WO2021149395A1 - Power conditioner - Google Patents

Power conditioner Download PDF

Info

Publication number
WO2021149395A1
WO2021149395A1 PCT/JP2020/046483 JP2020046483W WO2021149395A1 WO 2021149395 A1 WO2021149395 A1 WO 2021149395A1 JP 2020046483 W JP2020046483 W JP 2020046483W WO 2021149395 A1 WO2021149395 A1 WO 2021149395A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
control unit
charging current
generated
Prior art date
Application number
PCT/JP2020/046483
Other languages
French (fr)
Japanese (ja)
Inventor
祐樹 石倉
寛幸 安井
浩平 柴田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021573000A priority Critical patent/JP7243869B2/en
Publication of WO2021149395A1 publication Critical patent/WO2021149395A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • This disclosure relates to a power conditioner.
  • a photovoltaic power generation system is installed in a general household, for example, and is equipped with a power conditioner that converts the power generated by the solar panel into AC power and outputs it. Further, the power conditioner having a storage battery charges the storage battery with surplus power, converts the power stored in the storage battery into AC power during the time when the solar panel does not generate power, and outputs the power (see, for example, Patent Document 1).
  • the internal resistance value of a storage battery changes depending on the amount of charge (storage amount), and a loss occurs according to the internal resistance value.
  • the energy generated by the solar panel cannot be efficiently used.
  • the purpose of this disclosure is to provide a power conditioner that enables efficient use of energy generated by solar panels.
  • the power conditioner which is one aspect of the present disclosure, is a PV converter that converts the generated power of the solar panel and outputs it to the DC high-voltage bus, and converts the power of the DC high-pressure bus into AC power and outputs it to the grid power line.
  • the control unit includes an inverter, a storage battery capable of charging and discharging the DC high-pressure bus, and a control unit that controls the PV converter and the inverter and also controls the charging current to the storage battery.
  • the stored amount of the storage battery is less than the first threshold value
  • the storage battery is charged with the charging current of the first current value
  • the second current value larger than the first current value is used.
  • the storage battery is charged with the charging current of.
  • the charging current for the storage battery is set as the first current value, so that the internal resistance loss due to the internal resistance of the storage battery is reduced and the power generated by the solar panel is reduced. In other words, the energy generated by the solar panel can be used efficiently.
  • the control unit ends the surplus power during the period in which the surplus power of the difference between the generated power of the solar panel and the power consumption of the electric device operating by the AC power is generated. It is preferable to control the charging current so that the storage battery is fully charged according to the timing of charging.
  • the storage battery when the generated power of the solar panel is smaller than the power consumption of the electric device and the discharge power from the rechargeable battery is required, the storage battery is fully charged, so that the discharge due to natural discharge is small.
  • the stored power of the storage battery can be used efficiently.
  • the control unit charges the storage battery with a charging current having a third current value smaller than the second current value when the amount of electricity stored is greater than or equal to the second threshold value larger than the first threshold value.
  • the storage battery is fully charged at the timing when the surplus power ends during the period in which the surplus power of the difference between the generated power of the solar panel and the power consumption of the electric device operating by the AC power is generated. It is preferable to set the third current value so as to be.
  • the storage battery when the generated power of the solar panel is smaller than the power consumption of the electric device and the discharge power from the rechargeable battery is required, the storage battery is fully charged, so that the discharge due to natural discharge is small.
  • the stored power of the storage battery can be used efficiently.
  • the control unit makes the generated power smaller than the power consumption during the period in which the surplus power is generated based on the position data and the date data of the installation location of the power conditioner. It is preferable to obtain the generation end time at which the surplus power ends and control the charging current so that the storage battery is fully charged at the generation end time.
  • the storage battery can be fully charged when the discharge power is required according to the installation position of the solar panel and the power conditioner, and the stored power of the storage battery can be efficiently used.
  • control unit receives the weather data of the installation location from the outside and controls the charging current based on the weather data.
  • control unit detects fluctuations in power consumption by the electric device operating on the AC power and controls the charging current according to the load.
  • control unit detects fluctuations in power consumption by the electric device operating on the AC power and controls the inverter so as to maintain the charging current.
  • control unit acquires the temperature of the storage battery and does not supply the charging current to the storage battery when the temperature is lower than the predetermined temperature.
  • the power conditioner of another disclosure is a PV converter that converts the generated power of the solar panel and outputs it to the DC high-pressure bus, and an inverter that converts the power of the DC high-pressure bus into AC power and outputs it to the grid power line.
  • the control unit includes a storage battery capable of charging and discharging the DC high-pressure bus, and a control unit that controls the PV converter and the inverter and also controls the charging current to the storage battery.
  • the storage battery is charged with the charging current of a predetermined value, and when the stored amount of the storage battery exceeds a predetermined value, the storage battery is charged with a charging voltage of a predetermined value, and a constant current constant voltage control is performed, and the solar panel is used.
  • the predetermined value of the charging current is set so as to fully charge the storage battery at the timing when the surplus power ends. Set.
  • the storage battery when the generated power of the solar panel is smaller than the power consumption of the electric device and the discharge power from the rechargeable battery is required, the storage battery is fully charged, so that the discharge due to natural discharge is small.
  • the stored power of the storage battery can be used efficiently.
  • the charging current set in this way is smaller than the charging current according to the rating of the storage battery, the internal resistance loss due to the internal resistance of the storage battery can be reduced, and the energy generated by the solar panel can be efficiently utilized. ..
  • the power conditioner includes a bidirectional DC-DC converter connected between the DC high-pressure bus and the storage battery, and the control unit controls the bidirectional DC-DC converter to control the storage battery. It is preferable to control the charging current.
  • the charging current for the storage battery can be easily controlled by controlling the bidirectional DC-DC converter.
  • the storage battery is directly connected to the DC high-pressure bus, the grid power line is connected to an electric device that consumes the AC power, and the storage battery is the power generated by the solar panel and the power generated by the solar panel. It is preferable that the charging current is charged by the surplus power of the difference from the power consumption of the electric device, and the control unit controls the inverter to control the charging current.
  • the charging current for the storage battery can be easily controlled by controlling the inverter.
  • Block circuit diagram of the power conditioner The waveform diagram which shows the power generation amount, the load amount, and the electricity storage amount of 1st Embodiment.
  • a characteristic diagram showing the relationship between the amount of electricity stored and the internal resistance A characteristic diagram showing the relationship between temperature and internal resistance.
  • the waveform diagram which shows the power generation amount, the load amount, and the electricity storage amount of the 2nd Embodiment. A block circuit diagram showing a power conditioner of a modified example.
  • the photovoltaic power generation system 10 of the present embodiment has a solar panel 11 and a power conditioner 12 connected to the solar panel 11.
  • the photovoltaic power generation system 10 is installed in, for example, a general household.
  • the power conditioner 12 is connected to a system power line 13 of a general household via a distribution board or the like (not shown), and the system power line 13 is connected to a commercial power system 14.
  • the commercial power system 14 is a power distribution system through which an electric power company transmits electric power.
  • An electric device (simply referred to as "device") 15 is connected to the grid power line 13 as an indoor load.
  • the electric device 15 is connected to a power line laid indoors or an outlet installed indoors via a distribution board.
  • the electric device 15 is, for example, an electric device such as a lighting, a television, a refrigerator, a washing machine, an air conditioner, a microwave oven, and the like.
  • the photovoltaic power generation system 10 may be installed in a commercial facility, a factory, or the like.
  • the power conditioner 12 converts the DC power generated by the solar panel 11 into AC power and outputs it. Then, the power conditioner 12 interconnects or disconnects the solar panel 11 and the commercial power system 14.
  • the power conditioner 12 includes a PV converter 21, an inverter 22, a filter 23, a grid interconnection relay (simply referred to as “relay”) 24, a DC-DC converter 25, a rectifier 26, a bidirectional DC-DC converter 27, and a storage battery 28. It has a control unit 29.
  • the PV converter 21 and the inverter 22 are connected to each other via a DC high voltage bus 30.
  • the PV converter 21 is a step-up chopper circuit controlled by the control unit 29, and includes a smoothing capacitor.
  • the PV converter 21 boosts and smoothes the DC voltage input from the solar panel 11 and outputs it to the DC high-voltage bus 30.
  • the PV converter 21 includes a switching element.
  • the control unit 29 adjusts the pulse width of the control signal that turns on and off the switching element of the PV converter 21 by, for example, a pulse width modulation (PWM) method. Then, the control unit 29 controls the PV converter 21 so that the desired output power is output from the PV converter 21 to the DC high-voltage bus 30.
  • PWM pulse width modulation
  • the inverter 22 is a DC / AC conversion circuit that operates by a control signal from the control unit 29.
  • the inverter 22 converts the DC power of the DC high-voltage bus 30 into AC power that can be connected to the commercial power system 14.
  • the converted AC power is output to the grid power line 13 via the filter 23 and the grid interconnection relay 24.
  • the inverter 22 includes a switching element.
  • the control unit 29 outputs a control signal having a frequency synchronized with the commercial power system 14, adjusts the pulse width of the control signal by, for example, a PWM method, and drives the switching element.
  • the output power of the inverter 22 is changed depending on the pulse width of the control signal.
  • control unit 29 controls the inverter 22 to output desired AC power from the inverter 22 to the system power line 13. Further, the inverter 22 converts the AC power of the commercial power system 14 into DC power and outputs it to the DC high-voltage bus 30. Similar to AC power, the control unit 29 controls on / off of a plurality of switching elements included in the inverter 22 by a control signal, and outputs desired DC power from the inverter 22 to the DC high-voltage bus 30.
  • the filter 23 reduces the high frequency component of the AC power output from the inverter 22.
  • the DC-DC converter 25 is, for example, a step-down circuit and outputs the operating voltage of the control unit 29.
  • the DC-DC converter 25 converts the DC voltage of the DC high-pressure bus 30 or the DC voltage supplied from the rectifier 26 into a DC voltage suitable for the operation of the control unit 29.
  • the control unit 29 operates based on the DC voltage supplied from the DC-DC converter 25, and controls the PV converter 21, the inverter 22, and the grid interconnection relay 24.
  • the grid interconnection relay 24 is, for example, a normally open electromagnetic relay, and the control unit 29 controls the closed state and the open state of the grid interconnection relay 24 by a control signal.
  • the grid interconnection relay 24 connects and disconnects the grid power line 13, that is, the electric device 15, and the commercial power system 14 with respect to the inverter 22.
  • the photovoltaic power generation system 10 is connected to the commercial power system 14 by the closing operation of the grid interconnection relay 24, and is disconnected by the opening operation of the grid interconnection relay 24.
  • the storage battery 28 of this embodiment is connected to the DC high-voltage bus 30 via a bidirectional DC-DC converter 27.
  • the storage battery 28 is a battery that can be charged and discharged.
  • the storage battery 28 is, for example, a lithium ion battery.
  • the bidirectional DC-DC converter 27 is, for example, a buck-boost circuit that converts the DC power of the DC high-pressure bus 30 into DC power for charging the storage battery 28. Further, the bidirectional DC-DC converter 27 converts the DC power discharged from the storage battery 28 into DC power having a voltage corresponding to the DC high-voltage bus 30.
  • the bidirectional DC-DC converter 27 includes a switching element.
  • the control unit 29 outputs a control signal for driving the switching element on and off, and adjusts the pulse width of the control signal by, for example, a PWM method.
  • the bidirectional DC-DC converter 27 converts the DC power of the DC high-pressure bus 30 into the charging power of the storage battery 28, or converts the discharge power from the storage battery 28 into the DC high-pressure bus 30. Convert to DC power.
  • the storage battery 28 has a battery management unit (BMU: battery management unit) 28a.
  • the battery management unit 28a calculates the amount of electricity stored in the storage battery 28. Further, the battery management unit 28a detects the temperature of the storage battery. The amount of electricity stored in the storage battery 28 is indicated by the SOC (State of Charge) of the storage battery 28. The amount of electricity stored in the storage battery 28 may be indicated by, for example, the voltage value between the terminals of the storage battery 28.
  • the battery management unit 28a outputs a detection signal including the amount of electricity stored, the temperature, and the like.
  • the control unit 29 includes, for example, a CPU 31, a memory 32, and a peripheral circuit 33, which are connected to each other via an internal bus 34.
  • the memory 32 includes a ROM and a RAM.
  • the memory 32 stores a processing program executed by the CPU 31, various data required for processing, and various data temporarily stored by executing the processing program.
  • the peripheral circuit 33 includes at least one circuit for operating the CPU 31. In the circuit included in the peripheral circuit 33, for example, a circuit that generates a clock signal for the operation of the control unit 29, a clock circuit that indicates the time, and detection signals of various sensors and storage batteries included in the power conditioner 12 are input. It includes an interface circuit, a communication circuit that communicates with the outside of the power conditioner 12 such as the Internet by wire or wirelessly, and the like.
  • the CPU 31 directly accesses the peripheral circuit 33 to read the information (data) required for executing the processing program, or reads the information (data) stored in the memory 32 from the peripheral circuit 33.
  • the information (data) stored in the memory 32 includes, for example, information stored in the memory 32 from an external terminal connected to the peripheral circuit 33.
  • the information (data) stored in the memory 32 includes the location information of the installation location of the photovoltaic power generation system 10, the date, the time, the device information of the solar panel 11, the device information of the storage battery 28, and the like.
  • the device information of the solar panel 11 includes the maximum generated power according to the number of installed panels, and the like.
  • the control unit 29 controls the PV converter 21 and the inverter 22 so that the CPU 31 executes a processing program to output AC power to the grid power line 13 based on the generated power of the solar panel 11. Further, the control unit 29 charges the storage battery 28 based on the surplus power which is the difference between the generated power of the solar panel 11 and the power consumption of the electric device 15 connected to the grid power line 13. -Controls the DC converter 27, the PV converter 21, and the inverter 22. Further, the bidirectional DC-DC converter 27 and the inverter 22 are used so that the AC power based on the discharge power of the storage battery 28 is output to the grid power line 13 when the power consumption of the electric device 15 exceeds the power generated by the solar panel 11. Control.
  • the generated power of the solar panel 11 can be calculated from the input voltage and input current of the PV converter 21.
  • the control unit 29 calculates the generated power of the solar panel 11 based on the input voltage and the input current detected by the voltage sensor 41 and the current sensor 42 provided on the input side of the PV converter 21.
  • a voltage sensor and a current sensor may be provided on the output side of the PV converter 21, and the generated power of the solar panel 11 may be calculated from the output voltage and the output current of the PV converter 21.
  • a power sensor 51 is provided on a distribution board (not shown) to which the electric device 15 is connected, and the power consumption can be obtained by the amount of power detected by the power sensor 51.
  • the charge control for the storage battery 28 will be described in detail.
  • the control unit 29 charges the storage battery 28 based on the surplus electric power.
  • the surplus power is generated when the generated power of the solar panel 11 is larger than the power consumption of the electric device 15.
  • the solar panel 11 starts power generation at sunrise and ends power generation at sunset.
  • the control unit 29 controls the bidirectional DC-DC converter 27 and the like so as to charge the storage battery 28 based on the surplus electric power between the sunrise time and the sunset time.
  • the upper part of FIG. 2 shows an example of changes in the generated power L31 and the power consumption L32 in one day (24 hours).
