230 in the Z axis direction.
  • ⁇ rp and ⁇ mp indicate the period of magnet arrangement (width of one magnet in the ⁇ direction) of each of the second rotor 250 and the drive shaft 230 in the ⁇ direction.
  • l p indicates the period of magnet arrangement in the Z-axis direction (width of one magnet in the Z-axis direction).
  • the drive shaft 230 has the thrust in the Z-axis direction and the rotational force in the ⁇ direction generated by the rotational movement of the first rotor 240, and the rotational movement of the second rotor 250.
  • the thrust in the Z-axis direction and the rotational force in the ⁇ direction which are generated by the above, act.
  • the thrust F ⁇ cos ⁇ in the + Z direction generated by the rotational movement of the first rotor 240 and the thrust F ⁇ cos ⁇ in the ⁇ Z direction generated by the rotation of the second rotor 250 cancel each other out. It is preferable to control the first stator 210 and the second stator 220 so as to match. When the thrusts cancel each other out, the drive shaft 230 only rotationally moves relative to the first stator 210 and the second stator 220. As a result, the rotational force in the ⁇ direction can be generated independently.
  • FIG. 18 is a diagram showing the relationship between the phase angle [deg] of the first rotor and the second rotor with respect to the drive shaft and the thrust [N] when the first rotor and the second rotor rotate in the same direction. Is.
  • the first stator 210 and the second stator 210 and the second stator 210 and the second are so that the thrust in the Z-axis direction generated by the rotational movement of the first rotor 240 and the thrust in the Z-axis direction generated by the rotation of the second rotor 250 cancel each other out.
  • the drive shaft 230 does not move in the Z-axis direction.
  • FIG. 19 shows the relationship between the phase angle [deg] of the first rotor and the second rotor with respect to the drive shaft and the rotational force [Nm] when the first rotor and the second rotor rotate in the same direction. It is a figure.
  • the drive shaft 230 is rotationally moved by the rotational force in the ⁇ direction generated by the rotational movement of the first rotor 240 and the rotational force in the ⁇ direction generated by the rotational movement of the second rotor 250.
  • FIG. 20 is a diagram showing the magnetic force acting on the drive shaft as the second rotor rotates and moves.
  • the drive shaft 230 When the second rotor 250 rotates in the + ⁇ direction, that is, when it rotates in the direction opposite to that of the first rotor 240, the drive shaft 230 has a magnetic force in a direction orthogonal to the left tilt direction, as shown in FIG. F occurs.
  • the magnetic force F is the resultant force of the thrust F ⁇ cos ⁇ acting in the + Z direction and the rotational force F ⁇ sin ⁇ acting in the + ⁇ direction.
  • a rotational force F ⁇ sin ⁇ in the ⁇ direction generated by the rotational movement of the first rotor 240 and a rotational force F ⁇ sin ⁇ in the + ⁇ direction generated by the rotation of the second rotor 250 It is preferable to control the first stator 210 and the second stator 220 so that the two stators cancel each other out. Since the rotational forces cancel each other out, the drive shaft 230 moves only linearly relative to the first stator 210 and the second stator 220. Thereby, the thrust in the Z direction can be generated independently.
  • FIG. 21 shows the relationship between the phase angle [deg] of the first rotor and the second rotor with respect to the drive shaft and the thrust [N] when the first rotor and the second rotor rotate in opposite directions. It is a figure.
  • the drive shaft 230 moves in the linear direction due to the thrust in the Z-axis direction generated by the rotational movement of the first rotor 240 and the thrust in the Z-axis direction generated by the rotation of the second rotor 250.
  • FIG. 22 shows the relationship between the phase angle [deg] of the first rotor and the second rotor with respect to the drive shaft and the rotational force [Nm] when the first rotor and the second rotor rotate in opposite directions. It is a figure which shows.
  • the first stator 210 and the second stator 210 and the second stator 210 and the second are so that the rotational force in the ⁇ direction generated by the rotational movement of the first rotor 240 and the rotational force in the ⁇ direction generated by the rotation of the second rotor 250 cancel each other out.
  • the drive shaft 230 does not rotate in the ⁇ direction.
  • FIG. 23 is a view showing the magnet arrangement of the drive shaft of the first modification of the second embodiment, and is a developed plan view of the outer peripheral surface of the drive shaft.
  • the two-degree-of-freedom motor according to the first modification of the second embodiment has the same configuration as the drive shaft 230 shown in FIGS. 9 to 17, except that the magnet arrangement in the drive shaft 330 is different. ..
  • the drive shaft 330 includes an N-pole region and an S-pole region on the outer peripheral surface thereof, similarly to the drive shaft 230.
  • the N-pole region the N-pole magnet 31 is arranged along the right-tilt direction and the left-tilt direction.
  • the S pole magnet 32 is arranged along the right tilt direction and the left tilt direction. That is, the N-pole magnet 31 and the S-pole magnet 32 are parallelograms (diamonds) including sides (ends) along the right-tilt direction and the left-tilt direction.
  • the plurality of N pole magnets 31 are arranged at intervals in the Z-axis direction.
  • the plurality of S pole magnets 32 are arranged at intervals in the Z-axis direction.
  • the thrust in the Z-axis direction and the rotational force in the ⁇ direction act due to the rotational movement of the first rotor 240 and the second rotor 250. Thereby, linear movement or rotational movement can be generated independently.
  • FIG. 24 is a diagram showing a porcelain that magnetizes the drive shaft of the first modification of the second embodiment.
  • the magnetizer 80 is a device that generates a magnetic field that magnetizes the outer peripheral surface of the drive shaft 330. It has a plurality of magnetized portions 81 having a shape that conforms to the shape of the magnet included in the drive shaft 330.
  • the outer peripheral surface of the drive shaft 330 is magnetized by arranging the drive shaft 330 whose outer peripheral surface is not magnetized on the magnetized portion 81 of the magnetizer 80 and generating a magnetic field.
  • the magnetizer 80 shown in FIG. 24 it is possible to magnetize a half circumference of the drive shaft 330 by one magnetizing operation. Therefore, in the first modification of the second embodiment, the north pole region and the south pole region shown in FIG. 23 can be formed on the outer peripheral surface of the drive shaft 330 by two magnetizing operations.
  • the number of magnets used is small, so that the output is reduced, but the manufacturing process is simplified.
  • FIG. 25 is a perspective view showing a two-degree-of-freedom motor according to a second modification of the second embodiment.
  • 26 and 27 are views showing the magnet arrangement of the drive shaft of the second modification of the second embodiment, and are developed plan views of the outer peripheral surface of the drive shaft.
  • the two-degree-of-freedom motor according to the second modification of the second embodiment is the same as the configuration shown in FIGS. 9 to 17, except that the magnet arrangement in the drive shaft 430 is different.
  • the drive shaft 430 includes an N-pole region and an S-pole region on the outer peripheral surface thereof, similarly to the drive shaft 230.
  • the N-pole magnet 31 included in the N-pole region and the S-pole magnet 32 included in the S-pole region are rectangular (rectangular) including a side (end) along the Z-axis direction and a side (end) along the ⁇ direction. be. Further, the N-pole magnet 31 and the S-pole magnet 32 are alternately arranged so as to be adjacent to each other at the ends in the ⁇ direction and the Z-axis direction.
  • the north pole region and the south pole region are magnetically provided along the right tilt direction and the left tilt direction with respect to the first rotor 240 and the second rotor 250. Can be done.
  • the magnetic force received from the first rotor 240 and the second rotor 250 is applied in the region. It will be offset. That is, the region magnetically surrounded by the thick line with respect to the first rotor 240 and the second rotor 250 is a region equivalent to the non-magnetic pole portion. Therefore, in the magnet arrangement shown in FIG. 26, it can be regarded as magnetically equivalent to the magnet arrangement shown in FIG. 16 with respect to the first rotor 240 and the second rotor 250. Therefore, by using the drive shaft 430, the thrust in the Z-axis direction and the rotational force in the ⁇ direction can be independently generated with the rotational movement of the first rotor 240 and the second rotor 250.

Abstract

Provided is an electric motor (100) with two degrees of freedom that is able to achieve low loss and high output. The present invention has a first stator (10), a second stator (20), a first rotor (40), and a drive shaft (30). N-pole magnets (41) of N-pole regions of the first rotor (40) are arranged in a line along a right-tilting direction with intervals therebetween. S-pole magnets (42) of S-pole regions of the first rotor (40) are arranged in a line along the right-tilting direction with intervals therebetween, and are positioned so as not to overlap with the N-pole magnets (41) of the N-pole regions in a θ direction. N-pole magnets (31) of N-pole regions of the drive shaft (30) are positioned along the right-tilting direction and a Z-axis direction. S-pole magnets (32) of S-pole regions of the drive shaft (30) are positioned along the right-tilting direction and the Z-axis direction.

