WO2021149274A1 - 監視システム、監視装置、監視方法、およびプログラム - Google Patents
監視システム、監視装置、監視方法、およびプログラム Download PDFInfo
- Publication number
- WO2021149274A1 WO2021149274A1 PCT/JP2020/016315 JP2020016315W WO2021149274A1 WO 2021149274 A1 WO2021149274 A1 WO 2021149274A1 JP 2020016315 W JP2020016315 W JP 2020016315W WO 2021149274 A1 WO2021149274 A1 WO 2021149274A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- person
- vehicle
- image
- information
- output
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/103—Static body considered as a whole, e.g. static pedestrian or occupant recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
- G06V20/54—Surveillance or monitoring of activities, e.g. for recognising suspicious objects of traffic, e.g. cars on the road, trains or boats
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q9/00—Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30196—Human being; Person
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30232—Surveillance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30236—Traffic on road, railway or crossing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30242—Counting objects in image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/08—Detecting or categorising vehicles
Definitions
- the present invention relates to a monitoring system, a monitoring device, a monitoring method, and a program.
- Patent Document 1 the image of the security camera is analyzed, the act of invading the parking lot, etc. is detected, and the image that immediately warns and makes the judgment is displayed on the display device or the guard in the monitoring room where the observer is. , A video surveillance system that simultaneously transmits to mobile phones and the like owned by related parties is described.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for detecting a situation in which a criminal act committed against a pedestrian or a car may occur. ..
- the first aspect concerns the surveillance system.
- the monitoring system related to the first aspect is With multiple cameras that image the area around the road It is equipped with a monitoring device that monitors images captured by multiple cameras.
- the monitoring device is A detection means that processes an image of the area around the road and detects that the relative distance between the person and the vehicle included in the image is equal to or less than the reference value. It has an output means for outputting the kind of information to be output selected by using the attribute of the person detected to be in the state.
- the second aspect relates to the monitoring device.
- the monitoring device related to the second aspect is A detection means that processes an image of the area around the road and detects that the relative distance between the person and the vehicle included in the image is equal to or less than the reference value. It has an output means for outputting the kind of information to be output selected by using the attribute of the person detected to be in the state.
- the third aspect relates to monitoring methods performed by at least one computer.
- the monitoring method related to the third aspect is The monitoring device
- the image obtained by capturing the area around the road is processed, and it is detected that the relative distance between the person and the vehicle included in the image is equal to or less than the reference value. It includes outputting the kind of information to be output selected using the attributes of the person detected to be in the state.
- this invention may be a program that causes at least one computer to execute the method of the third aspect, or a recording medium that can be read by a computer that records such a program. You may.
- This recording medium includes a non-temporary tangible medium.
- This computer program contains computer program code that causes the computer to perform its monitoring method on a monitoring device when executed by the computer.
- the various components of the present invention do not necessarily have to be independent of each other, and a plurality of components are formed as one member, and one component is formed of a plurality of members. It may be that a certain component is a part of another component, a part of a certain component overlaps with a part of another component, and the like.
- the order of description does not limit the order in which the plurality of procedures are executed. Therefore, when implementing the method and computer program of the present invention, the order of the plurality of procedures can be changed within a range that does not hinder the contents.
- the method of the present invention and the plurality of procedures of the computer program are not limited to being executed at different timings. Therefore, another procedure may occur during the execution of a certain procedure, a part or all of the execution timing of the certain procedure and the execution timing of the other procedure may overlap, and the like.
- FIG. 1 It is a figure which shows typically the outline of the monitoring system which concerns on embodiment. It is a functional block diagram which shows the logical configuration example of the monitoring apparatus of FIG. It is a block diagram which illustrates the hardware configuration of the computer which realizes the monitoring device and the image processing device of the monitoring system shown in FIG. 1, respectively. It is a flowchart which shows the operation example of the monitoring apparatus of this embodiment. It is a functional block diagram which shows the logical configuration example of a monitoring system. It is a flowchart which shows an example of the operation of a monitoring system. It is a flowchart which shows an example of the operation of a monitoring system. It is a functional block diagram which shows the logical configuration example of a monitoring system.
- acquisition means that the own device retrieves data or information stored in another device or storage medium (active acquisition), and is output to the own device from the other device. Includes at least one of entering data or information (passive acquisition).
- active acquisition include making a request or inquiry to another device and receiving the reply, and accessing and reading another device or storage medium.
- passive acquisition may be receiving information to be delivered (or transmitted, push notification, etc.).
- acquisition may be to select and acquire the received data or information, or to select and receive the delivered data or information.
- FIG. 1 is a diagram schematically showing an outline of the monitoring system 1 according to the embodiment.
- the image processing device 200 processes the image captured by the surveillance camera 5 installed in the city to recognize the vehicle 10 and the person 20, and the monitoring device 200 uses the processing result of the image processing device 200.
- 100 is a system for detecting criminal acts such as kidnapping and vandalism.
- the surveillance system 1 includes a surveillance device 100, an image processing device 200, and at least one surveillance camera 5.
- the surveillance camera 5 may be specialized for the surveillance system 1, or may use, for example, a camera that has been installed in the past.
- the surveillance camera 5 photographs the monitored location and generates an image.
- the surveillance camera 5 includes an image sensor such as a lens and a CCD (Charge Coupled Device) image sensor.
- the surveillance camera 5 may include a mechanism that follows the movement of a person entering the angle of view to control the orientation of the camera body and the lens, zoom control, focus, and the like.
- the surveillance camera 5 captures at least a range including a road through which the car 10 can pass.
- the surveillance camera 5 photographs a range including a road whose road width is wider than that of the car 10.
- the surveillance camera 5 may capture a range including a sidewalk on which the person 20 passes and a road composed of a roadway on which the car 10 passes.
- the surveillance camera 5 is not limited to the road, and may photograph a place where the car 10 and the person 20 can enter, for example, a parking lot.
- the surveillance camera 5 may photograph a moving person 20 or a stationary person 20.
- the surveillance camera 5 may photograph a moving vehicle 10 or a stationary vehicle 10.
- the surveillance camera 5 covers a range including a place where crime is likely to occur, for example, a place behind a structure such as a planting, a fence, or a building, a place with low traffic, or a place where crime has repeatedly occurred in the past. You may take a picture.
- the image generated by the surveillance camera 5 is preferably transmitted to the surveillance device 100 in real time.
- the image transmitted to the monitoring device 100 does not have to be immediately transmitted from the monitoring camera 5, and may be an image delayed by a predetermined time.
- the image generated by the surveillance camera 5 may be temporarily stored in another storage device, and the surveillance device 100 may read the image from the storage device sequentially or at predetermined intervals.
- the image transmitted to the monitoring device 100 is preferably a moving image, but may be a frame image at predetermined intervals or a still image.
- the connection method between the surveillance camera 5 and the surveillance device 100 may be wireless or wired. In the case of wireless connection, it is assumed that the surveillance camera 5 and the surveillance device 100 each have a wireless communication function.
- the surveillance camera 5 may be a network camera such as an IP (Internet Protocol) camera.
- FIG. 2 is a functional block diagram showing a logical configuration example of the monitoring device 100 of FIG.
- the monitoring device 100 includes a detection unit 102 and an output unit 104.
- the detection unit 102 detects that the relative distance between the person 20 and the vehicle 10 included in the image is equal to or less than the reference value (hereinafter, also referred to as an approaching state).
- the output unit 104 outputs information of the type to be output selected by using the attribute of the person 20 detected to be in the approaching state.
- the state where the relative distance between the person 20 and the car 10 is less than or equal to the reference value is the state where the distance between the person 20 and the car 10 is less than or equal to the reference value.
- the state in which the relative distance between the person 20 and the car 10 is less than or equal to the reference value means that at least one of the person 20 and the car 10 moves and the relative distance gradually becomes shorter and becomes less than the reference value, that is, the passage of time. It may be in a state of approaching with.
- the detection unit 102 may detect a state in which the person 20 is moving and approaching the vehicle 10, or may detect a state in which the vehicle 10 is moving and approaching the vehicle 20.
- the detection unit 102 may detect a state in which the person 20 and the car 10 are both moving and the car 10 is approaching from behind the moving person 20.
- the detection unit 102 may detect a state in which the vehicle 10 is approaching from the front of the moving person 20.
- the image processing device 200 detects the position of each characteristic portion of the person 20 and the car 10 specified in the image in a plurality of time-series images with respect to the change in the relative distance between the person 20 and the car 10. From the changes in the positions and relative positional relationships between the person 20 and the car 10, the moving directions of the person 20 and the car 10 and the relative distance between the person 20 and the car 10 can be estimated. Based on the processing result of the image processing device 200, the detection unit 102 detects a state in which the relative distance between the person 20 and the vehicle 10 included in the image is equal to or less than the reference value.
- the attributes of person 20 are determined based on at least one of the attributes extracted from the image, such as gender, age, facial features, height, belongings, clothes, and situation.
- the type of information to be output is information on the type of crime, such as the risk of kidnapping or the risk of car vandalism.
- the output destination and output method may differ depending on the type of information to be output.
- the output destination can be various, but for example, it may be a monitor screen for monitoring the display device of the monitoring center, a terminal (not shown) carried by a security guard, or the police. It may be a monitor screen for monitoring a display device (not shown) of a police station.
- the output method includes at least one of display on a monitor screen, transmission of an email, and output of a voice or alarm sound from a speaker (not shown). At least one of the e-mail address to which the e-mail is sent, the IP address of the mobile terminal, and the mobile phone number may be registered in advance.
- the output content may be output together with information indicating the type of selected information in the image of the surveillance camera 5 that is the notification target. If it is a monitoring center, the images of the surveillance cameras 5 that are the notification targets may be highlighted from the state in which the images of the plurality of surveillance cameras 5 are multi-displayed. For example, only the image of the surveillance camera 5 that is the notification target may be displayed on a single screen or enlarged from the multi-display. Alternatively, the frame of the corresponding screen in the multi-display may be highlighted, or the image to be highlighted may be superimposed and displayed.
- an image indicating the type of output information icon, animation, etc.
- text information indicating the type of output information icon, animation, etc.
- information notifying the occurrence of a crime may be displayed.
- an alarm sound corresponding to the type of output information and a voice indicating the type of output information may be output from the speaker of the monitoring center.
- FIG. 3 is a block diagram illustrating a hardware configuration of a computer 1000 that realizes the monitoring device 100 and the image processing device 200 of the monitoring system 1 shown in FIG. 1, respectively.
- the computer 1000 has a bus 1010, a processor 1020, a memory 1030, a storage device 1040, an input / output interface 1050, and a network interface 1060.
- the bus 1010 is a data transmission path for the processor 1020, the memory 1030, the storage device 1040, the input / output interface 1050, and the network interface 1060 to transmit and receive data to and from each other.
- the method of connecting the processors 1020 and the like to each other is not limited to the bus connection.
- the processor 1020 is a processor realized by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or the like.
- the memory 1030 is a main storage device realized by a RAM (Random Access Memory) or the like.
- the storage device 1040 is an auxiliary storage device realized by an HDD (Hard Disk Drive), an SSD (Solid State Drive), a memory card, a ROM (Read Only Memory), or the like.
- the storage device 1040 stores a program module that realizes each function (for example, detection unit 102, output unit 104, etc.) of the monitoring device 100 of the monitoring system 1.
- the processor 1020 reads each of these program modules into the memory 1030 and executes them, each function corresponding to the program module is realized.
- the storage device 1040 also functions as a storage unit for storing various information used by the monitoring device 100.
- the program module may be recorded on a recording medium.
- the recording medium on which the program module is recorded includes a medium that can be used by the non-temporary tangible computer 1000, and the program code that can be read by the computer 1000 (processor 1020) may be embedded in the medium.
- the input / output interface 1050 is an interface for connecting the computer 1000 and various input / output devices.
- the network interface 1060 is an interface for connecting the computer 1000 to the communication network 3.
- the communication network 3 is, for example, a LAN (Local Area Network) or a WAN (Wide Area Network).
- the method of connecting the network interface 1060 to the communication network 3 may be a wireless connection or a wired connection. However, the network interface 1060 may not be used.
- the computer 1000 is connected to necessary equipment (for example, a surveillance camera 5, a display (not shown), a speaker (not shown), etc.) via the input / output interface 1050 or the network interface 1060.
- necessary equipment for example, a surveillance camera 5, a display (not shown), a speaker (not shown), etc.
- the monitoring system 1 is realized by the combination of the monitoring device 100 and the image processing device 200, it is realized by a plurality of computers 1000 constituting each of them.
- the monitoring device 100 is, for example, a server computer.
- the image processing device 200 may be a device separate from the monitoring device 100, a device included inside the monitoring device 100, or a combination thereof.
- Each component of the monitoring device 100 of the present embodiment of FIG. 2 is realized by an arbitrary combination of hardware and software of the computer 1000 of FIG. And, it is understood by those skilled in the art that there are various modifications of the realization method and the device.
- the functional block diagram showing the monitoring device 100 of each embodiment shows blocks of logical functional units, not configurations of hardware units.
- FIG. 4 is a flowchart showing an operation example of the monitoring device 100 of the present embodiment.
- the detection unit 102 detects that the relative distance between the person 20 and the vehicle 10 included in the image is equal to or less than the reference value based on the processing result of the image captured around the road (step S103), and the output unit 104 detects that the relative distance is equal to or less than the reference value.
- the detection unit 102 detects the person 20 and the vehicle 10 in the approaching state, and the output unit 104 outputs the information selected based on the attributes of the person 20.
- the output unit 104 outputs the information selected based on the attributes of the person 20.
- FIG. 5 is a functional block diagram showing a logical configuration example of the monitoring system of FIG.
- the image processing device 200 is provided separately from the monitoring device 100, but in the present embodiment, the monitoring device 100 will be described as having the function of the image processing device 200 as well. Needless to say, the monitoring device 100 and the image processing device 200 may be different or the same as hardware.
- the surveillance system 1 includes a surveillance device 100, a storage device 300, and a surveillance camera 5.
- the monitoring device 100 outputs information used for monitoring based on the image generated by the monitoring camera 5.
- the storage device 300 stores data necessary for performing image processing. For example, it stores information on a feature amount for identifying a car 10 or a person 20, and information on a feature amount used for discriminating a person's attributes.
- the monitoring device 100 includes an acquisition unit 120, an object identification unit 122, a position identification unit 124, an attribute identification unit 126, a detection unit 102, a selection unit 128, and an output unit 104.
- the acquisition unit 120 acquires the image generated by the surveillance camera 5.
- the object identification unit 122 identifies an object by performing image processing on the image acquired by the acquisition unit 120.
- the object identification unit 122 recognizes and identifies the person 20 and the vehicle 10.
- the position specifying unit 124 identifies the positions of the person 20 and the vehicle 10 specified by the object specifying unit 122 by image processing.
- the attribute specifying unit 126 specifies the attribute of the person 20 specified by the object specifying unit 122 by image processing.
- the attribute specifying unit 126 specifies whether the person 20 has the first attribute or the second attribute.
- the first attribute is an attribute that has a high possibility of being a victim of a crime.
- the first attributes are "female”, “male”, “children (eg, estimated age is X or younger)", “old man (eg, estimated age is Y or older)", “girl (eg, estimated age is Y or older)”.
- “Women whose estimated age is X or younger” "Boys (for example, men whose estimated age is X or younger)”, “Tourists (for example, people who have suitcases)”, "Independent action (predetermined distance)
- the first attribute is determined based on the characteristics extracted from the image, such as gender, age, facial characteristics, height, belongings, clothes, and situation (however, X).
- Y are integers
- the second attribute is an attribute different from the first attribute.
- the second attribute is an attribute having a characteristic of being a perpetrator of a criminal act, or an attribute other than a person having the first attribute, that is, an attribute other than an attribute having a high possibility of being a victim of a criminal act.
- the second attribute is a person who possesses a dangerous object (for example, possesses a long metal rod) or a person who shields the face (for example, a person who wears a mask or the like). There may be.
- the second attribute is also determined based on the characteristics extracted by the image, such as gender, age, facial features, height, belongings, clothes, and situation.
- the person who satisfies the first attribute may be an attribute that has a high possibility of being a victim of a crime, so it can be set according to the crime situation in the area.
- the first attribute may be "male”
- the first attribute in an area where "female” is often a victim of crime, the first attribute.
- the attribute may be "female”.
- the detection unit 102 acquires the attributes related to the person 20 identified by the object identification unit 122 and the positions of the person 20 and the vehicle 10.
- the detection unit 102 determines whether or not each pair of the person 20 and the car 10 included in the image is in a state where the relative distance is equal to or less than the reference value, that is, in an approaching state, based on the position.
- the selection unit 128 acquires the attributes of the person 20 in the approaching state.
- the selection unit 128 selects the type of information to be output using the attributes of the detected person 20.
- the output unit 104 outputs the type of information selected by the selection unit 128.
- FIG. 6 is a flowchart showing an operation example of the monitoring system 1 of the present embodiment.
- the monitoring device 100 acquires an image taken by the monitoring camera 5 and performs image processing (step S101). Specifically, the object identification unit 122 recognizes and identifies the person 20 and the vehicle 10 from the acquired image, respectively. Then, the position specifying unit 124 specifies the positions of the person 20 and the vehicle 10 specified by the object specifying unit 122. Next, the detection unit 102 detects that the relative distance between the person 20 and the car 10 included in the image is equal to or less than the reference value (step S103).
- the attribute specifying unit 126 specifies the attribute of the person 20 specified by the object specifying unit 122 (step S104).
- the attribute specifying unit 126 performs image processing on the person 20 included in the image and specifies whether the person 20 has the first attribute or the second attribute.
- the specific timing of the attribute of the person 20 may be before the detection unit 102 detects the approaching state of the person 20 and the vehicle 10.
- the selection unit 128 selects the type of information to be output based on the attribute of the person 20 (step S105).
- the output unit 104 outputs the selected type of information (step S107).
- the output unit 104 may also output images and sounds when the detection unit 102 detects the approaching state, and images before and after the detection unit 102 detects the approaching state.
- step S101 While the detection unit 102 does not detect the person 20 and the car 10 in the approaching state, the process returns to step S101 and the process is repeated.
- FIG. 7 is a flowchart showing an example of the detailed processing procedure of step S105 of FIG.
- the attribute specifying unit 126 determines the attribute of the person 20 detected by the detection unit 102 (step S111).
- the selection unit 128 is a kind of information indicating that the person 20 may be victimized by a crime. Select. For example, the selection unit 128 selects information indicating that the kidnapping of the person 20 may occur (step S115).
- the selection unit 128 may commit a crime against the car 10 by the person 20.
- the selection unit 128 selects information indicating that the person 20 may perform on-vehicle vandalism (step S117). In other words, it can be said that the selection unit 128 selects whether the person 20 may be damaged or the car 10 may be damaged.