  • the time Ts at which the generated power L31 of the solar panel 11 that has started power generation becomes larger than the power consumption L32 is defined as the generation start time at which surplus power is generated, and the time Te at which the generated power L31 is smaller than the power consumption L32 is defined as the generation end time. do.
  • the control unit 29 performs charge control for charging the storage battery 28 during the period from the generation start time Ts to the generation end time Te.
  • the control unit 29 charges the storage battery 28 by a constant current constant voltage charging (CCCV) method that manages the charging current and the charging voltage of the storage battery 28.
  • CCCV constant current constant voltage charging
  • the control unit 29 adjusts the charging current based on the stored amount of the storage battery 28 in the period of supplying the managed charging current to the storage battery 28.
  • the charging current and charging voltage for the storage battery 28 can be obtained, for example, by a current sensor 43 and a voltage sensor 44 provided between the bidirectional DC-DC converter 27 and the storage battery 28.
  • the control unit 29 acquires the amount of electricity stored from the storage battery 28.
  • the amount of electricity stored is a percentage indicated by the SOC of the storage battery 28.
  • the control unit 29 charges the storage battery 28 with a charging current of less than a predetermined value when the SOC is less than a predetermined value, and charges the storage battery 28 with a charging current of a predetermined value or more when the SOC is a predetermined value or more.
  • a predetermined value for comparing SOCs is stored in the memory 32 of the control unit 29 as, for example, a first threshold value. The first threshold value is set according to the internal resistance of the storage battery 28.
  • the value of internal resistance changes according to the amount of electricity stored and the temperature.
  • 5 and 6 show the relationship between SOC (storage amount), internal resistance, and temperature in a lithium ion battery.
  • the horizontal axis is the SOC and the vertical axis is the value of the internal resistance.
  • the characteristic lines L11, L12, and L13 shown in FIG. 5 show the characteristics when the temperature of the storage battery 28 is high in this order.
  • the horizontal axis represents the temperature and the vertical axis represents the value of the internal resistance.
  • the characteristic lines L21, L22, L23, and L24 shown in FIG. 6 show the characteristics when the SOC is high in this order.
  • the internal resistance of the storage battery 28 increases sharply as the SOC decreases at a predetermined temperature.
  • the internal resistance is large in the range where the SOC is low.
  • the loss due to the internal resistance of the storage battery 28 is “internal resistance value ⁇ current squared”. Therefore, the control unit 29 acquires the SOC of the storage battery 28 and sets the charging current of the storage battery 28 to less than a predetermined value in the range where the SOC is low.
  • the low SOC range is defined as, for example, "less than 30%”. That is, the first threshold value is set to "30%".
  • control unit 29 sets a value smaller than 1C of the storage battery 28, for example 0.2C, as a predetermined value, and sets a value less than this predetermined value (first current value, for example 0.1C) as the value of the charging current.
  • 1C is a current value at which the discharge ends in 1 hour when a cell having a capacity of a nominal capacity value is discharged with a constant current.
  • FIG. 2 shows the SOC curve L33 in the charge control according to the present embodiment and the SOC curve L34 of the comparative example.
  • the control unit 29 sets the current value less than the predetermined value as the first current value (for example, 0.1C) smaller than the predetermined value, and sets the first current value.
  • the bidirectional DC-DC converter 27 is controlled so as to charge the storage battery 28 with a value charging current. By reducing the current value of the charging current, the internal resistance loss during charging can be reduced. Further, by reducing the current value of the charging current, the amount of heat generated by the storage battery 28 can be reduced.
  • control unit 29 charges the storage battery 28 with a charging current having a second current value (for example, 0.25C) larger than a predetermined value. Controls the DC converter 27.
  • the control unit 29 controls the charging current so that the voltage between the terminals of the storage battery 28 becomes a constant voltage.
  • the charging current is an output current from the bidirectional DC-DC converter 27 toward the storage battery 28.
  • the control unit 29 controls the charging current by controlling the bidirectional DC-DC converter 27.
  • control unit 29 controls the charging current so that the storage battery 28 is fully charged by the above-mentioned generation end time Te. It is preferable to control the charging current so that the storage battery 28 is fully charged at the generation end time Te.
  • the storage battery 28 may be fully charged at the generation end time Te, and may be fully charged within a range from the generation end time Te to a predetermined time (for example, about 30 minutes) before.
  • the control unit 29 calculates the time between the time T11 at which the SOC becomes the second threshold and the generation end time Te, and sets the charging current to a third current value smaller than the second current value according to the time.
  • the bidirectional DC-DC converter 27 is controlled in this way.
  • the SOC curve L34 of the comparative example shown in the lower part of FIG. 2 shows the case where the storage battery is charged with a charging current of 0.25C.
  • a storage battery is often charged with a charging current having a value corresponding to the rating so that the storage battery is fully charged within a predetermined charging time.
  • the storage battery 28 is fully charged at a time considerably earlier than the time when the generated power L31 becomes lower than the power consumption L32 (generation end time Te).
  • the amount of electricity stored in the storage battery 28 decreases due to natural discharge.
  • the storage amount of the storage battery decreases due to natural discharge at the generation end time Te, and electricity is charged only for a time corresponding to the storage amount.
  • the device 15 cannot be used.
  • the usage time of the electric device 15 is longer than that of the comparative example because the amount of stored electricity does not decrease. That is, in the photovoltaic power generation system 10 of the present embodiment, the storage battery 28 can be used more efficiently.
  • the SOC of the storage battery 28 is reduced by the use of the electric device 15, that is, the power consumption indicated by the power consumption L32, and is in a completely discharged state.
  • the completely discharged state of the storage battery 28 is a state in which the SOC is 0 (%) or close to 0 (%).
  • the storage battery 28 is in a completely discharged state at 24:00. Therefore, the storage battery 28 is charged from the completely discharged state by the generated power of the solar panel 11 on the next day.
  • the period in which the surplus power is generated is a period in which the generated power L31 of the solar panel 11 is larger than the power consumption L32 of the electric device 15, and is from a time later than the sunrise time (generation start time Ts). It is until the time earlier than sunset (occurrence end time Te).
  • the sunrise time and the sunset time differ from the standard time depending on the installation location (for example, longitude) of the photovoltaic power generation system 10, the season, and the like. Therefore, the control unit 29 calculates the generation start time and the generation end time based on the position data, the date data, and the power consumption data related to the installation location.
  • the latitude and longitude of the installation location of the photovoltaic power generation system 10 can be calculated by including the GPS (Global Positioning System) receiver in the peripheral circuit 33. Further, when the photovoltaic power generation system 10 is installed, it may be set in the memory 32 from an external terminal owned by the operator.
  • GPS Global Positioning System
  • the date data is stored in the memory 32 as a calendar.
  • a clock circuit included in the peripheral circuit 33 a time calculated based on a radio wave received by a GPS receiver, a time received by the Internet, or the like can be used.
  • the control unit 29 obtains the time when the solar panel 11 starts power generation and the time when the power generation ends based on the position data and the date data.
  • the power consumption data the data of the average household power consumption can be used as the power consumption data.
  • the power consumption data may be corrected depending on the type and number of the electric devices 15 installed in the home where the photovoltaic power generation system is installed.
  • the power consumption data for each day of the week may be stored in the memory 32 based on the date data.
  • the standard power consumption data and the correction data according to the date and the day may be stored in the memory 32, and the power consumption data for the day may be calculated from the standard power consumption data and the correction data. ..
  • the control unit 29 calculates the generation start time Ts and the generation end time Te based on the power generation start time, the power generation end time, and the power consumption data. Then, the control unit 29 sets the above-mentioned first current value, second current value, and third current value. For example, since the outside air temperature is lower and the temperature of the storage battery 28 is lower in winter than in summer, the internal resistance value is higher. Therefore, the internal resistance loss can be reduced by reducing the first current value in winter as compared with summer. Further, in the summer, the time from the occurrence start time Ts to the occurrence end time Te is longer than in the winter. Therefore, by making the second current value smaller than the above-mentioned 1C, the calorific value of the storage battery 28 can be suppressed.
  • the control unit 29 controls the bidirectional DC-DC converter 27 so as not to supply the charging current to the storage battery 28. Thereby, the influence on the storage battery 28 at a low temperature can be reduced.
  • a predetermined value for example, 10 ° C.
  • the generated power in the solar panel 11 differs depending on the season and the weather, and the generation start time Ts and the generation end time Te change. Therefore, the control unit 29 acquires the weather data related to the installation location, for example, via the Internet. The control unit 29 calculates the occurrence start time Ts and the occurrence end time Te based on the weather data. Then, the control unit 29 can fully charge the storage battery by setting the above-mentioned first current value, second current value, and third current value.
  • the control unit 29 can also control the charging current for the storage battery 28 based on the amount of power consumed by the electric device 15. As shown in FIG. 3, the power consumption of the electric device 15 may temporarily fluctuate with respect to the average power consumption data. Due to the temporary increase in power consumption, the surplus power is reduced. In this case, the control unit 29 reduces the charging current for the storage battery 28 to cope with the temporary increase in power consumption. As a result, the increase in SOC becomes moderate. Then, when the timing when the SOC becomes equal to or higher than the second threshold value or the temporary increase in power consumption disappears, the control unit 29 controls the third current value, for example, by increasing the number as compared with the example shown in FIG. , The storage battery 28 can be fully charged by the generation end time Te.
  • control unit 29 may control the inverter 22 so as to maintain the charging current when the surplus power is reduced due to a temporary increase in power consumption. That is, in order to maintain the charging current, the alternating current supplied from the power conditioner 12 to the system power line 13 may be reduced. As a result, even if the power consumption temporarily increases, it is possible to suppress a decrease in the charging capacity.
  • the power generated by the solar panel 11 changes depending on the amount of solar radiation. For example, thick clouds that do not easily allow sunlight to pass through may block sunlight on the solar panel 11. In this case, as shown in FIG. 4, the amount of power generation is temporarily reduced, and the surplus power is reduced. In this case, the control unit 29 reduces the charging current for the storage battery 28 to secure the AC power to be supplied to the system power line 13. As a result, the increase in SOC becomes moderate. Then, the control unit 29 controls the third current value, for example, by increasing the number as compared with the example shown in FIG. 2, the storage battery 28 can be fully charged by the generation end time Te.
  • the power conditioner 12 is a PV converter 21 that converts the generated power of the solar panel 11 and outputs it to the DC high-pressure bus 30, and a grid power line 13 that converts the power of the DC high-pressure bus 30 into AC power.
  • the charging current for the storage battery 28 is set as the first current value, thereby reducing the internal resistance loss due to the internal resistance of the storage battery 28 and the solar panel.
  • the energy generated by the above can be used efficiently.
  • the control unit 29 fully charges the storage battery 28 at the timing when the surplus power is generated, which is the difference between the generated power of the solar panel and the power consumption of the electric device 15.
  • the charging current is controlled so as to. According to this configuration, when the power generated by the solar panel is smaller than the power consumed by the electric device 15 and the discharge power from the rechargeable battery is required, the storage battery 28 is fully charged, so that the discharge due to natural discharge occurs. The amount of electricity stored in the storage battery 28 can be efficiently used.
  • the control unit 29 charges the storage battery 28 with the charging current of the third current value, and also determines the power generated by the solar panel and the power consumed by the electric device 15.
  • the third current value is set so that the storage battery 28 is fully charged at the timing when the surplus power ends in the period during which the surplus power is generated. According to this configuration, when the power generated by the solar panel is smaller than the power consumed by the electric device 15 and the discharge power from the rechargeable battery is required, the storage battery 28 is fully charged, so that the discharge due to natural discharge occurs. The amount of electricity stored in the storage battery 28 can be efficiently used.
  • the power generated by the solar panel is larger than the power consumed by the electric device 15 as the period during which the surplus power is generated based on the position data and the date data of the installation location of the power conditioner.
  • the generation start time when the surplus power is generated and the generation end time when the generated power becomes smaller than the power consumption and the surplus power ends are obtained, and the charging current is controlled so that the storage battery 28 is fully charged at the generation end time.
  • the storage battery 28 can be fully charged when the discharge power is required according to the installation position of the solar panel and the power conditioner, and the stored power of the storage battery 28 can be efficiently used.
  • the control unit 29 receives the weather data of the installation location from the outside and controls the charging current based on the weather data. According to this configuration, the influence of the weather at the installation location can be reduced.
  • control of the charging current by the control unit 29 is different from that in the first embodiment. Therefore, the description of the components in the second embodiment will be omitted, and the control of the charging current by the control unit 29 will be described.
  • One current value is calculated so as to be.
  • the control unit 29 controls the bidirectional DC-DC converter 27 so as to supply the charging current of one calculated current value to the storage battery 28.
  • the SOC curve L33 in the present embodiment rises with a constant slope, and then becomes 100 [%] at the generation end time Te by constant voltage control. Therefore, by fully charging the storage battery 28 at the generation end time Te, the storage voltage of the storage battery 28 can be efficiently used.
  • the current value of the charging current supplied to the storage battery 28 has a gentler slope than the SOC curve L34 of the comparative example, and the current value of the charging current is smaller than that of the comparative example. Therefore, the internal resistance loss at the start of charging the storage battery 28 in the completely discharged state can be reduced. Further, since the current value of the charging current is smaller than that in the case of charging with the charging current according to the rating, the amount of heat generated by the storage battery 28 can be reduced.
  • the current value of the charging current supplied to the storage battery 28 has a gentler slope than the SOC curve L34 of the comparative example, and the current value of the charging current is smaller than that of the comparative example. Therefore, the internal resistance loss at the start of charging the storage battery 28 in the completely discharged state can be reduced. Further, since the current value of the charging current is smaller than that in the case of charging with the charging current according to the rating, the amount of heat generated by the storage battery 28 can be reduced.
  • the storage battery 28 may be directly connected to the DC high-voltage bus 30.
  • the bidirectional DC-DC converter 27 shown in FIG. 1 is omitted.
  • the charging current for the storage battery 28 can be controlled by the difference between the output power of the PV converter 21 and the output power of the inverter 22. That is, the control unit 29 controls at least the inverter 22 of the PV converter 21 and the inverter 22 so as to supply the same charging current to the storage battery 28 as in the above embodiment.
  • an external storage battery may be connected to the power conditioner 12.
  • the control unit 29 may detect the presence or absence of an external storage battery and control the charging current for the external storage battery based on the SOC of the external storage battery.
  • the current value of the charging current is set by the generation start time Ts and the generation end time Te, but the current value of the charging current may be set by other times.
  • the charging start time and the charging end time may be a time instructing the start of charging, a time set by a timer, or the like.
  • the charging start time is preferably a time when sufficient surplus power is generated.
  • the charging end time is preferably the above-mentioned generation end time Te.
  • the generation end time Te of the day is calculated based on the data stored in the memory 32, and the current amount of the charging current is set based on the time set by the timer or the like and the generation end time Te.