Description

2自由度電動機2 degrees of freedom motor
 本発明は、2自由度電動機に関する。 The present invention relates to a two-degree-of-freedom motor.
 近年、人の作業をロボットで行うなどの自動化が促進されている。人の作業を実現するために、ロボットは複数の自由度から構成される多自由度システムである必要があるが、搭載されるモータの台数が増加してしまう。モータの台数が増加するとロボットが大型化してしまうため、1のモータで複数の自由度を実現できることが好ましい。そこで、例えば、特許文献1には、2自由度モータ(電動機)が開示されている。 In recent years, automation such as performing human work with robots has been promoted. In order to realize human work, the robot needs to be a multi-degree-of-freedom system composed of a plurality of degrees of freedom, but the number of motors mounted on the robot increases. As the number of motors increases, the size of the robot increases, so it is preferable that one motor can realize a plurality of degrees of freedom. Therefore, for example, Patent Document 1 discloses a two-degree-of-freedom motor (motor).
特開2015-163004号公報JP-A-2015-163004
 ロボット等に用いられる電動機においては、低損失化及び高出力化の観点から更なる改良が望まれている。 Further improvements are desired in the motors used for robots and the like from the viewpoint of low loss and high output.
 本発明の目的は、低損失化及び高出力化を実現可能な2自由度電動機を提供することにある。 An object of the present invention is to provide a two-degree-of-freedom motor capable of achieving low loss and high output.
 上記課題を解決すべく本出願において開示される発明は種々の側面を有しており、それら側面の代表的なものの概要は以下の通りである。 The invention disclosed in this application in order to solve the above problems has various aspects, and the outline of typical ones of these aspects is as follows.
 (1)回転磁界を形成する環状の第1ステータと、回転磁界を形成する環状の第2ステータと、第1極性に着磁された複数の第1磁極と、前記第1極性と異なる第2極性に着磁された複数の第2磁極と、を含み、前記第1ステータの内周面に対して環状の隙間を有して設けられており、前記第1ステータが形成する回転磁界により回転移動する環状の第1ロータと、複数の前記第1磁極と、複数の前記第2磁極と、を含み、前記第1ロータ及び前記第2ステータの内周面に対して環状の隙間を有して設けられており、直進移動及び回転移動可能に支持される駆動軸と、を少なくとも有し、前記第1ロータの前記複数の第1磁極は、周方向に向かうに従い軸方向に傾斜する傾斜方向に沿って互いに間隔を空けて並んで配置されており、前記第1ロータの前記複数の第2磁極は、前記第1ロータの前記複数の第1磁極が並ぶ方向に沿って互いに間隔を空けて並ぶと共に、周方向において前記第1ロータの前記複数の第1磁極と重ならないように配置されており、前記駆動軸の前記複数の第1磁極は、第1方向及び該第1方向に交差する第2方向に沿って配置されており、前記駆動軸の前記複数の第2磁極は、前記第1方向及び前記第2方向に沿って配置されている、2自由度電動機。 (1) An annular first stator forming a rotating magnetic field, an annular second stator forming a rotating magnetic field, a plurality of first magnetic poles magnetized to the first polarity, and a second magnetic pole different from the first polarity. It includes a plurality of magnetically magnetized second magnetic poles and is provided with an annular gap with respect to the inner peripheral surface of the first stator, and is rotated by a rotating magnetic field formed by the first stator. It includes a moving annular first rotor, a plurality of the first magnetic poles, and a plurality of the second magnetic poles, and has an annular gap with respect to the inner peripheral surfaces of the first rotor and the second stator. The plurality of first magnetic poles of the first rotor have at least a drive shaft that is supported so as to be linearly movable and rotatably movable, and the plurality of first magnetic poles of the first rotor are inclined in the axial direction toward the circumferential direction. The plurality of second magnetic poles of the first rotor are arranged side by side with a distance from each other, and the plurality of second magnetic poles of the first rotor are spaced apart from each other along the direction in which the plurality of first magnetic poles of the first rotor are arranged. They are lined up and arranged so as not to overlap the plurality of first magnetic poles of the first rotor in the circumferential direction, and the plurality of first magnetic poles of the drive shaft intersect in the first direction and the first direction. A two-degree-of-freedom electric motor arranged along a second direction, and the plurality of second magnetic poles of the drive shaft are arranged along the first direction and the second direction.
 (2)(1)において、前記第1方向は前記傾斜方向であり、前記第2方向は軸方向である、2自由度電動機。 In (2) and (1), the two-degree-of-freedom motor in which the first direction is the inclination direction and the second direction is the axial direction.
 (3)(2)において、前記駆動軸の前記複数の第1磁極は、前記傾斜方向に沿って互いに間隔を空けて並んで配置されており、前記駆動軸の前記複数の第2磁極は、前記駆動軸の前記複数の第1磁極が並ぶ方向に沿って互いに間隔を空けて並ぶと共に、周方向において前記駆動軸の前記複数の第1磁極と重ならないように配置されている、2自由度電動機。 (3) In (2), the plurality of first magnetic poles of the drive shaft are arranged side by side at intervals along the inclination direction, and the plurality of second magnetic poles of the drive shaft are arranged side by side. The plurality of first magnetic poles of the drive shaft are arranged at intervals along the direction in which the plurality of first magnetic poles are arranged, and are arranged so as not to overlap the plurality of first magnetic poles of the drive shaft in the circumferential direction. Electric motor.
 (4)(1)~(3)において、前記駆動軸において、前記複数の第1磁極と着磁されていない非着磁部とが、前記傾斜方向及び軸方向において交互に配置されており、前記複数の第2磁極と前記非着磁部とが、前記傾斜方向及び軸方向において交互に配置されている、2自由度電動機。 (4) In (1) to (3), in the drive shaft, the plurality of first magnetic poles and unmagnetized non-magnetized portions are alternately arranged in the inclined direction and the axial direction. A two-degree-of-freedom electric motor in which the plurality of second magnetic poles and the non-magnetized portion are alternately arranged in the inclined direction and the axial direction.
 (5)(1)において、複数の前記第1磁極と、複数の前記第2磁極と、を含み、前記第2ステータの内周面及び前記駆動軸の外周面に対して環状の隙間を有して設けられており、前記第2ステータが形成する回転磁界により回転移動する環状の第2ロータをさらに有する、2自由度電動機。 (5) In (1), the plurality of the first magnetic poles and the plurality of the second magnetic poles are included, and an annular gap is provided with respect to the inner peripheral surface of the second stator and the outer peripheral surface of the drive shaft. A two-degree-of-freedom motor further comprising an annular second rotor that is rotationally moved by a rotating magnetic field formed by the second stator.
 (6)(5)において、前記第1方向は、第1周方向に向かうに従い第1軸方向に傾斜する第1傾斜方向であり、前記第2方向は、前記第1周方向の反対方向である第2周方向に向かうに従い前記第1軸方向に傾斜する第2傾斜方向であり、前記第1ロータの前記複数の第1磁極は、前記第1傾斜方向に沿って互いに間隔を空けて並んでおり、前記第1ロータの前記複数の第2磁極は、前記第1傾斜方向に沿って互いに間隔を空けて並ぶと共に、周方向において前記第1ロータの前記複数の第1磁極と重ならないように配置されており、前記第2ロータの前記複数の第1磁極は、前記第2傾斜方向に沿って互いに間隔を空けて並んでおり、前記第2ロータの前記複数の第2磁極は、前記第2傾斜方向に沿って互いに間隔を空けて並ぶと共に、周方向において前記2ロータの前記複数の第1磁極と重ならないように配置されている、2自由度電動機。 (6) In (5), the first direction is the first inclination direction which is inclined in the first axial direction toward the first circumferential direction, and the second direction is the opposite direction of the first circumferential direction. It is a second tilting direction that tilts in the first axial direction toward a certain second circumferential direction, and the plurality of first magnetic poles of the first rotor are arranged at intervals along the first tilting direction. The plurality of second magnetic poles of the first rotor are arranged at intervals along the first inclination direction, and do not overlap with the plurality of first magnetic poles of the first rotor in the circumferential direction. The plurality of first magnetic poles of the second rotor are arranged at intervals along the second tilt direction, and the plurality of second magnetic poles of the second rotor are arranged in the second rotor direction. A two-degree-of-freedom electric motor arranged so as to be spaced apart from each other along the second inclination direction and not to overlap with the plurality of first magnetic poles of the two rotors in the circumferential direction.
 (7)(6)において、前記駆動軸の前記複数の第1磁極及び前記複数の第2磁極のそれぞれは、前記第1傾斜方向に沿う端部と、前記第2傾斜方向に沿う端部を有する形状である、2自由度電動機。 (7) In (6), each of the plurality of first magnetic poles and the plurality of second magnetic poles of the drive shaft has an end portion along the first tilt direction and an end portion along the second tilt direction. A two-degree-of-freedom motor that has a shape.
 (8)(6)または(7)において、前記駆動軸の前記複数の第1磁極は、軸方向において互いに間隔を空けて配置されており、前記駆動軸の前記複数の第2磁極は、軸方向において互いに間隔を空けて配置されている、2自由度電動機。 (8) In (6) or (7), the plurality of first magnetic poles of the drive shaft are arranged at intervals in the axial direction, and the plurality of second magnetic poles of the drive shaft are shafts. Two-degree-of-freedom motors that are spaced apart from each other in the direction.
 (9)(6)において、前記駆動軸の前記複数の第1磁極及び前記複数の第2磁極のそれぞれは、周方向に沿う端部と、軸方向に沿う端部を有する形状であって、周方向及び軸方向において互いの端部が隣接するように交互に配置されている、2自由度電動機。 (9) In (6), each of the plurality of first magnetic poles and the plurality of second magnetic poles of the drive shaft has a shape having an end portion along the circumferential direction and an end portion along the axial direction. A two-degree-of-freedom motor in which the ends are alternately arranged so as to be adjacent to each other in the circumferential direction and the axial direction.
 上記本発明の(1)~(9)の側面によれば、低損失化及び高出力化を実現可能な2自由度電動機を提供することができる。 According to the aspects (1) to (9) of the present invention, it is possible to provide a two-degree-of-freedom motor capable of achieving low loss and high output.
第1実施形態に係る2自由度電動機を示す斜視図である。It is a perspective view which shows the 2 degree of freedom motor which concerns on 1st Embodiment. 第1実施形態に係る2自由度電動機を示す正面図である。It is a front view which shows the 2 degree of freedom motor which concerns on 1st Embodiment. 図2のIII-III切断面における断面図である。FIG. 3 is a cross-sectional view taken along the line III-III cut surface of FIG. 第1実施形態の第1ロータを示す斜視図である。It is a perspective view which shows the 1st rotor of 1st Embodiment. 第1実施形態の駆動軸の磁石配置を示す図であって、駆動軸の外周面の展開平面図である。It is a figure which shows the magnet arrangement of the drive shaft of 1st Embodiment, and is the development plan view of the outer peripheral surface of the drive shaft. 第1実施形態の駆動軸の磁石配置を示す図であって、駆動軸の外周面の展開平面図である。It is a figure which shows the magnet arrangement of the drive shaft of 1st Embodiment, and is the development plan view of the outer peripheral surface of the drive shaft. 第1実施形態の第1ロータの磁石配置を示す図であって、第1ロータの外周面の展開平面図である。It is a figure which shows the magnet arrangement of the 1st rotor of 1st Embodiment, and is the development plan view of the outer peripheral surface of the 1st rotor. 第1ロータの回転移動に伴って駆動軸に作用する磁力を示す図である。It is a figure which shows the magnetic force acting on the drive shaft with the rotational movement of a 1st rotor. 第2実施形態に係る2自由度電動機を示す斜視図である。It is a perspective view which shows the 2 degree of freedom motor which concerns on 2nd Embodiment. 第2実施形態に係る2自由度電動機を示す正面図である。It is a front view which shows the 2 degree of freedom motor which concerns on 2nd Embodiment. 図10のXI-XI切断面における断面図である。It is sectional drawing in the XI-XI cut plane of FIG. 第2実施形態の駆動軸の磁石配置を示す図であって、駆動軸の外周面の展開平面図である。It is a figure which shows the magnet arrangement of the drive shaft of 2nd Embodiment, and is the development plan view of the outer peripheral surface of the drive shaft. 第2実施形態の駆動軸の磁石配置を示す図であって、駆動軸の外周面の展開平面図である。It is a figure which shows the magnet arrangement of the drive shaft of 2nd Embodiment, and is the development plan view of the outer peripheral surface of the drive shaft. 第2実施形態の第1ロータの磁石配置を示す図であって、第1ロータの外周面の展開平面図である。It is a figure which shows the magnet arrangement of the 1st rotor of 2nd Embodiment, and is the development plan view of the outer peripheral surface of the 1st rotor. 第2実施形態の第2ロータの磁石配置を示す図であって、第2ロータの外周面の展開平面図である。It is a figure which shows the magnet arrangement of the 2nd rotor of 2nd Embodiment, and is the development plan view of the outer peripheral surface of the 2nd rotor. 第1ロータの回転移動に伴って駆動軸に作用する磁力を示す図である。It is a figure which shows the magnetic force acting on the drive shaft with the rotational movement of a 1st rotor. 第2ロータの回転移動に伴って駆動軸に作用する磁力を示す図である。It is a figure which shows the magnetic force acting on the drive shaft with the rotational movement of a 2nd rotor. 第1ロータと第2ロータとが同じ方向に回転移動する場合における、駆動軸に対する第1ロータ及び第2ロータの位相角[deg]と、推力[N]との関係を示す図である。It is a figure which shows the relationship between the phase angle [deg] of a 1st rotor and a 2nd rotor with respect to a drive shaft, and a thrust [N] when a 1st rotor and a 2nd rotor rotate in the same direction. 第1ロータと第2ロータとが同じ方向に回転移動する場合における、駆動軸に対する第1ロータ及び第2ロータの位相角[deg]と、回転力[Nm]との関係を示す図である。It is a figure which shows the relationship between the phase angle [deg] of the 1st rotor and the 2nd rotor with respect to a drive shaft, and the rotational force [Nm] when the 1st rotor and the 2nd rotor rotate in the same direction. 第2ロータの回転移動に伴って駆動軸に作用する磁力を示す図である。It is a figure which shows the magnetic force acting on the drive shaft with the rotational movement of a 2nd rotor. 第1ロータと第2ロータとが反対の方向に回転移動した場合における、駆動軸に対する第1ロータ及び第2ロータの位相角[deg]と、推力[N]との関係を示す図である。It is a figure which shows the relationship between the phase angle [deg] of the 1st rotor and the 2nd rotor with respect to a drive shaft, and a thrust [N] when the 1st rotor and the 2nd rotor rotate in opposite directions. 第1ロータと第2ロータとが反対の方向に回転移動した場合における、駆動軸に対する第1ロータ及び第2ロータの位相角[deg]と、回転力[Nm]との関係を示す図である。It is a figure which shows the relationship between the phase angle [deg] of the 1st rotor and the 2nd rotor with respect to a drive shaft, and the rotational force [Nm] when the 1st rotor and the 2nd rotor rotate in opposite directions. .. 第2実施形態の第1変形例の駆動軸の磁石配置を示す図であって、駆動軸の外周面の展開平面図である。It is a figure which shows the magnet arrangement of the drive shaft of the 1st modification of 2nd Embodiment, and is the development plan view of the outer peripheral surface of the drive shaft. 第2実施形態の第1変形例の駆動軸を着磁する着磁器を示す図である。It is a figure which shows the magnetizer which magnetizes the drive shaft of the 1st modification of 2nd Embodiment. 第2実施形態の第2変形例に係る2自由度電動機を示す斜視図である。It is a perspective view which shows the 2 degree of freedom motor which concerns on 2nd modification of 2nd Embodiment. 第2実施形態の第2変形例の駆動軸の磁石配置を示す図であって、駆動軸の外周面の展開平面図である。It is a figure which shows the magnet arrangement of the drive shaft of the 2nd modification of 2nd Embodiment, and is the development plan view of the outer peripheral surface of the drive shaft. 第2実施形態の第2変形例の駆動軸の磁石配置を示す図であって、駆動軸の外周面の展開平面図である。It is a figure which shows the magnet arrangement of the drive shaft of the 2nd modification of 2nd Embodiment, and is the development plan view of the outer peripheral surface of the drive shaft.
 以下、本発明の各実施形態について図面に基づき詳細に説明する。 Hereinafter, each embodiment of the present invention will be described in detail based on the drawings.
[第1実施形態に係る2自由度電動機100の全体構成]
 まず、図1~図4を参照して、第1実施形態に係る2自由度電動機の全体構成の概要について説明する。図1は、第1実施形態に係る2自由度電動機を示す斜視図である。図2は、第1実施形態に係る2自由度電動機を示す正面図である。図3は、図2のIII-III切断面における断面図である。図4は、第1実施形態の第1ロータを示す斜視図である。
[Overall configuration of the two-degree-of-freedom motor 100 according to the first embodiment]