- the output unit 104 outputs the selected type of information to a predetermined output destination (step S107). For example, the output unit 104 outputs the selected type of information to the server 220 of the monitoring center, and the server 220 of the monitoring center indicates that the monitor screen of the display device of the monitoring center may have been kidnapped. Information may be output. Further, an image in which an approaching state is detected may be displayed.
- the information output is illustrated on the monitor screen, but other methods may be used as long as the possibility of a crime can be notified.
- the selected information output by the output unit 104 may be output by various methods such as voice output, alarm sound output, mail transmission to the terminal, and notification. Further, the voice and the alarm sound may be changed, the mail content may be changed, and the notification content may be changed according to the information selected by the output unit 104.
- the detection unit 102 detects the person 20 and the car 10 in an approaching state
- the selection unit 128 selects the type of crime based on the attributes of the person 20, and the output unit 104 selects. Output the information that has been done.
- the image of the surveillance camera 5 that captures the area around the road, it is possible to detect a situation in which a criminal act committed against a pedestrian or a car such as kidnapping or vandalism may occur. Therefore, it is possible to detect the occurrence of criminal acts. Further, if it is known that the surveillance camera 5 is being monitored, a crime deterrent effect can be expected.
- the output unit 104 can output the information selected based on the attribute of the person 20. As a result, even if the vehicle 10 may be damaged due to vandalism on the vehicle, the possibility of vandalism on the vehicle can be notified before the person 20 enters the vehicle 10. For example, the output unit 104 can output a warning message or an alarm sound from a speaker or the like in the vicinity of the place. As a result, the crime prevention effect can be improved.
- FIG. 8 is a functional block diagram showing a logical configuration example of the monitoring system of FIG.
- the monitoring system 1 of the present embodiment is the same as that of the above embodiment except that the moving speed of the vehicle 10 is used instead of using the attribute of the person 20 to determine the type of information to be output.
- the monitoring device 100 of the present embodiment includes a moving speed estimation unit 130 instead of the attribute specifying unit 126 of FIG.
- the configuration of this embodiment may be combined within a range that does not cause a contradiction with at least one of the configurations of other embodiments.
- the monitoring device 100 includes an acquisition unit 120, an object identification unit 122, a position identification unit 124, a movement speed estimation unit 130, a detection unit 102, a selection unit 128, and an output unit 104.
- the acquisition unit 120 acquires the image generated by the surveillance camera 5.
- the object identification unit 122 identifies an object by performing image processing on the image acquired by the acquisition unit 120.
- the object identification unit 122 recognizes and identifies the person 20 and the vehicle 10.
- the position specifying unit 124 identifies the positions of the person 20 and the vehicle 10 specified by the object specifying unit 122 by image processing.
- the moving speed estimation unit 130 detects the position of the characteristic portion of the car 10 specified by the position specifying unit 124 in a plurality of time-series images, and estimates the moving speed from the change in the position of the car 10. Further, the moving speed estimation unit 130 detects the positions of the characteristic portions of the person 20 and the car 10 identified in the image in a plurality of time-series images, and changes the relative positional relationship between the person 20 and the car 10. The speed change of the car 10 with respect to the person 20 may be estimated from. Further, the moving speed estimation unit 130 can similarly estimate the moving directions of the person 20 and the car 10.
- the moving speed estimation unit 130 determines at what speed the car 10 is approaching the person 20 from which direction, or at what speed the vehicle 10 is away from the person 20 in which direction. Can be estimated.
- the moving speed estimation unit 130 estimates that the moving speed of the car 10 is low and determines that the moving direction of the car 10 is moving in the direction approaching the person 20, there is a risk of kidnapping. Can be determined. Further, in the case of vandalism on the vehicle, the person 20 approaches the stationary vehicle 10 and then the person 20 leaves. Therefore, the moving speed estimation unit 130 can determine that there is a risk of vandalism on the vehicle when the vehicle 10 is estimated to be stationary. If the moving speed of the vehicle 10 is a normal traveling speed, it can be determined that the vehicle is traveling normally.
- the detection unit 102 determines whether or not each pair of the person 20 and the car 10 included in the image is in a state where the relative distance is equal to or less than the reference value, that is, in an approaching state, based on the position.
- the selection unit 128 selects the type of information to be output using the movement speed of the vehicle 10 estimated by the movement speed estimation unit 130.
- the output unit 104 outputs the type of information selected by the selection unit 128.
- FIG. 9 is a flowchart showing an example of the operation of the monitoring system 1.
- the flowchart of FIG. 9 includes steps S101, S103, and S107 of the flowchart of FIG. 6, and further includes steps S204 and S205 instead of steps S104 and S105 of FIG.
- the monitoring device 100 acquires an image taken by the monitoring camera 5 and performs image processing (step S101). Specifically, the object identification unit 122 recognizes and identifies the person 20 and the vehicle 10 from the acquired image, respectively. Then, the position specifying unit 124 specifies the positions of the person 20 and the vehicle 10 specified by the object specifying unit 122. Next, the detection unit 102 detects that the relative distance between the person 20 and the car 10 included in the image is equal to or less than the reference value (step S103).
- the moving speed estimation unit 130 estimates the moving speed of the car 10 (step S204). Then, the selection unit 128 selects the type of information to be output based on the moving speed of the vehicle 10 (step S205). Then, the output unit 104 outputs the selected type of information (step S107).
- FIG. 10 is a flowchart showing an example of the detailed processing procedure of step S205 of FIG.
- the moving speed estimation unit 130 determines the moving speed of the vehicle 10 (step S211).
- the selection unit 128 determines that the person 20 may be victimized by a crime and outputs the output. Select the type of information that should indicate that the person 20 may be harmed. For example, the selection unit 128 selects information indicating that the kidnapping of the person 20 may occur (step S115).
- step S211 when the moving speed estimation unit 130 determines that the car 10 is stationary, the selection unit 128 determines that there is a possibility that the person 20 commits a crime, and sets the type of information to be output. Select the type of information that indicates that person 20 may commit a crime. For example, the selection unit 128 selects information indicating that the person 20 may perform on-vehicle vandalism (step S117). After step S115 and step S117, the process returns to step S107 in FIG.
- step S211 determines in step S211 that the moving speed of the vehicle 10 is low and is neither approaching nor stationary, it can be determined that the vehicle 10 is simply passing, so the process returns to step S107 in FIG.
- the output unit 104 outputs the selected type of information (step S107). While the person 20 and the car 10 in the approaching state are not detected (NO in step S103), the process returns to step S101 and the process is repeated.
- the detection unit 102 detects the person 20 and the car 10 in an approaching state, and the selection unit 128 may use the moving speed of the car 10 to cause the person 20 to be victimized by a crime. Or, it is determined whether the person 20 has a possibility of committing a crime, and information based on the determination result is selected. Then, the output unit 104 outputs the selected information.
- the type of criminal activity such as kidnapping or vandalism can be detected by using the image of the surveillance camera 5 that captures the area around the road. Further, if it is known that the surveillance camera 5 is being monitored, a crime deterrent effect can be expected.
- FIG. 11 is a functional block diagram showing a logical configuration example of the monitoring system of FIG.
- the monitoring system 1 of the present embodiment is the same as any of the above embodiments except that the monitoring device 100 has both the functions of the second embodiment and the functions of the third embodiment.
- the monitoring device 100 of the present embodiment may be combined with at least one of the configurations of the other embodiments within a range that does not cause a contradiction.
- the monitoring device 100 includes an acquisition unit 120, an object identification unit 122, a position identification unit 124, an attribute identification unit 126, a movement speed estimation unit 130, a detection unit 102, a selection unit 128, and an output unit 104. Be prepared.
- the acquisition unit 120 acquires the image generated by the surveillance camera 5.
- the object identification unit 122 is about the image acquired by the acquisition unit 120.
- An object is identified by performing image processing.
- the object identification unit 122 recognizes and identifies the person 20 and the vehicle 10.
- the position specifying unit 124 identifies the positions of the person 20 and the vehicle 10 specified by the object specifying unit 122 by image processing.
- the attribute specifying unit 126 identifies the attribute of the person 20 by image processing.
- the attribute specifying unit 126 specifies whether the person 20 has the first attribute or the second attribute.
- the moving speed estimation unit 130 detects the position of the characteristic portion of the car 10 specified by the position specifying unit 124 in a plurality of time-series images, and estimates the moving speed from the change in the position of the car 10.
- the detection unit 102 determines whether or not each pair of the person 20 and the car 10 included in the image is in a state where the relative distance is equal to or less than the reference value, that is, in an approaching state, based on the position.
- the selection unit 128 selects the type of information to be output using the movement speed of the vehicle 10 estimated by the movement speed estimation unit 130 and the attributes specified by the attribute identification unit 126.
- the output unit 104 outputs the type of information selected by the selection unit 128.
- FIG. 12 is a flowchart showing an example of the operation of the monitoring system 1.
- the flowchart of FIG. 12 includes step S101, step S103, step S104, and step S107 of the flowchart of FIG. 6, and step S204 of FIG. 9, and is further replaced with step S105 of FIG. 6 or step S205 of FIG. Step S305 is included.
- the monitoring device 100 acquires an image taken by the monitoring camera 5 and performs image processing (step S101). Specifically, the object identification unit 122 recognizes and identifies the person 20 and the vehicle 10 from the acquired image, respectively. Then, the position specifying unit 124 specifies the positions of the person 20 and the vehicle 10 specified by the object specifying unit 122. Next, the detection unit 102 detects that the relative distance between the person 20 and the car 10 included in the image is equal to or less than the reference value (step S103).
- the attribute specifying unit 126 specifies the attribute of the person 20 specified by the object specifying unit 122 (step S104). Further, the moving speed estimation unit 130 detects the position of the characteristic portion of the car 10 specified by the position specifying unit 124 in a plurality of time-series images, and estimates the moving speed of the car 10 from the change in the position of the car 10 ( Step S204). Then, the selection unit 128 selects the type of information to be output based on the attribute of the person 20 and the moving speed of the car 10 (step S305). Then, the output unit 104 outputs the selected type of information (step S107).
- FIG. 13 is a flowchart showing an example of the detailed processing procedure of step S305 of FIG.
- the attribute specifying unit 126 determines the attribute of the person 20 specified by the object specifying unit 122 (step S111). In step S111, the attribute specifying unit 126 determines whether or not the person 20 is a person having the first attribute, and if it is determined that the person 20 is a person having the first attribute, the process proceeds to step S121. On the other hand, if the attribute specifying unit 126 determines in step S111 that the person has the second attribute, the process proceeds to step S123.
- the selection unit 128 may cause the person 20 to be victimized by a crime. It is determined that there is, and the type of information to be output is selected as the type of information indicating that the person 20 may be damaged. For example, the selection unit 128 selects information indicating that the kidnapping of the person 20 may occur (step S115).
- the moving speed estimation unit 130 determines that the vehicle 10 is not approaching the person 20 at a low speed (NO in step S121)
- step S123 when the moving speed estimation unit 130 determines that the car 10 is stationary (YES in step S123), the selection unit 128 determines that the car 10 is stationary, and the person 20 commits a crime. It is determined that there is a possibility of doing so, and the type of information indicating that the person 20 may commit a crime is selected as the type of information to be output. For example, the selection unit 128 selects information indicating that the person 20 may perform on-vehicle vandalism (step S117).
- the moving speed estimation unit 130 determines that the car 10 is not stationary (NO in step S123)
- FIG. 14 is a flowchart showing another example of the detailed processing procedure of step S305 of FIG.
- the processing procedure shown in FIG. 14 is different from that of FIG. 13 in that the determination using the moving speed of the vehicle 10 is performed first (step S211), and then the determination using the attribute of the person 20 is performed (step S131 and step S133). It is the same except for the points.
- the selection unit 128 determines based on the movement speed of the vehicle 10 estimated by the movement speed estimation unit 130 (step S211).
- step S211 determines based on the movement speed of the vehicle 10 estimated by the movement speed estimation unit 130.
- the process proceeds to step S131. If the moving speed estimation unit 130 determines in step S211 that the vehicle 10 is stationary, the process proceeds to step S133. Further, when the moving speed estimation unit 130 determines in step S211 that the moving speed of the vehicle 10 is low and is neither approaching nor stationary, it can be determined that the vehicle 10 is simply passing, so the process returns to step S107 in FIG.
- step S131 when the attribute specifying unit 126 determines that the person 20 has the first attribute (YES in step S131), the selection unit 128 may damage the person 20 to the type of information to be output. Select the type of information that indicates that you are sexual. For example, the output unit 104 selects information indicating that the kidnapping of the person 20 may occur (step S115).
- the process returns to step S107 in FIG.
- step S133 when the attribute specifying unit 126 determines that the person 20 is a person having the second attribute (YES in step S133), the selection unit 128 determines that the person 20 may commit a crime. Then, as the type of information to be output, select the type of information indicating that the person 20 may commit a crime. For example, the selection unit 128 selects information indicating that the person 20 may perform on-vehicle vandalism (step S117).
- the attribute specifying unit 126 determines that the person 20 is not a person having the second attribute (NO in step S133)
- the process returns to step S107 in FIG. After step S115 and step S117, the process returns to step S107 in FIG.
- step S107 of FIG. 12 when it is determined in step S121, step S123, or step S211, step S131, and step S133 of the flowchart of FIG. 13 or 14 that the vehicle 10 is simply passing or stopped, the type of information to be output. Is not selected, so the output unit 104 processes without outputting the information. However, when it is determined in step S121, step S123, or step S211, step S131, and step S133 of the flowchart of FIG. 13 or 14 that the vehicle 10 is simply passing or stopped, it is determined that the vehicle 10 is passing or stopped, respectively. It may be selected as the type of information to be output. In that case, in step S107 of FIG. 12, the output unit 104 may select and output information indicating that the vehicle 10 has passed or stopped, respectively.
- the same effect as that of the above embodiment can be obtained, and the type of information to be output can be selected using both the moving speed of the car 10 and the attributes of the person 20, so that the crime can be performed more accurately.
- the possibility of detecting the action increases.
- FIG. 15 is a functional block diagram showing a logical configuration example of the monitoring system of FIG.
- the monitoring system 1 of the present embodiment is the same as that of the second embodiment except that the type of information to be output is selected depending on whether or not the person 20 acts alone.
- the monitoring device 100 of the present embodiment further includes a number-of-person identification unit 132 in addition to the configuration of the second embodiment of FIG.
- the monitoring device 100 of the present embodiment may be combined within a range that does not cause a contradiction with at least one of the configurations of the other embodiments.
- the monitoring device 100 includes an acquisition unit 120, an object identification unit 122, a position identification unit 124, an attribute identification unit 126, a number of people identification unit 132, a detection unit 102, a selection unit 128, and an output unit 104. ..
- the acquisition unit 120 acquires the image generated by the surveillance camera 5.
- the object identification unit 122 identifies an object by performing image processing on the image acquired by the acquisition unit 120.
- the object identification unit 122 recognizes and identifies the person 20 and the vehicle 10.
- the position specifying unit 124 specifies the positions of the person 20 and the vehicle 10 specified by the object specifying unit 122.
- the attribute specifying unit 126 identifies the attribute of the person 20 by image processing.
- the attribute specifying unit 126 specifies whether the person 20 has the first attribute or the second attribute.
- the number of people specifying unit 132 specifies the number of people 20. For example, the object identification unit 122 determines whether or not a plurality of people 20 have been identified. When the object identification unit 122 identifies a plurality of people 20, the number identification unit 132 determines whether or not there are people whose distances between the people 20 are within the reference value. For example, the number of people specifying unit 132 determines whether or not there is a person whose distance between the plurality of people 20 is within the reference value based on the position of the person 20 specified by the position specifying unit 124. The reference value may be the same as or different from the reference value for determining the relative distance between the car 10 and the person 20.
- the number-of-person identification unit 132 determines that if there is a person whose distance between the plurality of people 20 is within the reference value, it is not a single action. The number-of-person identification unit 132 determines that the behavior is independent when there are no plurality of people 20 or the distance between the plurality of people 20 is within the reference value.
- the detection unit 102 determines whether or not each pair of the person 20 and the car 10 included in the image is in a state where the relative distance is equal to or less than the reference value, that is, in an approaching state, based on the position.
- the selection unit 128 selects the type of information to be output according to whether or not the determination result in the number-of-person identification unit 132 is whether the person 20 is acting alone.
- the output unit 104 outputs the type of information selected by the selection unit 128.
- FIG. 16 is a flowchart showing an example of the operation of the monitoring system 1.
- the flowchart of FIG. 16 includes step S141 instead of step S121 of the flowchart of FIG.
- the flowchart of FIG. 16 may include step S121 of FIG.
- the order of steps S121 and S141 is not particularly limited.
- the attribute specifying unit 126 determines the attribute of the person 20 specified by the object specifying unit 122 (step S111). When the attribute specifying unit 126 determines in step S111 that the person 20 is the first attribute, the attribute specifying unit 126 proceeds to step S141. On the other hand, if the attribute specifying unit 126 determines in step S111 that the person 20 has the second attribute, the process proceeds to step S123.
- step S141 If the number identification unit 132 determines in step S141 that the person 20 is acting alone (YES in step S141), the selection unit 128 may damage the person 20 to the type of information to be output. Select the type of information that indicates that you are. For example, the output unit 104 selects information indicating that the kidnapping of the person 20 may occur (step S115).
- the number-of-person identification unit 132 determines that the person 20 is not acting alone (NO in step S141), it can be determined that the vehicle is simply passing through, so the process returns to step S107 in FIG.
- step S123 Since the processing after step S123 is the same as that in FIG. 13, the description will be omitted.
- FIG. 17 is a flowchart showing another example of the operation of the monitoring system 1.
- the flowchart of FIG. 17 is the same as that of FIG. 16 except that the order of steps S111 and S141 of the flowchart of FIG. 16 is exchanged.
- the flowchart of FIG. 17 may include step S121 of FIG. In that case, the order of steps S121 and S141 is not particularly limited.
- the number of people specifying unit 132 determines whether or not the person 20 is acting alone (step S141). When the number-of-person identification unit 132 determines in step S141 that the person 20 is an independent action (YES in step S141), the process proceeds to step S111. When the number-of-person identification unit 132 determines in step S141 that the person 20 is not an independent action (NO in step S141), it can be determined that the person has just passed the car 10, so the process returns to step S107 in FIG.
- step S111 the attribute specifying unit 126 determines the attribute of the person 20 specified by the object specifying unit 122.
- the attribute specifying unit 126 determines in step S111 that the person 20 is the first attribute
- the attribute specifying unit 126 proceeds to step S115.
- the attribute specifying unit 126 determines in step S111 that the person 20 has the second attribute
- the process proceeds to step S123. Since the subsequent processing is the same as that in FIG. 16, the description thereof will be omitted.