Abstract

The present disclosure provides a power conditioner making it possible to efficiently make use of energy generated by a solar panel. The power conditioner (12) is provided with: a PV converter (21) for converting power generated by a solar panel (11) and outputting the converted power to a DC high-voltage bus (30); an inverter (22) for converting the power of the DC high-voltage bus (30) to AC power and outputting the AC power to a system power line (13); a storage battery (28) capable of both charging from and discharging to the DC high-voltage bus (30); and a control unit (29) for controlling the PV converter (21) and the inverter (22) and controlling the charging current to the storage battery (28). The control unit (29) charges the storage battery (28) with the charging current having a first current value when the electricity storage amount of the storage battery (28) is less than a first threshold value, and charges the storage battery (28) with the charging current having a second current value greater than the first current value when the electricity storage amount is greater than or equal to the first threshold value.

Description

パワーコンディショナPower conditioner
 本開示は、パワーコンディショナに関するものである。 This disclosure relates to a power conditioner.
 従来、太陽光発電システムは、例えば一般家庭に設置され、太陽光パネルで発電される電力を交流電力に変換して出力するパワーコンディショナを備えている。また、蓄電池を有するパワーコンディショナは、余剰電力を蓄電池に充電し、太陽光パネルが発電しない時間に蓄電池に蓄電された電力を交流電力に変換して出力する(例えば、特許文献1参照)。 Conventionally, a photovoltaic power generation system is installed in a general household, for example, and is equipped with a power conditioner that converts the power generated by the solar panel into AC power and outputs it. Further, the power conditioner having a storage battery charges the storage battery with surplus power, converts the power stored in the storage battery into AC power during the time when the solar panel does not generate power, and outputs the power (see, for example, Patent Document 1).
特開2018-098820号公報Japanese Unexamined Patent Publication No. 2018-098820
 ところで、蓄電池は、充電量(蓄電量)により内部抵抗値が変化し、その内部抵抗値に応じて損失が生じる。内部抵抗値が高い領域で充電すると、太陽光パネルによって発電したエネルギーを効率よく活用できないという問題があった。 By the way, the internal resistance value of a storage battery changes depending on the amount of charge (storage amount), and a loss occurs according to the internal resistance value. When charging in a region where the internal resistance value is high, there is a problem that the energy generated by the solar panel cannot be efficiently used.
 本開示の目的は、太陽光パネルによって発電したエネルギーの効率よい活用を可能としたパワーコンディショナを提供することにある。 The purpose of this disclosure is to provide a power conditioner that enables efficient use of energy generated by solar panels.
 本開示の一態様であるパワーコンディショナは、太陽光パネルの発電電力を変換して直流高圧バスに出力するPVコンバータと、前記直流高圧バスの電力を交流電力に変換して系統電力線に出力するインバータと、前記直流高圧バスに対して充放電可能とした蓄電池と、前記PVコンバータと前記インバータとを制御するとともに、前記蓄電池への充電電流を制御する制御部と、を備え、前記制御部は、前記蓄電池の蓄電量が第1閾値未満のときは第1電流値の充電電流にて前記蓄電池を充電し、前記蓄電量が第1閾値以上のときには前記第1電流値より大きな第2電流値の充電電流にて前記蓄電池を充電する。 The power conditioner, which is one aspect of the present disclosure, is a PV converter that converts the generated power of the solar panel and outputs it to the DC high-voltage bus, and converts the power of the DC high-pressure bus into AC power and outputs it to the grid power line. The control unit includes an inverter, a storage battery capable of charging and discharging the DC high-pressure bus, and a control unit that controls the PV converter and the inverter and also controls the charging current to the storage battery. When the stored amount of the storage battery is less than the first threshold value, the storage battery is charged with the charging current of the first current value, and when the stored amount is equal to or more than the first threshold value, the second current value larger than the first current value is used. The storage battery is charged with the charging current of.
 この構成によれば、蓄電池の蓄電量が第1閾値未満のときに蓄電池に対する充電電流を第1電流値とすることで、蓄電池の内部抵抗による内部抵抗損失を低減し、太陽光パネルの発電電力、つまり太陽光パネルによって発電したエネルギーを効率よく活用できる。 According to this configuration, when the storage amount of the storage battery is less than the first threshold value, the charging current for the storage battery is set as the first current value, so that the internal resistance loss due to the internal resistance of the storage battery is reduced and the power generated by the solar panel is reduced. In other words, the energy generated by the solar panel can be used efficiently.
 上記のパワーコンディショナにおいて、前記制御部は、前記太陽光パネルの発電電力と前記交流電力にて動作する電気機器の消費電力との差の余剰電力が発生する期間のうち、前記余剰電力が終了するタイミングに合わせて前記蓄電池を満充電とするように前記充電電流を制御することが好ましい。 In the power conditioner, the control unit ends the surplus power during the period in which the surplus power of the difference between the generated power of the solar panel and the power consumption of the electric device operating by the AC power is generated. It is preferable to control the charging current so that the storage battery is fully charged according to the timing of charging.
 この構成によれば、電気機器の消費電力よりも太陽光パネルの発電電力が小さくなって充電池からの放電電力が必要になるときに蓄電池が満充電であるため、自然放電による放電が少なく、蓄電池の蓄電電力を効率よく利用できる。 According to this configuration, when the generated power of the solar panel is smaller than the power consumption of the electric device and the discharge power from the rechargeable battery is required, the storage battery is fully charged, so that the discharge due to natural discharge is small. The stored power of the storage battery can be used efficiently.
 上記のパワーコンディショナにおいて、前記制御部は、前記蓄電量が前記第1閾値より大きい第2閾値以上のときには、前記第2電流値より小さい第3電流値の充電電流にて前記蓄電池を充電するとともに、前記太陽光パネルの発電電力と前記交流電力にて動作する電気機器の消費電力との差の余剰電力が発生する期間のうち、前記余剰電力が終了するタイミングに合わせて前記蓄電池を満充電とするように前記第3電流値を設定することが好ましい。 In the above power conditioner, the control unit charges the storage battery with a charging current having a third current value smaller than the second current value when the amount of electricity stored is greater than or equal to the second threshold value larger than the first threshold value. At the same time, the storage battery is fully charged at the timing when the surplus power ends during the period in which the surplus power of the difference between the generated power of the solar panel and the power consumption of the electric device operating by the AC power is generated. It is preferable to set the third current value so as to be.
 この構成によれば、電気機器の消費電力よりも太陽光パネルの発電電力が小さくなって充電池からの放電電力が必要になるときに蓄電池が満充電であるため、自然放電による放電が少なく、蓄電池の蓄電電力を効率よく利用できる。 According to this configuration, when the generated power of the solar panel is smaller than the power consumption of the electric device and the discharge power from the rechargeable battery is required, the storage battery is fully charged, so that the discharge due to natural discharge is small. The stored power of the storage battery can be used efficiently.
 上記のパワーコンディショナにおいて、前記制御部は、前記パワーコンディショナの設置場所の位置データと日付データとに基づいて、前記余剰電力が発生する期間のうち、前記発電電力が前記消費電力より小さくなり前記余剰電力が終了する発生終了時刻を求め、前記発生終了時刻に前記蓄電池を満充電とするように前記充電電流を制御することが好ましい。 In the above power conditioner, the control unit makes the generated power smaller than the power consumption during the period in which the surplus power is generated based on the position data and the date data of the installation location of the power conditioner. It is preferable to obtain the generation end time at which the surplus power ends and control the charging current so that the storage battery is fully charged at the generation end time.
 この構成によれば、太陽光パネルとパワーコンディショナの設置位置に応じて放電電力が必要になるときに蓄電池を満充電とすることができ、蓄電池の蓄電電力を効率よく利用できる。 According to this configuration, the storage battery can be fully charged when the discharge power is required according to the installation position of the solar panel and the power conditioner, and the stored power of the storage battery can be efficiently used.
 上記のパワーコンディショナにおいて、前記制御部は、前記設置場所の天候データを外部から受信し、前記天候データに基づいて、前記充電電流を制御することが好ましい。 In the above power conditioner, it is preferable that the control unit receives the weather data of the installation location from the outside and controls the charging current based on the weather data.
 この構成によれば、設置場所の天候による影響を低減することができる。 According to this configuration, the influence of the weather at the installation location can be reduced.
 上記のパワーコンディショナにおいて、前記制御部は、前記交流電力にて動作する電気機器による消費電力の変動を検出し、前記負荷に応じて前記充電電流を制御することが好ましい。 In the above power conditioner, it is preferable that the control unit detects fluctuations in power consumption by the electric device operating on the AC power and controls the charging current according to the load.
 上記のパワーコンディショナにおいて、前記制御部は、前記交流電力にて動作する電気機器による消費電力の変動を検出し、前記充電電流を維持するように前記インバータを制御することが好ましい。 In the above power conditioner, it is preferable that the control unit detects fluctuations in power consumption by the electric device operating on the AC power and controls the inverter so as to maintain the charging current.
 上記のパワーコンディショナにおいて、前記制御部は、前記蓄電池の温度を取得し、前記温度が所定温度未満のときに前記蓄電池に対する充電電流を供給しないことが好ましい。 In the above power conditioner, it is preferable that the control unit acquires the temperature of the storage battery and does not supply the charging current to the storage battery when the temperature is lower than the predetermined temperature.
 また、別の開示のパワーコンディショナは、太陽光パネルの発電電力を変換して直流高圧バスに出力するPVコンバータと、前記直流高圧バスの電力を交流電力に変換して系統電力線に出力するインバータと、前記直流高圧バスに対して充放電可能とした蓄電池と、前記PVコンバータと前記インバータとを制御するとともに、前記蓄電池への充電電流を制御する制御部と、を備え、前記制御部は、所定値の前記充電電流にて前記蓄電池を充電し、前記蓄電池の蓄電量が所定値を超えると所定値の充電電圧にて前記蓄電池を充電する定電流定電圧制御を行うとともに、前記太陽光パネルの発電電力と前記電気機器の消費電力との差の余剰電力が発生する期間のうち、前記余剰電力が終了するタイミングに合わせて前記蓄電池を満充電とするように前記充電電流の前記所定値を設定する。 Further, the power conditioner of another disclosure is a PV converter that converts the generated power of the solar panel and outputs it to the DC high-pressure bus, and an inverter that converts the power of the DC high-pressure bus into AC power and outputs it to the grid power line. The control unit includes a storage battery capable of charging and discharging the DC high-pressure bus, and a control unit that controls the PV converter and the inverter and also controls the charging current to the storage battery. The storage battery is charged with the charging current of a predetermined value, and when the stored amount of the storage battery exceeds a predetermined value, the storage battery is charged with a charging voltage of a predetermined value, and a constant current constant voltage control is performed, and the solar panel is used. During the period in which surplus power is generated, which is the difference between the generated power of the electric device and the power consumption of the electric device, the predetermined value of the charging current is set so as to fully charge the storage battery at the timing when the surplus power ends. Set.
 この構成によれば、電気機器の消費電力よりも太陽光パネルの発電電力が小さくなって充電池からの放電電力が必要になるときに蓄電池が満充電であるため、自然放電による放電が少なく、蓄電池の蓄電電力を効率よく利用できる。また、このように設定される充電電流は、蓄電池の定格に応じた充電電流に比べて小さいため、蓄電池の内部抵抗による内部抵抗損失を低減し、太陽光パネルによって発電したエネルギーを効率よく活用できる。 According to this configuration, when the generated power of the solar panel is smaller than the power consumption of the electric device and the discharge power from the rechargeable battery is required, the storage battery is fully charged, so that the discharge due to natural discharge is small. The stored power of the storage battery can be used efficiently. Further, since the charging current set in this way is smaller than the charging current according to the rating of the storage battery, the internal resistance loss due to the internal resistance of the storage battery can be reduced, and the energy generated by the solar panel can be efficiently utilized. ..
 上記のパワーコンディショナは、前記直流高圧バスと前記蓄電池との間に接続された双方向DC-DCコンバータを備え、前記制御部は、前記双方向DC-DCコンバータを制御することにより前記蓄電池に対する充電電流を制御することが好ましい。 The power conditioner includes a bidirectional DC-DC converter connected between the DC high-pressure bus and the storage battery, and the control unit controls the bidirectional DC-DC converter to control the storage battery. It is preferable to control the charging current.
 この構成によれば、双方向DC-DCコンバータの制御により蓄電池に対する充電電流を容易に制御できる。 According to this configuration, the charging current for the storage battery can be easily controlled by controlling the bidirectional DC-DC converter.
 上記のパワーコンディショナにおいて、前記蓄電池は前記直流高圧バスに直接接続され、前記系統電力線には、前記交流電力を消費する電気機器が接続され、前記蓄電池は、前記太陽光パネルの発電電力と前記電気機器の消費電力との差の余剰電力による前記充電電流により充電し、前記制御部は、前記インバータを制御して前記充電電流を制御することが好ましい。 In the power conditioner, the storage battery is directly connected to the DC high-pressure bus, the grid power line is connected to an electric device that consumes the AC power, and the storage battery is the power generated by the solar panel and the power generated by the solar panel. It is preferable that the charging current is charged by the surplus power of the difference from the power consumption of the electric device, and the control unit controls the inverter to control the charging current.
 この構成によれば、インバータの制御により、蓄電池に対する充電電流を容易に制御できる。 According to this configuration, the charging current for the storage battery can be easily controlled by controlling the inverter.
 本開示の一態様によれば、太陽光パネルによって発電したエネルギーの効率よい活用を可能としたパワーコンディショナを提供することができる。 According to one aspect of the present disclosure, it is possible to provide a power conditioner that enables efficient utilization of energy generated by a solar panel.
パワーコンディショナのブロック回路図。Block circuit diagram of the power conditioner. 第1実施形態の発電量、負荷量、蓄電量を示す波形図。The waveform diagram which shows the power generation amount, the load amount, and the electricity storage amount of 1st Embodiment. 第1実施形態の発電量、負荷量、蓄電量を示す波形図。The waveform diagram which shows the power generation amount, the load amount, and the electricity storage amount of 1st Embodiment. 第1実施形態の発電量、負荷量、蓄電量を示す波形図。The waveform diagram which shows the power generation amount, the load amount, and the electricity storage amount of 1st Embodiment. 蓄電量と内部抵抗の関係を示す特性図。A characteristic diagram showing the relationship between the amount of electricity stored and the internal resistance. 温度と内部抵抗の関係を示す特性図。A characteristic diagram showing the relationship between temperature and internal resistance. 第2実施形態の発電量、負荷量、蓄電量を示す波形図。The waveform diagram which shows the power generation amount, the load amount, and the electricity storage amount of the 2nd Embodiment. 変更例のパワーコンディショナを示すブロック回路図。A block circuit diagram showing a power conditioner of a modified example.
 (第1実施形態)
 以下、第1実施形態を説明する。
(First Embodiment)
Hereinafter, the first embodiment will be described.
 図1に示すように、本実施形態の太陽光発電システム10は、太陽光パネル11と、太陽光パネル11に接続されたパワーコンディショナ12とを有している。太陽光発電システム10は、例えば一般家庭に設置される。パワーコンディショナ12は、図示しない分電盤等を介して一般家庭の系統電力線13に接続され、系統電力線13は商用電力系統14に接続されている。商用電力系統14は、電力会社が電力を伝送する配電系統である。系統電力線13には、屋内負荷として電気機器(単に「機器」と表記)15が接続される。電気機器15は、分電盤を介して屋内に敷設された電力線又は屋内に設置されたコンセント(アウトレット)に接続されるものである。電気機器15は、例えば、照明、テレビ、冷蔵庫、洗濯機、空気調和機、電子レンジ、等の電気機器である。なお、太陽光発電システム10は、商業施設や工場等に設置されてもよい。 As shown in FIG. 1, the photovoltaic power generation system 10 of the present embodiment has a solar panel 11 and a power conditioner 12 connected to the solar panel 11. The photovoltaic power generation system 10 is installed in, for example, a general household. The power conditioner 12 is connected to a system power line 13 of a general household via a distribution board or the like (not shown), and the system power line 13 is connected to a commercial power system 14. The commercial power system 14 is a power distribution system through which an electric power company transmits electric power. An electric device (simply referred to as "device") 15 is connected to the grid power line 13 as an indoor load. The electric device 15 is connected to a power line laid indoors or an outlet installed indoors via a distribution board. The electric device 15 is, for example, an electric device such as a lighting, a television, a refrigerator, a washing machine, an air conditioner, a microwave oven, and the like. The photovoltaic power generation system 10 may be installed in a commercial facility, a factory, or the like.