First, with reference to FIGS. 1 to 4, an outline of the overall configuration of the two-degree-of-freedom motor according to the first embodiment will be described. FIG. 1 is a perspective view showing a two-degree-of-freedom motor according to the first embodiment. FIG. 2 is a front view showing a two-degree-of-freedom motor according to the first embodiment. FIG. 3 is a cross-sectional view taken along the line III-III cut surface of FIG. FIG. 4 is a perspective view showing the first rotor of the first embodiment.
 2自由度電動機100は、いわゆるラジアルギャップ型モータであり、図1~図3に示すように、第1ステータ10と、第2ステータ20と、駆動軸30と、第1ロータ40とを有する。 The two-degree-of-freedom motor 100 is a so-called radial gap type motor, and has a first stator 10, a second stator 20, a drive shaft 30, and a first rotor 40, as shown in FIGS. 1 to 3.
 2自由度電動機100は、Z軸方向の推力と、θ方向の回転力を独立して発生させることができる電動機である。ここで、Z軸方向とは、駆動軸30が延伸する方向である。第1実施形態においては、図1等に示すように、第1ステータ10側から第2ステータ20側に向かう方向を+Z方向とし、その反対方向を-Z方向とする。また、駆動軸30の周方向をθ方向とする。第1実施形態においては、図1等に示すように、+Z方向を見た場合に、時計回り方向を+θ方向とし、その反対方向を-θ方向とする。 The two-degree-of-freedom motor 100 is a motor capable of independently generating a thrust in the Z-axis direction and a rotational force in the θ direction. Here, the Z-axis direction is the direction in which the drive shaft 30 extends. In the first embodiment, as shown in FIG. 1 and the like, the direction from the first stator 10 side to the second stator 20 side is the + Z direction, and the opposite direction is the −Z direction. Further, the circumferential direction of the drive shaft 30 is set to the θ direction. In the first embodiment, as shown in FIG. 1 and the like, when the + Z direction is viewed, the clockwise direction is the + θ direction, and the opposite direction is the −θ direction.
[第1ステータ10及び第2ステータ20の概要]
 第1ステータ10は、環状であって、回転磁界を形成する。具体的には、第1ステータ10は、コイル及びコイルが巻かれた鉄心からなる複数の電機子(不図示)がθ方向に間隔を空けて配置されており、複数の電機子に順に位相をずらして電流が供給されることで、回転磁界を形成する構造である。この回転磁界により、第1ステータ10は、第1ロータ40を回転移動させることができる。
[Outline of 1st stator 10 and 2nd stator 20]
The first stator 10 is annular and forms a rotating magnetic field. Specifically, in the first stator 10, a plurality of armatures (not shown) composed of a coil and an iron core around which the coil is wound are arranged at intervals in the θ direction, and the phases are sequentially arranged on the plurality of armatures. It is a structure that forms a rotating magnetic field by supplying a staggered current. The rotating magnetic field allows the first stator 10 to rotationally move the first rotor 40.
 同様に、第2ステータ20は、環状であって、回転磁界を形成する。具体的には、第2ステータ20は、コイル及びコイルが巻かれた鉄心からなる複数の電機子(不図示)がθ方向に間隔を明けて配置されており、複数の電機子に順に位相をずらして電流が供給されることで、回転磁界を形成する構造である。この回転磁界により、第2ステータ20は、駆動軸30を駆動させることができる。 Similarly, the second stator 20 is annular and forms a rotating magnetic field. Specifically, in the second stator 20, a plurality of armatures (not shown) composed of a coil and an iron core around which the coil is wound are arranged at intervals in the θ direction, and the phases are sequentially arranged on the plurality of armatures. It is a structure that forms a rotating magnetic field by supplying a staggered current. The second stator 20 can drive the drive shaft 30 by the rotating magnetic field.
 第1ステータ10と第2ステータ20は、Z軸方向において異なる位置に設けられている。また、第1ステータ10と第2ステータ20とは独立して制御可能である。 The first stator 10 and the second stator 20 are provided at different positions in the Z-axis direction. Further, the first stator 10 and the second stator 20 can be controlled independently.
[第1ロータ40の概要]
 第1ロータ40は、図4に示すように、環状の回転体である。また、第1ロータ40は、駆動軸30の外周面及び第1ステータ10の内周面に対して環状の隙間を有して、回転可能に支持されている。なお、第1ロータ40は、第1ステータ10に組み込まれる不図示のベアリング等により回転可能に支持されているとよい。
[Overview of the first rotor 40]
As shown in FIG. 4, the first rotor 40 is an annular rotating body. Further, the first rotor 40 has an annular gap with respect to the outer peripheral surface of the drive shaft 30 and the inner peripheral surface of the first stator 10, and is rotatably supported. The first rotor 40 may be rotatably supported by a bearing (not shown) incorporated in the first stator 10.
 第1ロータ40は、外周面において、N極(第1極性)に着磁された複数のN極磁石41(第1磁極)を含むN極領域と、S極(第2極性)に着磁された複数のS極磁石42(第2磁極)を含むS極領域を含む。なお、第1ロータ40の内周面においては、外周面のN極領域に対応する部位がS極領域となり、外周面のS極領域に対応する部位がN極領域となる。すなわち、N極磁石41の内周面はS極であり、S極磁石42の内周面はN極である。N極磁石41及びS極磁石42は永久磁石であるとよい。後述のN極磁石31及びS極磁石32も同様に永久磁石であるとよい。 On the outer peripheral surface of the first rotor 40, the north pole region including a plurality of north pole magnets 41 (first magnetic poles) magnetized on the north pole (first polarity) and the south pole (second polarity) are magnetized. It includes an S pole region including a plurality of S pole magnets 42 (second magnetic poles). In the inner peripheral surface of the first rotor 40, the portion corresponding to the north pole region of the outer peripheral surface is the south pole region, and the portion corresponding to the south pole region of the outer peripheral surface is the north pole region. That is, the inner peripheral surface of the N-pole magnet 41 is the S pole, and the inner peripheral surface of the S-pole magnet 42 is the N pole. The N-pole magnet 41 and the S-pole magnet 42 are preferably permanent magnets. The N-pole magnet 31 and the S-pole magnet 32, which will be described later, may also be permanent magnets.
 図4に示すように、第1ロータ40に含まれる複数のN極磁石41及びS極磁石42はそれぞれ、円弧状である。また、図4に示すように、1つのN極磁石41、及び1つのS極磁石42のθ方向における幅を45°とし、それら磁石を8つ並べることで第1ロータ40の1周を構成することとした。なお、図4においては、周方向で隣接するN極磁石41とS極磁石42が互いに連結される構成を示すが、これに限られず、互いに離間していてもよい。この場合、N極磁石41及びS極磁石42は、着磁されていない筒状のハウジング等に支持されているとよい。 As shown in FIG. 4, each of the plurality of N-pole magnets 41 and S-pole magnets 42 included in the first rotor 40 has an arc shape. Further, as shown in FIG. 4, the width of one N-pole magnet 41 and one S-pole magnet 42 in the θ direction is 45 °, and eight of these magnets are arranged to form one circumference of the first rotor 40. It was decided to. Note that FIG. 4 shows a configuration in which an N-pole magnet 41 and an S-pole magnet 42 that are adjacent to each other in the circumferential direction are connected to each other, but the present invention is not limited to this, and they may be separated from each other. In this case, the N-pole magnet 41 and the S-pole magnet 42 may be supported by a non-magnetized tubular housing or the like.
 第1ロータ40のN極領域及びS極領域はそれぞれ、駆動軸30の外周面及び第1ステータ10の内周面に対して対向して設けられている。すなわち、第1ロータ40の外周面のN極領域及びS極領域は、第1ステータ10から磁気的に影響を受けると共に、第1ロータ40の内周面のN極領域及びS極領域は駆動軸30に対して磁気的に影響を与えるように設けられている。なお、第1ロータ40における磁石配置の詳細については後述する。 The north pole region and the south pole region of the first rotor 40 are provided so as to face the outer peripheral surface of the drive shaft 30 and the inner peripheral surface of the first stator 10, respectively. That is, the north pole region and the south pole region of the outer peripheral surface of the first rotor 40 are magnetically affected by the first stator 10, and the north pole region and the south pole region of the inner peripheral surface of the first rotor 40 are driven. It is provided so as to magnetically affect the shaft 30. The details of the magnet arrangement in the first rotor 40 will be described later.
 第1ロータ40は、いわゆるSPM(Surface Permanent Magnet Motor)モータと同様の駆動方式で、第1ステータ10に対して相対的に回転移動する。すなわち、第1ロータ40は、第1ステータ10の電機子に供給される三相電流の相変化によって形成される磁束の位置が変化し、磁束の位置変化に伴って回転移動する。 The first rotor 40 rotates relative to the first stator 10 by the same drive system as the so-called SPM (Surface Permanent Magnet Motor) motor. That is, the position of the magnetic flux formed by the phase change of the three-phase current supplied to the armature of the first stator 10 of the first rotor 40 changes, and the first rotor 40 rotates and moves with the change of the position of the magnetic flux.
[駆動軸30の概要]
 駆動軸30は、第1ステータ10及び第2ステータ20の内周面に対して環状の隙間を有して配置されている。また、駆動軸30の外周面には、N極に着磁された複数のN極磁石31を含むN極領域と、S極に着磁されたS極磁石32を含むS極領域が設けられている。また、図1に示すように、1つのN極磁石31、及び1つのS極磁石32のθ方向における幅を90°とし、それら磁石を4つ並べることで駆動軸30の1周を構成することとした。なお、駆動軸30における磁石配置の詳細については後述する。
[Overview of drive shaft 30]
The drive shaft 30 is arranged with an annular gap with respect to the inner peripheral surfaces of the first stator 10 and the second stator 20. Further, on the outer peripheral surface of the drive shaft 30, an N-pole region including a plurality of N-pole magnets 31 magnetized on the N-pole and an S-pole region including an S-pole magnet 32 magnetized on the S pole are provided. ing. Further, as shown in FIG. 1, the width of one N-pole magnet 31 and one S-pole magnet 32 in the θ direction is 90 °, and four of these magnets are arranged to form one circumference of the drive shaft 30. I decided. The details of the magnet arrangement on the drive shaft 30 will be described later.
 駆動軸30の外周面のN極領域は、第1ロータ40の内周面のN極領域から反発する力を受けると共に、第1ロータ40の内周面のS極領域に引き合う力を受ける。また、駆動軸30の外周面のS極領域は、第1ロータ40の内周面のN極領域に引き合う力を受けると共に、第1ロータ40の内周面のS極領域から反発する力を受ける。第1ロータ40の回転移動に伴い、第1ロータ40の磁石配置と、駆動軸30の磁石配置との間にθ方向において位相差が生じると、駆動軸30は、第1ロータ40から上記反発する力及び引き合う力を受けることとなる。それにより、駆動軸30は駆動する。 The N-pole region on the outer peripheral surface of the drive shaft 30 receives a repulsive force from the N-pole region on the inner peripheral surface of the first rotor 40 and a force attracted to the S-pole region on the inner peripheral surface of the first rotor 40. Further, the S pole region on the outer peripheral surface of the drive shaft 30 receives a force attracted to the N pole region on the inner peripheral surface of the first rotor 40, and also receives a repulsive force from the S pole region on the inner peripheral surface of the first rotor 40. receive. When a phase difference occurs in the θ direction between the magnet arrangement of the first rotor 40 and the magnet arrangement of the drive shaft 30 due to the rotational movement of the first rotor 40, the drive shaft 30 repels the first rotor 40. You will receive the power to do and the power to attract. As a result, the drive shaft 30 is driven.
[駆動軸30の磁石配置]
 図5及び図6は、第1実施形態の駆動軸の磁石配置を示す図であって、駆動軸の外周面の展開平面図である。図5及び図6においては、N極磁石31を幅狭の斜線で示しており、S極磁石32を幅広の複数の斜線からなるハッチングで示しており、着磁されていな部分(以下、非着磁部という)を白抜きで示している。
[Magnet arrangement of drive shaft 30]
5 and 6 are views showing the magnet arrangement of the drive shaft of the first embodiment, and are developed plan views of the outer peripheral surface of the drive shaft. In FIGS. 5 and 6, the N-pole magnet 31 is shown by narrow diagonal lines, and the S-pole magnet 32 is shown by hatching consisting of a plurality of wide diagonal lines, and the unmagnetized portion (hereinafter, non-magnetized portion) is shown. The magnetized part) is shown in white.
 駆動軸30は、図5に示すように、その外周面に、右傾斜方向(第1方向)に沿って延びるN極領域と、当該N極領域に沿って延びるS極領域とを有する。N極領域とS極領域とは交互に配置されている。なお、ここで、右傾斜方向とは、+θ方向(第1周方向)に向かうに従い+Z方向に傾斜する方向であると定義する。また、後述の左傾斜方向は、-θ方向(第2周方向)に向かうに従い+Z方向に傾斜する方向であると定義する。また、第1実施形態においては、図5に示すように、θ方向に対する右傾斜方向の傾斜角をαとする。 As shown in FIG. 5, the drive shaft 30 has an N-pole region extending along the right inclination direction (first direction) and an S-pole region extending along the N-pole region on the outer peripheral surface thereof. The north pole region and the south pole region are arranged alternately. Here, the rightward tilting direction is defined as a direction that tilts in the + Z direction toward the + θ direction (first circumferential direction). Further, the left tilt direction described later is defined as a direction that tilts in the + Z direction toward the −θ direction (second circumferential direction). Further, in the first embodiment, as shown in FIG. 5, the inclination angle in the right inclination direction with respect to the θ direction is α.
 第1実施形態において、N極領域は、N極磁石31と非着磁部33とを含む帯状の領域である。同様に、S極領域は、S極磁石32と、非着磁部34とを含む帯状の領域である。 In the first embodiment, the N-pole region is a band-shaped region including the N-pole magnet 31 and the non-magnetized portion 33. Similarly, the S pole region is a band-shaped region including the S pole magnet 32 and the non-magnetized portion 34.
 N極領域においては、右傾斜方向に沿ってN極磁石31が互いに間隔を空けて並んで配置されている。また、N極領域においては、右傾斜方向に沿って非着磁部33が互いに間隔を空けて並んで配置されている。このように、N極領域においては、N極磁石31と非着磁部33とが交互に並んで配置されている。 In the N-pole region, the N-pole magnets 31 are arranged side by side at intervals along the right-inclining direction. Further, in the N-pole region, the non-magnetized portions 33 are arranged side by side at intervals from each other along the right-inclining direction. As described above, in the N-pole region, the N-pole magnet 31 and the non-magnetized portion 33 are alternately arranged side by side.
 S極領域においては、右傾斜方向に沿ってS極磁石32が互いに間隔を空けて並んで配置されている。また、S極領域においては、右傾斜方向に沿って非着磁部34が互いに間隔を空けて並んで配置されている。このように、S極領域においては、S極磁石32と非着磁部34とが交互に並んで配置されている。 In the S pole region, S pole magnets 32 are arranged side by side at intervals along the right inclination direction. Further, in the S pole region, the non-magnetized portions 34 are arranged side by side at intervals from each other along the right inclination direction. In this way, in the S pole region, the S pole magnet 32 and the non-magnetized portion 34 are arranged alternately side by side.
 また、駆動軸30のN極領域に含まれるN極磁石31と、駆動軸30のS極領域に含まれる非着磁部34とは、Z軸方向に交互に並んで配置されている。同様に、駆動軸30のS極領域に含まれるS極磁石32と、駆動軸30のN極領域に含まれる非着磁部33とは、Z軸方向に交互に並んで配置されている。 Further, the N-pole magnet 31 included in the N-pole region of the drive shaft 30 and the non-magnetized portion 34 included in the S-pole region of the drive shaft 30 are arranged alternately in the Z-axis direction. Similarly, the S-pole magnet 32 included in the S-pole region of the drive shaft 30 and the non-magnetized portion 33 included in the N-pole region of the drive shaft 30 are arranged alternately in the Z-axis direction.
 すなわち、駆動軸30は、図6に示すように、Z軸方向(第1方向に交差する第2方向)に沿って延びるN極領域と、Z軸方向に沿って延びるS極領域と、を含む構成であると捉えることもできる。Z軸方向に沿って延びるN極領域は、N極磁石31と非着磁部34を含む領域である。Z軸方向に沿って延びるS極領域は、S極磁石32と非着磁部33を含む領域である。 That is, as shown in FIG. 6, the drive shaft 30 has an N-pole region extending along the Z-axis direction (a second direction intersecting the first direction) and an S-pole region extending along the Z-axis direction. It can also be regarded as a configuration that includes. The N-pole region extending along the Z-axis direction is a region including the N-pole magnet 31 and the non-magnetized portion 34. The S pole region extending along the Z-axis direction is a region including the S pole magnet 32 and the non-magnetized portion 33.