- the number-of-person identification unit 132 can determine whether or not the person 20 is acting alone, and if the person 20 is acting alone, it can output that there is a high possibility of kidnapping. By combining with other conditions, the accuracy of discrimination can be further improved and frequent notification can be prevented.
- the monitoring system 1 of the present embodiment has a configuration in which the vehicle 10 is in a stationary state, detects the entry and exit of the person 20 from the stationary vehicle 10, and selects the type of information to be output using the result. It differs from the fourth embodiment in that it has. That is, the operation of the detection unit 102 and the operation of the selection unit 128 are different. Hereinafter, it will be described with reference to the functional block diagram of FIG. 11 of the fourth embodiment. However, the monitoring device 100 of the present embodiment may be combined within a range that does not cause a contradiction with at least one of the configurations of the other embodiments.
- the detection unit 102 determines whether or not each pair of the person 20 and the car 10 included in the image is in a state where the relative distance is equal to or less than the reference value, that is, in an approaching state, based on the position. Further, when the vehicle 10 determined by the detection unit 102 to be in the approaching state is determined to be in the stationary state from the moving speed estimated by the moving speed estimation unit 130, the detection unit 102 further determines that the vehicle 10 is in a stationary state. Detect if there is an entry or exit. The selection unit 128 further uses the detection result of the entry and exit of a person by the detection unit 102 to select the type of information to be output.
- the car 10 approaches the person 20 (FIGS. 18 (a) to 18 (b)), and from the car 10, only the arm is extended to grab the person 20. It may be dragged into the car 10 and taken away (Fig. 18 (c)). That is, in the case of kidnapping, no one comes out of the stationary car 10. In the case of on-board vandalism, there is a high possibility that a driver will come out of the stationary car 10. This situation is detected to determine kidnapping and vandalism.
- FIG. 19 is a flowchart showing an example of the operation of the monitoring system 1.
- the flowchart of FIG. 19 includes step S211 of the flowchart of FIG. 14, step S131, step S133, step S115, and step S117, and further includes step S151.
- step S211 If the moving speed estimation unit 130 estimates that the car 10 is moving at a low speed in step S211 and the detection unit 102 determines that the car 10 is approaching the person 20, the process proceeds to step S131.
- the attribute specifying unit 126 determines the attribute of the person 20.
- step S151 the detection unit 102 determines whether or not a person, that is, a driver is coming out of the stationary vehicle 10. For example, the detection unit 102 detects the entry and exit of a person by determining whether or not a person has come out of the vehicle within a predetermined time after the movement speed estimation unit 130 determines that the vehicle 10 is in a stationary state. It is possible.
- step S131 If the detection unit 102 detects that no person has come out of the car 10 within a predetermined time (NO in step S151), the possibility of kidnapping is high, so the process proceeds to step S131. Further, when the moving speed estimation unit 130 determines in step S211 that the moving speed of the vehicle 10 is low and is neither approaching nor stationary, it can be determined that the vehicle 10 is simply passing, so the process returns to step S107 in FIG. Since the processing after step S131 is the same as that of the above embodiment, the description thereof will be omitted.
- the attribute identification unit 126 determines the attribute of the person 20 in the approaching state (step S133). Then, when the attribute specifying unit 126 determines that the person has the second attribute (YES in step S133), the selection unit 128 may cause the person 20 to vandalize the vehicle, as in FIG. Select the information indicating that there is (step S117).
- the detection unit 102 may perform processing using the image of a specific surveillance camera 5 among the plurality of surveillance cameras 5 that image the area around the road.
- surveillance may be performed using the image of the surveillance camera 5 installed in a particularly insecure place, a place where criminal acts such as kidnapping and vandalism occur frequently.
- a specific surveillance camera 5 may be prioritized, and the ratio of the surveillance time of the surveillance camera 5 having a high priority may be set longer than that of the other surveillance cameras 5.
- the detection unit 102 may acquire and store a face image of the person 20 who has detected that the relative distance between the car 10 and the person 20 is equal to or less than the reference value.
- the face image can be stored in the memory 1030 of FIG. 3, the storage device 1040, or the like.
- the owner 30 of the car 10 first comes out from the stopped car 10 (FIG. 20 (a)).
- the detection unit 102 detects that a person has come out of the car 10, acquires a face image of the person A (owner of the car 10) who has come out of the car 10, and temporarily stores it.
- the monitoring is continued, and the detection unit 102 detects the person 20 approaching the car 10 (FIG. 20 (b)). At this time, the face image of the person 20 is acquired. Then, the detection unit 102 may transmit the face image of the person A acquired earlier and the face image of the person 20 acquired later to the image processing device 200, and collate whether or not they are the same person.
- the selection unit 128 selects the type of information to be output using the collation result. If they are not the same person, it is determined that they are on-board vandalism (Fig. 20 (c)). If they are the same person, they are identified as the owner.
- FIG. 21 is a flowchart showing an example of the operation of the monitoring system 1.
- the flowchart of FIG. 21 includes step S151 instead of step S131 of the flowchart of FIG.
- the detection unit 102 determines in step S211 that the car 10 is approaching the person 20 at a low speed
- the process proceeds to step S151 to determine whether or not a person is coming out of the car 10. If the detection unit 102 cannot detect that a person has come out (NO in step S151), the possibility of kidnapping is high, and the process proceeds to step S115.
- step S151 When the detection unit 102 detects that a person has come out (YES in step S151), it can be determined that the car 10 is simply stopped, so the process returns to step S107 in FIG. Since the processing other than these is the same as that in FIG. 14, the description thereof will be omitted.
- a detection means that processes an image of the area around the road and detects that the relative distance between the person and the vehicle included in the image is equal to or less than the reference value.
- a monitoring device including an output means for selecting a type of information to be output using the attribute of the person detected to be in the state and outputting the selected information of the type.
- 2. 1. 1. In the monitoring device described in The output means is a monitoring device that further selects the type of information to be output using the moving speed of the vehicle detected to be in the state.
- a detection means that processes an image of the area around the road and detects that the relative distance between the person and the vehicle included in the image is equal to or less than the reference value.
- a monitoring device including an output means for selecting a type of information to be output using the moving speed of the vehicle detected to be in the above state and outputting the selected information of the type.
- the monitoring device is A detection means that processes an image of the area around the road and detects that the relative distance between the person and the vehicle included in the image is equal to or less than the reference value.
- a monitoring system having an output means for selecting a type of information to be output using the attributes of the person detected to be in the state and outputting the selected information of the type.
- 8. 7. In the monitoring system described in The output means of the monitoring device is a monitoring system that further selects the type of information to be output using the moving speed of the vehicle detected to be in the state. 9.
- the monitoring device that monitors images captured by multiple cameras.
- the monitoring device is A detection means that processes an image of the area around the road and detects that the relative distance between the person and the vehicle included in the image is equal to or less than the reference value.
- a monitoring system having an output means for selecting a type of information to be output using the moving speed of the vehicle detected to be in the state and outputting the selected information of the type. 10. 7. To 9. In the monitoring system described in any one of The output means of the monitoring device is Further, a monitoring system that selects the type of information to be output depending on whether or not the person who is detected to be in the state is acting alone. 11. 7. To 10. In the monitoring system described in any one of The detection means of the monitoring device detects the entry and exit of a person after the vehicle is in a stationary state and the vehicle is detected to be in the stationary state.
- the output means of the monitoring device is a monitoring system that further uses the detection result of the detection means to select the type of information to be output. 12 7. From 11.
- the detection means of the monitoring device is a monitoring system that performs the processing using an image of a specific camera among a plurality of cameras that image the vicinity of the road.
- the monitoring device The image of the area around the road is processed, and it is detected that the relative distance between the person and the vehicle included in the image is less than or equal to the reference value.
- 14. 13 In the monitoring method described in A monitoring method in which the monitoring device further selects the type of information to be output using the moving speed of the vehicle detected to be in the state.
- the monitoring device The image of the area around the road is processed, and it is detected that the relative distance between the person and the vehicle included in the image is less than or equal to the reference value.
- a program for causing a computer to execute a procedure for selecting the type of information to be output depending on whether or not the person who is detected to be in the above state is acting alone. 23. 19. From 22.
- a detection means that processes an image of the area around the road and detects that the relative distance between the person and the vehicle included in the image is equal to or less than the reference value.
- a monitoring device including an output means for outputting information of a type to be output selected by using the attribute of the person detected to be in the state. 26. 25.
- An acquisition means for acquiring the image generated by the camera around the road
- An object identification means for recognizing and identifying a person and a vehicle by performing image processing on the image acquired by the acquisition means.
- the position specifying means for specifying the position of the person and the vehicle specified by the object specifying means by performing the image processing.
- An attribute specifying means for specifying an attribute by performing the image processing on the person specified by the position specifying means, and When the detection means detects a person and a vehicle in the state, the detected person is provided with a selection means for selecting the type of information to be output by using the specified attribute.
- the output means is a monitoring device that outputs the kind of information selected by the selection means. 27. 25. Or 26. In the monitoring device described in An acquisition means for acquiring the image generated by the camera around the road, and An object identification means for recognizing and identifying a person and a vehicle by performing image processing on the image acquired by the acquisition means.
- a position specifying means for specifying the position of the person and the vehicle specified by the object specifying means by performing the image processing.
- a moving speed estimating means for estimating the moving speed from a change in the position of the vehicle, and a moving speed estimating means.
- a selection means for selecting the type of information to be output by using the movement speed of the vehicle estimated by the movement speed estimation means is provided.
- the output means is a monitoring device that outputs the kind of information selected by the selection means. 28. 25. From 27. In the monitoring device described in any one of An acquisition means for acquiring the image generated by the camera around the road, and An object identification means for recognizing and identifying a person and a vehicle by performing image processing on the image acquired by the acquisition means.
- a position specifying means for specifying the position of the person and the vehicle specified by the object specifying means by performing the image processing.
- the output means is a monitoring device that outputs the kind of information selected by the selection means. 29. 27. Or 27. 28. In the monitoring device described in When the detection means determines that the vehicle detected to be in the state is in a stationary state from the movement speed estimated by the movement speed estimation means, there is further entry / exit of a person from the vehicle. Detect and The selection means further uses the detection result of the person's entry and exit by the detection means to select the type of information to be output.
- the output means is a monitoring device that outputs the kind of information selected by the selection means. 30. 25. From 29.
- the detection means is a monitoring device that performs the processing using an image of a specific camera among a plurality of cameras that image the vicinity of the road.
- the monitoring device is A detection means that processes an image of the area around the road and detects that the relative distance between the person and the vehicle included in the image is equal to or less than the reference value.
- a monitoring system comprising an output means for outputting the type of information to be output selected using the attributes of the person detected to be in the state.
- the monitoring device is An acquisition means for acquiring the image generated by the camera around the road, and An object identification means for recognizing and identifying a person and a vehicle by performing image processing on the image acquired by the acquisition means.
- the position specifying means for specifying the position of the person and the vehicle specified by the object specifying means by performing the image processing.
- An attribute specifying means for specifying an attribute by performing the image processing on the person specified by the position specifying means, and
- the detection means detects a person and a vehicle in the state, the detected person is provided with a selection means for selecting the type of information to be output by using the specified attribute.
- the output means of the monitoring device is a monitoring system that outputs the kind of information selected by the selection means. 33. 31. Or 32.
- the monitoring device is An acquisition means for acquiring the image generated by the camera around the road, and An object identification means for recognizing and identifying a person and a vehicle by performing image processing on the image acquired by the acquisition means.
- a position specifying means for specifying the position of the person and the vehicle specified by the object specifying means by performing the image processing.
- a moving speed estimating means for estimating the moving speed from a change in the position of the vehicle, and a moving speed estimating means.
- a selection means for selecting the type of information to be output by using the movement speed of the vehicle estimated by the movement speed estimation means is provided.
- the output means of the monitoring device is a monitoring system that outputs the kind of information selected by the selection means. 34. 31. From 33.
- An acquisition means for acquiring the image generated by the camera around the road
- An object identification means for recognizing and identifying a person and a vehicle by performing image processing on the image acquired by the acquisition means.
- a position specifying means for specifying the position of the person and the vehicle specified by the object specifying means by performing the image processing.
- a selection means for selecting the type of information to be output, which is selected according to the determination result of the number of people specifying means, is provided.
- the output means of the monitoring device is a monitoring system that outputs the kind of information selected by the selection means. 35. 33. Or 33.
- the detection means of the monitoring device determines that the vehicle detected to be in the state is in a stationary state from the movement speed estimated by the movement speed estimation means, further, a person from the vehicle. Detects whether there is an entry or exit
- the selection means of the monitoring device further uses the detection result of the person's entry and exit by the detection means to select the type of information to be output.
- the output means of the monitoring device is a monitoring system that outputs the kind of information selected by the selection means. 36. 31. From 35.
- any one of The detection means of the monitoring device is a monitoring system that performs the processing using an image of a specific camera among a plurality of cameras that image the vicinity of the road.
- the monitoring device The image obtained by capturing the area around the road is processed, and it is detected that the relative distance between the person and the vehicle included in the image is equal to or less than the reference value.
- the image generated by the camera and capturing the area around the road is acquired, and the image is acquired.
- By performing image processing on the acquired image a person and a car are recognized and identified, and the image is identified.
- the positions are specified.
- the image processing on the identified person the attribute is specified, and the attribute is specified.
- the type of information to be output is selected for the detected person using the specified attribute.
- a monitoring method that outputs the selected type of information. 39. 37. Or 38.
- the image generated by the camera and capturing the area around the road is acquired, and the image is acquired.
- image processing By performing image processing on the acquired image, a person and a car are recognized and identified, and the image is identified.
- the positions of the identified person and the vehicle are specified by performing the image processing, and the positions are specified.
- the moving speed is estimated from the change in the position of the vehicle, and the moving speed is estimated.
- the image generated by the camera and capturing the area around the road is acquired, and the image is acquired.
- image processing By performing image processing on the acquired image, a person and a car are recognized and identified, and the image is identified.
- the positions of the identified person and the vehicle are specified by performing the image processing, and the positions are specified. Identify the number of identified persons, determine whether or not the identified person is acting alone, Select the type of information to be output, which is selected according to the result of the determination.
- the monitoring device When it is determined from the estimated moving speed that the vehicle detected to be in the state is in a stationary state, it is further detected whether or not there is a person coming in or out of the vehicle. Further using the detection result of the entry and exit of the person, the type of the information to be output is selected, and the information is selected. A monitoring method that outputs the selected information of the above type. 42. 37. From 41. In the monitoring method described in any one of The monitoring device A monitoring method in which the processing is performed using an image of a specific camera among a plurality of cameras that image the area around the road.
- Procedure for acquiring the image generated by the camera and capturing the area around the road A procedure for recognizing and identifying a person and a vehicle by performing image processing on the image acquired in the acquisition procedure.
- a procedure for specifying an attribute of the person specified in the procedure for specifying the position by performing the image processing When a person and a car in the above state are detected in the detection procedure, the procedure for selecting the type of information to be output for the detected person using the specified attribute.
- Procedure for acquiring the image generated by the camera and capturing the area around the road A procedure for recognizing and identifying a person and a vehicle by performing image processing on the image acquired in the acquisition procedure.
- a procedure for specifying the position of the person and the vehicle specified in the procedure for identifying the person and the vehicle by performing the image processing In the program described in Procedure for acquiring the image generated by the camera and capturing the area around the road, A procedure for recognizing and identifying a person and a vehicle by performing image processing on the image acquired in the acquisition procedure.
- a procedure for estimating the moving speed from the change in the position of the vehicle For the vehicle specified in the procedure for specifying the position, a procedure for estimating the moving speed from the change in the position of the vehicle, A procedure for selecting the type of information to be output using the moving speed of the vehicle estimated in the procedure for estimating the moving speed.
- the type of information to be output is selected.
- the output means is a program for causing a computer to execute a procedure for outputting the type of information selected by the selection means. 48. 43. In the program described in any one of 47 to 47 A program for causing a computer to perform a procedure of performing the processing using an image of a specific camera among a plurality of cameras that image the area around the road.