 パワーコンディショナ12は、太陽光パネル11にて発電した直流電力を交流電力に変換して出力する。そして、パワーコンディショナ12は、太陽光パネル11と商用電力系統14とを連系又は解列する。 The power conditioner 12 converts the DC power generated by the solar panel 11 into AC power and outputs it. Then, the power conditioner 12 interconnects or disconnects the solar panel 11 and the commercial power system 14.
 パワーコンディショナ12は、PVコンバータ21、インバータ22、フィルタ23、系統連系リレー(単に「リレー」と表記)24、DC-DCコンバータ25、整流器26、双方向DC-DCコンバータ27、蓄電池28、制御部29を有している。PVコンバータ21とインバータ22は、直流高圧バス30を介して互いに接続されている。 The power conditioner 12 includes a PV converter 21, an inverter 22, a filter 23, a grid interconnection relay (simply referred to as “relay”) 24, a DC-DC converter 25, a rectifier 26, a bidirectional DC-DC converter 27, and a storage battery 28. It has a control unit 29. The PV converter 21 and the inverter 22 are connected to each other via a DC high voltage bus 30.
 PVコンバータ21は、制御部29によって制御される昇圧チョッパ回路であり、平滑用コンデンサを含む。PVコンバータ21は、太陽光パネル11から入力される直流電圧を昇圧するとともに平滑化して直流高圧バス30に出力する。PVコンバータ21は、スイッチング素子を含む。制御部29は、PVコンバータ21のスイッチング素子をオンオフする制御信号のパルス幅を、例えばパルス幅変調(PWM:Pulse Width Modulation)方式により調整する。そして、制御部29は、PVコンバータ21から所望の出力電力が直流高圧バス30に出力されるように、PVコンバータ21を制御する。 The PV converter 21 is a step-up chopper circuit controlled by the control unit 29, and includes a smoothing capacitor. The PV converter 21 boosts and smoothes the DC voltage input from the solar panel 11 and outputs it to the DC high-voltage bus 30. The PV converter 21 includes a switching element. The control unit 29 adjusts the pulse width of the control signal that turns on and off the switching element of the PV converter 21 by, for example, a pulse width modulation (PWM) method. Then, the control unit 29 controls the PV converter 21 so that the desired output power is output from the PV converter 21 to the DC high-voltage bus 30.
 インバータ22は、制御部29からの制御信号によって動作する直流交流変換回路である。インバータ22は、直流高圧バス30の直流電力を、商用電力系統14と連系可能な交流電力に変換する。その変換後の交流電力は、フィルタ23と系統連系リレー24を介して系統電力線13に出力される。インバータ22はスイッチング素子を含む。制御部29は、商用電力系統14と同期する周波数の制御信号を出力するとともに、その制御信号のパルス幅を例えばPWM方式によって調整し、スイッチング素子を駆動する。制御信号のパルス幅により、インバータ22の出力電力が変更される。つまり、制御部29は、インバータ22を制御することにより、所望の交流電力をインバータ22から系統電力線13に出力させる。また、インバータ22は、商用電力系統14の交流電力を直流電力に変換して直流高圧バス30に出力する。制御部29は、交流電力と同様に、制御信号によってインバータ22が含む複数のスイッチング素子のオンオフを制御し、所望の直流電力をインバータ22から直流高圧バス30に出力させる。フィルタ23は、インバータ22から出力される交流電力の高周波成分を低減する。 The inverter 22 is a DC / AC conversion circuit that operates by a control signal from the control unit 29. The inverter 22 converts the DC power of the DC high-voltage bus 30 into AC power that can be connected to the commercial power system 14. The converted AC power is output to the grid power line 13 via the filter 23 and the grid interconnection relay 24. The inverter 22 includes a switching element. The control unit 29 outputs a control signal having a frequency synchronized with the commercial power system 14, adjusts the pulse width of the control signal by, for example, a PWM method, and drives the switching element. The output power of the inverter 22 is changed depending on the pulse width of the control signal. That is, the control unit 29 controls the inverter 22 to output desired AC power from the inverter 22 to the system power line 13. Further, the inverter 22 converts the AC power of the commercial power system 14 into DC power and outputs it to the DC high-voltage bus 30. Similar to AC power, the control unit 29 controls on / off of a plurality of switching elements included in the inverter 22 by a control signal, and outputs desired DC power from the inverter 22 to the DC high-voltage bus 30. The filter 23 reduces the high frequency component of the AC power output from the inverter 22.
 DC-DCコンバータ25は、例えば降圧回路であり、制御部29の動作電圧を出力する。DC-DCコンバータ25は、直流高圧バス30の直流電圧、又は整流器26から供給される直流電圧を、制御部29の動作に適した直流電圧に変換する。制御部29は、DC-DCコンバータ25から供給される直流電圧に基づいて動作し、PVコンバータ21、インバータ22、系統連系リレー24を制御する。系統連系リレー24は、例えば常開型の電磁継電器であり、制御部29は制御信号によって系統連系リレー24の閉状態と開状態とを制御する。系統連系リレー24は、インバータ22に対して系統電力線13、つまり電気機器15、商用電力系統14を接離する。太陽光発電システム10は、系統連系リレー24の閉動作により商用電力系統14と連系し、系統連系リレー24の開動作により解列する。 The DC-DC converter 25 is, for example, a step-down circuit and outputs the operating voltage of the control unit 29. The DC-DC converter 25 converts the DC voltage of the DC high-pressure bus 30 or the DC voltage supplied from the rectifier 26 into a DC voltage suitable for the operation of the control unit 29. The control unit 29 operates based on the DC voltage supplied from the DC-DC converter 25, and controls the PV converter 21, the inverter 22, and the grid interconnection relay 24. The grid interconnection relay 24 is, for example, a normally open electromagnetic relay, and the control unit 29 controls the closed state and the open state of the grid interconnection relay 24 by a control signal. The grid interconnection relay 24 connects and disconnects the grid power line 13, that is, the electric device 15, and the commercial power system 14 with respect to the inverter 22. The photovoltaic power generation system 10 is connected to the commercial power system 14 by the closing operation of the grid interconnection relay 24, and is disconnected by the opening operation of the grid interconnection relay 24.
 本実施形態の蓄電池28は、双方向DC-DCコンバータ27を介して直流高圧バス30に接続されている。 The storage battery 28 of this embodiment is connected to the DC high-voltage bus 30 via a bidirectional DC-DC converter 27.
 蓄電池28は、充放電可能とされた電池である。蓄電池28は、例えばリチウムイオン電池である。 The storage battery 28 is a battery that can be charged and discharged. The storage battery 28 is, for example, a lithium ion battery.
 双方向DC-DCコンバータ27は、例えば昇降圧回路であり、直流高圧バス30の直流電力を、蓄電池28に充電する直流電力に変換する。また、双方向DC-DCコンバータ27は、蓄電池28から放電される直流電力を、直流高圧バス30に応じた電圧の直流電力に変換する。双方向DC-DCコンバータ27は、スイッチング素子を含む。制御部29は、スイッチング素子をオンオフ駆動する制御信号を出力するとともに、その制御信号のパルス幅を例えばPWM方式によって調整する。制御信号によりスイッチング素子がオンオフすることにより、双方向DC-DCコンバータ27は、直流高圧バス30の直流電力を蓄電池28の充電電力に変換する、または蓄電池28から放電電力を直流高圧バス30に対応する直流電力に変換する。 The bidirectional DC-DC converter 27 is, for example, a buck-boost circuit that converts the DC power of the DC high-pressure bus 30 into DC power for charging the storage battery 28. Further, the bidirectional DC-DC converter 27 converts the DC power discharged from the storage battery 28 into DC power having a voltage corresponding to the DC high-voltage bus 30. The bidirectional DC-DC converter 27 includes a switching element. The control unit 29 outputs a control signal for driving the switching element on and off, and adjusts the pulse width of the control signal by, for example, a PWM method. When the switching element is turned on and off by the control signal, the bidirectional DC-DC converter 27 converts the DC power of the DC high-pressure bus 30 into the charging power of the storage battery 28, or converts the discharge power from the storage battery 28 into the DC high-pressure bus 30. Convert to DC power.
 蓄電池28は、バッテリ管理部(BMU:バッテリマネジメントユニット)28aを有している。バッテリ管理部28aは、蓄電池28の蓄電量を算出する。また、バッテリ管理部28aは、蓄電池の温度を検出する。蓄電池28の蓄電量は、蓄電池28のSOC(State of Charge)で示される。なお、蓄電池28の蓄電量は、例えば蓄電池28の端子間電圧値で示されてもよい。バッテリ管理部28aは、蓄電量、温度、等を含む検出信号を出力する。 The storage battery 28 has a battery management unit (BMU: battery management unit) 28a. The battery management unit 28a calculates the amount of electricity stored in the storage battery 28. Further, the battery management unit 28a detects the temperature of the storage battery. The amount of electricity stored in the storage battery 28 is indicated by the SOC (State of Charge) of the storage battery 28. The amount of electricity stored in the storage battery 28 may be indicated by, for example, the voltage value between the terminals of the storage battery 28. The battery management unit 28a outputs a detection signal including the amount of electricity stored, the temperature, and the like.
 制御部29は、例えばCPU31、メモリ32、周辺回路33を備え、それらは内部バス34を介して互いに接続されている。メモリ32は、ROM、RAMを含む。メモリ32は、CPU31が実行する処理プログラム、処理に必要な各種のデータ、処理プログラムの実行により一時的に格納される各種のデータを記憶する。周辺回路33は、CPU31が動作するための少なくとも1つの回路を含む。周辺回路33に含まれる回路には、例えば制御部29の動作のためのクロック信号を生成する回路、時刻を示すクロック回路、パワーコンディショナ12に含まれる各種のセンサや蓄電池の検出信号を入力するインタフェース回路、インターネット等のパワーコンディショナ12の外部と有線又は無線で通信する通信回路、等を含む。CPU31は、処理プログラムの実行に際して必要となる情報(データ)を読み出すために周辺回路33に直接アクセスする、又は周辺回路33からメモリ32に格納された情報(データ)を読み出す。なお、メモリ32に記憶される情報(データ)は、例えば周辺回路33に接続される外部端末からメモリ32に格納されるものを含む。 The control unit 29 includes, for example, a CPU 31, a memory 32, and a peripheral circuit 33, which are connected to each other via an internal bus 34. The memory 32 includes a ROM and a RAM. The memory 32 stores a processing program executed by the CPU 31, various data required for processing, and various data temporarily stored by executing the processing program. The peripheral circuit 33 includes at least one circuit for operating the CPU 31. In the circuit included in the peripheral circuit 33, for example, a circuit that generates a clock signal for the operation of the control unit 29, a clock circuit that indicates the time, and detection signals of various sensors and storage batteries included in the power conditioner 12 are input. It includes an interface circuit, a communication circuit that communicates with the outside of the power conditioner 12 such as the Internet by wire or wirelessly, and the like. The CPU 31 directly accesses the peripheral circuit 33 to read the information (data) required for executing the processing program, or reads the information (data) stored in the memory 32 from the peripheral circuit 33. The information (data) stored in the memory 32 includes, for example, information stored in the memory 32 from an external terminal connected to the peripheral circuit 33.
 メモリ32に記憶される情報(データ)は、太陽光発電システム10の設置場所の位置情報、日付、時刻、太陽光パネル11の機器情報、蓄電池28の機器情報、等を含む。太陽光パネル11の機器情報は、設置パネル数に応じた最大発電電力、等を含む。 The information (data) stored in the memory 32 includes the location information of the installation location of the photovoltaic power generation system 10, the date, the time, the device information of the solar panel 11, the device information of the storage battery 28, and the like. The device information of the solar panel 11 includes the maximum generated power according to the number of installed panels, and the like.
 制御部29は、CPU31が処理プログラムを実行することにより、太陽光パネル11の発電電力に基づいて系統電力線13に交流電力を出力するよう、上記のPVコンバータ21、インバータ22を制御する。また、制御部29は、太陽光パネル11の発電電力と、系統電力線13に接続された電気機器15の消費電力との差である余剰電力に基づいて蓄電池28を充電するように、双方向DC-DCコンバータ27、PVコンバータ21、インバータ22を制御する。また、電気機器15の消費電力が太陽光パネル11の発電電力を上回るときに蓄電池28の放電電力に基づく交流電力を系統電力線13に出力するように、双方向DC-DCコンバータ27、インバータ22を制御する。 The control unit 29 controls the PV converter 21 and the inverter 22 so that the CPU 31 executes a processing program to output AC power to the grid power line 13 based on the generated power of the solar panel 11. Further, the control unit 29 charges the storage battery 28 based on the surplus power which is the difference between the generated power of the solar panel 11 and the power consumption of the electric device 15 connected to the grid power line 13. -Controls the DC converter 27, the PV converter 21, and the inverter 22. Further, the bidirectional DC-DC converter 27 and the inverter 22 are used so that the AC power based on the discharge power of the storage battery 28 is output to the grid power line 13 when the power consumption of the electric device 15 exceeds the power generated by the solar panel 11. Control.
 太陽光パネル11の発電電力は、PVコンバータ21の入力電圧及び入力電流により算出できる。制御部29は、PVコンバータ21の入力側に設けられた電圧センサ41及び電流センサ42により検出した入力電圧及び入力電流に基づいて、太陽光パネル11の発電電力を算出する。なお、PVコンバータ21の出力側に電圧センサ及び電流センサを設け、PVコンバータ21の出力電圧及び出力電流から太陽光パネル11の発電電力を算出してもよい。電気機器51の消費電力は、例えば電気機器15が接続される図示しない分電盤に電力センサ51を設け、その電力センサ51により検出した電力量により消費電力を得ることができる。 The generated power of the solar panel 11 can be calculated from the input voltage and input current of the PV converter 21. The control unit 29 calculates the generated power of the solar panel 11 based on the input voltage and the input current detected by the voltage sensor 41 and the current sensor 42 provided on the input side of the PV converter 21. A voltage sensor and a current sensor may be provided on the output side of the PV converter 21, and the generated power of the solar panel 11 may be calculated from the output voltage and the output current of the PV converter 21. Regarding the power consumption of the electric device 51, for example, a power sensor 51 is provided on a distribution board (not shown) to which the electric device 15 is connected, and the power consumption can be obtained by the amount of power detected by the power sensor 51.
 蓄電池28に対する充電制御について詳述する。 The charge control for the storage battery 28 will be described in detail.
 上述したように、制御部29は、余剰電力に基づいて、蓄電池28を充電する。余剰電力は、太陽光パネル11の発電電力が電気機器15の消費電力より大きいときに発生する。太陽光パネル11は、日の出によって発電を開始し、日没で発電を終了する。制御部29は、日の出時刻から日没時刻までの間において、余剰電力に基づいて蓄電池28を充電するように、双方向DC-DCコンバータ27等を制御する。 As described above, the control unit 29 charges the storage battery 28 based on the surplus electric power. The surplus power is generated when the generated power of the solar panel 11 is larger than the power consumption of the electric device 15. The solar panel 11 starts power generation at sunrise and ends power generation at sunset. The control unit 29 controls the bidirectional DC-DC converter 27 and the like so as to charge the storage battery 28 based on the surplus electric power between the sunrise time and the sunset time.
 図2の上段は、1日(24時間)における発電電力L31と消費電力L32の変化の一例を示す。発電を開始した太陽光パネル11の発電電力L31が消費電力L32より大きくなる時刻Tsを、余剰電力が発生する発生開始時刻とし、発電電力L31が消費電力L32より小さくなる時刻Teを発生終了時刻とする。 The upper part of FIG. 2 shows an example of changes in the generated power L31 and the power consumption L32 in one day (24 hours). The time Ts at which the generated power L31 of the solar panel 11 that has started power generation becomes larger than the power consumption L32 is defined as the generation start time at which surplus power is generated, and the time Te at which the generated power L31 is smaller than the power consumption L32 is defined as the generation end time. do.
 制御部29は、発生開始時刻Tsから発生終了時刻Teまでの期間において、蓄電池28を充電する充電制御を行う。例えば、制御部29は、蓄電池28に対する充電電流と充電電圧を管理する定電流定電圧充電(CCCV)方式によって、蓄電池28を充電する。また、制御部29は、管理した充電電流を蓄電池28に供給する期間において、その充電電流を蓄電池28の蓄電量に基づいて調整する。蓄電池28に対する充電電流と充電電圧は、例えば双方向DC-DCコンバータ27と蓄電池28との間に設けた電流センサ43と電圧センサ44により得ることができる。 The control unit 29 performs charge control for charging the storage battery 28 during the period from the generation start time Ts to the generation end time Te. For example, the control unit 29 charges the storage battery 28 by a constant current constant voltage charging (CCCV) method that manages the charging current and the charging voltage of the storage battery 28. Further, the control unit 29 adjusts the charging current based on the stored amount of the storage battery 28 in the period of supplying the managed charging current to the storage battery 28. The charging current and charging voltage for the storage battery 28 can be obtained, for example, by a current sensor 43 and a voltage sensor 44 provided between the bidirectional DC-DC converter 27 and the storage battery 28.