 また、駆動軸30において、展開平面視における、N極磁石31、S極磁石32、及び非着磁部33、34の平面形状をそれぞれ、Z軸方向に延びる辺(端部)と、右傾斜方向に延びる辺(端部)とを含む平行四辺形とした。 Further, in the drive shaft 30, the planar shapes of the N-pole magnet 31, the S-pole magnet 32, and the non-magnetized portions 33, 34 in the developed plan view are respectively extended in the Z-axis direction and tilted to the right. It was a parallelogram including a side (end) extending in the direction.
[第1ロータ40の磁極配置]
 図7は、第1実施形態の第1ロータの磁石配置を示す図であって、第1ロータの外周面の展開平面図である。なお、第1ロータ40は、内周面側から見た場合においても、図7に示す磁石配置と同様の磁極配置をとるものである。図7においては、図5等と同様に、N極磁石41を幅狭の複数の斜線で示しており、S極磁石42を幅広の複数の斜線で示しており、非着磁部43を白抜きで示している。
[Magnetic arrangement of the first rotor 40]
FIG. 7 is a view showing the magnet arrangement of the first rotor of the first embodiment, and is a developed plan view of the outer peripheral surface of the first rotor. The first rotor 40 has a magnetic pole arrangement similar to that shown in FIG. 7 even when viewed from the inner peripheral surface side. In FIG. 7, similarly to FIG. 5 and the like, the N-pole magnet 41 is shown by a plurality of narrow diagonal lines, the S-pole magnet 42 is shown by a plurality of wide diagonal lines, and the non-magnetized portion 43 is white. Shown without.
 第1実施形態においては、第1ロータ40の磁石配置を、駆動軸30の磁石配置とほぼ同様とした。すなわち、第1ロータ40において、複数のN極磁石41は、右傾斜方向に沿って互いに間隔を空けて並ぶと共に、Z軸方向に沿って互いに間隔を空けて並ぶように配置されている。また、複数のS極磁石42も、右傾斜方向に沿って互いに間隔を空けて並ぶと共に、Z軸方向に沿って互いに間隔を空けて並ぶように配置されている。また、N極磁石41は、θ方向においてS極磁石42と重ならないように配置されている。 In the first embodiment, the magnet arrangement of the first rotor 40 is substantially the same as the magnet arrangement of the drive shaft 30. That is, in the first rotor 40, the plurality of N-pole magnets 41 are arranged so as to be arranged at intervals along the right-inclining direction and at intervals along the Z-axis direction. Further, the plurality of S pole magnets 42 are also arranged so as to be arranged at intervals along the right-inclining direction and at intervals along the Z-axis direction. Further, the N-pole magnet 41 is arranged so as not to overlap with the S-pole magnet 42 in the θ direction.
 また、第1ロータ40のN極磁石41及びS極磁石42の形状についても、駆動軸30のN極磁石31及びS極磁石32とほぼ同様とした。 Further, the shapes of the N-pole magnet 41 and the S-pole magnet 42 of the first rotor 40 are almost the same as those of the N-pole magnet 31 and the S-pole magnet 32 of the drive shaft 30.
[駆動軸30の駆動原理:θ方向]
 駆動軸30は、いわゆるSPM(Surface Permanent Magnet Motor)モータと同様の駆動方式で、第2ステータ20に対して相対的に回転移動する。すなわち、第2ステータ20において電流を流すことにより回転磁界を形成すると、駆動軸30にθ方向の力が作用する。それにより、駆動軸30はθ方向に回転移動する。なお、第2ステータ20に流す電流の向きを変えることにより、駆動軸30を+θ方及び-θ方向のいずれかに回転移動させることができる。
[Drive principle of drive shaft 30: θ direction]
The drive shaft 30 rotates relative to the second stator 20 in the same drive system as the so-called SPM (Surface Permanent Magnet Motor) motor. That is, when a rotating magnetic field is formed by passing an electric current through the second stator 20, a force in the θ direction acts on the drive shaft 30. As a result, the drive shaft 30 rotates and moves in the θ direction. By changing the direction of the current flowing through the second stator 20, the drive shaft 30 can be rotationally moved in either the + θ direction or the −θ direction.
 このように、第1実施形態に係る2自由度電動機100においては、第1ステータ10を駆動することなく、第2ステータ20を駆動させることにより、駆動軸30を回転移動させることができる。すなわち、θ方向の回転力を独立して発生させることができる。 As described above, in the two-degree-of-freedom motor 100 according to the first embodiment, the drive shaft 30 can be rotationally moved by driving the second stator 20 without driving the first stator 10. That is, the rotational force in the θ direction can be generated independently.
[駆動軸の駆動原理:Z軸方向]
 図8は、第1ロータ40の回転移動に伴って駆動軸30に作用する磁力を示す図である。上述のように、第1ステータ10により回転磁界を形成すると、第1ロータ40にθ方向の回転力が作用する。第1ロータ40がθ方向に回転移動することにより、第1ロータ40の磁石配置と、駆動軸30の磁石配置との間にθ方向において位相差が生じる。その際に、駆動軸30には磁力が生じる。
[Drive principle of drive shaft: Z-axis direction]
FIG. 8 is a diagram showing the magnetic force acting on the drive shaft 30 as the first rotor 40 rotates and moves. As described above, when a rotating magnetic field is formed by the first stator 10, a rotational force in the θ direction acts on the first rotor 40. The rotational movement of the first rotor 40 in the θ direction causes a phase difference in the θ direction between the magnet arrangement of the first rotor 40 and the magnet arrangement of the drive shaft 30. At that time, a magnetic force is generated on the drive shaft 30.
 具体的には、第1ロータ40が-θ方向に回転した場合、駆動軸30には、図8に示すように、右傾斜方向に対して直交する方向に磁力Fが生じる。磁力Fは、図8に示すように、+Z方向に作用する推力F×cosαと、-θ方向に作用する回転力F×sinαとの合力である。 Specifically, when the first rotor 40 rotates in the −θ direction, a magnetic force F is generated on the drive shaft 30 in a direction orthogonal to the right tilting direction, as shown in FIG. As shown in FIG. 8, the magnetic force F is the resultant force of the thrust F × cos α acting in the + Z direction and the rotational force F × sin α acting in the −θ direction.
 磁力Fは式(1)に示す位相差θmr1に応じて発生する。式(1)において、θr1及びθは第1ロータ40及び駆動軸30のθ方向における回転角を示し、zはZ軸方向における駆動軸30の位置を示す。また、θrp及びθmpは第1ロータ40及び駆動軸30それぞれのθ方向における磁石配置の周期(θ方向における1つの磁石の幅)を示す。lは、Z軸方向における磁石配置の周期(Z軸方向における1つの磁石の幅)を示す。第1実施形態においては、θrp=45°、θmp=90°とした。 The magnetic force F is generated according to the phase difference θ mr1 shown in the equation (1). In the formula (1), θ r1 and θ m indicate the rotation angles of the first rotor 40 and the drive shaft 30 in the θ direction, and z m indicates the position of the drive shaft 30 in the Z axis direction. Further, θ rp and θ mp indicate the period of magnet arrangement (width of one magnet in the θ direction) of each of the first rotor 40 and the drive shaft 30 in the θ direction. l p indicates the period of magnet arrangement in the Z-axis direction (width of one magnet in the Z-axis direction). In the first embodiment, θ rp = 45 ° and θ mp = 90 °.
[数1]
 θmr1=θr1-θ+(π/l)×z・・・(1)
[Number 1]
θ mr1 = θ r1 -θ m + (π / l p ) × z m ... (1)
 以上述べたように、第1実施形態の構成においては、駆動軸30には、第2ステータ20が形成する回転磁界によるθ方向の回転力と、第1ロータ40の回転移動により生じるZ軸方向の推力及びθ方向の回転力が作用する。 As described above, in the configuration of the first embodiment, the drive shaft 30 has a rotational force in the θ direction due to the rotating magnetic field formed by the second stator 20 and a Z-axis direction generated by the rotational movement of the first rotor 40. Thrust and rotational force in the θ direction act.
 駆動軸30を独立して直線移動させるには、第2ステータ20が形成する回転磁界によるθ方向の回転力と、第1ロータ40の回転移動により生じる-θ方向の回転力F×Sinαとが打ち消し合うように、第1ステータ10及び第2ステータ20を制御するとよい。回転力が打ち消し合うことにより、駆動軸30は、第1ステータ10及び第2ステータ20に対して相対的に直線移動のみを行うこととなる。それにより、Z軸方向の推力を独立して発生させることができる。 In order to move the drive shaft 30 independently and linearly, the rotational force in the θ direction due to the rotating magnetic field formed by the second stator 20 and the rotational force F × Sinα in the −θ direction generated by the rotational movement of the first rotor 40 are required. It is preferable to control the first stator 10 and the second stator 20 so as to cancel each other out. When the rotational forces cancel each other out, the drive shaft 30 only moves linearly relative to the first stator 10 and the second stator 20. As a result, thrust in the Z-axis direction can be generated independently.
 2自由度電動機100においては、第1ステータ10及び第2ステータ20と、第1ロータ40と、駆動軸30とが互いに物理的に非接触であるため、摩擦による損失を防ぐことができ、その結果高出力化を実現することができる。また、出力部であるステータを2つ設ける構成を採用することにより、より高い出力を出すことが可能となる。また、第1ロータ40及び駆動軸30に含まれる磁石が矩形であるため、螺旋状の磁石を採用する構成と比較して、構成が簡易であり、製造が容易である。また、第1ロータ40及び駆動軸30のN極領域及びS極領域は非着磁部を含むため、使用する磁石の量を少なくすることができる。その結果、コストを低減することができる。 In the two-degree-of-freedom motor 100, since the first stator 10, the second stator 20, the first rotor 40, and the drive shaft 30 are physically non-contact with each other, loss due to friction can be prevented. As a result, high output can be realized. Further, by adopting a configuration in which two stators, which are output units, are provided, it is possible to output a higher output. Further, since the magnets included in the first rotor 40 and the drive shaft 30 are rectangular, the configuration is simpler and easier to manufacture as compared with the configuration in which the spiral magnet is adopted. Further, since the north pole region and the south pole region of the first rotor 40 and the drive shaft 30 include a non-magnetized portion, the amount of magnets used can be reduced. As a result, the cost can be reduced.
[第2実施形態に係る2自由度電動機200の全体構成]
 次に、図9~図22を参照して、第2実施形態に係る2自由度電動機200について説明する。なお、Z軸方向、θ方向、右傾斜方向等の各方向の定義は、第1実施形態と同様とし、その説明については省略する。また、N極磁石及びS極磁石については、第1実施形態と同じ符号を用いて説明する。
[Overall configuration of the two-degree-of-freedom motor 200 according to the second embodiment]
Next, the two-degree-of-freedom motor 200 according to the second embodiment will be described with reference to FIGS. 9 to 22. The definitions of each direction such as the Z-axis direction, the θ direction, and the rightward inclination direction are the same as those in the first embodiment, and the description thereof will be omitted. Further, the N-pole magnet and the S-pole magnet will be described with reference to the same reference numerals as those in the first embodiment.
 図9は、第2実施形態に係る2自由度電動機を示す斜視図である。図10は、第2実施形態に係る2自由度電動機を示す正面図である。図11は、図10のXI-XI切断面における断面図である。図12は、第2実施形態の駆動軸の磁石配置を示す図であって、駆動軸の外周面の展開平面図である。図13は、第2実施形態の駆動軸の磁石配置を示す図であって、駆動軸の外周面の展開平面図である。図14は、第2実施形態の第1ロータの磁石配置を示す図であって、第1ロータの外周面の展開平面図である。図15は、第2実施形態の第2ロータの磁石配置を示す図であって、第2ロータの外周面の展開平面図である。 FIG. 9 is a perspective view showing a two-degree-of-freedom motor according to the second embodiment. FIG. 10 is a front view showing a two-degree-of-freedom motor according to the second embodiment. FIG. 11 is a cross-sectional view of the XI-XI cut plane of FIG. FIG. 12 is a view showing the magnet arrangement of the drive shaft of the second embodiment, and is a developed plan view of the outer peripheral surface of the drive shaft. FIG. 13 is a view showing the magnet arrangement of the drive shaft of the second embodiment, and is a developed plan view of the outer peripheral surface of the drive shaft. FIG. 14 is a view showing the magnet arrangement of the first rotor of the second embodiment, and is a developed plan view of the outer peripheral surface of the first rotor. FIG. 15 is a view showing the magnet arrangement of the second rotor of the second embodiment, and is a developed plan view of the outer peripheral surface of the second rotor.
 2自由度電動機200は、2自由度電動機100と同様に、Z軸方向の推力と、θ方向の回転力を独立して発生させることができる電動機である。2自由度電動機200は、第1ステータ210と、第2ステータ220と、駆動軸230と、第1ロータ240と、第2ロータ250とを有する。 The two-degree-of-freedom motor 200 is an electric motor capable of independently generating a thrust in the Z-axis direction and a rotational force in the θ direction, similar to the two-degree-of-freedom motor 100. The two-degree-of-freedom motor 200 has a first stator 210, a second stator 220, a drive shaft 230, a first rotor 240, and a second rotor 250.
[第1ステータ210及び第2ステータ220の概要]
 第1ステータ210は、図1等に示した第1ステータ10とスロット数は異なるが、他の基本的な構造は同様であり、環状であって、回転磁界を形成するものである。第1ステータ210は、回転磁界を形成することにより、第1ロータ240を駆動させることができる。
[Overview of 1st stator 210 and 2nd stator 220]
The first stator 210 has a different number of slots from the first stator 10 shown in FIG. 1 and the like, but has the same other basic structures, is annular, and forms a rotating magnetic field. The first stator 210 can drive the first rotor 240 by forming a rotating magnetic field.
 同様に、第2ステータ220は、図1等に示した第2ステータ220とスロット数は異なるが、他の基本的な構造は同様であり、環状であって、回転磁界を形成するものである。第2ステータ220は、回転磁界を形成することにより、第2ロータ250を駆動させることができる。 Similarly, the second stator 220 has a different number of slots from the second stator 220 shown in FIG. 1 and the like, but has the same other basic structures, is annular, and forms a rotating magnetic field. .. The second stator 220 can drive the second rotor 250 by forming a rotating magnetic field.
 第1ステータ210と第2ステータ220は、Z軸方向において異なる位置に設けられている。また、第1ステータ210と第2ステータ220とは独立して制御可能である。 The first stator 210 and the second stator 220 are provided at different positions in the Z-axis direction. Further, the first stator 210 and the second stator 220 can be controlled independently.
[第1ロータ240及び第2ロータ250の概要]
 外観の図示は省略するが、第1ロータ240は、環状の回転体である。また、第1ロータ240は、駆動軸230の外周面及び第1ステータ210の内周面に対して環状の隙間を有して、回転可能に支持されている。
[Overview of the first rotor 240 and the second rotor 250]
Although the appearance is not shown, the first rotor 240 is an annular rotating body. Further, the first rotor 240 has an annular gap with respect to the outer peripheral surface of the drive shaft 230 and the inner peripheral surface of the first stator 210, and is rotatably supported.
 第2ロータ250も環状の回転体である。第2ロータ250は、駆動軸230の外周面及び第2ステータ220の内周面に対して環状の隙間を有して、回転可能に支持されている。 The second rotor 250 is also an annular rotating body. The second rotor 250 has an annular gap with respect to the outer peripheral surface of the drive shaft 230 and the inner peripheral surface of the second stator 220, and is rotatably supported.
 第1ロータ240は、外周面において、N極に着磁された複数のN極磁石41を含む帯状のN極領域と、S極に着磁された複数のS極磁石42を含む帯状のS極領域を含む。なお、第1ロータ240の内周面においては、外周面のN極領域に対応する部位がS極領域となり、外周面のS極領域に対応する部位がN極領域となる。すなわち、N極磁石41の内周面はS極であり、S極磁石42の内周面はN極である。 The first rotor 240 has a band-shaped N-pole region including a plurality of N-pole magnets 41 magnetized on the N-pole and a band-shaped S including a plurality of S-pole magnets 42 magnetized on the S-pole on the outer peripheral surface. Includes polar region. In the inner peripheral surface of the first rotor 240, the portion corresponding to the north pole region of the outer peripheral surface is the south pole region, and the portion corresponding to the south pole region of the outer peripheral surface is the north pole region. That is, the inner peripheral surface of the N-pole magnet 41 is the S pole, and the inner peripheral surface of the S-pole magnet 42 is the N pole.
 第1ロータ240のN極領域及びS極領域はそれぞれ、駆動軸230の外周面及び第1ステータ210の内周面に対して対向して設けられている。すなわち、第1ロータ240の外周面のN極領域及びS極領域は、第1ステータ210から磁気的に影響を受けると共に、第1ロータ240の内周面のN極領域及びS極領域は駆動軸230に対して磁気的に影響を与えるように設けられている。第1ロータ240における磁石配置の詳細については後述する。 The north pole region and the south pole region of the first rotor 240 are provided so as to face the outer peripheral surface of the drive shaft 230 and the inner peripheral surface of the first stator 210, respectively. That is, the north pole region and the south pole region of the outer peripheral surface of the first rotor 240 are magnetically affected by the first stator 210, and the north pole region and the south pole region of the inner peripheral surface of the first rotor 240 are driven. It is provided so as to magnetically affect the shaft 230. The details of the magnet arrangement in the first rotor 240 will be described later.