- Surveillance system 3 Communication network 5 Surveillance camera 10 Cars 20 people 30 Owner 100 Surveillance device 102 Detection unit 104 Output unit 120 Acquisition unit 122 Object identification unit 124 Position identification unit 126 Attribute identification unit 128 Selection unit 130 Movement speed estimation unit 132 Number of people Specific unit 200 Image processing device 220 Server 300 Storage device 1000 Computer 1010 Bus 1020 Processor 1030 Memory 1040 Storage device 1050 Input / output interface 1060 Network interface
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Human Computer Interaction (AREA)
- Computer Networks & Wireless Communication (AREA)
- Alarm Systems (AREA)
- Closed-Circuit Television Systems (AREA)
- Burglar Alarm Systems (AREA)
- Traffic Control Systems (AREA)
Abstract
監視装置(100)は、道路周辺を撮像した画像を処理し、画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する検出部(102)と、前記状態にあると検出された人の属性を用いて出力すべき情報の種類を選択し、選択した種類の情報を出力する出力部(104)と、を備える。
Description
本発明は、監視システム、監視装置、監視方法、およびプログラムに関する。
近年、街中への監視カメラの設置が進んでおり、防犯に活用されている。特許文献1には、防犯カメラの映像を解析して、駐車場等に侵入する行為などを検出し、直ちに警告およびその判断を下した映像を、監視員の居る監視室の表示装置や警備員、関係者の持つ携帯電話等に同時に送信する映像監視システムが記載されている。
しかしながら、上記文献には、誘拐や車上荒らしなど、歩行者や車に対して行われる犯罪行為を検出する技術については開示されていない。
本発明は上記事情に鑑みてなされたものであり、その目的とするところは、歩行者や車に対して行われる犯罪行為が発生する可能性のある状況を検出する技術を提供することにある。
本発明の各側面では、上述した課題を解決するために、それぞれ以下の構成を採用する。
第一の側面は、監視システムに関する。
第一の側面に係る監視システムは、
道路周辺を撮像する複数のカメラと、
複数のカメラが撮像した画像を監視する監視装置と、を備え、
前記監視装置は、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する検出手段と、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する出力手段と、を有する。
第一の側面に係る監視システムは、
道路周辺を撮像する複数のカメラと、
複数のカメラが撮像した画像を監視する監視装置と、を備え、
前記監視装置は、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する検出手段と、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する出力手段と、を有する。
第二の側面は、監視装置に関する。
第二の側面に係る監視装置は、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する検出手段と、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する出力手段と、を有する。
第二の側面に係る監視装置は、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する検出手段と、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する出力手段と、を有する。
第三の側面は、少なくとも1つのコンピュータにより実行される監視方法に関する。
第三の側面に係る監視方法は、
監視装置が、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出し、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する、ことを含む。
第三の側面に係る監視方法は、
監視装置が、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出し、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する、ことを含む。
なお、本発明の他の側面としては、上記第三の側面の方法を少なくとも1つのコンピュータに実行させるプログラムであってもよいし、このようなプログラムを記録したコンピュータが読み取り可能な記録媒体であってもよい。この記録媒体は、非一時的な有形の媒体を含む。
このコンピュータプログラムは、コンピュータにより実行されたとき、コンピュータに、監視装置上で、その監視方法を実施させるコンピュータプログラムコードを含む。
このコンピュータプログラムは、コンピュータにより実行されたとき、コンピュータに、監視装置上で、その監視方法を実施させるコンピュータプログラムコードを含む。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
また、本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、ある構成要素が他の構成要素の一部であること、ある構成要素の一部と他の構成要素の一部とが重複していること、等でもよい。
また、本発明の方法およびコンピュータプログラムには複数の手順を順番に記載してあるが、その記載の順番は複数の手順を実行する順番を限定するものではない。このため、本発明の方法およびコンピュータプログラムを実施するときには、その複数の手順の順番は内容的に支障のない範囲で変更することができる。
さらに、本発明の方法およびコンピュータプログラムの複数の手順は個々に相違するタイミングで実行されることに限定されない。このため、ある手順の実行中に他の手順が発生すること、ある手順の実行タイミングと他の手順の実行タイミングとの一部ないし全部が重複していること、等でもよい。
上記各側面によれば、歩行者に対して行われる犯罪行為が発生する可能性のある状況を検出する技術を提供することができる。
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
実施形態において「取得」とは、自装置が他の装置や記憶媒体に格納されているデータまたは情報を取りに行くこと(能動的な取得)、および、自装置に他の装置から出力されるデータまたは情報を入力すること(受動的な取得)の少なくとも一方を含む。能動的な取得の例は、他の装置にリクエストまたは問い合わせしてその返信を受信すること、及び、他の装置や記憶媒体にアクセスして読み出すこと等がある。また、受動的な取得の例は、配信(または、送信、プッシュ通知等)される情報を受信すること等がある。さらに、「取得」とは、受信したデータまたは情報の中から選択して取得すること、または、配信されたデータまたは情報を選択して受信することであってもよい。
(第1実施形態)
<システム概要>
図1は、実施形態に係る監視システム1の概要を模式的に示す図である。監視システム1は、街中に設置されている監視カメラ5で撮像された画像を、画像処理装置200が処理して車10と人20を認識し、画像処理装置200の処理結果を用いて監視装置100は誘拐や車上荒らしなどの犯罪行為を検出するシステムである。
<システム概要>
図1は、実施形態に係る監視システム1の概要を模式的に示す図である。監視システム1は、街中に設置されている監視カメラ5で撮像された画像を、画像処理装置200が処理して車10と人20を認識し、画像処理装置200の処理結果を用いて監視装置100は誘拐や車上荒らしなどの犯罪行為を検出するシステムである。
監視システム1は、監視装置100と、画像処理装置200と、少なくとも1台の監視カメラ5とを含む。監視カメラ5は、監視システム1に特化したものであってもよいし、例えば、以前から設置されているカメラを利用してもよい。
監視カメラ5は、監視する場所を撮影し、画像を生成する。監視カメラ5は、レンズとCCD(Charge Coupled Device)イメージセンサといった撮像素子を備える。監視カメラ5は、画角に入る人物の動きに合わせて追従してカメラ本体やレンズの向きの制御、ズーム制御、焦点合わせ等を行う機構を備えてもよい。
監視カメラ5は、少なくとも車10が通ることができる道路を含む範囲を撮影する。例えば、監視カメラ5は、道路の道幅が車10よりも広い道路を含む範囲を撮影する。また、監視カメラ5は、人20が通る歩道と、車10が通る車道から構成される道路を含む範囲を撮影してもよい。ただし、監視カメラ5は、道路に限定されず、車10と人20が進入することができる場所、例えば、駐車場などを撮影してもよい。なお、監視カメラ5は、移動している人20を撮影していてもよいし、静止している人20を撮影してもよい。監視カメラ5は、移動している車10を撮影してもよいし、静止している車10を撮影してもよい。
監視カメラ5は、犯罪の発生しやすい場所、例えば、植え込み、フェンス、建物などの構造物の陰になる場所、人通りの少ない場所、過去に繰り返し犯罪が発生している場所などを含む範囲を撮影してもよい。
監視カメラ5により生成される画像は、リアルタイムに監視装置100に送信されるのが好ましい。ただし、監視装置100に送信される画像は、監視カメラ5からすぐに送信されなくてもよく、所定の時間遅延した画像であってもよい。監視カメラ5で生成された画像は、一旦他の記憶装置に格納され、監視装置100が記憶装置から逐次または所定間隔毎に読み出してもよい。さらに、監視装置100に送信される画像は、動画像であるのが好ましいが、所定間隔毎のフレーム画像であってもよいし、静止画であってもよい。
監視カメラ5と監視装置100の間の接続方式は、無線でも有線でもよい。無線接続の場合は、監視カメラ5と監視装置100はそれぞれ無線通信機能を有しているものとする。監視カメラ5は、例えばIP(Internet Protocol)カメラ等のネットワークカメラであってもよい。
<機能構成例>
図2は、図1の監視装置100の論理的な構成例を示す機能ブロック図である。監視装置100は、検出部102と、出力部104と、を備える。検出部102は、画像に含まれる人20と車10の相対距離が基準値以下の状態(以下、接近状態とも呼ぶ)であることを検出する。出力部104は、接近状態にあると検出された人20の属性を用いて選択された出力すべき種類の情報を出力する。
図2は、図1の監視装置100の論理的な構成例を示す機能ブロック図である。監視装置100は、検出部102と、出力部104と、を備える。検出部102は、画像に含まれる人20と車10の相対距離が基準値以下の状態(以下、接近状態とも呼ぶ)であることを検出する。出力部104は、接近状態にあると検出された人20の属性を用いて選択された出力すべき種類の情報を出力する。
人20と車10の相対距離が基準値以下の状態とは、人20と車10との距離が基準値以下の状態である。人20と車10の相対距離が基準値以下の状態とは、人20と車10は、少なくともいずれか一方が移動して相対距離が徐々に短くなり基準値以下になる状態、つまり、時間経過とともに接近する状態であってもよい。検出部102は、人20が移動して車10に接近している状態を検出してもよいし、車10が移動して人20に接近している状態を検出してもよい。検出部102は、人20と車10がともに移動しており移動している人20の背後から車10が接近している状態を検出してもよい。検出部102は、移動している人20の正面から車10が接近している状態を検出してもよい。
例えば、画像処理装置200は、この人20と車10の相対距離の変化について、画像内で特定された人20と車10のそれぞれの特徴部分の位置を時系列の複数の画像内で検出し、人20と車10の位置および相対位置関係の変化から、人20や車10の移動方向や、人20と車10の相対距離を推定することができる。検出部102は、画像処理装置200の処理結果に基づき、画像に含まれる人20と車10の相対距離が基準値以下の状態を検出する。
人20の属性とは、性別、年齢、顔の特徴、身長、所持品、服装、状況など、画像から抽出される属性の少なくとも一方に基づき定められる。
出力すべき情報の種類とは、例えば、誘拐発生の恐れ、車上荒らし発生の恐れなど犯罪の種類に関する情報である。出力すべき情報の種類に応じて、出力先や出力方法が異なってよい。
出力先は、様々考えられるが、例えば、監視センタの表示装置の監視用のモニタ画面であってもよいし、警備員などが携帯している端末(不図示)であってもよいし、警察署の表示装置(不図示)の監視用のモニタ画面であってもよい。出力方法は、モニタ画面への表示、メールの送信、およびスピーカ(不図示)からの音声または警報音の出力の少なくともいずれか一つを含む。メールの送信先となるメールアドレス、携帯端末のIPアドレス、および携帯電話番号の少なくともいずれか一つの宛先は予め登録されていてよい。
出力内容は、報知対象となった監視カメラ5の映像を選択された情報の種類を示す情報とともに出力されてもよい。監視センタであれば、複数の監視カメラ5の映像がマルチ表示されている状態から、当該報知対象となった監視カメラ5の映像を強調表示させてもよい。例えば、マルチ表示から当該報知対象となった監視カメラ5の映像のみを一画面表示、または拡大表示させてもよい。あるいは、マルチ表示の中の該当する画面の枠を強調表示したり、強調させる画像を重畳表示させたりしてもよい。
監視カメラ5の映像以外にも、監視カメラ5の撮像画像の静止画、出力情報の種類を示す画像(アイコン、アニメーション等)、出力情報の種類を示す文字情報、犯罪の発生を報知する情報を表示してもよい。あるいは、出力情報の種類に応じた警報音、出力情報の種類を示す音声を監視センタのスピーカから出力してもよい。
<ハードウェア構成例>
図3は、図1に示す監視システム1の監視装置100、および画像処理装置200をそれぞれ実現するコンピュータ1000のハードウェア構成を例示するブロック図である。
図3は、図1に示す監視システム1の監視装置100、および画像処理装置200をそれぞれ実現するコンピュータ1000のハードウェア構成を例示するブロック図である。
コンピュータ1000は、バス1010、プロセッサ1020、メモリ1030、ストレージデバイス1040、入出力インタフェース1050、およびネットワークインタフェース1060を有する。
バス1010は、プロセッサ1020、メモリ1030、ストレージデバイス1040、入出力インタフェース1050、およびネットワークインタフェース1060が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ1020などを互いに接続する方法は、バス接続に限定されない。
プロセッサ1020は、CPU(Central Processing Unit) やGPU(Graphics Processing Unit)などで実現されるプロセッサである。
メモリ1030は、RAM(Random Access Memory)などで実現される主記憶装置である。
ストレージデバイス1040は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、メモリカード、又はROM(Read Only Memory)などで実現される補助記憶装置である。ストレージデバイス1040は監視システム1の監視装置100の各機能(例えば、検出部102、出力部104等)を実現するプログラムモジュールを記憶している。プロセッサ1020がこれら各プログラムモジュールをメモリ1030上に読み込んで実行することで、そのプログラムモジュールに対応する各機能が実現される。また、ストレージデバイス1040は、監視装置100が使用する各種情報を記憶する記憶部としても機能する。
プログラムモジュールは、記録媒体に記録されてもよい。プログラムモジュールを記録する記録媒体は、非一時的な有形のコンピュータ1000が使用可能な媒体を含み、その媒体に、コンピュータ1000(プロセッサ1020)が読み取り可能なプログラムコードが埋め込まれてよい。
入出力インタフェース1050は、コンピュータ1000と各種入出力機器とを接続するためのインタフェースである。
ネットワークインタフェース1060は、コンピュータ1000を通信ネットワーク3に接続するためのインタフェースである。この通信ネットワーク3は、例えばLAN(Local Area Network)やWAN(Wide Area Network)である。ネットワークインタフェース1060が通信ネットワーク3に接続する方法は、無線接続であってもよいし、有線接続であってもよい。ただし、ネットワークインタフェース1060は用いられないことも有る。
そして、コンピュータ1000は、入出力インタフェース1050またはネットワークインタフェース1060を介して、必要な機器(例えば、監視カメラ5、ディスプレイ(不図示)、スピーカ(不図示)など)に接続する。
監視システム1は、監視装置100と、画像処理装置200との組み合わせにより実現されるため、それぞれを構成する複数のコンピュータ1000により実現される。監視装置100は、例えば、サーバコンピュータである。画像処理装置200は、監視装置100とは別体の装置であってもよいし、監視装置100の内部に含まれる装置であってもよいし、これらの組み合わせであってもよい。
図2の本実施形態の監視装置100の各構成要素は、図3のコンピュータ1000のハードウェアとソフトウェアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。各実施形態の監視装置100を示す機能ブロック図は、ハードウェア単位の構成ではなく、論理的な機能単位のブロックを示している。
<動作例>
図4は、本実施形態の監視装置100の動作例を示すフローチャートである。検出部102は、道路周辺を撮像した画像の処理結果に基づき、画像に含まれる人20と車10の相対距離が基準値以下の状態であることを検出し(ステップS103)、出力部104は、人の属性を用いて選択された種類の情報を出力する(ステップS107)。
図4は、本実施形態の監視装置100の動作例を示すフローチャートである。検出部102は、道路周辺を撮像した画像の処理結果に基づき、画像に含まれる人20と車10の相対距離が基準値以下の状態であることを検出し(ステップS103)、出力部104は、人の属性を用いて選択された種類の情報を出力する(ステップS107)。
本実施形態によれば、検出部102が、接近状態にある人20と車10を検出し、出力部104が、人20の属性に基づいて選択された情報を出力する。これによって、道路周辺を撮像している監視カメラ5の画像を用いて、誘拐または車上荒らしなどの歩行者または車に対して行われる犯罪行為が発生する可能性のある状況を検出することができる。
(第2実施形態)
<機能構成例>
図5は、図1の監視システムの論理的な構成例を示す機能ブロック図である。なお、第1の実施形態では、画像処理装置200は監視装置100と別に設けられていたが、本実施形態では監視装置100に画像処理装置200の機能も有するものとして説明する。なお、監視装置100と画像処理装置200は、ハードウェアとして別であっても同じであってもよいことはいうまでもない。
<機能構成例>
図5は、図1の監視システムの論理的な構成例を示す機能ブロック図である。なお、第1の実施形態では、画像処理装置200は監視装置100と別に設けられていたが、本実施形態では監視装置100に画像処理装置200の機能も有するものとして説明する。なお、監視装置100と画像処理装置200は、ハードウェアとして別であっても同じであってもよいことはいうまでもない。
監視システム1は、監視装置100と、記憶装置300と、監視カメラ5と、を備える。
監視装置100は、監視カメラ5が生成した画像に基づき、監視に用いる情報を出力する。
記憶装置300は、画像処理を行う場合に必要なデータを記憶している。例えば、車10や人20を識別するための特徴量に関する情報や、人の属性を判別するために用いる特徴量の情報を記憶している。
監視装置100は、取得部120と、物体特定部122と、位置特定部124と、属性特定部126と、検出部102と、選択部128と、出力部104とを備える。
監視装置100は、監視カメラ5が生成した画像に基づき、監視に用いる情報を出力する。
記憶装置300は、画像処理を行う場合に必要なデータを記憶している。例えば、車10や人20を識別するための特徴量に関する情報や、人の属性を判別するために用いる特徴量の情報を記憶している。
監視装置100は、取得部120と、物体特定部122と、位置特定部124と、属性特定部126と、検出部102と、選択部128と、出力部104とを備える。
取得部120は、監視カメラ5が生成した画像を取得する。
物体特定部122は、取得部120が取得した画像について、画像処理を行うことにより、物体を特定する。物体特定部122は、人20と車10を認識して特定する。
位置特定部124は、画像処理によって、物体特定部122が特定した人20及び車10の位置を特定する。
属性特定部126は、画像処理によって、物体特定部122が特定した人20の属性を特定する。属性特定部126は、人20が、第1の属性を有するか第2の属性を有するか特定する。
物体特定部122は、取得部120が取得した画像について、画像処理を行うことにより、物体を特定する。物体特定部122は、人20と車10を認識して特定する。
位置特定部124は、画像処理によって、物体特定部122が特定した人20及び車10の位置を特定する。
属性特定部126は、画像処理によって、物体特定部122が特定した人20の属性を特定する。属性特定部126は、人20が、第1の属性を有するか第2の属性を有するか特定する。
第1の属性とは、犯罪の被害者となり得る可能性の高い属性である。例えば、第1の属性は「女性」や「男性」、「子供(例えば、推定年齢がX才以下等)」、「老人(例えば、推定年齢がY才以上等)」、「女の子(例えば、推定年齢がX才以下の女性等)」、「男の子(例えば、推定年齢がX才以下の男性等」、「観光客(例えば、スーツケースを所持した人物等)」、「単独行動(所定距離以内に人がいない等)」である。第1の属性は、性別、年齢、顔の特徴、身長、所持品、服装、状況など、画像から抽出される特徴に基づき定められる。(ただし、XとYは整数)
第2の属性とは、第1の属性とは異なる属性である。第2の属性は、犯罪行為の加害者となる特徴を有する属性や、第1の属性を有する人以外、すなわち犯罪行為の被害者となり得る可能性の高い属性以外の属性である。
例えば、第2の属性は、危険性を有する物体を所持する人(例えば、長い金属棒を所持する等)や、顔を遮蔽している人(例えば、覆面等をかぶっている人等)であってもよい。また、第2の属性も第1の属性と同様に、性別、年齢、顔の特徴、身長、所持品、服装、状況など、画像によって抽出される特徴に基づき定められる。
なお、第1の属性を満たす人は犯罪の被害者となり得る可能性が高い属性であればよいため、地域における犯罪状況に応じて設定可能である。例えば、「男性」が犯罪の被害者となることが多い地域では、第1の属性を「男性」としてもよいし、「女性」が犯罪の被害者となることが多い地域では、第1の属性を「女性」としてもよい。
検出部102は、物体特定部122が特定した人20に関する属性及び人20と車10の位置を取得する。
検出部102は、画像に含まれる人20と車10の各組みについて、位置に基づいて、相対距離が基準値以下の状態、つまり接近状態にあるか否かを判別する。
選択部128は、検出部102が接近状態にある人20と車10を検出した場合、接近状態にある人20の属性を取得する。選択部128は、検出された人20の属性を用いて、出力すべき情報の種類を選択する。
出力部104は、選択部128が選択した種類の情報を出力する。
検出部102は、画像に含まれる人20と車10の各組みについて、位置に基づいて、相対距離が基準値以下の状態、つまり接近状態にあるか否かを判別する。
選択部128は、検出部102が接近状態にある人20と車10を検出した場合、接近状態にある人20の属性を取得する。選択部128は、検出された人20の属性を用いて、出力すべき情報の種類を選択する。