 詳述すると、制御部29は、蓄電池28から蓄電量を取得する。本実施形態において、蓄電量は、蓄電池28のSOCで示される百分率である。制御部29は、SOCが所定値未満のときに所定値未満の充電電流で蓄電池28を充電し、SOCが所定値以上のときに所定値以上の充電電流で蓄電池28を充電するように、双方向DC-DCコンバータ27を制御する。SOCを比較する所定値は、例えば第1閾値として制御部29のメモリ32に記憶される。第1閾値は、蓄電池28の内部抵抗に応じて設定される。リチウムイオン電池は、蓄電量と温度に応じて内部抵抗の値が変化する。図5、図6は、リチウムイオン電池におけるSOC(蓄電量)、内部抵抗、温度の関係を示す。図5において、横軸はSOC、縦軸は内部抵抗の値である。図5に示す特性線L11,L12,L13は、この順番で蓄電池28の温度が高いときの特性を示す。図6において、横軸は温度、縦軸は内部抵抗の値である。図6に示す特性線L21,L22,L23,L24は、この順番でSOCが高いときの特性を示す。 More specifically, the control unit 29 acquires the amount of electricity stored from the storage battery 28. In the present embodiment, the amount of electricity stored is a percentage indicated by the SOC of the storage battery 28. The control unit 29 charges the storage battery 28 with a charging current of less than a predetermined value when the SOC is less than a predetermined value, and charges the storage battery 28 with a charging current of a predetermined value or more when the SOC is a predetermined value or more. Controls the DC-DC converter 27. A predetermined value for comparing SOCs is stored in the memory 32 of the control unit 29 as, for example, a first threshold value. The first threshold value is set according to the internal resistance of the storage battery 28. In a lithium ion battery, the value of internal resistance changes according to the amount of electricity stored and the temperature. 5 and 6 show the relationship between SOC (storage amount), internal resistance, and temperature in a lithium ion battery. In FIG. 5, the horizontal axis is the SOC and the vertical axis is the value of the internal resistance. The characteristic lines L11, L12, and L13 shown in FIG. 5 show the characteristics when the temperature of the storage battery 28 is high in this order. In FIG. 6, the horizontal axis represents the temperature and the vertical axis represents the value of the internal resistance. The characteristic lines L21, L22, L23, and L24 shown in FIG. 6 show the characteristics when the SOC is high in this order.
 図5の特性線L11において、蓄電池28の内部抵抗は、所定の温度において、SOCが低くなると急激に大きくなる。この特性線L11の温度では、SOCが低い範囲では、内部抵抗が大きい。蓄電池28の内部抵抗による損失は、「内部抵抗値×電流の2乗」となる。このため、制御部29は、蓄電池28のSOCを取得し、そのSOCが低い範囲において、蓄電池28の充電電流を所定値未満とする。本実施形態において、SOCの低い範囲を、例えば「30%未満」とする。つまり、第1閾値を「30%」と設定する。 In the characteristic line L11 of FIG. 5, the internal resistance of the storage battery 28 increases sharply as the SOC decreases at a predetermined temperature. At the temperature of the characteristic line L11, the internal resistance is large in the range where the SOC is low. The loss due to the internal resistance of the storage battery 28 is “internal resistance value × current squared”. Therefore, the control unit 29 acquires the SOC of the storage battery 28 and sets the charging current of the storage battery 28 to less than a predetermined value in the range where the SOC is low. In the present embodiment, the low SOC range is defined as, for example, "less than 30%". That is, the first threshold value is set to "30%".
 また、制御部29は、蓄電池28の1Cよりも小さい値、例えば0.2Cを所定値とし、この所定値未満の値(第1電流値、例えば0.1C)を充電電流の値とする。1Cは、公称容量値の容量を有するセルを定電流放電したときに1時間で放電終了となる電流値である。 Further, the control unit 29 sets a value smaller than 1C of the storage battery 28, for example 0.2C, as a predetermined value, and sets a value less than this predetermined value (first current value, for example 0.1C) as the value of the charging current. 1C is a current value at which the discharge ends in 1 hour when a cell having a capacity of a nominal capacity value is discharged with a constant current.
 図2の下段には、本実施形態による充電制御におけるSOC曲線L33と、比較例のSOC曲線L34を示す。 The lower part of FIG. 2 shows the SOC curve L33 in the charge control according to the present embodiment and the SOC curve L34 of the comparative example.
 図2の下段に示すように、制御部29は、SOCが第1閾値未満のとき、所定値未満の電流値を所定値より小さい第1電流値(例えば0.1C)とし、その第1電流値の充電電流にて蓄電池28を充電するように双方向DC-DCコンバータ27を制御する。充電電流の電流値を小さくすることにより、充電における内部抵抗損失を低減できる。また、充電電流の電流値を小さくすることにより、蓄電池28の発熱量を低減できる。 As shown in the lower part of FIG. 2, when the SOC is less than the first threshold value, the control unit 29 sets the current value less than the predetermined value as the first current value (for example, 0.1C) smaller than the predetermined value, and sets the first current value. The bidirectional DC-DC converter 27 is controlled so as to charge the storage battery 28 with a value charging current. By reducing the current value of the charging current, the internal resistance loss during charging can be reduced. Further, by reducing the current value of the charging current, the amount of heat generated by the storage battery 28 can be reduced.
 そして、制御部29は、SOCが第1閾値「30%」以上になると、所定値より大きい第2電流値(例えば0.25C)の充電電流にて蓄電池28を充電するように双方向DC-DCコンバータ27を制御する。 Then, when the SOC becomes equal to or higher than the first threshold value “30%”, the control unit 29 charges the storage battery 28 with a charging current having a second current value (for example, 0.25C) larger than a predetermined value. Controls the DC converter 27.
 制御部29は、蓄電池28の端子間電圧が蓄電池28の定格電圧値に等しくなると、蓄電池28の端子間電圧を一定電圧とするように充電電流を制御する。充電電流は、双方向DC-DCコンバータ27から蓄電池28に向かう出力電流である。制御部29は、双方向DC-DCコンバータ27を制御することにより、充電電流を制御することになる。この定電圧充電により、蓄電池28のSOCは徐々に上昇し、満充電(SOC=100%)となる。 When the voltage between the terminals of the storage battery 28 becomes equal to the rated voltage value of the storage battery 28, the control unit 29 controls the charging current so that the voltage between the terminals of the storage battery 28 becomes a constant voltage. The charging current is an output current from the bidirectional DC-DC converter 27 toward the storage battery 28. The control unit 29 controls the charging current by controlling the bidirectional DC-DC converter 27. By this constant voltage charging, the SOC of the storage battery 28 gradually increases, and the battery becomes fully charged (SOC = 100%).
 本実施形態において、制御部29は、上記した発生終了時刻Teまでに蓄電池28を満充電とするように、充電電流を制御する。なお、発生終了時刻Teに蓄電池28が満充電となるように充電電流を制御することが好ましい。なお、発生終了時刻Teにおいて蓄電池28が満充電であればよく、発生終了時刻Teから所定の時間(例えば30分程度)前までの範囲で満充電となっていればよい。 In the present embodiment, the control unit 29 controls the charging current so that the storage battery 28 is fully charged by the above-mentioned generation end time Te. It is preferable to control the charging current so that the storage battery 28 is fully charged at the generation end time Te. The storage battery 28 may be fully charged at the generation end time Te, and may be fully charged within a range from the generation end time Te to a predetermined time (for example, about 30 minutes) before.
 この場合、図2に示すように、蓄電池28のSOCが第1閾値より大きな第2閾値(例えば70%)以上になると、充電電流の電流量を制御する。例えば、制御部29は、SOCが第2閾値となる時刻T11と発生終了時刻Teとの間の時間を算出し、その時間に応じて充電電流を第2電流値より小さい第3電流値とするように双方向DC-DCコンバータ27を制御する。第3電流値の充電電流を蓄電池28に供給するようにすることで、蓄電池28における発熱量を抑制できる。また、発生終了時刻Teに蓄電池28を満充電とすることにより、蓄電池28を効率よく利用できる。 In this case, as shown in FIG. 2, when the SOC of the storage battery 28 becomes equal to or higher than the second threshold value (for example, 70%) larger than the first threshold value, the current amount of the charging current is controlled. For example, the control unit 29 calculates the time between the time T11 at which the SOC becomes the second threshold and the generation end time Te, and sets the charging current to a third current value smaller than the second current value according to the time. The bidirectional DC-DC converter 27 is controlled in this way. By supplying the charging current of the third current value to the storage battery 28, the amount of heat generated in the storage battery 28 can be suppressed. Further, by fully charging the storage battery 28 at the generation end time Te, the storage battery 28 can be efficiently used.
 図2の下段に示す比較例のSOC曲線L34は、蓄電池を0.25Cの充電電流にて充電したときを示す。一般的に、蓄電池は、所定の充電時間内に満充電となるように定格に応じた値の充電電流にて充電されることが多い。この場合、蓄電池28は、発電電力L31が消費電力L32より低くなる時刻(発生終了時刻Te)よりもかなり早い時刻に満充電となる。蓄電池28の蓄電量は、自然放電により減少する。太陽光発電システムでは、太陽光パネル11による発電電力により電気機器15を使用できなくなるときに、蓄電池28からの放電電力によって電気機器15を使用することに利点がある。従って、比較例のように、発生終了時刻Teよりもかなり早い時刻に満充電となると、発生終了時刻Teには、自然放電によって蓄電池の蓄電量が低下し、その蓄電量に応じた時間しか電気機器15を使用することができない。一方、本実施形態では、発生終了時刻Teに蓄電池28を満充電とするため、電気機器15の使用時間は、蓄電量が低下しない分、比較例よりも長くなる。つまり、本実施形態の太陽光発電システム10では、蓄電池28をより効率よく利用できる。 The SOC curve L34 of the comparative example shown in the lower part of FIG. 2 shows the case where the storage battery is charged with a charging current of 0.25C. In general, a storage battery is often charged with a charging current having a value corresponding to the rating so that the storage battery is fully charged within a predetermined charging time. In this case, the storage battery 28 is fully charged at a time considerably earlier than the time when the generated power L31 becomes lower than the power consumption L32 (generation end time Te). The amount of electricity stored in the storage battery 28 decreases due to natural discharge. In the photovoltaic power generation system, there is an advantage in using the electric device 15 by the discharge power from the storage battery 28 when the electric device 15 cannot be used due to the power generated by the solar panel 11. Therefore, as in the comparative example, when the battery is fully charged at a time considerably earlier than the generation end time Te, the storage amount of the storage battery decreases due to natural discharge at the generation end time Te, and electricity is charged only for a time corresponding to the storage amount. The device 15 cannot be used. On the other hand, in the present embodiment, since the storage battery 28 is fully charged at the generation end time Te, the usage time of the electric device 15 is longer than that of the comparative example because the amount of stored electricity does not decrease. That is, in the photovoltaic power generation system 10 of the present embodiment, the storage battery 28 can be used more efficiently.
 蓄電池28のSOCは、電気機器15を使用すること、つまり消費電力L32にて示す消費電力により低下し、完全放電状態となる。蓄電池28の完全放電状態は、SOCが0(%)又は0(%)に近い状態である。図2に示す例において、蓄電池28は、24時に完全放電状態となる。従って、蓄電池28は、翌日における太陽光パネル11の発電電力により、完全放電状態から充電される。 The SOC of the storage battery 28 is reduced by the use of the electric device 15, that is, the power consumption indicated by the power consumption L32, and is in a completely discharged state. The completely discharged state of the storage battery 28 is a state in which the SOC is 0 (%) or close to 0 (%). In the example shown in FIG. 2, the storage battery 28 is in a completely discharged state at 24:00. Therefore, the storage battery 28 is charged from the completely discharged state by the generated power of the solar panel 11 on the next day.
 [余剰電力が発生する期間]
 上述したように、余剰電力が発生する期間は、太陽光パネル11の発電電力L31が電気機器15の消費電力L32よりも大きい期間であり、日の出時刻よりも遅い時刻(発生開始時刻Ts)から、日没より早い時刻(発生終了時刻Te)までの間である。日の出時刻と日没時刻は、標準時と比べ、太陽光発電システム10の設置場所(例えば経度)、季節、等によって異なる。このため、制御部29は、設置場所に係る位置データ、日付データ、消費電力データ、に基づいて、発生開始時刻と発生終了時刻を算出する。位置データは、例えば、周辺回路33にGPS(Global Positioning System)受信器を含むことで、太陽光発電システム10の設置場所の緯度・経度を算出できる。また、太陽光発電システム10の設置時に、作業者が持つ外部端末からメモリ32に設定されてもよい。
[Period when surplus power is generated]
As described above, the period in which the surplus power is generated is a period in which the generated power L31 of the solar panel 11 is larger than the power consumption L32 of the electric device 15, and is from a time later than the sunrise time (generation start time Ts). It is until the time earlier than sunset (occurrence end time Te). The sunrise time and the sunset time differ from the standard time depending on the installation location (for example, longitude) of the photovoltaic power generation system 10, the season, and the like. Therefore, the control unit 29 calculates the generation start time and the generation end time based on the position data, the date data, and the power consumption data related to the installation location. For the position data, for example, the latitude and longitude of the installation location of the photovoltaic power generation system 10 can be calculated by including the GPS (Global Positioning System) receiver in the peripheral circuit 33. Further, when the photovoltaic power generation system 10 is installed, it may be set in the memory 32 from an external terminal owned by the operator.
 日付データは、カレンダーとしてメモリ32に記憶される。現在時刻は、周辺回路33に含まれるクロック回路、GPS受信器にて受信した電波に基づいて算出した時刻、またはインターネットにより受信した時刻、等を用いることができる。 The date data is stored in the memory 32 as a calendar. As the current time, a clock circuit included in the peripheral circuit 33, a time calculated based on a radio wave received by a GPS receiver, a time received by the Internet, or the like can be used.
 制御部29は、位置データと日付データとにより、太陽光パネル11が発電を開始する時刻と発電が終了する時刻とを得る。消費電力データは、平均的な家庭における消費電力のデータを消費電力データとして用いることができる。また、太陽光発電システムを設置した家庭に設置した電気機器15の種類や数によって消費電力データが補正されてもよい。また、日付データに基づいて曜日毎の消費電力データがメモリ32に記憶されてもよい。また、標準的な消費電力データと、日付、曜日に応じた補正データとをメモリ32に記憶し、標準的な消費電力データと補正データとによりその日の消費電力データを算出するようにしてもよい。 The control unit 29 obtains the time when the solar panel 11 starts power generation and the time when the power generation ends based on the position data and the date data. As the power consumption data, the data of the average household power consumption can be used as the power consumption data. Further, the power consumption data may be corrected depending on the type and number of the electric devices 15 installed in the home where the photovoltaic power generation system is installed. Further, the power consumption data for each day of the week may be stored in the memory 32 based on the date data. Further, the standard power consumption data and the correction data according to the date and the day may be stored in the memory 32, and the power consumption data for the day may be calculated from the standard power consumption data and the correction data. ..
 制御部29は、発電開始時刻、発電終了時刻、消費電力データに基づいて、発生開始時刻Tsと発生終了時刻Teとを算出する。そして、制御部29は、上述の第1電流値、第2電流値、第3電流値を設定する。例えば、夏季と比べ冬季は外気温が低く、蓄電池28の温度が低いため、内部抵抗値が高くなる。したがって、夏季と比べて冬季において第1電流値を小さくすることで、内部抵抗損失を低減できる。また、冬季と比べ夏季では、発生開始時刻Tsから発生終了時刻Teまでの時間が長い。従って、第2電流値を上述の1Cよりも小さくすることで、蓄電池28の発熱量を抑制できる。なお、蓄電池28の温度が所定値(例えば10℃)以下の場合、制御部29は、蓄電池28に対する充電電流を供給しないように双方向DC-DCコンバータ27を制御する。これにより、低温時において蓄電池28に与える影響を低減できる。 The control unit 29 calculates the generation start time Ts and the generation end time Te based on the power generation start time, the power generation end time, and the power consumption data. Then, the control unit 29 sets the above-mentioned first current value, second current value, and third current value. For example, since the outside air temperature is lower and the temperature of the storage battery 28 is lower in winter than in summer, the internal resistance value is higher. Therefore, the internal resistance loss can be reduced by reducing the first current value in winter as compared with summer. Further, in the summer, the time from the occurrence start time Ts to the occurrence end time Te is longer than in the winter. Therefore, by making the second current value smaller than the above-mentioned 1C, the calorific value of the storage battery 28 can be suppressed. When the temperature of the storage battery 28 is equal to or lower than a predetermined value (for example, 10 ° C.), the control unit 29 controls the bidirectional DC-DC converter 27 so as not to supply the charging current to the storage battery 28. Thereby, the influence on the storage battery 28 at a low temperature can be reduced.
 太陽光パネル11における発電電力は、季節や天候によって異なり、発生開始時刻Ts、発生終了時刻Teが変化する。このため、制御部29は、設置場所に係る天候データを、例えばインターネットを介して取得する。制御部29は、天候データに基づいて発生開始時刻Tsと発生終了時刻Teとを算出する。そして、制御部29は、上述の第1電流値、第2電流値、第3電流値を設定することで、蓄電池を満充電とすることができる。 The generated power in the solar panel 11 differs depending on the season and the weather, and the generation start time Ts and the generation end time Te change. Therefore, the control unit 29 acquires the weather data related to the installation location, for example, via the Internet. The control unit 29 calculates the occurrence start time Ts and the occurrence end time Te based on the weather data. Then, the control unit 29 can fully charge the storage battery by setting the above-mentioned first current value, second current value, and third current value.
 [消費電力の変動]
 制御部29は、電気機器15における消費電力量に基づいて、蓄電池28に対する充電電流を制御することもできる。電気機器15における消費電力量は、図3に示すように、平均的な消費電力データに対して、一時的に変動する場合がある。一時的な消費電力の増加によって、余剰電力が少なくなる。この場合、制御部29は、蓄電池28に対する充電電流を小さくして一時的な消費電力の増加に対応する。これにより、SOCの上昇は緩やかになる。そして、SOCが第2閾値以上となるタイミング、または一時的な消費電力の増加がなくなると、制御部29は、第3電流値を制御する、例えば図2に示す例と比べて多くすることにより、発生終了時刻Teまでに蓄電池28を満充電とすることができる。
[Fluctuation of power consumption]