 同様に、第2ロータ250は、N極に着磁された複数のN極磁石41を含む帯状のN極領域と、S極に着磁された複数のS極磁石42を含む帯状のS極領域を含む。 Similarly, the second rotor 250 has a band-shaped N-pole region containing a plurality of N-pole magnets 41 magnetized on the N-pole and a band-shaped S-pole containing a plurality of S-pole magnets 42 magnetized on the S pole. Includes area.
 第2ロータ250のN極領域及びS極領域はそれぞれ、駆動軸230の外周面及び第2ステータ220の内周面に対して対向して設けられている。すなわち、第2ロータ250のN極領域及びS極領域は、第2ステータ220から磁気的に影響を受けると共に、第2ロータ250のN極領域及びS極領域駆動軸230に対して磁気的に影響を与えるように設けられている。第2ロータ250における磁石配置の詳細については後述する。 The north pole region and the south pole region of the second rotor 250 are provided so as to face the outer peripheral surface of the drive shaft 230 and the inner peripheral surface of the second stator 220, respectively. That is, the north pole region and the south pole region of the second rotor 250 are magnetically affected by the second stator 220 and magnetically with respect to the north pole region and the south pole region drive shaft 230 of the second rotor 250. It is provided to influence. The details of the magnet arrangement in the second rotor 250 will be described later.
 図10に示すように、第2ロータ250に含まれる複数のN極磁石41及びS極磁石42はそれぞれ、円弧状である。また、図10に示すように、1つのN極磁石41、及び1つのS極磁石42のθ方向における幅を45°とし、それら磁石を8つ並べることで第2ロータ250の1周を構成することとした。なお、第1ロータ240も同様とした。 As shown in FIG. 10, each of the plurality of N-pole magnets 41 and S-pole magnets 42 included in the second rotor 250 has an arc shape. Further, as shown in FIG. 10, the width of one N-pole magnet 41 and one S-pole magnet 42 in the θ direction is 45 °, and eight of these magnets are arranged to form one circumference of the second rotor 250. It was decided to. The same applies to the first rotor 240.
[駆動軸230の概要]
 駆動軸230は、第1ロータ240及び第2ロータ250の内周面に対して環状の隙間を有して配置されている。また、駆動軸230の外周面には、N極に着磁された複数のN極磁石31を含む帯状のN極領域と、S極に着磁されたS極磁石32を含む帯状のS極領域が設けられている。また、駆動軸230においては、1つのN極磁石31、及び1つのS極磁石32のθ方向における幅を180°とし、それら磁石を2つ並べることで駆動軸230の1周を構成することとした。駆動軸230における磁石配置の詳細については後述する。
[Overview of drive shaft 230]
The drive shaft 230 is arranged with an annular gap with respect to the inner peripheral surfaces of the first rotor 240 and the second rotor 250. Further, on the outer peripheral surface of the drive shaft 230, a band-shaped N-pole region including a plurality of N-pole magnets 31 magnetized on the N-pole and a band-shaped S-pole including an S-pole magnet 32 magnetized on the S pole The area is provided. Further, in the drive shaft 230, the width of one N-pole magnet 31 and one S-pole magnet 32 in the θ direction is 180 °, and two of these magnets are arranged side by side to form one circumference of the drive shaft 230. And said. The details of the magnet arrangement on the drive shaft 230 will be described later.
 駆動軸230の外周面のN極領域は、第1ロータ240及び第2ロータ250の内周面のN極領域から反発する力を受けると共に、第1ロータ240及び第2ロータ250の内周面のS極領域に引き合う力を受ける。また、駆動軸230の外周面のS極領域は、第1ロータ240及び第2ロータ250の内周面のN極領域に引き合う力を受けると共に、第1ロータ240及び第2ロータ250の内周面のS極領域から反発する力を受ける。 The N-pole region on the outer peripheral surface of the drive shaft 230 receives a repulsive force from the N-pole region on the inner peripheral surfaces of the first rotor 240 and the second rotor 250, and the inner peripheral surfaces of the first rotor 240 and the second rotor 250. Receives a force that attracts the S pole region of. Further, the S pole region on the outer peripheral surface of the drive shaft 230 receives a force attracting the N pole region on the inner peripheral surfaces of the first rotor 240 and the second rotor 250, and the inner circumference of the first rotor 240 and the second rotor 250. Receives a repulsive force from the S pole region of the surface.
 第1ロータ240の回転移動に伴い、第1ロータ240の磁石配置と、駆動軸230の磁石配置との間にθ方向において位相差が生じると、駆動軸330は、第1ロータ240から上記反発する力及び引き合う力を受けることとなる。また、第2ロータ250の回転移動に伴い、第2ロータ250の磁石配置と、駆動軸230の磁石配置との間にθ方向において位相差が生じると、駆動軸230は、第2ロータ250から上記反発する力及び引き合う力を受けることとなる。このように、駆動軸230は、第1ロータ240及び第2ロータ250から磁気的に力を受けることにより駆動する。 When a phase difference occurs in the θ direction between the magnet arrangement of the first rotor 240 and the magnet arrangement of the drive shaft 230 due to the rotational movement of the first rotor 240, the drive shaft 330 repels the first rotor 240. You will receive the power to do and the power to attract. Further, when a phase difference occurs in the θ direction between the magnet arrangement of the second rotor 250 and the magnet arrangement of the drive shaft 230 due to the rotational movement of the second rotor 250, the drive shaft 230 is moved from the second rotor 250. It will receive the above-mentioned repulsive force and attractive force. In this way, the drive shaft 230 is driven by receiving a magnetic force from the first rotor 240 and the second rotor 250.
[駆動軸230の磁石配置]
 図12及び図13は、第2実施形態の駆動軸の磁石配置を示す図であって、駆動軸の外周面の展開平面図である。図12及び図13においては、N極磁石31を幅狭の斜線で示しており、S極磁石32を幅広の複数の斜線からなるハッチングで示しており、非着磁部を白抜きで示している。
[Magnet arrangement of drive shaft 230]
12 and 13 are views showing the magnet arrangement of the drive shaft of the second embodiment, and are developed plan views of the outer peripheral surface of the drive shaft. In FIGS. 12 and 13, the N-pole magnet 31 is shown by narrow diagonal lines, the S-pole magnet 32 is shown by hatching consisting of a plurality of wide diagonal lines, and the non-magnetized portion is shown in white. There is.
 駆動軸230は、図12に示すように、その外周面に、右傾斜方向に沿って延びるN極領域と、当該N極領域に沿って延びるS極領域とを有する。N極領域とS極領域とは交互に配置されている。また、第2実施形態においては、図12に示すように、θ方向に対する右傾斜方向の傾斜角をαとする。 As shown in FIG. 12, the drive shaft 230 has an N-pole region extending along the right inclination direction and an S-pole region extending along the N-pole region on the outer peripheral surface thereof. The north pole region and the south pole region are arranged alternately. Further, in the second embodiment, as shown in FIG. 12, the inclination angle in the right inclination direction with respect to the θ direction is α.
 第2実施形態において、N極領域は、N極磁石31と非着磁部33とを含む領域である。同様に、S極領域は、S極磁石32と、非着磁部34とを含む領域である。 In the second embodiment, the N-pole region is a region including the N-pole magnet 31 and the non-magnetized portion 33. Similarly, the S pole region is a region including the S pole magnet 32 and the non-magnetized portion 34.
 N極領域においては、右傾斜方向に沿ってN極磁石31が互いに間隔を空けて並んで配置されている。また、N極領域においては、右傾斜方向に沿って非着磁部33が互いに間隔を空けて並んで配置されている。このように、N極領域においては、N極磁石31と非着磁部33とが交互に並んで配置されている。 In the N-pole region, the N-pole magnets 31 are arranged side by side at intervals along the right-inclining direction. Further, in the N-pole region, the non-magnetized portions 33 are arranged side by side at intervals from each other along the right-inclining direction. As described above, in the N-pole region, the N-pole magnet 31 and the non-magnetized portion 33 are alternately arranged side by side.
 S極領域においては、右傾斜方向に沿ってS極磁石32が互いに間隔を空けて並んで配置されている。また、S極領域においては、右傾斜方向に沿って非着磁部34が互いに間隔を空けて並んで配置されている。このように、S極領域においては、S極磁石32と非着磁部34とが交互に並んで配置されている。 In the S pole region, S pole magnets 32 are arranged side by side at intervals along the right inclination direction. Further, in the S pole region, the non-magnetized portions 34 are arranged side by side at intervals from each other along the right inclination direction. In this way, in the S pole region, the S pole magnet 32 and the non-magnetized portion 34 are arranged alternately side by side.
 また、駆動軸230のN極領域に含まれるN極磁石31と、駆動軸230のS極領域に含まれる非着磁部34とは、左傾斜方向に交互に並んで配置されている。同様に、駆動軸230のS極領域に含まれるS極磁石32と、駆動軸230のN極領域に含まれる非着磁部33とは、左傾斜方向に交互に並んで配置されている。 Further, the N-pole magnet 31 included in the N-pole region of the drive shaft 230 and the non-magnetized portion 34 included in the S-pole region of the drive shaft 230 are arranged alternately side by side in the left inclination direction. Similarly, the S pole magnet 32 included in the S pole region of the drive shaft 230 and the non-magnetized portion 33 included in the N pole region of the drive shaft 230 are arranged alternately side by side in the left inclination direction.
 すなわち、駆動軸230は、図13に示すように、左傾斜方向に沿って延びるN極領域と、左傾斜方向に沿って延びるS極領域と、を含む構成であると捉えることもできる。左傾斜方向に沿って延びるN極領域は、N極磁石31と非着磁部34を含む領域である。左傾斜方向に沿って延びるS極領域は、S極磁石32と非着磁部33を含む領域である。 That is, as shown in FIG. 13, the drive shaft 230 can be regarded as having a configuration including an N pole region extending along the left tilt direction and an S pole region extending along the left tilt direction. The north pole region extending along the left inclination direction is a region including the north pole magnet 31 and the non-magnetized portion 34. The S pole region extending along the left inclination direction is a region including the S pole magnet 32 and the non-magnetized portion 33.
 また、駆動軸230において、展開平面視における、N極磁石31、S極磁石32、及び非着磁部33、34の平面形状をそれぞれ、右傾斜方向に延びる辺(端部)と、左傾斜方向に延びる辺(端部)とを含む平行四辺形(ひし形)とした。 Further, in the drive shaft 230, the planar shapes of the N-pole magnet 31, the S-pole magnet 32, and the non-magnetized portions 33, 34 in the developed plan view are respectively extended to the right and tilted to the left. A parallelogram (diamond) including a side (end) extending in the direction was used.
[第1ロータ240の磁極配置]
 図14は、第2実施形態の第1ロータの磁石配置を示す図であって、第1ロータの外周面の展開平面図である。なお、第1ロータ240は、内周面側から見た場合においても、図14に示す磁石配置をとるものである。
[Magnetic arrangement of the first rotor 240]
FIG. 14 is a view showing the magnet arrangement of the first rotor of the second embodiment, and is a developed plan view of the outer peripheral surface of the first rotor. The first rotor 240 has the magnet arrangement shown in FIG. 14 even when viewed from the inner peripheral surface side.
 第2実施形態においては、第1ロータ240の磁石配置を、第1実施形態の第1ロータ40と同様とした。すなわち、第1ロータ240において、複数のN極磁石41は、右傾斜方向(第1傾斜方向)に沿って互いに間隔を空けて並ぶと共に、Z軸方向に沿って並ぶように配置されている。同様に、複数のS極磁石42は、右傾斜方向に沿って互いに間隔を空けて並ぶと共に、Z軸方向に沿って並ぶように配置されている。また、N極磁石41は、θ方向においてS極磁石42と重ならないように配置されている。 In the second embodiment, the magnet arrangement of the first rotor 240 is the same as that of the first rotor 40 of the first embodiment. That is, in the first rotor 240, the plurality of N-pole magnets 41 are arranged so as to be arranged at intervals along the right inclination direction (first inclination direction) and along the Z-axis direction. Similarly, the plurality of S pole magnets 42 are arranged so as to be arranged at intervals along the right inclination direction and along the Z-axis direction. Further, the N-pole magnet 41 is arranged so as not to overlap with the S-pole magnet 42 in the θ direction.
[第2ロータ250の磁極配置]
 図15は、第2実施形態の第2ロータの磁石配置を示す図であって、第2ロータの外周面の展開平面図である。なお、第2ロータ250は、内周面側から見た場合においても、図15に示す磁石配置をとるものである。
[Magnetic arrangement of the second rotor 250]
FIG. 15 is a view showing the magnet arrangement of the second rotor of the second embodiment, and is a developed plan view of the outer peripheral surface of the second rotor. The second rotor 250 has the magnet arrangement shown in FIG. 15 even when viewed from the inner peripheral surface side.
 第2ロータ250において、図15に示すように、複数のN極磁石41は、左傾斜方向(第2傾斜方向)に沿って互いに間隔を空けて並ぶと共に、Z軸方向に沿って並ぶように配置されている。同様に、複数のS極磁石42は、左傾斜方向に沿って互いに間隔を空けて並ぶと共に、Z軸方向に沿って並ぶように配置されている。また、N極磁石41は、θ方向においてS極磁石42と重ならないように配置されている。 In the second rotor 250, as shown in FIG. 15, the plurality of N-pole magnets 41 are arranged at intervals along the left inclination direction (second inclination direction) and are arranged along the Z-axis direction. Have been placed. Similarly, the plurality of S pole magnets 42 are arranged so as to be arranged at intervals along the left inclination direction and along the Z-axis direction. Further, the N-pole magnet 41 is arranged so as not to overlap with the S-pole magnet 42 in the θ direction.
[駆動軸230の駆動原理:θ方向]
 図16は、第1ロータの回転移動に伴って駆動軸に作用する磁力を示す図である。図17は、第2ロータの回転移動に伴って駆動軸に作用する磁力を示す図である。
[Drive principle of drive shaft 230: θ direction]
FIG. 16 is a diagram showing the magnetic force acting on the drive shaft as the first rotor rotates and moves. FIG. 17 is a diagram showing a magnetic force acting on the drive shaft as the second rotor rotates and moves.
 第1ステータ210により回転磁界を形成すると、第1ロータ240にθ方向の回転力が作用する。第1ロータ240がθ方向に回転移動することにより、第1ロータ240の磁石配置と、駆動軸230の磁石配置との間にθ方向において位相差が生じる。その際に、駆動軸230には磁力が生じる。 When a rotating magnetic field is formed by the first stator 210, a rotational force in the θ direction acts on the first rotor 240. The rotational movement of the first rotor 240 in the θ direction causes a phase difference in the θ direction between the magnet arrangement of the first rotor 240 and the magnet arrangement of the drive shaft 230. At that time, a magnetic force is generated on the drive shaft 230.
 具体的には、第1ロータ240が-θ方向に回転した場合、駆動軸230には、図16に示すように、右傾斜方向に対して直交する方向に磁力Fが生じる。磁力Fは、図16に示すように、+Z方向に作用する推力F×cosαと、-θ方向に作用する回転力F×sinαとの合力である。 Specifically, when the first rotor 240 rotates in the −θ direction, a magnetic force F is generated on the drive shaft 230 in a direction orthogonal to the right tilting direction, as shown in FIG. As shown in FIG. 16, the magnetic force F is the resultant force of the thrust F × cos α acting in the + Z direction and the rotational force F × sin α acting in the −θ direction.
 図16に示す磁力Fは、上述の式(1)に示す位相差θmr1に応じて発生する。第2実施形態においては、θrp=90°、θmp=180°とした。 The magnetic force F shown in FIG. 16 is generated according to the phase difference θ mr1 shown in the above equation (1). In the second embodiment, θ rp = 90 ° and θ mp = 180 °.
 また、第2ステータ220により回転磁界を形成すると、第2ロータ250にθ方向の回転力が作用する。第2ロータ250がθ方向に回転移動することにより、第2ロータ250の磁石配置と、駆動軸230の磁石配置との間にθ方向において位相差が生じる。その際に、駆動軸230には磁力が生じる。 Further, when a rotating magnetic field is formed by the second stator 220, a rotational force in the θ direction acts on the second rotor 250. The rotational movement of the second rotor 250 in the θ direction causes a phase difference in the θ direction between the magnet arrangement of the second rotor 250 and the magnet arrangement of the drive shaft 230. At that time, a magnetic force is generated on the drive shaft 230.
 具体的には、第2ロータ250が-θ方向に回転した場合、すなわち、第1ロータ240と同じ方向に回転した場合、駆動軸230には、図17に示すように、左傾斜方向に対して直交する方向に磁力Fが生じる。磁力Fは、図16に示すように、-Z方向に作用する推力F×cosαと、-θ方向に作用する回転力F×sinαとの合力である。 Specifically, when the second rotor 250 rotates in the −θ direction, that is, when it rotates in the same direction as the first rotor 240, the drive shaft 230 has the drive shaft 230 with respect to the left tilt direction as shown in FIG. A magnetic force F is generated in the direction orthogonal to each other. As shown in FIG. 16, the magnetic force F is the resultant force of the thrust F × cos α acting in the −Z direction and the rotational force F × sin α acting in the −θ direction.