出力部104は、選択部128が選択した種類の情報を出力する。
<動作例>
図6は、本実施形態の監視システム1の動作例を示すフローチャートである。
監視装置100は、監視カメラ5が撮影した画像を取得し、画像処理を行う(ステップS101)。具体的には、物体特定部122は、取得した画像から人20と車10をそれぞれ認識して特定する。そして、位置特定部124は、物体特定部122が特定した人20及び車10の位置を特定する。
次に、検出部102は、画像に含まれる人20と車10の相対距離が基準値以下の状態であることを検出する(ステップS103)。
図6は、本実施形態の監視システム1の動作例を示すフローチャートである。
監視装置100は、監視カメラ5が撮影した画像を取得し、画像処理を行う(ステップS101)。具体的には、物体特定部122は、取得した画像から人20と車10をそれぞれ認識して特定する。そして、位置特定部124は、物体特定部122が特定した人20及び車10の位置を特定する。
次に、検出部102は、画像に含まれる人20と車10の相対距離が基準値以下の状態であることを検出する(ステップS103)。
画像に含まれる人20と車10の相対距離が基準値以下の場合(ステップS103のYES)、属性特定部126は、物体特定部122が特定した人20の属性を特定する(ステップS104)。属性特定部126は、画像に含まれる人20を画像処理し、第1の属性を有するか第2の属性を有するか特定する。
ただし、人20の属性の特定のタイミングは、検出部102による人20と車10の接近状態が検出される前であってもよい。
そして、選択部128は、人20の属性に基づいて、出力すべき情報の種類を選択する(ステップS105)。
そして、出力部104は、選択した種類の情報を出力する(ステップS107)。
なお、出力部104は、検出部102が接近状態を検出した際の画像や音声や、検出部102が接近状態を検出した前後の映像も合わせて出力してもよい。
ただし、人20の属性の特定のタイミングは、検出部102による人20と車10の接近状態が検出される前であってもよい。
そして、選択部128は、人20の属性に基づいて、出力すべき情報の種類を選択する(ステップS105)。
そして、出力部104は、選択した種類の情報を出力する(ステップS107)。
なお、出力部104は、検出部102が接近状態を検出した際の画像や音声や、検出部102が接近状態を検出した前後の映像も合わせて出力してもよい。
検出部102が接近状態にある人20と車10を検出しない間は、ステップS101に戻り、処理を繰り返す。
図7は、図6のステップS105の詳細な処理手順の一例を示すフローチャートである。属性特定部126は、検出部102が検出した人20の属性を判別する(ステップS111)。
ステップS111で、属性特定部126が、人20が第1の属性を有する人物であると判別した場合、選択部128は、人20が犯罪の被害を受ける可能性がある旨を示す種類の情報を選択する。例えば、選択部128は、人20の誘拐が発生する可能性がある旨を示す情報を選択する(ステップS115)。
ステップS111で、属性特定部126が、人20が第1の属性を有する人物であると判別した場合、選択部128は、人20が犯罪の被害を受ける可能性がある旨を示す種類の情報を選択する。例えば、選択部128は、人20の誘拐が発生する可能性がある旨を示す情報を選択する(ステップS115)。
一方、ステップS111で、属性特定部126が、検出された人20が第2の属性を有する人物であると判別した場合、選択部128は、人20が車10に対し犯罪を行う可能性がある旨を示す種類の情報を選択する。例えば、選択部128は、人20が車上荒らしを行う可能性がある旨を示す情報を選択する(ステップS117)。換言すれば、選択部128は、人20が被害を受ける可能性があるか、車10が被害を受ける可能性があるか選択しているともいえる。
ステップS115およびステップS117の後は、図6のステップS107に戻る。
ステップS115およびステップS117の後は、図6のステップS107に戻る。
図6に戻り、出力部104は、選択された種類の情報を、所定の出力先に出力する(ステップS107)。例えば、出力部104は選択された種類の情報を監視センタのサーバ220へ出力し、監視センタのサーバ220は、当該監視センタが有する表示装置のモニタ画面に誘拐が発生した恐れがあることを示す情報を出力してもよい。さらに、接近状態が検出された画像を表示してもよい。
上記では、情報出力は、モニタ画面への表示を例示したが、犯罪の発生可能性を通知できればその他の手法でも構わない。
例えば、音声出力、警報音の出力、端末へのメール送信、通知など様々な方法で、出力部104が出力する選択した情報を出力してもよい。また、出力部104が選択した情報に応じて音声や警報音の変更、メール内容の変更、通知内容を変更させてもよい。
例えば、音声出力、警報音の出力、端末へのメール送信、通知など様々な方法で、出力部104が出力する選択した情報を出力してもよい。また、出力部104が選択した情報に応じて音声や警報音の変更、メール内容の変更、通知内容を変更させてもよい。
本実施形態によれば、検出部102が、接近状態にある人20と車10を検出し、選択部128が、人20の属性に基づいて、犯罪の種類を選択し、出力部104が選択された情報を出力する。このように、道路周辺を撮像している監視カメラ5の画像を用いて、誘拐または車上荒らしなどの歩行者または車に対して行われる犯罪行為が発生する可能性のある状況を検出することができるため、犯罪行為の発生を検出することができる。また、監視カメラ5で監視されていることが周知されれば、犯罪の抑止効果も期待できる。
また、検出部102は、車10と人20の接近状態を検出した場合に、出力部104は人20の属性に基づいて選択された情報を出力することが可能である。これにより車上荒らしなどの車10が被害を受ける可能性がある場合であっても、人20が車10の中に入る前に車上荒らしの可能性を報知することができる。例えば、出力部104は、その場所の近傍のスピーカなどから警告メッセージや警報音を出力することもできる。これにより防犯効果を向上させることができる。
(第3実施形態)
<機能構成例>
図8は、図1の監視システムの論理的な構成例を示す機能ブロック図である。本実施形態の監視システム1は、出力すべき情報の種類の判別に人20の属性を用いる替わりに車10の移動速度を用いる点以外は上記実施形態と同様である。本実施形態の監視装置100は、図5の属性特定部126に代えて移動速度推定部130を備える。
なお、本実施形態の構成は、他の実施形態の構成の少なくともいずれか一つと矛盾を生じない範囲で組み合わせてもよい。
<機能構成例>
図8は、図1の監視システムの論理的な構成例を示す機能ブロック図である。本実施形態の監視システム1は、出力すべき情報の種類の判別に人20の属性を用いる替わりに車10の移動速度を用いる点以外は上記実施形態と同様である。本実施形態の監視装置100は、図5の属性特定部126に代えて移動速度推定部130を備える。
なお、本実施形態の構成は、他の実施形態の構成の少なくともいずれか一つと矛盾を生じない範囲で組み合わせてもよい。
監視装置100は、取得部120と、物体特定部122と、位置特定部124と、移動速度推定部130と、検出部102と、選択部128と、出力部104とを備える。
取得部120は、監視カメラ5が生成した画像を取得する。
物体特定部122は、取得部120が取得した画像について、画像処理を行うことにより、物体を特定する。物体特定部122は、人20と車10を認識して特定する。
位置特定部124は、画像処理によって、物体特定部122が特定した人20及び車10の位置を特定する。
取得部120は、監視カメラ5が生成した画像を取得する。
物体特定部122は、取得部120が取得した画像について、画像処理を行うことにより、物体を特定する。物体特定部122は、人20と車10を認識して特定する。
位置特定部124は、画像処理によって、物体特定部122が特定した人20及び車10の位置を特定する。
移動速度推定部130は、位置特定部124が特定した車10の特徴部分の位置を時系列の複数の画像内で検出し、車10の位置の変化から移動速度を推定する。また、移動速度推定部130は、画像内で特定された人20と車10のそれぞれの特徴部分の位置を時系列の複数の画像内で検出し、人20と車10の相対位置関係の変化から人20に対する車10の速度変化を推定してもよい。さらに、移動速度推定部130は、人20と車10のそれぞれの移動方向も同様に推定できる。
例えば、移動速度推定部130は、人20に対して車10がどのような速度でどちらの方向から接近しているのか、あるいは、どのような速度でどちらの方向に離れていったか、などを推定することができる。
例えば、誘拐の場合、車10は人20に後ろから低速で接近し、人20を車10に乗せてその場から走り去る。よって、移動速度推定部130は、車10の移動速度が低速であると推定し、かつ車10の移動方向が人20へ接近する方向に移動していると判別した場合は誘拐の恐れがあると判別できる。また、車上荒らしの場合は、静止している車10に人20が接近し、その後人20が立ち去る。よって、移動速度推定部130は、車10が静止していると推定した場合は車上荒らしの恐れがあると判別できる。なお、車10の移動速度が通常の走行速度であれば、通常の通行であると判別できる。
検出部102は、画像に含まれる人20と車10の各組みについて、位置に基づいて、相対距離が基準値以下の状態、つまり接近状態にあるか否かを判別する。
選択部128は、移動速度推定部130が推定した車10の移動速度を用いて、出力すべき情報の種類を選択する。
出力部104は、選択部128が選択した種類の情報を出力する。
選択部128は、移動速度推定部130が推定した車10の移動速度を用いて、出力すべき情報の種類を選択する。
出力部104は、選択部128が選択した種類の情報を出力する。
<動作例>
図9は、監視システム1の動作の一例を示すフローチャートである。図9のフローチャートは、図6のフローチャートのステップS101、ステップS103、およびステップS107を含むとともに、さらに、図6のステップS104およびステップS105に替えてステップS204およびステップS205を含む。
図9は、監視システム1の動作の一例を示すフローチャートである。図9のフローチャートは、図6のフローチャートのステップS101、ステップS103、およびステップS107を含むとともに、さらに、図6のステップS104およびステップS105に替えてステップS204およびステップS205を含む。
監視装置100は、監視カメラ5が撮影した画像を取得し、画像処理を行う(ステップS101)。具体的には、物体特定部122は、取得した画像から人20と車10をそれぞれ認識して特定する。そして、位置特定部124は、物体特定部122が特定した人20及び車10の位置を特定する。
次に、検出部102は、画像に含まれる人20と車10の相対距離が基準値以下の状態であることを検出する(ステップS103)。
次に、検出部102は、画像に含まれる人20と車10の相対距離が基準値以下の状態であることを検出する(ステップS103)。
画像に含まれる人20と車10の相対距離が基準値以下の場合(ステップS103のYES)、移動速度推定部130は車10の移動速度を推定する(ステップS204)。
そして、選択部128は、車10の移動速度に基づいて、出力すべき情報の種類を選択する(ステップS205)。
そして、出力部104は、選択した種類の情報を出力する(ステップS107)。
そして、選択部128は、車10の移動速度に基づいて、出力すべき情報の種類を選択する(ステップS205)。
そして、出力部104は、選択した種類の情報を出力する(ステップS107)。
図10は、図9のステップS205の詳細な処理手順の一例を示すフローチャートである。移動速度推定部130は、車10の移動速度を判別する(ステップS211)。ステップS211で、移動速度推定部130が、車10が低速で人20に接近していると判別した場合、選択部128は、人20が犯罪の被害を受ける可能性があると判別し、出力すべき情報の種類に人20が被害を受ける可能性がある旨を示す種類の情報を選択する。例えば、選択部128は、人20の誘拐が発生する可能性がある旨を示す情報を選択する(ステップS115)。一方、ステップS211で、移動速度推定部130が、車10は静止していると判別すると、選択部128は、人20が犯罪を行う可能性が発生すると判別し、出力すべき情報の種類に人20が犯罪を行う可能性がある旨を示す種類の情報を選択する。例えば、選択部128は、人20が車上荒らしを行う可能性がある旨を示す情報を選択する(ステップS117)。ステップS115およびステップS117の後は、図9のステップS107に戻る。
また、ステップS211で移動速度推定部130が、車10の移動速度が低速で接近でも静止でもないと判別した場合、単なる車10の通過と判別できるので、図9のステップS107に戻る。
図9に戻り、出力部104は、選択された種類の情報を出力する(ステップS107)。接近状態にある人20と車10が検出されない間は(ステップS103のNO)、ステップS101に戻り、処理を繰り返す。
本実施形態によれば、検出部102は、接近状態にある人20と車10を検出し、選択部128は、車10の移動速度を用いて人20が犯罪の被害を受ける可能性があるか、人20が犯罪を行う可能性があるかを判別し、判別結果に基づく情報を選択する。そして出力部104は、選択した情報を出力する。このように、道路周辺を撮像している監視カメラ5の画像を用いて、誘拐または車上荒らしなどの犯罪行為の種類を検出することができる。また、監視カメラ5で監視されていることが周知されれば、犯罪の抑止効果も期待できる。
(第4実施形態)
<機能構成例>
図11は、図1の監視システムの論理的な構成例を示す機能ブロック図である。本実施形態の監視システム1は、監視装置100が、第2実施形態の機能と第3実施形態の機能の両方を有する点以外は上記いずれかの実施形態と同様である。本実施形態の監視装置100は、他の実施形態の構成の少なくともいずれか一つと矛盾を生じない範囲で組み合わせてもよい。
<機能構成例>
図11は、図1の監視システムの論理的な構成例を示す機能ブロック図である。本実施形態の監視システム1は、監視装置100が、第2実施形態の機能と第3実施形態の機能の両方を有する点以外は上記いずれかの実施形態と同様である。本実施形態の監視装置100は、他の実施形態の構成の少なくともいずれか一つと矛盾を生じない範囲で組み合わせてもよい。
監視装置100は、取得部120と、物体特定部122と、位置特定部124と、属性特定部126と、移動速度推定部130と、検出部102と、選択部128と、出力部104とを備える。
取得部120は、監視カメラ5が生成した画像を取得する。
物体特定部122は、取得部120が取得した画像について。画像処理を行うことにより、物体を特定する。物体特定部122は、人20と車10を認識して特定する。
位置特定部124は、画像処理によって、物体特定部122が特定した人20及び車10の位置を特定する。
物体特定部122は、取得部120が取得した画像について。画像処理を行うことにより、物体を特定する。物体特定部122は、人20と車10を認識して特定する。
位置特定部124は、画像処理によって、物体特定部122が特定した人20及び車10の位置を特定する。
属性特定部126は、画像処理によって、人20の属性を特定する。属性特定部126は、人20が、第1の属性を有するか第2の属性を有するか特定する。
移動速度推定部130は、位置特定部124が特定した車10の特徴部分の位置を時系列の複数の画像内で検出し、車10の位置の変化から移動速度を推定する。
検出部102は、画像に含まれる人20と車10の各組みについて、位置に基づいて、相対距離が基準値以下の状態、つまり接近状態にあるか否かを判別する。
選択部128は、移動速度推定部130が推定した車10の移動速度及び属性特定部126が特定した属性を用いて、出力すべき情報の種類を選択する。
出力部104は、選択部128が選択した種類の情報を出力する。
移動速度推定部130は、位置特定部124が特定した車10の特徴部分の位置を時系列の複数の画像内で検出し、車10の位置の変化から移動速度を推定する。
検出部102は、画像に含まれる人20と車10の各組みについて、位置に基づいて、相対距離が基準値以下の状態、つまり接近状態にあるか否かを判別する。
選択部128は、移動速度推定部130が推定した車10の移動速度及び属性特定部126が特定した属性を用いて、出力すべき情報の種類を選択する。
出力部104は、選択部128が選択した種類の情報を出力する。
<動作例>
図12は、監視システム1の動作の一例を示すフローチャートである。図12のフローチャートは、図6のフローチャートのステップS101、ステップS103、ステップS104、およびステップS107、ならびに、図9のステップS204を含むとともに、さらに、図6のステップS105または図9のステップS205に替えてステップS305を含む。
図12は、監視システム1の動作の一例を示すフローチャートである。図12のフローチャートは、図6のフローチャートのステップS101、ステップS103、ステップS104、およびステップS107、ならびに、図9のステップS204を含むとともに、さらに、図6のステップS105または図9のステップS205に替えてステップS305を含む。
監視装置100は、監視カメラ5が撮影した画像を取得し、画像処理を行う(ステップS101)。具体的には、物体特定部122は、取得した画像から人20と車10をそれぞれ認識して特定する。そして、位置特定部124は、物体特定部122が特定した人20及び車10の位置を特定する。
次に、検出部102は、画像に含まれる人20と車10の相対距離が基準値以下の状態であることを検出する(ステップS103)。
次に、検出部102は、画像に含まれる人20と車10の相対距離が基準値以下の状態であることを検出する(ステップS103)。
画像に含まれる人20と車10の相対距離が基準値以下の場合(ステップS103のYES)、属性特定部126は、物体特定部122が特定した人20の属性を特定する(ステップS104)。さらに、移動速度推定部130は位置特定部124が特定した車10の特徴部分の位置を時系列の複数の画像内で検出し、車10の位置の変化から車10の移動速度を推定する(ステップS204)。
そして、選択部128は、人20の属性及び車10の移動速度に基づいて、出力すべき情報の種類を選択する(ステップS305)。
そして、出力部104は、選択した種類の情報を出力する(ステップS107)。
そして、選択部128は、人20の属性及び車10の移動速度に基づいて、出力すべき情報の種類を選択する(ステップS305)。
そして、出力部104は、選択した種類の情報を出力する(ステップS107)。
図13は、図12のステップS305の詳細な処理手順の一例を示すフローチャートである。属性特定部126は、物体特定部122によって特定された人20の属性を判別する(ステップS111)。ステップS111で、属性特定部126は、人20が第1の属性を有する人物であるか否か判別し、第1の属性を有する人物であると判別すると、ステップS121に進む。一方、ステップS111で、属性特定部126が、第2の属性を有する人物と判別した場合、ステップS123に進む。
ステップS121で、移動速度推定部130が、車10が低速で人20に接近していると判別した場合(ステップS121のYES)、選択部128は、人20が犯罪の被害を受ける可能性があると判別し、出力すべき情報の種類に人20が被害を受ける可能性がある旨を示す種類の情報を選択する。例えば、選択部128は、人20の誘拐が発生する可能性がある旨を示す情報を選択する(ステップS115)。移動速度推定部130が、車10が低速で人20に接近していないと判別した場合(ステップS121のNO)、単なる車10の通過と判別できるので、図12のステップS107に戻る。
ステップS123で、移動速度推定部130が、車10は静止していると判別した場合(ステップS123のYES)、選択部128は、車10は静止していると判別し、人20が犯罪を行う可能性が発生すると判別し、出力すべき情報の種類に人20が犯罪を行う可能性がある旨を示す種類の情報を選択する。例えば、選択部128は、人20が車上荒らしを行う可能性がある旨を示す情報を選択する(ステップS117)。移動速度推定部130が、車10は静止していないと判別した場合(ステップS123のNO)、単なる車10の停車と判別できるので、図12のステップS107に戻る。
ステップS115およびステップS117の後は、図12のステップS107に戻る。
ステップS115およびステップS117の後は、図12のステップS107に戻る。
図14は、図12のステップS305の詳細な処理手順の他の例を示すフローチャートである。図14に示す処理手順は、図13とは、先に車10の移動速度を用いた判別を行い(ステップS211)、その後、人20の属性を用いた判別を行う(ステップS131およびステップS133)点以外は同じである。
選択部128は、移動速度推定部130が推定した車10の移動速度に基づいて判別する(ステップS211)。ステップS211で移動速度推定部130が、車10が低速で人20に接近していると判別した場合、ステップS131に進む。ステップS211で移動速度推定部130が、車10が静止していると判別した場合、ステップS133に進む。また、ステップS211で移動速度推定部130が、車10の移動速度が低速で接近でも静止でもないと判別した場合、単なる車10の通過と判別できるので、図12のステップS107に戻る。
ステップS131で、属性特定部126が、人20が第1の属性を有する人物と判別した場合(ステップS131のYES)、選択部128は、出力すべき情報の種類に人20が被害を受ける可能性がある旨を示す種類の情報を選択する。例えば、出力部104は、人20の誘拐が発生する可能性がある旨を示す情報を選択する(ステップS115)。人20が第1の属性を有する人物ではないと判別した場合(ステップS131のNO)、図12のステップS107に戻る。
ステップS133で、属性特定部126が、人20が第2の属性を有する人物であると判別した場合(ステップS133のYES)、選択部128は、人20が犯罪を行う可能性が発生すると判別し、出力すべき情報の種類に人20が犯罪を行う可能性がある旨を示す種類の情報を選択する。例えば、選択部128は、人20が車上荒らしを行う可能性がある旨を示す情報を選択する(ステップS117)。属性特定部126が、人20が第2の属性を有する人物ではないと判別した場合(ステップS133のNO)、図12のステップS107に戻る。
ステップS115およびステップS117の後は、図12のステップS107に戻る。
ステップS115およびステップS117の後は、図12のステップS107に戻る。
図12のステップS107では、図13または図14のフローチャートのステップS121、ステップS123、またはステップS211、ステップS131、ステップS133で単なる車10の通過または停車と判別した場合は、出力すべき情報の種類が選択されてないため、出力部104は、情報を出力せずに処理する。ただし、図13または図14のフローチャートのステップS121、ステップS123、またはステップS211、ステップS131、ステップS133で単なる車10の通過または停車と判別した場合に、それぞれ車10の通過または停車であることを出力すべき情報の種類として選択してもよい。その場合は、図12のステップS107において、出力部104は、それぞれ車10の通過または停車である旨の情報を選択して出力してもよい。
本実施形態によれば、上記実施形態と同様な効果を奏するとともに、さらに、車10の移動速度と人20の属性の両方を用いて出力すべき情報の種類を選択できるので、より精度よく犯罪行為を検出できる可能性が高まる。
(第5実施形態)
<機能構成例>
図15は、図1の監視システムの論理的な構成例を示す機能ブロック図である。本実施形態の監視システム1は、さらに、人20が単独行動か否かに応じて出力する情報の種類を選択する点以外は第2実施形態と同じである。本実施形態の監視装置100は、図5の第2実施形態の構成に加え、さらに人数特定部132を有する。ただし、本実施形態の監視装置100は、他の実施形態の構成の少なくともいずれか一つと矛盾を生じない範囲で組み合わせてもよい。
<機能構成例>
図15は、図1の監視システムの論理的な構成例を示す機能ブロック図である。本実施形態の監視システム1は、さらに、人20が単独行動か否かに応じて出力する情報の種類を選択する点以外は第2実施形態と同じである。本実施形態の監視装置100は、図5の第2実施形態の構成に加え、さらに人数特定部132を有する。ただし、本実施形態の監視装置100は、他の実施形態の構成の少なくともいずれか一つと矛盾を生じない範囲で組み合わせてもよい。
監視装置100は、取得部120と、物体特定部122と、位置特定部124と、属性特定部126と、人数特定部132と、検出部102と、選択部128と、出力部104とを備える。