The control unit 29 can also control the charging current for the storage battery 28 based on the amount of power consumed by the electric device 15. As shown in FIG. 3, the power consumption of the electric device 15 may temporarily fluctuate with respect to the average power consumption data. Due to the temporary increase in power consumption, the surplus power is reduced. In this case, the control unit 29 reduces the charging current for the storage battery 28 to cope with the temporary increase in power consumption. As a result, the increase in SOC becomes moderate. Then, when the timing when the SOC becomes equal to or higher than the second threshold value or the temporary increase in power consumption disappears, the control unit 29 controls the third current value, for example, by increasing the number as compared with the example shown in FIG. , The storage battery 28 can be fully charged by the generation end time Te.
 また、制御部29は、一時的な消費電力の増加によって余剰電力が少なくなった場合に、充電電流を維持するようにインバータ22を制御してもよい。つまり、充電電流を維持するために、パワーコンディショナ12から系統電力線13に供給する交流電流を減少させてもよい。これにより、消費電力が一時的に増加しても、充電能力の低下を抑制できる。 Further, the control unit 29 may control the inverter 22 so as to maintain the charging current when the surplus power is reduced due to a temporary increase in power consumption. That is, in order to maintain the charging current, the alternating current supplied from the power conditioner 12 to the system power line 13 may be reduced. As a result, even if the power consumption temporarily increases, it is possible to suppress a decrease in the charging capacity.
 [発電電力の変動]
 太陽光パネル11は、日射量によって発電電力が変化する。例えば、日光を透しにくい厚い雲が太陽光パネル11に対する日射を遮る場合がある。この場合、図4に示すように、発電量が一時的に低下し、余剰電力が少なくなる。この場合、制御部29は、蓄電池28に対する充電電流を小さくして系統電力線13に供給する交流電力を確保する。これにより、SOCの上昇は緩やかになる。そして、制御部29は、第3電流値を制御する、例えば図2に示す例と比べて多くすることにより、発生終了時刻Teまでに蓄電池28を満充電とすることができる。
[Fluctuation of generated power]
The power generated by the solar panel 11 changes depending on the amount of solar radiation. For example, thick clouds that do not easily allow sunlight to pass through may block sunlight on the solar panel 11. In this case, as shown in FIG. 4, the amount of power generation is temporarily reduced, and the surplus power is reduced. In this case, the control unit 29 reduces the charging current for the storage battery 28 to secure the AC power to be supplied to the system power line 13. As a result, the increase in SOC becomes moderate. Then, the control unit 29 controls the third current value, for example, by increasing the number as compared with the example shown in FIG. 2, the storage battery 28 can be fully charged by the generation end time Te.
 以上記述したように、本実施の形態によれば、以下の効果を奏する。 As described above, according to the present embodiment, the following effects are obtained.
 (1-1)パワーコンディショナ12は、太陽光パネル11の発電電力を変換して直流高圧バス30に出力するPVコンバータ21と、直流高圧バス30の電力を交流電力に変換して系統電力線13に出力するインバータ22と、直流高圧バス30に対して充放電可能とした蓄電池28と、PVコンバータ21とインバータ22とを制御するとともに、蓄電池28への充電電流を制御する制御部29と、を備える。制御部29は、蓄電池28の蓄電量が第1閾値未満のときは第1電流値の充電電流にて蓄電池28を充電し、蓄電量が第1閾値以上のときには第1電流値より大きな第2電流値の充電電流にて蓄電池28を充電する。この構成によれば、蓄電池28の蓄電量が第1閾値未満のときに蓄電池28に対する充電電流を第1電流値とすることで、蓄電池28の内部抵抗による内部抵抗損失を低減し、太陽光パネルによって発電したエネルギーを効率よく活用できる。 (1-1) The power conditioner 12 is a PV converter 21 that converts the generated power of the solar panel 11 and outputs it to the DC high-pressure bus 30, and a grid power line 13 that converts the power of the DC high-pressure bus 30 into AC power. The inverter 22, the storage battery 28 capable of charging and discharging the DC high-pressure bus 30, and the control unit 29 that controls the PV converter 21 and the inverter 22 and controls the charging current to the storage battery 28. Be prepared. When the stored amount of the storage battery 28 is less than the first threshold value, the control unit 29 charges the storage battery 28 with the charging current of the first current value, and when the stored amount is equal to or more than the first threshold value, the second is larger than the first current value. The storage battery 28 is charged with the charging current of the current value. According to this configuration, when the storage amount of the storage battery 28 is less than the first threshold value, the charging current for the storage battery 28 is set as the first current value, thereby reducing the internal resistance loss due to the internal resistance of the storage battery 28 and the solar panel. The energy generated by the above can be used efficiently.
 (1-2)制御部29は、太陽光パネルの発電電力と電気機器15の消費電力との差の余剰電力が発生する期間のうち、余剰電力が終了するタイミングに合わせて蓄電池28を満充電とするように充電電流を制御する。この構成によれば、電気機器15の消費電力よりも太陽光パネルの発電電力が小さくなって充電池からの放電電力が必要になるときに蓄電池28が満充電であるため、自然放電による放電が少なく、蓄電池28の蓄電電力を効率よく利用できる。 (1-2) The control unit 29 fully charges the storage battery 28 at the timing when the surplus power is generated, which is the difference between the generated power of the solar panel and the power consumption of the electric device 15. The charging current is controlled so as to. According to this configuration, when the power generated by the solar panel is smaller than the power consumed by the electric device 15 and the discharge power from the rechargeable battery is required, the storage battery 28 is fully charged, so that the discharge due to natural discharge occurs. The amount of electricity stored in the storage battery 28 can be efficiently used.
 (1-3)制御部29は、蓄電量が第2閾値以上のときには、第3電流値の充電電流にて蓄電池28を充電するとともに、太陽光パネルの発電電力と電気機器15の消費電力との差の余剰電力が発生する期間のうち、余剰電力が終了するタイミングに合わせて蓄電池28を満充電とするように第3電流値を設定する。この構成によれば、電気機器15の消費電力よりも太陽光パネルの発電電力が小さくなって充電池からの放電電力が必要になるときに蓄電池28が満充電であるため、自然放電による放電が少なく、蓄電池28の蓄電電力を効率よく利用できる。 (1-3) When the amount of electricity stored is equal to or greater than the second threshold value, the control unit 29 charges the storage battery 28 with the charging current of the third current value, and also determines the power generated by the solar panel and the power consumed by the electric device 15. The third current value is set so that the storage battery 28 is fully charged at the timing when the surplus power ends in the period during which the surplus power is generated. According to this configuration, when the power generated by the solar panel is smaller than the power consumed by the electric device 15 and the discharge power from the rechargeable battery is required, the storage battery 28 is fully charged, so that the discharge due to natural discharge occurs. The amount of electricity stored in the storage battery 28 can be efficiently used.
 (1-4)制御部29は、パワーコンディショナの設置場所の位置データと日付データとに基づいて、余剰電力が発生する期間として、太陽光パネルの発電電力が電気機器15の消費電力より大きくなり余剰電力が発生する発生開始時刻と、発電電力が消費電力より小さくなり余剰電力が終了する発生終了時刻とを求め、発生終了時刻に蓄電池28を満充電とするように充電電流を制御する。この構成によれば、太陽光パネルとパワーコンディショナの設置位置に応じて放電電力が必要になるときに蓄電池28を満充電とすることができ、蓄電池28の蓄電電力を効率よく利用できる。 (1-4) In the control unit 29, the power generated by the solar panel is larger than the power consumed by the electric device 15 as the period during which the surplus power is generated based on the position data and the date data of the installation location of the power conditioner. The generation start time when the surplus power is generated and the generation end time when the generated power becomes smaller than the power consumption and the surplus power ends are obtained, and the charging current is controlled so that the storage battery 28 is fully charged at the generation end time. According to this configuration, the storage battery 28 can be fully charged when the discharge power is required according to the installation position of the solar panel and the power conditioner, and the stored power of the storage battery 28 can be efficiently used.
 (1-5)制御部29は、設置場所の天候データを外部から受信し、天候データに基づいて、充電電流を制御する。この構成によれば、設置場所の天候による影響を低減することができる。 (1-5) The control unit 29 receives the weather data of the installation location from the outside and controls the charging current based on the weather data. According to this configuration, the influence of the weather at the installation location can be reduced.
 (第2実施形態)
 以下、第2実施形態を説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described.
 なお、この第2実施形態において、制御部29による充電電流の制御が第1実施形態と異なる。このため、この第2実施形態における構成要素の説明を省略し、制御部29による充電電流の制御について説明する。 In this second embodiment, the control of the charging current by the control unit 29 is different from that in the first embodiment. Therefore, the description of the components in the second embodiment will be omitted, and the control of the charging current by the control unit 29 will be described.
 制御部29は、蓄電池28に対する定電流制御において充電電流を一定とするとともに、発生開始時刻Tsと発生終了時刻Teとに基づいて、発生終了時刻Teに蓄電池28を満充電(SOC=100%)とするように、1つの電流値を算出する。制御部29は、算出した1つの電流値の充電電流を蓄電池28に供給するように、双方向DC-DCコンバータ27を制御する。これにより、図7の下段に示すように、本実施形態におけるSOC曲線L33は、一定の傾きで上昇した後、定電圧制御により、発生終了時刻Teに100[%]となる。従って、発生終了時刻Teに蓄電池28を満充電とすることにより、蓄電池28の蓄電電圧を効率よく利用できる。 The control unit 29 keeps the charging current constant in the constant current control for the storage battery 28, and fully charges the storage battery 28 at the generation end time Te based on the generation start time Ts and the generation end time Te (SOC = 100%). One current value is calculated so as to be. The control unit 29 controls the bidirectional DC-DC converter 27 so as to supply the charging current of one calculated current value to the storage battery 28. As a result, as shown in the lower part of FIG. 7, the SOC curve L33 in the present embodiment rises with a constant slope, and then becomes 100 [%] at the generation end time Te by constant voltage control. Therefore, by fully charging the storage battery 28 at the generation end time Te, the storage voltage of the storage battery 28 can be efficiently used.
 また、蓄電池28に供給する充電電流の電流値は、比較例のSOC曲線L34と比べて傾きが緩やかであり、充電電流の電流値は比較例よりも小さい。従って、完全放電状態の蓄電池28に対する充電開始時における内部抵抗損失を低減できる。また、充電電流の電流値が定格に応じた充電電流にて充電する場合よりも小さいため、蓄電池28の発熱量を低減できる。 Further, the current value of the charging current supplied to the storage battery 28 has a gentler slope than the SOC curve L34 of the comparative example, and the current value of the charging current is smaller than that of the comparative example. Therefore, the internal resistance loss at the start of charging the storage battery 28 in the completely discharged state can be reduced. Further, since the current value of the charging current is smaller than that in the case of charging with the charging current according to the rating, the amount of heat generated by the storage battery 28 can be reduced.
 以上記述したように、本実施の形態によれば、以下の効果を奏する。 As described above, according to the present embodiment, the following effects are obtained.
 (2-1)本実施形態の制御部29は、蓄電池28に対する定電流制御において充電電流を一定とするとともに、発生開始時刻Tsと発生終了時刻Teとに基づいて、発生終了時刻Teに蓄電池28を満充電(SOC=100%)とするように、1つの電流値を算出する。このように、発生終了時刻Teに蓄電池28を満充電とすることにより、蓄電池28の蓄電電圧を効率よく利用できる。 (2-1) The control unit 29 of the present embodiment keeps the charging current constant in the constant current control for the storage battery 28, and at the storage battery 28 at the generation end time Te based on the generation start time Ts and the generation end time Te. Is calculated as one current value so as to be fully charged (SOC = 100%). In this way, by fully charging the storage battery 28 at the generation end time Te, the storage voltage of the storage battery 28 can be efficiently used.
 (2-2)蓄電池28に供給する充電電流の電流値は、比較例のSOC曲線L34と比べて傾きが緩やかであり、充電電流の電流値は比較例よりも小さい。従って、完全放電状態の蓄電池28に対する充電開始時における内部抵抗損失を低減できる。また、充電電流の電流値が定格に応じた充電電流にて充電する場合よりも小さいため、蓄電池28の発熱量を低減できる。 (2-2) The current value of the charging current supplied to the storage battery 28 has a gentler slope than the SOC curve L34 of the comparative example, and the current value of the charging current is smaller than that of the comparative example. Therefore, the internal resistance loss at the start of charging the storage battery 28 in the completely discharged state can be reduced. Further, since the current value of the charging current is smaller than that in the case of charging with the charging current according to the rating, the amount of heat generated by the storage battery 28 can be reduced.
 (変更例)
 尚、上記各実施の形態は、以下の態様で実施してもよい。上記各実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(Change example)
In addition, each of the above-mentioned embodiments may be carried out in the following embodiments. Each of the above embodiments and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・図8に示すように、蓄電池28が直流高圧バス30に直接接続されていてもよい。この場合、図1に示す双方向DC-DCコンバータ27が省略される。蓄電池28に対する充電電流は、PVコンバータ21の出力電力と、インバータ22の出力電力との差により制御できる。つまり、制御部29は、上記の実施形態と同様の充電電流を蓄電池28に供給するように、PVコンバータ21とインバータ22のうち少なくともインバータ22を制御する。 -As shown in FIG. 8, the storage battery 28 may be directly connected to the DC high-voltage bus 30. In this case, the bidirectional DC-DC converter 27 shown in FIG. 1 is omitted. The charging current for the storage battery 28 can be controlled by the difference between the output power of the PV converter 21 and the output power of the inverter 22. That is, the control unit 29 controls at least the inverter 22 of the PV converter 21 and the inverter 22 so as to supply the same charging current to the storage battery 28 as in the above embodiment.
 ・パワーコンディショナ12に対して外部の蓄電池が接続されてもよい。制御部29は、外部の蓄電池の有無を検出し、その外部の蓄電池のSOCに基づいて、外部の蓄電池に対する充電電流を制御するようにしてもよい。 -An external storage battery may be connected to the power conditioner 12. The control unit 29 may detect the presence or absence of an external storage battery and control the charging current for the external storage battery based on the SOC of the external storage battery.
 ・上記各実施形態では、発生開始時刻Tsと発生終了時刻Teとにより充電電流の電流値を設定したが、その他の時刻により充電電流の電流値を設定してもよい。例えば、充電開始時刻と充電終了時刻とを、充電開始を指示した時刻や、タイマ等によって設定された時刻、等としてもよい。充電開始時刻は、余剰電力が十分に生じている時刻が好ましい。充電終了時刻は、上記した発生終了時刻Teが好ましい。例えば、メモリ32に記憶したデータ等に基づいてその日の発生終了時刻Teを算出し、タイマ等によって設定された時刻と発生終了時刻Teとに基づいて充電電流の電流量を設定する。これにより、太陽光パネル11の発電電力を効率よく活用でき、また蓄電池28の蓄電電力を効率よく利用できる。 -In each of the above embodiments, the current value of the charging current is set by the generation start time Ts and the generation end time Te, but the current value of the charging current may be set by other times. For example, the charging start time and the charging end time may be a time instructing the start of charging, a time set by a timer, or the like. The charging start time is preferably a time when sufficient surplus power is generated. The charging end time is preferably the above-mentioned generation end time Te. For example, the generation end time Te of the day is calculated based on the data stored in the memory 32, and the current amount of the charging current is set based on the time set by the timer or the like and the generation end time Te. As a result, the generated power of the solar panel 11 can be efficiently used, and the stored power of the storage battery 28 can be efficiently used.
 10 太陽光発電システム
 11 太陽光パネル
 12 パワーコンディショナ
 13 系統電力線
 14 商用電力系統
 15 電気機器
 21 PVコンバータ
 22 インバータ
 23 フィルタ
 24 系統連系リレー
 25 DC-DCコンバータ
 26 整流器
 27 双方向DC-DCコンバータ
 28 蓄電池
 28a バッテリ管理部
 29 制御部
 30 直流高圧バス
 31 CPU
 32 メモリ
 33 周辺回路
 34 内部バス
 41 電圧センサ
 42 電流センサ
 43 電流センサ
 44 電圧センサ
 51 電力センサ
 L11~L13 特性線
 L21~L24 特性線
 L31 発電電力
 L32 消費電力
 L33 SOC曲線
 L34 SOC曲線
 T11 時刻
 Ts 発生開始時刻
 Te 発生終了時刻
10 Solar power generation system 11 Solar panel 12 Power conditioner 13 System power line 14 Commercial power system 15 Electrical equipment 21 PV converter 22 Inverter 23 Filter 24 System interconnection relay 25 DC-DC converter 26 Rectifier 27 Bidirectional DC-DC converter 28 Storage battery 28a Battery management unit 29 Control unit 30 DC high-voltage bus 31 CPU
32 Memory 33 Peripheral circuit 34 Internal bus 41 Voltage sensor 42 Current sensor 43 Current sensor 44 Voltage sensor 51 Power sensor L11 to L13 Characteristic line L21 to L24 Characteristic line L31 Generated power L32 Power consumption L33 SOC curve L34 SOC curve T11 Time Ts generation start Time Te generation end time