 図17に示す磁力Fは式(2)に示す位相差θmr2に応じて発生する。式(2)において、θr2及びθは第2ロータ250及び駆動軸230のθ方向における回転角を示し、zはZ軸方向における駆動軸230の位置を示す。また、θrp及びθmpは第2ロータ250及び駆動軸230それぞれのθ方向における磁石配置の周期(θ方向における1つの磁石の幅)を示す。lは、Z軸方向における磁石配置の周期(Z軸方向における1つの磁石の幅)を示す。第2実施形態においては、θrp=90°、θmp=180°とした。 The magnetic force F shown in FIG. 17 is generated according to the phase difference θ mr2 shown in the equation (2). In the formula (2), θ r2 and θ m indicate the rotation angles of the second rotor 250 and the drive shaft 230 in the θ direction, and z m indicates the position of the drive shaft 230 in the Z axis direction. Further, θ rp and θ mp indicate the period of magnet arrangement (width of one magnet in the θ direction) of each of the second rotor 250 and the drive shaft 230 in the θ direction. l p indicates the period of magnet arrangement in the Z-axis direction (width of one magnet in the Z-axis direction). In the second embodiment, θ rp = 90 ° and θ mp = 180 °.
[数2]
 θmr2=θr2-θ-(π/l)×z・・・(2)
[Number 2]
θ mr2 = θ r2 -θ m- (π / l p ) × z m ... (2)
 以上述べたように、第2実施形態の構成においては、駆動軸230には、第1ロータ240の回転移動により生じるZ軸方向の推力及びθ方向の回転力と、第2ロータ250の回転移動により生じるZ軸方向の推力及びθ方向の回転力と、が作用する。 As described above, in the configuration of the second embodiment, the drive shaft 230 has the thrust in the Z-axis direction and the rotational force in the θ direction generated by the rotational movement of the first rotor 240, and the rotational movement of the second rotor 250. The thrust in the Z-axis direction and the rotational force in the θ direction, which are generated by the above, act.
 駆動軸230を独立して回転移動させるには、第1ロータ240の回転移動により生じる+Z方向の推力F×cosαと、第2ロータ250の回転により生じる-Z方向の推力F×cosαとが打ち消し合うように、第1ステータ210及び第2ステータ220を制御するとよい。推力が打ち消し合うことにより、駆動軸230は、第1ステータ210及び第2ステータ220に対して相対的に回転移動のみを行うこととなる。それにより、θ方向の回転力を独立して発生させることができる。 In order to rotate the drive shaft 230 independently, the thrust F × cos α in the + Z direction generated by the rotational movement of the first rotor 240 and the thrust F × cos α in the −Z direction generated by the rotation of the second rotor 250 cancel each other out. It is preferable to control the first stator 210 and the second stator 220 so as to match. When the thrusts cancel each other out, the drive shaft 230 only rotationally moves relative to the first stator 210 and the second stator 220. As a result, the rotational force in the θ direction can be generated independently.
 図18は、第1ロータと第2ロータとが同じ方向に回転移動する場合における、駆動軸に対する第1ロータ及び第2ロータの位相角[deg]と、推力[N]との関係を示す図である。 FIG. 18 is a diagram showing the relationship between the phase angle [deg] of the first rotor and the second rotor with respect to the drive shaft and the thrust [N] when the first rotor and the second rotor rotate in the same direction. Is.
 図18に示すように、第1ロータ240の回転移動により生じるZ軸方向の推力と、第2ロータ250の回転により生じるZ軸方向の推力とが打ち消し合うように、第1ステータ210及び第2ステータ220を制御することにより、駆動軸230はZ軸方向に移動しない。 As shown in FIG. 18, the first stator 210 and the second stator 210 and the second stator 210 and the second are so that the thrust in the Z-axis direction generated by the rotational movement of the first rotor 240 and the thrust in the Z-axis direction generated by the rotation of the second rotor 250 cancel each other out. By controlling the stator 220, the drive shaft 230 does not move in the Z-axis direction.
 図19は、第1ロータと第2ロータとが同じ方向に回転移動する場合における、駆動軸に対する第1ロータ及び第2ロータの位相角[deg]と、回転力[Nm]との関係を示す図である。 FIG. 19 shows the relationship between the phase angle [deg] of the first rotor and the second rotor with respect to the drive shaft and the rotational force [Nm] when the first rotor and the second rotor rotate in the same direction. It is a figure.
 図19に示すように、第1ロータ240の回転移動により生じるθ方向の回転力と、第2ロータ250の回転により生じるθ方向の回転力とにより、駆動軸230は回転移動する。 As shown in FIG. 19, the drive shaft 230 is rotationally moved by the rotational force in the θ direction generated by the rotational movement of the first rotor 240 and the rotational force in the θ direction generated by the rotational movement of the second rotor 250.
[駆動軸230の駆動原理:Z軸方向]
 図20は、第2ロータの回転移動に伴って駆動軸に作用する磁力を示す図である。
[Drive principle of drive shaft 230: Z-axis direction]
FIG. 20 is a diagram showing the magnetic force acting on the drive shaft as the second rotor rotates and moves.
 第2ロータ250が+θ方向に回転した場合、すなわち、第1ロータ240と反対方向に回転した場合、駆動軸230には、図20に示すように、左傾斜方向に対して直交する方向に磁力Fが生じる。磁力Fは、図20に示すように、+Z方向に作用する推力F×cosαと、+θ方向に作用する回転力F×sinαとの合力である。 When the second rotor 250 rotates in the + θ direction, that is, when it rotates in the direction opposite to that of the first rotor 240, the drive shaft 230 has a magnetic force in a direction orthogonal to the left tilt direction, as shown in FIG. F occurs. As shown in FIG. 20, the magnetic force F is the resultant force of the thrust F × cos α acting in the + Z direction and the rotational force F × sin α acting in the + θ direction.
 駆動軸230を独立して直線移動させるには、第1ロータ240の回転移動により生じる-θ方向の回転力F×sinαと、第2ロータ250の回転により生じる+θ方向の回転力F×sinαとが打ち消し合うように、第1ステータ210及び第2ステータ220を制御するとよい。回転力が打ち消し合うことにより、駆動軸230は、第1ステータ210及び第2ステータ220に対して相対的に直線移動のみ行うこととなる。それにより、Z方向の推力を独立して発生させることができる。 In order to move the drive shaft 230 independently and linearly, a rotational force F × sin α in the −θ direction generated by the rotational movement of the first rotor 240 and a rotational force F × sin α in the + θ direction generated by the rotation of the second rotor 250. It is preferable to control the first stator 210 and the second stator 220 so that the two stators cancel each other out. Since the rotational forces cancel each other out, the drive shaft 230 moves only linearly relative to the first stator 210 and the second stator 220. Thereby, the thrust in the Z direction can be generated independently.
 図21は、第1ロータと第2ロータとが反対の方向に回転移動した場合における、駆動軸に対する第1ロータ及び第2ロータの位相角[deg]と、推力[N]との関係を示す図である。 FIG. 21 shows the relationship between the phase angle [deg] of the first rotor and the second rotor with respect to the drive shaft and the thrust [N] when the first rotor and the second rotor rotate in opposite directions. It is a figure.
 図21に示すように、第1ロータ240の回転移動により生じるZ軸方向の推力と、第2ロータ250の回転により生じるZ軸方向の推力により、駆動軸230は直線方向に移動する。 As shown in FIG. 21, the drive shaft 230 moves in the linear direction due to the thrust in the Z-axis direction generated by the rotational movement of the first rotor 240 and the thrust in the Z-axis direction generated by the rotation of the second rotor 250.
 図22は、第1ロータと第2ロータとが反対の方向に回転移動した場合における、駆動軸に対する第1ロータ及び第2ロータの位相角[deg]と、回転力[Nm]との関係を示す図である。 FIG. 22 shows the relationship between the phase angle [deg] of the first rotor and the second rotor with respect to the drive shaft and the rotational force [Nm] when the first rotor and the second rotor rotate in opposite directions. It is a figure which shows.
 図22に示すように、第1ロータ240の回転移動により生じるθ方向の回転力と、第2ロータ250の回転により生じるθ方向の回転力とが打ち消し合うように、第1ステータ210及び第2ステータ220を制御することにより、駆動軸230はθ方向に回転移動しない。 As shown in FIG. 22, the first stator 210 and the second stator 210 and the second stator 210 and the second are so that the rotational force in the θ direction generated by the rotational movement of the first rotor 240 and the rotational force in the θ direction generated by the rotation of the second rotor 250 cancel each other out. By controlling the stator 220, the drive shaft 230 does not rotate in the θ direction.
[第2実施形態の第1変形例]
 図23は、第2実施形態の第1変形例の駆動軸の磁石配置を示す図であって、駆動軸の外周面の展開平面図である。なお、第2実施形態の第1変形例に係る2自由度電動機は、駆動軸330における磁石配置が異なることを除いて、図9~図17等で示した駆動軸230の構成と同様である。
[First modification of the second embodiment]
FIG. 23 is a view showing the magnet arrangement of the drive shaft of the first modification of the second embodiment, and is a developed plan view of the outer peripheral surface of the drive shaft. The two-degree-of-freedom motor according to the first modification of the second embodiment has the same configuration as the drive shaft 230 shown in FIGS. 9 to 17, except that the magnet arrangement in the drive shaft 330 is different. ..
 図23に示すように、駆動軸330は、駆動軸230と同様に、その外周面に、N極領域とS極領域を含む。N極領域において、N極磁石31は、右傾斜方向及び左傾斜方向に沿って配置されている。同様に、S極領域において、S極磁石32は、右傾斜方向及び左傾斜方向に沿って配置されている。すなわち、N極磁石31及びS極磁石32は、右傾斜方向及び左傾斜方向に沿う辺(端部)を含む平行四辺形(ひし形)である。 As shown in FIG. 23, the drive shaft 330 includes an N-pole region and an S-pole region on the outer peripheral surface thereof, similarly to the drive shaft 230. In the N-pole region, the N-pole magnet 31 is arranged along the right-tilt direction and the left-tilt direction. Similarly, in the S pole region, the S pole magnet 32 is arranged along the right tilt direction and the left tilt direction. That is, the N-pole magnet 31 and the S-pole magnet 32 are parallelograms (diamonds) including sides (ends) along the right-tilt direction and the left-tilt direction.
 また、複数のN極磁石31は、Z軸方向において間隔を空けて配置されている。同様に、複数のS極磁石32は、Z軸方向において間隔を空けて配置されている。 Further, the plurality of N pole magnets 31 are arranged at intervals in the Z-axis direction. Similarly, the plurality of S pole magnets 32 are arranged at intervals in the Z-axis direction.
 駆動軸330においては、駆動軸230と同様に、第1ロータ240及び第2ロータ250の回転移動により、Z軸方向の推力及びθ方向の回転力が作用する。それにより、直線移動又は回転移動を独立して発生させることができる。 In the drive shaft 330, similarly to the drive shaft 230, the thrust in the Z-axis direction and the rotational force in the θ direction act due to the rotational movement of the first rotor 240 and the second rotor 250. Thereby, linear movement or rotational movement can be generated independently.
 図24は、第2実施形態の第1変形例の駆動軸を着磁する着磁器を示す図である。着磁器80は、駆動軸330の外周面を着磁する磁界を発生する装置である。駆動軸330に含まれる磁石の形状に沿う形状である複数の着磁部81を有する。外周面が着磁されていない駆動軸330を着磁器80の着磁部81上に配置し、磁界を発生させることにより、駆動軸330の外周面は着磁される。図24に示す着磁器80を用いることにより、1回の着磁動作により、駆動軸330の半周分を着磁することができる。そのため、第2実施形態の第1変形例においては、2回の着磁動作により、駆動軸330の外周面に図23に示すN極領域及びS極領域を形成することができる。 FIG. 24 is a diagram showing a porcelain that magnetizes the drive shaft of the first modification of the second embodiment. The magnetizer 80 is a device that generates a magnetic field that magnetizes the outer peripheral surface of the drive shaft 330. It has a plurality of magnetized portions 81 having a shape that conforms to the shape of the magnet included in the drive shaft 330. The outer peripheral surface of the drive shaft 330 is magnetized by arranging the drive shaft 330 whose outer peripheral surface is not magnetized on the magnetized portion 81 of the magnetizer 80 and generating a magnetic field. By using the magnetizer 80 shown in FIG. 24, it is possible to magnetize a half circumference of the drive shaft 330 by one magnetizing operation. Therefore, in the first modification of the second embodiment, the north pole region and the south pole region shown in FIG. 23 can be formed on the outer peripheral surface of the drive shaft 330 by two magnetizing operations.
 第2実施形態の第1変形例の構成においては、図16等で示した構成と比較して、使用する磁石が少ない分、出力が低下する一方で、製造工程が簡易となる。 In the configuration of the first modification of the second embodiment, as compared with the configuration shown in FIG. 16 and the like, the number of magnets used is small, so that the output is reduced, but the manufacturing process is simplified.
 次に、図25~図27を参照して、第2実施形態の第2変形例に係る2自由度電動機300について説明する。図25は、第2実施形態の第2変形例に係る2自由度電動機を示す斜視図である。図26及び図27は、第2実施形態の第2変形例の駆動軸の磁石配置を示す図であって、駆動軸の外周面の展開平面図である。なお、第2実施形態の第2変形例に係る2自由度電動機は、駆動軸430における磁石配置が異なることを除いて、図9~図17等で示した構成と同様である。 Next, the two-degree-of-freedom motor 300 according to the second modification of the second embodiment will be described with reference to FIGS. 25 to 27. FIG. 25 is a perspective view showing a two-degree-of-freedom motor according to a second modification of the second embodiment. 26 and 27 are views showing the magnet arrangement of the drive shaft of the second modification of the second embodiment, and are developed plan views of the outer peripheral surface of the drive shaft. The two-degree-of-freedom motor according to the second modification of the second embodiment is the same as the configuration shown in FIGS. 9 to 17, except that the magnet arrangement in the drive shaft 430 is different.
 図25、図26に示すように、駆動軸430は、駆動軸230と同様に、その外周面に、N極領域とS極領域を含む。N極領域に含まれるN極磁石31及びS極領域に含まれるS極磁石32は、Z軸方向に沿う辺(端部)とθ方向に沿う辺(端部)を含む矩形(長方形)である。また、N極磁石31とS極磁石32とは、θ方向及びZ軸方向において互いに端部隣接するように交互に配置されている。 As shown in FIGS. 25 and 26, the drive shaft 430 includes an N-pole region and an S-pole region on the outer peripheral surface thereof, similarly to the drive shaft 230. The N-pole magnet 31 included in the N-pole region and the S-pole magnet 32 included in the S-pole region are rectangular (rectangular) including a side (end) along the Z-axis direction and a side (end) along the θ direction. be. Further, the N-pole magnet 31 and the S-pole magnet 32 are alternately arranged so as to be adjacent to each other at the ends in the θ direction and the Z-axis direction.
 駆動軸430の磁極配置においては、第1ロータ240及び第2ロータ250に対して磁気的に、N極領域及びS極領域が右傾斜方向及び左傾斜方向に沿って設けられていると捉えることができる。 In the magnetic pole arrangement of the drive shaft 430, it is considered that the north pole region and the south pole region are magnetically provided along the right tilt direction and the left tilt direction with respect to the first rotor 240 and the second rotor 250. Can be done.
 これは、図27に示すように、太線で囲った領域においてN極磁石31とS極磁石32が等価に設けられるため、当該領域においては、第1ロータ240及び第2ロータ250から受ける磁力が相殺される。すなわち、第1ロータ240及び第2ロータ250に対して磁気的に、太線で囲った領域は非磁極部と同等の領域となる。そのため、図26に示す磁石配置においては、第1ロータ240及び第2ロータ250に対して磁気的に、図16で示した磁石配置と同等とみなすことができる。そのため、駆動軸430を用いることにより、第1ロータ240及び第2ロータ250の回転移動に伴って、Z軸方向の推力及びθ方向の回転力を独立して発生させることができる。 As shown in FIG. 27, since the N-pole magnet 31 and the S-pole magnet 32 are provided equivalently in the region surrounded by the thick line, the magnetic force received from the first rotor 240 and the second rotor 250 is applied in the region. It will be offset. That is, the region magnetically surrounded by the thick line with respect to the first rotor 240 and the second rotor 250 is a region equivalent to the non-magnetic pole portion. Therefore, in the magnet arrangement shown in FIG. 26, it can be regarded as magnetically equivalent to the magnet arrangement shown in FIG. 16 with respect to the first rotor 240 and the second rotor 250. Therefore, by using the drive shaft 430, the thrust in the Z-axis direction and the rotational force in the θ direction can be independently generated with the rotational movement of the first rotor 240 and the second rotor 250.
 駆動軸430においては、各磁石の形状が、駆動軸230と比較して簡易であるため、加工が容易であり、製造コストを抑制することができる。 In the drive shaft 430, since the shape of each magnet is simpler than that of the drive shaft 230, processing is easy and the manufacturing cost can be suppressed.
 以上、本発明に係る各実施形態及び変形例について説明したが、これら各実施形態及び変形例に示した具体的な構成は一例として示したものであり、本発明の技術的範囲をこれに限定することは意図されていない。当業者は、これら開示された実施形態を適宜変形してもよく、本明細書にて開示される発明の技術的範囲は、そのようになされた変形をも含むものと理解すべきである。