取得部120は、監視カメラ5が生成した画像を取得する。
取得部120は、監視カメラ5が生成した画像を取得する。
物体特定部122は、取得部120が取得した画像について、画像処理を行うことにより、物体を特定する。物体特定部122は、人20と車10を認識して特定する。
位置特定部124は、物体特定部122が特定した人20及び車10の位置を特定する。
属性特定部126は、画像処理によって、人20の属性を特定する。属性特定部126は、人20が、第1の属性を有するか第2の属性を有するか特定する。
位置特定部124は、物体特定部122が特定した人20及び車10の位置を特定する。
属性特定部126は、画像処理によって、人20の属性を特定する。属性特定部126は、人20が、第1の属性を有するか第2の属性を有するか特定する。
人数特定部132は、人20の人数を特定する。例えば、物体特定部122は、複数人の人20を特定したか判別する。物体特定部122が複数人の人20を特定した場合、人数特定部132は、人20の互いの距離が基準値以内の人がいるか判別する。例えば、人数特定部132は、位置特定部124が特定した人20の位置に基づき、複数人20の距離が基準値以内の人がいるか判別する。なおこの基準値は、車10と人20との相対距離の判別用の基準値と同じ値であってもよいし、異なる値であってもよい。
人数特定部132は、複数の人20の距離が基準値以内の人がいる場合、単独行動でないと判別する。人数特定部132は、複数の人20が存在しない、もしくは複数の人20の距離が基準値以内の人がいない場合に単独行動であると判別する。
人数特定部132は、複数の人20の距離が基準値以内の人がいる場合、単独行動でないと判別する。人数特定部132は、複数の人20が存在しない、もしくは複数の人20の距離が基準値以内の人がいない場合に単独行動であると判別する。
これは、特に、1人のときに誘拐が発生しやすいためである。ただし、単独行動は、1人だけでなく、2~3人の少人数であってもよい。
検出部102は、画像に含まれる人20と車10の各組みについて、位置に基づいて、相対距離が基準値以下の状態、つまり接近状態にあるか否かを判別する。
選択部128は、人数特定部132における判別結果が人20が単独行動か否かに応じて、出力すべき情報の種類を選択する。
出力部104は、選択部128が選択した種類の情報を出力する。
検出部102は、画像に含まれる人20と車10の各組みについて、位置に基づいて、相対距離が基準値以下の状態、つまり接近状態にあるか否かを判別する。
選択部128は、人数特定部132における判別結果が人20が単独行動か否かに応じて、出力すべき情報の種類を選択する。
出力部104は、選択部128が選択した種類の情報を出力する。
<動作例>
図16は、監視システム1の動作の一例を示すフローチャートである。図16のフローチャートは、図13のフローチャートのステップS121の替わりにステップS141を含む。ただし、図16のフローチャートは、図13のステップS121を含んでもよい。ステップS121とステップS141の順序は特に限定されない。
図16は、監視システム1の動作の一例を示すフローチャートである。図16のフローチャートは、図13のフローチャートのステップS121の替わりにステップS141を含む。ただし、図16のフローチャートは、図13のステップS121を含んでもよい。ステップS121とステップS141の順序は特に限定されない。
属性特定部126は、物体特定部122が特定した人20の属性を判別する(ステップS111)。ステップS111で、属性特定部126は、人20が第1の属性であると判別した場合、ステップS141に進む。一方、ステップS111で、属性特定部126が、人20が第2の属性であると判別した場合、ステップS123に進む。
ステップS141で、人数特定部132が、人20が単独行動していると判別した場合(ステップS141のYES)、選択部128は、出力すべき情報の種類に人20が被害を受ける可能性がある旨を示す種類の情報を選択する。例えば、出力部104は、人20の誘拐が発生する可能性がある旨を示す情報を選択する(ステップS115)。人数特定部132が、人20が単独行動していないと判別した場合(ステップS141のNO)、単なる車10の通過と判別できるので、図12のステップS107に戻る。
ステップS123以降の処理は、図13と同じであるので説明は省略する。
図17は、監視システム1の動作の他の一例を示すフローチャートである。図17のフローチャートは、図16のフローチャートのステップS111とステップS141の順番を入れ替えている点以外は図16と同じである。図17のフローチャートは、図13のステップS121を含んでもよい。その場合、ステップS121とステップS141の順序は特に限定されない。
人数特定部132は、人20が単独行動か否かを判別する(ステップS141)。ステップS141で人数特定部132が、人20は単独行動であると判別した場合(ステップS141のYES)、ステップS111に進む。ステップS141で人数特定部132が、人20は単独行動ではないと判別した場合(ステップS141のNO)、単なる車10の通過と判別できるので、図12のステップS107に戻る。
ステップS111で属性特定部126は、物体特定部122が特定した人20の属性を判別する。ステップS111で、属性特定部126は、人20が第1の属性であると判別した場合、ステップS115に進む。一方、ステップS111で、属性特定部126が、人20が第2の属性であると判別した場合、ステップS123に進む。これ以降の処理は図16と同じであるので説明は省略する。
本実施形態によれば、人数特定部132が、人20が単独行動か否かを判別し、単独行動の場合、誘拐である可能性が高いことを出力できる。他の条件と組み合わせることで、より判別の精度を向上でき、頻繁な報知を防ぐことができる。
(第6実施形態)
<機能構成例>
本実施形態の監視システム1は、車10が静止状態にあり、その静止している車10からの人20の出入りを検出し、その結果を用いて出力すべき情報の種類を選択する構成を有する点で、上記第4実施形態と相違する。すなわち、検出部102の動作及び選択部128の動作が異なる。以下、第4実施形態の図11の機能ブロック図を用いて説明する。ただし、本実施形態の監視装置100は、他の実施形態の構成の少なくともいずれか一つと矛盾を生じない範囲で組み合わせてもよい。
<機能構成例>
本実施形態の監視システム1は、車10が静止状態にあり、その静止している車10からの人20の出入りを検出し、その結果を用いて出力すべき情報の種類を選択する構成を有する点で、上記第4実施形態と相違する。すなわち、検出部102の動作及び選択部128の動作が異なる。以下、第4実施形態の図11の機能ブロック図を用いて説明する。ただし、本実施形態の監視装置100は、他の実施形態の構成の少なくともいずれか一つと矛盾を生じない範囲で組み合わせてもよい。
検出部102は、画像に含まれる人20と車10の各組みについて、位置に基づいて、相対距離が基準値以下の状態、つまり接近状態にあるか否かを判別する。また、検出部102が接近状態にあると判別した車10が、移動速度推定部130が推定した移動速度から静止状態であることを判別した場合に、検出部102は、さらに車10から人の出入りがあるか検出する。
選択部128は、検出部102による人の出入りの検出結果をさらに用いて、出力すべき情報の種類を選択する。
選択部128は、検出部102による人の出入りの検出結果をさらに用いて、出力すべき情報の種類を選択する。
例えば、図18に示すように、誘拐の場合、車10は人20に近づいて(図18(a)から図18(b))、車10の中から、腕だけ伸ばして人20を掴んで車10の中に引きずり込んで連れ去ることがある(図18(c))。つまり、誘拐の場合、静止した車10から人は出てこない。車上荒らしの場合、静止した車10から、運転手が出てくる可能性が高い。この状況を検出して誘拐と車上荒らしを判別する。
<動作例>
図19は、監視システム1の動作の一例を示すフローチャートである。図19のフローチャートは、図14のフローチャートのステップS211、ステップS131、ステップS133、ステップS115、およびステップS117を含むとともに、さらに、ステップS151を含む。
図19は、監視システム1の動作の一例を示すフローチャートである。図19のフローチャートは、図14のフローチャートのステップS211、ステップS131、ステップS133、ステップS115、およびステップS117を含むとともに、さらに、ステップS151を含む。
ステップS211で、移動速度推定部130は、車10が低速で移動していると推定し、かつ検出部102が、車10が人20に接近していると判別した場合、ステップS131に進み、属性特定部126は、人20の属性を判別する。
次に、ステップS211で移動速度推定部130が、車10が静止していると判別した場合、ステップS151に進む。ステップS151では、検出部102は、静止している車10から人、つまり運転手が出てきているか否かを判別する。例えば、検出部102は、移動速度推定部130により車10が静止状態であると判別してから所定時間以内に人が車から出てきたか否かを判別することにより、人の出入りを検出することが可能である。
検出部102が、所定時間以内に車10から人が出てきていないことを検出した場合(ステップS151のNO)、誘拐の可能性が高いため、ステップS131に進む。また、ステップS211で、移動速度推定部130が、車10の移動速度が低速で接近でも静止でもないと判別した場合、単なる車10の通過と判別できるので、図12のステップS107に戻る。ステップS131以降の処理は上記実施形態と同じであるので説明を省略する。
一方、検出部102が、車10から人が出てきていることを検出した場合(ステップS151のYES)、属性特定部126は、接近状態の人20の属性を判別する(ステップS133)。そして、属性特定部126が、第2の属性を有する人物であると判別した場合(ステップS133のYES)、選択部128は、図14と同様に、人20が車上荒らしを行う可能性がある旨を示す情報を選択する(ステップS117)。
本実施形態によれば、静止した車10の中から人が出てきたか否かを検出して処理すべき情報の種類を選択できる。よって、より判別の精度を向上させることができる。
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
例えば、監視カメラ5の画像を用いて犯罪行為の検出を行っているため、当該犯罪行為が検出されたときの画像を記録することができるので、記録を犯罪発生時の証拠として利用できる。これにより、事件の早期解決、犯人逮捕および被害者の救出に繋げることができる。
例えば、監視カメラ5の画像を用いて犯罪行為の検出を行っているため、当該犯罪行為が検出されたときの画像を記録することができるので、記録を犯罪発生時の証拠として利用できる。これにより、事件の早期解決、犯人逮捕および被害者の救出に繋げることができる。
さらに、検出部102は、道路周辺を撮像する複数の監視カメラ5のうち、特定の監視カメラ5の画像を用いて処理を行ってもよい。上記したように、特に治安の悪い場所、頻繁に誘拐や車上荒らしなどの犯罪行為が発生している場所などに設置されている監視カメラ5の画像を用いて監視を行ってもよい。また、特定の監視カメラ5に優先順位を付けて、優先度高い監視カメラ5の監視時間の比率を他の監視カメラ5より長く設定してもよい。
さらに、検出部102は、車10と人20との相対距離が基準値以下の状態にあることを検出した人20の顔画像を取得して記憶してもよい。顔画像は、図3のメモリ1030、またはストレージデバイス1040などに記憶することができる。
図20に示すように、車上荒らしの場合、停止した車10から、始めに車10の所有者30が出てくる(図20(a))。検出部102は、車10から人が出てきたことを検出し、車10から出てきた人物A(車10の所有者)の顔画像を取得し、一時的に記憶しておく。
さらに、監視を続け、検出部102は、車10に接近してくる人20を検出する(図20(b))。このとき、人20の顔画像を取得する。そして、検出部102は、画像処理装置200に、先に取得した人物Aの顔画像と後から取得した人20の顔画像を送信し、同一人物か否かを照合させてもよい。選択部128は照合結果を用いて出力すべき情報の種類を選択する。同一人物でない場合、車上荒らしと判別する(図20(c))。同一人物の場合は、持ち主と判別する。
また、顔画像が撮影できなかった場合は、図20(b)で車10に接近した人20が、一旦車10の中に入った後、直ぐに(所定時間後)出てきたら、車上荒らしと判別してもよい。
さらに、第5実施形態の図19で説明した停車した車10からの人の出入りを検出し、その結果を用いる例の他の処理手順も考えられる。図21は、監視システム1の動作の一例を示すフローチャートである。図21のフローチャートは、図14のフローチャートのステップS131の替わりにステップS151を含む。この例では、ステップS211で、検出部102が、車10が低速で人20に接近していると判別した場合、ステップS151に進み、車10から人が出てきているか否かを判別する。検出部102が、人が出てきたことを検出できない場合(ステップS151のNO)、誘拐の可能性が高いため、ステップS115に進む。検出部102が、人が出てきたことを検出した場合(ステップS151のYES)、単なる車10の停車と判別できるので、図12のステップS107に戻る。これら以外の処理は、図14と同じであるので説明は省略する。
以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
なお、本発明において利用者に関する情報を取得および/または利用する場合は、これを適法に行うものとする。
なお、本発明において利用者に関する情報を取得および/または利用する場合は、これを適法に行うものとする。
以下、参考形態の例を付記する。
1. 道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知する検出手段と、
前記状態にあると検知された前記人の属性を用いて出力すべき情報の種類を選択し、選択した前記種類の情報を出力する出力手段と、を備える監視装置。
2. 1.に記載の監視装置において、
前記出力手段は、さらに前記状態にあると検知された前記車の移動速度を用いて前記出力すべき情報の種類を選択する、監視装置。
3. 道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知する検出手段と、
前記状態にあると検知された前記車の移動速度を用いて、出力すべき情報の種類を選択し、選択した前記種類の情報を出力する出力手段と、を備える監視装置。
4. 1.から3.のいずれか一つに記載の監視装置において、
前記出力手段は、
さらに前記状態にあると検知された前記人が単独行動か否に応じて、前記出力すべき情報の種類を選択する、監視装置。
5. 1.から4.のいずれか一つに記載の監視装置において、
前記検出手段は、前記状態にあると検知された前記車は静止状態であり、前記車が静止してからの人の出入りを検知し、
前記出力手段は、前記検出手段による検知結果をさらに用いて、前記出力すべき情報の種類を選択する、監視装置。
6. 1.から5.のいずれか一つに記載の監視装置において、
前記検出手段は、前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視装置。
1. 道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知する検出手段と、
前記状態にあると検知された前記人の属性を用いて出力すべき情報の種類を選択し、選択した前記種類の情報を出力する出力手段と、を備える監視装置。
2. 1.に記載の監視装置において、
前記出力手段は、さらに前記状態にあると検知された前記車の移動速度を用いて前記出力すべき情報の種類を選択する、監視装置。
3. 道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知する検出手段と、
前記状態にあると検知された前記車の移動速度を用いて、出力すべき情報の種類を選択し、選択した前記種類の情報を出力する出力手段と、を備える監視装置。
4. 1.から3.のいずれか一つに記載の監視装置において、
前記出力手段は、
さらに前記状態にあると検知された前記人が単独行動か否に応じて、前記出力すべき情報の種類を選択する、監視装置。
5. 1.から4.のいずれか一つに記載の監視装置において、
前記検出手段は、前記状態にあると検知された前記車は静止状態であり、前記車が静止してからの人の出入りを検知し、
前記出力手段は、前記検出手段による検知結果をさらに用いて、前記出力すべき情報の種類を選択する、監視装置。
6. 1.から5.のいずれか一つに記載の監視装置において、
前記検出手段は、前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視装置。
7. 道路周辺を撮像する複数のカメラと、
複数のカメラが撮像した画像を監視する監視装置と、を備え、
前記監視装置は、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知する検出手段と、
前記状態にあると検知された前記人の属性を用いて出力すべき情報の種類を選択し、選択した前記種類の情報を出力する出力手段と、を有する、監視システム。
8. 7.に記載の監視システムにおいて、
前記監視装置の前記出力手段は、さらに前記状態にあると検知された前記車の移動速度を用いて前記出力すべき情報の種類を選択する、監視システム。
9. 道路周辺を撮像する複数のカメラと、
複数のカメラが撮像した画像を監視する監視装置と、を備え、
前記監視装置は、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知する検出手段と、
前記状態にあると検知された前記車の移動速度を用いて、出力すべき情報の種類を選択し、選択した前記種類の情報を出力する出力手段と、を有する、監視システム。
10. 7.から9.のいずれか一つに記載の監視システムにおいて、
前記監視装置の前記出力手段は、
さらに前記状態にあると検知された前記人が単独行動か否に応じて、前記出力すべき情報の種類を選択する、監視システム。
11. 7.から10.のいずれか一つに記載の監視システムにおいて、
前記監視装置の前記検出手段は、前記状態にあると検知された前記車は静止状態であり、前記車が静止してからの人の出入りを検知し、
前記監視装置の前記出力手段は、前記検出手段による検知結果をさらに用いて、前記出力すべき情報の種類を選択する、監視システム。
12 7.から11.のいずれか一つに記載の監視システムにおいて、
前記監視装置の前記検出手段は、前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視システム。
複数のカメラが撮像した画像を監視する監視装置と、を備え、
前記監視装置は、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知する検出手段と、
前記状態にあると検知された前記人の属性を用いて出力すべき情報の種類を選択し、選択した前記種類の情報を出力する出力手段と、を有する、監視システム。
8. 7.に記載の監視システムにおいて、
前記監視装置の前記出力手段は、さらに前記状態にあると検知された前記車の移動速度を用いて前記出力すべき情報の種類を選択する、監視システム。
9. 道路周辺を撮像する複数のカメラと、
複数のカメラが撮像した画像を監視する監視装置と、を備え、
前記監視装置は、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知する検出手段と、
前記状態にあると検知された前記車の移動速度を用いて、出力すべき情報の種類を選択し、選択した前記種類の情報を出力する出力手段と、を有する、監視システム。
10. 7.から9.のいずれか一つに記載の監視システムにおいて、
前記監視装置の前記出力手段は、
さらに前記状態にあると検知された前記人が単独行動か否に応じて、前記出力すべき情報の種類を選択する、監視システム。
11. 7.から10.のいずれか一つに記載の監視システムにおいて、
前記監視装置の前記検出手段は、前記状態にあると検知された前記車は静止状態であり、前記車が静止してからの人の出入りを検知し、
前記監視装置の前記出力手段は、前記検出手段による検知結果をさらに用いて、前記出力すべき情報の種類を選択する、監視システム。
12 7.から11.のいずれか一つに記載の監視システムにおいて、
前記監視装置の前記検出手段は、前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視システム。
13. 監視装置が、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知し、
前記状態にあると検知された前記人の属性を用いて出力すべき情報の種類を選択し、選択した前記種類の情報を出力する、監視方法。
14. 13.に記載の監視方法において、
前記監視装置が、さらに前記状態にあると検知された前記車の移動速度を用いて前記出力すべき情報の種類を選択する、監視方法。
15. 監視装置が、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知し、
前記状態にあると検知された前記車の移動速度を用いて、出力すべき情報の種類を選択し、選択した前記種類の情報を出力する、監視方法。
16. 13.から15.のいずれか一つに記載の監視方法において、
前記監視装置が、
さらに前記状態にあると検知された前記人が単独行動か否に応じて、前記出力すべき情報の種類を選択する、監視方法。
17. 13.から16.のいずれか一つに記載の監視方法において、
前記監視装置が、
前記状態にあると検知された前記車は静止状態であり、前記車が静止してからの人の出入りを検知し、
前記検知の結果をさらに用いて、前記出力すべき情報の種類を選択する、監視方法。
18. 13.から17.のいずれか一つに記載の監視方法において、
前記監視装置が、
前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視方法。
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知し、
前記状態にあると検知された前記人の属性を用いて出力すべき情報の種類を選択し、選択した前記種類の情報を出力する、監視方法。
14. 13.に記載の監視方法において、
前記監視装置が、さらに前記状態にあると検知された前記車の移動速度を用いて前記出力すべき情報の種類を選択する、監視方法。
15. 監視装置が、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知し、
前記状態にあると検知された前記車の移動速度を用いて、出力すべき情報の種類を選択し、選択した前記種類の情報を出力する、監視方法。
16. 13.から15.のいずれか一つに記載の監視方法において、
前記監視装置が、
さらに前記状態にあると検知された前記人が単独行動か否に応じて、前記出力すべき情報の種類を選択する、監視方法。
17. 13.から16.のいずれか一つに記載の監視方法において、
前記監視装置が、
前記状態にあると検知された前記車は静止状態であり、前記車が静止してからの人の出入りを検知し、
前記検知の結果をさらに用いて、前記出力すべき情報の種類を選択する、監視方法。
18. 13.から17.のいずれか一つに記載の監視方法において、
前記監視装置が、
前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視方法。
19. コンピュータに、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知する手順、
前記状態にあると検知された前記人の属性を用いて出力すべき情報の種類を選択し、選択した前記種類の情報を出力する手順、を実行させるためのプログラム。
20. 19.に記載のプログラムにおいて、
さらに前記状態にあると検知された前記車の移動速度を用いて前記出力すべき情報の種類を選択する手順をコンピュータに実行させるためのプログラム。
21. コンピュータに、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知する手順、
前記状態にあると検知された前記車の移動速度を用いて、出力すべき情報の種類を選択し、選択した前記種類の情報を出力する手順、を実行させるためのプログラム。
22. 19.から21.のいずれか一つに記載のプログラムにおいて、
さらに前記状態にあると検知された前記人が単独行動か否に応じて、前記出力すべき情報の種類を選択する手順をコンピュータに実行させるためのプログラム。
23. 19.から22.のいずれか一つに記載のプログラムにおいて、
前記状態にあると検知された前記車は静止状態であり、前記車が静止してからの人の出入りを検知する手順、