Claims (11)

  1.  太陽光パネルの発電電力を変換して直流高圧バスに出力するPVコンバータと、
     前記直流高圧バスの電力を交流電力に変換して系統電力線に出力するインバータと、
     前記直流高圧バスに対して充放電可能とした蓄電池と、
     前記PVコンバータと前記インバータとを制御するとともに、前記蓄電池への充電電流を制御する制御部と、
     を備え、
     前記制御部は、前記蓄電池の蓄電量が第1閾値未満のときは第1電流値の充電電流にて前記蓄電池を充電し、前記蓄電量が第1閾値以上のときには前記第1電流値より大きな第2電流値の充電電流にて前記蓄電池を充電する、
     パワーコンディショナ。
    A PV converter that converts the power generated by the solar panel and outputs it to the DC high-voltage bus,
    An inverter that converts the power of the DC high-voltage bus into AC power and outputs it to the grid power line.
    A storage battery that can be charged and discharged for the DC high-voltage bus,
    A control unit that controls the PV converter and the inverter, and also controls the charging current to the storage battery.
    With
    The control unit charges the storage battery with the charging current of the first current value when the stored amount of the storage battery is less than the first threshold value, and is larger than the first current value when the stored amount is equal to or more than the first threshold value. The storage battery is charged with the charging current of the second current value.
    Power conditioner.
  2.  前記制御部は、前記太陽光パネルの発電電力と前記交流電力にて動作する電気機器の消費電力との差の余剰電力が発生する期間のうち、前記余剰電力が終了するタイミングに合わせて前記蓄電池を満充電とするように前記充電電流を制御する、
     請求項1に記載のパワーコンディショナ。
    The control unit uses the storage battery in accordance with the timing at which the surplus power ends during the period in which the surplus power generated by the difference between the generated power of the solar panel and the power consumption of the electric device operated by the AC power is generated. The charging current is controlled so as to fully charge the battery.
    The power conditioner according to claim 1.
  3.  前記制御部は、前記蓄電量が第1閾値より大きい第2閾値以上のときには、前記第2電流値より小さい第3電流値の充電電流にて前記蓄電池を充電するとともに、前記太陽光パネルの発電電力と前記交流電力にて動作する電気機器の消費電力との差の余剰電力が発生する期間のうち、前記余剰電力が終了するタイミングに合わせて前記蓄電池を満充電とするように前記第3電流値を設定する、
     請求項1又は請求項2に記載のパワーコンディショナ。
    When the amount of electricity stored is greater than or equal to the second threshold value than the first threshold value, the control unit charges the storage battery with a charging current having a third current value smaller than the second current value and generates electricity from the solar panel. During the period in which surplus power is generated, which is the difference between the power and the power consumption of the electric device operating on the AC power, the third current is so as to fully charge the storage battery at the timing when the surplus power ends. Set the value,
    The power conditioner according to claim 1 or 2.
  4.  前記制御部は、前記パワーコンディショナの設置場所の位置データと日付データとに基づいて、前記余剰電力が発生する期間のうち、前記発電電力が前記消費電力より小さくなり前記余剰電力が終了する発生終了時刻を求め、前記発生終了時刻に前記蓄電池を満充電とするように前記充電電流を制御する、
     請求項3に記載のパワーコンディショナ。
    Based on the position data of the installation location of the power conditioner and the date data, the control unit generates the surplus power during the period in which the surplus power is generated, the generated power becomes smaller than the power consumption, and the surplus power ends. The end time is obtained, and the charging current is controlled so that the storage battery is fully charged at the end time of generation.
    The power conditioner according to claim 3.
  5.  前記制御部は、前記パワーコンディショナの設置場所の天候データに基づいて、前記充電電流を制御する、請求項1から請求項4のいずれか一項に記載のパワーコンディショナ。 The power conditioner according to any one of claims 1 to 4, wherein the control unit controls the charging current based on the weather data of the installation location of the power conditioner.
  6.  前記制御部は、前記交流電力にて動作する電気機器による消費電力の変動を検出し、前記消費電力に応じて前記充電電流を制御する、請求項1から請求項5のいずれか一項に記載のパワーコンディショナ。 The method according to any one of claims 1 to 5, wherein the control unit detects fluctuations in power consumption by an electric device operating on the AC power and controls the charging current according to the power consumption. Power conditioner.
  7.  前記制御部は、前記交流電力にて動作する電気機器による消費電力の変動を検出し、前記充電電流を維持するように前記インバータを制御する、請求項1から請求項5のいずれか一項に記載のパワーコンディショナ。 The control unit detects fluctuations in power consumption by an electric device that operates on AC power, and controls the inverter so as to maintain the charging current, according to any one of claims 1 to 5. Described power conditioner.
  8.  前記制御部は、前記蓄電池の温度を取得し、前記温度が所定温度未満のときに前記蓄電池に対する充電電流を供給しない、請求項1から請求項7のいずれか一項に記載のパワーコンディショナ。 The power conditioner according to any one of claims 1 to 7, wherein the control unit acquires the temperature of the storage battery and does not supply a charging current to the storage battery when the temperature is lower than a predetermined temperature.
  9.  太陽光パネルの発電電力を変換して直流高圧バスに出力するPVコンバータと、
     前記直流高圧バスの電力を交流電力に変換して系統電力線に出力するインバータと、
     前記直流高圧バスに対して充放電可能とした蓄電池と、
     前記PVコンバータと前記インバータとを制御するとともに、前記蓄電池への充電電流を制御する制御部と、
     を備え、
     前記制御部は、所定値の前記充電電流にて前記蓄電池を充電し、前記蓄電池の蓄電量が所定値を超えると所定値の充電電圧にて前記蓄電池を充電する定電流定電圧制御を行うとともに、前記太陽光パネルの発電電力と前記交流電力にて動作する電気機器の消費電力との差の余剰電力が発生する期間のうち、前記余剰電力が終了するタイミングに合わせて前記蓄電池を満充電とするように前記充電電流の前記所定値を設定する、
     パワーコンディショナ。
    A PV converter that converts the power generated by the solar panel and outputs it to the DC high-voltage bus,
    An inverter that converts the power of the DC high-voltage bus into AC power and outputs it to the grid power line.
    A storage battery that can be charged and discharged for the DC high-voltage bus,
    A control unit that controls the PV converter and the inverter, and also controls the charging current to the storage battery.
    With
    The control unit charges the storage battery with the charging current of a predetermined value, and when the storage amount of the storage battery exceeds a predetermined value, performs constant current constant voltage control for charging the storage battery with a charging voltage of a predetermined value. During the period in which the difference between the generated power of the solar panel and the power consumption of the electric device operating on the AC power is generated, the storage battery is fully charged at the timing when the surplus power ends. To set the predetermined value of the charging current so as to
    Power conditioner.
  10.  前記直流高圧バスと前記蓄電池との間に接続された双方向DC-DCコンバータを備え、
     前記制御部は、前記双方向DC-DCコンバータを制御することにより前記蓄電池に対する充電電流を制御する、
     請求項1から請求項9のいずれか一項に記載のパワーコンディショナ。
    A bidirectional DC-DC converter connected between the DC high-voltage bus and the storage battery is provided.
    The control unit controls the charging current for the storage battery by controlling the bidirectional DC-DC converter.
    The power conditioner according to any one of claims 1 to 9.
  11.  前記蓄電池は前記直流高圧バスに直接接続され、
     前記系統電力線には、前記交流電力を消費する電気機器が接続され、
     前記蓄電池は、前記太陽光パネルの発電電力と前記電気機器の消費電力との差の余剰電力による前記充電電流により充電し、
     前記制御部は、前記インバータを制御して前記充電電流を制御する、
     請求項1から請求項9のいずれか一項に記載のパワーコンディショナ。
    The storage battery is directly connected to the DC high-voltage bus and
    An electric device that consumes the AC power is connected to the grid power line.
    The storage battery is charged by the charging current due to the surplus power of the difference between the generated power of the solar panel and the power consumption of the electric device.
    The control unit controls the inverter to control the charging current.
    The power conditioner according to any one of claims 1 to 9.
PCT/JP2020/046483 2020-01-22 2020-12-14 Power conditioner WO2021149395A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021573000A JP7243869B2 (en) 2020-01-22 2020-12-14 power conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-008368 2020-01-22
JP2020008368 2020-01-22