 
Although each embodiment and modification according to the present invention have been described above, the specific configuration shown in each of these embodiments and modification is shown as an example, and the technical scope of the present invention is limited thereto. It is not intended to be done. Those skilled in the art may appropriately modify these disclosed embodiments, and it should be understood that the technical scope of the invention disclosed herein also includes such modifications.

Claims (9)

  1.  回転磁界を形成する環状の第1ステータと、
     回転磁界を形成する環状の第2ステータと、
     第1極性に着磁された複数の第1磁極と、前記第1極性と異なる第2極性に着磁された複数の第2磁極と、を含み、前記第1ステータの内周面に対して環状の隙間を有して設けられており、前記第1ステータが形成する回転磁界により回転移動する環状の第1ロータと、
     複数の前記第1磁極と、複数の前記第2磁極と、を含み、前記第1ロータ及び前記第2ステータの内周面に対して環状の隙間を有して設けられており、直進移動及び回転移動可能に支持される駆動軸と、
     を少なくとも有し、
     前記第1ロータの前記複数の第1磁極は、周方向に向かうに従い軸方向に傾斜する傾斜方向に沿って互いに間隔を空けて並んで配置されており、
     前記第1ロータの前記複数の第2磁極は、前記第1ロータの前記複数の第1磁極が並ぶ方向に沿って互いに間隔を空けて並ぶと共に、周方向において前記第1ロータの前記複数の第1磁極と重ならないように配置されており、
     前記駆動軸の前記複数の第1磁極は、第1方向及び該第1方向に交差する第2方向に沿って配置されており、
     前記駆動軸の前記複数の第2磁極は、前記第1方向及び前記第2方向に沿って配置されている、
     2自由度電動機。
    An annular first stator forming a rotating magnetic field and
    An annular second stator that forms a rotating magnetic field,
    A plurality of first magnetic poles magnetized to the first polarity and a plurality of second magnetic poles magnetized to a second polarity different from the first polarity are included with respect to the inner peripheral surface of the first stator. An annular first rotor that is provided with an annular gap and that rotates and moves due to a rotating magnetic field formed by the first stator.
    A plurality of the first magnetic poles and a plurality of the second magnetic poles are included, and the first rotor and the second stator are provided with an annular gap with respect to the inner peripheral surfaces of the first rotor and the second stator. A drive shaft that is rotatably supported and
    Have at least
    The plurality of first magnetic poles of the first rotor are arranged side by side at intervals from each other along an inclination direction in which the first magnetic poles are inclined in the axial direction toward the circumferential direction.
    The plurality of second magnetic poles of the first rotor are arranged at intervals along the direction in which the plurality of first magnetic poles of the first rotor are arranged, and the plurality of first magnetic poles of the first rotor are arranged in the circumferential direction. It is arranged so that it does not overlap with one magnetic pole,
    The plurality of first magnetic poles of the drive shaft are arranged along a first direction and a second direction intersecting the first direction.
    The plurality of second magnetic poles of the drive shaft are arranged along the first direction and the second direction.
    2 degree of freedom motor.
  2.  前記第1方向は前記傾斜方向であり、
     前記第2方向は軸方向である、
     請求項1に記載の2自由度電動機。
    The first direction is the inclination direction.
    The second direction is the axial direction,
    The two-degree-of-freedom motor according to claim 1.
  3.  前記駆動軸の前記複数の第1磁極は、前記傾斜方向に沿って互いに間隔を空けて並んで配置されており、
     前記駆動軸の前記複数の第2磁極は、前記駆動軸の前記複数の第1磁極が並ぶ方向に沿って互いに間隔を空けて並ぶと共に、周方向において前記駆動軸の前記複数の第1磁極と重ならないように配置されている、
     請求項2に記載の2自由度電動機。
    The plurality of first magnetic poles of the drive shaft are arranged side by side at intervals along the inclination direction.
    The plurality of second magnetic poles of the drive shaft are arranged at intervals along the direction in which the plurality of first magnetic poles of the drive shaft are arranged, and are arranged with the plurality of first magnetic poles of the drive shaft in the circumferential direction. Arranged so that they do not overlap,
    The two-degree-of-freedom motor according to claim 2.
  4.  前記駆動軸において、前記複数の第1磁極と着磁されていない非着磁部とが、前記傾斜方向及び軸方向において交互に配置されており、前記複数の第2磁極と前記非着磁部とが、前記傾斜方向及び軸方向において交互に配置されている、
     請求項1~3のいずれか1項に記載の2自由度電動機。
    In the drive shaft, the plurality of first magnetic poles and unmagnetized non-magnetized portions are alternately arranged in the inclined direction and the axial direction, and the plurality of second magnetic poles and the non-magnetized portion are arranged alternately. Are alternately arranged in the inclined direction and the axial direction.
    The two-degree-of-freedom motor according to any one of claims 1 to 3.
  5.  複数の前記第1磁極と、複数の前記第2磁極と、を含み、前記第2ステータの内周面及び前記駆動軸の外周面に対して環状の隙間を有して設けられており、前記第2ステータが形成する回転磁界により回転移動する環状の第2ロータをさらに有する、
     請求項1に記載の2自由度電動機。
    A plurality of the first magnetic poles and the plurality of second magnetic poles are included, and are provided with an annular gap with respect to the inner peripheral surface of the second stator and the outer peripheral surface of the drive shaft. Further having an annular second rotor that is rotationally moved by a rotating magnetic field formed by the second stator.
    The two-degree-of-freedom motor according to claim 1.
  6.  前記第1方向は、第1周方向に向かうに従い第1軸方向に傾斜する第1傾斜方向であり、
     前記第2方向は、前記第1周方向の反対方向である第2周方向に向かうに従い前記第1軸方向に傾斜する第2傾斜方向であり、
     前記第1ロータの前記複数の第1磁極は、前記第1傾斜方向に沿って互いに間隔を空けて並んでおり、
     前記第1ロータの前記複数の第2磁極は、前記第1傾斜方向に沿って互いに間隔を空けて並ぶと共に、周方向において前記第1ロータの前記複数の第1磁極と重ならないように配置されており、
     前記第2ロータの前記複数の第1磁極は、前記第2傾斜方向に沿って互いに間隔を空けて並んでおり、
     前記第2ロータの前記複数の第2磁極は、前記第2傾斜方向に沿って互いに間隔を空けて並ぶと共に、周方向において前記2ロータの前記複数の第1磁極と重ならないように配置されている、
     請求項5に記載の2自由度電動機。
    The first direction is a first inclination direction that inclines in the first axial direction toward the first circumferential direction.
    The second direction is a second inclination direction that inclines in the first axial direction toward the second circumferential direction, which is the opposite direction of the first circumferential direction.
    The plurality of first magnetic poles of the first rotor are arranged at intervals along the first tilt direction.
    The plurality of second magnetic poles of the first rotor are arranged so as to be spaced apart from each other along the first inclination direction and do not overlap with the plurality of first magnetic poles of the first rotor in the circumferential direction. And
    The plurality of first magnetic poles of the second rotor are arranged so as to be spaced apart from each other along the second inclination direction.
    The plurality of second magnetic poles of the second rotor are arranged so as to be spaced apart from each other along the second inclination direction and do not overlap with the plurality of first magnetic poles of the two rotors in the circumferential direction. Yes,
    The two-degree-of-freedom motor according to claim 5.
  7.  前記駆動軸の前記複数の第1磁極及び前記複数の第2磁極のそれぞれは、前記第1傾斜方向に沿う端部と、前記第2傾斜方向に沿う端部を有する形状である、
     請求項6に記載の2自由度電動機。
    Each of the plurality of first magnetic poles and the plurality of second magnetic poles of the drive shaft has a shape having an end portion along the first tilt direction and an end portion along the second tilt direction.
    The two-degree-of-freedom motor according to claim 6.
  8.  前記駆動軸の前記複数の第1磁極は、軸方向において互いに間隔を空けて配置されており、
     前記駆動軸の前記複数の第2磁極は、軸方向において互いに間隔を空けて配置されている、
     請求項6又は7に記載の2自由度電動機。
    The plurality of first magnetic poles of the drive shaft are arranged so as to be spaced apart from each other in the axial direction.
    The plurality of second magnetic poles of the drive shaft are arranged so as to be spaced apart from each other in the axial direction.
    The two-degree-of-freedom motor according to claim 6 or 7.
  9.  前記駆動軸の前記複数の第1磁極及び前記複数の第2磁極のそれぞれは、周方向に沿う端部と、軸方向に沿う端部を有する形状であって、周方向及び軸方向において互いの端部が隣接するように交互に配置されている、
     請求項6に記載の2自由度電動機。