前記検知する手順による検知結果をさらに用いて、前記出力すべき情報の種類を選択する手順、をコンピュータに実行させるためのプログラム。
24. 19.から23.のいずれか一つに記載のプログラムにおいて、
前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う手順、をコンピュータに実行させるためのプログラム。
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知する手順、
前記状態にあると検知された前記人の属性を用いて出力すべき情報の種類を選択し、選択した前記種類の情報を出力する手順、を実行させるためのプログラム。
20. 19.に記載のプログラムにおいて、
さらに前記状態にあると検知された前記車の移動速度を用いて前記出力すべき情報の種類を選択する手順をコンピュータに実行させるためのプログラム。
21. コンピュータに、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検知する手順、
前記状態にあると検知された前記車の移動速度を用いて、出力すべき情報の種類を選択し、選択した前記種類の情報を出力する手順、を実行させるためのプログラム。
22. 19.から21.のいずれか一つに記載のプログラムにおいて、
さらに前記状態にあると検知された前記人が単独行動か否に応じて、前記出力すべき情報の種類を選択する手順をコンピュータに実行させるためのプログラム。
23. 19.から22.のいずれか一つに記載のプログラムにおいて、
前記状態にあると検知された前記車は静止状態であり、前記車が静止してからの人の出入りを検知する手順、
前記検知する手順による検知結果をさらに用いて、前記出力すべき情報の種類を選択する手順、をコンピュータに実行させるためのプログラム。
24. 19.から23.のいずれか一つに記載のプログラムにおいて、
前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う手順、をコンピュータに実行させるためのプログラム。
以下、さらなる参考形態の例を付記する。
25. 道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する検出手段と、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する出力手段と、を備える監視装置。
26. 25.に記載の監視装置において、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより、位置を特定する位置特定手段と、
前記位置特定手段が特定した前記人について、前記画像処理を行うことにより、属性を特定する属性特定手段と、
前記検出手段が前記状態にある人と車を検出した場合、当該検出された人について、特定された前記属性を用いて、出力すべき情報の前記種類を選択する選択手段と、を備え、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視装置。
27. 25.または26.に記載の監視装置において、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する位置特定手段と、
前記位置特定手段が特定した前記車について、当該車の位置の変化から移動速度を推定する移動速度推定手段と、
前記移動速度推定手段が推定した前記車の移動速度を用いて、出力すべき情報の前記種類を選択する選択手段と、を備え、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視装置。
28. 25.から27.のいずれか一つに記載の監視装置において、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する位置特定手段と、
前記物体特定手段が特定した前記人の人数を特定し、特定された前記人が単独行動か否かを判別する人数特定手段と、
前記人数特定手段の判別結果に応じて選択された、出力すべき種類の前記情報を選択する選択手段と、を備え、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視装置。
29. 27.または27.を引用する28.に記載の監視装置において、
前記検出手段は、前記状態にあると検出した前記車が、前記移動速度推定手段が推定した前記移動速度から静止状態であることを判別した場合に、さらに、前記車からの人の出入りがあるか検出し、
前記選択手段は、前記検出手段による前記人の出入りの検出結果をさらに用いて、出力すべき種類の前記情報を選択し、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視装置。
30. 25.から29.のいずれか一つに記載の監視装置において、
前記検出手段は、前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視装置。
25. 道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する検出手段と、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する出力手段と、を備える監視装置。
26. 25.に記載の監視装置において、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより、位置を特定する位置特定手段と、
前記位置特定手段が特定した前記人について、前記画像処理を行うことにより、属性を特定する属性特定手段と、
前記検出手段が前記状態にある人と車を検出した場合、当該検出された人について、特定された前記属性を用いて、出力すべき情報の前記種類を選択する選択手段と、を備え、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視装置。
27. 25.または26.に記載の監視装置において、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する位置特定手段と、
前記位置特定手段が特定した前記車について、当該車の位置の変化から移動速度を推定する移動速度推定手段と、
前記移動速度推定手段が推定した前記車の移動速度を用いて、出力すべき情報の前記種類を選択する選択手段と、を備え、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視装置。
28. 25.から27.のいずれか一つに記載の監視装置において、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する位置特定手段と、
前記物体特定手段が特定した前記人の人数を特定し、特定された前記人が単独行動か否かを判別する人数特定手段と、
前記人数特定手段の判別結果に応じて選択された、出力すべき種類の前記情報を選択する選択手段と、を備え、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視装置。
29. 27.または27.を引用する28.に記載の監視装置において、
前記検出手段は、前記状態にあると検出した前記車が、前記移動速度推定手段が推定した前記移動速度から静止状態であることを判別した場合に、さらに、前記車からの人の出入りがあるか検出し、
前記選択手段は、前記検出手段による前記人の出入りの検出結果をさらに用いて、出力すべき種類の前記情報を選択し、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視装置。
30. 25.から29.のいずれか一つに記載の監視装置において、
前記検出手段は、前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視装置。
31. 道路周辺を撮像する複数のカメラと、
複数のカメラが撮像した画像を監視する監視装置と、を備え、
前記監視装置は、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する検出手段と、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する出力手段と、を有する、監視システム。
32. 31.に記載の監視システムにおいて、
前記監視装置は、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより、位置を特定する位置特定手段と、
前記位置特定手段が特定した前記人について、前記画像処理を行うことにより、属性を特定する属性特定手段と、
前記検出手段が前記状態にある人と車を検出した場合、当該検出された人について、特定された前記属性を用いて、出力すべき情報の前記種類を選択する選択手段と、を備え、
前記監視装置の前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視システム。
33. 31.または32.に記載の監視システムにおいて、
前記監視装置は、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する位置特定手段と、
前記位置特定手段が特定した前記車について、当該車の位置の変化から移動速度を推定する移動速度推定手段と、
移動速度推定手段が推定した前記車の移動速度を用いて、出力すべき情報の前記種類を選択する選択手段と、を備え、
前記監視装置の前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視システム。
34. 31.から33.のいずれか一つに記載の監視システムにおいて、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する位置特定手段と、
前記物体特定手段が特定した前記人の人数を特定し、特定された前記人が単独行動か否かを判別する人数特定手段と、
前記人数特定手段の判別結果に応じて選択された、出力すべき種類の前記情報を選択する選択手段と、を備え、
前記監視装置の前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視システム。
35. 33.または33.を引用する34.に記載の監視システムにおいて、
前記監視装置の前記検出手段は、前記状態にあると検出した前記車が、前記移動速度推定手段が推定した前記移動速度から静止状態であることを判別した場合に、さらに、前記車からの人の出入りがあるか検出し、
前記監視装置の前記選択手段は、前記検出手段による前記人の出入りの検出結果をさらに用いて、出力すべき種類の前記情報を選択し、
前記監視装置の前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視システム。
36. 31.から35.のいずれか一つに記載の監視システムにおいて、
前記監視装置の前記検出手段は、前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視システム。
複数のカメラが撮像した画像を監視する監視装置と、を備え、
前記監視装置は、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する検出手段と、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する出力手段と、を有する、監視システム。
32. 31.に記載の監視システムにおいて、
前記監視装置は、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより、位置を特定する位置特定手段と、
前記位置特定手段が特定した前記人について、前記画像処理を行うことにより、属性を特定する属性特定手段と、
前記検出手段が前記状態にある人と車を検出した場合、当該検出された人について、特定された前記属性を用いて、出力すべき情報の前記種類を選択する選択手段と、を備え、
前記監視装置の前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視システム。
33. 31.または32.に記載の監視システムにおいて、
前記監視装置は、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する位置特定手段と、
前記位置特定手段が特定した前記車について、当該車の位置の変化から移動速度を推定する移動速度推定手段と、
移動速度推定手段が推定した前記車の移動速度を用いて、出力すべき情報の前記種類を選択する選択手段と、を備え、
前記監視装置の前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視システム。
34. 31.から33.のいずれか一つに記載の監視システムにおいて、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する位置特定手段と、
前記物体特定手段が特定した前記人の人数を特定し、特定された前記人が単独行動か否かを判別する人数特定手段と、
前記人数特定手段の判別結果に応じて選択された、出力すべき種類の前記情報を選択する選択手段と、を備え、
前記監視装置の前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視システム。
35. 33.または33.を引用する34.に記載の監視システムにおいて、
前記監視装置の前記検出手段は、前記状態にあると検出した前記車が、前記移動速度推定手段が推定した前記移動速度から静止状態であることを判別した場合に、さらに、前記車からの人の出入りがあるか検出し、
前記監視装置の前記選択手段は、前記検出手段による前記人の出入りの検出結果をさらに用いて、出力すべき種類の前記情報を選択し、
前記監視装置の前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視システム。
36. 31.から35.のいずれか一つに記載の監視システムにおいて、
前記監視装置の前記検出手段は、前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視システム。
37. 監視装置が、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出し、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する、監視方法。
38. 37.に記載の監視方法において、
監視装置が、
カメラにより生成される前記道路周辺を撮像した前記画像を取得し、
取得した前記画像について、画像処理を行うことにより、人と車を認識して特定し、
特定した前記人と前記車について、前記画像処理を行うことにより、位置を特定し、
特定した前記人について、前記画像処理を行うことにより、属性を特定し、
前記状態にある人と車を検出した場合、当該検出された人について、特定された前記属性を用いて、出力すべき情報の前記種類を選択し、
前記選択した種類の情報を出力する、監視方法。
39. 37.または38.に記載の監視方法において、
前記監視装置が、
カメラにより生成される前記道路周辺を撮像した前記画像を取得し、
取得した前記画像について、画像処理を行うことにより、人と車を認識して特定し、
特定した前記人と前記車について、前記画像処理を行うことにより位置を特定し、
特定した前記車について、当該車の位置の変化から移動速度を推定し、
推定した前記車の移動速度を用いて、出力すべき情報の前記種類を選択し、
前記選択した前記種類の情報を出力する、監視方法。
40. 37.から39.のいずれか一つに記載の監視方法において、
前記監視装置が、
カメラにより生成される前記道路周辺を撮像した前記画像を取得し、
取得した前記画像について、画像処理を行うことにより、人と車を認識して特定し、
特定した前記人と前記車について、前記画像処理を行うことにより位置を特定し、
特定した前記人の人数を特定し、特定された前記人が単独行動か否かを判別し、
前記判別の結果に応じて選択された、出力すべき種類の前記情報を選択し、
選択した前記種類の情報を出力する、監視方法。
41. 39.および39.を引用する請求項40.に記載の監視方法において、
前記監視装置が、
前記状態にあると検出した前記車が、推定した前記移動速度から静止状態であることを判別した場合に、さらに、前記車からの人の出入りがあるか検出し、
前記人の出入りの検出結果をさらに用いて、出力すべき種類の前記情報を選択し、
選択した前記種類の情報を出力する、監視方法。
42. 37.から41.のいずれか一つに記載の監視方法において、
前記監視装置が、
前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視方法。
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出し、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する、監視方法。
38. 37.に記載の監視方法において、
監視装置が、
カメラにより生成される前記道路周辺を撮像した前記画像を取得し、
取得した前記画像について、画像処理を行うことにより、人と車を認識して特定し、
特定した前記人と前記車について、前記画像処理を行うことにより、位置を特定し、
特定した前記人について、前記画像処理を行うことにより、属性を特定し、
前記状態にある人と車を検出した場合、当該検出された人について、特定された前記属性を用いて、出力すべき情報の前記種類を選択し、
前記選択した種類の情報を出力する、監視方法。
39. 37.または38.に記載の監視方法において、
前記監視装置が、
カメラにより生成される前記道路周辺を撮像した前記画像を取得し、
取得した前記画像について、画像処理を行うことにより、人と車を認識して特定し、
特定した前記人と前記車について、前記画像処理を行うことにより位置を特定し、
特定した前記車について、当該車の位置の変化から移動速度を推定し、
推定した前記車の移動速度を用いて、出力すべき情報の前記種類を選択し、
前記選択した前記種類の情報を出力する、監視方法。
40. 37.から39.のいずれか一つに記載の監視方法において、
前記監視装置が、
カメラにより生成される前記道路周辺を撮像した前記画像を取得し、
取得した前記画像について、画像処理を行うことにより、人と車を認識して特定し、
特定した前記人と前記車について、前記画像処理を行うことにより位置を特定し、
特定した前記人の人数を特定し、特定された前記人が単独行動か否かを判別し、
前記判別の結果に応じて選択された、出力すべき種類の前記情報を選択し、
選択した前記種類の情報を出力する、監視方法。
41. 39.および39.を引用する請求項40.に記載の監視方法において、
前記監視装置が、
前記状態にあると検出した前記車が、推定した前記移動速度から静止状態であることを判別した場合に、さらに、前記車からの人の出入りがあるか検出し、
前記人の出入りの検出結果をさらに用いて、出力すべき種類の前記情報を選択し、
選択した前記種類の情報を出力する、監視方法。
42. 37.から41.のいずれか一つに記載の監視方法において、
前記監視装置が、
前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視方法。
43. コンピュータに、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する手順、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する手順、を実行させるためのプログラム。
44. 43.に記載のプログラムにおいて、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する手順、
前記取得する手順で取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する手順、
前記人と車を特定する手順で特定した前記人と前記車について、前記画像処理を行うことにより、位置を特定する手順、
前記位置を特定する手順で特定した前記人について、前記画像処理を行うことにより、属性を特定する手順、
前記検出する手順で前記状態にある人と車を検出した場合、当該検出された人について、特定された前記属性を用いて、出力すべき情報の前記種類を選択する手順、
前記選択する手順で選択した前記種類の情報を出力する手順、をコンピュータに実行させるためのプログラム。
45. 43.または44.に記載のプログラムにおいて、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する手順、
前記取得する手順で取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する手順、
前記人と車を特定する手順で特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する手順、
前記位置を特定する手順で特定した前記車について、当該車の位置の変化から移動速度を推定する手順、
前記移動速度を推定する手順で推定した前記車の移動速度を用いて、出力すべき情報の前記種類を選択する手順、
選択する手順で選択した前記種類の情報を出力する手順、をコンピュータに実行させるためのプログラム。
46. 43.から45.のいずれか一つに記載のプログラムにおいて、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する手順、
前記取得する手順で取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する手順、
前記人と車を特定する手順で特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する手順、
前記人と車を特定する手順で特定した前記人の人数を特定し、特定された前記人が単独行動か否かを判別する手順、
前記判別の結果に応じて選択された、出力すべき種類の前記情報を選択する手順、
前記選択する手順で選択した前記種類の情報を出力する手順、をコンピュータに実行させるためのプログラム。
47. 45.または45.を引用する46.に記載のプログラムにおいて、
前記状態にあると検出した前記車が、前記移動速度を推定する手順で推定した前記移動速度から静止状態であることを判別した場合に、さらに、前記車からの人の出入りがあるか検出し、
前記人の出入りの検出結果をさらに用いて、出力すべき種類の前記情報を選択し、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する手順、をコンピュータに実行させるためのプログラム。
48. 43.から47のいずれか一つに記載のプログラムにおいて、
前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う手順、をコンピュータに実行させるためのプログラム。
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する手順、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する手順、を実行させるためのプログラム。
44. 43.に記載のプログラムにおいて、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する手順、
前記取得する手順で取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する手順、
前記人と車を特定する手順で特定した前記人と前記車について、前記画像処理を行うことにより、位置を特定する手順、
前記位置を特定する手順で特定した前記人について、前記画像処理を行うことにより、属性を特定する手順、
前記検出する手順で前記状態にある人と車を検出した場合、当該検出された人について、特定された前記属性を用いて、出力すべき情報の前記種類を選択する手順、
前記選択する手順で選択した前記種類の情報を出力する手順、をコンピュータに実行させるためのプログラム。
45. 43.または44.に記載のプログラムにおいて、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する手順、
前記取得する手順で取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する手順、
前記人と車を特定する手順で特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する手順、
前記位置を特定する手順で特定した前記車について、当該車の位置の変化から移動速度を推定する手順、
前記移動速度を推定する手順で推定した前記車の移動速度を用いて、出力すべき情報の前記種類を選択する手順、