Publications (1)

Publication Number Publication Date
WO2021149395A1 true WO2021149395A1 (en) 2021-07-29

Family

ID=76991671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046483 WO2021149395A1 (en) 2020-01-22 2020-12-14 Power conditioner

Country Status (2)

Country Link
JP (1) JP7243869B2 (en)
WO (1) WO2021149395A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068468A (en) * 2012-09-26 2014-04-17 Sanyo Electric Co Ltd Charge control device
JP2014121147A (en) * 2012-12-14 2014-06-30 Sharp Corp Power supply system
WO2016208319A1 (en) * 2015-06-22 2016-12-29 三菱電機株式会社 Storage-battery control device, storage-battery charge/discharge system, photovoltaic generation system, and storage-battery control method
JP2017139834A (en) * 2016-02-01 2017-08-10 三菱電機株式会社 Power conversion device and power conditioner system
EP3444917A1 (en) * 2016-04-12 2019-02-20 Samsung SDI Co., Ltd. Battery charging/discharging control device and method for controlling same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068468A (en) * 2012-09-26 2014-04-17 Sanyo Electric Co Ltd Charge control device
JP2014121147A (en) * 2012-12-14 2014-06-30 Sharp Corp Power supply system
WO2016208319A1 (en) * 2015-06-22 2016-12-29 三菱電機株式会社 Storage-battery control device, storage-battery charge/discharge system, photovoltaic generation system, and storage-battery control method
JP2017139834A (en) * 2016-02-01 2017-08-10 三菱電機株式会社 Power conversion device and power conditioner system
EP3444917A1 (en) * 2016-04-12 2019-02-20 Samsung SDI Co., Ltd. Battery charging/discharging control device and method for controlling same

Also Published As

Publication number Publication date
JP7243869B2 (en) 2023-03-22
JPWO2021149395A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
US10355517B2 (en) Storage-battery control device, storage-battery charge/discharge system, photovoltaic power generation system, and storage-battery control method
US7449798B2 (en) Co-generated power supply system
US6285572B1 (en) Method of operating a power supply system having parallel-connected inverters, and power converting system
US8922059B2 (en) Power operation system, power operation method and photovoltaic power generator
JP2003079054A (en) Solar power generation system having storage battery
JP4369450B2 (en) Power supply system
US20220097547A1 (en) Converter with power management system for household users to manage power between different loads including their electric vehicle
US20110298442A1 (en) Converter Circuit and Electronic System Comprising Such a Circuit
US20130300346A1 (en) Charge controlling system, charge controlling apparatus, charge controlling method and discharge controlling apparatus
JP2009232668A (en) Electric power supply system and power supply method
WO2012144358A1 (en) Power supply device, control method for power supply device, and dc power supply system
JP2007028735A (en) Distributed power system and method
US20210288585A1 (en) Method of Operating a Bidirectional DC DC Converter
JP2014128164A (en) Power conditioner and photovoltaic power generation system
EP3823152A1 (en) Power conversion system, conversion circuit control method and program
US11329488B2 (en) Power conversion system, method for controlling converter circuit, and program
TW201532365A (en) Topology and control strategy for hybrid storage systems
US9257861B2 (en) Control apparatus and control method
WO2021149395A1 (en) Power conditioner
JP2013099207A (en) Control apparatus and control method
CN116742704A (en) Intelligent household energy storage system and implementation method thereof
US10110008B2 (en) Micro grid stabilization device
JP6076381B2 (en) Power supply system
JP2017212825A (en) Power storage device, power conditioner, and dispersed power supply system
JP6881002B2 (en) Power converter and power conversion system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915651

Country of ref document: EP

Kind code of ref document: A1