     
    Each of the plurality of first magnetic poles and the plurality of second magnetic poles of the drive shaft has a shape having an end portion along the circumferential direction and an end portion along the axial direction, and each of the plurality of first magnetic poles and the plurality of second magnetic poles has a shape having an end portion along the circumferential direction. Alternating so that the ends are adjacent,
    The two-degree-of-freedom motor according to claim 6.

PCT/JP2020/047259 2020-01-22 2020-12-17 Electric motor with two degrees of freedom WO2021149420A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021573010A JPWO2021149420A1 (en) 2020-01-22 2020-12-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020008623 2020-01-22
JP2020-008623 2020-01-22

Publications (1)

Publication Number Publication Date
WO2021149420A1 true WO2021149420A1 (en) 2021-07-29

Family

ID=76992223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047259 WO2021149420A1 (en) 2020-01-22 2020-12-17 Electric motor with two degrees of freedom

Country Status (2)

Country Link
JP (1) JPWO2021149420A1 (en)
WO (1) WO2021149420A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538710A (en) * 1976-05-24 1978-01-26 Kling Alberto Electromagnetic drive unit
JPS60111381U (en) * 1983-12-28 1985-07-27 日本電気ホームエレクトロニクス株式会社 Motor with 2 degrees of freedom
JPS6240052A (en) * 1985-08-14 1987-02-21 Tokyo R & D:Kk Rotary and axial linear motion combination type motor
JP2004040894A (en) * 2002-07-02 2004-02-05 Tsubakimoto Chain Co Electromagnetic actuator
JP2004254411A (en) * 2003-02-19 2004-09-09 Matsushita Electric Works Ltd Actuator and motor-operated toothbrush using the same
EP1780878A1 (en) * 2005-10-25 2007-05-02 Protronic N.V. Compact linear and rotary actuator
JP2009071967A (en) * 2007-09-12 2009-04-02 Namiki Precision Jewel Co Ltd Compound movement actuator of rotation and direct drive
KR20110001271A (en) * 2009-06-30 2011-01-06 연세대학교 산학협력단 Electric motor having two degree of freedom and manufacturing method thereof
CN104852549A (en) * 2015-05-28 2015-08-19 东南大学 Linear rotation permanent magnet actuator adopting staggered pole structure
JP2016025700A (en) * 2014-07-17 2016-02-08 国立大学法人横浜国立大学 Magnetic screw actuator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538710A (en) * 1976-05-24 1978-01-26 Kling Alberto Electromagnetic drive unit
JPS60111381U (en) * 1983-12-28 1985-07-27 日本電気ホームエレクトロニクス株式会社 Motor with 2 degrees of freedom
JPS6240052A (en) * 1985-08-14 1987-02-21 Tokyo R & D:Kk Rotary and axial linear motion combination type motor
JP2004040894A (en) * 2002-07-02 2004-02-05 Tsubakimoto Chain Co Electromagnetic actuator
JP2004254411A (en) * 2003-02-19 2004-09-09 Matsushita Electric Works Ltd Actuator and motor-operated toothbrush using the same
EP1780878A1 (en) * 2005-10-25 2007-05-02 Protronic N.V. Compact linear and rotary actuator
JP2009071967A (en) * 2007-09-12 2009-04-02 Namiki Precision Jewel Co Ltd Compound movement actuator of rotation and direct drive
KR20110001271A (en) * 2009-06-30 2011-01-06 연세대학교 산학협력단 Electric motor having two degree of freedom and manufacturing method thereof
JP2016025700A (en) * 2014-07-17 2016-02-08 国立大学法人横浜国立大学 Magnetic screw actuator
CN104852549A (en) * 2015-05-28 2015-08-19 东南大学 Linear rotation permanent magnet actuator adopting staggered pole structure

Also Published As

Publication number Publication date
JPWO2021149420A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
ES2322450T3 (en) PERMANENT ROTARY MAGNET ELECTRIC MOTOR THAT HAS POLAR EXPANSIONS OF VARIABLE DIMENSIONS STATOR.
US6246561B1 (en) Methods for controlling the path of magnetic flux from a permanent magnet and devices incorporating the same
EP1922796B1 (en) Monopole filed electric motor generator
JP4474547B2 (en) Permanent magnet movable electric machine
KR100403857B1 (en) Motor of magnetic lifting type
KR20050004286A (en) Rotary electric motor having a plurality of skewed stator poles and/or rotor poles
JPH06225508A (en) Permanent magnet brushless torque actuator
WO2007037380A1 (en) Magnetic field control method and magnetic field generation device
JP2009509482A (en) Magnetic motor
JP2008512977A (en) Magnetic rotating device
US6727629B1 (en) Rotary electric motor having a plurality of shifted stator poles and/or rotor poles
JP4941986B2 (en) Spherical stepping motor and spherical AC servo motor
JP2008092758A (en) Spherical surface stepping motor
KR20050004288A (en) Rotary electric motor having a plurality of shifted stator poles and/or rotor poles
WO2021149420A1 (en) Electric motor with two degrees of freedom
JPH06225513A (en) Linear motor
KR100741230B1 (en) Rotary permanent magnet electric motor with varying air gap between interfacing stator and rotor elements
JP6083640B2 (en) Permanent magnet embedded motor
JP2004254411A (en) Actuator and motor-operated toothbrush using the same
JP2004304943A (en) Rotor mechanism in permanent magnet type synchronous rotary electric machine
KR100401412B1 (en) Brushless DC motor with 3 Degrees of Freedom
JPS62260557A (en) Rotary solenoid
WO2023189970A1 (en) Magnetic levitation motor
JPH04271287A (en) Magnetic levitation actuator
US20200403466A1 (en) Magnetic rotating member and methods relating to same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573010

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915468

Country of ref document: EP

Kind code of ref document: A1