選択する手順で選択した前記種類の情報を出力する手順、をコンピュータに実行させるためのプログラム。
46. 43.から45.のいずれか一つに記載のプログラムにおいて、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する手順、
前記取得する手順で取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する手順、
前記人と車を特定する手順で特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する手順、
前記人と車を特定する手順で特定した前記人の人数を特定し、特定された前記人が単独行動か否かを判別する手順、
前記判別の結果に応じて選択された、出力すべき種類の前記情報を選択する手順、
前記選択する手順で選択した前記種類の情報を出力する手順、をコンピュータに実行させるためのプログラム。
47. 45.または45.を引用する46.に記載のプログラムにおいて、
前記状態にあると検出した前記車が、前記移動速度を推定する手順で推定した前記移動速度から静止状態であることを判別した場合に、さらに、前記車からの人の出入りがあるか検出し、
前記人の出入りの検出結果をさらに用いて、出力すべき種類の前記情報を選択し、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する手順、をコンピュータに実行させるためのプログラム。
48. 43.から47のいずれか一つに記載のプログラムにおいて、
前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う手順、をコンピュータに実行させるためのプログラム。
この出願は、2020年1月20日に出願された国際出願PCT/JP2020/001760号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 監視システム
3 通信ネットワーク
5 監視カメラ
10 車
20 人
30 所有者
100 監視装置
102 検出部
104 出力部
120 取得部
122 物体特定部
124 位置特定部
126 属性特定部
128 選択部
130 移動速度推定部
132 人数特定部
200 画像処理装置
220 サーバ
300 記憶装置
1000 コンピュータ
1010 バス
1020 プロセッサ
1030 メモリ
1040 ストレージデバイス
1050 入出力インタフェース
1060 ネットワークインタフェース
3 通信ネットワーク
5 監視カメラ
10 車
20 人
30 所有者
100 監視装置
102 検出部
104 出力部
120 取得部
122 物体特定部
124 位置特定部
126 属性特定部
128 選択部
130 移動速度推定部
132 人数特定部
200 画像処理装置
220 サーバ
300 記憶装置
1000 コンピュータ
1010 バス
1020 プロセッサ
1030 メモリ
1040 ストレージデバイス
1050 入出力インタフェース
1060 ネットワークインタフェース
Claims (24)
- 道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する検出手段と、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する出力手段と、を備える監視装置。 - 請求項1に記載の監視装置において、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより、位置を特定する位置特定手段と、
前記位置特定手段が特定した前記人について、前記画像処理を行うことにより、属性を特定する属性特定手段と、
前記検出手段が前記状態にある人と車を検出した場合、当該検出された人について、特定された前記属性を用いて、出力すべき情報の前記種類を選択する選択手段と、を備え、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視装置。 - 請求項1または2に記載の監視装置において、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する位置特定手段と、
前記位置特定手段が特定した前記車について、当該車の位置の変化から移動速度を推定する移動速度推定手段と、
前記移動速度推定手段が推定した前記車の移動速度を用いて、出力すべき情報の前記種類を選択する選択手段と、を備え、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視装置。 - 請求項1から3のいずれか一項に記載の監視装置において、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する位置特定手段と、
前記物体特定手段が特定した前記人の人数を特定し、特定された前記人が単独行動か否かを判別する人数特定手段と、
前記人数特定手段の判別結果に応じて選択された、出力すべき種類の前記情報を選択する選択手段と、を備え、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視装置。 - 請求項3または請求項3を引用する請求項4に記載の監視装置において、
前記検出手段は、前記状態にあると検出した前記車が、前記移動速度推定手段が推定した前記移動速度から静止状態であることを判別した場合に、さらに、前記車からの人の出入りがあるか検出し、
前記選択手段は、前記検出手段による前記人の出入りの検出結果をさらに用いて、出力すべき種類の前記情報を選択し、
前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視装置。 - 請求項1から5のいずれか一項に記載の監視装置において、
前記検出手段は、前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視装置。 - 道路周辺を撮像する複数のカメラと、
複数のカメラが撮像した画像を監視する監視装置と、を備え、
前記監視装置は、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する検出手段と、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する出力手段と、を有する、監視システム。 - 請求項7に記載の監視システムにおいて、
前記監視装置は、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより、位置を特定する位置特定手段と、
前記位置特定手段が特定した前記人について、前記画像処理を行うことにより、属性を特定する属性特定手段と、
前記検出手段が前記状態にある人と車を検出した場合、当該検出された人について、特定された前記属性を用いて、出力すべき情報の前記種類を選択する選択手段と、を備え、
前記監視装置の前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視システム。 - 請求項7または8に記載の監視システムにおいて、
前記監視装置は、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する位置特定手段と、
前記位置特定手段が特定した前記車について、当該車の位置の変化から移動速度を推定する移動速度推定手段と、
移動速度推定手段が推定した前記車の移動速度を用いて、出力すべき情報の前記種類を選択する選択手段と、を備え、
前記監視装置の前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視システム。 - 請求項7から9のいずれか一項に記載の監視システムにおいて、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する取得手段と、
前記取得手段が取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する物体特定手段と、
前記物体特定手段が特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する位置特定手段と、
前記物体特定手段が特定した前記人の人数を特定し、特定された前記人が単独行動か否かを判別する人数特定手段と、
前記人数特定手段の判別結果に応じて選択された、出力すべき種類の前記情報を選択する選択手段と、を備え、
前記監視装置の前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視システム。 - 請求項9または請求項9を引用する請求項10に記載の監視システムにおいて、
前記監視装置の前記検出手段は、前記状態にあると検出した前記車が、前記移動速度推定手段が推定した前記移動速度から静止状態であることを判別した場合に、さらに、前記車からの人の出入りがあるか検出し、
前記監視装置の前記選択手段は、前記検出手段による前記人の出入りの検出結果をさらに用いて、出力すべき種類の前記情報を選択し、
前記監視装置の前記出力手段は、前記選択手段が選択した前記種類の情報を出力する、監視システム。 - 請求項7から10のいずれか一項に記載の監視システムにおいて、
前記監視装置の前記検出手段は、前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視システム。 - 監視装置が、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出し、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する、監視方法。 - 請求項13に記載の監視方法において、
監視装置が、
カメラにより生成される前記道路周辺を撮像した前記画像を取得し、
取得した前記画像について、画像処理を行うことにより、人と車を認識して特定し、
特定した前記人と前記車について、前記画像処理を行うことにより、位置を特定し、
特定した前記人について、前記画像処理を行うことにより、属性を特定し、
前記状態にある人と車を検出した場合、当該検出された人について、特定された前記属性を用いて、出力すべき情報の前記種類を選択し、
前記選択した種類の情報を出力する、監視方法。 - 請求項13または14に記載の監視方法において、
前記監視装置が、
カメラにより生成される前記道路周辺を撮像した前記画像を取得し、
取得した前記画像について、画像処理を行うことにより、人と車を認識して特定し、
特定した前記人と前記車について、前記画像処理を行うことにより位置を特定し、
特定した前記車について、当該車の位置の変化から移動速度を推定し、
推定した前記車の移動速度を用いて、出力すべき情報の前記種類を選択し、
前記選択した前記種類の情報を出力する、監視方法。 - 請求項13から15のいずれか一項に記載の監視方法において、
前記監視装置が、
カメラにより生成される前記道路周辺を撮像した前記画像を取得し、
取得した前記画像について、画像処理を行うことにより、人と車を認識して特定し、
特定した前記人と前記車について、前記画像処理を行うことにより位置を特定し、
特定した前記人の人数を特定し、特定された前記人が単独行動か否かを判別し、
前記判別の結果に応じて選択された、出力すべき種類の前記情報を選択し、
選択した前記種類の情報を出力する、監視方法。 - 請求項15および請求項15を引用する請求項16に記載の監視方法において、
前記監視装置が、
前記状態にあると検出した前記車が、推定した前記移動速度から静止状態であることを判別した場合に、さらに、前記車からの人の出入りがあるか検出し、
前記人の出入りの検出結果をさらに用いて、出力すべき種類の前記情報を選択し、
選択した前記種類の情報を出力する、監視方法。 - 請求項13から17のいずれか一項に記載の監視方法において、
前記監視装置が、
前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う、監視方法。 - コンピュータに、
道路周辺を撮像した画像を処理し、前記画像に含まれる人と車の相対距離が基準値以下の状態であることを検出する手順、
前記状態にあると検出された前記人の属性を用いて選択された出力すべき種類の情報を出力する手順、を実行させるためのプログラム。 - 請求項19に記載のプログラムにおいて、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する手順、
前記取得する手順で取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する手順、
前記人と車を特定する手順で特定した前記人と前記車について、前記画像処理を行うことにより、位置を特定する手順、
前記位置を特定する手順で特定した前記人について、前記画像処理を行うことにより、属性を特定する手順、
前記検出する手順で前記状態にある人と車を検出した場合、当該検出された人について、特定された前記属性を用いて、出力すべき情報の前記種類を選択する手順、
前記選択する手順で選択した前記種類の情報を出力する手順、をコンピュータに実行させるためのプログラム。 - 請求項19または20に記載のプログラムにおいて、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する手順、
前記取得する手順で取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する手順、
前記人と車を特定する手順で特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する手順、
前記位置を特定する手順で特定した前記車について、当該車の位置の変化から移動速度を推定する手順、
前記移動速度を推定する手順で推定した前記車の移動速度を用いて、出力すべき情報の前記種類を選択する手順、
選択する手順で選択した前記種類の情報を出力する手順、をコンピュータに実行させるためのプログラム。 - 請求項19から21のいずれか一項に記載のプログラムにおいて、
カメラにより生成される前記道路周辺を撮像した前記画像を取得する手順、
前記取得する手順で取得した前記画像について、画像処理を行うことにより、人と車を認識して特定する手順、
前記人と車を特定する手順で特定した前記人と前記車について、前記画像処理を行うことにより位置を特定する手順、
前記人と車を特定する手順で特定した前記人の人数を特定し、特定された前記人が単独行動か否かを判別する手順、
前記判別の結果に応じて選択された、出力すべき種類の前記情報を選択する手順、
前記選択する手順で選択した前記種類の情報を出力する手順、をコンピュータに実行させるためのプログラム。 - 請求項21または請求項21を引用する請求項22に記載のプログラムにおいて、
前記状態にあると検出した前記車が、前記移動速度を推定する手順で推定した前記移動速度から静止状態であることを判別した場合に、さらに、前記車からの人の出入りがあるか検出し、
前記人の出入りの検出結果をさらに用いて、出力すべき種類の前記情報を選択し、
選択した前記種類の情報を出力する手順、をコンピュータに実行させるためのプログラム。 - 請求項19から23のいずれか一項に記載のプログラムにおいて、
前記道路周辺を撮像する複数のカメラのうち、特定のカメラの画像を用いて前記処理を行う手順、をコンピュータに実行させるためのプログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/790,911 US20230083156A1 (en) | 2020-01-20 | 2020-04-13 | Surveillance system, surveillance apparatus, surveillance method, and non-transitory computer-readable storage medium |
JP2021572957A JP7367781B2 (ja) | 2020-01-20 | 2020-04-13 | 監視システム、監視装置、監視方法、およびプログラム |
JP2023175000A JP2024009906A (ja) | 2020-01-20 | 2023-10-10 | 監視装置、監視方法、およびプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2020/001760 | 2020-01-20 | ||
JP2020001760 | 2020-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021149274A1 true WO2021149274A1 (ja) | 2021-07-29 |
Family
ID=76992960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/016315 WO2021149274A1 (ja) | 2020-01-20 | 2020-04-13 | 監視システム、監視装置、監視方法、およびプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230083156A1 (ja) |
JP (2) | JP7367781B2 (ja) |
WO (1) | WO2021149274A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021008712A1 (en) * | 2019-07-18 | 2021-01-21 | Toyota Motor Europe | Method for calculating information relative to a relative speed between an object and a camera |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017220151A (ja) * | 2016-06-10 | 2017-12-14 | キヤノン株式会社 | 情報処理装置、情報処理方法及びプログラム |
JP2018054498A (ja) * | 2016-09-29 | 2018-04-05 | パナソニックIpマネジメント株式会社 | 通知器具及び街路灯システム |
WO2018110165A1 (ja) * | 2016-12-15 | 2018-06-21 | 日本電気株式会社 | 情報処理装置、情報処理方法および情報処理プログラム |
US20190354773A1 (en) * | 2018-05-16 | 2019-11-21 | 360Ai Solutions Llc | Methods and System for Detecting a Threat or Other Suspicious Activity in the Vicinity of a Person |
-
2020
- 2020-04-13 US US17/790,911 patent/US20230083156A1/en active Pending
- 2020-04-13 WO PCT/JP2020/016315 patent/WO2021149274A1/ja active Application Filing
- 2020-04-13 JP JP2021572957A patent/JP7367781B2/ja active Active
-
2023
- 2023-10-10 JP JP2023175000A patent/JP2024009906A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017220151A (ja) * | 2016-06-10 | 2017-12-14 | キヤノン株式会社 | 情報処理装置、情報処理方法及びプログラム |
JP2018054498A (ja) * | 2016-09-29 | 2018-04-05 | パナソニックIpマネジメント株式会社 | 通知器具及び街路灯システム |
WO2018110165A1 (ja) * | 2016-12-15 | 2018-06-21 | 日本電気株式会社 | 情報処理装置、情報処理方法および情報処理プログラム |
US20190354773A1 (en) * | 2018-05-16 | 2019-11-21 | 360Ai Solutions Llc | Methods and System for Detecting a Threat or Other Suspicious Activity in the Vicinity of a Person |
Also Published As
Publication number | Publication date |
---|---|
JP2024009906A (ja) | 2024-01-23 |
JPWO2021149274A1 (ja) | 2021-07-29 |
JP7367781B2 (ja) | 2023-10-24 |
US20230083156A1 (en) | 2023-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10997422B2 (en) | Information processing apparatus, information processing method, and program | |
EP3754618B1 (en) | Recording control device, recording control system, recording control method, and recording control program | |
US20240046664A1 (en) | Cloud-controlled vehicle security system | |
JP2000244897A (ja) | 状態認識システムおよび状態認識表示生成方法 | |
JP2011521541A (ja) | 電子的監視のためのシステム及び方法 | |
CN109788242B (zh) | 救援系统、救援方法及其所使用的服务器 | |
WO2021095351A1 (ja) | 監視装置、監視方法、及びプログラム | |
JP2022008672A (ja) | 情報処理装置、情報処理方法、及びプログラム | |
JP7459916B2 (ja) | 物体追跡方法、物体追跡装置、及びプログラム | |
EP4071728A1 (en) | Artificial intelligence model integration and deployment for providing a service | |
CN111428644A (zh) | 基于深度神经网络的斑马线区域监测方法、系统及介质 | |
CN115862167A (zh) | 道闸控制方法、装置、计算机设备和存储介质 | |
JP2024009906A (ja) | 監視装置、監視方法、およびプログラム | |
CN111178194A (zh) | 入侵检测方法、装置和设备 | |
WO2021131050A1 (ja) | 表示システム、表示処理装置、表示処理方法、およびプログラム | |
JP6978986B2 (ja) | 警報システム、警報制御装置及び警報方法 | |
KR101407394B1 (ko) | 방치물 및 도난물 탐지 시스템 | |
Miller et al. | Intelligent Sensor Information System For Public Transport–To Safely Go… | |
WO2021111654A1 (ja) | 処理装置、処理方法及びプログラム | |
JP2005140754A (ja) | 人物検知方法、監視システム、およびコンピュータプログラム | |
JP7301715B2 (ja) | 監視カメラ利用車両システムに適用される状態予測サーバおよび注意喚起装置 | |
KR20220031258A (ko) | 상담 이벤트에 대응되는 학습 데이터 기반 능동형 보안관제 서비스 제공 방법 | |
US12148173B2 (en) | Object tracking apparatus, control method, and program | |
JP7355228B2 (ja) | 監視装置、監視方法、およびプログラム | |
JP7284867B2 (ja) | 人物追跡管理サーバ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20915092 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021572957 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20915092 Country of ref document: EP Kind code of ref document: A1 |